
901 San Antonio Road
Palo Alto, CA 94303 USA
650 960-1300 fax: 650 969-9131

Sun Microsystems, Inc.

Java™ 2 Platform

Enterprise Edition

Specification, v1.3

Please send technical comments to: j2ee-spec-technical@eng.sun.com
Please send business comments to: j2ee-spec-business@eng.sun.com

Public Draft - 8/11/00 Bill Shannon

Public
Draft

Java™ 2 Platform, Enterprise Edition Specification ("Specification")
Version: 1.3
Status: Public Draft
Release: 8/11/00

Copyright 1999-2000 Sun Microsystems, Inc.
901 San Antonio Road, Palo Alto, CA 94303, U.S.A.
All rights reserved.

NOTICE.
This Specification is protected by copyright and the information described herein may be protected by one or more U.S. patents, foreign
patents, or pending applications. Except as provided under the following license, no part of this Specification may be reproduced in any
form by any means without the prior written authorization of Sun Microsystems, Inc. (“Sun”) and its licensors, if any. Any use of this
Specification and the information described herein will be governed by the terms and conditions of this license and the Export Control and
General Terms as set forth in Sun's website Legal Terms. By viewing, downloading or otherwise copying this Specification, you agree that
you have read, understood, and will comply with all of the terms and conditions set forth herein.

Subject to the terms and conditions of this license, Sun hereby grants you a fully-paid, non-exclusive, non-transferable, worldwide, limited
license (without the right to sublicense) under Sun’s intellectual property rights to review the Specification internally for the purposes of
evaluation only. Other than this limited license, you acquire no right, title or interest in or to the Specification or any other Sun intellectual
property. The Specification contains the proprietary and confidential information of Sun and may only be used in accordance with the
license terms set forth herein. This license will expire ninety (90) days from the date of Release listed above and will terminate immediately
without notice from Sun if you fail to comply with any provision of this license. Upon termination, you must cease use of or destroy the
Specification.

TRADEMARKS.
No right, title, or interest in or to any trademarks, service marks, or trade names of Sun or Sun's licensors is granted hereunder. Sun, Sun
Microsystems, the Sun logo, Java, Jini, J2EE, JavaServer Pages, Enterprise JavaBeans, Java Compatible, JDK, JDBC, JavaBeans, JavaMail,
Write Once, Run Anywhere, and Java Naming and Directory Interface are trademarks or registered trademarks of Sun Microsystems, Inc.
in the U.S. and other countries.

DISCLAIMER OF WARRANTIES.
THIS SPECIFICATION IS PROVIDED "AS IS" AND IS EXPERIMENTAL AND MAY CONTAIN DEFECTS OR DEFICIENCIES WHICH
CANNOT OR WILL NOT BE CORRECTED BY SUN. SUN MAKES NO REPRESENTATIONS OR WARRANTIES, EITHER EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
OR NON-INFRINGEMENT THAT THE CONTENTS OF THE SPECIFICATION ARE SUITABLE FOR ANY PURPOSE OR THAT ANY
PRACTICE OR IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS,
TRADE SECRETS OR OTHER RIGHTS. This document does not represent any commitment to release or implement any portion of this
Specification in any product.

THIS SPECIFICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE
PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED INTO NEW VERSIONS OF
THE SPECIFICATION, IF ANY. SUN MAY MAKE IMPROVEMENTS AND/OR CHANGES TO THE PRODUCT(S) AND/OR THE
PROGRAM(S) DESCRIBED IN THIS SPECIFICATION AT ANY TIME. Any use of such changes in the Specification will be governed by
the then-current license for the applicable version of the Specification.

LIMITATION OF LIABILITY.
TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL SUN OR ITS LICENSORS BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION, LOST REVENUE, PROFITS OR DATA, OR FOR SPECIAL, INDIRECT, CONSEQUENTIAL,
INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT
OF OR RELATED TO ANY FURNISHING, PRACTICING, MODIFYING OR ANY USE OF THE SPECIFICATION, EVEN IF SUN
AND/OR ITS LICENSORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
You will indemnify, hold harmless, and defend Sun and its licensors from any claims based on your use of the Specification for any
purposes other than those of internal evaluation, and from any claims that later versions or releases of any Specification furnished to you
are incompatible with the Specification provided to you under this license.
Please

Recycle

RESTRICTED RIGHTS LEGEND.

If this Software is being acquired by or on behalf of the U.S. Government or by a U.S. Government prime contractor or subcontractor (at
any tier), then the Government’s rights in the Software and accompanying documentation shall be only as set forth in this license; this is
in accordance with 48 C.F.R. 227.7201 through 227.7202-4 (for Department of Defense (DoD) acquisitions) and with 48 C.F.R. 2.101 and
12.212 (for non-DoD acquisitions).

