Java Money Specification

JSR 354

Money and Currency API

Java Money Expert Group

Specification Lead
Anatole Tresch, Credit Suisse

Version
0.8 (Public Review 2)
March 2014

Copyright © 2012-2014 Credit Suisse

0.8 (Public Review 2)



Java Money Specification

Table of Contents

1. Introduction
1.1 Expert group
1.2 Specification goals
1.2.1 Specification Targets
1.3 Scope
1.4 Required Java version
1.5 How this document is organized
2. Use Cases
2.1 Scenario eCommerce (Online-Shop)
2.2 Scenario Trading Site
2.3 Scenario Virtual Worlds and Game Portals
2.4 Scenario Social Markets
2.5 Scenario Banking & Financial Applications
2.6 Scenario Insurance & Pension
3. Requirements
3.1 Core Requirements
3.2 Formatting Requirements
3.3 EE and ME Support
3.4 Non Functional Requirements
4. Specification
4.1 Package and Project Structure
4.1.1 Package Overview
4.1.2 Module/Repository Overview
4.2 Money and Currency Core API
4.2.1 Modeling of Currencies
4.2.2 Modeling of Monetary Amounts
Implementation Requirements
4.2.3 Externalizing the Numeric Value of an Amount
4.2.4 Functional Extension Points: Operators and Queries
Monetary Operators
Monetary Queries
4.2.5 The Monetary Context
4.2.6 Creating Monetary Amount Instances
4.2.7 Accessing Currencies, Amounts and Roundings
Accessing Currencies
Accessing Monetary Amount Factories
Accessing Roundings
4.2.8 Additional Functional Support
CurrencySupplier
NumberSupplier
4.2.9 Exception Types
javax.money.MonetaryException
javax.money.UnknownCurrencyException
4.3 Currency Conversion

0.8 (Public Review 2)



Java Money Specification

4.3.1 MonetaryConversions Singleton
4.3.2 Converting Amounts
4.3.3 Exchange Rates and Rate Providers
4.3.4 Provider Chains
4.4 Money and Currency Formatting API
4.4.1 Formatting of Monetary Amounts
4.4.2 Configuring a Monetary Amount Formatter

Currency Style

Amount Style
4.4.3 Accessing Monetary Amount Formats

4.4.4 Formatting Exceptions
javax.money.format.MonetaryParseException
4.5. Money and Currency SPI
4.5.1 Core SPI
Registering Currencies
Registering Monetary Amount Factories
Backing the MonetaryAmounts Singleton
Registering Roundings
Adapting Currency Conversion
Adapting the Logging Backend
4.5.2 Formatting SPI
Prodivding Monetary Amount Format Symbols
Prodivding Amount Styles
Prodivding Amount Formats
4.5.3 The Bootstrapping Mechanism
Overview
Implementation Requirements of ServiceProvider
5. Implementation Recommendations
5.1 Overview
5.2 Monetary Arithmetic
5.3 Numeric Precision
5.3.1 Internal Precision
Overview
Configuring and Changing Internal Precision
Inheriting Numeric Representation Capabilities
5.3.2 External Precision
5.3.3 Display Precision
6. Examples
6.1 Working with org.javamoney.moneta.Money
6.2 Working with org.javamoney.moneta.FastMoney
6.3 Calculating a Total
6.4 Calculating a Present Value
6.5 Performing Currency Conversion
APPENDIX

0.8 (Public Review 2)



Java Money Specification

Evaluation license

JSR-000354 Money and Currency API 1.0 Public Review

CREDIT SUISSE AG IS WILLING TO LICENSE THIS SPECIFICATION TO YOU ONLY
UPON THE CONDITION THAT YOU ACCEPT ALL OF THE TERMS CONTAINED IN THIS
LICENSE AGREEMENT ("AGREEMENT"). PLEASE READ THE TERMS AND CONDITIONS
OF THIS AGREEMENT CAREFULLY. BY DOWNLOADING THIS SPECIFICATION, YOU
ACCEPT THE TERMS AND CONDITIONS OF THIS AGREEMENT. IF YOU ARE NOT
WILLING TO BE BOUND BY THEM, SELECT THE "DECLINE" BUTTON AT THE BOTTOM
OF THIS PAGE AND THE DOWNLOADING PROCESS WILL NOT CONTINUE.

Specification: JSR-354 Money and Currency API ("Specification")
Version: 0.8

Status: Public Review 2

Release: March 2014

Copyright 2013-2014 Credit Suisse AG

8070 Zurich, Switzerland

All rights reserved.

NOTICE

The Specification is protected by copyright and the information described therein may be
protected by one or more U.S. patents, foreign patents, or pending applications. Except as
provided under the following license, no part of the Specification may be reproduced in any form
by any means without the prior written authorization of Credit Suisse AG ("the Specification
Lead") and its licensors, if any. Any use of the Specification and the information described
therein will be governed by the terms and conditions of this Agreement.

Subject to the terms and conditions of this license, including your compliance with Paragraphs 1
and 2 below, the Specification Lead hereby grants you a fully-paid, non-exclusive,
non-transferable, limited license (without the right to sublicense) under the Specification Lead's
intellectual property rights to:

1. Review the Specification for the purposes of evaluation. This includes:

(i) developing implementations of the Specification for your internal, non-commercial use;

(ii) discussing the Specification with any third party; and

(i) excerpting brief portions of the Specification in oral or written communications which discuss
the Specification provided that such excerpts do not in the aggregate constitute a significant
portion of the Technology.

0.8 (Public Review 2) 4



Java Money Specification

2. Distribute implementations of the Specification to third parties for their testing and evaluation
use, provided that any such implementation:

(a) does not modify, subset, superset or otherwise extend the Licensor Name Space, or include
any public or protected packages, classes, Java interfaces, fields or methods within the
Licensor Name Space other than those required/authorized by the Specification or
Specifications being implemented;

(b) is clearly and prominently marked with the word "UNTESTED" or "EARLY ACCESS" or
“INCOMPATIBLE" or "UNSTABLE" or "BETA" in any list of available builds and in proximity to
every link initiating its download, where the list or link is under Licensee's control; and

(c) includes the following notice: "This is an implementation of an early-draft specification
developed under the Java Community Process (JCP) and is made available for testing and
evaluation purposes only. The code is not compatible with any specification of the JCP."

The grant set forth above concerning your distribution of implementations of the specification is
contingent upon your agreement to terminate development and distribution of your "early draft"”
implementation as soon as feasible following final completion of the specification. If you fail to do
so, the foregoing grant shall be considered null and void.

No provision of this Agreement shall be understood to restrict your ability to make and distribute
to third parties applications written to the Specification. Other than this limited license, you
acquire no right, title or interest in or to the Specification or any other intellectual property of the
Specification Lead, and the Specification may only be used in accordance with the license terms
set forth herein. This license will expire on the earlier of: (a) two (2) years from the date of
Release listed above; (b) the date on which the final version of the Specification is publicly
released; or (c) the date on which the Java Specification Request (JSR) to which the
Specification corresponds is withdrawn. In addition, this license will terminate immediately without
notice from the Specification Lead if you fail to comply with any provision of this license. Upon
termination, you must cease use of or destroy the Specification.

“Licensor Name Space" means the public class or interface declarations whose names begin
with "java", "javax”, "com.oracle" or their equivalents in any subsequent naming convention
adopted by Credit Suisse AG through the Java Community Process, or any recognized
successors or replacements thereof.

TRADEMARKS
No right, title, or interest in or to any trademarks, service marks, or trade names of Credit

Suisse AG or Credit Suisse AG's licensors is granted hereunder. Oracle, the Oracle logo, Java
are trademarks or registered trademarks of Oracle USA, Inc. in the U.S. and other countries.

DISCLAIMER OF WARRANTIES
THE SPECIFICATION IS PROVIDED "AS IS" AND IS EXPERIMENTAL AND MAY CONTAIN

DEFECTS OR DEFICIENCIES WHICH CANNOT OR WILL NOT BE CORRECTED BY THE
SPECIFICATION LEADS. THE SPECIFICATION LEADS MAKE NO REPRESENTATIONS

0.8 (Public Review 2) 5



Java Money Specification

OR WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO,
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR
NON-INFRINGEMENT THAT THE CONTENTS OF THE SPECIFICATION ARE SUITABLE
FOR ANY PURPOSE OR THAT ANY PRACTICE OR IMPLEMENTATION OF SUCH
CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADE
SECRETS OR OTHER RIGHTS. This document does not represent any commitment to
release or implement any portion of the Specification in any product. THE SPECIFICATION
COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS.
CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION THEREIN; THESE
CHANGES WILL BE INCORPORATED INTO NEW VERSIONS OF THE SPECIFICATION,
IF ANY. THE SPECIFICATION LEADS MAY MAKE IMPROVEMENTS AND/OR CHANGES
TO THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THE SPECIFICATION
AT ANY TIME. Any use of such changes in the Specification will be governed by the
then-current license for the applicable version of the Specification.

LIMITATION OF LIABILITY

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL THE SPECIFICATION
LEADS AND/OR THEIR LICENSORS BE LIABLE FOR ANY DAMAGES, INCLUDING
WITHOUT LIMITATION, LOST REVENUE, PROFITS OR DATA, OR FOR SPECIAL,
INDIRECT, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER
CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF OR
RELATED TO ANY FURNISHING, PRACTICING, MODIFYING OR ANY USE OF THE
SPECIFICATION, EVEN IF CREDIT SUISSE AND/OR ITS LICENSORS HAVE BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You will hold the Specification Lead (and its licensors) harmless from any claims based on your
use of the Specification for any purposes other than the limited right of evaluation as described
above, and from any claims that later versions or releases of any Specification furnished to you
are incompatible with the Specification provided to you under this license.

RESTRICTED RIGHTS LEGEND

If this Software is being acquired by or on behalf of the U.S. Government or by a U.S.
Government prime contractor or subcontractor (at any tier), then the Government's rights in the
Software and accompanying documentation shall be only as set forth in this license; this is in
accordance with 48 C.F.R. 227.7201 through 227.7202-4 (for Department of Defense (DoD)
acquisitions) and with 48 C.F.R. 2.101 and 12.212 (for non-DoD acquisitions)

REPORT

You may wish to report any ambiguities, inconsistencies or inaccuracies you may find in
connection with your evaluation of the Specification ("Feedback”). To the extent that you provide

0.8 (Public Review 2) 6



Java Money Specification

the Specification Lead with any Feedback, you hereby: (i) agree that such Feedback is provided
on a non-proprietary and non-confidential basis, and (ii) grant the Specification Lead a perpetual,
non-exclusive, worldwide, fully paid-up, irrevocable license, with the right to sublicense through
multiple levels of sublicensees, to incorporate, disclose, and use without limitation the Feedback
for any purpose related to the Specification and future versions, implementations, and test suites
thereof.

GENERAL TERMS

Any action related to this Agreement will be governed by California law and controlling U.S.
federal law. The U.N. Convention for the International Sale of Goods and the choice of law rules
of any jurisdiction will not apply. The Specification is subject to U.S. export control laws and may
be subject to export or import regulations in other countries. Licensee agrees to comply strictly
with all such laws and regulations and acknowledges that it has the responsibility to obtain such
licenses to export, re-export or import as may be required after delivery to Licensee. This
Agreement is the parties' entire a greement relating to its subject matter. It supersedes all prior
or contemporaneous oral or written communications, proposals, conditions, representations and
warranties and prevails over any conflicting or additional terms of any quote, order,
acknowledgment, or other communication between the parties relating to its subject matter
during the term of this Agreement. No modification to this Agreement will be binding, unless in
writing and signed by an authorized representative of each party.

0.8 (Public Review 2) 7



Java Money Specification

1. Introduction

This document is the specification of the Java API for Money and Currency. The technical
objective is to provide a money and currency API for Java, targeted at all users of currencies and
monetary amounts, both simple but also extendible.

The API will provide support for standard [ISO-4217] and custom currencies, and a model for
monetary amounts and roundings. It will have extension points for adding additional features like
currency exchange. financial calculations and formulas.

Additionally, this JSR includes recommendations on interoperability and thread safety.

1.1 Expert group

This work is being conducted as part of JSR 354 under the Java Community Process Program.
This specification is the result of the collaborative work of the members of the JSR 354 Expert
Group and the community at large. The following persons have actively contributed to Java
Money in alphabetical order:

Greg Bakos

Matthias Buecker (Credit Suisse)

Stephen Colebourne

Benjamin Cotton

Jeremy Davies

Thomas Huesler

Scott James (Credit Suisse)

Tony Jewell

Werner Keil

Bob Lee

Simon Martinelli

Sanjay Nagpal (Credit Suisse)

Christopher Pheby

Jefferson Prestes

Arumugam Swaminathan

Mohamed Taman

Anatole Tresch (Credit Suisse, Spec Lead)

1.2 Specification goals

Monetary values are a key feature of many applications, yet the JDK provides little or no support.
The existing java.util.Currency class is strictly a structure used for representing current
[1SO-4217] currencies, but not associated values or custom currencies. The JDK also provides
no support for monetary arithmetic or currency conversion, nor for a standard value type to
represent a monetary amount.

0.8 (Public Review 2) 8



Java Money Specification

1.2.1 Specification Targets

JSR 354 targets to support all general application types, e.g.

eCommerce

banking

financial

investment

insurance and pension

ERP systems

etc.

This specification will not discuss low latency concerns as required for example by algorithmic
trading applications. Nevertheless the APl was designed to support different implementations of
monetary amounts and allows to be extended in several ways. So it should be flexible enough
that corresponding implementations can be used transparently to accommodate such
applications.

1.3 Scope

JSR 354 targets a standalone scope. Nevertheless it may be included into the JDK later, so its
design and scope must consider integration into the JDK. Additionally the work on the JSR has
shown, that it is possible to define a flexible and comprehensive API that is also compatible with
most Java ME profiles. Since with the Internet of Things small devices are getting more
important, and there is high probability that monetary aspects must be implemented, the expert
group decided to keep the API independent of JDK artifacts that are not supported on ME,
especially java.math and java. text. Nevertheless the reference implementation is free to
use existing functionalities and the JSR also includes requirements (also checkable by the TCK)
to ensure a minimal set of functionalities on Java SE.

During the development of the JSR a wide set of features were implemented. Most of these
features will not end up within the JSR itself, as the JSR now has scope limited to interoperation,
enabling feature innovation elsewhere. The corresponding libraries were published under
[JavaMoney] as an Apache 2 licensed open source project. Compared to the early draft review
the following features are no longer in the scope of the JSR:

currency conversion'

complex formatting (replaced by a simple formatter for amounts)

region API

validity API

predicate API

additional financial functions

Though the features above were removed from the JSR, their development ensured that scope

o O O O O

' Refer also to section Currency Conversion for further details,

0.8 (Public Review 2) 9



Java Money Specification

was fully evaluated and that the parts best suited to standardization were identified. Where
beneficial to the community parts of the JavaMoney project may also use Java 8 features like
Lambdas when Java 8 goes final, while the JSR remains backward-compatible with Java 7 in
first release, see below.

1.4 Required Java version

The specification is based on Java SE 7.0 language features. Implementations may target any
suitable Java SE version, or given an increasing SE/ME correlation also matching ME versions
like CLDC 8.

Hereby this decision was done with caution. There are many financial applications and products
that will require years until they were migrated to Java 8. Depending on Java 8 on the API side,
would make it impossible to use them in such scenarios for a very long time and would definitely
decrease the adoption rate of this JSR significantly. Additionally there are only a few aspects
within the API that would be affected by building everything right based on Java 8. Especially the
usage of functional interfaces is already part of this specification and will be supported without
any change, when this JSR is used with Java 8. Another aspect is the usage of JSR 310 date
and time types. This JSR does not depend on these types in the API, but provides mechanisms
to enable usage of these types. One reason is that it has shown highly arguable if JSR 310 will
be included into the Java ME at a later stage due to several reasons. So the decision was to
avoid usage of that types, for wider compatibility of the JSR with different runtime environments.

1.5 How this document is organized

There are five main section in this document:
Use cases.

Requirements.

Specification.

Implementation Recommendations.
An appendix.

0.8 (Public Review 2) 10



Java Money Specification

2. Use Cases

This section describes some, but not all, of the use cases that should be covered with this JSR.

