Java Money Specification

JSR 354

Money and Currency API

Java Money Expert Group

Specification Lead
Anatole Tresch, Credit Suisse

Version
0.7 (Public Review)
14th October 2013

Copyright © 2012-2013 Credit Suisse

0.7 (Public Review)

Java Money Specification

1. Introduction
1.1 Expert group
1.2 Specification goals
1.2.1 Specification Targets
1.3 Scope
1.4 Required Java version
1.5 How this document is organized
2. Use Cases
2.1 Scenario eCommerce (Online-Shop)
2.2 Scenario Trading Site
2.3 Scenario Virtual Worlds and Game Portals
2.4 Scenario Social Markets
2.5 Scenario Banking & Financial Applications
2.6 Scenario Insurance & Pension
3. Requirements
3.1 Core Requirements
3.2 Formatting Requirements
3.3 EE Support
3.4 Non Functional Requirements
4. Specification
4.1 Package and Project Structure
4.1.1 Package Overview
4.1.2 Module/Repository Overview
4.2 Money and Currency API
4.2.1 Interface javax.money.CurrencyUnit
4.2.2 Interface javax.money.MonetaryAmount
4.2.3 Interface javax.money.MonetaryAdjuster
4.2.4 Interface javax.money.MonetaryQuery
4.2.5 Exception javax.money.MonetaryException
4.3 Formatting
5. Implementation Recommendations
5.1 Rounding
5.2 Monetary Arithmetic
5.3 Numeric Precision
5.3.1 Internal Precision
5.3.1.1 Overview
5.3.1.2 Configuring and Changing Internal Precision
5.3.1.3 Inheriting Numeric Representation Capabilities
5.3.2 External Precision
5.3.3 Display Precision
APPENDIX

0.7 (Public Review)

https://docs.google.com/document/d/sx1NFaGeBWWA4Ws4z7Dsk3g/headless/print#heading=h.rsubh6qwg21m
https://docs.google.com/document/d/sx1NFaGeBWWA4Ws4z7Dsk3g/headless/print#heading=h.fk0wz0rzxwb5
https://docs.google.com/document/d/sx1NFaGeBWWA4Ws4z7Dsk3g/headless/print#heading=h.enikzfve2fcc
https://docs.google.com/document/d/sx1NFaGeBWWA4Ws4z7Dsk3g/headless/print#heading=h.djr6i7ahusn8
https://docs.google.com/document/d/sx1NFaGeBWWA4Ws4z7Dsk3g/headless/print#heading=h.wwv2hiek41o5
https://docs.google.com/document/d/sx1NFaGeBWWA4Ws4z7Dsk3g/headless/print#heading=h.94yy1kmd2buf
https://docs.google.com/document/d/sx1NFaGeBWWA4Ws4z7Dsk3g/headless/print#heading=h.5nt859sfqa0h
https://docs.google.com/document/d/sx1NFaGeBWWA4Ws4z7Dsk3g/headless/print#heading=h.xxz9saq9wwuj
https://docs.google.com/document/d/sx1NFaGeBWWA4Ws4z7Dsk3g/headless/print#heading=h.wjjdb11i9tn
https://docs.google.com/document/d/sx1NFaGeBWWA4Ws4z7Dsk3g/headless/print#heading=h.kcbs0dgvmozm
https://docs.google.com/document/d/sx1NFaGeBWWA4Ws4z7Dsk3g/headless/print#heading=h.f24pqo1ppon0
https://docs.google.com/document/d/sx1NFaGeBWWA4Ws4z7Dsk3g/headless/print#heading=h.4pzu5ctfndc3
https://docs.google.com/document/d/sx1NFaGeBWWA4Ws4z7Dsk3g/headless/print#heading=h.u7n8yt1ezm7s
https://docs.google.com/document/d/sx1NFaGeBWWA4Ws4z7Dsk3g/headless/print#heading=h.lu35sykveboe
https://docs.google.com/document/d/sx1NFaGeBWWA4Ws4z7Dsk3g/headless/print#heading=h.sh531ky3ns6z
https://docs.google.com/document/d/sx1NFaGeBWWA4Ws4z7Dsk3g/headless/print#heading=h.8ir6mvcmqwqr
https://docs.google.com/document/d/sx1NFaGeBWWA4Ws4z7Dsk3g/headless/print#heading=h.iz6vkumn29xp
https://docs.google.com/document/d/sx1NFaGeBWWA4Ws4z7Dsk3g/headless/print#heading=h.dekzlw7rmw8m
https://docs.google.com/document/d/sx1NFaGeBWWA4Ws4z7Dsk3g/headless/print#heading=h.30y4y28l5ajg
https://docs.google.com/document/d/sx1NFaGeBWWA4Ws4z7Dsk3g/headless/print#heading=h.kj11r9vgir2v
https://docs.google.com/document/d/sx1NFaGeBWWA4Ws4z7Dsk3g/headless/print#heading=h.p1ppcn3fepqz
https://docs.google.com/document/d/sx1NFaGeBWWA4Ws4z7Dsk3g/headless/print#heading=h.z0dhtl1jcqmg
https://docs.google.com/document/d/sx1NFaGeBWWA4Ws4z7Dsk3g/headless/print#heading=h.6fd6t6fs553q
https://docs.google.com/document/d/sx1NFaGeBWWA4Ws4z7Dsk3g/headless/print#heading=h.tr0vogkwsxus
https://docs.google.com/document/d/sx1NFaGeBWWA4Ws4z7Dsk3g/headless/print#heading=h.fibq3zvlfl91
https://docs.google.com/document/d/sx1NFaGeBWWA4Ws4z7Dsk3g/headless/print#heading=h.ea11sax8xqq2
https://docs.google.com/document/d/sx1NFaGeBWWA4Ws4z7Dsk3g/headless/print#heading=h.yl2pgxg3rfei
https://docs.google.com/document/d/sx1NFaGeBWWA4Ws4z7Dsk3g/headless/print#heading=h.i8x4z04odst2
https://docs.google.com/document/d/sx1NFaGeBWWA4Ws4z7Dsk3g/headless/print#heading=h.x7cw436vh2a6
https://docs.google.com/document/d/sx1NFaGeBWWA4Ws4z7Dsk3g/headless/print#heading=h.47qihbiigxdx
https://docs.google.com/document/d/sx1NFaGeBWWA4Ws4z7Dsk3g/headless/print#heading=h.3ogdo2ppiy6n
https://docs.google.com/document/d/sx1NFaGeBWWA4Ws4z7Dsk3g/headless/print#heading=h.p2zxwti0wwql
https://docs.google.com/document/d/sx1NFaGeBWWA4Ws4z7Dsk3g/headless/print#heading=h.hukykl8hdyva
https://docs.google.com/document/d/sx1NFaGeBWWA4Ws4z7Dsk3g/headless/print#heading=h.bync08bv32ij
https://docs.google.com/document/d/sx1NFaGeBWWA4Ws4z7Dsk3g/headless/print#heading=h.8n0c3ftgvets
https://docs.google.com/document/d/sx1NFaGeBWWA4Ws4z7Dsk3g/headless/print#heading=h.eos0g295fi2
https://docs.google.com/document/d/sx1NFaGeBWWA4Ws4z7Dsk3g/headless/print#heading=h.r5ibc7dq0pkg
https://docs.google.com/document/d/sx1NFaGeBWWA4Ws4z7Dsk3g/headless/print#heading=h.x67hr7w7k9rf
https://docs.google.com/document/d/sx1NFaGeBWWA4Ws4z7Dsk3g/headless/print#heading=h.8t93e9cw9pyw
https://docs.google.com/document/d/sx1NFaGeBWWA4Ws4z7Dsk3g/headless/print#heading=h.5wnzm49wl111
https://docs.google.com/document/d/sx1NFaGeBWWA4Ws4z7Dsk3g/headless/print#heading=h.dktvub1mg2vk