REPORT.
You may wish to report any ambiguities, inconsistencies, or inaccuracies you may find in connection with your evaluation of the
Specification ("Feedback"). To the extent that you provide Sun with any Feedback, you hereby: (i) agree that such Feedback is provided on a
non-proprietary and non-confidential basis and (ii) grant Sun a perpetual, non-exclusive, worldwide, fully paid-up, irrevocable license,
with the right to sublicense through multiple levels of sublicensees, to incorporate, disclose, and use without limitation the Feedback for
any purpose related to the Specification and future versions, implementations, and test suites thereof.

Please

Recycle

Contents

1. Introduction 1-1

Acknowledgements 1-2

Acknowledgements for version 1.3 1-2

2. Platform Overview 2-1

2.1 Architecture 2-1

2.2 Product Requirements 2-7

2.3 Product Extensions 2-7

2.4 Platform Roles 2-8

2.4.1 J2EE Product Provider 2-8

2.4.2 Application Component Provider 2-9

2.4.3 Application Assembler 2-9

2.4.4 Deployer 2-9

2.4.5 System Administrator 2-10

2.4.6 Tool Provider 2-10

2.5 Platform Contracts 2-11

2.5.1 J2EE API 2-11

2.5.2 J2EE SPI 2-11

2.5.3 Network Protocols 2-11

2.5.4 Deployment Descriptors 2-12
Contents v

3. Security 3-1

3.1 Introduction 3-1

3.2 A Simple Example 3-2

3.3 Security Architecture 3-5

3.3.1 Goals 3-5

3.3.2 Non Goals 3-6

3.3.3 Terminology 3-7

3.3.4 Container Based Security 3-8

3.3.5 Declarative Security 3-8

3.3.6 Programmatic Security 3-8

3.3.7 Distributed Security 3-9

3.3.8 Authorization Model 3-10

3.3.9 Role Mapping 3-10

3.3.10 HTTP Login Gateways 3-11

3.3.11 User Authentication 3-11

3.3.11.1 Web Client 3-11

HTTP Basic Authentication 3-12

HTTPS Authentication 3-12

Form Based Authentication 3-13

Web Single Signon 3-13

Login Session 3-13

3.3.11.2 Application Client 3-14

3.3.11.3 Lazy Authentication 3-14

3.4 User Authentication Requirements 3-15

3.4.1 Web Clients 3-15

3.4.1.1 Web Single Signon 3-15

3.4.1.2 Login Sessions 3-15

3.4.1.3 Required Login Mechanisms 3-15

3.4.1.4 Unauthenticated Users 3-16

3.4.2 Application Clients 3-17

3.4.3 Resource Authentication Requirements 3-18
vi Java™ 2 Platform Enterprise Edition, v1.3, Public Draft (Sun Microsystems, Inc.)

