
The JavaTM API for
Web Based Enterprise Management

JSR-48

Version Final

October 26, 2009

JSR-48 Copyright © 2003-2009 WBEM Solutions, Inc. 1 of 45

Abstract

Web Based Enterprise Management (WBEM) is a set of specifications that unify the
management of enterprise computing environments. WBEM provides the ability for the
industry to deliver a well-integrated set of standard-based management tools leveraging
the emerging Web technologies. The Distributed Management Task Force (DMTF) has
developed a core set of standards that make up WBEM.

This specification along with the Javadoc defines the JavaTM WBEM API. This allows
any JavaTM VM to become WBEM enabled as well as allow any JavaTM VM to manage
any WBEM (SMI, SMASH, ...) enabled managed elements.

JSR-48 Copyright © 2003-2009 WBEM Solutions, Inc. 2 of 45

Table of Contents
1 Introduction...5
1 Audience...6

1.1 Terminology..6
2 Requirements...7

2.1 Java Editions..7
2.2 Standards ..7

1 Architecture...8
1.1 Overview...8
1.2 Java Packages..8
1.3 JSR48 Architecture..8
1.1 Clients..10
1.2 WBEM Server..10

1.2.1 Client Object Manager Adapters...10
1.1.1 Indication Delivery Handlers..10
1.1.2 CIM Object Manager..10
1.1.3 CIM Repository..11
1.1.4 Security/Auditing PlugIn..11
1.1.5 Provider Object Manager Adapter ...11

1.2 Providers ...12
2 Design...13

2.1 CIM (javax.cim)...13
2.1.1 CIM Meta Elements..14

2.1.1.1 Qualifier..14
2.1.1.2 Qualifier Type...15
1.1.1.1 Class.. .15
1.1.1.1 Association...15
1.1.1.2 Indication..15
1.1.1.3 Class Property...15
1.1.1.4 Reference..15
1.1.1.1 Method..16
1.1.1.2 Parameter..16
1.1.1.3 Qualifier Flavor...16
1.1.1.4 Qualifier Scope ..16

1.1.2 Other CIM Elements...17
1.1.2.1 Instance...17
1.1.2.2 Instance Property..17
1.1.2.3 Argument..17

1.1.3 Data Types...18
1.1.3.1 CIMDateTime...19

1.2 Common Java Elements (javax.wbem)...19
1.3 Client (javax.wbem.client)...20

1.3.1 Connecting to a CIM Server...21

JSR-48 Copyright © 2003-2009 WBEM Solutions, Inc. 3 of 45

1.3.2 CIM Operations..22
1.3.2.1 Metadata Operations...23
1.3.2.2 Data Operations..24
1.3.2.3 Association Traversal Operations..26
1.3.2.4 Query..29
1.3.2.5 Extrinsic Method Invocation...31

1.4 Listener (javax.wbem.listener)...32
1.5 Providers (javax.wbem.provider)...33

1.5.1 Provider..34
1.5.2 InstanceProvider...35
1.5.3 AssociatorProvider...36
1.5.4 IndicationProvider..37
1.1.1 MethodProvider..38
1.1.1 PullInstanceProvider...39
1.1.2 PullAssociatorProvider...41

1.2 CIM Errors (javax.wbem)..42
1.3 Asynchronous Method Invocations..42

2 Appendix A: Change Summary...43
3 Appendix B: Futures..44
5 Appendix C: Contributors..45

JSR-48 Copyright © 2003-2009 WBEM Solutions, Inc. 4 of 45

Introduction
JavaTM WBEM Services is an architecture and a set of programming interfaces based on
CIM and WBEM standards. This specification deals specifically with the CIM, Client
and Provider programming interfaces.
The JavaTM WBEM API (javax.wbem and javax.cim) is based on CIM and WBEM
standards and allows any JavaTM platform to manage any WBEM enabled element as well
as enables any JavaTM platform to become WBEM enabled.

Web-Based Enterprise Management (WBEM) is an industry initiative. WBEM includes
standards for managing systems, networks, users, and applications by using Internet
standard technologies. WBEM provides a way for management applications to share
management data independently of vendor, protocol, operating system, or management
standard. WBEM consists of the following standards:

• The Common Information Model (CIM) is an object-oriented information model
defined by the Distributed Management Task Force (DMTF) which provides a
conceptual framework for describing management data.

• CIM-XML
• xmlCIM is the standard representation of CIM using XML.
• CIM Operations over HTTP defines the mapping that uses xmlCIM and HTTP

The DMTF is the leading industry organization for development, adoption and
unification of management standards for distributed desktop, applications, network,
enterprise and internet environments. Working with key technology vendors and
affiliated standards groups, the DMTF is enabling a more integrated, cost-effective and
less crisis-driven approach of management through interoperable management solutions.
For information about DMTF standards and initiatives, see the DMTF web site at
http://www.dmtf.org.

The complete Java WBEM API specification is composed of this document along with
the WBEM API Javadoc.

JSR-48 Copyright © 2003-2009 WBEM Solutions, Inc. 5 of 45

Audience
The intended audience for this specification is:

• JavaTM developers who want to manage WBEM enabled elements.
• JavaTM VM, Operating System, and device providers that want to develop WBEM

(SMASH, SMI) enabled products.
• The JSR-48 Expert Group.

Terminology
The key phrases and words MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT,
SHOULD, SHOULD NOT, RECOMMENDED, MAY and OPTIONAL in this document
are to be interpreted as described in RFC 21191.