Java Money Specification

Evaluation license

JSR-000354 Money and Currency API 1.0 Public Review

CREDIT SUISSE AG IS WILLING TO LICENSE THIS SPECIFICATION TO YOU ONLY
UPON THE CONDITION THAT YOU ACCEPT ALL OF THE TERMS CONTAINED IN THIS
LICENSE AGREEMENT ("AGREEMENT"). PLEASE READ THE TERMS AND CONDITIONS
OF THIS AGREEMENT CAREFULLY. BY DOWNLOADING THIS SPECIFICATION, YOU
ACCEPT THE TERMS AND CONDITIONS OF THIS AGREEMENT. IF YOU ARE NOT
WILLING TO BE BOUND BY THEM, SELECT THE "DECLINE" BUTTON AT THE BOTTOM
OF THIS PAGE AND THE DOWNLOADING PROCESS WILL NOT CONTINUE.

Specification: JSR-354 Money and Currency API ("Specification")
Version: 0.7

Status: Public Review

Release: 7th October 2013

Copyright 2013 Credit Suisse AG

8070 Zurich, Switzerland

All rights reserved.

NOTICE

The Specification is protected by copyright and the information described therein may be
protected by one or more U.S. patents, foreign patents, or pending applications. Except as
provided under the following license, no part of the Specification may be reproduced in any form
by any means without the prior written authorization of Credit Suisse AG ("the Specification
Lead") and its licensors, if any. Any use of the Specification and the information described
therein will be governed by the terms and conditions of this Agreement.

Subject to the terms and conditions of this license, including your compliance with Paragraphs 1
and 2 below, the Specification Lead hereby grants you a fully-paid, non-exclusive,
non-transferable, limited license (without the right to sublicense) under the Specification Lead's
intellectual property rights to:

1. Review the Specification for the purposes of evaluation. This includes:

(i) developing implementations of the Specification for your internal, non-commercial use;

(ii) discussing the Specification with any third party; and

(i) excerpting brief portions of the Specification in oral or written communications which discuss
the Specification provided that such excerpts do not in the aggregate constitute a significant
portion of the Technology.

0.7 (Public Review) 3

Java Money Specification

2. Distribute implementations of the Specification to third parties for their testing and evaluation
use, provided that any such implementation:

(a) does not modify, subset, superset or otherwise extend the Licensor Name Space, or include
any public or protected packages, classes, Java interfaces, fields or methods within the
Licensor Name Space other than those required/authorized by the Specification or
Specifications being implemented;

(b) is clearly and prominently marked with the word "UNTESTED" or "EARLY ACCESS" or
“INCOMPATIBLE" or "UNSTABLE" or "BETA" in any list of available builds and in proximity to
every link initiating its download, where the list or link is under Licensee's control; and

(c) includes the following notice: "This is an implementation of an early-draft specification
developed under the Java Community Process (JCP) and is made available for testing and
evaluation purposes only. The code is not compatible with any specification of the JCP."

The grant set forth above concerning your distribution of implementations of the specification is
contingent upon your agreement to terminate development and distribution of your "early draft"”
implementation as soon as feasible following final completion of the specification. If you fail to do
so, the foregoing grant shall be considered null and void.

No provision of this Agreement shall be understood to restrict your ability to make and distribute
to third parties applications written to the Specification. Other than this limited license, you
acquire no right, title or interest in or to the Specification or any other intellectual property of the
Specification Lead, and the Specification may only be used in accordance with the license terms
set forth herein. This license will expire on the earlier of: (a) two (2) years from the date of
Release listed above; (b) the date on which the final version of the Specification is publicly
released; or (c) the date on which the Java Specification Request (JSR) to which the
Specification corresponds is withdrawn. In addition, this license will terminate immediately without
notice from the Specification Lead if you fail to comply with any provision of this license. Upon
termination, you must cease use of or destroy the Specification.

“Licensor Name Space" means the public class or interface declarations whose names begin
with "java", "javax”, "com.oracle" or their equivalents in any subsequent naming convention
adopted by Credit Suisse AG through the Java Community Process, or any recognized
successors or replacements thereof.

TRADEMARKS
No right, title, or interest in or to any trademarks, service marks, or trade names of Credit

Suisse AG or Credit Suisse AG's licensors is granted hereunder. Oracle, the Oracle logo, Java
are trademarks or registered trademarks of Oracle USA, Inc. in the U.S. and other countries.

DISCLAIMER OF WARRANTIES

THE SPECIFICATION IS PROVIDED "AS IS" AND IS EXPERIMENTAL AND MAY CONTAIN
DEFECTS OR DEFICIENCIES WHICH CANNOT OR WILL NOT BE CORRECTED BY THE

0.7 (Public Review) 4

Java Money Specification

SPECIFICATION LEADS. THE SPECIFICATION LEADS MAKE NO REPRESENTATIONS
OR WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO,
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR
NON-INFRINGEMENT THAT THE CONTENTS OF THE SPECIFICATION ARE SUITABLE
FOR ANY PURPOSE OR THAT ANY PRACTICE OR IMPLEMENTATION OF SUCH
CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADE
SECRETS OR OTHER RIGHTS. This document does not represent any commitment to
release or implement any portion of the Specification in any product. THE SPECIFICATION
COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS.
CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION THEREIN; THESE
CHANGES WILL BE INCORPORATED INTO NEW VERSIONS OF THE SPECIFICATION,
IF ANY. THE SPECIFICATION LEADS MAY MAKE IMPROVEMENTS AND/OR CHANGES
TO THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THE SPECIFICATION
AT ANY TIME. Any use of such changes in the Specification will be governed by the
then-current license for the applicable version of the Specification.

