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Abstract

We consider the problem of recovering from failures of distributable threads (“threads”) in distributed real-
time systems that operate under run-time uncertainties including those on thread execution times, thread arrivals,
and node failure occurrences. When a thread experiences a node failure, the result is broken thread having an
orphan. Under a termination model, the orphans must be detected and aborted, and exceptions must be delivered to
the farthest, contiguous surviving thread segment for resuming thread execution. Our application/scheduling model
includes the proposed distributable thread programming model for the emerging Distributed Real-Time Specification
for Java (DRTSJ), together with an exception handler model. Threads are subject to time/utility function (TUF)
time constraints and an utility accrual (UA) optimality criterion. A key underpinning of the TUF/UA scheduling
paradigm is the notion of “best-effort” where higher importance threads are always favored over lower importance
ones, irrespective of thread urgency as specified by their time constraints. We present a thread scheduling algorithm
called HUA and a thread integrity protocol called TPR. We show that HUA and TPR bound the orphan cleanup and
recovery time with bounded loss of the best-effort property. Our implementation experience of HUA/TPR in the
Reference Implementation of the proposed programming model for the DRTSJ demonstrates the algorithm/protocol’s
effectiveness.
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I. INTRODUCTION

Some distributed system applications (or portions of applications) are most naturally structured as
a multiplicity of causally-dependent, flows of execution within and among objects, asynchronously and
concurrently. The causal flow of execution can be a sequence—e.g., one that is caused by a series of nested,
remote method invocations. It can also be caused by a series of chained, publication and subscription
events, caused due to topical data dependencies—e.g., publication of topic A depends on subscription to
topic B; B’s publication, in turn, depends on subscription to topic C, and so on. Since partial failures are the
common case rather than the exception in some distributed systems, applications typically desire the causal,
multi-node execution flow abstraction to exhibit application-specific, end-to-end integrity properties — one
of the most important raisons d′etre for building distributed systems. Real-time distributed applications
also require end-to-end timeliness properties for the abstraction.

An abstraction for programming multi-node sequential behaviors and for enforcing end-to-end properties
is distributable threads [1], [2]. Distributable threads first appeared in the Alpha OS [2], and later in Mach
3.0 [3] (a subset), and MK7.3 [4]. They constitute the first-class programming and scheduling abstraction
for multi-node sequential behaviors in Real-Time CORBA 2 [5] and are proposed for Sun’s emerging
Distributed Real-Time Specification for Java (DRTSJ) [1]. In the rest of the paper, we will refer to
distributable threads as threads, unless qualified.

A thread is a single logically distinct (i.e., having a globally unique identity) locus of control flow
movement that extends and retracts through local and (potentially) remote objects. The objects in the
distributable thread model are passive (as opposed to active objects that encapsulate one or more local
threads). An object instance resides on a single computational node. A distributable thread enters an
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Fig. 1. Distributable Threads

object instance by invoking one of its operations; that portion in the object instance is a segment of the
distributable thread, and is implemented as a local thread. If a thread invokes a sequence of methods in
object instances on the same node, that sequence of segments is called a section. Only the head segment of
a distributed thread is active (executing), all others are suspended (i.e., they have made remote invocations
to other nodes, eventually to the head).

A thread carries its execution context as it transits node boundaries, including its scheduling parameters
(e.g., time constraints, execution time), identity, and security credentials. The propagated thread context
is intended to be used by node schedulers for resolving all node-local resource contention among threads
(i.e., segments) such as that for node’s physical (e.g., CPU) and logical (e.g., locks) resources, according
to a discipline that provides acceptably optimal system-wide timeliness.

Figure 1 shows a snapshot in time of four threads (and their segments) prior to when they return from
their invocations [5].

Except for the required execution context, the abstraction imposes no constraints on the presence, size,
or structure of any other data that may be propagated as part of the thread’s flow. Commonly, input
parameters may be propagated with thread invocations, and results may be propagated back with returns.
When movement of data associated with a thread is the principal purpose for a thread, the abstraction
can be viewed as a data flow one as much as, or more than, a control flow one. Whether an instance
of the abstraction is regarded as being an execution flow one or a data flow one, the invariants are that:
the (pertinent portion of the) application is structured as causal linear sequence of invocations from one
object to the next, unwinding back to the initial point; each invoked object’s ID is known by the invoking
object; and there are end-to-end properties that must be maintained, including timeliness, thread fault
management, and thread control (e.g., concurrency, pause/resume, signaling of state changes).

In this paper, we consider threads as the programming and scheduling abstraction for dynamic distributed
real-time systems that operate under run-time uncertainties. These uncertainties include arbitrary node
failures, unbounded thread execution time behaviors (due to context-dependence), and arbitrary thread
arrival behaviors. The uncertainties on thread execution time and arrival behaviors can cause transient and
sustained resource overloads.

When overloads occur, optimally satisfying the time constraints of all threads (e.g., meeting all their
deadlines) is impossible as the computational demand exceeds the supply. The urgency (i.e., time-criticality)
of a thread is sometimes orthogonal to the relative importance of the thread—e.g., the most urgent thread
may be the least important, and vice versa; the most urgent thread may be the most important, and vice
versa. Hence when overloads occur, completing the most important threads irrespective of thread urgency
is desirable. Thus, a distinction has to be made between urgency and relative importance during overloads.
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(During underloads, such a distinction generally need not be made, especially if all time constraints are
deadlines, as optimal algorithms exist that can meet all deadlines—e.g., EDF [6].)
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Fig. 2. Example TUF Time Constraints: (a) Step TUFs; (b) TUF of an AWACS [7]; and (c) TUFs of a Coastal Air defense System [8].

Deadlines cannot express both urgency and importance. Thus, we employ the time/utility function (or
TUF) timeliness model [9] that specifies the utility of completing a thread as a function of that thread’s
completion time.

The utility of an entity (e.g., thread) contending for a sequentially shared resource is an abstract value
that is an application-specific function of when that entity completes its use of the resource after it has
been granted access. Thus, a deadline time constraint is a binary-valued, downward “step” shaped TUF;
Figure 2(a) shows examples. A thread’s TUF decouples its importance and urgency—urgency is measured
on the X-axis, and we denote importance with utility on the Y-axis.

Some real-time systems also have threads with non-deadline time constraints, such as those where the
utility attained for thread completion varies (e.g., decreases, increases) with completion time. Figures 2(b)–
2(c) show example TUFs from two notional defense applications [7], [8].

Non-time-constrained threads have TUF’s with constant values signifying their relative importances;
this allows both time-constrained and non-time-constrained threads to be scheduled with the same UA
algorithm.

When thread time constraints are expressed with TUFs, the scheduling optimality criteria are based on
maximizing accrued thread utility—e.g., maximizing the sum of the threads’ utilities. Such criteria are
called utility accrual (or UA) criteria, and sequencing (scheduling, dispatching) algorithms that optimize
UA criteria are called UA sequencing algorithms (see [10] for examples).

UA algorithms that maximize total utility under downward step TUFs (e.g., [11], [12]) default to EDF
during underloads, since EDF satisfies all deadlines during underloads. Consequently, they obtain the
optimum total utility during underloads. During overloads, they inherently favor more important threads
over less important ones (since more utility can be attained from the former), irrespective of thread urgency,
and thus exhibit adaptive behavior and graceful timeliness degradation. This behavior of UA algorithms
is called “best-effort” [11] in the sense that the algorithms strive their best to feasibly complete as many
high importance threads — as specified by the application through TUFs — as possible.1 Consequently,
high importance threads that arrive at any time always have a very high likelihood for feasible completion
(irrespective of their urgency). Note that EDF’s optimal timeliness behavior is a special-case of UA
scheduling.

A. Our Contributions: Time-Bounded Thread Cleanup with Bounded Loss of Best-Effort Property
When nodes transited by threads fail, this can cause threads that span the nodes to break by dividing

them into several pieces. Segments of a thread that are disconnected from its node of origin (called
the thread’s root), are called orphans. When threads experience failures causing orphans, application-
supplied exception handlers must be released for execution on the orphans’ nodes. Such handlers may
have time constraints themselves and will compete for their nodes’ processor along with threads. Under
a termination model, when handlers execute (not necessarily when they are released), they will abort the
associated orphans after performing recovery actions that are necessary to avoid inconsistencies. Once all

1Note that the term “best effort” as used in the context of networks actually is intended to mean “least effort.”
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handlers complete their execution, the application may desire to resume the execution of the failed thread
from the contiguous surviving thread segment farthest from the thread’s root. Such a coordinated set of
recovery actions will preserve the abstraction of a continuous reliable thread.

Scheduling of the orphan-cleanup handlers along with threads must contribute to system-wide timeliness
optimality. Untimely handler execution can degrade timeliness optimality—e.g.: high urgency handlers are
delayed by low urgency non-failed threads, thereby delaying the resumption of high urgency failed threads;
high urgency, non-failed threads are delayed by low urgency handlers.

