Java at Goldman Sachs

Sep 14t |, 2011

A Consumers perspective of the Java Platform
for the JCP EC Face to face Meeting

JCP EC Confidential

Agenda

Technology at Goldman Sachs
= Brief Introduction / Scene setting

Java Engineering Function
= Overview of role and challenges

A Typical platform
= Overview of our Middle office platform

Questions / Discussion

Java Engineering

Who we are?

Enterprise Java Challenges.
What do we do?

Items that would impact us.

Who are we?

Java Engineering provides support and consulting services to the firm
on the Java stack

Staff mostly former JVM engineers (e.g from IBM and SGl).
We work with the JVM source code on a daily basis.
Good contact with technologists at Vendors (e.g. Oracle and Red Hat).

Enterprise Java challenges

= Much of the firm’s mission-critical processing is in Java

» Goldman Sachs pushes the limits of the JVM
Routinely uncover never-before-seen bugs in the JVM
Mostly associated with extreme heap size or scaling
Breadth of language feature exploitation finds corner cases

= Java must interoperate well with other languages
C++, .Net, Proprietary languages, Scripting languages

= Managing multiple instances of Java apps across the globe
Timezone update:
- How do you manage timezone update across the firm?
- Whydon't we use OS timezone data instead?
Date and Time API needs a overhaul: JSR-310 is important

= Security Vulnerability Management

What we do

= We cover the following technologies
= Java SE: Java Virtual Machines, Class libraries
= Java EE: Java Application Servers, Middleware (e.g. Hibernate)
= In house developed frameworks

= Life cycle management

= Evaluate and enable adoption of new Java technology within GS
= Security Vulnerability management

= Performance tuning
= Working with application and infrastructure teams to maximize Java performance

= Production support
= Analyzing crashes, providing workarounds, raising issues

= Educating developers
= Best practices, tools, internal and external classes

Java deployment in Goldman Sachs

Heterogeneous environment
Java on Windows and Linux
- Windows Desktop and Server
- RHEL4,5,6

Java updates do cause issues
Source compatibility is important
- e.g. JDBC compilation issues
Binary compatibility

Certification suite to test GS-like environments
Performance and scalability testing
Bug regression
Compatibility

Java 7 rollout
Engaging, educating and supporting early adopters
Promoting the release on runtime and language improvements

Supporting GS Java

= What makes our life easier
= Accurate, complete, documentation
= Source code access and developers’ debug code
= Discussions with developers
= Bug reports and trackers
= Standards
= Debugging, monitoring, maintenance tooling
= Logs - especially GC and JIT
= Tracers, analyzers, profilers and visualizers

= \What makes our life harder

= Lack of any of the above
» Extreme market conditions

Q&A

HYDRA - A Java “Big App”

Goldman Sachs Operations Technology September 2011

JCP EC Confidential 9

Hydra Requirements
Technology Requirements

A Middle Office Post Execution Trade Processing Platform which is ...

= Available
Support business globally across a 24 hour x 5+ trading environment.

= Reliable
Reliability and high uptime for timely processing of many of the firms flows.

= Performant
Key goal to support high volumes within standard processing windows.

= Agile
Fast, STP based processing with exception management to provide enhanced client experience and reduce
firm risk.

= Auditable

Clear and unambiguous audit of transaction lifecycle and processing with historic record.

= Scalable
Support performance and capacity scalability to accommodate growing volumes and new markets.

A representative
scaling requirement

10 million trades per day

What makes it a “Big App"? 200 million transactions in Hydra MUItlpIe Instances across

(or 5000 txn/sec for an 11 hour day) regions and business IineS.
800 million database row inserts

2 weeks of history

JCP EC Confidential 10

Physical Architecture

T Hydra Architecture

Overview

= Core Java software stack.

= Distributed in-memory cache.

= Hierarchical object / event driven
data model.

= Real-time publish / subscribe IPC via
RMI.

= Asynchronous RDBMS persistence
layer.