LIMITATION OF LIABILITY

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL THE SPECIFICATION
LEADS AND/OR THEIR LICENSORS BE LIABLE FOR ANY DAMAGES, INCLUDING
WITHOUT LIMITATION, LOST REVENUE, PROFITS OR DATA, OR FOR SPECIAL,
INDIRECT, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER
CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF OR
RELATED TO ANY FURNISHING, PRACTICING, MODIFYING OR ANY USE OF THE
SPECIFICATION, EVEN IF CREDIT SUISSE AND/OR ITS LICENSORS HAVE BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You will hold the Specification Lead (and its licensors) harmless from any claims based on your
use of the Specification for any purposes other than the limited right of evaluation as described
above, and from any claims that later versions or releases of any Specification furnished to you
are incompatible with the Specification provided to you under this license.

RESTRICTED RIGHTS LEGEND

If this Software is being acquired by or on behalf of the U.S. Government or by a U.S.
Government prime contractor or subcontractor (at any tier), then the Government's rights in the
Software and accompanying documentation shall be only as set forth in this license; this is in
accordance with 48 C.F.R. 227.7201 through 227.7202-4 (for Department of Defense (DoD)
acquisitions) and with 48 C.F.R. 2.101 and 12.212 (for non-DoD acquisitions)

REPORT

You may wish to report any ambiguities, inconsistencies or inaccuracies you may find in

0.7 (Public Review) 5

Java Money Specification

connection with your evaluation of the Specification ("Feedback”). To the extent that you provide
the Specification Lead with any Feedback, you hereby: (i) agree that such Feedback is provided
on a non-proprietary and non-confidential basis, and (ij) grant the Specification Lead a perpetual,
non-exclusive, worldwide, fully paid-up, irrevocable license, with the right to sublicense through
multiple levels of sublicensees, to incorporate, disclose, and use without limitation the Feedback
for any purpose related to the Specification and future versions, implementations, and test suites
thereof.

GENERAL TERMS

Any action related to this Agreement will be governed by California law and controlling U.S.
federal law. The U.N. Convention for the International Sale of Goods and the choice of law rules
of any jurisdiction will not apply. The Specification is subject to U.S. export control laws and may
be subject to export or import regulations in other countries. Licensee agrees to comply strictly
with all such laws and regulations and acknowledges that it has the responsibility to obtain such
licenses to export, re-export or import as may be required after delivery to Licensee. This
Agreement is the parties’ entire a greement relating to its subject matter. It supersedes all prior
or contemporaneous oral or written communications, proposals, conditions, representations and
warranties and prevails over any conflicting or additional terms of any quote, order,
acknowledgment, or other communication between the parties relating to its subject matter
during the term of this Agreement. No modification to this Agreement will be binding, unless in
writing and signed by an authorized representative of each party.

0.7 (Public Review) 6

Java Money Specification

1. Introduction

This document is the specification of the Java API for Money and Currency. The technical
objective is to provide a money and currency API for Java, targeted at all users of currencies and
monetary amounts, both simple but also extendible.

The API will provide support for standard [ISO-4217] and custom currencies, and a
representation of monetary amounts. It will support currency arithmetic, also across different
currencies, and will support foreign currency exchange.

Additionally, this JSR includes recommendations on interoperability and thread safety.

1.1 Expert group

This work is being conducted as part of JSR 354 under the Java Community Process Program.
This specification is the result of the collaborative work of the members of the JSR 354 Expert
Group and the community at large. The following persons have actively contributed to Java
Money in alphabetical order:
e Greg Bakos
Matthias Buecker (Credit Suisse)
Stephen Colebourne
Benjamin Cotton
Jeremy Davies
Thomas Huesler
Scott James (Credit Suisse)
Tony Jewell
Werner Keil
Bob Lee
Simon Martinelli
Sanjay Nagpal (Credit Suisse)
Christopher Pheby
Jefferson Prestes
Arumugam Swaminathan
Anatole Tresch (Credit Suisse, Spec Lead)

0.7 (Public Review) 7

https://docs.google.com/document/d/sx1NFaGeBWWA4Ws4z7Dsk3g/headless/print#bookmark=id.3rbjkrnxw9d3

Java Money Specification

1.2 Specification goals

Monetary values are a key feature of many applications, yet the JDK provides little or no support.
The existing java.util.Currency class is strictly a structure used for representing current
[ISO-4217] currencies, but not associated values or custom currencies. The JDK also provides
no support for monetary arithmetic or currency conversion, nor for a standard value type to
represent a monetary amount.

1.2.1 Specification Targets

JSR 354 targets to support all general application types, e.g.

eCommerce

banking

financial

investment

insurance and pension

ERP systems

etc.

This specification will not discuss Low Latency concerns as required for example by algorithmic
trading applications. Nevertheless the API was designed to support different implementations of
monetary amounts and allows to be extended in several ways. So it should be flexible enough
that corresponding implementations can be used transparently to accommodate such
applications.

1.3 Scope

JSR 354 targets a standalone scope, since it will not be possible to include it into Java 8.
Nevertheless it should be added to JDK 9, so its design must consider integration into the JDK.
During the development of the JSR a wide set of features were implemented. Most of these
features will not end up within the JSR itself, as the JSR now has scope limited to interoperation,
enabling feature innovation elsewhere. The corresponding libraries were published under
[JavaMoney] as an Apache 2 licensed open source project. Compared to the early draft review
the following features are no longer in the scope of the JSR:

o currency conversion
complex formatting (replaced by a simple formatter for amounts)
region API
validity API
predicate API
additional financial functions
Though the features above were removed from the JSR, their development ensured that scope
was fully evaluated and that the parts best suited to standardization were identified. Where
beneficial to the community parts of the JavaMoney project may also use Java 8 features like
Lambdas when Java 8 goes final, while the JSR remains backward-compatible with Java 7 in

O O O O O

0.7 (Public Review) 8

https://docs.google.com/document/d/sx1NFaGeBWWA4Ws4z7Dsk3g/headless/print#bookmark=id.3rbjkrnxw9d3
https://docs.google.com/document/d/sx1NFaGeBWWA4Ws4z7Dsk3g/headless/print#bookmark=kix.ahnm5axtfar
https://docs.google.com/document/d/sx1NFaGeBWWA4Ws4z7Dsk3g/headless/print#bookmark=kix.ahnm5axtfar

Java Money Specification

first release, see below.

1.4 Required Java version

The specification is based on Java SE 7.0 language features, but should be compatible with
Java SE 6.0 also, due to the fact that still many financial institutions and clients are using this
environment'. Implementations may target any suitable Java SE version, or given an increasing
SE/ME correlation also matching ME versions like CLDC 8.

1.5 How this document is organized

There are five main section in this document:
Use cases.