1 "Key words for use in RFCs to Indicate Requirement Levels", IETF RFC 2119, March 1997
(http://www.ietf.org/rfc/rfc2119.txt)

JSR-48 Copyright © 2003-2009 WBEM Solutions, Inc. 6 of 45

Requirements

Java Editions
JSR 48 is targeted at both the J2SE (Java 2 Standard Edition) and J2ME (Java 2 Micro
Edition) platforms. Many management platform vendors, operating system providers,
and device manufacturers are supporting WBEM as the management platform of choice.
They require support for both J2SE and J2ME.

Standards
The following table lists the standards and versions that JSR48 supports.

Specification Version Organization

CIM Infrastructure Specification 2.5.0 DMTF

CIM Operations over HTTP 1.3.0 DMTF

CIM Representation using XML 2.3.0 DMTF

CIM XML DTD 2.3.0 DMTF

JSR-48 Copyright © 2003-2009 WBEM Solutions, Inc. 7 of 45

Architecture

Overview
This part of the specification is targeted towards developers who want to understand the
mappings used to create the Java API from the CIM and WBEM specifications. This
section does not repeat the information in the CIM specification, so the prerequisite is
that the developer should already have an understanding of CIM and WBEM.

Java Packages
The Java WBEM API is broken down into the following packages:
javax.cim Java representation of CIM provides classes and interfaces

for handling the CIM (Common Information Model)
Object Model and CIM Data Types as defined in the CIM
Infrastructure Specification.

Javax.wbem Common classes and interfaces across all WBEM APIs
provide classes and interfaces that are common across all
WBEM APIs.

javax.wbem.client Mapping of CIM Operations provides classes and
interfaces for writing WBEM Clients.

javax.wbem.listener Listen for indications (events) provides classes and
interfaces for writing WBEM Listeners.

javax.wbem.provider Provider Interfaces provides classes and interfaces for
writing WBEM Providers.

JSR48 Architecture
This section will describe the high level JSR48 architecture. It will include a high level
architecture diagram, a brief description of each component, programming interface and
protocol. For this release of the specification the CIM, Client, and Provider APIs are
being standardized. Future versions of this specification may include other interfaces.
The JSR48 architecture is broken down into three layers:

1. Client - Consumer of WBEM information
2. WBEM Server - Agent Tier/Server
3. Provider - Supplier of WBEM information

The following is a high level architecture block diagram of all of components, interfaces
and protocols. Note that the names/titles for protocol adapters and indication delivery
handlers are examples only.

JSR-48 Copyright © 2003-2009 WBEM Solutions, Inc. 8 of 45

JSR-48 Copyright © 2003-2009 WBEM Solutions, Inc. 9 of 45

Client Listener
Client API

javax.wbem.client.*
CIM-XML

Listener Interface
javax.wbem.listener.*

CIM-XML

CIM
Server

Provider

Instrumentation (e.g. JMX, SNMP)

Re
po

sit
or

y
In

te
rfa

ce

Security/Auditing
Interface

Indication Handler
Interface

CIM API
(javax.cim.*)

Local Client
Interface

CIM Object Manager

ProviderProvider

CIM-XML
Client Object
Manager
Adapters

CIM-XML
Indication
Delivery
Handlers

...

Security PlugIn
Provider
Object Manager
Adapters

JMX
(JSR 146) SNMP

WS-Man

Clients
A JSR48 Client is an application or service that retrieves information originating from
one or more managed elements using the Java WBEM Client API. Clients can vary from
command line interfaces (CLI), Graphical User Interface (GUI) applications and web
based consoles to automated services.

WBEM Server
The following sections describe the components that make up the JSR48 WBEM Server.

Client Object Manager Adapters
A Client Object Manager Adapter (COMA) is a pluggable module of the CIM Server that
:-

1. Accepts incoming requests through a particular protocol

2. Translates these calls for the CIM Object Manager (CIMOM)
3. Accepts responses from the CIM Object Manager to send back to the client.

JSR48 COMA MUST support all of the intrinsic operations for basic read. JSR48 COMA
MUST support the operations based on the functional profiles as defined in the CIM
Operations over HTTP specification. This means that a COMA MUST support all
operations of a functional profile or none of them.

JSR48 implementation MUST include a CIM-XML COMA. Any additional COMA
MAY be included.

Indication Delivery Handlers
An Indication Delivery Handler (IH) is a pluggable module of the CIM Server that
delivers indications through a specified means (e.g. e-mail, pager, etc.). Indication
Delivery Handlers are responsible for receiving an indication from the CIM Object
Manager and delivering it to the specified destination.

CIM Object Manager
A CIM Object Manager (CIMOM) is the central component of the JSR48 WBEM Server.
It is responsible for the communication between the clients, providers and CIM
repository. Since it communicates to clients and providers through object manager
adapters, it is required to register, start, stop, and maintain both client and provider object
manager adapters. Another responsibility of the CIM Object Manager is authentication,
authorization and auditing through interaction with the Security/Auditing PlugIn.

JSR-48 Copyright © 2003-2009 WBEM Solutions, Inc. 10 of 45

CIM Repository
The CIM Repository is responsible for storing (persistent) schema information and
delivery of schema modification indications. The repository can optionally also store
(i.e., allow for storage of) instance information and handle delivery of class and instance
indications.

The CIM Repository only interfaces with the CIM Object Manager, this means that
clients, providers and other agent infrastructure modules can only access this information
through the CIM Object Manager.

