
Distributed Real-Time

Speci�cation for Java

Early Draft Review #1

Editor
Jonathan S. Anderson

Virginia Polytechnic and State University
The MITRE Corporation

E. Douglas Jensen The MITRE Corporation
Douglas M. Wells

Raymond K. Clark The MITRE Corporation
Yun Zhang The MITRE Corporation

Edward Burke The MITRE Corporation

Early Draft Review #1 Draft #1.3 � 16 April 2012

Copyright c© −  Jonathan Anderson
Copyright c© −  E. Douglas Jensen
Copyright c© −  The MITRE Corporation
Copyright c© −  aicas GmbH
All rights reserved

NOTICE

This technical data was produced for the U. S. Government under Contract No.
FA8721-02-C-0001, and is subject to the Rights in Technical Data - Noncommercial

Items clause at
(DFARS) 252.227-7013 (NOV 1995)

c© 2007 The MITRE Corporation. All Rights Reserved.

NOTICE

This software was produced for the U. S. Government under Contract No.
FA8721-02-C-0001, and is subject to the Rights in Noncommercial Computer Software

and Noncommercial Computer Software Documentation Clause
(DFARS) 252.227-7014 (JUN 1995)

c© 2007 The MITRE Corporation. All Rights Reserved.

No programmers were injured in the preparation of this document.

0.1.1

Publication History

EDR#1, Draft 1 (0.1.1) 14 September 2006
EDR#1, Draft 1 (0.1.2) 9 November 2007
EDR#1, Draft 1 (0.1.3) 16 April 2012

Typeset in Computer Modern using Peter R. Wilson's memoir class for
LATEX.

JSR-50 Expert Group Membership

James J. Hunt aicas GmbH
Kelvin Nilsen Atego Systems

Benjamin Brosgol
E. Douglas Jensen
Douglas M. Wells

Raymond K. Clark The MITRE Corporation
Andrew Wellings University of York

Paul Lacrosse Nortel
Esmond Pitt

Gautam Thaker

Speci�cation and Implementation Team

Jonathan S. Anderson The MITRE Corporation
Edward Burke The MITRE Corporation

Ray Clark The MITRE Corporation
Doug Wells
Yun Zhang The MITRE Corporation

Past Expert Group Members

Bill Beckwith OIS

External Contributors

Binoy Ravindran Virginia Tech Algorithm Guidance
Ed Curley Virginia Tech TMAR Protocols
Chewoo Na Virginia Tech Scheduler Implementations

Scott Robbins The MITRE Corporation Metascheduler

Contents

Contents i

List of Figures iii

1 Introduction 2
1.1 Requirements . 2
1.2 Guiding Principles . 2
1.3 Minimum Components for DRTSJ 5
1.4 Release Plan . 6

2 Programming Model 7
2.1 Distributable Threads . 7

Partial Failures . 9
Implementation Implications 9

2.2 Scheduling . 9

3 The Java and RTSJ Platforms 11

4 API Speci�cation 12
4.1 Interfaces . 12

DistributableThreadOperations 12
DistributedAsyncEventLocalMethods 14
DistributedAsynchronousEventHelper 14
DRTSJLocalServices . 15
DThreadSegmentOperations 16
RealtimeRemote . 19
RTRemoteAsynchronousEvent 19
RTRemoteAsynchronousEventHandler 20

i

CONTENTS ii

4.2 Classes . 20
DistributableThread . 20
DistributedAsyncEvent . 23
DistributedAsyncEventHandler 24
DistributedRealtimeClock 25
DRTSJPlatform . 25
DRTSJServicesManager . 32
DThreadSegment . 34
GlobalIdenti�er . 35
GlobalRealtimeThread . 37
GlobalThread . 45
RealtimeRemoteObject . 52

4.3 Exceptions . 54
ThreadIntegrityViolation . 54

5 Reference Implementation 56
Realtime RMI . 56
Distributable Threads . 57
Thread Integrity . 57
Pluggable Scheduling . 58
The DRTSJ RI Distribution 59
Demonstration Application 59

Bibliography 61

List of Figures

2.1 Distributable Threads . 8

iii

Preface

The Distributed Real-Time Speci�cation for Java (DRTSJ) is under de-
velopment within the Java Community Process (JCP) by the membership
of the JSR-50 Expert Group (EG). This group, was lead by the MITRE
Corporation, but has been taken over by aicas GmbH. The group includes
representation from individual, academic, U.S. government, defense, and
industrial participants.[Dis]

1

Chapter 1

Introduction

The Real-Time Speci�cation for Java (RTSJ) provides the necessary exten-
sions to Java to enable programming realtime tasks in Java. This is a nec-
essary prerequisite for distributed realtime programming, but not su�cient.
The RTSJ does not provide any support for extending or coordinating com-
putation across virtual machine boundaries, let alone machine boundaries.
Standard Java provides Remote Message Invocation, but this mechanism
is not su�cient for realtime programming. This speci�cation provides the
missing mechanism for cross machine realtime computation.

1.1 Requirements

The speci�cation must ful�ll two main goals. It should be compatible with
other Java speci�cations that handle realtime behavior and it should ex-
tend that behavior beyond the virtual machine in a machine independent
manner. Furthermore, the speci�cation should leverage existing realtime
distribution work from Realtime CORBA and other realtime distribution
protocols without forcing the user to adapt to a programming style that is
foreign to Java.

1.2 Guiding Principles

The EG recognizes the enormous variety of potential problem and solution
spaces represented by the terms �distributed� and �realtime,� and the va-
riety of opinions on what it could mean to construct distributed realtime

2

CHAPTER 1. INTRODUCTION 3

systems in the Java Programming Language. The JSR-50 proposal and the
EG deliberately scoped the DRTSJ to a subset of those solution spaces and
approaches to constructing distributed realtime systems, by extending the
JSR-1 Real-Time Speci�cation for Java (RTSJ) in a natural and familiar
way, especially for Java programmers. We seek in this digest to brie�y ar-
ticulate this scope, summarize the work accomplished to date, and describe
the intended products of the JSR-50 speci�cation e�ort.

Several key assertions were debated and articulated by the EG in order
to set the scope and de�ne the relationship of JSR-50 to other work. Many
of these deliberately follow the assertions made by the RTSJ EG, upon
whose work much of the DRTSJ is predicated. [rts, JSRa, JSRb] Here we
highlight some of these guiding principles, though we include by reference
those called out by the RTSJ EG in [BBD+06, Introduction].

Bring distributed realtime to Java, not bring Java to traditional dis-
tributed realtime. [JJ, Jen02] It is the intention of the JSR-50 EG to bring
facilities required for constructing the DRTSJ style of distributed realtime
systems into the Java programming environment in a way that is least
disruptive to experienced Java programmers. For instance, concurrent pro-
gramming primitives such as the synchronized keyword and the Thread

and related classes should remain familiar. Similarly, we build upon rather
than replace Java's distributed object model as expressed in the Java RMI
speci�cation. A corollary is that the DRTSJ is, as its name indicates,
speci�cally for Java, and is not intended to be language agnostic (as, for
example, CORBA is more or less intended). The opposite approach of
bringing Java to distributed realtime could conceivably be performed with
a binding of the RTSJ to Real-Time CORBA, requiring Java programmers
to learn something about how to use CORBA. Each approach is reasonable
for some contexts, and our choice for the DRTSJ is not intended to com-
pete with that alternative (should it eventually materialize), but instead to
complement it and provide the users two options (at least).

Distributed objects and operations are distinguished from local objects
and operations, for the obvious reasons of latency, partial failures, and
concurrency control. [WWWK94]

Current Practice vs. Advanced Features: The DRTSJ will address
current realtime system practice as well as allow future implementations
to include advanced features. The EG has chosen to support this goal by

CHAPTER 1. INTRODUCTION 4

providing a speci�cation which targets those technologies, techniques, and
interfaces which have been well-tested, subjected to review, and successfully
employed in the construction of non-trivial distributed realtime systems.
Additional promising technologies under development by the research com-
munity which fail to meet those speci�cation criteria may be provided in
versions of the DRTSJ Reference Implementation (RI). Such versions of the
RI serve as an active testing ground for innovative technologies which may
appear in future versions of the speci�cation.

Maintain the ��avor� of RTSJ: Java programmers who have already
made the leap to the RTSJ should �nd adaptation to the DRTSJ as natural
as possible. RTSJ applications should run unmodi�ed on DRTSJ-compliant
JVMs, with some caveats on their distributed behavior.

Do not dictate the use of an RTSJVM or realtime transport: The
DRTSJ allows (the inevitable) mixtures of regular and RTSJ-compliant
JVMs, and speci�es the timeliness behaviors that result. It also is delib-
erately silent on the topic of the transport, which is regarded as a quality
of implementation issue. As with Real-Time CORBA, realtime transports
can be addressed in a subsequent speci�cation. [Obj04]

Coherent support for end-to-end application properties: By def-
inition, some multi-node behaviors in distributed realtime systems have
end-to-end time constraints which must be respected for the system to per-
form acceptably. Other end-to-end properties may also be required, such
as fault management, security credentials, serialization, etc. Traditionally
these end-to-end properties have been forced on the application designers
who must create bespoke and often ad-hoc mechanisms to attain them, typ-
ically at high recurring and non-recurring costs. The DRTSJ must provide
basic facilities for passing and acting upon the required end-to-end context
among the nodes participating in any given distributed behavior, in a man-
ner that respects both the end-to-end argument [SRC84, Lam83] and the
counter-examples, particularly those found in realtime systems. Conven-
tional message-passing models (e.g., JMS [Sun02a]) and publish/subscribe
models (e.g., OMGs DDS [Obj05]) tend to disregard the common need for
multi-hop interactions, and hence make end-to-end properties the respon-
sibility of the users.