3.5 Authorization Requirements 3-19

3.5.1 Code Authorization 3-19

3.5.2 Caller Authorization 3-20

3.6 Deployment Requirements 3-20

3.7 Future Directions 3-21

3.7.1 Auditing 3-21

4. Transaction Management 4-1

4.1 Overview 4-1

4.2 Requirements 4-3

4.2.1 Web Components 4-3

4.2.2 Enterprise JavaBeans™ Components 4-5

4.2.3 Application Clients 4-5

4.2.4 Applet Clients 4-5

4.2.5 Transactional JDBC™ Technology Support 4-5

4.2.6 Transactional JMS Support 4-5

4.2.7 Transactional Resource Adapter Support 4-6

4.3 Transaction Interoperability 4-6

4.3.1 Multiple J2EE Platform Interoperability 4-6

4.3.2 Support for Transactional Resource Managers 4-6

4.4 System Administration Tools 4-7

5. Naming 5-1

5.1 Overview 5-1

5.2 Java Naming and Directory Interface™ (JNDI) Naming Context 5-2

5.2.1 Application Component Provider’s Responsibilities 5-3

5.2.1.1 Access to application component’s environment 5-3

5.2.1.2 Declaration of environment entries 5-5

5.2.2 Application Assembler’s Responsibilities 5-6

5.2.3 Deployer’s Responsibilities 5-6

5.2.4 J2EE Product Provider’s Responsibilities 5-6
Contents vii

5.3 Enterprise JavaBeans™ (EJB) References 5-7

5.3.1 Application Component Provider’s Responsibilities 5-7

5.3.1.1 Programming interfaces for EJB references 5-8

5.3.1.2 Declaration of EJB references 5-9

5.3.2 Application Assembler’s Responsibilities 5-10

5.3.3 Deployer’s Responsibilities 5-11

5.3.4 J2EE Product Provider’s Responsibilities 5-12

5.4 Resource Manager Connection Factory References 5-12

5.4.1 Application Component Provider’s Responsibilities 5-13

5.4.1.1 Programming interfaces for resource manager connection

factory references 5-13

5.4.1.2 Declaration of resource manager connection factory

references in deployment descriptor 5-15

5.4.1.3 Standard resource manager connection factory types 5-16

5.4.2 Deployer’s Responsibilities 5-16

5.4.3 J2EE Product Provider’s Responsibilities 5-17

5.4.4 System Administrator’s Responsibilities 5-18

5.5 Resource Environment References 5-18

5.5.1 Application Component Provider’s Responsibilities 5-18

5.5.1.1 Resource environment reference programming interfaces

5-19

5.5.1.2 Declaration of resource environment references in

deployment descriptor 5-19

5.5.2 Deployer’s Responsibilities 5-20

5.5.3 J2EE Product Provider’s Responsibilities 5-21

5.6 UserTransaction References 5-21

5.6.1 Application Component Provider’s Responsibilities 5-22

5.6.2 Deployer’s Responsibilities 5-22

5.6.3 J2EE Product Provider’s Responsibilities 5-22

5.6.4 System Administrator’s Responsibilities 5-23

6. Application Programming Interface 6-1
viii Java™ 2 Platform Enterprise Edition, v1.3, Public Draft (Sun Microsystems, Inc.)

6.1 Required APIs 6-1

6.2 Java 2 Platform, Standard Edition (J2SE) Requirements 6-3

6.2.1 Programming Restrictions 6-3

6.2.2 Additional Requirements 6-5

6.2.2.1 Networking 6-5

6.2.2.2 AWT 6-6

6.2.2.3 JDBC™ API 6-7

6.2.2.4 Java™IDL 6-10

6.2.2.5 RMI-JRMP 6-10

6.2.2.6 RMI-IIOP 6-11

6.2.2.7 JNDI 6-12

6.3 JDBC™ 2.0 Standard Extension Requirements 6-13

6.4 Enterprise JavaBeans™ (EJB) 2.0 Requirements 6-14

6.5 Servlet 2.3 Requirements 6-14

6.6 JavaServer Pages™ (JSP) 1.2 Requirements 6-15

6.7 Java™ Message Service (JMS) 1.0 Requirements 6-15

6.8 Java™ Transaction API (JTA) 1.0 Requirements 6-16

6.9 JavaMail™ 1.2 Requirements 6-17

6.10 JavaBeans™ Activation Framework 1.0 Requirements 6-18

6.11 Java™ API for XML Parsing (JAXP) 1.1 Requirements 6-19

6.12 J2EE™ Connector Architecture 1.0 Requirements 6-20

6.13 Java™ Authentication and Authorization Service (JAAS) 1.0 Requirements

6-20

7. Interoperability 7-1

7.1 Introduction to Interoperability 7-1

7.2 Interoperability Protocols 7-2

7.2.1 Internet Protocols 7-2

7.2.2 OMG Protocols 7-3

7.2.3 Java Technology Protocols 7-4

7.2.4 Data Formats 7-4
Contents ix

8. Application Assembly and Deployment 8-1

8.1 Application Development Life Cycle 8-3

8.1.1 Component Creation 8-3

8.1.2 Component Packaging: Composing a J2EE module 8-4

8.1.3 Application Assembly 8-4

8.1.3.1 Customization 8-5

8.1.4 Deployment 8-5

8.2 Application Assembly 8-5

8.3 Deployment 8-7

8.4 J2EE:application XML DTD 8-9

9. Application Clients 9-1

9.1 Overview 9-1

9.2 Security 9-1

9.3 Transactions 9-3

9.4 Naming 9-3

9.5 Application Programming Interfaces 9-3

9.6 Packaging and Deployment 9-4

9.7 J2EE:application-client XML DTD 9-4

10. Service Provider Interface 10-1

11. Future Directions 11-1

11.1 XML Data Binding API 11-1

11.2 J2EE SPI 11-2

11.3 JDBC RowSets 11-2

11.4 Security APIs 11-2

11.5 Deployment APIs 11-3

11.6 Management APIs 11-3

11.7 SQLJ Part 0 11-3

A. Previous Version DTDs 5
x Java™ 2 Platform Enterprise Edition, v1.3, Public Draft (Sun Microsystems, Inc.)

A.1 J2EE:application XML DTD 5

A.2 J2EE:application-client XML DTD 10

B. Revision History A-1

A.1 Changes in Expert Draft 1 A-1

A.1.1 Additional Requirements A-1

A.1.2 Removed Requirements A-1

A.1.3 Editorial Changes A-2

A.2 Changes in Expert Draft 2 A-2

A.2.1 Additional Requirements A-2

A.2.2 Removed Requirements A-2

A.2.3 Editorial Changes A-2

A.3 Changes in Participant Draft A-3

A.3.1 Additional Requirements A-3

A.3.2 Removed Requirements A-3

A.3.3 Editorial Changes A-3

A.4 Changes in Public Draft A-4

A.4.1 Additional Requirements A-4

A.4.2 Removed Requirements A-4

A.4.3 Editorial Changes A-4

C. Related Documents B-1
Contents xi

xii Java™ 2 Platform Enterprise Edition, v1.3, Public Draft (Sun Microsystems, Inc.)

CHAPTER 1

Introduction

Enterprises today need to extend their reach, reduce their costs, and lower their

response times by providing easy-to-access services to their customers,

employees, and suppliers.