Security/Auditing PlugIn
The Security/Auditing PlugIn is responsible for authentication and auditing. When the
CIM Object Manager receives a request for any of these, it forwards the requests to the
Security/Auditing PlugIn and waits for a response. This PlugIn is responsible for
handling the request and responding back to the CIM Object Manager. This PlugIn only
interacts with the CIM Object Manager.

Provider Object Manager Adapter
A Provider Object Manager Adapter (POMA) is a pluggable module of the CIM Server
that accepts requests from the CIM Object Manager and forwards them to the provider,
receives the response from the provider and passes the response back to the CIM Object
Manager.

JSR-48 Copyright © 2003-2009 WBEM Solutions, Inc. 11 of 45

Providers
A provider is an intermediary between the CIM Object Manager and one or more
managed elements. It is responsible for accepting requests from the CIM Object
Manager (through a POMA), getting the information from the managed element and
responding with the result. All providers get a handle to the CIM Object Manager so that
they can also act as a client.
JSR48 supports the following four provider types:

Provider Type Purpose

Association Provider for dynamic associations instances
Indication Provider for dynamic indications (events)

Instance Provider for dynamic instances of CIM classes

Method Provider for extrinsic methods on a CIM class

Pull Association Provider for pulled dynamic associations instances

Pull Instance Provider for pulled dynamic instances of CIM classes

JSR-48 Copyright © 2003-2009 WBEM Solutions, Inc. 12 of 45

Design
The JSR48 API consists of a set of Java packages. Each package represents a different
aspect of the JSR48 Architecture. Following packages have been defined:

Java Package Name Purpose

javax.cim represents APIs to use for CIM elements

javax.wbem contains common interfaces for handling errors and
operations

javax.wbem.client represents APIs to use to perform client operations

javax.wbem.provider represents APIs used to support interaction between the
CIMOM and providers

javax.wbem.listener represents APIs used to support indications

CIM (javax.cim)
The CIM API is a mapping to Java of the CIM elements described in the CIM
Infrastructure Specification2. The CIM meta schema is the formal definition of the CIM
Model. It defines terms used to express the model, usage and semantics. The CIM
Infrastructure Specification also describes other CIM elements that are not part of the
meta schema.

The following sections will describe Java representation for each of these elements.
However, this section will not describe the API. For detailed information on the API,
please consult the JSR48 Javadoc.

2 CIM Infrastructure Specification –
http://www.dmtf.org/standards/published_documents/DSP0004_2_5.0.pdf

JSR-48 Copyright © 2003-2009 WBEM Solutions, Inc. 13 of 45

CIM Meta Elements
All meta elements in CIM are expressed as a descendant of Named Element. A Named
Element has only one property – name, which means all meta elements must have a
name. The name is case-insensitive.
In Java, the class CIMElement represents the Named Element. CIMElement is an abstract
base class used for all Java CIM meta elements.
The following table lists the CIM Meta Schema Elements and its corresponding Java
Class representation.

CIM Meta Schema Element Java Class
(javax.cim.*)

Class CIMClass

Association CIMClass

Indication CIMClass

Property CIMClassProperty

Qualifier Type CIMQualifierType

Qualifier CIMQualifier

Qualifier Flavor CIMFlavor

Qualifier Scope CIMScope

Reference CIMObjectPath

Method CIMMethod

Parameter CIMParameter

Qualifier
A qualifier provides additional information about other meta schema elements.
Depending upon its definition, a qualifier can be applied to classes, associations,
indications, methods, parameters, properties or references.
The CIMQualifier class is the Java representation of a qualifier. Its value represents the
value of the qualifier.

JSR-48 Copyright © 2003-2009 WBEM Solutions, Inc. 14 of 45

Qualifier Type
Before a qualifier can be used, its qualifier type must be defined in the target namespace.
A qualifier type defines

• The qualifier data type (e.g., string, integer, etc.)
• The meta schema elements to which the qualifier can be applied
• Whether the qualifier is inherited by a derived class
• Whether the qualifier can be overridden in a derived class

Class
A class represents a blueprint or prototype of a managed object. Its definition must
contain a name. Optionally, it can define

• A superclass
• One or more properties
• One or more methods
• One or more qualifiers

The CIMClass class is the Java representation for a class.

Association
An association is a specialized class that contains references to other classes.

The CIMClass class is the Java representation for an association.

Indication
An indication is a specialized class that represents an occurrence of an event.

The CIMClass class is the Java representation for an indication.

Class Property
A class property represents the definition of an attribute in a class definition. Its
definition must contain a name and data type. Optionally, a property definition within a
class may specify qualifiers. This default value is assigned to the property when the class
is instantiated.
The CIMClassProperty class is the Java representation for a property definition within a
class.

Reference
A reference is a specialized property that is used to refer to another class or instance. A
fully populated reference consists of the following components:

• scheme

JSR-48 Copyright © 2003-2009 WBEM Solutions, Inc. 15 of 45

• host name
• port
• namespace
• class name
• keys

The CIMObjectPath class is the Java representation for a reference. When referred to an
instance, keys must be populated.

Method
A method represents a specific operation that can be performed on an instance of the
class in which the method is defined. Its definition must contain a name and data type.
Optionally, a method definition within a class may specify qualifiers and parameters.
The CIMMethod class is the Java representation for a method definition within a class.

Parameter
A parameter represents the definition of an argument for a method in a class definition. A
parameter definition must contain a name and data type. Optionally, it may also specify
qualifiers.
The CIMMethod class is the Java representation for a parameter definition for a method
within a class.

Qualifier Flavor
Qualifiers can be inherited from classes to derived classes. The rules for inheritance to
derived classes are attached to each qualifier and encapsulated in the concept of qualifier
flavor.