Based on these driving premises, the keystone elements of the DRTSJ
outlined in the introduction were selected. The distributable threads model,

CHAPTER 1. INTRODUCTION 5

discussed in detail in Section 2.1, provides a coherent, end-to-end abstrac-
tion for building concurrent, sequential activities for distributed systems
in a manner familiar to Java and realtime programmers alike. In particu-
lar, the presence of a distributed object model (RMI) in the Java platform
makes the distributable thread concept a straightforward step for Java pro-
grammers into the world of distributed realtime programming.

In non-trivial distributed systems, partial failures due to changing net-
work conditions, node failures or overloads, and even regular maintenance
must be considered as the common case rather than the exception. There-
fore, any distributed system must provide facilities for detecting or masking
these failures, and presenting the relevant events to the application. Again,
the end-to-end argument and its counter-examples must drive engineering
solutions in which responsibilities are assigned to di�erent levels of any
given system. The concept and implementations of distributable thread
integrity, described in Section 2.1, are the primary means for meeting this
requirement in the DRTSJ.

Finally, realtime � especially non-trivial distributed realtime � sys-
tems have a unique need for �exible, application-de�ned resource manage-
ment. The RTSJ is extended in the DRTSJ by providing a scheduling
framework. Software designers may provide user-level application-speci�c
policies to govern the local and distributed scheduling of activities in the
system. These policies may range from the RTSJ default of priorities, to
deadline-based policies (not only the familiar �earliest deadline �rst,� but
also ones widely used outside the classical hard realtime community, such
as �minimize the number of missed deadlines,� �minimize mean tardiness,�
etc.), to time/utility function utility accrual based policies [Rea].

1.3 Minimum Components for DRTSJ

The EG has settled on the following components as a minimum for the �nal
speci�cation:

Distributable Real-Time Threads, a proven programming model for
constructing sequential control �ow applications with end-to-end timeliness
properties in distributed systems. The DRTSJ's distributable threads are a
realtime generalization of Java's Remote Method Invocation, as originally
proposed in JSR-50 (and are a superset of the abstraction provided in the
OMG Real-Time CORBA speci�cation 1.2 [Obj01];

CHAPTER 1. INTRODUCTION 6

A Distributable Thread Integrity Framework, into which application
designers may plug appropriate policies for maintaining the health and in-
tegrity of distributable threads in the presence of failures; and

A Scheduling Framework, into which application designers may plug ap-
propriate user space policies for scheduling distributable and local threads.

In the Fall of 2006, the EG will release an technology preview package
called Early Draft Review #1 (EDR#1) which will focus on the speci-
�cation and implementation of the distributable threads abstraction. Sub-
sequent Early Draft Reviews may be released to preview the distributable
thread integrity framework, and the scheduling framework.

1.4 Release Plan

The EG expects to release a series of Early Draft Review (EDR) packages, of
which this document is the �rst, to share our emerging vision of the DRTSJ
with the JCP members and the wider community. We seek feedback from
researchers and practitioners to leverage their perspectives on distributed
realtime programming, and to ensure that emphasis is placed on problems
for which there is a need for solutions.

Chapter 2

Programming Model

2.1 Distributable Threads

Many distributed systems have a natural expression as a collection of con-
current sequential �ows of execution within and among objects. The dis-
tributable thread programming model (illustrated in Figure 2.1) supported
in OMG's Real-Time CORBA 1.2 standard (abbreviated here as RTC2) [OMG01]
provides such threads as �rst-class abstractions. Distributable threads �rst
appeared as �distributed threads� in the Alpha OS kernel [Nor87, JN90].
Subsequently the Alpha and Mach 3 microkernels were merged by the Open
Software Foundation as the basis for its MK7.3 OS [Ope98], which (together
with some other research OSs) substituted the (less accurate) term �migrat-
ing threads.�

A distributable thread is a single thread of execution with a globally
unique identi�er that extends and retracts through local and remote ob-
jects. Thus, a distributable thread is an end-to-end control �ow abstrac-
tion, with a logically distinct locus of control �ow movement within and
among objects and nodes, that directly manifests the distributed behavior
of many systems. This speci�cation refer to distributable threads as threads
except as necessary for clarity.

Threads extend and retract across object boundaries by performing re-
mote procedure calls (RPCs). Therefore, a distributable thread may be
seen as a chain of local threads (or segments) connected by intervening
RPCs. A thread's stack is thus distributed across the set of nodes hosting
segments at any given time. While the synchrony of a conventional method

7

CHAPTER 2. PROGRAMMING MODEL 8

Object A
 Object D
Object B

DT1

Object C

DT2

DT3

1-Way

Invocation

Figure 2.1: Distributable Threads

invocation is often cited as a concurrency limitation [SG01], a distributable
thread is sequential rather than synchronous (�send/wait�). It is always
executing somewhere (unless it is �in-�ight� during an RPC communica-
tion step), while it is the most eligible there � it is not doing send/wait's
as with RPC. Each node's processor is always executing the most eligible
distributable thread present; the other distributable threads wait as they
should. Remote invocations and returns constitute scheduling events at
both source and destination nodes, and may be dealt with accordingly by
the active scheduling policy.

Because Java is a multi-threaded language, it is intuitive for program-
mers to express applications in terms of this type of concurrency.

A distributable thread may have end-to-end time constraints. Typically,
a time constraint is declared as a lexically scoped attribute of an action
performed by a schedulable entity (e.g., thread). While executing within
the time constraint scope, the thread might be said to be a �realtime� one,
and otherwise a �non-realtime� one. When a remote invocation occurs, the
platform causes a time constraint to be propagated to, and enforced on,
any nodes downstream of the declaration point.

CHAPTER 2. PROGRAMMING MODEL 9

Partial Failures

Nontrivial dynamic distributed systems must be presumed always to be
partially failed. At any given time, transmissions my be lost for a variety of
reasons, nodes are overloaded, failing, rebooting, joining, or departing the
system. Because distributable threads execute in an environment subject to
partial failures typically not experienced by nodal (e.g., operating system)
threads, provisions must be made to ensure the end-to-end integrity of dis-
tributable threads in a manner that assigns responsibilities appropriately
between the particular system and its applications, and can be reasoned
about. (The Real-Time CORBA speci�cation leaves this issue to be ad-
dressed as added value by the ORB vendors.)

Several approaches to distributable thread integrity have been demon-
strated in prior work. The DRTSJ seeks to build on this prior work 1) by
providing example implementations of those existing schemes; 2) by pro-
viding APIs allowing applications to use their own integrity policies; and 3)
by providing a set of example implementations from the cutting edge of re-
search in this area, focused on thread integrity in the increasingly important
�eld of mobile, ad-hoc networks.

Implementation Implications

Implementers are able to implement distributable threads with any trans-
port infrastructures (RMI, SOAP, Real-Time CORBA, etc.) that provides
an interface comparable to that of Java RMI's programming model. The
DRTSJ distributable threads abstraction is consciously very similar to that
of Real-Time CORBA 2, to facilitate application programmers' ability to
write distributed programs that use both infrastructures, as has been re-
quested by numerous prospective DRTSJ users.

2.2 Scheduling

Distributed threads carry their priority with them as they cross virtual
machine boundaries. Virtual machines running on the same operating sys-
tem instance should have the same mapping of Java priorities to operating
system priorities. Virtual machines running on di�erent operating system
instances should have behaviorally equivalent priorities, such that threads
running on two di�erent virtual machines with the same Java priority have

CHAPTER 2. PROGRAMMING MODEL 10

similar precedence on the two machines. In both cases, it is up to the
installation to insure this equivalence.

Chapter 3

The Java and Real-Time

Speci�cation for Java Platform

DRTSJ builds on top of the mechanisms of the Real-Time Speci�cation
for Java. It requires the realtime thread, asynchronous event, scheduling,
and priority inversion avoidance mechanisms for proper functionality. Less
emphasis is placed the memory areas of the RTSJ. To a large extent, the
advent of realtime garbage collection makes these classes in their current
form less relevant. Still DRTSJ should be able to work with them, even
though they are not strictly required. This dependency on the RTSJ means
that the two speci�cation need to be coordinated.

11

Chapter 4

API Speci�cation

4.1 Interfaces

DistributableThreadOperations

A distributable thread is a context of execution in a distributed program.
Distributable threads are intended (conceptually) to generalize Thread to
encompass control-�ow semantics extending across multiple JVMs. This
abstract de�nition explicitly avoids de�ning a particular implementation of
DTs, though it is anticipated that must conforming DRTSJ implementa-
tions will employ a collection of local Thread instances as "segments" of
the thread. However, the DRTSJ expert group encourages and expects im-
plementors to provide e�cient, �rst-class native implementations of DTs.
Some terminology: We denote the object, thread segment, and JVM/node
in which the DT is initially instantiated as the root of the DT. The object,
thread segment, or JVM/node in which the thread is currently executing is
called the head. Because partial failures are possible in distributed systems,
it is challenging to enforce the kinds of invariants expected on normal Java
or OS threads. Conforming implementations of DRTSJ will trade o� some
of the following goals.

• Instances of DistributableThread are inherently distributed objects.
This means that the true state of the distributable thread may not be
known, and in fact may in priniciple be unknowable. Implementations
should aim to carefully document the relationship between the state
reported by local instances of DistributableThread and the actual

12

CHAPTER 4. API SPECIFICATION 13

state of the distributed entity.

• Enforcing a "single point of control" invariant for distributable threads
is a key design goal. It may be impossible in practice to provide this
exactly, but deviations from this should documented by conforming
implementations.