A straightforward approach for scheduling handlers is to conceptually model them as traditional (single-
node) threads, insert them into the ready queue when distributable threads arrive at nodes, and schedule
them along with the threads on those nodes, according to a discipline that provides acceptable system-
wide timeliness. This should be possible, as handlers are like single-node threads, with similar scheduling
parameters (e.g., execution time, time constraints). However, constructing a schedule that includes a thread
and its handler on a node implies that the thread and the handler will be dispatched for execution according
to their order in the schedule. This is not true, as the handler needs to be dispatched only if and when the
thread fails at an upstream node causing an orphan on the handler’s node. Furthermore, when a thread is
released for execution, which is a scheduling event2, it is immediately ready for execution. However, its
handler is released for execution only if and when the thread fails at an upstream node. Thus, constructing
a schedule at a thread’s release time on a node such that it also includes the thread’s handler on the node
will require a prediction of when the handler will be ready for execution in the future — a potentially
impossible problem as there is no way to know if a thread will fail.

These problems can possibly be alleviated by considering a thread’s failure time as a scheduling event
and constructing schedules on the thread’s orphan nodes that include the handlers at that time (e.g., as
in [2]). However, this would mean that there is no way to know whether or not the handlers can feasibly
complete until the thread fails. In fact, it is possible that when the thread fails, the schedulers on handlers’
nodes’ may discover that the handlers are infeasible due to node overloads — e.g., there are more threads
on those nodes than can be feasibly scheduled, and there exists schedules of threads (on those nodes)
excluding the handlers from which more utility can be attained than from ones including the handlers.

Another strategy that avoids this predicament and has been very often considered in the past (e.g., [13]–
[15]) is classical admission control: When a thread arrives at a node, check whether a feasible schedule can
be constructed on that node that includes all the previously admitted threads and their handlers, besides
the newly arrived one and its handler. If so, admit the thread and its handler; otherwise, reject. But this
will cause the very fundamental problem that is solved by UA schedulers through their best-effort decision
making—i.e., a newly arriving thread is rejected because it is infeasible, despite that thread being more
important than the other threads on that node. In contrast, UA schedulers will feasibly complete the high
importance newly arriving thread (with high likelihood), at the expense of not completing some previously
arrived ones, since they are now less important than the newly arrived one.

Thus, scheduling handlers with assured timeliness in dynamic systems involves an apparently paradox-
ical situation: a thread may arrive at any unknown time; in the event of its failure, which is unknown
until the failure, handlers must be immediately released on all the thread orphan nodes, and as strong
assurances as possible must be provided for the handlers’ feasible completion.

We address this exact problem in this paper. We consider distributable threads that are subject to TUF
time constraints. Threads may have arbitrary arrival behaviors, may exhibit unbounded execution time
behaviors (causing node overloads), and may span nodes that are subject to arbitrary crash failures. For
such a model, our scheduling objective is to maximize the total thread accrued utility.

We present a UA scheduling algorithm called Handler-assured Utility Accrual scheduling algorithm (or
HUA) for thread scheduling, and a protocol called Thread Polling with bounded Recovery (or TPR) for
ensuring thread integrity. We show that HUA in conjunction with TPR ensures that handlers of threads that
encounter failures during their execution will complete within a bounded time, yielding bounded thread

2A “scheduling event” is an event that invokes the scheduling algorithm at a node.
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cleanup time. Yet, the algorithm/protocol retains the fundamental best-effort property of UA algorithms
with bounded loss—i.e., a high importance thread that may arrive at any time has a very high likelihood
for feasible completion. Our implementation experience of HUA/TPR using the Reference Implementation
of the proposed DRTSJ demonstrates the algorithm/protocol’s effectiveness.

Similar to UA algorithms, integrity protocols for threads have been developed in the past—e.g., Alpha’s
Thread Polling protocol [2], the Node Alive protocol [16], and adaptive versions of Node Alive [16].
However, none of these protocols in conjunction with a scheduling algorithm provide time-bounded thread
cleanup. Our work builds upon our prior work in [15] that provides bounded thread cleanup. However, [15]
does so through admission control and thus suffers from unbounded loss of the best-effort property (we
show this in Section IV-G). In contrast, HUA/TPR provides bounded thread cleanup with bounded loss
of the best-effort property. Thus, the paper’s contribution is the HUA/TPR algorithm/protocol.

The rest of the paper is organized as follows: In Section II, we discuss the motivating application
context. Section III describes the models and algorithm/protocol objectives. Section IV presents HUA and
Section V presents TPR. In Section VI, we discuss our implementation experience. In Section VII, we
review past and related efforts, and contrast them with our work. We conclude the paper in Section VIII.

II. MOTIVATING APPLICATION CONTEXT

An example distributed real-time system application context that motivates our work is the U.S. DoD’s
information age warfare transformation vision called Network Centric Warfare (NCW), which focuses
on getting the right information to the right entity (task, person, etc.) at the right time, on and beyond
the battlefield [17]. Our motivating NCW scenario is a single integrated non-hierarchically distributed
air defense network that consists of a set of combat and surveillance platforms (e.g., ships, aircraft) with
components for managing on-board sensors, weapons, tracking systems, and battle management/command
and control (BM/C2) operations. A ship may detect a threat in the airspace, or be warned of it by another
ship, an aircraft, or a satellite. The threatened ship may be unable to prosecute the threat (by launching a
weapon) due to current limitations of its weapon systems (e.g., limited sensor range for weapon guidance
or lack of suitable weapon). Consequently, prosecution of the threat may be assigned to a platform in the
vicinity (e.g., another ship, or an aircraft), which may launch a weapon. Yet another platform in the vicinity
may guide the weapon to the target until the engagement is complete. The pattern of interactions is peer-to-
peer, departing from the hierarchical interaction pattern that has dominated traditional BM/C2 operations.
Distributed (i.e., multinode) activities in this scenario include those for threat detection, identification,
tracking, weapons assignment, and weapon guidance. These activities have time constraints, and the most
important ones must be satisfied acceptably well (e.g., it may be acceptable for a weapon to detonate
close enough to damage its target), despite node overloads and failures, to achieve acceptable mission
measures of effectiveness.

A distinguishing feature of this application context is the relatively long magnitudes of activity execution
and system reaction times, compared to those of traditional real-time subsystems—e.g., seconds to minutes.
Such longer time magnitudes present opportunities for highly effective dynamic real-time scheduling and
timeliness optimization with costs that are relatively larger than those of traditional real-time scheduling
disciplines.

III. MODELS AND OBJECTIVES

A. Distributable Thread Abstraction
Threads execute in local and remote object instances by location-independent invocations and returns.

A thread begins its execution by invoking an object operation. The object and the operation are specified
when the thread is created. The portion of a thread executing an object operation is called a thread
segment. Thus, a thread can be viewed as being composed of a concatenation of thread segments.

A thread’s initial segment is called its root and its most recent segment is called its head. The head of a
thread is the only segment that is active. A thread can also be viewed as being composed of a sequence of
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sections, where a section is a maximal length sequence of contiguous thread segments on a node. Further
details of the thread model can be found in [1], [2], [5].

Execution time estimates of the sections of a thread are assumed to be known. This time estimate is not
the worst-case; it can be violated at run-time (e.g., due to context dependence) and can cause processor
overloads. A section’s time estimate is presented by a thread (to the node scheduler) when the thread
arrives at the node—e.g., the time estimate may be propagated with the thread; it may be presented by a
portable interceptor at the node.

The total number of sections of a thread is assumed to be unknown a-priori, as a thread is assumed to
make remote invocations and returns based on context-dependent application logic.

The application is thus comprised of a set of threads, denoted T = {T1, T2, . . .}.

B. Timeliness Model
Usually run-times such as operating systems designate an entire thread for the duration of its existence

as being either a real-time one or a non-real-time one. Instead, our model provides a finer granularity,
and often more useful, designation. A thread becomes a real-time (i.e., time-constrained) one while it has
a completion time constraint (such as a deadline); a special case is the conventional one that a thread
is designated as a real-time one when it is created and for the duration of its existence. In our model,
a time constraint is imposed on a thread by a declaration in the code such as Real-Time CORBA’s
begin scheduling segment(TC(i),DL, 500mS) [5] that is a system call to the scheduler. In
this example, when the thread executes that system call, the run-time (e.g., OS) begins a count-down timer
associated with that thread, corresponding to the 500 mS deadline having the ID TC(i). A matching
declaration later in the code such as end scheduling segment(TC(i)) signifies the end of the
time constraint (e.g., deadline) TC(i).

The thread must execute this system call before the 500 mS deadline. If it does, the run-time cancels
the timer and the thread has satisfied the time constraint, and from that point it becomes a non-real-time
thread unless or until it encounters a subsequent time constraint declaration. If it does not, the thread
has failed to satisfy the time constraint, the run-time’s corresponding timer times out, and an exception
occurs. This lexically scoped begin/end pair of system calls is called a scheduling segment scope.
”Segment” refers to the fact that distributable thread segments (implemented as local threads) are the
locally scheduled entity.

Scheduling segments may span processor boundaries—i.e., a thread may enter a scheduling segment at
a node, leave the node via a remote invocation, return to the node after the invocation, and then exit the
scheduling segment.