Additionally, qualifiers can be overridden in derived classes. The rules for overriding are
also attached to each qualifier and encapsulated in the concept of the qualifier flavor.

The CIMFlavor class is the Java representation of a CIM Flavor.

Qualifier Scope
Qualifiers can be applied to all different CIM meta elements. Some qualifiers can be
applied to ANY of the CIM meta elements, while others only make sense when they are
applied to particular meta elements (for example, a property). This is called the scope in
which the qualifier can be applied. When each qualifier type is defined, the scope for that
qualifier type is also defined.
The CIMScope class is the Java representation for a CIM Scope.

JSR-48 Copyright © 2003-2009 WBEM Solutions, Inc. 16 of 45

Other CIM Elements
The following table lists other CIM Elements that are not part of the meta schema but
have corresponding Java Class representation.

Other CIM Elements Java Class
(javax.cim.*)

Instance CIMInstance

Instance Property CIMProperty

Argument CIMArgument

Instance
A class definition represents a blueprint or prototype of a managed object containing one
or more properties. However, property definitions do not contain actual values.

In contrast, an instance represents an instantiation of a class where the properties may
contain values.

The CIMInstance class is the Java representation for an instance.

Instance Property
A class definition represents a blueprint or prototype of a managed object that contains
one or more property definitions. However, property definitions do not contain values.
When a class is instantiated, its properties defined in the class are also instantiated. An
instance property represents an instantiation of a class property. In contrast to a class
property, an instance property can contain a value.

The CIMProperty class is the Java representation for an instance property.

Argument
A method represents a specific operation that can be performed on an instance of the
class in which the method is defined. A parameter represents the definition of an input
and/or output variable for a method. A parameter definition does not contain a value.

An argument represents the instantiation of a parameter for a method. In contrast to
parameter, an argument can contain a value.

A CIMArgument class is the Java representation of an argument for a method.

JSR-48 Copyright © 2003-2009 WBEM Solutions, Inc. 17 of 45

Data Types
The CIM Infrastructure Specification defines the following data types. The
CIMDataType class is the Java representation for a CIM data type.

The following table shows the mapping of a CIM data types to its corresponding Java
class. Many CIM data types can be represented by a standard Java class. For example, a
signed 8-bit integer CIM data type can be represented by the Java Byte class.
However, some CIM data types required creating a new Java class as part of the JSR48
CIM API. These Java class names are shown using bold font.

CIM Data Type Description Java

uint8 Unsigned 8-bit integer UnsignedInteger8

sint8 Signed 8-bit integer Byte

uint16 Unsigned 16-bit integer UnsignedInteger16

sint16 Signed 16-bit integer Short

uint32 Unsigned 32-bit integer UnsignedInteger32

sint32 Signed 32-bit integer Integer

uint64 Unsigned 64-bit integer UnsignedInteger64

sint64 Signed 64-bit integer Long

string UCS-2 string String

boolean Boolean Boolean

real32 IEEE 4-byte floating-point Float

real64 IEEE 8-byte floating-point Double

datetime A string containing a date-time CIMDateTime

CIMDateTimeAbsolute
CIMDateTimeInterval

reference Strongly typed reference CIMObjectPath

char16 16-bit UCS-2 character Character

JSR-48 Copyright © 2003-2009 WBEM Solutions, Inc. 18 of 45

CIMDateTime
The CIMDateTime class is the Java representation for the CIM datetime data type. This
datatype has two forms. The CIMDateTimeAbsolute class is derived from CIMDateTime
and is used when the datetime represents a time stamp. The CIMDateTimeInterval is also
derived from CIMDateTime and is used when the datetime represents a time interval.

Common Java Elements (javax.wbem)
This section describes the common interfaces and classes used by the other APIs. For
detailed information on these interfaces and classes, please consult the JSR48 Javadoc.

Java Class Purpose

CloseableIterator Subclass of Iterator that adds support allowing the underlying
implementation to serve up the CIM elements as they become
available

WBEMException Returned when there is a WBEM Operations error

A CloseableIterator is used by other WBEM operation APIs to return a set of Java CIM
objects. For operations that might return a large number of CIM objects, instead of
returning all requested objects to the client at the same time, CloseableIterator is used to
return them, a portion at a time, as they become available. The client can use the Iterator
methods next() and hasNext() to control the flow of incoming objects.

JSR-48 Copyright © 2003-2009 WBEM Solutions, Inc. 19 of 45

Client (javax.wbem.client)
The Client API is a mapping of the operations listed in the CIM Operations over HTTP
specification3 by the DMTF. This API allows a client to send a request to perform a
single CIM operation.
For each CIM operation specified in the CIM Operations over HTTP specification there
is a corresponding Java method(s) in the WBEMClient class. Each section that follows
shows the Java method(s) that map to the CIM Operations.

For detailed information about the behavior and the arguments defined for a CIM
operation consult the CIM Operations over HTTP specification. For detailed information
about the behavior and the arguments defined for the corresponding JSR48 API consult
the JSR48 javadoc.