Requirements.

Specification.

Implementation Recommendations.
An appendix.

' Corresponding ballots on conferences have shown that about 20% of users are planning to switch to Java 8
within the next two years.

0.7 (Public Review) 9

Java Money Specification

2. Use Cases

This section describes some, but not all, of the use cases that should be covered with this JSR.

2.1 Scenario eCommerce (Online-Shop)

One basic scenario that must be covered is a traditional web shop. Hereby products are
presented and collected in a shopping cart. Each product can be added once or multiple times to
the cart. Some sites also need to represent non integral amounts, such as 1.5kg of a product.
Additionally a site may be internationalized handling multiple currencies, perhaps controlled by
user settings or address.

Summarizing this scenario implies the following requirements:

e Prices for each item must be modelled by some monetary amount, representing a
numeric amount in a single currency.

e The prices for all items in the cart must be calculated, this requires sum up all monetary
amounts.

e The user may change the number of each items to purchase, either by defining an
integral number (e.g. 2 products) or a decimal point number (e.g. 1.5 kg). This requires
multiplication with integer and decimal numbers.

e Each item’s price must be presented to the customer with the required target currency
and in the format expected. This requires formatting of amounts and currencies
according to the user’s Locale.

e When changing the currency of a shopping cart, the catalog prices must be recalculated
in the new target currency. This requires accessing an exchange rate to be used and
calculating the item amounts with the new currency, including multiplication and division.

e When a customer finally places an order, the total amount must be calculated, which
may involve tax calculation. This also requires multiplication of prices and rounding to a
bookable amount (depending on the target currency).

e Finally the amount to withdrawn from the credit card must be passed to a server system,
that handles credit card payment. This includes serialization of the amount.

2.2 Scenario Trading Site

On a financial trading system or a site displaying several financial information such as quotes,
additional aspects must be considered. Basically, since for real time data must be paid, often
data is displayed that is so called deferred. Customers may be able to create virtual portfolios
with arbitrary instruments for simulation of investment strategies. To estimate a possible
investment historic charts and timelines are shown, which includes current, as well as statistical
data. Depending on the simulated investment also different precisions of the monetary amounts
must be possible. Finally also for evaluation of complex investment strategies or products very
detailed arithmetic precision may be required.

Summarizing this scenario implies the following requirements:

0.7 (Public Review) 10

Java Money Specification

e A monetary amount representing a stock quote or other financial instrument, may have
arbitrary additional data attached, such as mapped quote keys, the origin stock
exchange, the accuracy of the of data (validity, current or deferred), as well as the data’s
provider. Additionally the internal logic typically requires that the data types used, such as
currencies and exchange rates, can be extended with additional data, that is specific to
the concrete use cases/implementation.

e An exchange rate can be current, deferred or even historic and typically has a defined
validity scope.

e Legal requirements may restrict the information presented (e.g. the currencies available)
to the user based on several aspects:

o geographic location of the client

o legal aspects, such as the client’s contract

o others
This implies that access to financial data may be restricted based on several not predictable
classifications that must not match a country or locale.

2.3 Scenario Virtual Worlds and Game Portals

Virtual worlds, e.g. online games, define their own game money (but also Facebook has its own
money). User’s may obtain such virtual money by paying some real amount, e.g. by credit card.
This usage scenario implies the following requirements:
e |t must be possible to model completely virtual currencies. Since virtual money also can
be converted (paid) with real money, the price effectively defines an exchange rate.
e Since several virtual game portals exist, also the number of virtual currencies can not be
foreseen. Additionally a virtual world may even define different currencies (e.g. Bitcoin).
e Since such exchange rates may change during time, historization must also be
supported.

2.4 Scenario Social Markets

Within social markets things are exchanged using a completely virtual currency, which has no
relation to any real currency. It is used as an arbitrary measurement of something meaningful
only to that social community. This usage scenario implies the following requirements:
e |t must be possible to model virtual currencies that are able to completely replace any
real currency schemes.

2.5 Scenario Banking & Financial Applications

Applications in financial institutes, such as a bank or insurance companies must model
monetary information in several ways: exchange rates, interest rates, stock quotes, current as
well as historic currencies must be supported. Typically in such companies also internal
systems exist that define additional schemas of financial data representation, e.g. for historic
currencies, exchange rates, risk analysis etc. Often such aspects can not be covered by the

0.7 (Public Review) 11

Java Money Specification

ISO 4217 currency standard. As example imagine historic currencies, such as “Deutsche
Reichsmark”, gold nuggets or even completely other things.
Additionally also within [ISO-4217] there are countries in Africa that share a common ISO code
(e.g. CFA), but nevertheless have different banknotes and coins per country. Also there are
ambiguities that may be confusing, such as USD, USS, USN, which all describe US dollars.
This usage scenario implies the following requirements:
e Currencies as well as exchange rates must be historic, and define their time validity
range. The same may also be true for rounding algorithms.
e Customized or legacy system in big financial institutions may define additional, arbitrary
currency variants.
e Such system may have additional data not covered by the JSR’s currency model, so it is
important that the model will be designed to be extendible.
e Currencies of different type, must be mappable to each other.

2.6 Scenario Insurance & Pension

Complex calculation models are used within insurance and pension solutions, e.g. for scenario
simulation and forecasting. Different countries, companies or even investment strategies, have
rather different models implemented, that also may change quickly dependent on legal changes.
Such systems are built of several isolated building blocks of different granularity size and
complexity, starting from simple totalization of amounts until to complex investment strategy
forecasts on an enterprise level. Such systems imply the following requirements:

e Building blocks should be modelled/organized in a common repository and accessible by
a common API, that also allows introspection of the functionality available. This is a
precondition so insurance solutions can reuse the blocks for modeling the required
business cases.

e Input and Output data of calculations can be multivalued, e.g. for forecast scenarios, or
statistical data. Hereby the (value) types used can be completely different, such as
numbers, amounts, currencies, strategy identifiers, dates, time ranges, interest and
exchange rates etc. So there must be a structure to model such compound data.

0.7 (Public Review) 12

https://docs.google.com/document/d/sx1NFaGeBWWA4Ws4z7Dsk3g/headless/print#bookmark=id.3rbjkrnxw9d3

Java Money Specification

3. Requirements

3.1 Core Requirements

Based on the scope and use cases described above the following core requirements can be
identified:

1. The JSR must specify a minimal set of interfaces for interoperability, since concrete
usage scenarios do not allow to define an implementation that is capable of covering all
aspects identified. Consequently it must be possible that implementations can provide
several implementations for monetary amounts

2. Implementations must provide value types for currencies and amounts, implementing
CurrencyUnit and MonetaryAmount.

3. Implementations must provide a minimal set of roundings, modeled as
MonetaryAdijuster. This should include basic roundings for ISO currencies,
roundings defined by java.math.MathContext Or java.math.RoundingMode.