We specify the time constraint of each time-constrained thread using a TUF. The TUF of a thread Ti is
denoted as Ui (t). Thus, thread Ti’s completion at a time t will yield an utility Ui (t). Though TUFs can
take arbitrary shapes, here we focus on non-increasing unimodal TUFs, as they encompass the majority
of the time constraints of interest to us. Figures 2(a), 2(b), and two TUFs in Figure 2(c) show examples
from some of our experiments. (Unimodal TUFs are those for which any decrease in utility cannot be
followed by an increase.) A thread presents its TUF to the scheduler through the API that it uses to enter
the corresponding scheduling segment (e.g., begin scheduling segment).

Each TUF Ui has an initial time Ii, which is the earliest time for which the function is defined, and
a termination time Xi, which denotes the last point that the function crosses the X-axis. We assume that
the initial time is the thread release time; thus a thread’s absolute and relative termination times are the
same. Also, Ui (t) > 0,∀t ∈ [Ii, Xi] and Ui (t) = 0,∀t /∈ [Ii, Xi] , i ∈ [1, n].

C. Exceptions and Abort Model
Each section of a thread has an associated exception handler. We consider a termination model for

thread failures including those due to time-constraint violations and node failures.
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If a thread has not completed by its termination time, a time constraint violation exception is raised,
and handlers are released on all nodes that host the thread’s sections. When a handler executes (not
necessarily when it is released), it will abort the associated section after performing compensations and
recovery actions that are necessary to avoid inconsistencies—e.g., rolling back/forward, or making other
compensations to logical and physical resources that are held by the section to safe states.

We consider a similar abort model for node failures. When a thread encounters a node failure causing
orphans, TPR delivers failure-exception notifications to all orphan nodes of the thread. Those nodes then
respond by releasing handlers which abort the orphans after executing compensating actions.

Once all handlers complete their execution, TPR delivers a failure-exception notification to the con-
tiguous surviving thread segment farthest from the thread’s root. This is the segment from where thread
execution can potentially be resumed in an application-specific manner—e.g., the thread may unwind back;
the thread may make alternative remote invocations, etc. By delivering the failure-exception notification
to the farthest, contiguous surviving thread segment, the thread integrity mechanism is able to preserve
the abstraction of a continuous reliable distributable thread.

A handler may have a time constraint, which is specified using a TUF. The handler’s TUF’s initial time
is the time of failure of the handler’s thread, and its termination time is relative to its initial time. Thus,
a handler’s absolute and relative termination times are not the same.

A handler also specifies an execution time estimate. This estimate along with the handler’s TUF are
described by the handler’s thread when the thread arrives at a node.

Violation of the termination time of a handler’s TUF will cause the immediate execution of system
recovery code on that node, which will recover the section’s held resources and return the system to a
safe state.

D. Resource Model
Thread sections can access non-processor resources (e.g., disks, network interface controllers) located

at their nodes during their execution. Such resources, in general, are serially reusable, and can be shared
under mutual exclusion constraints. (Exception handlers of sections, however, are not allowed to mutually
exclusively access resources.) Similar to fixed-priority resource access protocols [18] and that for TUF
algorithms [12], [19], we consider a single-unit resource model.

A thread may request multiple shared resources during its lifetime. The requested time intervals
for holding the resources may be nested, overlapped, or disjoint. Threads explicitly release all granted
resources before the end of their executions.

All resource request/release pairs are assumed to be confined within nodes. Thus, a thread cannot lock
a resource on one node and release it on another node. Note that once a thread locks a resource on a
node, it can make remote invocations (carrying the lock with it). Since request/release pairs are confined
within nodes, the lock is released after the thread’s head returns back to the node where the lock was
acquired.

Threads are assumed to access resources arbitrarily—i.e., which resources will be needed by which
threads, and in what order are not a-priori known. Consequently, we consider a deadlock detection and
resolution strategy (as opposed to deadlock avoidance or prevention). A deadlock is resolved by aborting
a thread involved in the deadlock, by executing the thread’s handler (which will perform the necessary
resource roll-backs/roll-forwards).

E. System and Failure Models
We consider a system model where a set of processing components, generically referred to as nodes,

are interconnected via a network. Each node executes thread sections. The order of executing sections on
a node is determined by the scheduler residing at the node.

We consider the Case 2 approach of Real-Time CORBA for thread scheduling. According to this
approach, node schedulers use the propagated thread scheduling parameters and independently schedule
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thread sections on their respective nodes using the same timeliness optimality criterion. Thus, scheduling
decisions made by a node scheduler are independent of those of other node schedulers. Though this results
in approximate, global, system-wide timeliness, Real-Time CORBA explicitly supports the approach, due
to its simplicity, message-efficiency (from the thread scheduling standpoint), and capability for coherent
end-to-end scheduling. Real-Time CORBA also describes — but does not support — Cases 1, 3, and
4, which describe non real-time, global, and multilevel distributed scheduling, respectively. The Case 3
approach, in contrast with Case 2, advocates distributed scheduling, where nodes explicitly cooperate
to construct system-wide thread schedules, incurring message overhead costs. An example scheduling
algorithm that follows the Case 3 paradigm is described in [20]. We follow the Case 2 approach.

We consider a single hop network model (e.g., a local area network), with nodes interconnected through
a hub or a switch. We assume a reliable message transport protocol with a worst case message delivery
latency D (as opposed to the case 3 message costs).

We denote the set of nodes as Ni ∈ N, i ∈ [1, m]. We assume that all node clocks are synchronized
using a protocol such as [21]. We consider an arbitrary, crash failure model for the nodes.

F. Scheduling Objectives
Our primary objective is to maximize the total utility accrued by all the threads as much as possible.

Further, the orphan cleanup and recovery time must be bounded. This is the time between the detection of
a thread failure and the time of notifying the farthest, contiguous surviving thread segment (from where
execution can be resumed), after aborting all the orphans of the thread. Moreover, the algorithm must
exhibit the best-effort property of UA algorithms (described in Section I) to the extent possible.

IV. THE HUA ALGORITHM

A. Rationale
Section Scheduling. Since the task model is dynamic—i.e., when threads will arrive at nodes, how

many sections a thread will have, which set of resources will be needed by which threads, the length of
time for which those resources will be needed, and the order of accessing the resources are all statically
unknown, future scheduling events (e.g., new thread arrivals, resource requests, time constraint changes,
thread execution time changes) cannot be considered at a scheduling event. Thus, section schedules must
be constructed on the system nodes by solely exploiting the current system knowledge.

Since the primary scheduling objective is to maximize the total thread accrued utility, a reasonable
heuristic is a “greedy” strategy at each node: favor “high return” thread sections over low return ones,
and complete as many of them as possible before thread termination times, as early as possible (since
TUFs considered here are non-increasing).

The potential utility that can be accrued by executing a section on a node defines a measure of that
section’s “return on investment.” We measure this using a metric called the Potential Utility Density (or
PUD) originally introduced in [12]. On a node, a section’s PUD measures the utility that can be accrued
per unit time by executing the section and those section(s) that it (directly or transitively) depends upon
for locked resources.

However, a section may encounter failures. We first define the concept of a section failure:
Definition 1 (Section Failure): Consider a section Si of a distributable thread Ti. We say that Si has

failed when (a) Si violates the termination time of Ti while executing, thereby raising a time constraint
violation exception on Si’s node; or (b) a failure-exception notification is received at Si’s node regarding
the failure of a section of Ti that is upstream or downstream of Si.
For convenience, we define the concept of a released handler:

Definition 2 (Released Handler): A handler is said to be released for execution when its section fails
according to Definition 1.

Since a section’s best-case failure scenario is the absence of a failure for the section and all of its
dependents, the corresponding section PUD can be obtained as the total utility accrued by executing the
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section and its dependents divided by the aggregate execution time spent for executing the section and
its dependents. The section PUD for the worst-case failure scenario (one where the section fails, per
Definition 1) can be obtained as the total utility accrued by executing the handler of the section and that
of its dependents divided by the aggregate execution time spent for executing the section, its handler, the
section’s dependents, and the handlers of the dependents.3 The section’s PUD can now be measured as
the minimum of these two PUDs, as that represents the worst-case.

Thus, on each node, HUA examines sections for potential inclusion in a feasible schedule for the node
in the order of decreasing section PUDs. For each section, the algorithm examines whether that section and
its handler, along with the section’s dependents and their handlers, can be feasibly completed (we discuss
section and handler feasibility later in this subsection). If infeasible, the section, its handler, the section’s
dependents, and their handlers are deferred. The process is repeated until all sections are examined, and
the schedule’s first section is dispatched for execution on the node.

A section Si that is deferred can be the head of Si’s thread Ti; if so, Si is reconsidered for scheduling
at subsequent scheduling events on Si’s node, say Ni, until Ti’s termination time expires.

If a deferred section Si is not a head, then Si’s deferral is conceptually equivalent to the (crash) failure
of Ni. This is because Si’s thread Ti has made a downstream invocation after arriving at Ni and is
yet to return from that invocation (that’s why Si is still a scheduling entity on Ni). If Ti had made a
downstream invocation, then Si had executed before, and hence was feasible and had a feasible handler
at that time. Si’s rejection now invalidates that previous feasibility. Thus, Si must be reported as failed
and a thread break for Ti at Ni must be reported to have occurred to ensure system-wide consistency on
thread feasibility. The algorithm does this by interacting with the TPR protocol.