3 http://www.dmtf.org/standards/published_documents/DSP0200.html

JSR-48 Copyright © 2003-2009 WBEM Solutions, Inc. 20 of 45

Connecting to a CIM Server
A client that wishes to perform a CIM operation must first establish a connection to a
target namespace on a server. Establishing a connection involves the following Java
classes:

Java Class Purpose

WBEMClientFactory Factory for the WBEMClient implementation using a specified protocol

WBEMClient Interface used by a client to perform CIM operations on a server

EnumerateResponse A container that stores the information from a Pull request

UserPrincipal Represents the user identity to be used for authentication when establishing a connection to a
server

PasswordCredential Represents the password based credential to be used for authentication when establishing a
connection to a server

RolePrincipal Represents the role name to be used for checking the authorization of a connected user

RoleCredential Represents the password based credential to be used for checking the authorization of a
connected user

WBEMCLientConstants Defines the constants used for a WBEMClient configuration

The following code fragment illustrates their use in establishing a connection. For
detailed information about this class consult the JSR48 javadoc.

Subject subject = new Subject();
subject.getPrincipals().add(new UserPrincipal(up));
subject.getPrivateCredentials().add(new PasswordCredential(pc));
subject.getPrincipals().add(new RolePrincipal(rp));
subject.getPrivateCredentials().add(new RoleCredential(rc));
cimClient = WBEMClientFactory.getClient("CIM-XML");
cimClient.initialize(new CIMObjectPath(name), s, null);

NOTE: The WBEMClientConstants class must be implemented. For

JSR-48 Copyright © 2003-2009 WBEM Solutions, Inc. 21 of 45

CIM Operations
The client API allows a client to perform a single CIM operation on metadata or data
objects in a target namespace on a WBEM Server. They can be grouped into the
following categories:

CIM Operations
Categories

Purpose

Metadata Allows a client to perform operations on classes and qualifier
types

Data Allows a client to perform operations on instances

Association Traversal Allows a client to perform operations on association classes and
to traverse between classes using associations.

Query Allows a client to query for classes or instances

Extrinsic Method Allows a client to perform a defined extrinsic method of a class

When a large number of objects might be returned, a different mechanism called Pull
operations can be used to improve efficiency. For a Pull operation, an enumeration
session is opened with certain parameters that control the return of data. Data is returned
in one or more Pull operations. When all data has been returned, then the enumeration
session is automatically closed by the server.
For detailed information about the behavior and the arguments defined for a Pull
operation consult the CIM Operations over HTTP specification. For detailed information
about the behavior and the arguments defined for the corresponding JSR48 API consult
the JSR48 javadoc.

JSR-48 Copyright © 2003-2009 WBEM Solutions, Inc. 22 of 45

Metadata Operations
The metadata operations allow a client to manage metadata information relating to
classes and qualifier types using the appropriate Java APIs.

CIM Operations Java WBEM API

(javax.wbem.client.WBEMClient)

CreateClass createClass

GetClass getClass

ModifyClass setClass

DeleteClass deleteClass

EnumerateClassNames enumerateClassNames

EnumerateClasses enumerateClasses

GetQualifier getQualifierType

SetQualifier setQualifierType

DeleteQualifier deleteQualifierType

EnumerateQualifiers enumQualifierTypes

The following table shows the mapping of argument names between the CIM Operations
over HTTP specification and the JSR48 client API

CIM Operations over HTTP
Specification

Java WBEM API
(javax.wbem.client.WBEMClient)

ClassName path or name

DeepInheritance deep

LocalOnly localOnly

IncludeQualifiers includeQualifiers

IncludeClassOrigin includeClassOrigin

QualifierName path or name
QualifierDeclaration qt

ModifiedClass or NewClass cc

JSR-48 Copyright © 2003-2009 WBEM Solutions, Inc. 23 of 45

Data Operations
The data operations allow a client to manage data relating to instances using the
appropriate Java APIs.

CIM Operations Java WBEM API

(javax.wbem.client.WBEMClient)

CreateInstance createInstance

GetInstance getInstance

ModifyInstance setInstance

DeleteInstance deleteInstance

EnumerateInstanceNames enumerateInstanceNames

EnumerateInstances enumerateInstances

GetProperty getProperty

SetProperty setProperty

Use the following methods when the data operations return data via the Pull mechanism

Pulled CIM Operations Java WBEM API
(javax.wbem.client.WBEMClient)

OpenEnumerationInstances enumerateInstances

OpenEnumerationInstancePaths enumerateInstancePaths

PullInstancesWithPath getInstancesWithPath

PullInstancePaths getInstancePath

CloseEnumeration closeEnumeration

EnumerationCount enumerationCount

JSR-48 Copyright © 2003-2009 WBEM Solutions, Inc. 24 of 45

The following table shows the mapping of argument names between the CIM Operations
over HTTP specification and the JSR48 client API

CIM Operations over HTTP

Specification

Java WBEM API

(javax.wbem.client.WBEMClient)

ClassName path

InstanceName path or name

DeepInheritance deep

LocalOnly localOnly

IncludeQualifiers includeQualifiers

IncludeClassOrigin includeClassOrigin

PropertyList propertyList

ModifiedInstance or NewInstance ci

The following table shows the additional mapping of argument names between the CIM
Operations over HTTP specification and the JSR48 client API when using Pull operation
sessions

CIM Operations over HTTP

Specification

Java WBEM API

(javax.wbem.client.WBEMClient)

EnumerationContext enumerationContext

MaxObjectCount maxObjects

OperationTimeout timeout

ContinueOnError continueOnError

FilterQueryLanguage filterQueryLanguage

FilterQuery filterQuery

EndOfSequence end

JSR-48 Copyright © 2003-2009 WBEM Solutions, Inc. 25 of 45

Association Traversal Operations
The association traversal operations allow a client to manage information relating to
associations using the appropriate Java APIs.

Use the following operations, when the returned information can be metadata (i.e.,
classes) or data (i.e., instances).