Typically, applications that provide these services must combine existing

Enterprise Information Systems (EISs) with new business functions that deliver

services to a broad range of users. These services need to be:

■ Highly available, to meet the needs of today’s global business environment.

■ Secure, to protect the privacy of users and the integrity of the enterprise.

■ Reliable and scalable, to insure that business transactions are accurately and

promptly processed.

In most cases, these services are architected as multi-tier applications. A middle-

tier that implements the new services needs to integrate existing EISs with the

business functions and data of the new service. The service middle-tier shields

first-tier clients from the complexity of the enterprise and takes advantage of

rapidly maturing web technologies to eliminate or drastically reduce user

administration and training while leveraging existing enterprise assets.

The Java™ 2 Platform, Enterprise Edition (J2EE™) reduces the cost and

complexity of developing these multi-tier services, resulting in services that can

be rapidly deployed and easily enhanced as the enterprise responds to

competitive pressures.

J2EE achieves these benefits by defining a standard architecture that is delivered

as the following elements:

■ J2EE Application Model - A standard application model for developing

multi-tier, thin-client services.

■ J2EE Platform - A standard platform for hosting J2EE applications.

■ J2EE Compatibility Test Suite - A suite of compatibility tests for verifying

that a J2EE platform product complies with the J2EE platform standard.
1-1

J2EE Reference Implementation - A reference implementation for

demonstrating the capabilities of J2EE and for providing an operational

definition of the J2EE platform.

This document provides the specification of the J2EE platform and describes the

requirements that a J2EE platform product must meet.

Acknowledgements

This specification is the work of many people. Vlada Matena wrote the first draft

as well as the Transaction Management and Naming chapters. Sekhar Vajjhala,

Kevin Osborn, and Ron Monzillo wrote the Security chapter. Hans Hrasna wrote

the Application Assembly and Deployment chapter. Seth White wrote the JDBC

API requirements. Jim Inscore, Eric Jendrock, and Beth Stearns provided

editorial assistance. Shel Finkelstein, Mark Hapner, Danny Coward, Tom

Kincaid, and Tony Ng provided feedback on many drafts. And of course this

specification was formed and molded based on conversations with and review

feedback from our many industry partners.

Acknowledgements for version 1.3

Version 1.3 of this specification grew out of discussions with our partners during

the creation of version 1.2, as well as meetings with those partners subsequent to

the final release of version 1.2. Version 1.3 was created under the Java

Community Process as JSR-058. The JSR-058 Expert Group included

representatives from the following companies and organizations: Allaire, BEA

Systems, Bluestone Software, Bull S.A., Exoffice, Fujitsu Limited, IBM, Inline

Software, Inprise, IONA Technologies, iPlanet, jGuru.com, Orion Application

Server, Persistence, POET Software, Silverstream, Sun, and Sybase.
1-2 Java™ 2 Platform Enterprise Edition, v1.3 Public Draft (Sun Microsystems, Inc.)

CHAPTER 2

Platform Overview

This chapter provides an overview of the Java™ 2 Platform, Enterprise Edition

(J2EE™).

2.1 Architecture
The J2EE runtime environment consists of the following parts:

■ Application components. The J2EE programming model defines four

application component types that a J2EE product must support:

– Application clients are Java programming language programs that are

typically GUI programs that execute on a desktop computer. Application

clients offer a user experience similar to that of native applications, and

have access to all of the facilities of the J2EE middle tier.

– Applets are GUI components that typically execute in a web browser, but

can execute in a variety of other applications or devices that support the

applet programming model. Applets can be used to provide a powerful

user interface for J2EE applications. (Simple HTML pages can also be used

to provide a more limited user interface for J2EE applications.)

– Servlets and JSP pages typically execute in a web server and respond to

HTTP requests from web clients. Servlets and JSP pages may be used to

generate HTML pages that are an application’s user interface. They may

also be used to generate XML or other format data that is consumed by

other application components. Servlets, and pages created with the

JavaServer Pages™ technology, are often referred to collectively in this

specification as “web components.” Web applications are composed of web

components and other data such as HTML pages.
2-1

– Enterprise JavaBeans™ (EJB) components execute in a managed

environment that supports transactions. Enterprise beans typically contain

the business logic for a J2EE application.

These application components can be divided into three categories:

– Components that are deployed, managed, and executed on a J2EE server.

These components include JavaServer Pages, Servlets, and Enterprise

JavaBeans.

– Components that are deployed and managed on a J2EE server, but are

loaded to and executed on a client machine. These components include

HTML pages and applets embedded in the HTML pages.

– Components whose deployment and management is not completely

defined by this specification. Application clients fall into this category.

Future versions of this specification may more fully define deployment and

management of application clients.

■ Containers. Containers provide the runtime support for the application

components. A container provides a federated view of the underlying J2EE

APIs to the application components. Interposing a container between the

application components and the J2EE services allows the container to

transparently inject services defined by the components’ deployment

descriptors, such as declarative transaction management, security checks,

resource pooling, and state management. A typical J2EE product will provide

a container for each application component type: application client container,

applet container, web component container, and enterprise bean container.