4. Custom roundings should also be supported, but are not a required part of an
implementation

3.2 Formatting Requirements

It must be possible to format and parse monetary amounts:

1. A formatter can format an item into a String orinto an Appendable.

2. A formatter can parse an item from CharSequence input.

3. A formatter may support different formatting styles for the currency part, but must at least
parse the currency code.

4. A formatter supports flexible number formatting similar to
java.text.DecimalFormat.

5. Hereby the formatter supports flexible grouping sizes and different grouping separators,
so, e.g. also Indian Rupees, can be formatted correctly?.

6. A formatter should support rounding of amounts for display and reverse rounding during
parsing.

3.3 EE Support

1. This JSR must avoid restrictions that prevents its use in different runtime environments,
such as EE or ME.

3.4 Non Functional Requirements

1. Any possible changes to the Java platform must be fully backward compatible.

2 The JDK NumberFormat only supports a fixed grouping size, e.g. 3. Indian Rupees have different
grouping sizes applied, e.g. INR 12,34,56,000.21

0.7 (Public Review) 13

Java Money Specification

2. Implementation requirements for currencies must require only minimal extensions on the
existing java.util.Currency.
3. Interfaces defined should enable interoperability between different implementations.
Users should not reference the interfaces, instead the value types should be used.
4. The interface for amounts must not expose its numeric internal representation during
compile time.
5. Where feasible method naming and style for currency modelling should be in alignment
with parts of the Java Collection APl or java.time /[JodaMoney]:
a. same method name prefixes - of () for all factories, unless their inheritance e.g.
from java.lang.Enum - mandates otherwise, such as valueOf ().
b. basic creational factory methods with little/no conversion are named of (.. .)
c. more complex factory methods, with some conversion, or requiring a specific
name for clarity are named ofxXxx (.. .)
d. factories that extract/convert from a broadly specified input (where there is a good
chance of error) are named from(...)
e. parsing is explicitly named, as it is generally special, named parse (.. .)
f. overall monetary API "feel" should be similar to java.lang. BlgDeCJ_mal
6. The JSRs design should acceptably work with other JVM languages (Groovy, Scala,
Clojure...).
7. UTC timestamps in APls must be modelled as 1ong. SPIs are allowed to model
timestamps as java.lang.Long, to support null, when a timestamp is not defined.
8. Though performance aspects can not directly targeted by this JSR, it is important that the
JSR considers performance aspects where possible, so provided implementations are
able optimizing performance as required by the usage scenarios they are targeting.

0.7 (Public Review) 14

https://docs.google.com/document/d/sx1NFaGeBWWA4Ws4z7Dsk3g/headless/print#bookmark=id.gr8900vw6x6h

Java Money Specification

4. Specification

4.1 Package and Project Structure

4.1.1 Package Overview

The JSR defines one single package javax.money.

This package contains the platform artifacts, such as CurrencyUnit, MonetaryAmount,
MonetaryAdjuster, MonetaryQuery, MonetaryException.

4.1.2 Module/Repository Overview

The JSR’s source code repository under [Source] provides several artifacts:

jsr354-api contains the API interfaces and the MonetaryException class.

jsr354-ri contains the reference implementation®

jsr354-tck contains the technical compatibility kit (TCK)*

javamoney-parent, javamoney-1ib contain a financial library (JavaMoney) adding

comprehensive support for several extended functionalities, built on top of this JSR, but

not part of the JSR.

e javamoney-examples finally contains the examples and demos, and also is not part of
this JSR.

3 Note that the reference implementation is not a required be part for public review, so it may still change.
4 Note that the TCK is not a required part for public review.

0.7 (Public Review) 15

https://docs.google.com/document/d/sx1NFaGeBWWA4Ws4z7Dsk3g/headless/print#bookmark=kix.bvrhljzhcwcf
https://docs.google.com/document/d/sx1NFaGeBWWA4Ws4z7Dsk3g/headless/print#bookmark=kix.ahnm5axtfar

Java Money Specification

4.2 Money and Currency API

The package javax.money contains the types representing currencies and monetary
amounts, the core exceptions as well as supporting types for rounding and the extensions SPI.
This package is a candidate for inclusion in the JDK 9 SE platform.

4.2.1 Interface javax.money.CurrencyUnit

The interface CurrencyUnit models a minimal set of functionality required for interoperability,
since a currency code is defined to be unique, exposing this code is sufficient:

public interface public CurrencyUnit{

public String getCurrencyCode();

These methods cover the following requirements:

e The method getCurrencyCode () returns the unique currency code. Nevertheless
since CurrencyUnit also models non ISO currencies, the semantics for other
currency types may be different:

e Hereby it is required that a currency code is unique. For ISO currencies this will the
3-letter uppercase ISO code. For non ISO currencies no constraints are defined.

Implementations of CurrencyUnit
1. must implement equals/hashCode, considering the concrete implementation type and
currency code (which is defined to be unique).
2. must be Comparable
must be immutable and thread safe.
4. should be serializable.

w

0.7 (Public Review) 16

Java Money Specification

4.2.2 Interface javax.money.MonetaryAmount

The interface MonetaryAmount defines the properties and operations of a monetary amount
for interoperability.

public interface public MonetaryAmount{

public CurrencyUnit getCurrency();

public long getAmountWhole();

public long getAmountFractionNumerator();

public long getAmountFractionDenominator();

public MonetaryAmount with(MonetaryAdjuster adjuster);
public <T> T query(MonetaryQuery<T> query);

Hereby

e getCurrency return the amount’s currency, modelled as CurrencyUnit.
Implementations may co-variantly change the return type to a more specific
implementation of CurrencyUnit if desired.

® getAmountWhole, getAmountFractionNominator,
getAmountFractionDenominator exposes a portable numeric representation of the
amount’s numeric value.

e monetary adjusters and monetary queries can be applied on a MonetaryAmount
instance by passing a MonetaryAdjuster, MonetaryQuery<T> instance to the
with or query method.

e Additionally for the numeric representation
given

w = getAmountWhole ()
n = getFractionNominator ()
d getFractionDenominator ()

the following must be always true:

' (w<0 && n>0) and
' (w>0 && n<o0) and
d>0 and
In|] < d // || = absolute value

The specification and interface do not define precisely how the amount is stored.
Implementations could use a BigDecimal, 1ong or something else entirely. The only
constraint is that it can be exposed as three 1ong elements of a rational number.

The representation of the amount was one of the key design decisions. The final design is
intended to provide for implementors to handle very different use cases with distinct

0.7 (Public Review) 17

Java Money Specification

requirements. For example, use of a Bigbecimal would cover many use cases and could be
expressed in the API using a denominator with a power of ten.