This process ensures that the sections that are included in a node’s schedule at any given time have
feasible handlers. Further, all the upstream sections of their threads also have feasible handlers on their
respective nodes. Consequently, when any such section fails (per Definition 1), its handler and the handlers
of all its upstream sections are assured to complete within a bounded time.

Note that no such assurances are afforded to sections that fail otherwise—i.e., the termination time
expires for a section Si, which has not completed its execution and is not executing when the expiration
occurs. Since Si was not executing when the termination time expired, Si and its handler are not part
of the feasible schedule at the expiration time. For this case, Si’s handler is executed in a best-effort
manner—i.e., in accordance with its potential contribution to the total utility (at the expiration time).

Feasibility. Feasibility of a section on a node can be tested by verifying whether the section can be
completed on the node before the section’s distributable thread’s end-to-end termination time. Using a
thread’s end-to-end termination time for verifying the feasibility of a section of the thread may potentially
overestimate the section’s slack, especially if there are a significant number of sections that follow it in
the thread. However, this is a reasonable choice, since we do not know the total number of sections of
a thread. If the total number of sections of a thread is known a-priori, then schemes such as [22] that
distribute the thread’s total slack (equally, or proportionally) among all its sections can be considered.

For a section’s handler, feasibility means whether it can complete before its absolute termination time,
which is the time of thread failure plus the relative termination time of the section’s handler. Since the
thread failure time is impossible to predict, a reasonable choice for the handler’s absolute termination
time is the thread’s end-to-end termination time plus the handler’s termination time, as that will delay the
handler’s latest start time as much as possible. Delaying a handler’s start time on a node is appropriate
toward maximizing the total utility, as it potentially allows threads that may arrive later on the node but
with an earlier termination time than that of the handler to be feasibly scheduled.

There is always the possibility that a new section Si is released on a node after the failure of another
section Sj at the node (per Definition 1) and before the completion of Sj’s handler on the node. As
per the best-effort philosophy, Si must immediately be afforded the opportunity for feasible execution on

3Note that, in the worst-case failure scenario, utility is accrued only for executing the section’s handler; no utility is gained for executing
the section, though execution time is spent for executing the section, its handler, its dependents, and the dependents’ handlers.
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the node, in accordance with its potential contribution to the total utility. However, it is possible that a
schedule that includes Si on the node may not include Sj’s handler. Since Sj’s handler cannot be deferred
now, as that will violate the commitment previously made to Sj , the only option left is to not consider Si

for execution until Sj’s handler completes, consequently degrading the algorithm’s best-effort property.
In Section IV-G, we quantify this loss.

B. Algorithm Overview
HUA’s scheduling events at a node include the arrival of a thread, the invocation of a thread to a

remote node, completion of a section or a section handler, a resource request, a resource release, and the
expiration of a TUF termination time. To describe HUA, we define the following variables and auxiliary
functions (at a node):
• Sr is the current set of unscheduled sections including a newly arrived section (if any). Si ∈ Sr is a
section. Sh

i denotes Si’s handler. Ti denotes the thread to which a section Si and Sh
i belong.

• σr is the schedule (ordered list) constructed at the previous scheduling event. σ is the new schedule.
• Ui(t) denotes Si’s TUF, which is the same as that of Ti’s TUF. Uh

i (t) denotes Sh
i ’s TUF.

• Si.X is Si’s termination time, which equals Ti’s termination time. Si.ExecT ime is Si’s estimated
remaining execution time. Si.Dep is Si’s dependency list.
• H is the set of handlers that are released for execution on the node (per Definition 2), ordered by
non-decreasing handler termination times. H = ∅ if all released handlers have completed.
• updateReleaseHandlerSet() inserts a handler Sh

i into H if the scheduler is invoked due to
Sh

i ’s release; deletes a handler Sh
i from H if the scheduler is invoked due to Sh

i ’s completion. Insertion
of Sh

i into H is at the position corresponding to Sh
i ’s termination time.

• Owner(R) denotes the sections that are currently holding resource R.
• reqRes(T) returns the resource requested by section (or thread) T . If T is not requesting any resource,
function returns ∅. If T has made a remote invocation and has not returned from it, function returns the
keyword REMOTE.
• notifyTPR(Si) declares Si as failed (by not sending a SEG ACK message for Si in response to the

ROOT ANNOUNCE broadcast message of the TPR protocol — see Section V for TPR details).
• IsHead(S) returns true if S is a head; false otherwise.
• headOf(σ) returns the first section in σ.
• sortByPUD(σ) returns a schedule ordered by non-increasing section PUDs. If two or more sections
have the same PUD, the section(s) with the largest ExecT ime will appear before any others with the
same PUD.
• Insert(S,σ,I) inserts section S in the ordered list σ at the position indicated by index I; if entries
in σ exists with the index I , S is inserted before them. After insertion, S’s index in σ is I .
• Remove(S,σ,I) removes section S from ordered list σ at the position indicated by index I; if S is
not present at the position in σ, the function takes no action.
• lookup(S,σ) returns the index value of the first occurrence of S in the ordered list σ.
• feasible(σ) returns a boolean value indicating schedule σ’s feasibility. σ is feasible, if the predicted
completion time of each section S in σ, denoted S.C, does not exceed S’s termination time. S.C is the
time at which the scheduler is invoked plus the sum of the ExecT ime’s of all sections that occur before
S in σ and S.ExecT ime.
Algorithm 1 describes HUA at a high level of abstraction. When invoked at time tcur, HUA first updates

the set H (line 3) and checks the feasibility of the sections. If a section’s earliest predicted completion
time exceeds its termination time, it is (at least temporarily) rejected (line 6). Otherwise, HUA calculates
the section’s Local Utility Density (or LUD) (lines 7-9) as the minimum of the PUDs for the section’s
best-case and worst-case failure scenarios, and builds its dependency list (line 10).

The PUD of each section is computed by the procedure calculatePUD(), and the sections are then
sorted by their PUDs (lines 11–13).
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input: Sr , σr , H; output: selected section Sexe;1:
Initialization: t := tcur ; σ := ∅; HandlerIsMissed := false;2:
updateReleaseHandlerSet ();3:
for each section Si ∈ Sr do4:

if feasible(Si)=false then5:
reject(Si);6:

else
PUDB =

Ui(t+Si.ExecTime)
Si.ExecTime

;7:

PUDW =
Uh

i (t+Si.ExecTime+Sh
i .ExecTime)

Si.ExecTime+Sh
i .ExecTime

;8:
Si.LUD = min (PUDB , PUDW ) ;9:
Si.Dep := buildDep(Si);10:

for each section Si ∈ Sr do11:
Si.PUD:=calculatePUD(Si, t);12:

σtmp :=sortByPUD(Sr);13:
for each section Si ∈ σtmp from head to tail do14:

if Si.PUD > 0 then15:
σ := insertByETF(σ, Si, σr);16:

else break;17:

if H 6= ∅ then18:
for each section Sh ∈ H do19:

if Sh /∈ σ then20:
HandlerIsMissed := true;21:
break;22:

if HandlerIsMissed := true then23:
Sexe :=headOf(H);24:

else
σr := σ;25:
Sexe:=headOf(σ);26:

return Sexe;27:

Algorithm 1: HUA: High Level Description

In each step of the for-loop from line 14 to 17, the section with the largest PUD, its handler, the
section’s dependents, and their handlers are inserted into σ, if it can produce a positive PUD. The output
schedule σ is then sorted in the non-decreasing order of section termination times by the procedure
insertByETF().

If one or more handlers have been released but have not completed their execution (i.e., H 6= ∅; line 18),
HUA checks whether any of those handlers are missing in the schedule σ (lines 19–22). If any handler is
missing, the handler at the head of H is selected for execution (line 24). If all handlers in H have been
included in σ, the section at the head of σ is selected (line 26).

It is possible for the thread of the section that is at the head of σ to be blocked on a remote invocation
(see Section IV-C). If that happens, then no section is dispatched for execution, until the next scheduling
event.

C. Computing Dependency Lists
HUA builds the dependency list of each section—that arises due to mutually exclusive resource sharing—

by following the chain of resource request and ownership.

input: Section Sk; output: Sk.Dep ;1:
Initialization : Sk.Dep := Sk; Prev := Sk;2:
while

`
reqRes(Prev) 6= ∅

V
3:

reqRes(Prev) 6= ‘REMOTE’
V

Owner(reqRes(Prev)) 6= ∅
´

do
Sk.Dep :=Owner(reqRes(Prev)) ·Sk.Dep;4:
Prev := Owner(reqRes(Prev));5:

Algorithm 2: buildDep(Sk): Building Dependency List for a Section Sk
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Algorithm 2 shows this procedure for a section Sk. For convenience, the section Sk is also included
in its own dependency list. Each section Sl other than Sk in the dependency list has a successor section
that needs a resource which is currently held by Sl. Algorithm 2 stops either because: (1) a predecessor
section does not need any resource; or (2) the requested resource is free; or (3) a predecessor section’s
thread has made a remote invocation and has not returned from it. The last case occurs due to remote
dependencies—e.g., a section Si is blocked on a resource that is held by a section Sj , and Sj’s thread
has made a remote invocation and is yet to return from it (for this case, the function reqRes() returns
the keyword REMOTE). Note that we use the notation “�” to denote an append operation. Thus, the
dependency list starts with Sk’s farthest predecessor and ends with Sk.