2.1 Scenario eCommerce (Online-Shop)

One basic scenario that must be covered is a traditional web shop. Hereby products are
presented and collected in a shopping cart. Each product can be added once or multiple times to
the cart. Some sites also need to represent non integral amounts, such as 1.5kg of a product.
Additionally a site may be internationalized handling multiple currencies, perhaps controlled by
user settings or address.

Summarizing this scenario implies the following requirements:

e Prices for each item must be modelled by some monetary amount, representing a
numeric amount in a single currency.

e The prices for all items in the cart must be calculated, this requires sum up all monetary
amounts.

e The user may change the number of each items to purchase, either by defining an
integral number (e.g. 2 products) or a decimal point number (e.g. 1.5 kg). This requires
multiplication with integer and decimal numbers.

e Each item’s price must be presented to the customer with the required target currency
and in the format expected. This requires formatting of amounts and currencies
according to the user’s Locale.

e When changing the currency of a shopping cart, the catalog prices must be recalculated
in the new target currency. This requires accessing an exchange rate to be used and
calculating the item amounts with the new currency, including multiplication and division.

e When a customer finally places an order, the total amount must be calculated, which
may involve tax calculation. This also requires multiplication of prices and rounding to a
bookable amount (depending on the target currency).

e Finally the amount to withdrawn from the credit card must be passed to a server system,
that handles credit card payment. This includes serialization of the amount.

2.2 Scenario Trading Site

On a financial trading system or a site displaying several financial information such as quotes,
additional aspects must be considered. Basically, since for real time data must be paid, often
data is displayed that is so called deferred. Customers may be able to create virtual portfolios
with arbitrary instruments for simulation of investment strategies. To estimate a possible
investment historic charts and timelines are shown, which includes current, as well as statistical
data. Depending on the simulated investment also different precisions of the monetary amounts
must be possible. Finally also for evaluation of complex investment strategies or products very
detailed arithmetic precision may be required.

Summarizing this scenario implies the following requirements:

0.8 (Public Review 2) 11



Java Money Specification

e A monetary amount representing a stock quote or other financial instrument, may have
arbitrary additional data attached, such as mapped quote keys, the origin stock
exchange, the accuracy of the of data (validity, current or deferred), as well as the data’s
provider. Additionally the internal logic typically requires that the data types used, such as
currencies and exchange rates, can be extended with additional data, that is specific to
the concrete use cases/implementation.

e An exchange rate can be current, deferred or even historic and typically has a defined
validity scope.

e Legal requirements may restrict the information presented (e.g. the currencies available)
to the user based on several aspects:

o geographic location of the client

o legal aspects, such as the client’s contract

o others
This implies that access to financial data may be restricted based on several not predictable
classifications that must not match a country or locale.

2.3 Scenario Virtual Worlds and Game Portals

Virtual worlds, e.g. online games, define their own game money (but also Facebook has its own
money). User’s may obtain such virtual money by paying some real amount, e.g. by credit card.
This usage scenario implies the following requirements:
e |t must be possible to model completely virtual currencies. Since virtual money also can
be converted (paid) with real money, the price effectively defines an exchange rate.
e Since several virtual game portals exist, also the number of virtual currencies can not be
foreseen. Additionally a virtual world may even define different currencies (e.g. Bitcoin).
e Since such exchange rates may change during time, historization must also be
supported.

2.4 Scenario Social Markets

Within social markets things are exchanged using a completely virtual currency, which has no
relation to any real currency. It is used as an arbitrary measurement of something meaningful
only to that social community. This usage scenario implies the following requirements:
e |t must be possible to model virtual currencies that are able to completely replace any
real currency schemes.

2.5 Scenario Banking & Financial Applications

Applications in financial institutes, such as a bank or insurance companies must model
monetary information in several ways: exchange rates, interest rates, stock quotes, current as
well as historic currencies must be supported. Typically in such companies also internal
systems exist that define additional schemas of financial data representation, e.g. for historic
currencies, exchange rates, risk analysis etc. Often such aspects can not be covered by the

0.8 (Public Review 2) 12



Java Money Specification

ISO 4217 currency standard. As example imagine historic currencies, such as “Deutsche
Reichsmark”, gold nuggets or even completely other things.
Additionally also within [ISO-4217] there are countries in Africa that share a common ISO code
(e.g. CFA), but nevertheless have different banknotes and coins per country. Also there are
ambiguities that may be confusing, such as USD, USS, USN, which all describe US dollars.
This usage scenario implies the following requirements:
e Currencies as well as exchange rates must be historic, and define their time validity
range. The same may also be true for rounding algorithms.
e Customized or legacy system in big financial institutions may define additional, arbitrary
currency variants.
e Such system may have additional data not covered by the JSR’s currency model, so it is
important that the model will be designed to be extendible.
e Currencies of different type, must be mappable to each other.

2.6 Scenario Insurance & Pension

Complex calculation models are used within insurance and pension solutions, e.g. for scenario
simulation and forecasting. Different countries, companies or even investment strategies, have
rather different models implemented, that also may change quickly dependent on legal changes.
Such systems are built of several isolated building blocks of different granularity size and
complexity, starting from simple totalization of amounts until to complex investment strategy
forecasts on an enterprise level. Such systems imply the following requirements:

e Building blocks should be modelled/organized in a common repository and accessible by
a common API, that also allows introspection of the functionality available. This is a
precondition so insurance solutions can reuse the blocks for modeling the required
business cases.

e Input and Output data of calculations can be multivalued, e.g. for forecast scenarios, or
statistical data. Hereby the (value) types used can be completely different, such as
numbers, amounts, currencies, strategy identifiers, dates, time ranges, interest and
exchange rates etc. So there must be a structure to model such compound data.

0.8 (Public Review 2) 13



Java Money Specification

3. Requirements

3.1 Core Requirements

Based on the scope and use cases described above the following core requirements can be
identified:

1.
2.

The JSR must provide an API for handling and calculating with monetary amounts.

The JSR must support different numeric capabilities and guarantees to be provided by
the monetary amount implementations. These data is called monetary context and must
be accessible from an amount instance during runtime.

The JSR must specify a minimal set of interfaces for interoperability, since concrete
usage scenarios do not allow to define an implementation that is capable of covering all
aspects identified. Consequently it must be possible that implementations can provide
several implementations for monetary amounts.

The JSR must specify extension points for adding additional logic, e.g. for extending the
arithmetic capabilities, rounding etc.

The API for monetary amounts must allow to externalize the numeric part of an amount
to the most useful representation on a runtime platform. Similarly it must be possible to
create a new amount instance using an existing amount as a template, hereby changing
currency and/or numeric part as required. This ensures maximal portability and allows
externalization of complex financial calculations.

The JSR must provide a minimal set of roundings. This should include basic roundings
for ISO currencies, or roundings defined by a monetary context.

The JSR must also support arbitrary custom roundings.

3.2 Formatting Requirements

It must be possible to format and parse monetary amounts. Therefore the JSR defines a
MonetaryAmountFormat, which;

1.

gk wbd

can format an amountinto a String orinto an Appendable.

can parse an amount from a CharSequence input.

supports different formatting styles and placement strategies for the currency part.
supports flexible number formatting similar to java.text.DecimalFormat.
supports flexible grouping sizes and different grouping separators, so, e.g. also Indian
Rupees, can be formatted correctly?.

supports rounding of amounts for display and reverse rounding during parsing.

3.3 EE and ME Support

2 java.text.NumberFormat only supports a fixed grouping size, e.g. 3. Indian Rupees have different
grouping sizes applied, e.g. INR 12,34,56,000.21

0.8 (Public Review 2) 14



Java Money Specification

1.

This JSR must avoid restrictions that prevents its use in different runtime environments,
such as EE or ME. Thus e.g. direct references to elements in java.math and
java.text which is not supported by Java ME so far must be avoided.

3.4 Non Functional Requirements

1.

Since this JSR may be a good candidate to be included into the JDK later, any possible
extensions to the Java platform must be fully backward compatible.

Implementation requirements for currencies must require only minimal (if any) extensions
on the existing Jjava.util.Currency.

The JSR must be self-contained, meaning it must be possible to use the JSR, without
acquiring of external resources, e.g. accessing resources in the internet.

Interfaces defined should enable interoperability between different implementations, both
for data as well as functional interoperability. The interfaces must cover all typical use
cases, so casting to concrete types should not be necessary normally.

The API for monetary amounts must not expose its concrete numeric internal
representation during compile time.

Where feasible method naming and style for currency modelling should be in alignment
with parts of the Java Collection APl or java.time /[JodaMoney]:

a. same method name prefixes - of () for all factories, unless their inheritance e.g.

from java.lang.Enum - mandates otherwise, such as valueOf ().

b. basic creational factory methods with little/no conversion are named of (.. .)

c. more complex factory methods, with some conversion, or requiring a specific

name for clarity are named ofXxx (.. .)

d. factories that extract/convert from a broadly specified input (where there is a good

chance of error) are named from(...)

e. parsing is explicitly named, as it is generally special, named parse (.. .)

f. overall monetary API "feel" should be similar to java.math.BigDecimal.
POSIX timestamps (the JSRs relies on millisecond resolution as returned by
System.currentTimeMillis ())in APIs must be modelled as 1ong. SPIs are
allowed to model timestamps as java.lang.Long, to support null, when a
timestamp is not defined. As several use cases for this JSR include (business) critical
software like real time trading and similar systems, those usually must be independent of
local time or system time that could be manipulated. Thus no untrusted time sources
like System.currentTimeMillis (), java.util.Date orJava 8 equivalents like
LocalTime and similar types are permitted. The JSR is not responsible for providing a
reliable time source, but where required the use of UTC time stamps makes it
compatible with relevant reliable time sources, e.g. atomic clock servers, etc.

Though performance aspects can not directly targeted by this JSR, it is important that the
JSR considers performance aspects, where possible, so provided implementations are
able optimizing performance as required by the usage scenarios they are targeting.

0.8 (Public Review 2) 15



Java Money Specification

4. Specification

4.1 Package and Project Structure

4.1.1 Package Overview

The JSR defines three packages:

e javax.money contains the main artifacts, such as CurrencyUnit,
MonetaryAmount, MonetaryOperator, MonetaryQuery, accessors for
rounding etc.
javax.money.format contains the formatting artifacts.
javax.money.spi contains the SPI interfaces provided by the JSR 354 API and the
bootstrap logic, to support different runtime environments and component loading
mechanisms.

4.1.2 Module/Repository Overview

The JSR’s source code repository under [Source] provides several modules:

money-api contains the JSR 354 API as described also be this specification.

moneta contains the reference implementation®

money-tck contains the technical compatibility kit (TCK)*

javamoney-parent is a root “POM” project for all modules under “org.javamoney”.

This includes the RI/TCK projects, but not jsr354-api.

e Jjavamoney-1ib contains a financial library (JavaMoney) adding comprehensive
support for several extended functionalities, built on top of this JSR, but not part of the
JSR.

e javamoney-examples finally contains the examples and demos, and also is not part of
this JSR.

3 Note that the reference implementation is not a required be part for public review, so it may still change.
4 Note that the TCK is not a required part for public review.

0.8 (Public Review 2) 16



Java Money Specification

4.2 Money and Currency Core API

The package javax.money contains the types representing currencies and monetary
amounts, the core exceptions as well as supporting types for rounding and the extensions API.
Hereby the main artifacts are as follows:

O javax.money.MonetaryAmount @ javax.money.CurrencyUnit
getCurrency(): CurrencyUnit @ getCurrencyCode(): String
getMonetaryContext(): MonetaryContext /‘ @ getNumericCode(): int
getNumber(): NumberValue @ getDefaultFractionDigits(): int|

query(guery: MonetaryQuery<R>): R

with(operator: MonetaryOperator): MonetaryAmount
getFactory(): MonetaryAmountFactory<? extends MonetaryAmount > 2 getCurrency(): CurrencyUnit
isGreaterThan(amount: MonetaryAmount): boolean
isGreaterThanOrEqualTo(amount: MonetaryAmount): boolean @ javax.money.NumberValue
isLessThan{amount: MonetaryAmount): boolean a_serialVersionUID: long
isLessThanOrEqualTo(amt: MonetaryAmount): boolean e getNumberType(): Class<?>
iskqualTo(amount: MonetaryAmount): boolean ® getPrecision(): int

isNegative(): boolean @ getScale(): int

isNegativeOrZero(): boolean " e intValueExact(): int

isPositive(): boolean @ longValueExact(): long
isPositiveOrZero(): boolean @ doubleValueExact(): double

isZero(): boolean @ numberValue(numberType: Class<T>): T

signum(): int @ numberValueExact(numberType: Class<T>): T|
add{amount: MonetaryAmount): MonetaryAmount

subtract(amount: MonetaryAmount): MonetaryAmount @ javax.money.NumberSupplier

O javax.money.CurrencySupplier

multiply(multiplicand: long): MonetaryAmount & getNumber(): NumberValue @ javaxmoney.MonetaryException
multiply(multiplicand: double): MonetaryAmount a_serialVersionUID: long

multiply(multiplicand: Number): MonetaryAmount & MonetaryException(message: String)

divide(divisor: long): MonetaryAmount © javaxmoney MonetaryOperator & MonetaryException(message: String, cause: Throwable)
divide(divisor: double): MonetaryAmount ® apply(value: T): T

divide(divisor: Number): MonetaryAmount

remainder(divisor: long): MonetaryAmount @ javaxmoney.MonetaryQuery <R>

remainder(divisor: double): MonetaryAmount — e queryFrom(amount: MonetaryAmount): R

remainder(divisor: Number): MonetaryAmount
divideAndRemainder(divisor: long): MonetaryAmount[]
divideAndRemainder(divisor: double): MonetaryAmount([] O javax.money.MonetaryAmountFactory<T extends MonetaryAmount:
divideAndRemainder(divisor: Number): MonetaryAmount[]
divideTolntegralValue(divisor: long): MonetaryAmount
divideTolntegralValue(divisor: double): MonetaryAmount
divideTolntegralValue(divisor: Number): MonetaryAmount
scaleByPowerOfTen(power: int): MonetaryAmount L
abs(): MonetaryAmount

negate(): MonetaryAmount

plus(): MonetaryAmount
stripTrailingZeros(): MonetaryAmount

getAmountType(): Class <7 extends MonetaryAmount >
setCurrency(currencyCode: String): MonetaryAmountFactory<T=
setCurrency(currency: CurrencyUnit): MonetaryAmountFactory<T>
setNumber(number: double): MonetaryAmountFactory<T>
setNumber(number: long): MonetaryAmountFactory<T>
setNumber(number: Number): MonetaryAmountFactory <T>
setContext(monetaryContext: MonetaryContext): MonetaryAmountFactory <T=
setAmount(amount: MonetaryAmount): MonetaryAmountFactory<T>
create(): T

getDefaultMonetaryContext(): MonetaryContext
getMaximalMonetaryContext(): MonetaryContext

® ®© ®© ¢ © © © © ¢ © O © © © © O O © O © O O O O O O O O O O O O O O O O O O O

FFFFFEFEFRFFR

® javax.money.MonetaryContext ® javax.money.MonetaryException
@ getPrecision(): int e serialVersionUID: long
@ isFixedScale(): boolean & MonetaryException(message: String)
@ getMaxScale(): int & MonetaryException(message: String, cause: Throwable)

@ getAmountType(): Class <7 extends MonetaryAmount:=

@ getAmountFlavor(): AmountFlavor

@ getAttributes(): Map <Class,Object>

@ getAttribute(type: Class<A=): A

@ getAttribute(type: Class<A>, defaultValue: A): A

@ getAttributeTypes(): Set<Class>

@ hashCode(): int

@ equals(obj: Object): boolean

@ from(context: MonetaryContext, amountType: Class<? extends MonetaryAmount>): MonetaryContext
@ toString(): String

e CurrencyUnit models the minimal properties of a currency.
e MonetaryAmount defines what an amount?s capabilities are. It provides interoperability

0.8 (Public Review 2) 17



Java Money Specification

between different implementations on functional level. Interoperability on data level is
ensured by getNumber () and getCurrency (). As a consequence amount can be
implemented in different ways, focusing on the behavioural and data representation
requirements implied by the concrete use cases.

NumberValue returns the numeric part of an amount, so it can be accessed and
externalized in different ways. Its purpose is to ensure maximal interoperability with
existing functionalities in the JDK. Therefore it also extends java.lang.Number.
NumberSupplier and CurrencySupplier model functional interfaces as defined
by JDK 8.