Implementations of MonetaryAmount (of type T)
1. must implement equals/hashCode, hereby it is recommended considering
a. Implementation type
b. CurrencyUnit
c. Numeric value.
This also means that two different implementations types with the same currency and
numeric value are NOT equal.
must be Comparable.
should be serializable.
should be immutable and thread safe.
7. To enable interoperability a static method from (MonetaryAmount) is
recommended to be implemented, that allows conversion of a MonetaryAmount toa

concrete type T.
public static T from(MonetaryAmount amount);

DPeDN

This is particularly useful when implementing monetary adjusters or queries, since
arithmetic operations are not available on the MonetaryAmount interface, which is
defined for interoperability only.

18. Finally implementations should not implement a method getAmount () . This method is
reserved for future integration into the JDK.

This specification does not further constrain the constructor or factory methods to be
implemented, or the method signatures to be used.

Two further interfaces, MonetaryAdjuster and MonetaryQuery, provide a powerful
extension mechanism. The two interfaces operate as a form of the strategy pattern, allowing the
algorithm of a query or adjustment to be external to the implementation of MonetaryAmount.
Their design and naming matches JSR-310.

4.2.3 Interface javax.money.MonetaryAdjuster

This interface defines an arbitrary adjustment on a monetary amount, such as rounding or
monetary calculations:

public interface MonetaryAdjuster{

public MonetaryAmount adjustInto(MonetaryAmount amount);

}

Adjusters can be used to make any kind of change to the amount based on the original amount.
For example, the following requirements (not complete listing) would be covered:

0.7 (Public Review) 18

Java Money Specification

rounding of amounts
currency conversion
financial calculations
other monetary conversions

Implementations of MonetaryAdjuster should be
e immutable and
e thread-safe

The adjuster is typically invoked on the instance of the money class, passing the adjuster as a
parameter.

MonetaryAmount amount = ...
MonetaryAdjuster convertedToUsd = ...
MonetaryAmount usdAmount = amount.with(convertedToUsd)

The adjuster interface is equivalent to the UnaryOperator interface in JDK 8 which is a
functional interface suitable for use with lambdas.

4.2.4 Interface javax.money.MonetaryQuery

This interface defines an arbitrary monetary query.
public interface MonetaryQuery<R> {

public R queryFrom(MonetaryAmount amount);

Queries can be used to make any kind of query against the data held in the amount. For
example, the following requirements (not complete listing) would be covered:

type conversion

boolean queries, such as ‘is negative’, ‘is zero’ or ‘is currency widely traded’
splitting the amount into smaller amounts

serialization to string/bytes

Implementations of MonetaryQuery should be
e immutable and
e thread-safe

The query is typically invoked on the instance of the money class, passing the query as a
parameter.

MonetaryAmount amount = ...
MonetaryQuery<Boolean> negativeQuery = ...
boolean negative = amount.query(negativeQuery)

0.7 (Public Review) 19

Java Money Specification

The query interface is equivalent to the Function interface in JDK 8 which is a functional
interface suitable for use with lambdas.

It is recommended that the result type of a query is not MonetaryAmount, as
MonetaryAdjuster is normally more suited to those cases. However, there is no technical
restriction enforcing this.

4.2.5 Exception javax.money.MonetaryException

This runtime exception is the base exception for other currency related exceptions. Any
monetary exception added by an implementation must inherit from this class.

4.3 Formatting

As defined in 3. Requirements, Implementations of this JSR should provide a formatter for
MonetaryAmount instances. Nevertheless formatting is a very complex field and the JSR’s
expert group has decided to not define any concrete formatting API at this stage. This should be
considered in a coordinated way for JDK 9, especially for factory methods like
NumberFormat.getCurrencyInstance (), butitis likely this JSR would see at least an MR
or new release where the expert group may address formatting in more detail. Nevertheless
some important aspects were identified that should be considered:
1. rounding of amount values can be done by applying a MonetaryAdjuster before
formatting/printing.
2. some currencies like INR can be formatted® with flexible grouping sizes and/or grouping
characters.
3. A currency of an amount can be also formatted in different ways:
a. as currency code, e.g. USD
b. as numeric currency code, if such a code is defined.
c. as a (localized) currency symbol, e.g. $
d. as a (localized) currency name, e.g. Schweizer Franken
e. as a special case, the currency also can be omitted completely.
4. aMonetaryAdijuster instance can also be configured to allow a formatter instance to
format/parse symmetrically.

In financial applications additional formatting requirements are quite common (see also
[JavaMoney]). Nevertheless the expert group decided to require only a bare minimum of
functionalities that also are easily to be included as part of JDK 9.

5 INR 123456000.21 is formatted as INR 12, 34,56,000.21

0.7 (Public Review) 20

https://docs.google.com/document/d/sx1NFaGeBWWA4Ws4z7Dsk3g/headless/print#bookmark=id.kwt4033m8n93

Java Money Specification

5. Implementation Recommendations

There are a couple of best practices in the area of financial applications and frameworks. This
JSR does not require most of them for the following reasons:

e The overall API design is very similar to the Date/Time API introduced with JDK 9
(JSR-310). E.g. TemporalAdjuster and MonetaryAdjuster model a similar
concept for temporals and for monetary amounts. Therefore the corresponding models in
this JSR define similar implementation constraints.

e More complex constraints would be difficult or impossible to ensure by a TCK, so they
are defined as recommendations.

e Finally there is always the possibility that no common ground can be found for the way
some functionality can be modelled generically across implementations. It would then be
the responsibility of the implementers to follow best, or at least de-facto, practice.

Nevertheless we think some practices are important and should be followed by implementations,
so we added the most relevant ones in the following sections.

5.1 Rounding

Rounding should be modeled by an implementation of MonetaryAdjuster. Hereby beside
mathematical roundings, also non standard variants with arbitrary rules and constraints are quite
common in the financial area.
Implementations of this JSR may provide rounding adjusters based on one or more of the
following:
1. atarget CurrencyUnit, hereby providing default rounding based on the currency’s
fraction units
2. ajava.math.RoundingMode Or java.math.MathContext, providing
mathematical roundings.
3. astring identifier, for customized roundings.

It should be possible to add additional roundings, e.g. for use with formatters. One way to
manage roundings would be via a service loader.

5.2 Monetary Arithmetic

When dealing with monetary amounts the following aspects should be considered:
e Arithmetic operations should throw an ArithmeticException, if performing
arithmetic operations between amounts exceeds the capabilities of the numeric

0.7 (Public Review) 21

Java Money Specification

representation type used. Any implicit truncating, that would lead to complete invalid and
useless results, should be avoided, since it may result to invalid results, which are very
difficult to trace. This recommendation does not affect internal rounding, as required by
the internal numeric representation of a monetary amount.

e When adding or subtracting amounts, best practice recommends to use parameters that
are instances of MonetaryAmount.

e When multiplying or dividing amount, best practice recommends parameters that are
simple numeric values.

e Arguments of type java.lang.Number should be avoided, since it does not allow to
extract its numeric value in a feasible way.

e Arithmetic operations should honor the advanced rules how rounding and truncation
should be handled. Refer to the following sections for further details.