• Real-time operations � This abstraction has been articulated with
distributed, real-time behaviors at its core. The abstraction itself has
been generalized to match as closely as possible with vanilla Threads,
and to admit such implementations, but the presence of real-time
concerns always take precedence.

• Interaction with Java monitors

• Asynchrony

• Replaces the local thread ID with a globally-meaningful ID. Provides
a few distributed operations which should be treated as explicitly
unsafe.

Methods

getThreadID

javax.realtime.distributed.thread.DThreadID getThreadID()

Get the ID of this thread.

Returns javax.realtime.distributed.thread.DThreadID thread ID

trapLocal

void trapLocal()

Attempt to pause the thread. Semantics of this are currently unde�ned,
but at the very least the local segment is paused and will makeno forward
progress until unpause() is called.

CHAPTER 4. API SPECIFICATION 14

untrapLocal

void untrapLocal()

See pause()

run

void run()

start

void start()

getCurrentContext

javax.realtime.distributed.thread.DistributableThreadContext

getCurrentContext()

Get the current exection context for this thread. Primarily useful for
trans-node communication, and useful for distributed scheduling, TMAR,
and dthread implementation.

Returns javax.realtime.distributed.thread.DistributableThreadContext
the current thread execution context

DistributedAsyncEventLocalMethods

bindTo

void bindTo(java.lang.String happening) throws

javax.realtime.UnknownHappeningException

Throws javax.realtime.UnknownHappeningException

DistributedAsynchronousEventHelper

Hook to manage AsyncEvent proxies to ensure they are delivered to the
appropriate JVM.

Methods

CHAPTER 4. API SPECIFICATION 15

createAuxilliaryAsyncEvent

RTRemoteAsynchronousEvent createAuxilliaryAsyncEvent()

throws java.rmi.RemoteException

Throws java.rmi.RemoteException

DRTSJLocalServices

Methods

registerRemotelyAccessibleObject

boolean

registerRemotelyAccessibleObject(java.rmi.server.RemoteObject

remoteName, java.lang.Object obj)

Register locally created Remote objects.

lookupRemotelyAccessibleObject

java.lang.Object

lookupRemotelyAccessibleObject(java.rmi.server.RemoteObject

remoteName)

Lookup a Remote object and return its implementation if it is local.

registerThreadEventListener

void

registerThreadEventListener(javax.realtime.distributed.tmar.DistributableThreadEventListener

listener)

Register an event listener for distributable thread events.

registerSegmentedThreadEventListener

void

registerSegmentedThreadEventListener(javax.realtime.distributed.tmar.SegmentedDTEventListener

listener)

CHAPTER 4. API SPECIFICATION 16

Register an event listener for distributable thread events.

DThreadSegmentOperations

Represents the local segment of a DT.
Methods

getThreadID

javax.realtime.distributed.thread.DThreadID getThreadID()

Get the ID of the enclosing thread.

Returns javax.realtime.distributed.thread.DThreadID thread ID

getSegmentID

javax.realtime.distributed.thread.DThreadSegmentID

getSegmentID()

Get the unique ID for this segment.

Returns javax.realtime.distributed.thread.DThreadSegmentID the
segment ID

getLocalSegments

DThreadSegment[] getLocalSegments()

Get all the local segments of this DT. (Not thread-safe).

Returns DThreadSegment[] array of segments

isRoot

boolean isRoot()

Is this currently the Root of a DT.

CHAPTER 4. API SPECIFICATION 17

Returns boolean

isHead

boolean isHead()

Is this currently the Head of a DT. (Not thread safe.)

Returns boolean

getHostingNode

java.net.InetAddress getHostingNode()

Get the address of the node hosting this segment.

Returns java.net.InetAddress the address of the hosting node

getDownstreamNode

java.net.InetAddress getDownstreamNode()

Get the network address for the downstream segment. Returns null if
there is no downstream segment (ie, if we are the head.)

Returns java.net.InetAddress downstream address

getUpstreamNode

java.net.InetAddress getUpstreamNode()

Get the network address for the upstream segment. Returns null if there
is no upstream segment (ie, if we are the root.)

Returns java.net.InetAddress upstream address

getEnclosingThread

DistributableThreadOperations getEnclosingThread()

CHAPTER 4. API SPECIFICATION 18

Returns DistributableThreadOperations

getDownstreamSegmentID

javax.realtime.distributed.thread.DThreadSegmentID

getDownstreamSegmentID()

Get the segment identi�er for the downstream segment. Returns null if
there is no downstream segment (ie, if we are the head.)

Returns javax.realtime.distributed.thread.DThreadSegmentID up-
stream address

setDownstreamSegmentID

void

setDownstreamSegmentID(javax.realtime.distributed.thread.DThreadSegmentID

id)

Set the segment identi�er for the downstream segment. Returns null if
there is no downstream segment (ie, if we are the head.)

getUpstreamSegmentID

javax.realtime.distributed.thread.DThreadSegmentID

getUpstreamSegmentID()

Get the segment identi�er for the upstream segment. Returns null if
there is no upstream segment (ie, if we are the root.)

Returns javax.realtime.distributed.thread.DThreadSegmentID up-
stream address

deliverPendingException

boolean deliverPendingException(java.lang.Exception e)

Called by the runtime, or possibly by the user, in order to deliver an ex-
ception to a particular segment of the thread. This exception is guaranteed
to be delivered whenever the user calls into RMI code.

CHAPTER 4. API SPECIFICATION 19

pushPendingException

boolean pushPendingException(java.lang.Exception e)

Called by the runtime or by TMAR code in order to enqueue an excep-
tion in the RMI runtime for this segment. This has the e�ect of replacing
any RMI return with the contents of the speci�ed exception. This is dan-
gerous, so be careful.

Parameter java.lang.Exception e

Returns boolean

forcePendingException

boolean forcePendingException()

Called by the runtime or by TMAR code in order to force an enqueued
exception in the RMI runtime for this segment to be thrown immediately
(if possible.) This has the e�ect of terminating any pending invocation
and returning the throwable speci�ed. RMI return with the contents of the
speci�ed exception. This is dangerous, so be careful.

Returns boolean

RealtimeRemote

RealtimeRemote is a marker indicating that an object provides java.rmi.Remote-
style services while providing some level of real-time guarantees.

RTRemoteAsynchronousEvent

Methods

addHandler

void addHandler(RTRemoteAsynchronousEventHandler handler)

throws java.rmi.RemoteException

CHAPTER 4. API SPECIFICATION 20

Parameter RTRemoteAsynchronousEventHandler handler

Throws java.rmi.RemoteException

�re

void fire() throws java.rmi.RemoteException

Throws java.rmi.RemoteException

RTRemoteAsynchronousEventHandler

Methods

getDRTSJPlatformSvcManager

DistributedAsynchronousEventHelper

getDRTSJPlatformSvcManager() throws

java.rmi.RemoteException

Throws java.rmi.RemoteException

4.2 Classes

DistributableThread

A distributable thread is a context of execution in a distributed program.
Distributable threads are intended (conceptually) to generalize Thread to
encompass control-�ow semantics extending across multiple JVMs. This
abstract de�nition explicitly avoids de�ning a particular implementation of
DTs, though it is anticipated that must conforming DRTSJ implementa-
tions will employ a collection of local Thread instances as "segments" of
the thread. However, the DRTSJ expert group encourages and expects im-
plementors to provide e�cient, �rst-class native implementations of DTs.
Some terminology: We denote the object, thread segment, and JVM/node
in which the DT is initially instantiated as the root of the DT. The object,
thread segment, or JVM/node in which the thread is currently executing is
called the head. Because partial failures are possible in distributed systems,

CHAPTER 4. API SPECIFICATION 21

it is challenging to enforce the kinds of invariants expected on normal Java
or OS threads. Conforming implementations of DRTSJ will trade o� some
of the following goals.

• Instances of DistributableThread are inherently distributed objects.
This means that the true state of the distributable thread may not be
known, and in fact may in priniciple be unknowable. Implementations
should aim to carefully document the relationship between the state
reported by local instances of DistributableThread and the actual
state of the distributed entity.

• Enforcing a "single point of control" invariant for distributable threads
is a key design goal. It may be impossible in practice to provide this
exactly, but deviations from this should documented by conforming
implementations.

• Real-time operations � This abstraction has been articulated with
distributed, real-time behaviors at its core. The abstraction itself has
been generalized to match as closely as possible with vanilla Threads,
and to admit such implementations, but the presence of real-time
concerns always take precedence.

• Interaction with Java monitors

• Asynchrony

• Replaces the local thread ID with a globally-meaningful ID.

• Provides a few distributed operations which should be treated as ex-
plicitly unsafe.

Constructors

DistributableThread

public DistributableThread(

javax.realtime.distributed.DistributableThreadGroup

group, java.lang.Runnable r, java.lang.String name)

CHAPTER 4. API SPECIFICATION 22

Creates a new DistributableThread object with speci�ed group, runnable
code, and name. If group is null, the thread is assigned to the global group.
[FIXME: This should be context-dependent on the security manager.] If r
is not null, the speci�ed Runnable code is used as the body of the thread
when the start() method is called. Otherwise, the run() method of the
thread object itself is called.

Parameter javax.realtime.distruted group the thread group to which
the new thread will belong

Parameter java.lang.Runnable r the Runnable object for this thread

Parameter java.lang.String name the printable name of the new thread
Methods

sleep

public static void sleep(long milliseconds) throws

java.lang.InterruptedException

Throws java.lang.InterruptedException

sleep

public static void sleep(Clock clock, HighResolutionTime

time) throws java.lang.InterruptedException

Throws java.lang.InterruptedException

getID

public abstract GlobalIdentifier getID()

Get the ID of this thread.