D. Resource and Deadlock Handling
Two kinds of deadlock can occur among distributable threads: a) local deadlocks—i.e., two thread

sections on the same node become blocked on each other due to locks that are held by the other, and
b) distributed deadlocks—i.e., two threads on two different nodes become blocked on each other due to
remotely held locks.

input: Requesting section Sk, tcur;1:
/* deadlock detection */;
Deadlock := false;2:
Sl := Owner(reqRes(Sk));3:
while Sl 6= ∅ do4:

Sl.LUD := USl(tcur + Sl.C)/Sl.C;5:

Sl.LUD = min
“

Ul(tcur+Sl.ExecTime)
Sl.ExecTime

,
Uh

l (tcur+Sl.ExecTime+Sh
l .ExecTime)

Sl.ExecTime+Sh
l

.ExecTime

”
;6:

if Sl = Sk then7:
Deadlock := true;8:
break;9:

else
Sl := Owner(reqRes(Sl));10:

/* deadlock resolution if any */;
if Deadlock = true then11:

abort(The section Sm with the lowest LUD in the cycle);12:

Algorithm 3: Deadlock Detection and Resolution

To handle local deadlocks, we consider a deadlock detection and resolution strategy, instead of a
deadlock prevention or avoidance strategy, due to the dynamic nature of the systems of interest — which
resources will be needed by which sections, for how long, and in what order, are all unknown to the
scheduler. Under a single-unit resource request model, the presence of a cycle in the resource graph
is the necessary and sufficient condition for a deadlock to occur. Thus, a deadlock can be detected by
a straightforward cycle-detection algorithm. Such an algorithm is invoked by the scheduler whenever a
section requests a resource. A deadlock is detected if the new edge resulting from the section’s resource
request produces a cycle in the resource graph. To resolve the deadlock, some section needs to be aborted,
which will result in some utility loss. To minimize this loss, we compute the utility that a section can
potentially accrue by itself if it were to continue its execution, which is measured by its LUD (line 9,
Algorithm 1). HUA aborts that section in the cycle with the lowest LUD. Algorithm 3 describes this
procedure.

Timeliness of the system can be improved if we preempt a section S instead of aborting it, given that
S can complete before its termination time. We can roll-back and add the section into the unordered
schedule at the next scheduling event. To roll-back S, at each resource request, a checkpoint should be
saved for it, since resource requests are the events causing deadlocks. This can be a future improvement
of HUA.
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Detection and resolution of distributed deadlocks require node schedulers to cooperate for constructing
thread section schedules, and hence is beyond the scope of Real-Time CORBA’s Case 2 approach per
se (where node schedulers independently make scheduling decisions) and this paper. Thus, under HUA,
distributed deadlocks will be detected by the affected node schedulers when the termination times of
the deadlocked threads eventually expire, triggering the immediate release of the section abort handlers
on those nodes. This deadlock detection/resolution approach is a tradeoff of the Case 2 approach versus
other approaches, especially distributed scheduling approaches (e.g., Case 3), where node schedulers
cooperate to construct thread schedules, detecting and resolving distributed deadlocks during that process,
at the expense of increased scheduling cost—i.e., a tradeoff of distributed deadlock-optimistic, low cost
scheduling versus distributed deadlocks-free, high cost scheduling.

E. Computing Section PUD
Procedure calculatePUD() (Algorithm 4) accepts a section Si (with its dependency list) and the

current time tcur. It determines Si’s PUD, by assuming that sections in Si.Dep and their handlers are
executed from the current position (at tcur) in the schedule, while following the dependencies.

input: Si, tcur; output: Si.PUD;1:
Initialization : tc := 0, th

c := 0, U := 0, Uh := 0;2:
for each section Sj ∈ Si.Dep, from tail to head do3:

tc := tc + Sj .ExecT ime;4:
U := U + Uj(tcur + tc);5:
th
c := th

c + Sh
j .ExecT ime;6:

Uh := Uh + Uh
j (tcur + tc + th

c );7:

Si.PUD := min
`
U

‹
tc, U

h
‹
(tc + th

c )
´
;8:

return Si.PUD;9:

Algorithm 4: calculatePUD(Si,tcur): Calculating the PUD of a Section Si

To compute Si’s PUD at time tcur, HUA computes the PUDs for the best-case and worst-case failure
scenarios and determines the minimum of the two.

For determining Si’s total accrued utility for the best-case failure scenario, HUA considers each section
Sj that is in Si’s dependency chain, which needs to be completed before executing Si. The total expected
execution time upon completing Sj is counted using the variable tc of line 4 (Algorithm 4). With the
known expected completion time of each section, we can derive the expected utility for each section, and
thus obtain the total accrued utility U (line 5) for Ti’s best-case failure scenario.

For determining Si’s total accrued utility for the worst-case failure scenario, the algorithm counts the
total expected execution time upon completing Tj’s handler using the variable thc of line 6. The total
accrued utility for the worst-case failure scenario Uh can be determined once the section’s completion
time followed by its handler’s completion time is known (line 7).

The best-case and worst-case failure scenario PUDs can be determined by dividing U and Uh by tc
and tc + thc , respectively, and the minimum of the two PUDs is determined as Si’s PUD (line 8).

Note that the total execution time of Si and its dependents consists of: (1) the time needed to execute the
sections that directly or transitively block Si; and (2) Si’s remaining execution time. By buildDep()’s
operation, all the dependent sections are included in Si.Dep.

Note also that each section’s PUD is calculated assuming that it is executed at the current position in
the schedule. This would not be true in the output schedule σ, and thus affects the accuracy of the PUDs
calculated. We are calculating the highest possible PUD of each section by assuming that it is executed at
the current position in the schedule, and that sections release resources only after their executions complete.
Intuitively, this would benefit the final PUD, since insertByETF() always selects the section with the
highest PUD at each insertion on σ. Also, the PUD calculated for the dispatched section at the head of
σ is always accurate.
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Thus, the PUD calculation for a section reflects the fact that executing the sequence of the section, its
dependents, and the handlers will require a total time equal to the sum of the individual execution times
and will yield a total utility equal to the sum of the individual utilities. A section’s PUD, thus measures
the section’s “return on investment.” Note that the term “potential” is used in PUD. This is because the
PUD calculation measures the (highest possible) utility that can possibly be obtained from the aggregate
computation (of a section, its dependents, and handlers), given the current system knowledge. It is quite
possible that future situations (e.g., new dependencies, execution overruns) may negate the chance to
accrue any utility from the aggregate computation.

F. Constructing Termination Time-Ordered Schedules
Algorithm 5 describes insertByETF() (invoked in Algorithm 1, line 16). insertByETF updates

the tentative schedule σ by attempting to insert each section, along with its handler, all of the section’s
dependent sections, and their handlers into σ. The updated schedule σ is an ordered list of sections, where
each section is placed according to the termination time that it should meet.

input : Si, an ordered section list (schedule) σ, and schedule at the previous scheduling event σr1:
output : the updated list σ2:

if Si /∈ σ then3:
Copy σ into σtmp: σtmp :=σ;4:
Insert(Si, σtmp, Si.X);5:
Insert(Sh

i , σtmp, Si.X + Sh
i .X);6:

CuTT = Si.X;7:
for each section Sj ∈ {Si.Dep− Si} from head to tail do8:

if Sj ∈ σtmp then9:
TT=lookup(Sj , σtmp);10:
if TT < CuTT then11:

continue;
else12:

Remove(Sj , σtmp, TT);13:
TTh=lookup(Sh

j , σtmp);14:
Remove(Sh

j , σtmp, TTh);15:

CuTT :=min(CuTT, Sj .X);16:
Insert(Sj , σtmp, CuTT);17:
Insert(Sh

j , σtmp, Sj .X + Sh
j .X);18:

if feasible(σtmp) = true then19:
σ := σtmp;20:

else21:
if IsHead(Si)=false and Si ∈ σr then22:

notifyTPR(Si);23:

return σ;24:

Algorithm 5: insertByETF(σ, Si, σr): Inserting a Section Si, Si’s Handler, Si’s Dependents, and
their Handlers into a Feasible Schedule σ

Note that the time constraint that a section should meet is not necessarily its termination time. In fact,
the index value of each section in σ is the actual time constraint that the section should meet.

A section may need to meet an earlier termination time in order to enable another section to meet its
termination time. Whenever a section is considered for insertion in σ, it is scheduled to meet its own
termination time. However, all of the sections in its dependency list must execute before it can execute,
and therefore, must precede it in the schedule. The index values of the dependent sections may be changed
with Insert()in line 17 of Algorithm 5.