This specification requires that these containers provide a Java Compatible™

runtime environment, as defined by the Java 2 Platform, Standard Edition,

v1.3 specification (J2SE). The applet container may use the Java Plugin

product to provide this environment, or it may provide it natively. The use of

applet containers providing only the JDK™ 1.1 APIs is outside the scope of

this specification.

The container tools also understand the file formats for packaging of the

application components for deployment. The containers are implemented by

a J2EE Product Provider.

This specification defines a set of standard services that each J2EE product

must support. These standard services are described below. The J2EE

containers provide the APIs to access these services to application

components. This specification also describes standard ways to extend J2EE

services with connectors to other non-J2EE application systems, such as

mainframe systems and ERP systems.
2-2 Java™ 2 Platform Enterprise Edition, v1.3 Public Draft (Sun Microsystems, Inc.)

Underlying the J2EE containers is the J2EE core. A J2EE Product Provider

typically implements the J2EE server core using an existing transaction

processing infrastructure in combination with Java 2 technology. The J2EE

client core is typically built on Java 2 Platform, Standard Edition technology.

FIGURE 2-1 illustrates the relationship of these components of the J2EE platform.

Note that this figure shows the logical relationships of the components; it is not
meant to imply a physical partitioning of the components into separate

machines, processes, address spaces, or virtual machines.

FIGURE 2-1 J2EE Architecture Diagram

■ Resource manager drivers. A resource manager driver (driver for short) is a

system-level software component that implements network connectivity to an

external resource manager. A driver can extend the functionality of the J2EE

platform either by implementing one of the J2EE standard service APIs (such

as a JDBC™ driver), or by defining and implementing a resource manager

driver for a connector to an external application system. Drivers interface

with the J2EE platform through the J2EE service provider interfaces (J2EE

SPI). A driver that uses the J2EE SPIs to attach to the J2EE platform will be

able to work with all J2EE products.

HTTP
SSL

Database

Applet Container

J2SE

Applet

EJB Container

J2SE

EJB

HTTP
SSL

Java
Mail

JAF

JM
S

JA
A

S

JT
A

 JA
X

P

JD
B

C

Application
ClientContainer

J2SE

Application
Client

JM
S

JA
A

S

 JA
X

P

JD
B

C

Web Container

J2SE

ServletJSP

Java
Mail

JAF
JM

S

JA
A

S

JT
A

 JA
X

P

JD
B

C

C
onnector

C
onnector
Chapter 2 Platform Overview 2-3

■ Database. The J2EE platform includes a database, accessible through the

JDBC API, for the storage of business data. The database is accessible from

web components, enterprise beans, and application client components. The

database need not be accessible from applets.

The J2EE standard services include the following (specified in more detail later

in this document). Some of these standard services are actually provided by

J2SE.

■ HTTP. The HTTP client-side API is defined by the java.net package. The

HTTP server-side API is defined by the servlet and JSP interfaces.

■ HTTPS. Use of the HTTP protocol over the SSL protocol is supported by the

same client and server APIs as HTTP.

■ Java™ Transaction API (JTA). The Java Transaction API consists of two parts:

– An application-level demarcation interface that is used by the container

and application components to demarcate transaction boundaries.

– An interface between the transaction manager and a resource manager

used at the J2EE SPI level (in a future release).

■ RMI-IIOP. The RMI-IIOP subsystem is composed of APIs that allow for the

use of RMI-style programming that is independent of the underlying

protocol, as well as an implementation of these APIs that supports both the

J2SE native RMI protocol (JRMP) and the CORBA IIOP protocol. J2EE

applications can use RMI-IIOP, with the IIOP protocol support, to access

CORBA services that are compatible with the RMI programming restrictions

(see the RMI-IIOP spec for details). Such CORBA services would typically be

defined by components that live outside of a J2EE product, usually in a legacy

system. Only J2EE application clients are required to be able to define their

own CORBA services directly, using the RMI-IIOP APIs. Typically such

CORBA objects would be used for callbacks when accessing other CORBA

objects.

J2EE applications are required to use the RMI-IIOP APIs (specifically the

narrow method of javax.rmi.PortableRemoteObject) when accessing

Enterprise JavaBeans components, as described in the EJB specification. This

allows enterprise beans to be protocol independent. In addition, J2EE

products must be capable of exporting enterprise beans using the IIOP

protocol, and accessing enterprise beans using the IIOP protocol, as specified

in the EJB 2.0 specification. The ability to use the IIOP protocol is required to

enable interoperability between J2EE products, however a J2EE product may

also use other protocols.

■ JavaIDL. JavaIDL allows J2EE application components to invoke external

CORBA objects using the IIOP protocol. These CORBA objects may be written

in any language and typically live outside a J2EE product. J2EE applications
2-4 Java™ 2 Platform Enterprise Edition, v1.3 Public Draft (Sun Microsystems, Inc.)

may use JavaIDL to act as clients of CORBA services, but only J2EE

application clients are required to be allowed to use JavaIDL directly to

present CORBA services themselves.