Returns GlobalIdenti�er thread ID

CHAPTER 4. API SPECIFICATION 23

pause

public abstract void pause()

Attempt to pause the thread. Semantics of this are currently unde�ned,
but at the very least the local segment is paused and will makeno forward
progress until unpause() is called.

unpause

public abstract void unpause()

See pause()

run

public abstract void run()

start

public abstract void start()

DistributedAsyncEvent

Constructors

DistributedAsyncEvent

public DistributedAsyncEvent() throws

java.rmi.RemoteException

Throws java.rmi.RemoteException Methods

addHandler

public void addHandler(AsyncEventHandler handler)

bindTo

public void bindTo(java.lang.String happening) throws

javax.realtime.UnknownHappeningException

CHAPTER 4. API SPECIFICATION 24

Throws javax.realtime.UnknownHappeningException

�re

public void fire()

initiateFire

public void initiateFire() throws

java.rmi.RemoteException

Throws java.rmi.RemoteException

DistributedAsyncEventHandler

Constructors

DistributedAsyncEventHandler

public DistributedAsyncEventHandler(java.lang.Runnable

logic) throws java.rmi.RemoteException

Throws java.rmi.RemoteException Methods

getDRTSJPlatformSvcManager

public DistributedAsynchronousEventHelper

getDRTSJPlatformSvcManager() throws

java.rmi.RemoteException

Throws java.rmi.RemoteException

getLocalAsyncEventHandler

public AsyncEventHandler getLocalAsyncEventHandler()

CHAPTER 4. API SPECIFICATION 25

DistributedRealtimeClock

Represents the single, guaranteed-available distributed clock. Expected to
be equivalent to an NTP-synchronized clock, and it may be identical to the
results of javax.realtime.Clock.getRealtimeClock().

Constructors

DistributedRealtimeClock

public DistributedRealtimeClock()

Methods

getEpochO�set

public RelativeTime getEpochOffset()

getResolution

public RelativeTime getResolution()

getTime

public AbsoluteTime getTime()

getTime

public AbsoluteTime getTime(AbsoluteTime time)

setResolution

public void setResolution(RelativeTime resolution)

DRTSJPlatform

System-level operations for the DRTSJ platform. Many of these will be
moved elsewhere over time, and protected using the Java security framework
and package protections. This is a singleton object instance with a static
factory method. This object instance can be used to uniquely identify
a DRTSJ platform (since it is a singleton object instance and that is the

CHAPTER 4. API SPECIFICATION 26

realm over which the singleton property can be enforced) and o�ers methods
to access speci�c information concerning this DRTSJ platform. FIXME:
Ensure that this is loaded by the boot classloader, or that some mechanism
enforces its singleton status across all classloaders. FIXME: Determine
which of these methods belong in DRTSJServicesManager.

Fields

DRTSJLevel

public static final int DRTSJLevel

DRTSJ Level of this platform

DRTSJRemoteServer

public static final DRTSJServicesManager

DRTSJRemoteServer

Methods

getInstance

public static final DRTSJPlatform getInstance()

static factory method

getDistributableThread

public DistributableThreadOperations

getDistributableThread(javax.realtime.distributed.thread.DThreadID

gid)

Return a reference to the distributable thread with the given identi�er,
if any is registered locally.

Parameter javax.realtime.distributed.thread.DThreadID gid dis-
tributable thread id

Returns DistributableThreadOperations reference to distributable
thread

CHAPTER 4. API SPECIFICATION 27

getSuccessorSegment

public DThreadSegmentOperations

getSuccessorSegment(GlobalIdentifier predecessorID)

Return the successor segment for the given segment identi�er, if it is
hosted locally. Returns null if no successor is hosted locally.

Parameter GlobalIdenti�er predecessorID

Returns GlobalIdenti�er a reference to the local DThreadSegment

getPredecessorSegment

public DThreadSegmentOperations

getPredecessorSegment(GlobalIdentifier successorID)

Return the predecessor segment for the given segment identi�er, if it is
hosted locally. Returns null if no successor is hosted locally.

Parameter GlobalIdenti�er successorID

Returns DThreadSegmentOperations a reference to the local DThread-
Segment

getHostedThread

public DistributableThreadOperations

getHostedThread(javax.realtime.distributed.thread.DThreadID

id)

Returns a reference to the distributable thread with the speci�ed ID, if
that thread is locally hosted.

Parameter javax.realtime.distributed.thread.DThreadID id the ID
to search for

Returns DistributableThreadOperations the dthread reference, or
null if it is not local

CHAPTER 4. API SPECIFICATION 28

getHostedSegments

public DThreadSegment[] getHostedSegments()

Returns DThreadSegment[] the distributed thread segments hosted
by this platform

getHostedThreads

public DistributableThread[] getHostedThreads()

Returns DistributableThread[] the distributed threads hosted by this
platform

interruptSegment

public void interruptSegment(DThreadSegmentOperations

seg, java.lang.Exception toDeliver)

Called by the runtime, or possibly by the user, in order to deliver an ex-
ception to a particular segment of the thread. This exception is guaranteed
to be delivered whenever the user calls into RMI code.

Parameter DThreadSegmentOperations seg target segment

Parameter java.lang.Exception toDeliver the throwable to deliver

pushSegmentPendingException

public void

pushSegmentPendingException(DThreadSegmentOperations seg,

javax.realtime.distributed.thread.ThreadIntegrityException

toDeliver)

Called by the runtime or by TMAR code in order to enqueue an excep-
tion in the RMI runtime for this segment. This has the e�ect of replacing
any RMI return with the contents of the speci�ed exception. This is danger-
ous, so be careful. basically there are three ways to deliver this exception:

CHAPTER 4. API SPECIFICATION 29

• deliver it to a pending client invocation (it will be raised immediately)

• deliver it to a pending server invocation (it will be raised later....)

• deliver it to the segment structure itself

Perhaps this should deliver it (synchronously) to the segment itself, at
which point the segment instance can delegate it to the appropriate place.

Parameter DThreadSegmentOperations seg the target segment

Parameter javax.realtime.distributed.thread.ThreadIntegrityException
toDeliver the exception to deliver

forceSegmentPendingException

public void

forceSegmentPendingException(DThreadSegmentOperations

seg)

Called by the runtime or by TMAR code in order to force an enqueued
exception in the RMI runtime for this segment to be thrown immediately
(if possible.) This has the e�ect of terminating any pending invocation and
returning the throwable speci�ed. RMI return with the contents of the spec-
i�ed exception. This is dangerous, so be careful. This is only valid (and will
only take e�ect) if pushSegmentPendingException(DThreadSegmentOperations,
ThreadIntegrityException) has been called.

Parameter DThreadSegmentOperations seg the target segment

toString

public final java.lang.String toString()

registerSegmentedThreadEventListener

public void

registerSegmentedThreadEventListener(javax.realtime.distributed.tmar.SegmentedDTEventListener

listener)

CHAPTER 4. API SPECIFICATION 30

Add a new segmented thread event listener. Intended for thread in-
tegrity protocols.

registerSegmentedThreadIDEventListener

public void

registerSegmentedThreadIDEventListener(javax.realtime.distributed.tmar.SegmentedDTIDEventListener

listener)

Add a new segmented thread event listener. Intended for thread in-
tegrity protocols.

eventDTInvokeArrived

public void

eventDTInvokeArrived(DistributableThreadOperations

thread, DThreadSegmentOperations segment)

Notify all registered listeners that the speci�ed thread has arrived. See
SegmentedDTEventListener.

Parameter DistributableThreadOperations thread the arriving thread

Parameter DThreadSegmentOperations segment the arriving thread's
local segment

eventDTInvokeDeparted

public void

eventDTInvokeDeparted(DistributableThreadOperations

thread, DThreadSegmentOperations segment)

Notify all registered listeners that the speci�ed thread has departed. See
SegmentedDTEventListener.

Parameter DistributableThreadOperations thread the arriving thread

Parameter DThreadSegmentOperations segment the arriving thread's
local segment

CHAPTER 4. API SPECIFICATION 31

eventDTReturnArrived

public void

eventDTReturnArrived(DistributableThreadOperations

thread, DThreadSegmentOperations segment)

Notify all registered listeners that the speci�ed thread has arrived in
return context. See SegmentedDTEventListener.

Parameter DistributableThreadOperations thread the arriving thread

Parameter DThreadSegmentOperations segment the arriving thread's
local segment

eventDTReturnDeparted

public void

eventDTReturnDeparted(DistributableThreadOperations

thread, DThreadSegmentOperations segment)

Notify all registered listeners that the speci�ed thread has departed in
return context. See SegmentedDTEventListener.

Parameter DistributableThreadOperations thread the departing thread

Parameter DThreadSegmentOperations segment the departing thread's
local segment

eventNewRootSegment

public void

eventNewRootSegment(DistributableThreadOperations thread,

DThreadSegmentOperations segment)

Notify all registered listeners that the a new root thread segment has
been created. See SegmentedDTEventListener.

Parameter DistributableThreadOperations thread the departing thread

CHAPTER 4. API SPECIFICATION 32

Parameter DThreadSegmentOperations segment the departing thread's
local segment

getIntegrityManager

public

javax.realtime.distributed.tmar.ThreadIntegrityManager

getIntegrityManager()

setIntegrityManager

public void

setIntegrityManager(javax.realtime.distributed.tmar.ThreadIntegrityManager

integrityManager)

trapDistributableThread

public DistributableThreadOperations

trapDistributableThread(javax.realtime.distributed.thread.DThreadID

toPause)

Note: this is a very unsafe operation with poorly de�ned semantics.

Returns DistributableThreadOperations

untrapDistributableThread

public void

untrapDistributableThread(javax.realtime.distributed.thread.DThreadID

toPause)

Note: this is a very unsafe operation with poorly de�ned semantics.