MonetaryOperator and MonetaryQuery model the extension points for monetary
logic. They allow to implement external functionalities, either adding operations returning
a MonetaryAmount (MonetaryOperator), or returning any arbitrary other value (
MonetaryQuery).

the MonetaryAmount factory finally represents an abstraction for creating new
instances of amounts. Besides setting an amount currency and number value, it allows
also to change the numeric capabilities, if the underlying implementation supports doing
this. The capabilities available for a concrete factory can be queried by accessing
maximal MonetaryContext.

MonetaryContext defines the numeric capabilities of an instance as an immutable
and platform independent type.

MonetaryException is the base exception class for the money API, it extends
RuntimeException.

The overview diagram above shows that the main abstraction is modeled as interfaces. There
are people that would argue, that concrete immutable value types should be used to model a
monetary amount. This topic was discussed intensively in the expert group, some of the aspects
considered include:

Using a concrete type as the model for a monetary amount implies a string relation to a
numeric representation. Unfortunately, as seen in the use cases and requirements
sections, performance and precision are conflicting requirements. Additionally, though
not explicitly in scope, low latency systems may even require amounts to be mutable to
able to cover the strong performance requirements. So modelling the amount as a
concrete type would effectively prevent the flexibility that is required.

Also using self-referencing template parameters was considered. The disadvantage is
that you still have to know the concrete class. In that case you could also use the
concrete class directly, instead of using non trivial generics semantics. Additionally in
many cases these complex semantics would lead quite probably to broad usage of raw
types, which will make the design quite counterproductive.

So finally the interface based design gives maximum flexibility, ensures interoperability on
data and operational level and still does not prevent its use in high performance, low
latency scenarios. As a side effect it also allowed us to design it completely platform
independent. Though not primarily in focus the JSR 354 API is completely platform
independent.

0.8 (Public Review 2) 18



Java Money Specification

Nevertheless for an API to be complete, you need some type of concrete classes as entry
points. Since the APl is designed as a standalone APIs the singleton accessor patterns are a
good choice, so also this API provides according accessor classes:

@ javax.money.MonetaryCurrencies @ javax.money.CurrencyUnit
& MonetaryCurrencies() T =

@ getCurrency(currencyCode: String): CurrencyUnit
@ getCurrency(locale: Locale): CurrencyUnit

@ isCurrencyAvailable(code: String): boolean

@ isCurrencyAvailable(locale: Locale): boolean

<<c >
<<Use>>

® javax.money.MonetaryAmounts ‘ @ javaxmoney.MonetaryAmountFactory<T extends MonetaryAmounts

& MonetaryAmounts()
<<crgatess >
@ _getAmountFactory(amountType: Class<T>): MonetaryAmountFactory <T >
@ getAmountFactory(): MonetaryAmountFactory<?> <<Rounding>>
@ _getDefaultAmountType(): Class<? extends MonetaryAmount > © javax.money.MonetaryAmount

@ _getAmountTypes(): Set<Class<? extends MonetaryAmount > >
@ _gueryAmountType(requiredContext: MonetaryContext): Class<? extends MonetaryAmount>

© javax.money.MonetaryRoundings SLLIRS

© javax.money.MonetaryOperator

& MonetaryRoundings()

@ _getRounding(): MonetaryOperator

@ _getRounding(monetaryContext: MonetaryContext): MonetaryOperator

@ _getRounding(currency: CurrencyUnit): MonetaryOperator

@ getCashRounding(currency: CurrencyUnit): MonetaryOperator
@_getRounding(currency: CurrencyUnit, timestamp: long): MonetaryOperator

@ _getCashRounding(currency: CurrencyUnit, timestamp: long): MonetaryOperator|
@ _getRounding(customRoundingld: String): MonetaryOperator
@_getCustomRoundinglds(): Set<String =

Basically the diagram above illustrates well the accessors available:

e MonetaryCurrencies provides CurrencyUnit instances.

e MonetaryAmounts provides factories for creating MonetaryAmount. To mention is
also a query functionality, where given a required MonetaryContext the best
matching implementation type can be queried.

e MonetaryRoundings finally provides access to roundings, modelled as
MonetaryOperator.

The following sections will describe these artifacts in more detail.

4.2.1 Modeling of Currencies

When thinking of monetary values it is inevitable to think on how a currency must be modeled.
Although the JDK already provides a java.util.Currency class, this JSR’s expert group
discussed, if the existing class is sufficient or what kind of additions are necessary.

Fortunately a minimal interface CurrencyUnit could be extracted, that models a subset of the
existing functionality on java.util.Currency, so the existing class could easily implement
the new interface. Compared to the interface does not provide methods for localizing a currency
instrances such as getDisplayName (Locale), getSymbol (Locale). This allows to

0.8 (Public Review 2) 19



Java Money Specification

separate the different concerns of data modelling and formatting. Modelling the currency as an
interface also has additional advantages:

e Aninterface can be implemented multiple times. There are use cases, where additional
data must be stored along the common currency data, which now can be done by
implementing according currencies.

e Interoperability between a standalone implementation of this JSR and the JDK’s
Currency class can be ensured, even when this JSR would be integrated into the JDK
later, since the references to the interface must not change.

So the interface for currencies is modelled only with 3 methods as follows:

public interface CurrencyUnit{
String getCurrencyCode();
int getNumericCode();
int getDefaultFractionDigits();

}

Hereby:

e The method getCurrencyCode () returns the unique currency code. Nevertheless
since CurrencyUnit also models non ISO currencies, the semantics for other
currency types may be different: For ISO currencies this will the 3-letter uppercase ISO
code. For non ISO currencies no constraints are defined.

e The numeric code returned by getNumericCode () is optional. If not defined it must be
-1.

e The default fraction digits define the typical scale of values with a given currency.

Implementations of CurrencyUnit
1. must implement equals/hashCode, considering the concrete implementation type and
currency code (which is defined to be unique).
2. must be comparable
must be immutable and thread safe.
4. must be serializable.

w

0.8 (Public Review 2) 20



Java Money Specification

4.2.2 Modeling of Monetary Amounts

Modeling of monetary amount agnostic to its concrete numeric representation was one of the
key design decisions. The final design is intended to provide for implementors to handle very
different use cases with distinct requirements. This was necessary since it has shown that
different usage scenarios of money can result in rather different requirements to the numeric
representation of amounts, which quite probably may not fit into one-fits-it-all implementation.
One key aspect is that a monetary amount is always related to its currency. Mixing of currencies
makes typically no sense for arithmetic operations on amount or, even worse, results in useless
and incorrect results.

As a consequence the properties and operations of monetary amounts for data and functional

interoperability are modelled by an interface, called javax.money.MonetaryAmount.

In general the following aspects are modelled:

e Data interoperability allowing access to the amount’s
o currency modeled as CurrencyUnit.
o number value, for externalization, modeled as NumbervValue.
o accessing basic numeric state such as negative, positive etc.

Methods for evaluating the numeric capabilities of the concrete type.

e Prototyping support for creating new amount instances based on the same
implementation, modeled by MonetaryAmountFactory.

e Comparison methods for comparing two arbitrary amounts of the same currency,
hereby comparing based on the (effective) numeric value (e.g. ignoring trailing zeroes).
Basic arithmetic operations like addition, subtraction, division, multiplication.
Functional exension points modeled as MonetaryOperator (returning amount
instances of the same implementation type) and MonetaryQuery (returning any result
type).

o

Summarizing the interface is defined as follows:
public interface MonetaryAmount{

CurrencyUnit getCurrency();
NumberValue getNumber();
MonetaryContext getMonetaryContext();

MonetaryAmountFactory<?> getFactory();

MonetaryAmount with(MonetaryOperator operator);

<R> R query(MonetaryQuery<R> query);

0.8 (Public Review 2) 21



Java Money Specification

boolean isGreaterThan(MonetaryAmount amount);

boolean isGreaterThanOrEqualsTo(MonetaryAmount amount);
boolean isLessThan(MonetaryAmount amount);

boolean isLessThanOrEqualsTo(MonetaryAmount amount);

boolean isEqualTo(MonetaryAmount amount);
boolean isNegative();

boolean isPositive();

boolean isZero();

int signum();

MonetaryAmount add(MonetaryAmount amount);
MonetaryAmount subtract(MonetaryAmount amount);
MonetaryAmount multiply(long amount);
MonetaryAmount multiply(double amount);
MonetaryAmount multiply(Number amount);
MonetaryAmount divide(long amount);

MonetaryAmount divide(double amount);
MonetaryAmount divide(Number amount);
MonetaryAmount remainder(long amount);
MonetaryAmount remainder(double amount);
MonetaryAmount remainder(Number amount);
MonetaryAmount divideAndRemainder(long amount);
MonetaryAmount divideAndRemainder(double amount);
MonetaryAmount divideAndRemainder(Number amount);
MonetaryAmount scaleByPowerOfTen(int power);
MonetaryAmount abs();

MonetaryAmount negate();

Hereby

e getCurrency returnthe amount’s currency, modelled as CurrencyUnit.
Implementations may co-variantly change the return type to a more specific
implementation of CurrencyUnit if desired.

e NumberValue getNumber () returns a NumberValue (discussed within the next
section) that models the numeric part of an amount for data interoperability.

e getMonetaryContext allows to access the monetary context of the numeric part,
similar to java.math.MathContext. The corresponding class is discussed later in
this document.

e |Instances of MonetaryOperator and MonetaryQuery<R> can be applied on a
MonetaryAmount instance by passing them to the with or query method. Whereas
an operator takes calculates a new amount based on a amount (an instance of an unary
function), a query can return arbitrary result types.

® 1isGreaterThan,isLessThan, isGreaterThanOrEqualTo etc model basic

0.8 (Public Review 2) 22



Java Money Specification

comparison methods, which are required to work also when comparing different
implementation types. This is possible, since the numeric representation as well as the
MonetaryContext can be accessed in a implementation agnostic way.

Also is important that the comparisons are based on the least significant numeric scale,
e.g. CHF 1.05and CHF 1.05000 are considered to be equal.

The rest of the methods model common arithmetic operations that are often used in
financial applications. Adding and subtracting hereby is only possible with amounts that
are of the same currency (aka being currency compatible®) that the amount on which the
operation is executed. The arithmetic methods should basically behave similar to
java.math.BigDecimal.

Implementation Requirements

The specification and interface do not define precisely how the amount is stored.
Implementations could use a BigDecimal, 1ong or something else. The only constraint is that
the numeric value can be exposed as NumberValue and thatthe MonetaryContext
returned reflects the numeric capabilities accordingly.

Implementations of MonetaryAmount (of type T)

1.

gk wbd

7.

must implement equals/hashCode, hereby it is recommended considering

a. Implementation type

b. CurrencyUnit

c. Numeric value, with any non significant trailing zeros truncated.

d. MonetaryContext
This also means that two different implementations types with the same currency and
numeric value are NOT equal. For comparing two MonetaryAmount instances during
financial calculations the amount’s comparison methods should be used. E.g.
isEqualTo must return true, if they have equal currencies and equal numeric values,
hereby ignoring non-significant trailing zeros and different monetary contexts.
must be comparable.
must be serializable.
should be immutable and thread safe.
To enable interoperability a static method from (MonetaryAmount) is
recommended to be implemented on the concrete type, that allows conversion of a
MonetaryAmount to aconcrete type T.

public static T from(MonetaryAmount amount);

Finally implementations should not implement a method getamount () . This method is
reserved for future integration into the JDK.
If the numeric representation allows to model -0, this value is also considered to be

5 Note that currency conversion is a complex aspect that can not be performed implicitly or automatically.
E.g. a conversion rate is dependent from the timestamp, the currencies involved, the provider, the amount ...

0.8 (Public Review 2) 23



Java Money Specification

isZero () ==true, and additionally should be equal to 0.

The interfaces, MonetaryOperator and MonetaryQuery<R>, provide a powerful extension
mechanism. The two interfaces operate as a form of the strategy pattern, allowing the algorithm
of a query or operation to be external to the implementation of MonetaryAmount. Their design
matches JSR-310.

This specification does no further constrain the constructor or factory methods to be
implemented, or the method signatures to be used.

4.2.3 Externalizing the Numeric Value of an Amount

In the previous section we have discussed the basic model of a monetary amount. For data
interoperability between different implementations it is very important that the numeric value of an
amount can be effectively be externalized. Hereby the API was aimed to be platform
independent, which disallows the usage of java.math.BigDecimal. Nevertheless simply
returning java.lang.Number, is also not desired, since conversion to known types may imply
rounding errors or truncation. So the solution was to extend java.lang.Number, since itis the
basic type used in the JDK, but adding additional methods that help users to better identify the
risks of different externalization operations and provide functionality for effective access to the
numeric data:

public abstract class NumberValue extends java.lang.Number{
public abstract Class<?> getNumberType();
public abstract int intValueExact();
public abstract long longValueExact();
public abstract double doubleValueExact();
public abstract <T extends Number> T numberValue(Class<T> numberType);
public abstract <T extends Number> T numberValueExact(Class<T> numberType);
public abstract int getPrecision();
public abstract int getScale();

Hereby

e getNumberType () provides information about the numeric representation used
internally. It does explicitly not constraint the type returned to be a subtype of
java.lang.Number to allows also alternate implementations used.

e intValueExact (), longValueExact (), doubleValueExact () extendthe
methods defined in java.lang.Number, with their exaxt variants. Exact means, that it
is required to throw an ArithmeticException, if the current numeric value must be
truncated to fit into the required target type.

e numberValue (Class) allows accessing the numeric value hereby defining the
required numeric representation type. If needed the numeric value may be truncated to fit
into the required type. The following types must be supported:

0 Integer, Long, Float, Double

0.8 (Public Review 2) 24



Java Money Specification

o If available in the current runtime environment also: Bigbecimal,
BigInteger

e numberValueExact (Class) works similarly to numbervalue (Class), but the
value returned must be exact. It is required to throw an ArithmeticException, ifthe
current numeric value must be truncated to fit into the required target type. The types
supported are similar to numbervalue (Class) .

e getPrecision (), getScale () allows to access the current precision and scale of
the numeric value.

4.2.4 Functional Extension Points: Operators and Queries

Since the model for monetary amounts only defines a minimal set of algorithmic functions and a
prototyping mechanism additional extension points are required to allow easily external
functionalities, e.g. more complex financial operations, being applied on amounts. This is
modelled by
e monetary operators, which model a function f(M1) -> M2, that converts an amount to
another amount, and
e monetary queries, which model a function f(M1) -> T, that converts an amount to any
type of result.

Monetary Operators

The interface javax.money.MonetaryOperator defines an arbitrary function a function
f(M1) -> M2, that converts an amount to another amount. Examples of such operations are
rounding or monetary calculations:

public interface MonetaryOperator{
<T extends MonetaryAmount> T apply(T amount);
}

Operators can be used to make any kind of change to the amount based on the original amount.
For example, the following requirements (not complete listing) would be covered:

e rounding of amounts

e currency conversion

e financial calculations

e other monetary conversions

Implementations of MonetaryOperator should be
e immutable and
e thread-safe

The operator is typically invoked on the instance of an amount, passing the operator as a
parameter.

0.8 (Public Review 2) 25



Java Money Specification

MonetaryAmount amount = ...
MonetaryOperator op = ...
MonetaryAmount result = amount.with(op);

Hereby, also looking at the signature, the returned (implementation) type must be the same as
the type passed. This is also the case, when working with interfaces, so given the example
above the following is required to be true:

amount.getClass()==result.getClass()

Fortunately this can be achieved easily, since the same constraint applies similarly
e to the type returned by the arithmetic operations on Monetaryamount (1).
e the type returned by the MonetaryAmountFactory accessible from each
MonetaryAmount (2).
So the following statements must always be true:
(1) amount.getClass() == amount.multiply(2.5).getClass()
(2) amount.getClass() ==
amount.getFactory().with(2.5).create().getClass()

The operator interface is equivalent to the UnaryOperator interface in JDK 8 which is a
functional interface suitable for use with lambdas.