■ JDBC™. The JDBC API is the API for connectivity with relational database

systems. The JDBC API has two parts: an application-level interface used by

the application components to access a database, and a service provider

interface to attach a JDBC driver to the J2EE platform.

■ Java™ Message Service (JMS). The Java Messaging Service is a standard API

for messaging that supports reliable point-to-point messaging as well as the

publish-subscribe model. This specification requires a JMS provider that

implements both point-to-point messaging as well as publish-subscribe

messaging.

■ Java Naming and Directory Interface™ (JNDI). The JNDI API is the

standard API for naming and directory access. The JNDI API has two parts:

an application-level interface used by the application components to access

naming and directory services and a service provider interface to attach a

provider of a naming and directory service.

■ JavaMail™. Many Internet applications require the ability to send email

notifications, so the J2EE platform includes the JavaMail API along with a

JavaMail service provider that allows an application component to send

Internet mail. The JavaMail API has two parts: an application-level interface

used by the application components to send mail, and a service provider

interface used at the J2EE SPI level.

■ JavaBeans™ Activation Framework (JAF). The JavaMail API makes use of

the JAF API, so it must be included as well.

■ Java™ API for XML Parsing (JAXP). JAXP provides support for the industry

standard SAX and DOM APIs for parsing XML documents.

■ J2EE™ Connector Architecture. The Connector architecture is a J2EE SPI that

allows resource adapters that support access to Enterprise Information

Systems to be plugged in to any J2EE product. The Connector architecture

defines a standard set of system-level contracts between a J2EE server and a

resource adapter. The standard contracts include:

– A connection management contract that lets a J2EE server pool connections

to an underlying EIS, and lets application components connect to an EIS.

This leads to a scalable application environment that can support a large

number of clients requiring access to EIS systems.

– A transaction management contract between the transaction manager and

an EIS that supports transactional access to EIS resource managers. This

contract lets a J2EE server use a transaction manager to manage

transactions across multiple resource managers. This contract also supports

transactions that are managed internal to an EIS resource manager without

the necessity of involving an external transaction manager.
Chapter 2 Platform Overview 2-5

– A security contract that enables secure access to an EIS. This contract

provides support for a secure application environment, which reduces

security threats to the EIS and protects valuable information resources

managed by the EIS.

■ Java™ Authentication and Authorization Service (JAAS). JAAS enables

services to authenticate and enforce access controls upon users. It implements

a Java technology version of the standard Pluggable Authentication Module

(PAM) framework, and extends the access control architecture of the Java 2

Platform in a compatible fashion to support user-based authorization.

Many of the APIs described above provide interoperability with components

that are not a part of the J2EE platform, such as external web or CORBA

services. FIGURE 2-2 illustrates the interoperability facilities of the J2EE platform.

(The directions of the arrows indicate the client/server relationships of the

components.)

FIGURE 2-2 J2EE Interoperability

Database

EJB / IIOP / SSL

J2EE Platform

Application
Client

Container

HTTP
SSL

IIOP JRMP

Web
Container

IIOP

JRMP
HTTP
SSL

Applet
Container

HTTP
SSL

IIOPJRMP

EJB
Container

JRMP

HTTP
SSL

IIOP
2-6 Java™ 2 Platform Enterprise Edition, v1.3 Public Draft (Sun Microsystems, Inc.)

2.2 Product Requirements
This specification doesn’t require that a J2EE product be implemented by a

single program, a single server, or even a single machine. In general, this

specification doesn’t describe the partitioning of services or functions between

machines, servers, processes, etc. As long as the requirements in this

specification are met, J2EE Product Providers can partition the functionality

however they see fit. A J2EE product must be able to deploy application

components that execute with the semantics described by this specification.

A very simple J2EE product might be provided as a single Java virtual machine

that supports applets, web components, and enterprise beans simultaneously in

one container (although this would be an extreme, and probably rare, case), and

application clients each in their own container. A typical low end J2EE product

will support applets in one of the popular browsers, application clients each in

their own Java virtual machine, and will provide a single server that supports

both web components and enterprise beans. A high end J2EE product might

split the server components into multiple servers, each of which can be

distributed and load-balanced across a collection of machines. This specification

does not prescribe or preclude any of these configurations.

A wide variety of J2EE product configurations and implementations, all of

which meet the requirements of this specification, are possible. A portable J2EE

application will function correctly when successfully deployed in any of these

products.

2.3 Product Extensions
This specification describes a minimum set of facilities that all J2EE products

must provide. Most J2EE products will provide facilities beyond the minimum

required by this specification. This specification includes only a few limits to the

ability of a product to provide extensions. In particular, it includes the same

restrictions as J2SE on extensions to Java APIs. A J2EE product may not add

classes to the Java programming language packages included in this

specification, and may not add methods or otherwise alter the signatures of the

specified classes.