DRTSJServicesManager

This object instance o�ers (remote) access to speci�c DRTSJ-related meth-
ods. This is a singleton object instance with a static factory method.

Methods

CHAPTER 4. API SPECIFICATION 33

getInstance

public static DRTSJServicesManager getInstance()

createAuxilliaryAsyncEvent

public RTRemoteAsynchronousEvent

createAuxilliaryAsyncEvent() throws

java.rmi.RemoteException

Throws java.rmi.RemoteException

registerRemotelyAccessibleObject

public boolean

registerRemotelyAccessibleObject(java.rmi.server.RemoteObject

remoteName, java.lang.Object obj)

Description copied from interface: DRTSJLocalServices Register locally
created Remote objects.

lookupRemotelyAccessibleObject

public java.lang.Object

lookupRemotelyAccessibleObject(java.rmi.server.RemoteObject

remoteName)

Description copied from interface: DRTSJLocalServices Lookup a Re-
mote object and return its implementation if it is local.

registerSegmentedThreadEventListener

public void

registerSegmentedThreadEventListener(javax.realtime.distributed.tmar.SegmentedDTEventListener

listener)

Add a new segmented thread event listener. Intended for thread in-
tegrity protocols.

CHAPTER 4. API SPECIFICATION 34

registerSegmentedThreadIDEventListener

public void

registerSegmentedThreadIDEventListener(javax.realtime.distributed.tmar.SegmentedDTIDEventListener

listener)

Add a new segmented thread event listener. Intended for thread in-
tegrity protocols.

registerThreadEventListener

public void

registerThreadEventListener(javax.realtime.distributed.tmar.DistributableThreadEventListener

listener)

Description copied from interface: DRTSJLocalServices Register an event
listener for distributable thread events.

DThreadSegment

Represents the local segment of a DT.
Constructors

DThreadSegment

public DThreadSegment()

Methods

getThreadID

public abstract

javax.realtime.distributed.thread.DThreadID getThreadID()

Get the ID of the enclosing thread.

Returns javax.realtime.distributed.thread.DThreadID thread ID

CHAPTER 4. API SPECIFICATION 35

getSegmentID

public abstract

javax.realtime.distributed.thread.DThreadSegmentID

getSegmentID()

Get the unique ID for this segment.

Returns javax.realtime.distributed.thread.DThreadSegmentID the
segment ID

GlobalIdenti�er

An identi�er which promises to be globally unique on the network.
Constructors

GlobalIdenti�er

public GlobalIdentifier()

GlobalIdenti�er

public GlobalIdentifier(java.rmi.server.UID inputID,

java.lang.String host)

Methods

hashCode

public int hashCode()

getHostAddress

public byte[] getHostAddress()

getLocalID

public java.rmi.server.UID getLocalID()

CHAPTER 4. API SPECIFICATION 36

read

public void read(java.io.ObjectInput oin) throws

java.io.IOException

Throws java.io.IOException

write

public void write(java.io.ObjectOutput oout) throws

java.io.IOException

Throws java.io.IOException

equals

public boolean equals(java.lang.Object obj)

fromHex

public java.lang.String fromHex(byte[] source)

toString

public java.lang.String toString()

printID

public java.lang.String printID()

readExternal

public void readExternal(java.io.ObjectInput input)

throws java.io.IOException,

java.lang.ClassNotFoundException

Throws java.io.IOException

Throws java.lang.ClassNotFoundException

CHAPTER 4. API SPECIFICATION 37

writeExternal

public void writeExternal(java.io.ObjectOutput output)

throws java.io.IOException

Throws java.io.IOException

GlobalRealtimeThread

A Level-1 approxmation of a distributable thread.
Constructors

GlobalRealtimeThread

public

GlobalRealtimeThread(javax.realtime.distributed.thread.RealtimeThreadContext

sourceContext, java.lang.Runnable r)

Magical constructor for use when instantiating a new segment of a Dis-
tributableThread.

Parameter javax.realtime.distributed.thread.RealtimeThreadContext
sourceContext

Parameter java.lang.Runnable r

GlobalRealtimeThread

public GlobalRealtimeThread()

GlobalRealtimeThread

public

GlobalRealtimeThread(javax.realtime.distributed.thread.DThreadID

ID)

CHAPTER 4. API SPECIFICATION 38

GlobalRealtimeThread

public GlobalRealtimeThread(SchedulingParameters

scheduling, ReleaseParameters release, MemoryParameters

memory, MemoryArea area, ProcessingGroupParameters group,

java.lang.Runnable r)

GlobalRealtimeThread

public GlobalRealtimeThread(SchedulingParameters

scheduling, ReleaseParameters release, MemoryParameters

memory, MemoryArea area, ProcessingGroupParameters group,

java.lang.Runnable r,

javax.realtime.distributed.thread.DThreadID ID)

Methods

setGlobalThreadIdentity

public void

setGlobalThreadIdentity(javax.realtime.distributed.thread.RealtimeThreadContext

c)

setInvocationTimeout

public void setInvocationTimeout(RelativeTime timeout)

setAckTimeout

public void setAckTimeout(RelativeTime timeout)

setInvocationTimeout

public RelativeTime setInvocationTimeout()

setAckTimeout

public RelativeTime setAckTimeout()

CHAPTER 4. API SPECIFICATION 39

start

public void start()

hashCode

public int hashCode()

equals

public boolean equals(java.lang.Object obj)

getThreadID

public javax.realtime.distributed.thread.DThreadID

getThreadID()

Description copied from interface: DistributableThreadOperations Get
the ID of this thread.

Returns javax.realtime.distributed.thread.DThreadID thread ID

trapLocal

public void trapLocal()

Description copied from interface: DistributableThreadOperations At-
tempt to pause the thread. Semantics of this are currently unde�ned, but at
the very least the local segment is paused and will makeno forward progress
until unpause() is called.

untrapLocal

public void untrapLocal()

Description copied from interface: DistributableThreadOperations See
pause()

CHAPTER 4. API SPECIFICATION 40

setReleaseParametersIfFeasible

public boolean

setReleaseParametersIfFeasible(ReleaseParameters

releaseparameters)

getCurrentContext

public

javax.realtime.distributed.thread.DistributableThreadContext

getCurrentContext()

Description copied from interface: DistributableThreadOperations Get
the current exection context for this thread. Primarily useful for trans-node
communication, and useful for distributed scheduling, TMAR, and dthread
implementation.

Returns javax.realtime.distributed.thread.DistributableThreadContext
the current thread execution context

getSegmentID

public javax.realtime.distributed.thread.DThreadSegmentID

getSegmentID()

Description copied from interface: DThreadSegmentOperations Get the
unique ID for this segment.

Returns javax.realtime.distributed.thread.DThreadSegmentID the
segment ID

getLocalSegments

public DThreadSegment[] getLocalSegments()

Description copied from interface: DThreadSegmentOperations Get all
the local segments of this DT. (Not thread-safe).

Returns DThreadSegment[] array of segments

CHAPTER 4. API SPECIFICATION 41

isRoot

public boolean isRoot()

Description copied from interface: DThreadSegmentOperations Is this
currently the Root of a DT.

Returns bolean

isHead

public boolean isHead()

Description copied from interface: DThreadSegmentOperations Is this
currently the Head of a DT. (Not thread safe.)

Returns boolan

getHostingNode

public java.net.InetAddress getHostingNode()

Description copied from interface: DThreadSegmentOperations Get the
address of the node hosting this segment.

Returns java.net.InetAddress the address of the hosting node

getDownstreamNode

public java.net.InetAddress getDownstreamNode()

Description copied from interface: DThreadSegmentOperations Get the
network address for the downstream segment. Returns null if there is no
downstream segment (ie, if we are the head.)

Returns java.net.InetAddress downstream address

CHAPTER 4. API SPECIFICATION 42

getUpstreamNode

public java.net.InetAddress getUpstreamNode()

Description copied from interface: DThreadSegmentOperations Get the
network address for the upstream segment. Returns null if there is no
upstream segment (ie, if we are the root.)

Returns java.net.InetAddress upstream address

getEnclosingThread

public DistributableThreadOperations getEnclosingThread()

Returns DistributableThreadOperations

getDownstreamSegmentID

public javax.realtime.distributed.thread.DThreadSegmentID

getDownstreamSegmentID()

Description copied from interface: DThreadSegmentOperations Get the
segment identi�er for the downstream segment. Returns null if there is no
downstream segment (ie, if we are the head.)

Returns javax.realtime.distributed.thread.DThreadSegmentID up-
stream address

getUpstreamSegmentID

public javax.realtime.distributed.thread.DThreadSegmentID

getUpstreamSegmentID()

Description copied from interface: DThreadSegmentOperations Get the
segment identi�er for the upstream segment. Returns null if there is no
upstream segment (ie, if we are the root.)

Returns javax.realtime.distributed.thread.DThreadSegmentID up-
stream address

CHAPTER 4. API SPECIFICATION 43

readExternal

public void readExternal(java.io.ObjectInput input)

throws java.io.IOException,

java.lang.ClassNotFoundException

Throws java.io.IOException

Throws java.lang.ClassNotFoundException

writeExternal

public void writeExternal(java.io.ObjectOutput output)

throws java.io.IOException

Throws java.io.IOException

deliverPendingException

public boolean

deliverPendingException(java.lang.Exception e)

Description copied from interface: DThreadSegmentOperations Called
by the runtime, or possibly by the user, in order to deliver an exception
to a particular segment of the thread. This exception is guaranteed to be
delivered whenever the user calls into RMI code.

pushPendingException

public boolean pushPendingException(java.lang.Exception

e)

Description copied from interface: DThreadSegmentOperations Called
by the runtime or by TMAR code in order to enqueue an exception in the
RMI runtime for this segment. This has the e�ect of replacing any RMI
return with the contents of the speci�ed exception. This is dangerous, so
be careful.