Scalability Dimensions
® |nstances

= Hosts

= Processes

= Threads

Concurrency Patterns

® Multi-threaded infrastructure
processes with load balanced
resource assignment.

= Notification & subscription queuing.

= Hashing to multiple application
service instances.

= Thread pooling into thread safe
application services instances.

Application _
Layer §
E Application Applicaﬁo} &plicgtiﬂéppliwtb)
! Service Servica Sarvice Sarvice
! NN
— 7 A LN AN R S — ,
Distributed _| § ;
cache i(FDM)(PDM)(PDM)(PDM) (PDM)(PDM (PDM)(F‘OM:}
\M-__ — v |

— ! » !
i / Y | !

File : — T Y ! — ¥

! Persistent File Persistert Fils Persistent File Persistent File -‘ i

Persistence oL e Queve Queve Qe

RDBMS “ ____ S — 1',
Persistence § I; j

JCP EC Confidential 11

Hydra Architecture

Persistence Architecture

Resilience
Scalability
Performance

Database writes decoupled from
application.

Queue files on replicated SAN.

Queue writes batched and pre-zipped.
Queue files have space pre-allocated.
DB writes pre-compiled and batched.
DB resilient live-live pairs.

DB on cheaper and faster non-replicated
SAN disk.

DB reads auto fail-over and fail-back.
DB striped in date ranges.

DB purge eliminated.

Queue tail pointer held in the database.

Queue replays automagically on
recovery.

App Hosts &
Processes

\

Distributed
= Cache Hosts &
Processes

[OOOO] [OOOO OOOO] [OOOO
0000 1000 (0000 10000

39838399 6399 6882

Queue on
replicated SAN ~— ~—

JCP EC Confidential Databases on non-replicated SAN 12

' *=Hydra Architecture
The Software Stack

All built using just Core Java ...

Hydra Applications Services
= Application specific configuration
= Application business logic

Hydra Service Template
Standard application structure based on reader,
processor & writer abstractions

* Configuration driven subscription implementation

= Commaon 10 interfaces across HSF & PTTools

* Configurable implementations of standard connection
types

Hydra Service Framework

* APl component factory

= Subscription, guery & commit APls

* Thread pooling, notification gueuing & stale data
management support

PTI‘ooIs Application Framework
Application initialization

Configuration property trees

Lagging

Monitoring & metrics

Rich connection, queue & database management

Core Java Software Stack
RDBMS Persistence Layer

JCP EC Confidential 13

Wrap Up
Hydra, Java & The Future

Platform is 10 years old and likely to evolve and remain active for a further 10+ years.

Maintaining Java as a suitable “Big App” platform & Hydra’s ability to meet the challenge
of the next 10 years ...

The Java Language Upgrade Cycles
"= Programmer productivity / = JVM stability through Java / OS
expressiveness revisions
= Lambda’s, improved collection APIs, = Ease of upgrade / backward
DSL support, concurrency models compatible APl evolutions
(STM, Actors) = Third-party compatibility
Running the Plant Architecture
= Building, bundling & deploying = Service Oriented Architecture
. Configuration management u Dynamic compute, execution fabrics,
= Monitoring & Diagnostics storage as a service and the cloud

Performance & Capacity

JVM performance
Garbage Collection

JCP EC Confidential 14

Appendlces

Appendices

JCP EC Confidential

15

Hydra Architecture

Processing Architecture

Key Characteristics

YA
Model — Object graph of (semi) immutable ‘
parent / child related transactions & v v
events. A.-* <-~~ ,——9 .A.,-*

=)

Commit — Write a transaction object or
event. Generates notifications on
interested subscriptions.

Subscribe — Registers interests via
predicates.

Predicates — Java implemented encoding of
filter / SARGs that can traverse the object
graph.

Notify — Generates a notification on a
subscription (with optional transformer
applied).

Transformer — Java implemented return
data transformer that can traverse object
graph.

Query — Static, point-in-time read from the
cache and / or database (with optional
predicates / transformers).

i Transaction L
Object

1

*

Transaction
Object

JCP EC Confidential 16