Monetary Queries

The interface javax.money.MonetaryQuery models a function f(M7) -> T, that converts an
amount to any type of result:

public interface MonetaryQuery<R> {
R queryFrom(MonetaryAmount<?> amount);

}

Queries can be used to make any kind of query against the data held in the amount. For
example, the following requirements (not complete listing) would be covered:
e type conversion
e boolean queries (predicates), such as ‘is negative’, ‘is zero’ or ‘is currency widely
traded’
splitting the amount into smaller amounts
serialization to string/bytes
accessing the amounts currency or properties in a functional way.

Implementations of MonetaryQuery<R> should be
e immutable and
e thread-safe

0.8 (Public Review 2) 26



Java Money Specification

The query is typically invoked on the instance of the amount class, passing the query as a
parameter.

MonetaryAmount amount = ...
MonetaryQuery<Boolean> check4eyesPrincipleNeeded = ...

boolean is4eyesPrincipleNeeded = amount.query(check4eyesPrincipleNeeded);

The query interface is equivalent to the Function interface in JDK 8 which is a functional
interface suitable for use with lambdas.

4.2.5 The Monetary Context

This monetary context models the numeric capabilities of an monetary amount (implementation)

in a platform independent way. Though it is similar to java.math.MathContext for

BigDecimal itis far more flexible, since different implementations may add several attributes

that be relevant.

A monetary context (modeled as javax.money.MonetaryContext) is basically used on the

following distinct use cases:
e |t can be accessed on each instance of MonetaryAmount, hereby providing

information about the numeric capabilities of a concrete amount implementation

instance without having to reference to the concrete implementation class.
e Similarly a MonetaryContext can be passed to

MonetaryAmounts.queryAmountType (MonetaryContext ctx) to evaluate the
implementation type that is covering a required monetary context best (refer to the
section discussing the MonetaryAmounts singleton and the MonetaryAmountsSpi
SPI interface for further details on how the selection algorithm is specified). The returned
implementation type M (aka amount type) then can be used to acquire a corresponding

MonetaryAmountFactory<M> by calling

MonetaryAmounts.getAmountFactory (Class<M>) to create instances of the

given amount type M.

e Finally each MonetaryAmountFactory<T> allows creation of MonetaryAmount

instances, without passing a MonetaryContext instance explicitly. In such a case the

factory uses a default monetary context, accessible also by calling

getDefaultMonetaryContext () on the factory. Similarly the maximal supported

capabilities of a MonetaryAmountFactory<T> can be determined by calling
getMaximalMonetaryContext ().

The MonetaryContext is modeled as an immutable type as follows:

public final class MonetaryContext
implements Serializable{
public static enum Flavor{
PRECISE,

0.8 (Public Review 2)

27



Java Money Specification

PERFORMANT,
UNKNOWN

}

private MonetaryContext(Class<? extends MonetaryAmount> amountType, ...);

public int getPrecision();

public int getMaxScale();

public Flavor getAmountFlavor();

public <A> A getAttribute(Class<A> type);

public <A> A getAttribute(Class<A> type, A defaultValue);
public Map<Class,Object> getAttributes();

public Set<Class> getAttributeTypes();

public Class<? extends MonetaryAmount> getAmountType();

public final static class Builder{

}
}
Hereby
® getPrecision (), getMaxScale(), isFixedScale () define common numric
capabilities.

getAmountType () gives access to the amount’s implementation type used.
getAmountFlavor () allows to define a behavioural flavor, one of:

o PERFORMANT: the implementation is optimized for fast computation. In favour of
the performance optimization the precision and/or scale supported may be
limited.

o PRECISE: the implementation is optimized for providing correct result at all
possible, but it may not perform as well as performance optimized
implementations.

o UNDEFINED: itis not possible to define a clear flavor, the MonetaryContext is
used to determine the amount type that optimally suits the current requirements,
but no specific flavor is required. Amount factories that are

e alsoaMonetaryContext provides additional attributes, identified by the attribute’s
type. This creates a type safe interface for adding properties, without duplicating artifacts
or creating non portable dependencies.

The example below creates a MonetaryContext matching amount implementations
that are performance optimized, that have a maximal precision of 12, with a maximal
scale of 2 and should be rounded up. Interesting hereby is that though the type
java.math.RoundingMode is used (which would not available on Java ME), no API
dependency on Java SE is implied:

MonetaryContext ctx = new MonetaryContext.Builder()
.setMaxScale(2)

0.8 (Public Review 2) 28



Java Money Specification

.setFixedScale(true)

.setPrecision(12)
.setAttribute(RoundingMode.UP)
.setFlavor(AmountFlavor. PERFORMANT)
.build();

4.2.6 Creating Monetary Amount Instances

Basically new instances of monetary amounts can be created in different ways. One way® will be
by using factories, modeled by the interface javax.money.MonetaryAmountFactory<T>.
Instances can be obtained in different ways
e calling getFactory () on aninstance of MonetaryAmount, returns an instance that
is initialized with the current amount instance’s values, allowing for easily creation of
similar amount instances, with some or multiple properties changed. This is known as
using prototype pattern [Gof]. This is useful for MonetaryOperator implementations,
where the default operations available on MonetaryAmount are not sufficient for
implementing the logic/result required, or calculations are done externally and a new
amount is created with the numeric result of that calculation.
e the MonetaryAmounts singleton also provides access to
MonetaryAmountFactory instances, hereby also allowing to bind to a specific
implementation type:

MonetaryAmountFactory<MyMoney> fact = MonetaryAmounts.
getAmountFactory(MyMoney.class);
fact.withCurrency(“USD”).with(10.50);

MyMoney money = fact.create();

The signature of MonetaryAmountFactory is modelled as a builder also supporting a fluent
programming style:
public interface MonetaryAmountFactory<T extends MonetaryAmount> {

Class<T> getAmountType();
MonetaryContext getDefaultMonetaryContext();
MonetaryContext geMaximalMonetaryContext();

MonetaryAmountFactory<T> setCurrency(CurrencyUnit currency);
MonetaryAmountFactory<T> setCurrency(String code);
MonetaryAmountFactory<T> setNumber(double number);
MonetaryAmountFactory<T> setNumber(long number);
MonetaryAmountFactory<T> setNumber(Number number);
MonetaryAmountFactory<T> setContext(MonetaryContext ctx);
MonetaryAmountFactory<T> setAmount(MonetaryAmount amount);

® This is the mechanism that will be interoperabel and will be tested by the TCK for each registered amount
type and therefore is the recommended way of doing. Nevertheless it is still possible to define final value
types with static factory methods on it, additionally to this mechanism.

0.8 (Public Review 2) 29



Java Money Specification

T create();

}

Hereby

e create returns a new instance of T based on the current data set on the factory.

e IfnoMonetaryContext has been set explicitly a default MonetaryContext is used,
which can be determined by calling getDefaultMonetaryContext () .

e The maximal supported MonetaryContext can also be determined by calling
getMaximalMonetaryContext () .

e getAmountType () returns the amount implementation class that will be created by a
given factory instance.

e setAmount (MonetaryAmount) allow to initialize the factory with the values from any
arbitrary amount. If the amount passed hereby exceeds the maximal
MonetaryContext thatcan be supported, a MonetaryException must be thrown.

e the other setxxx methods allow to set other aspects of the MonetaryAmount to be
created, such as

o the CurrencyUnit (either directly or by passing a currency code)

o the number value, hereby if a numeric value passed, that exceeds the
representation capabilities of the targeted amount implementation (or more
precise: exceed the capabilities of the maximal MonetaryContext), the
following strategy should be implemented:

m If the current implementation supports extending the MonetaryContext
used, the MonetaryContext should be extended to accommodate the
precision and scale required, e.g. an implementation based on
java.math.BigDecimal, can be constrained to a
MathContext.DECIMALG4, but can be easily extended to support
bigger precisions.

m If the current implementation is not able to reflect the numeric value
required without doing any truncation, it must throw an
ArithmeticException.

4.2.7 Accessing Currencies, Amounts and Roundings

Accessing Currencies

The javax.money.MonetaryCurrencies singleton class implements an accessor for
CurrencyUnit instances. By default it is backed up by java.util.Currency, but allows
registration of additional currencies by implementing an instance of CurrencyProviderSpi
(explained later in this document).

0.8 (Public Review 2) 30



Java Money Specification

Hereby

public static CurrencyUnit getCurrency(String currencyCode){...}
public static CurrencyUnit getCurrency(Locale locale){...}
public static boolean isCurrencyAvailable(String code){...}

public static boolean isCurrencyAvailable(Locale locale) {...}

access is provided based on Locale, or by using the currency code. Implementations
must at least provide the same locales and codes as supported by
java.util.Currency.

additional CurrencyUnit can be added by registering instances of the
CurrencyProviderSpi as explained within the SPI section later.

whereas, similarto java.util.Currency accessing a currency that does not exist,
throws an T1legalArgumentException, the isCurrencyAvailable methods

allow to check if a currency code or Locale is defined.

One may consider also adding access to historic currencies here. The problem hereby is that

the existence of a currency is related to multiple attributes:

the target timestamp, when it should be valid, e.g. as UTC timestamp

the target country or region, as it was existing at that time

the timezones of the country or region, to determine the exact timeranges related to the
given target timestamp

additionally also countries change during history

Summarizing adding historic currency support was considered to be not appropriate for being

added to a core API. Nevertheless in the JavaMoney library historic currencies can be accessed,

related to corresponding countries, modeled as so called regions.

Accessing Monetary Amount Factories

The javax.money.MonetaryAmounts singleton class implements an accessor for
MonetaryAmountFactory instances. Hereby for not hard-coding the selection algorithm and
for enabling contextual behaviour in a EE context, the singleton is backed up by a
MonetaryAmountsSpi, that can be registered using the JSR’s Bootloader.

public static <T extends MonetaryAmount> MonetaryAmountFactory<T>
getAmountFactory(Class<T> amountType);

public static MonetaryAmountFactory<?> getDefaultAmountFactory();

0.8 (Public Review 2) 31



Java Money Specification

public static Set<Class<? extends MonetaryAmount>> getAmountTypes();
public static Class<? extends MonetaryAmount> queryAmountType(

MonetaryContext requiredContext);

Hereby
e getAmountFactory(Class) provides access to the corresponding

MonetaryAmountFactory<T> matching the amount type T.

e additionally a default MonetaryAmountFactory can be accessed, by calling
getDefaultAmountFactory (). Hereby the default type is the provided amount class
of the MonetaryAmountFactory with the highest priority (determined by the
Bootstrap implementation). This can be overridden by adding a

javamoney.properties file to the classpath as follows:

# Defaults for java money
H

T

javax.money.defaults.amount.class=my.fully.qualified.MonetaryAmountType

getAmountTypes () returns all amount implementation classes currently available.
Finally queryAmountType (MonetaryContext) allow to query the implementation
class that best covers the given required MonetaryContext.

Implementations of this JSR must at least provide one’ implementation of
MonetaryAmountFactoryProviderSpi with a query policy equal to
QueryInclusionPolicy.ALWAYS.

Accessing Roundings

Rounding is modeled by implementations of MonetaryOperator. Hereby beside
mathematical roundings, also non standard variants with arbitrary rules and constraints are quite
common in the financial area.

This JSR provides several roundings accessible from the
javax.money.MonetaryRoundings singleton based on:

1. atarget CurrencyUnit,. By default the rounding is based on the currency’s default
fraction units. Additionally also a cash rounding can be accessed, which may be different
than the default currency rounding (e.g. for CHF/Swiss Francs).

2. aMonetaryContext, which defines the maximal precision and scale. Where available
the MonetaryContext can have an additional attribute of type
java.math.RoundingMode, providing a definition of the required mathematical

" If MonetaryContext .AmountFlavor does not equal AmountFlavor.UNDEFINED, it is
recommended to provide also a second amount type, either with the alternate specified 2mountFlavor, or
with AmountFlavor.UNDEFINED, which then is used as default.

0.8 (Public Review 2) 32



Java Money Specification

3.

rounding. If not defined HALF EVEN rounding should be used.
aname (String), for customized roundings.

The MonetaryRoundings singleton provides access to all these roundings with a couple of
methods:

public static MonetaryOperator getRounding();
public static MonetaryOperator getRounding(MonetaryContext context);
public static MonetaryOperator getRounding(CurrencyUnit currency);
public static MonetaryOperator getCashRounding(CurrencyUnit currency);
public static MonetaryOperator getRounding(CurrencyUnit currency,
long timestamp);
public static MonetaryOperator getCashRounding(CurrencyUnit currency,
long timestamp);
public static MonetaryOperator getRounding(String customRoundingld);
public static Set<String> getCustomRoundinglds();

Hereby,

getRounding () returns a general rounding instance that is dynamically implementing
the default currency rounding, as required by the currency passed, when called.
getRounding (CurrencyUnit) returns the default rounding for the given
CurrencyUnit, whereas getCashRounding (CurrencyUnit) returns the cash
rounding for the given currency, which may be different from the default rounding. E.g. for
Swiss Francs the cash rounding will be in 5 minor unit steps: 1.00, 1.05, 1.10

etc..

getRounding (CurrencyUnit, long), getCashRounding(CurrencyUnit,
long) provide access to currency related rounding and cash rounding for a certain
timestamp.

getRounding (int, RoundingMode) returns a general mathematical rounding
instance.

finally getCustomRounding (String) allows to access custom roundings, as
defined by the registered RoundingProviderSpi implementations.
getCustomRoundingIds () provides access to the names of the currently registered
custom roundings.

4.2.8 Additional Functional Support

Though this JSR is too early to be built using JDK 8, functional aspects are already considered in
its design. For example monetary operators and monetary queries basically are functional
interfaces. Additional access the the numeric part as well as to the currency of an amount is

0.8 (Public Review 2) 33



Java Money Specification

modeled with corresponding functional interfaces:

CurrencySupplier
The interface javax.money.CurrencySupplier is a functional interface (the
CurrencyUnit-producing specialization of a Supplier as defined in Java 8), whose
functional method is getCurrency () :

/I @Functionallnterface

public interface CurrencySupplier {
CurrencyUnit getCurrency();

}
Hereby

e There is no requirement that a distinct result be returned each time the supplier is
invoked.

NumberSupplier

The interface javax.money.NumberSupplier is a functional interface (the
NumberValue-producing specialization of a Supplier as defined in Java 8), whose functional
method is getCurrency () :

/I @Functionallnterface
public interface NumberSupplier {
NumberValue getNumber();

}

Hereby
e There is no requirement that a distinct result be returned each time the supplier is
invoked.

4.2.9 Exception Types

Javax.money.MonetaryException

javax.money.MonetaryException is a runtime exception, which models the base
exception for all other exceptions.. Any monetary exception added by an implementation must
inherit from this class.

javax.money.UnknownCurrencyException

This runtime exception extends MonetaryException and is thrown whenever
e a currency code given cannot be resolved into a corresponding CurrencyUnit
instance. The invalid currency code passed is provided as a property on the exception:
public String getCurrencyCode();

0.8 (Public Review 2) 34



Java Money Specification

e aLocale given cannot be resolved into a corresponding CurrencyUnit instance.

The unresolvalbe Locale passed is provided as a property on the exception:
public Locale getLocale();

4.3 Currency Conversion

Currency conversion is an important aspects when dealing with monetary amounts.
Unfortunately currency conversion has a great variety of how it is implemented. Whereas a web
shop may base its logic on an API provided by a financial backend, that make explicit conversion
even not necessary, in the financial industry, conversion is a very complex aspects, since

e conversion may be different based on the use case
conversion may be different based on the provided of the exchange rates
conversion rates may vary based on the amount to be converted
conversion rates may vary based on contract or business unit
conversion rates are different related to the target timestamp

Hereby this list is not complete. Different companies may have further requirements and aspects
to be considered.

4.3.1 MonetaryConversions Singleton

The API defines a singleton accessor, called MonetaryConversions, which provides access
to all different aspects related to currency conversion, such as
e access to providers that offer conversion (exchange) rates.
e access to conversion operators (extending MonetaryOperator), that can be used with
any MonetaryAmount instances.
e access to further information about the providers currently available.

The following sections give an overview about the functionalities in more detail. Similar to other
singletons in this API the singleton is backed up by a MonetaryConversionsSingletonSpi
SPI to allow customized (contextual) implementation of the functionalities defined. Refer to the
SPI section in this document for more details.