Returns boolean

CHAPTER 4. API SPECIFICATION 44

forcePendingException

public boolean forcePendingException()

Description copied from interface: DThreadSegmentOperations Called
by the runtime or by TMAR code in order to force an enqueued exception in
the RMI runtime for this segment to be thrown immediately (if possible.)
This has the e�ect of terminating any pending invocation and returning
the throwable speci�ed. RMI return with the contents of the speci�ed
exception. This is dangerous, so be careful.

Returns boolean

isExternalTMAR

public boolean isExternalTMAR()

setExternalTMAR

public void setExternalTMAR(boolean externalTMAR)

setDownstreamSegmentID

public void

setDownstreamSegmentID(javax.realtime.distributed.thread.DThreadSegmentID

id)

Description copied from interface: DThreadSegmentOperations Set the
segment identi�er for the downstream segment. Returns null if there is no
downstream segment (ie, if we are the head.)

hasPendingException

public boolean hasPendingException()

getPendingException

public java.lang.Exception getPendingException()

CHAPTER 4. API SPECIFICATION 45

setTMARPolicy

public void

setTMARPolicy(javax.realtime.distributed.tmar.TMARPolicyParameters

policy)

getTMARPolicy

public

javax.realtime.distributed.tmar.TMARPolicyParameters

getTMARPolicy()

GlobalThread

A Level-1 approxmation of a distributable thread.
Constructors

GlobalThread

public

GlobalThread(javax.realtime.distributed.thread.DistributableThreadContext

sourceContext, java.lang.Runnable r)

Magical constructor for use when instantiating a new segment of a Dis-
tributableThread.

Parameter javax.realtime.distributed.thread.DistributableThreadContext
sourceContext

Parameter java.lang.Runnable r

GlobalThread

public GlobalThread()

GlobalThread

public GlobalThread(java.lang.Runnable r)

Methods

CHAPTER 4. API SPECIFICATION 46

getGlobalID

public javax.realtime.distributed.thread.DThreadID

getGlobalID()

Return this thread's ID.

Returns javax.realtime.distributed.thread.DThreadID global thread
identi�er

setGlobalID

public void

setGlobalID(javax.realtime.distributed.thread.DThreadID

id)

Do we really need to be able to set the GlobalID of a thread? added
against all odds by JA. maybe unnecessary.

setGlobalThreadIdentity

public void

setGlobalThreadIdentity(javax.realtime.distributed.thread.RealtimeThreadContext

c)

relinquishIdentity

public void relinquishIdentity()

writeEssence

public void writeEssence(java.io.ObjectOutputStream oout)

throws java.io.IOException

Throws java.io.IOException

readEssence

public void readEssence(java.io.ObjectInputStream oin)

throws java.io.IOException

CHAPTER 4. API SPECIFICATION 47

Throws java.io.IOException

hashCode

public int hashCode()

equals

public boolean equals(java.lang.Object obj)

pause

public void pause()

unpause

public void unpause()

getCurrentContext

public

javax.realtime.distributed.thread.DistributableThreadContext

getCurrentContext()

Description copied from interface: DistributableThreadOperations Get
the current exection context for this thread. Primarily useful for trans-node
communication, and useful for distributed scheduling, TMAR, and dthread
implementation.

Returns javax.realtime.distributed.thread.DistributableThreadContext
the current thread execution context

getThreadID

public javax.realtime.distributed.thread.DThreadID

getThreadID()

Description copied from interface: DistributableThreadOperations Get
the ID of this thread.

CHAPTER 4. API SPECIFICATION 48

Returns javax.realtime.distributed.thread.DThreadID thread ID

getSegmentID

public javax.realtime.distributed.thread.DThreadSegmentID

getSegmentID()

Description copied from interface: DThreadSegmentOperations Get the
unique ID for this segment.

Returns javax.realtime.distributed.thread.DThreadSegmentID the
segment ID

getLocalSegments

public DThreadSegment[] getLocalSegments()

Description copied from interface: DThreadSegmentOperations Get all
the local segments of this DT. (Not thread-safe).

Returns DThreadSegment[] array of segments

isRoot

public boolean isRoot()

Description copied from interface: DThreadSegmentOperations Is this
currently the Root of a DT.

Returns boolean

isHead

public boolean isHead()

Description copied from interface: DThreadSegmentOperations Is this
currently the Head of a DT. (Not thread safe.)

Returns boolean

CHAPTER 4. API SPECIFICATION 49

getHostingNode

public java.net.InetAddress getHostingNode()

Description copied from interface: DThreadSegmentOperations Get the
address of the node hosting this segment.

Returns java.net.InetAddress the address of the hosting node

getDownstreamNode

public java.net.InetAddress getDownstreamNode()

Description copied from interface: DThreadSegmentOperations Get the
network address for the downstream segment. Returns null if there is no
downstream segment (ie, if we are the head.)

Returns java.net.InetAddress downstream address

getUpstreamNode

public java.net.InetAddress getUpstreamNode()

Description copied from interface: DThreadSegmentOperations Get the
network address for the upstream segment. Returns null if there is no
upstream segment (ie, if we are the root.)

Returns java.net.InetAddress upstream address

getEnclosingThread

public DistributableThreadOperations getEnclosingThread()

Returns DistributableThreadOperations

CHAPTER 4. API SPECIFICATION 50

getDownstreamSegmentID

public javax.realtime.distributed.thread.DThreadSegmentID

getDownstreamSegmentID()

Description copied from interface: DThreadSegmentOperations Get the
segment identi�er for the downstream segment. Returns null if there is no
downstream segment (ie, if we are the head.)

Returns javax.realtime.distributed.thread.DThreadSegmentID up-
stream address

getUpstreamSegmentID

public javax.realtime.distributed.thread.DThreadSegmentID

getUpstreamSegmentID()

Description copied from interface: DThreadSegmentOperations Get the
segment identi�er for the upstream segment. Returns null if there is no
upstream segment (ie, if we are the root.)

Returns javax.realtime.distributed.thread.DThreadSegmentID up-
stream address

readExternal

public void readExternal(java.io.ObjectInput input)

throws java.io.IOException,

java.lang.ClassNotFoundException

Throws java.io.IOException

Throws java.lang.ClassNotFoundException

writeExternal

public void writeExternal(java.io.ObjectOutput output)

throws java.io.IOException

CHAPTER 4. API SPECIFICATION 51

Throws java.io.IOException

deliverPendingException

public boolean

deliverPendingException(java.lang.Exception e)

Description copied from interface: DThreadSegmentOperations Called
by the runtime, or possibly by the user, in order to deliver an exception
to a particular segment of the thread. This exception is guaranteed to be
delivered whenever the user calls into RMI code.

forcePendingException

public boolean forcePendingException()

Description copied from interface: DThreadSegmentOperations Called
by the runtime or by TMAR code in order to force an enqueued exception in
the RMI runtime for this segment to be thrown immediately (if possible.)
This has the e�ect of terminating any pending invocation and returning
the throwable speci�ed. RMI return with the contents of the speci�ed
exception. This is dangerous, so be careful.

Returns boolean

pushPendingException

public boolean pushPendingException(java.lang.Exception

e)

Description copied from interface: DThreadSegmentOperations Called
by the runtime or by TMAR code in order to enqueue an exception in the
RMI runtime for this segment. This has the e�ect of replacing any RMI
return with the contents of the speci�ed exception. This is dangerous, so
be careful.

Returns boolean

CHAPTER 4. API SPECIFICATION 52

setDownstreamSegmentID

public void set

DownstreamSegmentID(javax.realtime.distributed.thread.DThreadSegmentID

id)

Description copied from interface: DThreadSegmentOperations Set the
segment identi�er for the downstream segment. Returns null if there is no
downstream segment (ie, if we are the head.)

trapLocal

public void trapLocal()

Description copied from interface: DistributableThreadOperations At-
tempt to pause the thread. Semantics of this are currently unde�ned, but at
the very least the local segment is paused and will makeno forward progress
until unpause() is called.

untrapLocal

public void untrapLocal()

Description copied from interface: DistributableThreadOperations See
pause()

RealtimeRemoteObject

Fields

serialVersionUID

public static final long serialVersionUID

See Also: Constant Field Values

CHAPTER 4. API SPECIFICATION 53

ref

protected transient java.rmi.server.RemoteRef ref

Constructors

RealtimeRemoteObject

protected RealtimeRemoteObject()

RealtimeRemoteObject

protected RealtimeRemoteObject(java.rmi.server.RemoteRef

newref)

Methods

getRef

public java.rmi.server.RemoteRef getRef()

toStub

public static java.rmi.Remote toStub(java.rmi.Remote obj)

throws java.rmi.NoSuchObjectException

This comes from the RemoteObject speci�cation. In our case, we dele-
gate the conversion to the RMIRuntime. The RMIRuntime should hold a
table mapping local Remote servers to RemoteRefs. This will need to be
revisited if we want to intelligently handle multiple exports. At this point,
we will not support multiple exports.

Parameter java.rmi.Remote obj a Remote value

Returns java.rmi.Remote a Remote value

Throws java.rmi.NoSuchObjectException if an error occurs

CHAPTER 4. API SPECIFICATION 54

hashCode

public int hashCode()

equals

public boolean equals(java.lang.Object obj)

Two RemoteObjects are considered equal if a) they are the same object,
or b) they refer to the same remote object. In the latter case, we compare
references using their remoteEquals method.