5.3 Numeric Precision

For financial applications precision and rounding is a very important aspect. Additionally that an
incorrect arithmetic obviously has direct financial consequences, also legal aspects require
specific precision and rounding to by applied.
The JSR's expert group identified the following important and distinct precision types:

e Internal precision

e External precision

e Formatting precision

The following sections will explain things in more detail.

5.3.1 Internal Precision

5.3.1.1 Overview

This precision type is the most important one, since it is directly related/determined by the
internal numeric representation of the class implementing MonetaryAmount. Hereby:

e The internal numeric capabilities of a MonetaryAmount typically exceed the scale
implied by the corresponding currency. Internal rounding must be done after each
operation, but this rounding has nothing in common with the rounding implied by the
currency attached. Basically the monetary arithmetics are completely independent of the
currency, or in other words rounding should only be done implicitly when required by the
internal numeric representation to minimize the loss of numeric precision.

e For calculations that require high scaled results, e.g. financial product calculations, it is
recommended to work with relatively high scales, e.g. 64 or even higher scales, as
provided by the BigDecimal class®. On the other hand when monetary arithmetics
must be fast, e.g. in trading, scale requirements are often reduced in favor of fast data
manipulation. This contradictory requirements were basically the key reason, why the

® Therefore the default reference implementation class, Money, is based on BigDecimal and allows to
explicitly configure its MathContext used on creation.

0.7 (Public Review) 22

Java Money Specification

model for MonetaryAmount does not explicitly specify the numeric representation to
be used.

e Additionally during a financial calculation, the points, where rounding is feasible, are
basically use case dependent and therefore should not be performed by a
MonetaryAmount implementation implicitly. Instead of, roundings can be applied as
useful as monetary adjustments explicitly, when useful.

e Also worth to mention is that for the same currency different roundings may be defined
(default rounding, cash rounding, special roundings for presentation purposes), so there
is no such concept as THE rounding for a monetary amount.

5.3.1.2 Configuring and Changing Internal Precision

An implementation of MonetaryAmount may support changing the internal precision or
numeric capabilities. But any value type semantics must be strictly obeyed, meaning that
changing a monetary amount’s internal precision or numeric capabilities, requires creating of a
new instance.

Additionally if an implementation of a MonetaryAmount supports different numeric capabilities,
it is useful to allow the default capabilities to be configurable. Hereby a mechanism should be
used, that is not shared in EE runtime context, such as a property file in the classpath.

5.3.1.3 Inheriting Numeric Representation Capabilities

When performing calculations with the value type semantics new instances of amounts are
created for each calculation performed. This implies additional constraints:

e By inheriting the MonetaryAmount implementation type to its return types of all
arithmetic operations, also the numeric capabilities must be inherited.

e Finally a MonetaryAmount implementation is required to throw an
ArithmeticException, if a client tries to create a new instance with a numeric value
that exceeds its internal representation capabilities. Since each arithmetic operation
requires the creation of a new amount instance, as a consequence, all operations that
exceed the numeric capabilities must throw an ArithmeticException (basically no
implicit truncation is allowed).

5.3.2 External Precision

External precision is the precision applied, when the numeric part of a MonetaryAmount is
externalized, meaning a numeric part of an amount is accessed/converted into another numeric
representation. This externalized representation may have reduced numeric capabilities
compared to the internal numeric representation, so truncation must be performed, or some
exception can be thrown. Generally a precision or scale reduction on externalization should
never throw an exception, despite the method variants are defined to be exact, similar to
BigDecimal.longValueExact (). The exact methods should then throw an exception, if the
externalization would result in data loss (some sort of truncation must be performed).

0.7 (Public Review) 23

Java Money Specification

5.3.3 Display Precision

The precision used for displaying of monetary amounts on the screen, a printout or for passing
values through technical systems, is completely dependent on the use cases. This JSR
supports these scenarios with the possibility to apply arbitrary monetary adjustments (modeled
as MonetaryAdjuster).

0.7 (Public Review) 24

Java Money Specification

APPENDIX

References
[Bitcoin] http://bitcoin.org/en/
[ICU] http://site.icu-project.org/

[1ISO-4217] http://www.iso.org/iso/home/standards/currency_codes.htm
[ISO-20022] www.is020022.0rg

[JodaMoney] _http://www.joda.org/joda-money/

[JavaMoney] https://github.com/JavaMoney/javamoney-lib

[java.net] http://java.net/projects/javamoney/

[JSR354] http://jcp.org/en/jsr/detail ?id=354

[Source] Public Source Code Repository on GitHub: GitHub Repository,

Branch / Tag matching PDR is 0.7

Links

JSR 354 on jcp.org

JSR 354 on Java.net

JSR 354 on GitHub

Java Practices -> Representing Money

Working with Money in Java

Java currency by Roedy Green, Canadian Mind Products
https://github.com/JavaMoney/jsr354-api

UOMo Business, based on ICU4J and concepts by JScience Economics

MoneyDance API

JavaMoney is the Apache 2.0 licensed OSS project that evolved from JSR 354
development. It provides concrete implementations for currency conversion and mapping,
advanced formatting, historic data access, regions and a set of financial calculations and
formulas.

Joda Money can be referred to as an inspiration for APl and design style. it is based on
real-world use cases in an e-commerce application for airlines

Grails Currencies uses BigDecimal as internal representation, but API only exposes
Number in all Money operations like plus(), minus() or similar.

ICU4J Uses Number for all operations and internal storage in its Money type.