CIM Operation Java WBEM API

(javax.wbem.client.WBEMClient)

AssociatorNames associatorNames

Associators associators

ReferenceNames referenceNames

References references

Use the following operations when the managed information can only be metadata; i.e.,
classes.

CIM Operation Java WBEM API
(javax.wbem.client.WBEMClient)

AssociatorNames associatorNames

Associators associatorClasses

ReferenceNames referenceNames

References referenceClasses

Use the following operations when the managed information can only be data; i.e.,
instances.

CIM Operation Java WBEM API
(javax.wbem.client.WBEMClient)

AssociatorNames associatorNames

Associators associatorInstances

ReferenceNames referenceNames

References referenceInstances

JSR-48 Copyright © 2003-2009 WBEM Solutions, Inc. 26 of 45

Use the following operations when the association traversal operations return data via the
Pull mechanism

Pulled CIM Operations Java WBEM API

(javax.wbem.client.WBEMClient)

OpenAssociatorInstancePaths associatorPaths

OpenAssociatorInstances associators

OpenReferenceInstancePaths referencePaths

OpenReferenceInstances references

PullInstancesWithPath getInstancesWithPath

PullInstancePaths getInstancePaths

CloseEnumeration closeEnumeration

EnumerationCount enumerationCount

JSR-48 Copyright © 2003-2009 WBEM Solutions, Inc. 27 of 45

The following table shows the mapping of argument names between the CIM Operations
over HTTP specification and the JSR48 client API

CIM Operations over HTTP

Specification

Java WBEM API

(javax.wbem.client.WBEMClient)

ObjectName objectName

AssocClass assocClass

ResultClass resultClass

Role role

ResultRole resultRole

IncludeQualifiers includeQualifiers

IncludeClassOrigin includeClassOrigin

PropertyList propertyList

The following table shows the additional mapping of argument names between the CIM
Operations over HTTP specification and the JSR48 client API when using Pull operation
sessions

Pulled CIM Operations Java WBEM API
(javax.wbem.client.WBEMClient)

EnumerationContext enumerationContext

MaxObjectCount maxObjects

OperationTimeout timeout

ContinueOnError continueOnError

FilterQueryLanguage filterQueryLanguage

FilterQuery filterQuery

EndOfSequence end

JSR-48 Copyright © 2003-2009 WBEM Solutions, Inc. 28 of 45

Query
The query operation allows a client to retrieve information from a target namespace using
the appropriate Java APIs.

Use the following operations, when the returned information can be metadata (i.e.,
classes) or data (i.e., instances).

CIM Operation Java WBEM API

(javax.wbem.client.WBEMClient)

ExecQuery execQuery

Use the following operations when the Query operation returns data using the Pull
mechanism

Pulled CIM Operations Java WBEM API

(javax.wbem.client.WBEMClient)

OpenQueryInstances execQueryInstances

PullInstances getInstances

CloseEnumeration closeEnumeration

EnumerationCount enumerationCount

JSR-48 Copyright © 2003-2009 WBEM Solutions, Inc. 29 of 45

The following table shows the mapping of argument names between the CIM Operations
over HTTP specification and the JSR48 client API

CIM Operations over HTTP

Specification

Java WBEM API

(javax.wbem.client.WBEMClient)

QueryLanguage qLanguage

Query query

The following table shows the additional mapping of argument names between the CIM
Operations over HTTP specification and the JSR48 client API when using Pull operation
sessions

Pulled CIM Operations Java WBEM API

(javax.wbem.client.WBEMClient)

EnumerationContext enumerationContext

MaxObjectCount maxObjects

OperationTimeout timeout

ContinueOnError continueOnError

FilterQueryLanguage filterQueryLanguage

FilterQuery filterQuery

EndOfSequence end

JSR-48 Copyright © 2003-2009 WBEM Solutions, Inc. 30 of 45

Extrinsic Method Invocation
Extrinsic operations allow a client to perform private operations defined for a class.

CIM Operation Java WBEM API
(javax.wbem.client.WBEMClient)

Extrinsic Method Invocation invokeMethod

The actual behavior and list of input and output arguments are specified by the method
definition in the class.

JSR-48 Copyright © 2003-2009 WBEM Solutions, Inc. 31 of 45

Listener (javax.wbem.listener)

The DMTF specification for indications supports subscription of indications and
indication delivery. Clients perform event subscriptions by creating instances of filters,
handlers and subscriptions. These instances specify indication conditions, handlers
specify destination where generated indications are delivered and subscriptions associate
filter and handler instances. The white paper on DMTF Events describes this in more
detail.
Subscriptions are performed using intrinsic create instance calls, apart from that there are
no specific methods for creating subscriptions on a remote CIM object manager.
However, additional JSR48 APIs have been defined to support indications which are
outside the scope of the DMTF events specification.

For detailed information about the behavior and the arguments defined for these JSR48
Listener APIs consult the JSR48 javadoc.

JSR-48 Copyright © 2003-2009 WBEM Solutions, Inc. 32 of 45

Providers (javax.wbem.provider)
In JSR48 architecture, a provider is an intermediary between the CIM Object Manager
(CIMOM) and one or more managed elements. Metadata operations are handled entirely
by the CIMOM. Association traversal operations for classes are also handled entirely by
the CIMOM. No providers are invoked to handle such operations.