Parameter java.lang.Object obj an Object value

Returns boolean true when the two objects are the same.

toString

public java.lang.String toString()

getDGC

public java.rmi.dgc.DGC getDGC()

Returns a DGCImpl_Stub object that points at the DGC for this object

sendDGCAck

public void sendDGCAck(java.rmi.server.UID callID)

4.3 Exceptions

ThreadIntegrityViolation

A exceptional condition has occurred in a DistributableThread which re-
quires application attention. This is an unchecked exception.

Constructors

CHAPTER 4. API SPECIFICATION 55

ThreadIntegrityViolation

public ThreadIntegrityViolation()

Chapter 5

Reference Implementation

The EDR#1 software suite consists of a modi�ed RTSJ-compliant J2ME
virtual machine and a class library consisting of modi�ed RTSJ classes as
well as new classes in the javax.realtime.distributed package. In addi-
tion, a tested realtime Linux con�guration and demonstration application
are provided.

Realtime RMI

The DRTSJ RI provides a full Java Remote Method Invocation (RMI)
stack, called RT-RMI, intended for use in RTSJ virtual machines. RT-RMI
is wire-protocol compatible with Sun's JDK 1.4 RMI implementation, while
providing extended wire protocols for invocations between DRTSJ-compli-
ant JVMs. A datagram-based RMI wire protocol with application-level
reliability mechanisms has been provided in order to demonstrate and test
DRTSJ applications in dynamic and mobile, ad-hoc networks where TCP
is a poor engineering solution.

RT-RMI has organic support for carrying arbitrary invocation contexts
across nodes, facilitating the construction of distributable threads and po-
tentially other end-to-end programming abstractions. By default, invo-
cations between RT-RMI-capable nodes carry their execution context with
them. Behaviors analogous to Level 2 Integration as discussed in [WCJW02]
are provided transparently across the system.

The Sun Microsystems RMI wire protocol speci�cation [Sun02c] relies
heavily on Java Object Serialization [Sun02b]. However, other implemen-
tations such as RMI-IIOP [Sun02d] provide their own object marshalling

56

CHAPTER 5. REFERENCE IMPLEMENTATION 57

facilities. The EDR#1 speci�cation requires the Java RMI programming
model, but has been decoupled from particular Java RMI implementations.
realtime object serialization and the accompanying memory allocation be-
haviors are left as a quality of implementation issue.

RT-RMI as provided in EDR#1 de�nes several new exceptions sub-
classed from RemoteException and RuntimeException to indicate failure
conditions resulting from violations of end-to-end time constraints or thread
integrity events. These exceptions should be caught and dealt with by ap-
plication code; however the safety and consistency of the distributed system
is preserved even if the application fails to deal with these events.

Distributable Threads

The DRTSJ implementation team has implemented distributable threads
capable of interoperating with various JVMs and transport infrastructures.
These threads are capable of traversing nodes with standard, RTSJ, and
DRTSJ virtual machines, yielding the best available timeliness behavior
feasible on each participant. Invocations and returns are presented to the
programmer in a manner congruent with the RMI programming model, but
have been decoupled from particular RMI implementations to the extent
possible.

Thread Integrity

The DRTSJ RI provides: example implementations of prior art integrity
(e.g., orphan detection and elimination) policies; APIs allowing applications
to provide their own integrity policies; example implementations of new
research focused on thread integrity in mobile, ad-hoc networks. We refer
to the class of thread integrity protocols implemented to date as thread
maintenance and repair (TMAR) protocols.

The following protocols have been implemented and will appear in the
preliminary DRTSJ RI:

• Thread Polling, a protocol originally implemented in the Alpha re-
search OS kernel

• A fast failure detector (FFD) driven TMAR, which detects link fail-
ures immediately and triggers orphan cleanup in the event of down/upstream

CHAPTER 5. REFERENCE IMPLEMENTATION 58

failures. This policy provides best-e�ort ordered orphan cleanup1 if
requested

• TPR, an approach which provides deterministic detection and cleanup
times for failed distributable threads with failure handlers [CARJ06]

• D-TPR, an evolving algorithm and protocol for predictable detection
and cleanup times in wireless and dynamic networks [Cur06]

• W-TPR, an evolving algorithm and protocol for predictable detection
and cleanup times in wireless and dynamic networks [Cur06]

In addition, the RI may implement Node-Alive [GGC+95], a more con-
servative approach targeted for local area networks and very high reliability.

Pluggable Scheduling

Implementations of example distributed realtime applications and high-quality
thread integrity mechanisms require support from scheduling policies. To
facilitate experimentation and the construction of an acceptable RI, the im-
plementation team has included an optional Metascheduler component, al-
lowing arbitrary user-de�ned scheduling disciplines to be de�ned. While the
RTSJ does specify interfaces which schedulers and schedulable objects must
meet, it does not provide the primitives necessary to implement scheduling
policies without the cooperation of the RTJVM vendor [DW04, ZW06].

The Metascheduler implements an abstract
scheduling framework intended to support pluggable schedulers consistent
with the RTSJ vision. While EDR#1 does not yet propose an API, the
framework and Metascheduler are included in the RI.

A variety of scheduling disciplines have been implemented, ranging from
simple, traditional (e.g., �xed priority, EDF), to Time-Utility Function/Utility-
Accrual (TUF/UA) policies. In particular, the RI demonstrates a com-
bined TUF/UA scheduling and thread integrity mechanism for providing
bounded-time, end-to-end thread failure detection and recovery. [CARJ06]

The scheduling framework and Metascheduler is inspired primarily by
prior work in scheduling frameworks in the Alpha research OS kernel [CJR92],

1There is some confusion regarding the de�nition of best-e�ort. This speci�cation use
it in the conventional sense: the TMAR protocol attempts to provide ordered cleanup
within a reasonable time constraint, but no guarantees are made to the application.

CHAPTER 5. REFERENCE IMPLEMENTATION 59

the Open Group Research Institute Mk7.3a OS integrated Alpha/Mach ker-
nel [Ope98], and in particular the local [LR+04] and distributed threads
[LRCJ04] Metascheduler work at Virginia Tech.

The DRTSJ RI Distribution

The DRTSJ RI and TCK will be delivered in two forms: �rst, traditional
tarball and JAR �les appropriate for cross-platform evaluation and use by
JCP members; second, because of the complexity and inherent dependen-
cies, a set of Debian packages is being maintained to streamline the �getting
started� process. A package repository containing the DRTSJ core libraries,
with references to all required dependencies will be provided, and construct-
ing a test system will simpli�ed to a single Debian �apt-get� command.

The DRTSJ EDR#1 RI consists of

• a set of class libraries implementing the DRTSJ APIs and

• a set of external dependencies, including the Apache build environ-
ment and a Debian Linux system with Linux Kernel 2.6, patched with
the most recent realtime extensions.

Demonstration Application

Virginia Tech has written a demonstration application [AR06] to help prospec-
tive users better understand the DRTSJ. The demonstration application is
also providing essential feedback to the team designing and implement-
ing the DRTSJ and RI. That work was performed in an ONR-funded Ad-
vanced Wireless Integrated Navy Network (AWINN) project at Virginia
Tech. [AWI] Both the AWINN project and MITRE's DRTSJ focuses are
on mobile, ad hoc wireless networks (MANETs) with end-to-end time con-
straints.

The demonstration consists of a coastal air defense simulation, a non-
trivial application written on the EDR#1 Reference Implementation, using
distributable threads as the end-to-end programming and scheduling ab-
straction. The application consists of a collection of distributed components
for managing on-board sensors, �ghter/interceptors, tracking systems, and
command and control C2 operations in a multi-ship naval warfare simula-
tion. The simulation testbed includes thirteen nodes comprising a scenario

CHAPTER 5. REFERENCE IMPLEMENTATION 60

generator, a MANET/dynamic network simulator, and four communica-
tions/routing nodes, and seven application nodes running DRTSJ appli-
cation code atop Linux 2.6 with realtime extensions. Novel approaches
to enforcing distributable thread integrity are demonstrated and evaluated
against mission metrics.

The demonstration currently exercises TMAR protocols and accompa-
nying scheduling algorithms which provide
probabilistic timing assurances for end-to-end thread behavior in the pres-
ence of application- and MANET-induced run-time uncertainties. These
uncertainties include those induced by workloads, node/link failures, mes-
sage losses, and node membership changes (previously open problems).

This demonstration application will be provided with the EDR#1 RI in
order to aid �rst-time users and illustrate how a non-trivial system may be
constructed using the DRTSJ.

Bibliography

[AR06] Jonathan Anderson and Binoy Ravindran. AWINN task 2.2
�nal demonstration: A coastal air defense scenario. [Presen-
tation to USN O�ce of Naval Research, August 2006], August
2006.

[AWI] AdvancedWireless Integrated Navy Network (AWINN) home-
page. http://awinn.ece.vt.edu.

[BBD+06] Greg Bollella, Ben Brosgol, Peter Dibble, Steve Furr, James
Gosling, David Hardin, Mark Turnbull, Rudy Belliardi, David
Holmes, and Andy Wellings. The real-time speci�cation
for Java (version 1.0.2). Speci�cation JSR-1, Java Com-
munity Process, 2006. Available: http://www.rtsj.org/

specjavadoc/book_index.html.

[CARJ06] Edward Curley, Jonathan Anderson, Binoy Ravindran, and
E. Douglas Jensen. Recovering from distributable thread
failures with assured timeliness in real-time distributed sys-
tems. In Proceedings of the 2006 SRDS, October 2006.
[To Appear] Available: http://www.real-time.ece.vt.

edu/srds06.pdf.

[CJR92] R. K. Clark, E. D. Jensen, and F. D. Reynolds. An architec-
tural overview of the Alpha real-time distributed kernel. In
Proceedings of the USENIX Workshop on Microkernels and
Other Kernel Architectures, April 1992.