4.3.2 Converting Amounts

Basically converting of amounts is modelled by the CurrencyConversion interface which
extends MonetaryOperator. Hereby a conversion is always bound to a specific terminating
(target) currency. So basically a MonetaryAmount can simply be converted by

MonetaryAmount amount = .. .;
CurrencyConversion conversion = MonetaryConversions.getConversion(“CHF”);
MonetaryAmount amount2 = amount.with(conversion);

Using a fluent API style this can be written even shorter as:

0.8 (Public Review 2) 35



Java Money Specification

MonetaryAmount amount2 = amount.with(MonetaryConversions.getConversion(“CHF”));

A CurrencyConversion instance hereby also allows to extract the ExchangeRate
instances used:

CurrencyConversion conversion = MonetaryConversions.getConversion(“CHF”);
MonetaryAmount amount = .. .;
ExchangeRate rate = conversion.getExchangeRate(amount);

4.3.3 Exchange Rates and Rate Providers

The ExchangeRate models the details of a conversion applied:
the base and terminating (target) CurrencyUnit.
the conversion factor used® modeled as NumbervValue.
additional information if the rate is derived, meaning built up the result of rate chain. If a
rate is derived getExchangeRateChain () returns the rate chain that is used to
derive the given (final) exchange rate.

e aConversionContext, which can contain arbitrary additional information about the

provider that issued the rate and arbitrary further aspects concerning the rate/conversion.

We have seen in the previous section that an ExchangeRate can be obtained from a
CurrencyConversion. Hereby a currency conversion is backed up by an
ExchangeRateProvider. Such a provider allows
e toaccess ExchangeRate instances, providing a base and a terminating (target)
currency.
e toaccess CurrencyConversion instances, providing a terminating (target) currency.

Both functionalities allow additionally to pass a ConversionContext, which allow to pass any
additional attributes/parameters that may be required by a concrete ExchangeRateProvider
instance. This allows to support arbitrary complex use cases, as an example® an implementation
require/allow to pass

e the target amount
a customer id
a contract id
a fallback strategy
a deferred rate should be obtained

The parameters then can be included in an instannce ofConversionContext. This context
then can be used to pass additional parameters to all rate providers that answer a given
conversion query:

8 Note that the conversion rate can be dependent on the MonetaryAmount passed.
® This example is completely arbitrary.

0.8 (Public Review 2) 36



Java Money Specification

ConversionContext ctx = new ConversionContext.Builder()
.setRateType(RateType. DEFERRED).
.set(“customerID” 1234)

.set(“contractlD”, “213453-GFDT-02")
.set(FallbackStragey.PROVIDER)
.set(amount)

.create();

The built context then can be passed to parametrize the CurrencyConversion or
ExchangeRate instance as follows:

ConversionContext ctx = .. .;
CurrencyConversion conversion = MonetaryConversions.getConversion(“CHF”, ctx);

ExchangeRateProvider prov = MonetaryConversions.getExchangeRateProvider();
CurrencyConversion conversion = prov.getCurrencyConversion(“CHF”, ctx);
ExchangeRate rate = prov.getExchangeRate();

Important to understand is that its the responsibility of the used ExchangeRateProvider
implementation to interpret the attributes passed within a ConversionContext, Unknown
parameters should simply be ignored, since a provider can be used in a provider chain (explaned
later).

4.3.4 Provider Chains

Reading the previous sections one might ask, how multiple providers can be used or how an
individual rate provider can be accessed. In fact all the examples seen so far rely on the default
provider chain that may be accessed by calling

List<String> providerlds = MonetaryConversions.getDefaultProviderChain();

Hereby the chain contains an ordered list of provider names, which correspond to the provider
names that identify each registered ExchangeRateProvider uniquly. The provider name is
defined by each registered ExchageRateProvider and can be accesssed as a mandatary
attribute on the ProviderContext. Similar to the ConversionContext the
ProviderContext may contain additional data about the rate provider, such as the range and
type of rates provided etc. E.g. the output of the European Central Bank (ECB) provider context,
shipped with the moneta, reference implementation, prints out the following when accessing
toString():

ProviderContext [attributes={class java.lang.String={PROVIDER=Compound: ECB}}]

Each ProviderContext can also be obtained from the MonetaryConversions singleton,
passing the corresponding provider name:

0.8 (Public Review 2) 37



Java Money Specification

ProviderContext ctx = MonetaryConversions.getProviderContext(“ECB”);

As mentioned accessing a currency conversion or rate provider, without passing the providers
required defaults to default provider chain. So the following two statements are equivalent, given
the default chain is “ECB”, “IMF”, “ECB-HIST”:

/I equivlent calls when the default provider chain equals to

/[{*ECB"”, “IMF”, “ECB-HIST”}

CurrencyConversion conversion = MonetaryConversions.getConversion(“CHF”, ctx);

CurrencyConversion conversion = MonetaryConversions.getConversion(“CHF”, ctx,
“ECB”, “IMF”, ECB-HIST);

Within a provider chain, the first provider that returns a non-null result determines the final value
requested, e.g. the exchange rate to be used to calculate the currency conversion. By passing
the chain or providers to be used different usage scenarios can be easily separated/supported,
but still kepping the API simple for the trivial use cases. Finally additional methods on the
MonetaryConversions singleton allow to get more information on the providers available in
the current context:

public static Collection<String> getProviderNames();
public static boolean isProviderAvailable(String providerName);

4.4 Money and Currency Formatting API

The formatting aspects modeled by several artefacts. Hereby some similarities with artifacts
from JDK’s java.text package are not accidentally. Basically the formatter instance behaves
similarly (e.g. is also mutable), whereas the underlying style and symbols were modeled as
immutable value types.

Hereby like to the core APIs of the JSR a MonetaryFormats singleton provides access to the
formatter instances:

@ javax.money.format.MonetaryFormats

& MonetaryFormats()

@_getAmountFormat(locale: Locale): MonetaryAmountFormat
@_getAmountFormat(style: AmountStyle): MonetaryAmountFormat
@ _getAvailableLocales(): Set<locale>

13\ 3 M s F
create ! @ javax.maney format MonetaryAmountFormat

The following model illustrates the types involved:

0.8 (Public Review 2) 38



Java Money Specification

© javax. money.format.MonetaryAmountFormat

@ getDefaultCurrency(): CurrencyUnit

@ setDefaultCurrency(currency: CurrencyUnit): void

@ getAmountStyle(): AmountStyle

@ setAmountStyle(style: AmountStyle): void

@ getMonetaryContext(): MonetaryContext

@ setMonetaryContext(context: MonetaryContext): void

@ format{amount: MonetaryAmount): String

@ print(appendable: Appendable, amount: MonetaryAmount): void

<<Exception>>
@ javax.money.format.MonetaryParseException

& MonetaryParseException{message: String, parsedData: CharSequence, errorindex: int)
& MonetaryParseException(parsedData: CharSequence, errorindex: int)

@ getErrorindex(): int

@ getlnput(): String

@ parse(text: CharSequence): MonetaryAmount
I Y

Fi

5

° _SYMBOL:

°_NUMERIC CODE:

¥ y
<<Enumz > <<ValueType> >
@ CurrencyStyle @ javax.money.format.AmountStyle
e _CODE: @ of(locale: Locale): AmountStyle
o NAME:

@ getAvailableLocales(): Set<Locale>

@ getlocale(): Locale

@ getPattern(): String

@ getlocalizedPattern(): String

@ getCurrencyStyle(): CurrencyStyle

@ getSymbols(): AmountFormatSymbols

@ getDisplayConversion(): MonetaryOperator|
@ getParseConversion(): MonetaryOperator
@ getGroupingSizes(): int[]

@ toBuilder(): Builder

@ hashCode(): int

@ equals(obj: Object): boolean

@ toString(): String

<<(repte> >

ke ———————— ¢ getDecimalSeparator(): Character

<<Factory>>
@ javax.money.format AmountStyle.Builder

& Builder(style: AmountStyle)

& Builder(locale: Locale)

@ setDisplayConversion(conversion: MonetaryOperator): Builder
@ setSymbols(symbols: AmountFormatSymbols): Builder

@ setParseConversion(conversion: MonetaryOperator): Builder
@ setGroupingSizes(groupSizes: int[]): Builder

@ setPattern(pattern: String): Builder

@ withSymbols(symbols: AmountFormatSymbaols): Builder

@ setCurrencyStyle(currencyStyle: CurrencyStyle): Builder

@ build(): AmountStyle

@ toString(): String

<<ValueType> >
@ javaxmoney.format.AmountFormatSymbols

@ _of(locale: Locale): AmountFormatSymbols
@_getAvailablelocales(): Set<locale>

@ getlocale(): Locale

@ getZeroDigit(): Character

@ getGroupingSeparators(): char{]

@ getDigit(): Character

@ getPatternSeparator(): Character
@ getlinfinity(): String

@ getMinusSign(): Character

@ getExponentSeparator(): String
@ toBuilder(): Builder

@ toString(): String

< <Crepte > >

< <Factorys =

@ javaxmoney.format AmountFormatSymbols.Builder

& Builder(locale: Locale)

& Builder(symbols: AmountFormatSymbols)

@ setZeroDigit(zeroDigit: char): Builder

@ setGroupingSeparator(groupingSeparators: char[]): Builder
@ setDecimalSeparator(decimalSeparator: char): Builder

@ setInfinity(infinity: String): Builder

@ setDigit(digit: char): Builder

@ setPatternSeparator(patternSeparator: char): Builder
@ setMinusSign(minusSign: char): Builder

@ create(): AmountFormatSymbols

@ toString(): String

@ setExponentialSeparator(exponentialSeparator: String): Builder

The following section describe the relevant artifacts in more detail.

4.4.1 Formatting of Monetary Amounts

As defined in 3. Requirements, Implementations of this JSR must provide a formatter for

MonetaryAmount instances. Nevertheless formatting is a very complex field the JSR’s expert
group has decided to provide a simple formatting API only, which covers the following aspects:
1. Amount values can be rounded for display by applying a MonetaryOperator before

formatting/printing.

2. Similarly amount values can be operated after parsing by applying a

MonetaryOperator. This is the reciprocal operation to the display rounding above.

3. ltis possible to define number grouping with flexible group sizes and different grouping
characters. as for example needed to format INR'.
4. The currency part of an amount can be formatted in different ways:

0 INR 123456000.21 is formatted as INR 12,34,56,000.21

0.8 (Public Review 2)

39



Java Money Specification

as currency code, e.g. USD

as numeric currency code, if such a code is defined.

as a (localized) currency symbol, e.g. $

as a (localized) currency name, e.g. Schweizer Franken

5. The overaII formatting and parsing pattern can be defined similar to
java.text.DecimalFormat. As consequence, if defining a pattern without any
currency placeholder ‘=’ (*\u002a4"), the currency part can also be omitted from the
output.

o0 oo

In financial applications additional formatting requirements are quite common (see also
[JavaMoney]), but these aspects will be beyond the scope of this JSR.

Nevertheless most of the use cases should be coverable by the implementations of the
MonetaryAmountFormat interface:

public inteface MonetaryAmountFormat {
String format(MonetaryAmount<?> amount);
void print(Appendable appendable, MonetaryAmount<?> amount)
throws I0OException;
MonetaryAmount<?> parse(CharSequence text)

throws ParseException;

AmountStyle getAmountStyle();

void setAmountStyle(AmountSTyle amountStyle);
MonetaryContext getMonetaryContext();

void setMonetaryContext(MonetaryContext monetaryContext);
CurrencyUnit getDefaultCurrency();

void setDefaultCurrency(CurrencyUnit defaultCurrency);

Hereby
e an amount can be formatted to a String or an Appendable, or parsed from a
String.
e The details of the format are managed within an immutable 2mountStyle configuration
value object.

e AMonetaryContext defines which type of implementation should be returned as result
from a parsing operation.

e Adefault CurrencyUnit can be set, that will be used as a currency to create an
amount on parsing, when no currency information can be read from the input data.

0.8 (Public Review 2) 40



Java Money Specification

Similar to the formatters in the JDK implementations of this interface must not be thread-safe.
So use of them should be synchronized.
Examples

Given the API above, acquiring a MonetaryAmountFormat instance is simple, the most
simple usage is just creating one for a given Locale:

MonetaryAmountFactory<?> f = MonetaryAmounts.getDefaultAmountFactory();

MonetaryAmount amount = f.setCurrency(“CHF”).setNumber(12.50).create();

MonetaryAmountFormat format =
MonetaryAmountFormats.getAmountFormat(Locale. GERMANY);

String formatted = format.format(amount); // result: CHF 12,50

amount = f.setCurrency(“INR”).setNumber(123456789101112.123456).create();

formatted = format.format(amount); // result: INR 123.456.789.101.112,12

For Indian Rupees (INR) it would be, of course, better using the Indian number format and
different grouping sizes, for this we must first create the corresponding AmountStyle:

AmountStyle style = new AmountStyle .Builder(new Locale(*”,”INR”))
.withNumberGroupSizes(3,2).build();
MonetaryAmountFormat format = MonetaryAmountFormats.getAmountFormat(style);
MonetaryAmountFactory<?> f = MonetaryAmounts.getDefaultAmountFactory();
MonetaryAmount amount =
f.setCurrency(“INR”).setNumber(123456789101112.123456).create();
String formatted = format.format(amount);

/l result: INR 12,34,56,78,91,01,112.12

4.4.2 Configuring a Monetary Amount Formatter

Currency Style
The javax.money.CurrencyStyle is modeled as an enum type with the following values:

e CODE: render the currency code. Examples: CHF, USD

e NUMERIC CODE: render the numeric code, Examples: 62, 10, -1

e NAME: render the localized display name, use the currency code as default, if no
localized display name is present. Examples: Swiss Francs, Japanese Yen

e SYMBOL: render the localized currency symbol, use the currency code as default, if no

localized symbol is present. Examples: $, €, £

0.8 (Public Review 2) 41



Java Money Specification

Amount Style
The javax.money.format.AmountStyle defines how a MonetaryAmountFormat
instance should format and/or parse MonetaryAmount instances. Instances of AmountStyle

can be created using a AmountStyle.Builder. Summarizing the signatures look as follows:

public final class AmountStyle implements Serializable{

private AmountStyle(...);

[..]
public Locale getLocale();
public CurrencyStyle getCurrencyStyle();
public String getPattern();
public String getLocalizedPattern();

public AmountFormatSymbols getSymbols();
public MonetaryOperator getDisplayConversion();
public MonetaryOperator getParseConversion();
public int[] getGroupingSizes();
public Builder toBuilder();

public static final class Builder {
public Builder(Locale locale);
public Builder(AmountStyle amountStyle);
public Builder setCurrencyStyle(CurrencyStyle style);
public Builder setGroupingSizes(int... groupSizes);
public Builder setPattern(String pattern)
public Builder setSymbols(AmountFormatSymbols synbols);
public Builder setDisplayConversion(MonetaryOperator conversion);
public Builder setParseConversion(MonetaryOperator conversion);

public AmountStyle build();
[...]

Hereby the above summary illustrates quite well, what are the properties that define an amount

style:

0.8 (Public Review 2) 42



Java Money Specification

e alocale

e a pattern, defining the basic number format, similar as defined by
java.text.DecimalFormat.

e grouping sizes, allowing to set flexible grouping sizes. Hereby the order reflects the
grouping starting from the decimal point going up the significant digits. the last member of
the grouping definition is used for all subsequent grouping as a default. This can be easily
illustrated by setting the grouping characters to a, b, ¢ and rendering the amount
112233445566778899. Assuming a default grouping size and character this number
might be formatted as 11272337445 566’ 778’ 899. With the grouping characters
setto a, b, c this will be rendered as 112¢c233c445c566b778a899. Now applying
the same schema for grouping sizes, lets assume 3, 2, 5, 4, 1. This will lead in
combination with before to the following output: 1e1lc2ec2¢3344¢55667b78a8909.

e acCurrencyStyle, defining the basic currency format of the currency being rendered.

e aMonetaryOperator to be applied as display conversion, applied before the amount
is formatted or printed.

e aMonetaryOperator to be applied as parse conversion, after the amount was
parsed, e.g. for performing a symmetric reverse conversion to the rounding done during

formatting.

4.4.3 Accessing Monetary Amount Formats

The class javax.money.format.MonetaryFormats models a singleton accessor for
MonetaryAmountFormat instances as provided by the
MonetaryAmountFormatProviderSpi instances registered. It provides access to
MonetaryAmountFormat instances based on

e alocale, or

® an AmountStyle.