All other client operations (e.g., data, extrinsic methods, etc.) are handled by providers. A
provider accepts the request from the CIMOM, retrieves the information from the
managed object and responds to the CIMOM with the result.
The Provider class is the Java class representation for providers. Classes are derived from
this base Provider class that represents various types of provider interfaces. Each of the
following provider interfaces supports a certain set of client operations.

Provider Interfaces Function

InstanceProvider Handles data operations

AssociatorProvider Handles association traversal operations on instances

IndicationProvider Handles the indication mechanism

MethodProvider Handles the extrinsic method invocation operation on an
instance

PullInstanceProvider Handles pulled data operations

PullAssociatorProvider Handles pulled association traversal operations

For each CIM operation specified in the CIM Operations over HTTP specification that is
handled by a provider, there is a corresponding Java method or methods. The following
sections show the Java method(s) that map to the CIM Operations for each provider type.

For detailed information about the behavior and the arguments defined for a CIM
operation consult the CIM Operations over HTTP specification. For detailed information
about the behavior and the arguments defined for the corresponding JSR48 API consult
the JSR48 javadoc.

JSR-48 Copyright © 2003-2009 WBEM Solutions, Inc. 33 of 45

Provider
The Provider class is the base Java class for other types of provider interfaces. It defines
the following methods that are inherited by other provider interfaces:

Java WBEM API
(javax.wbem.provider.*)

Function

initialize called by the CIMOM the first time the provider is
invoked to perform any initialization steps

close called by the CIMOM when the provider is unloaded

JSR-48 Copyright © 2003-2009 WBEM Solutions, Inc. 34 of 45

InstanceProvider
The InstanceProvider interface is used to support the client data and query operations.
Note that client queries about metadata will be handled by the CIMOM. Only client
queries about data will be handled by a provider.

CIM Operations Java WBEM API
(javax.wbem.provider.*)

CreateInstance createInstance

GetInstance getInstance

ModifyInstance modifyInstance

DeleteInstance deleteInstance

EnumerateInstanceNames enumerateInstanceNames

EnumerateInstances enumerateInstances

GetProperty getProperty

SetProperty setProperty

ExecQuery execQuery

The following table shows the mapping of argument names between the CIM Operations
over HTTP specification and the JSR48 provider API.

The IncludeQualifiers argument is not mapped because instances do not have qualifiers
and an InstanceProvider is only invoked by the CIMOM to return instance data.

The DeepInheritance argument is only used for the EnumerateInstances client operation.
It controls whether properties of subclasses are included in returned instances. In JSR48
architecture, such filtering is performed by the CIMOM rather than by the provider.

CIM Operations over HTTP

Specification

Java WBEM API

(javax.wbem.provider.*)

ClassName op

InstanceName op

DeepInheritance not mapped

LocalOnly localOnly

IncludeQualifiers not mapped

IncludeClassOrigin includeClassOrigin

PropertyList propertyList

ModifiedInstance or NewInstance ci

QueryLanguage ql

Query query

JSR-48 Copyright © 2003-2009 WBEM Solutions, Inc. 35 of 45

AssociatorProvider
The AssociationProvider interface is used to support the client association traversal
operations on instances. Only providers for association classes need to implement this
interface.

CIM Operation Java WBEM API
(javax.wbem.provider.*)

AssociatorNames associatorNames

Associators associators

ReferenceNames referenceNames

References references

The following table shows the mapping of argument names between the CIM Operations
over HTTP specification and the JSR48 client API.
The IncludeQualifiers argument is not mapped because instances do not have qualifiers
and an AssociatorProvider is only invoked by the CIMOM to return instance data.

CIM Operations over HTTP

Specification

Java WBEM API

(javax.wbem.provider.*)

ObjectName objectName

AssocClass assocClass

ResultClass resultClass

Role role

ResultRole resultRole

IncludeQualifiers not mapped

IncludeClassOrigin includeClassOrigin

PropertyList propertyList

JSR-48 Copyright © 2003-2009 WBEM Solutions, Inc. 36 of 45

IndicationProvider
In JSR48 architecture, an indication allows a client to be notified when a particular event
occurs. In order to be notified a client must first subscribe for the event of interest. The
subscription process requires a client to specify

• which events are to be monitored using filters
• where to send the notification when the event occurs

Filters are query expressions that specify the classes to monitor and the conditions that
must be satisfied before notification is sent to a listener. Conditions can be specified
using a combination of property names, values, logical operators and arithmetic
operators. For further information about query expression syntax, consult the Common
Query Language (CQL) specification.
Metadata events (e.g., class creation, qualifier removal, etc.) are handled by the CIMOM.
In contrast, data events (e.g., instance modification), are handled by providers.
Following methods must be supported unless provider for a class will not or cannot
support indications:

Method Purpose

activateFilter informs the provider to start monitoring the
events specified by a filter

authorizeFilter determines whether the provider supports a
particular filter

deactivateFilter informs the provider to stop monitoring the
events specified by a filter

JSR-48 Copyright © 2003-2009 WBEM Solutions, Inc. 37 of 45

MethodProvider
A provider need not implement this interface if no extrinsic methods defined for its class.
Otherwise, its provider must implement this interface. If no methods are supported, return
CIM_ERR_METHOD_NOT_AVAILABLE.

CIM Operation Java WBEM API
(javax.wbem.provider.*)

Extrinsic Method Invocation invokeMethod

The CIM Operations over HTTP specification does not explicitly define a syntax for
performing an extrinsic method operation. However, the JSR48 API defines the
following arguments:

Argument Purpose

op address of the instance

methodName name of the extrinsic method

inArgs list of input arguments

outArgs list of output arguments

JSR-48 Copyright © 2003-2009 WBEM Solutions, Inc. 38 of 45

PullInstanceProvider
The PullInstanceProvider interface is used to support the client data and query operations
when data is returned using a Pull data operation. Note that queries from a client about
metadata will be handled by the CIMOM. Only client queries about data will be handled
by a provider.