However, many other extensions are possible. A J2EE product may provide

additional Java APIs, either other Java optional packages or other (appropriately

named) packages. A J2EE product may include support for additional protocols
Chapter 2 Platform Overview 2-7

or services not specified here. A J2EE product may support applications written

in other languages, or may support connectivity to other platforms or

applications.

Of course, portable applications will not make use of any platform extensions.

Applications that do make use of facilities not required by this specification will

be less portable. Depending on the facility used, the loss of portability may be

minor or it may be significant. The document Designing Enterprise Applications
with the Java 2 Platform, Enterprise Edition will help application developers

construct portable applications, and will contain advice on how best to manage

the use of non-portable code when the use of such facilities is necessary.

In addition, we expect J2EE products to vary widely, and in fact compete, on

various quality of service aspects. Different products will provide different

levels of performance, scalability, robustness, availably, security, etc. In some

cases this specification describes minimum required levels of service. Future

versions of this specification may allow applications to describe their

requirements in these areas.

2.4 Platform Roles
This section describes typical Java 2 Platform, Enterprise Edition roles. Although

these roles are considered to be typical, an organization could use slightly

different roles to match that organization’s actual application development and

deployment workflow.

The following sections describe the roles in greater detail. Subsets of some of

these roles are defined in the EJB, JSP, and Servlet specifications.

2.4.1 J2EE Product Provider

A J2EE Product Provider, typically an operating system vendor, database system

vendor, application server vendor, or a web server vendor, implements a J2EE

product providing the component containers, J2EE platform APIs, and other

features defined in this specification. A J2EE Product Provider must provide the

J2EE APIs to the application components through the containers. A Product

Provider frequently bases their implementation on an existing infrastructure.
2-8 Java™ 2 Platform Enterprise Edition, v1.3 Public Draft (Sun Microsystems, Inc.)

A J2EE Product Provider must provide the mapping of the application

components to the network protocols as specified by this specification. A J2EE

product is free to implement the interfaces that are not specified by this

specification in an implementation-specific way.

A J2EE Product Provider must provide application deployment and

management tools. Deployment tools enable a Deployer (see Section 2.4.4,

“Deployer”) to deploy application components on the J2EE product.

Management tools allow a System Administrator (see Section 2.4.5, “System

Administrator”) to manage the J2EE product and the applications deployed on

the J2EE product. The form of these tools is not prescribed by this specification.

2.4.2 Application Component Provider

There are multiple roles for Application Component Providers, including HTML

document designers, document programmers, enterprise bean developers, etc.

These roles use tools to produce J2EE applications and components.

2.4.3 Application Assembler

The Application Assembler takes a set of components developed by Application

Component Providers and assembles them into a complete J2EE application

delivered in the form of a Enterprise Archive (.ear) file. The Application

Assembler will generally use GUI tools provided by either a Platform Provider

or Tool Provider. The Application Assembler is responsible for providing

assembly instructions describing external dependencies of the application that

the Deployer must resolve in the deployment process.

2.4.4 Deployer

The Deployer, an expert in a specific operational environment, is responsible for

deploying web applications and Enterprise JavaBeans components into that

environment. The Deployer uses tools supplied by the J2EE Product Provider to

perform the deployment tasks. The deployment process is typically a three-stage

process:

1. Installation: moves the media to the server, generates the additional

container-specific classes and interfaces that enable the container to manage

the application components at runtime, and installs the application

components and additional classes and interfaces into the J2EE containers.
Chapter 2 Platform Overview 2-9

2. Configuration: resolves all the external dependencies declared by the

Application Component Provider and follows the application assembly

instructions defined by the Application Assembler. For example, the Deployer

is responsible for mapping the security roles defined by the Application

Assembler to the user groups and accounts that exist in the operational

environment into which the application components are deployed.

3. Execution: starts up the newly installed and configured application.

In some cases, a qualified Deployer may customize the business logic of the

application’s components at deployment time by using tools provided with a

J2EE product to write relatively simple application code that wraps an

enterprise bean’s business methods, or to customize the appearance of a JSP

page, for example.

The Deployer’s output is web applications, enterprise beans, applets, and

application clients that have been customized for the target operational

environment and are deployed in a specific J2EE container.

2.4.5 System Administrator

The System Administrator is responsible for the configuration and

administration of the enterprise’s computing and networking infrastructure. The

System Administrator is also responsible for overseeing the runtime well-being

of the deployed J2EE applications. The System Administrator typically uses

runtime monitoring and management tools provided by the J2EE Product

Provider to accomplish these tasks.

2.4.6 Tool Provider

A Tool Provider provides tools used for the development and packaging of

application components. A variety of tools are anticipated, corresponding to the

many application component types supported by the J2EE platform. Platform

independent tools can be used for all phases of development up to the

deployment of an application. Platform dependent tools are used for

deployment, management, and monitoring of applications. Future versions of

this specification may define more interfaces that allow such tools to be platform

independent.
2-10 Java™ 2 Platform Enterprise Edition, v1.3 Public Draft (Sun Microsystems, Inc.)