It defines the following access methods:

public static MonetaryAmountFormat getAmountFormat(Locale locale);
public static MonetaryAmountFormat getAmountFormat(AmountStyle amountStyle);

public static Set<Locale> getAvailableLocales();

4.4.4 Formatting Exceptions

0.8 (Public Review 2) 43



Java Money Specification

Jjavax.money.format.MonetaryParseException

This runtime exception extends MonetaryException and is thrown whenever a
MonetaryAmount could not be parsed successfully. It provides hereby additional info:
e the original input String passed to the MonetaryAmountFormat.
e the error index within the input String, where parsing failed unrecoverably.

4.5. Money and Currency SPI

JSR 354 defines a complete API and provides a default reference implementation. An
implementation of this APl must provide several implementation services, called the SPI, to
provide the effective functionality. The following diagram illustrate the SPIs in place:

<<Singleton>> <<Singleton>> <<Singleton>>
@ javax.money.MonetaryCurrencies @ javax.money.MonetaryAmounts @ javax.money.MonetaryRoundings
K \

<<SPI>> <<SPI>>
<<SPl>>
@ javaxmoney.spi.MonetaryAmountsSp @ javaxmoney.spi.RoundingProviderSp
© javaxmoney.spiCurrencyProviderSp

= — ——— G > getAmountFactory(amountType: Class<1>): MonetaryAmountFactory<T> & getRounding(currency: CurrencyUnit): MonetaryOperator
© getCurrencyUnit(currencyCode: String): CurrencyUniy © getDefaultAmountType(: Class <? extends MonetaryAmounts o getRounding(currency: CurrencyUnit, timestamp: long): MonataryOperator
elgstainencyt iflocalelocal eHGurency i) © getAmountTypes(: Set <Class<? extends MonetaryAmount> > o getCashRounding(currency: CurrencyUnit: MonetaryOperator

© queryAmountType(requiredContext: MonetaryContext): Class<? extends MonetaryAmount> o getCashRounding(currency: CurrencyUnit, timestamp: long): MonetaryOperator
e 7 o getCustomRounding(customRoundingld: String): MonetaryOperator
° ; & getRounding(menetaryContext: MonetaryContext): MonetaryOperator
Javaxmoney.spiMonetaryl ogger o getCustomRoundinglds(: Set<String>

© logDebug(message: String): void <<sPI>>

© logDebug(message: String, t: Throwable): void @ javax.money.spi.MonetaryAmountFactoryProviderSpi<T extends MonetaryAmount-
@ loglnfo(message: String): void

© logWaming(warning: String): void

© getQuerylnclusionPolicy(: QuerylnclusionPolicy
@ getAmountType(: Class<T>

© createMonetaryAmountFactory(: MonetaryAmountFactory<T>
© getDefaultMonetaryContext(: MonetaryContext

© getMaximalMonetaryContext(: MonetaryContext

o logEror(message: String, t: Throwable): void
© isDebugEnabled(: boolean
© isWarningEnabled(): boolean

<<Singleton>>

@ javaxmoney.formatMonetaryFormats @ javaxmoney.format AmountStyle (<> ‘ @ javax.money.formatAmountFormatSymbols

EY v ki
‘ @ javaxmoney.spi.MonetaryAmountFormatProviderSp | <<SPl>> <<SPl>>
— — 0ia o yleProv 0ja - F : Prov
[ etmauntromatiormatsyie: AmauiSiie: MonetaryAmountFarmal] javaxmoney.spiAmountStyleProviderspi javax.money.spi.AmountFormatSymbolsProviderSpi
® getAmountStyle(locale: Locale): AmountStyle o getAmountFormatSymbols(locale: Locale): AmountFormatSymbols
o getSupportedLocales(: Collection<Locale> o getsupportedLocales(): Collection<Locale>

These services must be registered to the Bootstrap singleton. The Bootstrap singleton
relies, by default, on java.util.ServiceLoader to load the implementation services, but
this mechanism can be replaced by an alternate component loading mechanism, such as CDI in
a EE context.
All SPIs are contained in the package javax.money.spi. Summarizing the following SPIs are
available:

e Core SPI

o CurrencyProviderSpi (mandatory, multiple service chain) - provides
instances of CurrencyUnit, accessible from MonetaryCurrencies
singleton.

o MonetaryAmountsSpi (mandatory, only one instance selected by priority) -
manages instances of MonetaryAmountFactoryProviderSpi, which create
instances of MonetaryAmountFactory, that are being accessible by
MonetaryAmounts, Also this SPI allows to override the behaviour of
MonetaryAmounts.queryAmountType (MonetaryContext).

0.8 (Public Review 2) 44



Java Money Specification

o RoundingProviderSpi (mandatory, multiple service chain) - provides
instances of MonetaryOperator, for being accessible by
MonetaryRoundings.

o MonetaryLogger (optional, only one instance selected by priority), defines the
logging backend used by the APl implementation skeleton.

e Formatting SPI

o AmountFormatSymbolsProviderSpi (mandatory, multiple service chain) -
provides instances of AmountFormatSymbols, for being accessible by
AmountFormatSymbols.getInstance.

o AmountStyleProviderSpi (mandatory, multiple service chain) - provides
instances of AmountStyle, for being accessible by
AmountStyle.getInstance.

o MonetaryAmountFormatProviderSpi (mandatory, multiple service chain) -
provides instances of MonetaryAmountFormat, for being accessible by
MonetaryFormats.getAmountFormat.

e Bootstrap SPI

o ServiceProvider (optional, only one instance selected by priority), defines
the singleton accessor for loading SPI components used by the Bootstrap
class.

]

How the implementations must be registered depends on the ServiceProvider thatis
loaded by the Bootstrap implementation. The default mechanism is based on the
java.util.ServiceLoader class. By ordering the registered instances of some type along
the priority (the most significant first), it is also possible to override partial aspects, as the first a
non null result returned by a provider is taken as result of a call. The prioritization of
components is implicitly defined by the order of the components returned by the
ServiceProvider SPIlimplementation.

4.5.1 Core SPI

Registering Currencies

By adding instances of javax.money.spi.CurrencyProvider additional CurrencyUnit
instances can be registered into the MonetaryCurrencies singleton:

public interface CurrencyProviderSpi {
public CurrencyUnit getCurrencyUnit(String currencyCode);
public CurrencyUnit getCurrencyUnit(Locale locale);

}

Hereby
e similarto java.util.Currency.getInstance (String) a currency is identified
and can be accessed by its currency code
e similarto java.util.Currency.getInstance (Locale) a currency can also be

0.8 (Public Review 2) 45



Java Money Specification

accessed by a Locale. Hereby the Locale typically represents an ISO country, but
there are might alternate variants feasible.

e Also important is to mention that implementation of the CurrencyProviderSpi are
responsible for caching the instances. Similarly the behviour of a
CurrencyProviderSpi implementation can also be contextually dependent, as
required when running in a Java EE container.

Registering Monetary Amount Factories

The javax.money.spi.MonetaryAmountFactoryProviderSpi<T> interface allows to
create new instances of MonetaryAmountFactory<T extends MonetaryAmount>.

The signature looks as follows:
public interface MonetaryAmountFactoryProviderSpi<T extends MonetaryAmount> {

public static enum QuerylnclusionPolicy {
ALWAYS,
DIRECT_REFERENCE_ONLY,
NEVER

}

QuerylinclusionPolicy getQuerylnclusionPolicy();

Class<T> getAmountType();
MonetaryContext getDefaultMonetaryContext();
MonetaryContext geMaximalMonetaryContext();

MonetaryAmountFactory<T> createAmountFactory();

Hereby
e getAmountType () returns a new implementation of T which is returned by a
MonetaryAmountFactory created by an instance.
e The maximal supported MonetaryContext can be determined by calling
getMaximalMonetaryContext () .

e The default MonetaryContext used can be determined by calling
getDefaultMonetaryContext () .

e createAmountFactory () creates a corresponding MonetaryAmountFactory
factory.

e getQueryInclusionPolicy () defines if the given spi (and hence the corresponding
MonetaryAmount implementation type) is to be considered, when
MonetaryAmounts.queryAmountType (MonetaryContext) is called:

o ALWAYS means that given instance should be considered always as a candidate.
Nevertheless the active implementation of MonetaryAmountSpi decides

0.8 (Public Review 2) 46



Java Money Specification

finally, which implementation type (evaluated by calling getAmountType () ) is
returned as the result of such a query operation, based on the flavors and
capabilities declared by the MonetaryContext provided.

o DIRECT REFERENCE ONLY means that given instance should only be
considered as a candidate, when the target type requested matches the type
returned by getAmountType ()) .

o NEVER signals that the corresponding implementation type is considered not to
be a valid return type of a query operation. This is useful, e.g. for special amount
types as decorators, which do not provide their own numeric representations.

Backing the MonetaryAmounts Singleton

Also the functionality of the MonetaryAmounts accessor singleton is backed up by an SPI
interface, called javax.money.spi.MonetaryAmountsSpi singleton. An implementation
should rely on the Bootstrap class to access the available instances of
MonetaryAmountFactory. Nevertheless being able to register alternate implementations of
this SPI would allow to support more complex rules for a couple of enterprise related
functionalities such as:

contextual availability of amount types (and related factories).

contextual differences for default amount types, as provided by
MonetaryAmounts.getDefaultAmountType () .

contextual differences for default MonetaryContext instances applied.

alternate implementations of the algorithm used within
MonetaryAmounts.queryAmountType (MonetaryContext) to determine the best
matching MonetaryAmount implementation given a MonetaryContext required.

The SPI provides the following methods to adapt the behaviour of MonetaryAmounts:

public <T extends MonetaryAmount> MonetaryAmountFactory<T>
getAmountFactory(Class<T> amountType);

public MonetaryAmountFactory<?> getDefaultAmountFactory();

public Set<Class<? extends MonetaryAmount>> getAmountTypes();

public Class<? extends MonetaryAmount> queryAmountType(

MonetaryContext requiredContext);

Hereby

getAmountFactory should return an instance of MonetaryAmountFactory that
creates the given amountType. Optionally also a required MonetaryContext can be
passed, this is especially useful for accessing MonetaryAmountFactory
implementations that are capable of supporting different target MonetaryContext
instances, e.g. implementations based on BigDhecimal.

getAmountTypes should return a list of available implementation types for the current
runtime context.

0.8 (Public Review 2) 47



Java Money Specification

e getDefaultAmountFactory should return the default MonetaryAmountFactory
for the current context. Hereby an implementation must never return null. If no
MonetaryAmountFactory instances are registered, a MonetaryException
should be thrown.

e gueryAmountType allows to evaluate a MonetaryAmount implementation type that
best covers the requirements defined by the passed MonetaryContext.
Implementations should consider the following rules:

o ifthe MonetaryContext passed is explicitly requiring a concrete
implementation type, a factory of this type should be returned given the following
conditions are met:

m the implementation is capable to support the required maximal scale.

m the implementation is capable to support the required maximal precision.

If one of the conditions above fails a MonetaryException must be thrown'.

o If no concrete type is given (passing the MonetaryAmount interface as type),
the following must be checked against each registered
MonetaryAmountFactoryProviderSpi that are eligible as a possible
result type'? to be returned from a query:

m s the MonetaryAmountFactoryProviderSpi capable to support the
required maximal scale (required scale <= maxScale).

m s the MonetaryAmountFactoryProviderSpi capable to support the
required maximal precision (required precision <=
maxPrecision, of precision==0/unlimited).

m isthe MonetaryAmountFactoryProviderSpi supporting the
required Flavor (PERFORMANCE, PRECISION or UNDEFINED)

m Additional attributes to consider may be provided with the
MonetaryContext required, though this specification does not define
any further aspects in detail.

o if all of the above is true, the according result of
MonetaryAmountFactoryProviderSpi.getAmountType () should be
returned.

Registering Roundings

Additional roundings can be added by registering instances of
javax.money.spi.RoundingProviderSpi. Since a monetary rounding is nothing else
than a conversion from an unrounded amount to a rounded amount, ist is modeled as
MonetaryOPerator. As aconsequence the MonetaryRoundings singleton bascially is
managing an (ordered) collection of MonetaryOperator factories defined as follows:

" This makes sense, since acquiring for a concrete type with invalid capabilities can be seen as a
programming error, since the default and maximal capabilities of a concrete type are accessible from the
according implementation factory.

2 This is the case, if the the value from MonetaryAmountFactoryProviderSpi.getinclusionPolicy() does not
equal to QueryinclusionPolicy.NEVER, or QuerylnclusionPolicy.DIRECT_REF_ONLY.

0.8 (Public Review 2) 48



Java Money Specification

public interface RoundingProviderSpi {

MonetaryOperator getRounding(CurrencyUnit currency);

MonetaryOperator getRounding(CurrencyUnit currency, long timestamp);
MonetaryOperator getCashRounding(CurrencyUnit currency);
MonetaryOperator getCashRounding(CurrencyUnit currency, long timestamp);
MonetaryOperator getCustomRounding(String customRoundingld);
MonetaryOperator getRounding(MonetaryContext monetaryContext);

Set<String> getCustomRoundinglds();

}

Hereby different types of rounfing are supported:

based on the target CurrencyUnit. By default the digits returned from
CurrencyUnit.getDefaultFractionDigits () are used, butimplementations
can provide alternate (e.g. non standard) implementations.

based on the target CurrencyUnit, but explicitly querying for a cache rounding, which
may be different to the default rounding. Example: in Switzerland default rounding is done
for a scale of 2, whereas when paying in cash, the minor units must be divisible by 5,
since 5 is the smallest coin possible.

Also it is possible to get a rounding described by a MonetaryContext, e.g. you can set
a maximal scale of 1 and set the RoundingMode (where available on the target
platform) as an additional attribute.

Finally you can also provide customized roundings by name. The names of the defined
custom rounding must be returned when getCustomRoundingIds () is called.

Finally it is possible to provide default and cash roundings also for past dates, hereby
considering the additional UTC timestamp given.

Backing the MonetaryConversions Singleton

Currency conversion mechanisms are provided by the MonetaryConversions singleton
accessor. This singleton is backed up by an implementation of javax.money.spi.
MonetaryConversionsSpi. This singletonin a SE environment may implemented as a real
singleton, sharing the same state and functionality, whereas in a EE context the implementation
will likely behave contextually (providing different runtime context deoending on the current
runtime context, e.g. the ear or war currently active. So implementing this SPI provides full
control about the singleton’s effective behaviour. As a consequence the methods basically are
similar to the ones provided by the singleton class:

public interface MonetaryConversionsSpi {
ExchangeRateProvider getExchangeRateProvider(String... providers);

CurrencyConversion getConversion(CurrencyUnit termCurrency,

0.8 (Public Review 2) 49



Java Money Specification

ConversionContext conversionContext, String... providers);
CurrencyConversion getConversion(CurrencyUnit termCurrency,
String... providers);
CurrencyConversion getConversion(String termCurrencyCode,
ConversionContext conversionContext, String... providers);
CurrencyConversion getConversion(String termCurrencyCode,
String... providers);
Collection<String> getProviderNames();
boolean isProviderAvailable(String provider);
ProviderContext getProviderContext(String provider);

List<String> getDefaultProviderChain();

Hereby:

e the main artifact defining currency conversion is an ExchangeRateProvider. It
provides ExchangeRate instances defining the factor for converting an base amount to
a target (aka terminating) amount.

e AcCurrencyConversion basically is only an adapter to an
ExchangeRateProvider, which allows simple use of conversion as a
MonetaryOperator.

e getExchangeRateProvider (String..) allows to pass an ordered array of provider
names. The names identify the providers to be used allow to define a composite
ExchangeRateProvider instance (modeling a provider chain), that is able to answer
requests based on multiple rate providers. As an example calling

ExchangeRateProvider prov = getExchangeRateProvider(“EZB”, “IMF”);

should return a composite ExchangeRateProvider instance, that internally first tries
to resolve an ExchangeRate requested, using the provider named “EZB”. On

success the “EzB” rate should be returned. If this fails, to whatever reason, the provider
with name “IMF” should be tried. If no provider is able to return a valid result, a
CorrencyConversionException must be thrown as defined in the corresponding
ExchangeRateProvider interface APl documentation.

Additionally if no explicit provider names are passed, the provider names and ordering as
defined by getDefaultProviderChain () is used.

e getConversion (String..) models the same concept as above, but for
CurrencyConversion instances. Whereas the ExchangeRateprovider interface
allows to pass a target ConversionContext explicitly, when accessing
ExchangeRate instances, a ConversionContext can be passed optionally to
further configure the CurrencyConversion instance required.