The variable CuTT keeps track of this information. It is initialized with the termination time of section
Si, which is tentatively added to the schedule (line 7). Thereafter, any section in Si.Dep with a later
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termination time than CuTT is required to meet CuTT (lines 13; 16–17). If, however, a section has
a tighter termination time than CuTT , then it is scheduled to meet that time (line 11), and CuTT is
advanced to that time since all sections left in Ti.Dep must complete by then (lines 16–17).

When Si (or any section Sj ∈ Si.Dep) is inserted in σ, its handler Sh
i is immediately inserted to meet

a termination time that is equal to Si’s termination time plus Sh
i ’s (relative) termination time (lines 6, 18).

When a section in Si.Dep with a later termination time than CuTT is advanced to meet CuTT , the
section’s handler is also correspondingly advanced (lines 14–15; 18).

Finally, if this insertion (of Si, its handler, sections in Si.Dep, and their handlers) produces a feasible
schedule, then the sections are included in this schedule; otherwise, not (lines 19–20). If a rejected section
Si (due to schedule infeasibility in line 19) is not a head and belonged to the schedule σr constructed at
the previous scheduling event, then the TPR protocol is notified regarding Si’s failure (lines 21–23).

Computational Complexity. With n sections, HUA’s asymptotic cost is O(n2 log n) (for brevity, we skip
the analysis). Though this cost is higher than that of many traditional real-time scheduling algorithms, it
is justified for dynamic applications with longer execution time magnitudes such as the NCW application
in Section II. (Of course, this high cost cannot be justified for every application.)

G. Algorithm Properties
We first describe HUA’s bounded-time completion property for exception handlers:
Theorem 1: If a section Si fails (per Definition 1), then under HUA with zero overhead, its handler Sh

i

will complete no later than Si.X + Sh
i .X (barring Sh

i ’s failure).
Proof: If Si violates the thread termination time at a time t while executing, then Si was included

in HUA’s schedule constructed at the scheduling event that occurred nearest to t, say at t′, since only
threads in the schedule are executed. Thus, both Si and Sh

i were feasible at t′, and Sh
i was scheduled to

complete no later than Si.X + Sh
i .X . A similar argument holds for the other cases.

If Si receives a notification on the failure of an upstream section S̄i at a time t, then all sections from
S̄i to Si and their handlers are feasible on their respective nodes, as otherwise the thread execution would
not have progressed to Si (and beyond if any). Thus, Sh

i is scheduled to complete by Si.X + Sh
i .X .

If Si receives a notification on the failure of a downstream section S̄i at a time t, then all sections from
Si to S̄i and their handlers are feasible on their respective nodes, as otherwise the thread execution would
not have progressed to S̄i. Thus, Sh

i is scheduled to complete no later than Si.X + Sh
i .X .

Consider a thread Ti that arrives at a node and releases a section Si after the handler of a section Sj

has been released on the node (per Definition 2) and before that handler (Sh
j ) completes. Now, HUA

may exclude Si from a schedule until Sh
j completes, resulting in some loss of the best-effort property. To

quantify this loss, we define the concept of a Non Best-effort time Interval (or NBI):
Definition 3: Consider a scheduling algorithm A. Let a section Si arrive at a time t with the following

properties: (a) Si and its handler together with all sections in A’s schedule at time t are not feasible at
t, but Si and its handler are feasible just by themselves;4 (b) One or more handlers (which were released
before t) have not completed their execution at t; and (c) Si has the highest PUD among all sections in
A’s schedule at time t. Now, A’s NBI, denoted NBIA, is defined as the duration of time that Si will
have to wait after t, before it is included in A’s feasible schedule. Thus, Si is assumed to be feasible
together with its handler at t + NBIA.

We now describe the NBI of HUA and other UA algorithms including DASA [12], LBESA [11], and
AUA [15] (under zero overhead).

Theorem 2: HUA’s worst-case NBI is t+max∀Sj∈σt

(
Sj.X + Sh

j .X
)
, where σt denotes HUA’s schedule

at time t. DASA’s and LBESA’s worst-case NBI is zero; AUA’s is +∞.
Proof: The time t that will result in the worst-case NBI for HUA is when σt = H 6= ∅. By NBI’s

definition, Si has the highest PUD and is feasible. Thus, Si will be included in the feasible schedule σ,

4If A does not consider a section’s handler for feasibility (e.g., [11], [12]), the handler’s execution time is regarded as zero.
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resulting in the rejection of some handlers in H . Consequently, the algorithm will discard σ and will select
the first handler in H for execution. In the worst case, this process repeats for each of the scheduling
events that occur until all the handlers in σt complete (i.e., at handler completion times), as Si and its
handler may be infeasible with the remaining handlers in σt at each of those events. Since each handler
in σt is scheduled to complete by max∀Sj∈σt

(
Sj.X + Sh

j .X
)
, the earliest time that Si becomes feasible

is t + max∀Sj∈σt

(
Sj.X + Sh

j .X
)
.

DASA and LBESA will examine Si at t, since a task arrival is always a scheduling event for them.
Further, since Si has the highest PUD and is feasible, they will include Si in their feasible schedules at
t (before including any other tasks), yielding a zero worst-case NBI.

AUA will examine Si at t, since a task arrival at any time is also a scheduling event under it. However,
AUA is a TUF/UA algorithm in the classical admission control mold and will reject Si in favor of
previously admitted tasks, yielding a worst-case NBI of +∞.

Theorem 3: The best-case NBI of HUA, DASA, and LBESA is zero; AUA’s is +∞.
Proof: HUA’s best-case NBI occurs when Si arrives at t and the algorithm includes Si and all

handlers in H in the feasible schedule σ (thus HUA only rejects some sections in σt to construct σ).
Thus, Si is included in a feasible schedule at t, resulting in zero best-case NBI.

The best-case NBI scenario for DASA, LBESA, and AUA is the same as their worst-case.
HUA’s NBI interval [0, max∀Sj∈σt Sj.X + Sh

j .X] thus lies in between that of DASA/LBESA’s [0] and
AUA’s [+∞]. Note that HUA and AUA bound handler completions; DASA/LBESA do not.

HUA produces optimum total utility for the following special case.
Theorem 4: Consider a set of independent threads with step TUFs and no node failures. Suppose there

is sufficient processor time for meeting the termination times of all thread sections and their handlers on
all nodes. Now, a system-wide EDF schedule is produced by HUA, yielding optimum total utility.

Proof: This is self-evident. For a thread without dependencies, the dependency list of each section
Si of the thread, Si.Dep, only contains Si. If there is sufficient processor time for meeting the termination
times of all sections and their handlers on all nodes, then schedule σtmp will always be feasible in line 19
of Algorithm 5. Consequently, no section is rejected and the output schedule σ in line 26 of Algorithm 1 is
termination time-ordered. The TUF termination time that we consider is analogous to the deadline in [6].
From [6], an EDF schedule is optimal (with respect to meeting all deadlines) during underloads. Thus,
HUA’s σ and system-wide schedule will yield the same total utility as EDF.

HUA also exhibits non-timeliness properties including freedom from local deadlocks, correctness (i.e.,
the resource requested by a section dispatched for execution by HUA is free), and mutual exclusion. These
properties are self-evident from the algorithm description. For brevity, we omit their proofs.

V. THE TPR PROTOCOL

A. Overview
The TPR protocol is instantiated in a software component called the Thread Integrity Manager (TIM).

Each node that hosts thread sections has a TIM component, which continually runs TPR’s (phased) polling
operation.

The TPR specifies unique behaviors for nodes hosting the root section of a thread. The TIM on each
node is responsible for maintaining the health and coordinating any cleanup required for threads rooted
there. Downstream sections, then, manage their health by responding to health update information sent by
the root. If health information fails to arrive for a given amount of time, the section deems itself an orphan
and commences autonomous cleanup. Once this occurs, the thread section is effectively disconnected from
the remainder of the thread’s call-graph, and control is returned to application code in the context of the
section exception handler.

The operations of the TIM are considered to be administrative operations, and they are conducted
with scheduling eligibility that exceeds all application thread sections. As a consequence, we ignore the
(comparatively small, and bounded) processing delays on each node in the analysis below.
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B. Thread Polling
In the first phase, the root node of a given thread regularly broadcasts a ROOT ANNOUNCE message to

all nodes within the system. The ROOT ANNOUNCE message is sent every tp, or polling interval. Figure 3
illustrates the polling process for a healthy thread.

Fig. 3. TPR Operation — Healthy Thread

Fig. 4. TPR Operation — Unhealthy Thread Entering Recovery

Lemma 5: Under TPR, if a section Si does not receive a ROOT ANNOUNCE message within tp + D,
then either the root node has failed or the segment has become disconnected. Si is thus orphaned.

Proof: Since ROOT ANNOUNCE message is sent every tp, and D is the worst-case message latency,
every healthy section of a healthy thread will receive ROOT ANNOUNCE within tp + D.