Why not to use BigDecimal for Money

M-Pesa-Mobile Money in Africa

Currency Internationalization (i18n), Multiple Currencies and Foreign Exchange (FX).
http://en.wikipedia.org/wiki/Japanese_units_of _measurement#Money: Discussion of
internationalization of currencies, rounding, grouping and formatting, separators etc]
http://speleotrove.com/decimal/

http://sourceforge.net/projects/oquote/

Karatsuba Algorithm for Fast Big Decimal Multiplication

0.7 (Public Review) 25

http://www.google.com/url?q=http%3A%2F%2Fbitcoin.org%2Fen%2F&sa=D&sntz=1&usg=AFQjCNHV0XGtr7B-4Dr2XlDePzhy_YvwSA
http://www.google.com/url?q=http%3A%2F%2Fsite.icu-project.org%2F&sa=D&sntz=1&usg=AFQjCNEiAtncyvL5x7mpHAoRRl4D5lTZeA
http://www.google.com/url?q=http%3A%2F%2Fwww.iso.org%2Fiso%2Fhome%2Fstandards%2Fcurrency_codes.htm&sa=D&sntz=1&usg=AFQjCNEgaI2nnvJDlvjxgcHc3gYrbCOYfQ
http://www.google.com/url?q=http%3A%2F%2Fwww.iso20022.org&sa=D&sntz=1&usg=AFQjCNGAO25hbMG_TRfjTBCh9kJYLXcaUg
https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2FJavaMoney%2Fjavamoney-lib&sa=D&sntz=1&usg=AFQjCNFFKRIlwDH-JSuWeSXz_MvQEA5EEA
http://www.google.com/url?q=http%3A%2F%2Fjava.net%2Fprojects%2Fjavamoney%2F&sa=D&sntz=1&usg=AFQjCNHtowrXWfnHsRQnd4-_C5OnGPFnOQ
http://www.google.com/url?q=http%3A%2F%2Fjcp.org%2Fen%2Fjsr%2Fdetail%3Fid%3D354&sa=D&sntz=1&usg=AFQjCNHrFqts-ZcVO3QoghpklOoGkQCYrQ
https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2FJavaMoney%2Fjsr354-api&sa=D&sntz=1&usg=AFQjCNHAPtKjTDMC5W73s1v9IUWXZ3uInA
http://www.google.com/url?q=http%3A%2F%2Fjcp.org%2Fen%2Fjsr%2Fdetail%3Fid%3D354&sa=D&sntz=1&usg=AFQjCNHrFqts-ZcVO3QoghpklOoGkQCYrQ
http://www.google.com/url?q=http%3A%2F%2Fjava.net%2Fprojects%2Fjavamoney%2Fpages%2FHome&sa=D&sntz=1&usg=AFQjCNGnRICAldcAB9uyN39iNOhMw0SH5g
https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2FJavaMoney&sa=D&sntz=1&usg=AFQjCNFL2gdT0xrLXJHPHtn4KXyvqzun3g
http://www.google.com/url?q=http%3A%2F%2Fwww.javapractices.com%2Ftopic%2FTopicAction.do%3FId%3D13&sa=D&sntz=1&usg=AFQjCNGzP2LVZwKK70SNkmBTYhqeNoIsBA
http://www.google.com/url?q=http%3A%2F%2Fwww.javaranch.com%2Fjournal%2F2003%2F07%2FMoneyInJava.html&sa=D&sntz=1&usg=AFQjCNHg75ZZ4kqU3uVxqetxUOH252-o4A
http://www.google.com/url?q=http%3A%2F%2Fmindprod.com%2Fjgloss%2Fcurrency.html&sa=D&sntz=1&usg=AFQjCNFV_SOamXKSBC0YMyFnqrzUrRAAXw
https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2FJavaMoney%2Fjsr354-api&sa=D&sntz=1&usg=AFQjCNHAPtKjTDMC5W73s1v9IUWXZ3uInA
http://www.google.com/url?q=http%3A%2F%2Fwww.eclipse.org%2Fuomo&sa=D&sntz=1&usg=AFQjCNFzH1ecHbNhRgNpBysI5xmHOChlvQ
http://www.google.com/url?q=http%3A%2F%2Fmoneydance.com%2Fdev%2Fapidoc%2Findex.html&sa=D&sntz=1&usg=AFQjCNFnyJUtB88-MI3ivgriroIXyyHeQA
https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2FJavaMoney%2Fjavamoney-lib&sa=D&sntz=1&usg=AFQjCNFFKRIlwDH-JSuWeSXz_MvQEA5EEA
https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2Fricardojmendez%2Fgrails-currencies&sa=D&sntz=1&usg=AFQjCNG6H20hamtedrqdZwjE8wbQwM5DwA
http://www.google.com/url?q=http%3A%2F%2Fwiki.eclipse.org%2FICU4J&sa=D&sntz=1&usg=AFQjCNFFkT3Chr7rpwxxBJmRgc3K0bw7Ww
http://www.google.com/url?q=http%3A%2F%2Flemnik.wordpress.com%2F2011%2F03%2F25%2Fbigdecimal-and-your-money%2F&sa=D&sntz=1&usg=AFQjCNHb3bb8bP2V6FTe2L4FCZt_M_7YIg
http://www.google.com/url?q=http%3A%2F%2Fthenextweb.com%2Fafrica%2F2012%2F02%2F05%2Flearning-from-kenya-mobile-money-transfer-and-co-working-spaces%2F%3Fawesm%3Dtnw.to_1DEWI&sa=D&sntz=1&usg=AFQjCNHZ8vK3YDatOYcg78n0ARbN-Y1lNw
http://www.google.com/url?q=http%3A%2F%2Fwww.xencraft.com%2Fresources%2Fmulti-currency.html&sa=D&sntz=1&usg=AFQjCNE5V-N60VapCPQK7X4QhzG7GKgKbA
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FJapanese_units_of_measurement%23Money&sa=D&sntz=1&usg=AFQjCNHLM_hFYGkDbpPmTFBZZiAQHsXMbQ
http://www.google.com/url?q=http%3A%2F%2Fspeleotrove.com%2Fdecimal%2F&sa=D&sntz=1&usg=AFQjCNEOUySy1RV3b5CuSS515dtnp3aU3Q
http://www.google.com/url?q=http%3A%2F%2Fsourceforge.net%2Fprojects%2Foquote%2F&sa=D&sntz=1&usg=AFQjCNGOyCBsC0m6hz4nsr0VNEl8C6-t_A
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FKaratsuba_algorithm&sa=D&sntz=1&usg=AFQjCNGCSnvPuDipGKMcCsujyKPlvQxkDg

Java Money Specification

Related Initiatives
e Eric Evans Time and Money Library
e Bitcoin Java Client
e Java and Monetary Data (PDF)

0.7 (Public Review)

26

http://www.google.com/url?q=http%3A%2F%2Ftimeandmoney.sourceforge.net%2F&sa=D&sntz=1&usg=AFQjCNF-YUJZoGb9BOFCjtfdhiSs85tkZg
http://www.google.com/url?q=http%3A%2F%2Fsourceforge.net%2Fprojects%2Fbitcoin-client%2F&sa=D&sntz=1&usg=AFQjCNHbzgeTvVun9eXo3q4hA4K1SDpSbA
http://www.google.com/url?q=http%3A%2F%2Fwww.objectivelogic.com%2Fresources%2FJava%2520and%2520Monetary%2520Data%2FJava%2520and%2520Monetary%2520Data.pdf&sa=D&sntz=1&usg=AFQjCNGOS-skCszICdPlWVq01ogb6wDZ_w