0.8 (Public Review 2) 50



Java Money Specification

e As for other SPIs in this JSR the loading of different ExchangeRateProvider
instances should be delegated to the Bootstrap implementation.

Adding Currency Conversion Capabilities

Adding additional capabilities for currency conversion equals to implementing and registering
classes implementing the ExchangeRateProvider interface. The interface itself is part of
the API and described in 4.3.3 Exchange Rates and Rate Providers. Basically the
implementation of the MonetaryConversionsSpi determines how the implementations must
be registered. Hereby the registered ServiceProvider implementation is responsible for
loading and providing the according components. Refer also to 4.5.3 The Bootstrapping
Mechanism for more details.

Adapting the Logging Backend

By default the JSR API logic uses java.util.logging (JUL) as logging backend. JUL allows
to configure additional or customized logging Handler instances, so alternate logging
backends can be used easily, by registering a forwarding Handler implementation for
javax.money and configuring the Logger instance to not delegating to its parent loggers.

The implementation that implements the API's SPI may use a different logging approach.
4.5.2 Formatting SPI

Providing Monetary Amount Format Symbols

The MonetaryAmountFormatSymbols class provides factory methods that allow to access
instances based on a Locale. By registering instances of
javax.money.spi.MonetaryFormatSymbolsProviderSpi additional locales can be supported
or adapted. Hereby at least one instance of MonetaryFormatSymbolsProviderSpi must
be registered, which is defined as follows:

public interface MonetaryFormatSymbolsProviderSpi {
AmountFormatSymbols getAmountFormatSymbols(Locale locale);
Collection<Locale> getSupportedLocales();

}

Hereby

e getSupportedLocales () returns the set of locales that are supported by the given
implementation.

e getAmountFormatSymbols (Locale) returns the corresponding
AmountFormatSymbols instance. Note that the AmountFormatSymbols API class,
that is relying on this SPI, will not cache any instances. When caching is useful, it must
be implemented by the SPI.

Multiple instances of this interface can be registered hereby forming a chain of responsibility,

0.8 (Public Review 2) 51



Java Money Specification

whereas the components priority define the ordering within the chain. The first component in the
chain, that returns a non-nul1 result, determines the final result from calling
AmountFormatSymbols.of (Locale).

It is also required that on the platforms were java.text.DecimalFormatSymbols is
available, all locales that are supported by java.text.DecimalFormatSymbols must be
also available/provided by the SPIs registered.

Providing Amount Styles

The AmountStyle class provides factory methods that allow to access instances based on a
Locale. By registering instances of javax.money.spi.AmountStyleProviderSpi
additional locales can be supported or adapted. Hereby at least one instance of
AmountStyleProviderSpi must be registered, which is defined as follows:

public interface AmountStyleProviderSpi {
AmountStyle getAmountStyle(Locale locale);
Collection<Locale> getSupportedLocales();

}

Hereby
e getSupportedLocales () returns the set of locales that are supported by the given
implementation.
e getAmountStyle (Locale) returns the corresponding AmountStyle instance.
Note that the AmountStyle API class, that is relying on this SPI, will not cache any
instances. When caching is useful, it must be implemented by the SPI.

Multiple instances of this interface can be registered hereby forming a chain of responsibility,
whereas the components priority define the ordering within the chain. The first component in the
chain, that returns a non-nul1l result, determines the final result from calling
AmountStyle.of (Locale).

It is required that on the platforms were java.text.DecimalFormat is available, all locales
that are supported by java.text.DecimalFormat must be also available/provided by the
SPIs registered.

Prodivding Amount Formats

The MonetaryFormats singleton delegates creation of MonetaryAmountFormat
instances to registered instances of
javax.money.spi.MonetaryAmountFormatProviderSpi. Hereby at least one instance
of AmountStyleProviderSpi must be registered as Bootstrap component, which is
defined as follows:

public interface MonetaryAmountFormatProviderSpi {

0.8 (Public Review 2) 52



Java Money Specification

MonetaryAmountFormat getAmountFormat(AmountStyle style);

}

Hereby
e getAmountFormat (AmountStyle) returns the corresponding
MonetaryAmountFormat instance. Note that the MonetaryFormats API class, that
is relying on this SPI, will not cache any instances. When caching is useful, it must be
implemented by the SPI.

Multiple instances of this interface can be registered hereby forming a chain of responsibility,
whereas the components priority define the ordering within the chain. The first component in the
chain, that returns a non-nul1 result, determines the final result from calling
MonetaryFormats.

4.5.3 The Bootstrapping Mechanism

Overview

Basically the Bootstrap singleton class is used by all APl components to access instances of
the different pluggable components of the Money API. Hereby also the Bootstrap class
delegates the location and loading of services to an implementation of a
javax.money.spi.ServiceProvider, which implements the detailed logic how services
are located and managed. If no such ServiceProvider is configured, a default
implementation is used that delegates to java.util.ServicelLoader:

@ javax.money.spi.Bootstrap @ javax.money.spiServiceProvider
o_services: ServiceProvider @ getService(serviceType: Class<T>): T
o_ | OCK: Object @ getService(serviceType: Class<T>, defaultlnstance: T): T
& Bootstrap() @ getServices(serviceType: Class<T>): Collection<T>
#_loadDefaultServiceProvider(): ServiceProvider O—“j{d @ getServices(serviceType: Class<T>, defaulilist: Collection<T>): Collection<T>

@ _init(serviceProvider: ServiceProvider): void
a_getServiceProvider{): ServiceProvider

@_getServices(serviceType: Class<T>): Collection<T> e
@_getServices(serviceType: Class <T>, defaultServices: Collection<T>): Collection<T>
@_getService(serviceType: Class<T>): T @ compare(p1: Object, p2: Object): int
@_getService(serviceType: Class<T >, defaultService: T): T

a_getPriority(service: Object): int
@_comparePriority(servicel: T, service2: T): int

@ javax.money.spi.Bootstrap.ProviderComparator

Hereby the methods on the ServiceProvider, reflect the main functionalities of the overall
Bootstrap class:

public static <T> Collection<T> getServices(Class<T> serviceType){...}

public static <T> Collection<T> getServices(Class<T> serviceType,
Collection<T> defaultServices)...}

public static <T> T getService(Class<T> serviceType) {...}

public static <T> T getService(Class<T> serviceType, T defaultService) {...}

0.8 (Public Review 2) 53



Java Money Specification

public static final class ProviderComparator implements
Comparator<Object>{...}

Summarizing the Bootstrap singleton

e Tries to load an instance of ServiceProvider using
java.util.ServicelLoader.

e if no implementation was registered, it falls back to a default ServiceProvider
implementation, delegating to java.util.ServiceLoader and with no specific
order.

e if exact one implementation is registered, this implementation is used for
loading/accessing the services required by the JSR 354 API. Implementation of
ServiceLoader hereby can also implement a contextual service registry.

e if multiple implementations are registered, the implementation is not defined, Hereby a
warning is logged.

To use an alternate implementation of javax.money.spi.ServiceProvider an alternate
implementation must be registered using the java.util.ServiceLoader. If no instance is
registered, an instance of DefaultServiceProvider isloaded, that relies on the
jJava.util.ServiceLoader.

Implementation Requirements of ServiceProvider

Implementations of javax.money.spi.ServiceProvider mustimplement methods similar
as available on the Bootstrap singleton class:

public interface ServiceProvider {
<T> Collection<T> getServices(Class<T> serviceType);
<T> Collection<T> getServices(Class<T> serviceType,
Collection<T> defaultList);

If a required serviceType can not be satisfied,
e the corresponding defaultInstanceList should be returned as a schedule (this
also includes returning null).
e If the required numeric capabilities exceed the maximal supported MonetaryContext,
a MonetaryException must be thrown.

0.8 (Public Review 2) 54



Java Money Specification

5. Implementation Recommendations

5.1 Overview

There are a couple of best practices in the area of financial applications and frameworks. This
JSR does not require most of them for the following reasons:

e The overall API design is similar to the Date/Time API introduced with JDK 8 (JSR-310)
where appropriate.. E.g. TemporalAdjuster and MonetaryOperator model a
similar concept for temporal and for monetary amounts. Therefore the corresponding
models in this JSR define similar implementation constraints.

e More complex constraints would be difficult or impossible to ensure by a TCK, so they
are defined as recommendations.

e Finally there is always the possibility that no common ground can be found for the way
some functionality can be modelled generically across implementations. It would then be
the responsibility of the implementers to follow best, or at least de-facto, practice.

Nevertheless we think some practices are important and should be followed by implementations,
so we added the most relevant ones in the following sections.

5.2 Monetary Arithmetic

When dealing with monetary amounts the following aspects should be considered:

e Arithmetic operations should throw an ArithmeticException, if performing
arithmetic operations between amounts exceeds the capabilities of the numeric
representation type used. Any implicit truncating, that would lead to complete invalid and
useless results, should be avoided, since it may result to invalid results, which are very
difficult to trace. This recommendation does not affect internal rounding, as required by
the internal numeric representation of a monetary amount.

e When adding or subtracting amounts, best practice recommends to use parameters that
are instances of MonetaryAmount, hereby ensuring that both amounts have the same
currency.

e When multiplying or dividing amount, best practice recommends parameters that are
simple numeric values.

e Arguments of type java.lang.Number should be used with caution, since extracting
its numeric value in a feasible way is not trivial.

e Arithmetic operations should honor the advanced rules how rounding and truncation
should be handled. Refer to the following sections for further details.

0.8 (Public Review 2) 55



Java Money Specification

5.3 Numeric Precision

For financial applications precision and rounding is a very important aspect. Additionally that an
incorrect arithmetic obviously has direct financial consequences, also legal aspects require
specific precision and rounding to by applied.
The JSR's expert group identified the following important and distinct precision types:

e Internal precision

e External precision

e Formatting precision

The following sections will explain things in more detail.

5.3.1 Internal Precision

Overview

This precision type is the most important one, since it is directly related/determined by the
internal numeric representation of the class implementing MonetaryAmount. Hereby:

e The internal numeric capabilities of a MonetaryAmount typically exceed the scale
implied by the corresponding currency. Internal rounding must be done after each
operation, but this rounding has nothing in common with the rounding implied by the
currency attached. Basically the monetary arithmetics are completely independent of the
currency, or in other words rounding should only be done implicitly when required by the
internal numeric representation to minimize the loss of numeric precision.

e For calculations that require high scaled results, e.g. financial product calculations, it is
recommended to work with relatively high scales, e.g. 64 or even higher scales, as
provided by the BigDecimal class'. On the other hand when monetary arithmetics
must be fast, e.g. in trading, scale requirements are often reduced in favor of fast data
manipulation. This contradictory requirements were basically the key reason, why the
model for MonetaryAmount does not explicitly specify the numeric representation to
be used.

e Additionally during a financial calculation, the points, where rounding is feasible, are
basically use case dependent and therefore should not be performed by a
MonetaryAmount implementation implicitly. Instead of, roundings can be applied as
useful as monetary adjustments explicitly, when useful.

e Also worth to mention is that for the same currency different roundings may be defined
(default rounding, cash rounding, special roundings for presentation purposes), so there
is no such concept as THE rounding for a monetary amount.

3 Therefore the default reference implementation class, Money, is based on Bighecimal and allows to
explicitly configure its MathContext used on creation.

0.8 (Public Review 2) 56



Java Money Specification

Configuring and Changing Internal Precision

An implementation of MonetaryAmount may support changing the internal precision or
numeric capabilities. But any value type semantics must be strictly obeyed, meaning that
changing a monetary amount’s internal precision or numeric capabilities, requires creating of a
new instance.

Additionally if an implementation of a MonetaryAmount supports different numeric capabilities,
it is useful to allow the default capabilities to be configurable. Hereby a mechanism should be
used, that is not shared in EE runtime context, such as a property file in the classpath.

Inheriting Numeric Representation Capabilities

When performing calculations with the value type semantics new instances of amounts are
created for each calculation performed. This implies additional constraints:

e By inheriting the MonetaryAmount implementation type to its return types of all
arithmetic operations, also the numeric capabilities must be inherited.

e Finally a MonetaryAmount implementation is required to throw an
ArithmeticException, if a client tries to create a new instance with a numeric value
that exceeds its internal representation capabilities. Since each arithmetic operation
requires the creation of a new amount instance, as a consequence, all operations that
exceed the numeric capabilities must throw an ArithmeticException (basically no
implicit truncation is allowed).

5.3.2 External Precision

External precision is the precision applied, when the numeric part of a MonetaryAmount is
externalized, meaning a numeric part of an amount is accessed/converted into another numeric
representation (e.g. calling getNumber (Class), getNumberExact (Class)). This
externalized representation may have reduced numeric capabilities compared to the internal
numeric representation, so truncation must be performed, or some exception can be thrown.
Generally a precision or scale reduction on externalization should never throw an exception,
despite the method variants are defined to be exact, similar to
BigDecimal.longValueExact (). The exact methods should then throw an exception, if the
externalization would result in data loss (some sort of truncation must be performed).

5.3.3 Display Precision

The precision used for displaying of monetary amounts on the screen, a printout or for passing
values through technical systems, is completely dependent on the use cases. This JSR
supports these scenarios with the possibility to apply arbitrary monetary adjustments (modeled
as MonetaryOperator).

0.8 (Public Review 2) 57



Java Money Specification

6. Examples

The following sections illustrate the API's usage in more detail.

6.1 Working with org.javamoney.moneta.Money

A reference implementation of this JSR has to provide value type classes for monetary amounts,
hereby implementing MonetaryAmount, and registering at least one implementation class
with the MonetaryAmounts singleton by implementing and registering a corresponding
MonetayAmountFactory instance.

As an example the reference implementation provides a class
org.javamoney.moneta.Money, which is using java.math.BigDecimal internally:

public final class Money
implements MonetaryAmount, Comparable<MonetaryAmount>, Serializable {

}

The MonetaryContext (by default) hereby is defined as follows:

maxPrecision = 64; // may be extended arbitrarily
maxScale = -1; // unbounded

numeric class = java.math.BigDecimal

flavor = Flavor.PRECISION

attributes: RoundingMode.HALF_EVEN.

Since a corresponding MonetaryAmountFactory is registered, a new instance can be
created using the typed factory:

MonetaryAmountFactory<Money> fact =
MonetaryAmounts.getAmountFactory(Money.class);
Money m = fact.withCurrency(“USD”).with(200.50).create();

Also a generic MonetaryAmount instance can be accessed using a raw factory:

MonetaryAmount amt = MonetaryAmounts.getDefaultAmountFactory()
withCurrency(“USD”).with(200.50).create();

Still we can evaluate the amount’s type effectively:

if(Money.class==amt.getClass()){
Money m = (Money)amt;

}

0.8 (Public Review 2) 58



Java Money Specification

But in fact, we do not need to know the exact implementation in most cases, since we can
access a MonetaryContext, which provides detailed information, such as maximal precision,
maximal scale, the basic implementation flavor and additional attributes.

MonetaryContext ctx = m.getMonetaryContext();
if(ctx.getMaxPrecision()==0){
System.out.printin(*Unbounded maximal precision.”);

}
if(ctx.getMaxScale()>=5){

System.out.printin(“Sufficient scale for our use case, go for it.”);

}

Finally performing arithmetics in both above scenarios works similar as it is when using
java.math.BigDecimal:

MonetaryAmount amt = ...;
amt = amt.multiply(2.0).subtract(1.345);

Also the sample above illustrates how algorithmic operations can be chained together, similar to
builders. As mentioned also external functionalities can be chained, using instances of
MonetaryvOperator:

Money amt = Money.of(“CHF”, 200);
amt = amt.multiply(2.12345).with(MonetaryRoundings.of())
.with(MonetaryFunctions'.minimal(100)).
.multiply(2.12345).with(MonetaryRoundings.of())
.with(MonetaryFunctions'.percent(23));

Numeric Precision and Scale

Since the Money class internally uses java.math.BigDecimal the numeric capabilities
match exact the capabilities of Bigbhecimal. By default instances of Money use
MathContext.DECIMALG64. But on creation of a new Money instance the
MonetaryContext required can also be passed explicitly, e.g.:

public static Money of(String currencyCode, Number number,
MonetaryContext context);
Extending the API
Now, one last thing to discuss is, how users can add their own functionalities, e.g. by writing

their own MonetaryOperator functions. Basically there are two disctinct usage scenarios:

* MonetaryFunctions is not part of the JSR, its just for illustration purposes.
'® MonetaryFunctions is not part of the JSR, its just for illustration purposes.