In the second phase, all nodes that are hosting sections of a thread respond to the ROOT ANNOUNCE
with a section acknowledgment (SEG ACK) message. The root node will receive a SEG ACK message from
every healthy section within a delay of 2D following a ROOT ANNOUNCE broadcast. This delay, called
the thread health evaluation time th ≥ 2D may be tuned as a function of the worst-case message delay
to ensure that no acknowledgment messages are missed.

In the last phase, the root node waits for th to expire before examining the information it has received
from the SEG ACK messages to determine the thread’s status (broken or unbroken).
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Lemma 6: Under TPR, the root node will detect a broken thread within tp + th, where th ≥ 2D.
Proof: The worst-case scenario for detecting a broken thread occurs when a node fails immediately

after sending a SEG ACK. Thus, the root node will miss discovering the thread break within th of the
ROOT ANNOUNCE broadcast, and must wait for the next thread health evaluation time th to elapse to
detect the break. The next health evaluation time will start no later than one tp. The lemma follows.

If the thread is determined to be unbroken, then the root sends health update (SEG HEALTH) messages
to all sections of the thread, refreshing them. If there is a break in the thread, the root node refreshes
only sections of the thread deemed healthy, and enters the recovery state to deal with the break.

Lemma 7: Under TPR, every healthy section of a healthy thread will receive a SEG HEALTH message
at a maximum interval of tp + th + D.

Proof: A root node broadcasts a ROOT ANNOUNCE message every tp and determines a thread’s status
after th. Following this, it sends a SEG HEALTH message to all healthy sections of the thread. Since the
worst-case message latency is D, every healthy section of a healthy thread will receive a SEG HEALTH
message within th + D of the receipt of a ROOT ANNOUNCE message. The lemma follows.

Sections may thus evaluate their health at a constant interval, irrespective of the dynamics of the system.

C. Recovery
Recovery coordinated by TPR is considered to be an administrative function, and carries on below the

level of application scheduling. While recovery proceeds, the TPR activities continue concurrently. This
allows the protocol to recognize and deal with multiple simultaneous breaks and cleanup operations.

Recovery from a thread break proceeds through four steps: 1) Pausing the thread and waiting for pause
acknowledgment; 2) Determining which section will be the new head; 3) Notifying the new head section
that it may continue to execute; and 4) Unpausing the thread.

Figure 4 illustrates the protocol operation for recovering from an unhealthy thread.
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Figure 5 illustrates the states experienced by a thread from the standpoint of its root section; Figure 6
illustrates the states from the standpoint of a section. In the first step, the recovery operation broadcasts
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a PAUSE message and waits. The recovery thread continues waiting until it either receives a PAUSE ACK
message from the current head of the thread or a user-specified amount of time lapses without a PAUSE ACK
message being received.

In the second step, the recovery operation analyzes the thread’s distributed call-graph and finds the
contiguous thread section farthest from the root, which will be the new head. If the old head still exists
after this step, the recovery thread must terminate the old head and wait for an acknowledgement that
this action has been completed.

In the third step, the recovery thread sends a NEW HEAD message to the node hosting the new head.
In the fourth step, the recovery thread broadcasts an UNPAUSE message to all nodes within the system.
The recovery operation then terminates, and the thread is considered healthy.

Lemma 8: Once a thread failure is detected, TPR activates a new thread head within tp + th + 4D.
Proof: By Lemma 6, the root will detect a broken thread within tp + th. Subsequently, the thread is

paused within 2D (D for sending PAUSE and D for receiving PAUSE ACK), and a new head is activated
within another 2D (D for sending NEW HEAD and D for sending UNPAUSE). The lemma follows.

From here, the point of execution is to return to application code at the new head at the point of remote
invocation. An error code is returned to indicate that a thread integrity failure has occurred, and it is
the responsibility of the application programmer to decide how to proceed (e.g., resumption of thread
execution).

D. Orphan Cleanup
When a section has not been refreshed for a specified amount of time, it is flagged as an orphan and

removed during orphan cleanup, which is performed periodically on all nodes within the system. Orphan
cleanup is considered an administrative function, and occurs outside the context of application scheduling.
The TIM determines which locally hosted sections, if any, are orphans. The manager then schedules the
respective exception handler code to be run for each orphan. Orphan cleanup serves both to remove
sections that follow a break in the thread (called thread trimming) and to remove the entirety of threads
that have lost their root.

Theorem 9: If threads are scheduled using HUA, then every unhealthy section Si will detect that it is
an orphan and clean up within tp + th + D + Si.X + Sh

i .X .
Proof: Lemma 7 implies that every unhealthy section Si will detect that it is an orphan within

tp + th + D. Theorem 1 implies that Si’s handler will complete within Si.X + Sh
i .X , once Si fails per

Definition 1. Definition 1 subsumes the case of Si receiving a notification regarding the failure of an
upstream section, which implies that Si has become an orphan. The theorem follows.

VI. IMPLEMENTATION EXPERIENCE

We implemented HUA and TPR in the Reference Implementation (RI) of the proposed DRTSJ [1]. The
RI includes a user-space scheduling framework, called Metascheduler, for pluggable thread scheduling
(similar to [23]) and mechanisms for implementing thread integrity protocols (e.g., TIM). The RI in-
frastructure runs atop a slightly modified version of Apogee’s Aphelion Real-Time Java Virtual Machine
(JVM) that is compliant with the Sun Real-Time Specification for Java (RTSJ). These modifications
include modifications to the class library in support of the proposed DRTSJ specification as well as
more aggressive changes to support experimental work on advanced pluggable and distributed scheduling
policies in the RI. For example, the modified version of Apogees Aphelion JVM has hooks for notifying
user-space schedulers of state changes in Java object monitors. This RTSJ platform runs atop the Debian
Linux OS (kernel version 2.6.16-2-686) on a 800MHz, Pentium-III processor. Our experimental testbed
consisted of a network with five such RI nodes.



20

Ready Running

Terminal

Exit

resume_task

preempt_task

Normal

Abort

abort_task

BLOCK 
UNPAUSE

BLOCK 
PAUSE

UNBLOCK 
PAUSE

Blocking call

Pause
Msg

Unpause
Msg

Return from
Blocking call

Pause
Msg

Unpause
Msg

Pause
Msg

NEW_HEAD
Msg

Fig. 7. Thread Scheduling States

Metascheduler Threads. The Metascheduler
framework used to implement HUA enforces
scheduling state consistency on all threads in the
system. The HUA algorithm is not directly aware
of the distributable thread abstraction, however
the primitive blocking, pausing, and abort states
are sufficient to construct the thread abstraction
in middleware. As a consequence, HUA may
be used to schedule local-only threads without
incurring any overhead associated with threads.

In Figure 7, we present the various schedul-
ing states supporting the distribution middleware.
When a thread enters a PAUSE or BLOCK state, the
scheduler is able to resolve resource contention and dependencies while respecting local mutual exclusion
invariants. Furthermore, the PAUSE state is explicitly governed to allow coordinated control of all segments
of a distributable thread.

Besides HUA, we implemented AUA [15]. This allows a comparison between HUA/TPR and AUA/TPR.
Our test application was composed of one master node and four slave nodes. The master node was
responsible for issuing commands to the slave nodes and logging events on a single timescale. The slave
nodes were required to accept commands from the master node and were responsible for the execution,
propagation, and maintenance of threads.

Our metrics of interest included the Total Thread Cleanup Time, the Failure Detection Time, New-Head
Notification Time, the Handler Completion Time, and the measured NBI. We measured these during 100
experimental runs of the test application. Each experimental run spawned a single distributable thread,
which propagated to five other nodes and then returned back through the same five nodes.
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The Total Thread Cleanup Time is the time between the failure of a thread’s node (causing a section
failure) and the completion of the handlers of all the orphan sections of the thread. Figure 8 shows the
measured cleanup time for HUA/TPR plotted against its cleanup upper bound time for the thread set used
in our experiments. We observe that HUA/TPR satisfies its cleanup upper bound, validating Theorem 9.

In order for the Total Thread Cleanup Time to satisfy the HUA/TPR cleanup bound, TPR must detect
a failure within a certain amount of time as determined by the protocol parameters (e.g., polling interval
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tp). Figure 9 shows TPR’s Failure Detection times as measured during failures in our test application and
the upper bound on failure detection time as calculated using our experimental parameters. As the figure
shows, TPR satisfies the upper bound on failure detection.

The variation observed in Figure 9 is actually less than the theoretic variation of tp (1 second for these
experiments) as described in Lemma 6. (This variation also occurs in Figure 10 for the same reason.)
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For a thread to recover from a thread break, a new head must be established and orphans must be
notified to clean themselves up. Therefore, the last time that must be bounded in order for HUA/TPR to
achieve an upper limit on orphan cleanup is the time it takes for the protocol to determine and notify
a thread of its new head. We measure this as the New-Head Notification Time. Figure 10 shows TPR’s
New-Head Notification Time and the notification time bound that TPR must satisfy in order to meet the
Total Thread Cleanup bound. We observe that HUA/TPR satisfies the notification time bound.

Figure 11 shows the thread completion times of experiments 1) with failures and TPR, 2) without
failures and without TPR, 3) without failures and without TPR, and 4) with failures and without TPR. By
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measuring the thread completion times under these scenarios, we measure the overhead of TPR in terms
of the increase in thread completion times caused by the protocol operation.