CIM Operations Java WBEM API

(javax.wbem.provider.*)

CreateInstance createInstance

GetInstance getInstance

ModifyInstance modifyInstance

DeleteInstance deleteInstance

EnumerateInstanceNames enumerateInstanceNames

EnumerateInstances enumerateInstances

ExecQuery execQuery

The following table shows the mapping of argument names between the CIM Operations
over HTTP specification and the JSR48 provider API.
The IncludeQualifiers argument is not mapped because instances do not have qualifiers
and PullInstanceProvider is only invoked by the CIMOM to return instance data.
The DeepInheritance argument is only used for the EnumerateInstances client operation.
It controls whether properties of subclasses are included in returned instances. In JSR48
architecture, such filtering is performed by the CIMOM rather than by the provider.

CIM Operations over HTTP

Specification

Java WBEM API

(javax.wbem.provider.*)

ClassName op

InstanceName op

DeepInheritance not mapped

LocalOnly localOnly

IncludeQualifiers not mapped

IncludeClassOrigin includeClassOrigin

PropertyList propertyList

ModifiedInstance or NewInstance ci

FilterQueryLanguage filterQueryLanguage

FilterQuery filterQuery

QueryLanguage ql

Query query

JSR-48 Copyright © 2003-2009 WBEM Solutions, Inc. 39 of 45

CIM Operations over HTTP

Specification

Java WBEM API

(javax.wbem.provider.*)

ContinueOnError continueOnError

JSR-48 Copyright © 2003-2009 WBEM Solutions, Inc. 40 of 45

PullAssociatorProvider
The AssociationProvider interface is used to support the client association traversal
operations on instances. Only providers for association classes need to implement this
interface.

CIM Operation Java WBEM API
(javax.wbem.provider.*)

AssociatorNames associatorNames

Associators associators

ReferenceNames referenceNames

References references

The following table shows the mapping of argument names between the CIM Operations
over HTTP specification and the JSR48 client API.
The IncludeQualifiers argument is not mapped because instances do not have qualifiers
and an AssociatorProvider is only invoked by the CIMOM to return instance data.

CIM Operations over HTTP

Specification

Java WBEM API

(javax.wbem.provider.*)

ObjectName objectName

AssocClass assocClass

ResultClass resultClass

Role role

ResultRole resultRole

IncludeQualifiers not mapped

IncludeClassOrigin includeClassOrigin

PropertyList propertyList

FilterQueryLanguage filterQueryLanguage

FilterQuery filterQuery

ContinueOnError continueOnError

JSR-48 Copyright © 2003-2009 WBEM Solutions, Inc. 41 of 45

CIM Errors (javax.wbem)
The CIM Operations over HTTP specification defines a set of errors that can be returned
for each CIM Operation. The WBEMException class is the Java representation of a CIM
error. For detailed information on WBEMException, please consult the JSR48 Javadoc.

Asynchronous Method Invocations
The CIM Operations over HTTP specification defines the behavior and semantics for
both intrinsic and extrinsic asynchronous methods. This allows instrumentation of “long
running” management operations (e.g., format disk, create database, or backup/restore
file system). For detailed information on asynchronous methods, please consult the CIM
Operations over HTTP specification.

The CloseableIterator class can be used to provide support for asynchronous methods.
For detailed information on CloseableIterator, please consult the JSR48 Javadoc.

JSR-48 Copyright © 2003-2009 WBEM Solutions, Inc. 42 of 45

Appendix A: Change Summary
The following table summarizes all changes to this document. The newest changes will
be listed last.

Version Date Description

0.1 01/05/06 Initial Draft based on new API

0.2 06/05/06 Community Review Draft

0.3 07/25/06 Public Review Draft

0.4 12/30/06 Final Review Draft

1 10/26/09 Final

JSR-48 Copyright © 2003-2009 WBEM Solutions, Inc. 43 of 45

Appendix B: Futures
The following lists items that the JSR48 Expert Group is considering for future work.

● CIM Object Manager API
○ Client Object Manager Adapter Interface
○ Provider Object Manager Adapter Interface
○ Indication Handler Object Manager Adapter Interface
○ Repository Object Manager Adapter Interface
○ Security Object Manager Adapter Interface

● xmlCIM
○ May add an API to get the xmlCIM representation of CIM Qualifier Types,

Classes and Instances.
● WS-CIM Support

○ May add an API to get the WS-CIM representation of CIM Qualifier Types,
Classes and Instances.

● CLP Support
○ This may be just implementation of a client adapter to the client API, but the

EG will verify no updates to the API are needed.
● WS-MANAGMENT Support

○ This may be just implementation of a client adapter to the client API, but the
EG will verify no updates to the API are needed.

● WSDM Support
○ This may be just implementation of a client adapter to the client API, but the

EG will verify no updates to the API are needed.
● CIM-XMI Mapping Specification

JSR-48 Copyright © 2003-2009 WBEM Solutions, Inc. 44 of 45

Appendix C: Contributors
WBEM Solutions, Inc.

• Jim Davis

• Paul Ferdinand
• Carl Chan (editor)

IBM.
• Ramandeep Arora

• Dave Blaschke

JSR-48 Copyright © 2003-2009 WBEM Solutions, Inc. 45 of 45