0.8 (Public Review 2) 59


https://docs.google.com/document/d/1BX-oBcRfE9baD1YCIPN3Fp6Tft85RknwphtkGz0roNA/edit#bookmark=id.w5ac2ojav0ep

Java Money Specification

e \When the basic arithmetics defined on each MonetaryAmount are sufficient, it should be
easy to implement such functionality, since its behaving like any other type, e.g.
public final class DuplicateOp implements MonetaryOperator{
public <T extends MonetaryAmount> T apply(T amount){
return (T) amount.multiply(2);
}
}
e In case where the basic operations are not sufficient anymore, it is still not necessary to
cast to any implementation, since
o the numeric capabilities can be evaluated using the MonetaryContext
o the numeric value can be extracted in a portable way accessing the
NumberValue.
o aMonetaryFactory can be created to create the result of the same

implementation type, without having to cast to this type ever explicitly.

public final class Tolnvalid implements MonetaryOperator{
public <T extends MonetaryAmount> T apply(T amount){
return (T)amount.getFactory().with(“XXX").with(0).create();
}
}

6.2 Working with org.javamoney.moneta.FastMoney

This class implements a MonetaryAmount using long as numeric representation, whereas
the full amount is interpreted as minor units, with a denumerator of 100000. As an example
CHF 2.5 isinternally stored as CHF 250000. Addition and subtraction of values is trivial,
whereas division and multiplication get complex with non integral values. Compared to Money
the possible amounts to be modeled are limited to an overall precision of 18 and a fixed scale of
5 digits.

Beside that the overall handling of FastMoney is similar to Money. So we could rewrite the
former example by just replacing Money with FastMoney:

FastMoney amt = FastMoney.of(“CHF”, 200);
amt = amt.multiply(2.12345).with(MonetaryRoundings.of())
.with(MonetaryFunctions.min(100))
.multiply(2.12345)
.with(MonetaryRoundings.of())
.with(MonetaryFunctions.percent(23));

0.8 (Public Review 2) 60



Java Money Specification

Of course, given all that the MonetaryContext is different than for Money:
maxPrecision = 18; // hard limit
maxScale = 5; // fixed scale
numeric class = Long
flavor = Flavor. PERFORMANT
attributes: RoundingMode.HALF_EVEN

6.3 Calculating a Total

A total of amounts can be calculated in multiple ways, one way is simply to chain the amounts
with add () :

MonetaryAmount[] params = new MonetaryAmount[|{
Money.of(“CHF”, 100), Money.of(“CHF”, 10.20),
Money.of(“CHF”, 1.15),};
MonetaryAmount total = params[0];
for(int i=1; i<params.length;i++){
total = total.add(paramsii]);
}

As an alternate it is also possible to define a MonetaryOperator, which can be passed to all
amounts:

public class Total implements MonetaryOperator{
private MonetaryAmount total,

public <T extends MonetaryAmount<T>> T apply(T amount){
if(total==null){
total = amount;

}

else{
total = total.add(amount);

}

return amount.getFactory().with(total).create();

}

public MonetaryAmount getTotal(){
return total;

}

public <T extends MonetaryAmount> T getTotal(Class<T> amountType )}
return MonetaryAmounts.getAmountFactory(amountType).with(total).create();

}

0.8 (Public Review 2) 61



Java Money Specification

Note, we are well aware of the fact that this implementation still has some severe drawbacks,
but we decided for simplicity to not add the following features:
e the implementation can only handle one currency, a better implementation could also be
multi-currency capable.
e The implementation above is not thread-safe.

Now with the MonetaryOperator totalizing looks as follows:

Total total = new Total();
for(int i=1; i<params.length;i++){
total.with(paramsi]);

}
System.out.printin("TOTAL: “ + total.getTotal());

A similar approach can also be used for other multi value calculations as used in statistics, e.g.
average, median etc.

6.4 Calculating a Present Value

The present value (abbreviated PV) shows how financial formulas can be implemented based
on the JSR 354 API. A PV models the current value of a financial in- or outflow in the future,
weighted with a calculatory interest rate. The PV is defined as follows:

Ry
(1+2)!
Hereby
1 — the time of the cash flow (in periods)

1 — the discount rate (the rate of return that could be earned on an investment in the financial markets
with similar risk.); the opportunity cost of capital

RE — the net cash flow i.e. cash inflow — cash outflow, at time ¢t . For educational purposes,

The same financial function now can be implemented for example as folllows:
public <T extends MonetaryAmount> T presentValue(
T amt, BigDecimal rate, int periods){

BigDecimal divisor = BigDecimal.ONE.add(rate).pow(periods);

return (T)amt.divide(divisor);

}

This algorithm can be implemented as MonetaryOperator:

0.8 (Public Review 2) 62



Java Money Specification

public final class PresentValue implements MonetaryOperator{
private BigDecimal rate;
private int periods;
private BigDecimal divisor;

public PresentValue(BigDecimal rate, int periods){
Objects.requireNotNull(rate);
this.rate = rate;
this.periods = periods;
this.divisor = BigDecimal.ONE.add(periods).power(periods);

}
public int getPeriods(){

return periods;

}
public BigDecimal getRate(){

return rate;

}
public <T extends MonetaryAmount> T apply(T amount){

return (T)amount.divide(divisor);

}
public String toString(){ ...}

}

For simplicity we did not add additional feature such as caching of Presentvalue instances
using a static factory method, or precalculation of divisor matrices. Now given the
MonetaryOperator a present value can be calculated as follows:

Money m = Money.of(“CHF”, 1000);

/I present value for an amount of 100, available in two periods,

/I with a rate of 5%.

Money pv = m.with(new PresentValue(new BigDecimal(“0.05”), 2));

6.5 Performing Currency Conversion

Currency Conversion also is a special case of a MonetaryOperator since it creates a new
amount based on another amount. Hereby by the conversion the resulting amount will typically
have a different currency and a different numeric amount:

MonetaryAmount inCHF =...;
CurrencyConversion conv = MonetaryConversions.getConversion(“EUR”);
MonetaryAmount inEUR = inCHF.with(conv);

Also we can define the providers to be used for currency conversion by passing the provider
names explicitly:

0.8 (Public Review 2) 63



Java Money Specification

CurrencyConversion conv = MonetaryConversions.getConversion(“EUR”, “EZB”, “IMF”);

To cover also more complex usage scenarios we can also pass a ConversionContext with
additional parameters for conversion, e.g.:

MonetaryAmount inCHF =...;
ConversionContext ctx = new ConversionContext().Builder()
.set(MonetaryAmount.class, MonetaryAmount.class, inCHF)
.setTimesampt(ts)
.setRateType(RateType.HISTORIC)
.set(StockExchange.NYSE) // custom type
.set(“contractld”, “AA-1234.2”)
.create();
CurrencyConversion conv = MonetaryConversions.getConversion(“EUR”,
ctx,
“CS”, “EZB”, “IMF”);

0.8 (Public Review 2) 64



Java Money Specification

APPENDIX

References
[Bitcoin] http://bitcoin.org/en/
[ICU] http://site.icu-project.org/

[1ISO-4217]  http://www.iso.org/iso/home/standards/currency_codes.htm

[ISO-20022] www.is020022.0rg

[JodaMoney] _http://www.joda.org/joda-money/ and
https://github.com/JavaMoney/javamoney-lib

[java.net] http://java.net/projects/javamoney/
[JSR354] http://jcp.org/en/jsr/detail ?id=354
[Source] Public Source Code Repository on GitHub: GitHub Repository,

Branch / Tag matching updated PDR is 0.8
Links

JSR 354 on jcp.org

JSR 354 on Java.net

JSR 354 on GitHub

Java Practices -> Representing Money

Working with Money in Java

Java currency by Roedy Green, Canadian Mind Products

https://github.com/JavaMoney/jsr354-api

UOMo Business, based on ICU4J and concepts by JScience Economics

MoneyDance API

JavaMoney is the Apache 2.0 licensed OSS project that evolved from JSR 354

development. It provides concrete implementations for currency conversion and mapping,

advanced formatting, historic data access, regions and a set of financial calculations and

formulas.

e Joda Money can be referred to as an inspiration for APl and design style. it is based on
real-world use cases in an e-commerce application for airlines

e Grails Currencies uses BigDecimal as internal representation, but API only exposes

Number in all Money operations like plus(), minus() or similar.

ICU4J Uses Number for all operations and internal storage in its Money type.

Why not to use BigDecimal for Money

M-Pesa-Mobile Money in Africa

Currency Internationalization (i18n), Multiple Currencies and Foreign Exchange (FX).

http://en.wikipedia.org/wiki/Japanese_units_of measurement#Money: Discussion of

internationalization of currencies, rounding, grouping and formatting, separators etc]

http://speleotrove.com/decimal/

http://sourceforge.net/projects/oquote/

Karatsuba Algorithm for Fast Big Decimal Multiplication

0.8 (Public Review 2) 65


http://www.google.com/url?q=http%3A%2F%2Fbitcoin.org%2Fen%2F&sa=D&sntz=1&usg=AFQjCNHV0XGtr7B-4Dr2XlDePzhy_YvwSA
http://www.google.com/url?q=http%3A%2F%2Fsite.icu-project.org%2F&sa=D&sntz=1&usg=AFQjCNEiAtncyvL5x7mpHAoRRl4D5lTZeA
http://www.google.com/url?q=http%3A%2F%2Fwww.iso.org%2Fiso%2Fhome%2Fstandards%2Fcurrency_codes.htm&sa=D&sntz=1&usg=AFQjCNEgaI2nnvJDlvjxgcHc3gYrbCOYfQ
http://www.google.com/url?q=http%3A%2F%2Fwww.iso20022.org&sa=D&sntz=1&usg=AFQjCNGAO25hbMG_TRfjTBCh9kJYLXcaUg
http://www.google.com/url?q=http%3A%2F%2Fwww.joda.org%2Fjoda-money%2F&sa=D&sntz=1&usg=AFQjCNGJ5C33uoeqw7-zQHSUAcZwroQCog
https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2FJavaMoney%2Fjavamoney-lib&sa=D&sntz=1&usg=AFQjCNFFKRIlwDH-JSuWeSXz_MvQEA5EEA
http://www.google.com/url?q=http%3A%2F%2Fjava.net%2Fprojects%2Fjavamoney%2F&sa=D&sntz=1&usg=AFQjCNHtowrXWfnHsRQnd4-_C5OnGPFnOQ
http://www.google.com/url?q=http%3A%2F%2Fjcp.org%2Fen%2Fjsr%2Fdetail%3Fid%3D354&sa=D&sntz=1&usg=AFQjCNHrFqts-ZcVO3QoghpklOoGkQCYrQ
https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2FJavaMoney%2Fjsr354-api&sa=D&sntz=1&usg=AFQjCNHAPtKjTDMC5W73s1v9IUWXZ3uInA
http://www.google.com/url?q=http%3A%2F%2Fjcp.org%2Fen%2Fjsr%2Fdetail%3Fid%3D354&sa=D&sntz=1&usg=AFQjCNHrFqts-ZcVO3QoghpklOoGkQCYrQ
http://www.google.com/url?q=http%3A%2F%2Fjava.net%2Fprojects%2Fjavamoney%2Fpages%2FHome&sa=D&sntz=1&usg=AFQjCNGnRICAldcAB9uyN39iNOhMw0SH5g
https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2FJavaMoney&sa=D&sntz=1&usg=AFQjCNFL2gdT0xrLXJHPHtn4KXyvqzun3g
http://www.google.com/url?q=http%3A%2F%2Fwww.javapractices.com%2Ftopic%2FTopicAction.do%3FId%3D13&sa=D&sntz=1&usg=AFQjCNGzP2LVZwKK70SNkmBTYhqeNoIsBA
http://www.google.com/url?q=http%3A%2F%2Fwww.javaranch.com%2Fjournal%2F2003%2F07%2FMoneyInJava.html&sa=D&sntz=1&usg=AFQjCNHg75ZZ4kqU3uVxqetxUOH252-o4A
http://www.google.com/url?q=http%3A%2F%2Fmindprod.com%2Fjgloss%2Fcurrency.html&sa=D&sntz=1&usg=AFQjCNFV_SOamXKSBC0YMyFnqrzUrRAAXw
https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2FJavaMoney%2Fjsr354-api&sa=D&sntz=1&usg=AFQjCNHAPtKjTDMC5W73s1v9IUWXZ3uInA
http://www.google.com/url?q=http%3A%2F%2Fwww.eclipse.org%2Fuomo&sa=D&sntz=1&usg=AFQjCNFzH1ecHbNhRgNpBysI5xmHOChlvQ
http://www.google.com/url?q=http%3A%2F%2Fmoneydance.com%2Fdev%2Fapidoc%2Findex.html&sa=D&sntz=1&usg=AFQjCNFnyJUtB88-MI3ivgriroIXyyHeQA
https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2FJavaMoney%2Fjavamoney-lib&sa=D&sntz=1&usg=AFQjCNFFKRIlwDH-JSuWeSXz_MvQEA5EEA
https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2Fricardojmendez%2Fgrails-currencies&sa=D&sntz=1&usg=AFQjCNG6H20hamtedrqdZwjE8wbQwM5DwA
http://www.google.com/url?q=http%3A%2F%2Fwiki.eclipse.org%2FICU4J&sa=D&sntz=1&usg=AFQjCNFFkT3Chr7rpwxxBJmRgc3K0bw7Ww
http://www.google.com/url?q=http%3A%2F%2Flemnik.wordpress.com%2F2011%2F03%2F25%2Fbigdecimal-and-your-money%2F&sa=D&sntz=1&usg=AFQjCNHb3bb8bP2V6FTe2L4FCZt_M_7YIg
http://www.google.com/url?q=http%3A%2F%2Fthenextweb.com%2Fafrica%2F2012%2F02%2F05%2Flearning-from-kenya-mobile-money-transfer-and-co-working-spaces%2F%3Fawesm%3Dtnw.to_1DEWI&sa=D&sntz=1&usg=AFQjCNHZ8vK3YDatOYcg78n0ARbN-Y1lNw
http://www.google.com/url?q=http%3A%2F%2Fwww.xencraft.com%2Fresources%2Fmulti-currency.html&sa=D&sntz=1&usg=AFQjCNE5V-N60VapCPQK7X4QhzG7GKgKbA
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FJapanese_units_of_measurement%23Money&sa=D&sntz=1&usg=AFQjCNHLM_hFYGkDbpPmTFBZZiAQHsXMbQ
http://www.google.com/url?q=http%3A%2F%2Fspeleotrove.com%2Fdecimal%2F&sa=D&sntz=1&usg=AFQjCNEOUySy1RV3b5CuSS515dtnp3aU3Q
http://www.google.com/url?q=http%3A%2F%2Fsourceforge.net%2Fprojects%2Foquote%2F&sa=D&sntz=1&usg=AFQjCNGOyCBsC0m6hz4nsr0VNEl8C6-t_A
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FKaratsuba_algorithm&sa=D&sntz=1&usg=AFQjCNGCSnvPuDipGKMcCsujyKPlvQxkDg

Java Money Specification

Related Initiatives
e Eric Evans Time and Money Library
e Bitcoin Java Client
e Java and Monetary Data (PDF)

0.8 (Public Review 2)

66


http://www.google.com/url?q=http%3A%2F%2Ftimeandmoney.sourceforge.net%2F&sa=D&sntz=1&usg=AFQjCNF-YUJZoGb9BOFCjtfdhiSs85tkZg
http://www.google.com/url?q=http%3A%2F%2Fsourceforge.net%2Fprojects%2Fbitcoin-client%2F&sa=D&sntz=1&usg=AFQjCNHbzgeTvVun9eXo3q4hA4K1SDpSbA
http://www.google.com/url?q=http%3A%2F%2Fwww.objectivelogic.com%2Fresources%2FJava%2520and%2520Monetary%2520Data%2FJava%2520and%2520Monetary%2520Data.pdf&sa=D&sntz=1&usg=AFQjCNGOS-skCszICdPlWVq01ogb6wDZ_w