Thread Completion Time is the difference between the time when a root section of a thread starts and
the time when it completes. As orphan cleanup can occur in parallel with the continuation of a repaired
thread, Thread Completion Time may ignore orphan cleanup times, making completion times of failed
threads shorter than completion times of successful threads. This behavior is evident in Figure 11 as the
experiments with failures and with TPR had the shortest completion times.
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One of the most interesting aspects of Figure 11 is the contrast between the experiments without failures.
This contrast shows the overhead that TPR incurs when there are no failures present. Another interesting
aspect of the figure is the large completion times for experiments with failures, but without TPR. The RI
platform that we used for implementing HUA/TPR enforces a simple, tunable failure detection scheme in
the absence of a thread integrity protocol. We purposely chose a large failure detection delay to convey
the idea that the threads would never complete without any kind of failure detection and are subject to
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longer than necessary completion times if the detection scheme is naive.
Figure 12 shows the NBI of AUA and HUA under an increasing number of thread failures. We observe

that AUA has a higher NBI than HUA, validating Theorems 2 and 3. This difference in NBI is due
to AUA’s admission control policy [15]: AUA rejects threads arriving during overloads to respect the
assurance made to previously admitted threads, irrespective of thread importance. HUA does not have this
policy, and is generally free (limited by its NBI) to admit threads arriving during overloads that might
have higher PUDs.

The variation of the NBI observed in Figure 12 is due to the way failures were experimentally created.
The sets of failed threads were identical for all experiments at the same failure percentage. But they were
not a strict subset of the sets of failed threads for experiments with higher failure percentages.

VII. PAST AND RELATED EFFORTS

The problem that this paper focuses is on: 1) how to maximize the total accrued utility of distributable
threads, in the presence of node failures; 2) how to bound completion times of cleanup handlers that are
triggered to clean up thread orphans due to node crashes; and most importantly, 3) how to bound the best
effort property, defined through the non-best effort time interval (or NBI) metric.

The unique aspects of HUA’s thread scheduling model include: 1) threads with TUF time constraints;
2) threads with arbitrary arrivals; and 3) threads with no worst-case execution time knowledge (which can
cause overloads

The majority extant results in the distributed real-time literature do not address this problem space.
For example, most of them focus on deadline time constraints and optimizing deadline-based optimality
criteria, in particular on the hard real-time objective of meeting all deadlines. The most notable examples in
this category include the work on distributed real-time schedulability analysis for fixed priority systems [24]
and that for EDF-scheduled systems [25]–[29]. Most of these results are based on the concept of holistic
schedulability analysis, first presented in [30]. Tindell and Clark’s results in [30] have been the basis for
many of the distributed real-time schedulability efforts in the literature.

Tindell and Clark’s holistic analysis [30], the semantic forerunner of many current schedulability analysis
techniques for distributed real-time systems, was designed primarily to show-case the flexibility of fixed
priority scheduling. For such systems, it allows real-time practitioners to derive upper bounds on response
times by considering the entire system in an iterative analysis that incrementally converges towards a stable
solution (precedence constraints are described using jitter). This iterative process, necessary because the
response times of tasks in a distributed system are interdependent, is guaranteed to converge since it is
monotonic in its parameters. One of its disadvantages, though, is the fact that it is a relatively pessimistic
analysis technique that over-estimates response times. In addition, Tindell’s holistic analysis was designed
for fixed priority systems. In [25], Spuri shows how this technique can be extended to systems scheduled
using the EDF policy.

There have been many attempts to reduce the pessimism of holistic analysis (e.g. [26]–[29]). Most of
these attempt to alleviate the pessimism by including additional constraints on the task release times in
order to reduce the worst case number of tasks that can execute concurrently (thus reducing computed
system load and computed response times). For example, in [26] the authors develop an extension to the
fixed priority holistic approach that allows for dynamic offsets. Using this approach, the authors show
how increased utilization can be achieve by having a more realistic picture of when tasks will execute
(the offsets enforce the fact that certain tasks cannot execute concurrently in reality). The same authors
then extend this analysis to deal with EDF scheduled systems in [28] and to systems scheduled with EDF
within fixed priorities in [27]. This approach was further refined in [29] where the authors show how
the analysis can be further tightened using a slightly more computationally complex analysis technique.
There are many more results in a similar vein, e.g. [31], which attempt to add some feature or make a
refinement to this general approach.
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Not all past works have been of the holistic nature; for example, Sun’s work [24] is a classic example
of an integrated distributed real-time system that did not use the holistic approach. Rather, the author de-
composes the problem of end-to-end scheduling into three separate sub-problems. First, deriving priorities
for tasks, then deriving appropriate release times (the author uses the term execution synchronization) to
ensure that precedence constraints are met, and finally, performing schedulability analysis on the tasks
on each node independently using the derived release times. The response times of sub-tasks belonging
to an end-to-end computation abstraction are then summed to give an upper bound on the end-to-end
response time. Note that this is not a holistic technique since each processor is considered on its own
(after the release times have been derived to preserve precedence constraints). It should also be noted
that Sun’s approach involves “static release” of sub-tasks (i.e., the release times are computed offline and
are enforced during run-time). This contrasts with the “dynamic release” approach of holistic analysis
where release times are not set offline, but tasks are released upon the receipt of an invocation call at
run-time and uncertainty about release times, as mentioned before, is described using jitter. This approach
is generally considered less flexible than the holistic approach since its static release nature makes it
rather restrictive for many modern systems where dynamics are a primary characteristic. In addition, the
statically derived release times are also subject to pessimism.

The fundamental premise of these works is that task arrival and execution time behaviors are bounded,
time constraints are deadlines, no overloads or node failures are presumed to occur, and the objective is to
meet all deadlines. Thus, these efforts focus on deriving schedulability analysis conditions i.e., analytical
conditions under which all deadlines can be satisfied. In contrast, our work’s premise violate all those
premises: task arrival and execution time behaviors are uncertain, time constraints are TUFs, overloads
and node failures are common, the goal is to maximize total utility, besides bounding the NBI. Due to
this fundamental mismatch of our and these other works’ premises, we believe that a direct comparison
between the distributed schedulabaility analysis results and our results is inappropriate.

There also have been past distributed real-time efforts that have studied coping with node crash failures.
Notable example efforts in this category include [32]–[34]. In [32], Aguilera et. al. describe the design
of a fast failure detector for synchronous systems and show how it can be used to solve the consensus
problem for real-time systems. The algorithm achieves the optimal bound for both message and time
complexity for synchronous systems. In [33], Hermant and Le Lann present an asynchronous solution for
the uniform consensus problem that does not make any assumptions on timing variables such as upper
bounds on inter-process message delays. First, considering an asynchronous model, they prove the safety of
the solution—i.e., all processes correctly agree on some value. Then, considering a partially synchronous
model, they analytically determine computable functions for timing variables that can be instantiated with
known workload and failure hypothesis. In [34], Hermant and Widder describe the Theta-model, where
only the ratio, Theta, between the fastest and slowest message in transit is known. This increases the
coverage of algorithms (designed under this model) as fewer assumptions are made about the underlying
system. While Theta is sufficient for proving the correctness of such algorithms, an upper bound on
communication delay is needed to establish timeliness properties. Thus, these efforts, though considering
node failures, do not consider the properties like overloads and NBI that we focus on.

The distributed TUF scheduling results are, naturally, the ones that are most closely related to our work.
Notable efforts in this category include the Alpha RTOS [2], Alpha’s Thread Polling protocol [2], the Node
Alive protocol [16], and adaptive versions of Node Alive [16]. Alpha’s problem space overlaps with ours
in terms of TUF time constraints, thread arrival and execution time behaviors, node failures, and overloads.
However, none of Alpha’s scheduling algorithms [11], [12] and thread integrity protocols [2], [16] provide
time-bounded cleanup and bounded NBI. Our work builds upon our prior work in [15] that provides
bounded thread cleanup. However, [15] suffers from unbounded loss of the NBI. In contrast, HUA/TPR
provides bounded thread cleanup with bounded loss of the best-effort property, which is precisely the
paper’s contribution.



25

VIII. CONCLUSIONS AND FUTURE WORK

We presented a distributable thread scheduling algorithm called HUA and a thread integrity protocol
called TPR. We showed that HUA/TPR bounds (A) the completion times of handlers that are released for
threads which fail during execution, and (B) the time interval for which a high importance thread arriving
during overloads has to wait to be included in a feasible schedule. Our implementation experience using
the RI of a proposed DRTSJ demonstrated that the proposed distributable thread model for the DRTSJ can
be feasibly implemented, and also demonstrated the HUA/TPR algorithm/protocol’s cost-effectiveness.

Property (A) is potentially unbounded for best-effort algorithms, and property (B) is potentially un-
bounded for admission control algorithms. By bounding (A) and (B), HUA/TPR places itself between the
two models, allowing applications to exploit the tradeoff space.

Directions for future work include relaxing TPR’s requirements for reliable communication with bounded
latency, and considering ad-hoc network infrastructures.
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