[Cur06] Edward Curley. Integrity assurances for distributable real-
time threads in dynamic networks. Master's thesis, Virginia
Polytechnic and State University, September 2006. [Antici-
pated].

61

http://awinn.ece.vt.edu
http://www.rtsj.org/specjavadoc/book_index.html
http://www.rtsj.org/specjavadoc/book_index.html
http://www.real-time.ece.vt.edu/srds06.pdf
http://www.real-time.ece.vt.edu/srds06.pdf

BIBLIOGRAPHY 62

[Dis] DRTSJ public web site. http://drtsj.org.

[DW04] Peter Dibble and Andy Wellings. The real-time speci�cation
for Java: Current status and future work. In Proceedings of the
Seventh IEEE International Symposium on Object-Oriented
Real-Time Distributed Computing, pages 71�77, May 2004.

[GGC+95] J. Goldberg, I. Greenberg, R. K. Clark, E. D. Jensen, K. Kim,
and D. M. Wells. Adaptive fault-resistant systems (chapter
5: Adaptive distributed thread integrity). Technical Report
csl-95-02, Computer Science Laboratory, SRI International,
Menlo Park, CA., January 1995. http://www.csl.sri.com/
papers/sri-csl-95-02/.

[Jen02] E. Douglas Jensen. Rationale for the direction of the dis-
tributed real-time speci�cation for Java panel position paper.
In Proceedings of the Fifth IEEE International Symposium
on Object-Oriented Real-Time Distributed Computing, 2002,
pages 258�259, 2002.

[JJ] JSR-50 Expert Group and E. Douglas Jensen. JSR-50 pro-
posal. http://jcp.org/en/jsr/detail?id=1.

[JN90] E. D. Jensen and J. D. Northcutt. Alpha: A non-proprietary
operating system for large, complex, distributed real-time sys-
tems. In IEEE Workshop on Experimental Distributed Sys-
tems, pages 35�41, 1990.

[JSRa] JSR-1 Expert Group. JSR-1 proposal: Real-time speci�cation
for Java. http://jcp.org/en/jsr/detail?id=1.

[JSRb] JSR-282 Expert Group. JSR-282 proposal: Real-time spec-
i�cation for Java version 1.1. http://jcp.org/en/jsr/

detail?id=1.

[Lam83] Butler W. Lampson. Hints for computer system design. In
SOSP '83: Proceedings of the ninth ACM symposium on Op-
erating systems principles, pages 33�48, New York, NY, USA,
1983. ACM Press. Available: http://research.microsoft.
com/~lampson/33-Hints/WebPage.html.

http://drtsj.org
http://www.csl.sri.com/ papers/sri-csl-95-02/
http://www.csl.sri.com/ papers/sri-csl-95-02/
http://jcp.org/en/jsr/detail?id=1
http://jcp.org/en/jsr/detail?id=1
http://jcp.org/en/jsr/detail?id=1
http://jcp.org/en/jsr/detail?id=1
http://research.microsoft.com/~lampson/33-Hints/WebPage.html
http://research.microsoft.com/~lampson/33-Hints/WebPage.html

BIBLIOGRAPHY 63

[LR+04] P. Li, B. Ravindran, et al. A formally veri�ed application-level
framework for real-time scheduling on POSIX real-time oper-
ating systems. IEEE Trans. Software Engineering, 30(9):613
� 629, Sept. 2004.

[LRCJ04] P. Li, B. Ravindran, H. Cho, and E. D. Jensen. Schedul-
ing distributable real-time threads in Tempus middleware. In
IEEE Conference on Parallel and Distributed Systems, pages
187 � 194, July 2004.

[Nor87] J. D. Northcutt. Mechanisms for Reliable Distributed Real-
Time Operating Systems � The Alpha Kernel. Academic
Press, 1987.

[Obj01] Object Management Group. Dynamic scheduling real-time
CORBA 2.0 (joint revised submission), 2001. orbos/2001-04-
01 ed.

[Obj04] Object Management Group. Extensible transport framework
speci�cation � �nal adopted speci�cation, 2004. ptc/04-03-03
ed.

[Obj05] Object Management Group. Data distribution service for real-
time systems, v1.1, 2005. formal/2005-12-04.

[OMG01] OMG. Real-time CORBA 2.0: Dynamic scheduling speci�ca-
tion. Technical report, Object Management Group, Septem-
ber 2001. OMG Final Adopted Speci�cation, http://www.
omg.org/docs/ptc/01-08-34.pdf.

[Ope98] Open Group Research Institute's Real-Time Group. MK7.3a
Release Notes. The Open Group Research Institute, Cam-
bridge, Massachusetts, October 1998. Available: http://www.
real-time.org/docs/RelNotes7.Book.pdf.

[Rea] Virginia Tech real-time laboratory publications site. http:

//www.real-time.ece.vt.edu/papers.html.

[rts] RTSJ public web site. http://rtsj.org.

http://www.omg.org/docs/ptc/01-08-34.pdf
http://www.omg.org/docs/ptc/01-08-34.pdf
http://www.real-time.org/docs/RelNotes7.Book.pdf
http://www.real-time.org/docs/RelNotes7.Book.pdf
http://www.real-time.ece.vt.edu/papers.html
http://www.real-time.ece.vt.edu/papers.html
http://rtsj.org

BIBLIOGRAPHY 64

[SG01] Umar Saif and David J. Greaves. Communication primitives
for ubiquitous systems or RPC considered harmful. In 21st
International Conference on Distributed Computing Systems
Workshops (ICDCSW '01), 2001.

[SRC84] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end argu-
ments in system design. ACM Trans. Comput. Syst., 2(4):277�
288, 1984.

[Sun02a] Sun Microsystems. JavaTMmessage service speci�cation �nal
release 1.1, April 2002. Available: http://java.sun.com/

products/jms/.

[Sun02b] Sun Microsystems. JavaTMobject serialization speci�cation.
Technical report, Sun Microsystems, 4150 Network Circle,
Santa Clara, CA, November 2002. [Revision 1.4.4] Available:
http://java.sun.com/j2se/1.4/pdf/serial-spec.pdf.

[Sun02c] Sun Microsystems. JavaTMremote method invocation spec-
i�cation. Technical report, Sun Microsystems, 4150 Net-
work Circle, Santa Clara, CA, November 2002. [Revision 1.9,
JavaTM2 SDK SE, v.1.4.2] Available: http://java.sun.com/
j2se/1.4/pdf/rmi-spec-1.4.2.pdf.

[Sun02d] Sun Microsystems. JavaTMRMI over IIOP technology docu-
mentation home page. Technical report, Sun Microsystems,
4150 Network Circle, Santa Clara, CA, November 2002. [From
J2SDK 1.4.2 Release Notes] Available: http://java.sun.

com/j2se/1.4.2/docs/guide/rmi-iiop/index.html.

[WCJW02] Andy Wellings, Raymond K. Clark, E. Douglas Jensen, and
Doug Wells. A framework for integrating the Real-Time Spec-
i�cation for Java and Java's remote method invocation. In
Proc. of the 5th IEEE International Symposium on Object
Oriented Real-Time Distributed Computing, April 2002. Avail-
able: http://www.real-time.org/docs/isorc02_v41.pdf.

[WWWK94] Jim Waldo, Geo� Wyant, Ann Wollrath, and Sam Kendall.
A note on distributed computing. Note SMLI TR-94-29, Sun
Microsystems Laboratories, Inc., 2550 Garcia Avenue, Moun-
tain View, VA 94043, November 1994.

http://java.sun.com/products/jms/
http://java.sun.com/products/jms/
http://java.sun.com/j2se/1.4/pdf/serial-spec.pdf
http://java.sun.com/j2se/1.4/pdf/rmi-spec-1.4.2.pdf
http://java.sun.com/j2se/1.4/pdf/rmi-spec-1.4.2.pdf
http://java.sun.com/j2se/1.4.2/docs/guide/rmi-iiop/index.html
http://java.sun.com/j2se/1.4.2/docs/guide/rmi-iiop/index.html
http://www.real-time.org/docs/isorc02_v41.pdf

BIBLIOGRAPHY 65

[ZW06] A. Zerzelidis and A. J. Wellings. Getting more �exible schedul-
ing in the rtsj. In Proceedings 9th IEEE ISORC, pages 3�10.
IEEE Computer Society TC on Distributed Processing, IEEE
Computer Society, April 2006.

	Contents
	List of Figures
	1 Introduction
	1.1 Requirements
	1.2 Guiding Principles
	1.3 Minimum Components for DRTSJ
	1.4 Release Plan

	2 Programming Model
	2.1 Distributable Threads
	Partial Failures
	Implementation Implications

	2.2 Scheduling

	3 The Java and RTSJ Platforms
	4 API Specification
	4.1 Interfaces
	DistributableThreadOperations
	DistributedAsyncEventLocalMethods
	DistributedAsynchronousEventHelper
	DRTSJLocalServices
	DThreadSegmentOperations
	RealtimeRemote
	RTRemoteAsynchronousEvent
	RTRemoteAsynchronousEventHandler

	4.2 Classes
	DistributableThread
	DistributedAsyncEvent
	DistributedAsyncEventHandler
	DistributedRealtimeClock
	DRTSJPlatform
	DRTSJServicesManager
	DThreadSegment
	GlobalIdentifier
	GlobalRealtimeThread
	GlobalThread
	RealtimeRemoteObject

	4.3 Exceptions
	ThreadIntegrityViolation

	5 Reference Implementation
	Realtime RMI
	Distributable Threads
	Thread Integrity
	Pluggable Scheduling
	The DRTSJ RI Distribution
	Demonstration Application

	Bibliography