2.5 Platform Contracts
This section describes the Java 2 Platform, Enterprise Edition contracts that must

be fulfilled by the J2EE Product Provider.

2.5.1 J2EE API

The J2EE API defines the contract between the J2EE application components and

the J2EE platform. The contract specifies both the runtime and deployment

interfaces.

The J2EE Product Provider must implement the J2EE APIs in a way that

supports the semantics and policies described in this specification. The

Application Component Provider should provide components that conform to

these APIs and policies.

2.5.2 J2EE SPI

The J2EE SPI defines the contract between the J2EE platform and service

providers that may be plugged in to a J2EE product. The Connector APIs define

service provider interfaces for integrating resource adapters with a J2EE

application server. These resource adapter components are called Connectors.

The J2EE Product Provider must implement the J2EE SPIs in a way that supports

the semantics and policies described in this specification. A provider of Service

Provider components (for example, a Connector Provider) should provide

components that conform to these SPIs and policies.

2.5.3 Network Protocols

This specification defines the mapping of the application components to

industry-standard network protocols. The mapping allows client access to the

application components from systems that have not installed J2EE product

specific technology. See Chapter 7, “Interoperability” for details on the network

protocol support required for interoperability.
Chapter 2 Platform Overview 2-11

The J2EE Product Provider is required to publish the installed application

components on the industry-standard protocols. This specification defines the

mapping of servlets and JSP pages to the HTTP and HTTPS protocols, and the

mapping of EJB to IIOP.

2.5.4 Deployment Descriptors

Deployment descriptors are used to communicate the needs of application

components to the Deployer. The deployment descriptor is a contract between

the Application Component Provider or Assembler and the Deployer. The

Application Component Provider or Assembler is required to specify the

application component’s external resource requirements, security requirements,

environment parameters, etc. in the component’s deployment descriptor. The

J2EE Product Provider is required to provide a deployment tool that interprets

the J2EE deployment descriptors and allows the Deployer to map the

application component’s requirements to the capabilities of a specific J2EE

product and environment.
2-12 Java™ 2 Platform Enterprise Edition, v1.3 Public Draft (Sun Microsystems, Inc.)

CHAPTER 3

Security

This chapter describes the security requirements for the Java™ 2 Platform,

Enterprise Edition (J2EE).

The J2EE Product Provider is responsible for determining the level of security

and security assurances afforded by their implementation. However, a J2EE

Product Provider is required to satisfy the requirements specified in this chapter.

3.1 Introduction
An enterprise contains many resources that can be accessed by many users.

Sensitive information often traverses unprotected open networks (such as the

Internet). In such an environment, almost every enterprise has security

requirements and specific mechanisms and infrastructure to meet them.

Although the quality assurances and implementation details may vary, they all

share some of the following characteristics:

■ Authentication: The means by which communicating entities prove to one

another that they are acting on behalf of specific identities (e.g., client to

server and/or server to client).

■ Access control for resources: The means by which interactions with resources

are limited to collections of users or programs for the purpose of enforcing

integrity, confidentiality, or availability constraints.

■ Data integrity: The means used to prove that information could not have

been modified by a third party (some entity other than the source of the

information). For example, a recipient of data sent over an open network

must be able to detect and discard messages that were modified after they

were sent.
3-1

■ Confidentiality or Data Privacy: The means used to ensure that information

is only made available to users who are authorized to access it.

■ Non-repudiation: The means used to prove that a user performed some

action such that the user cannot reasonably deny having done so.

■ Auditing: The means used to capture a tamper-resistant record of security

related events for the purpose of being able to evaluate the effectiveness of

security policies and mechanisms.

This chapter specifies how the J2EE platform addresses some of these security

requirements, and identifies those requirements left to be addressed by J2EE

Product Providers. Issues being considered for future versions of this

specification are briefly mentioned in Section 3.7, “Future Directions.”

3.2 A Simple Example
The security behavior of a J2EE environment may be better understood by

examining what happens in a simple application with a web client, JSP page

user interface, and enterprise bean business logic. We include here a descriptive

example; this example is not meant to specify requirements. In this example, the

web client relies on the web server to act as its authentication proxy by

collecting user authentication data from the client and using it to establish an

authenticated session.

Step 1: Initial Request

The web client requests the main application URL, shown in FIGURE 3-1.

FIGURE 3-1 Initial Request

Since this client has not yet authenticated itself to the application environment,

the server responsible for delivering the web portion of the application

(hereafter referred to as “web server”) detects this and invokes the appropriate

authentication mechanism for this resource.

Web Client
Web Server

Request access to
protected resource
3-2 Java™ 2 Platform Enterprise Edition, v1.3 Public Draft (Sun Microsystems, Inc.)

Step 2: Initial Authentication

The web server returns a form that the web client uses to collect authentication

data (e.g., username and password) from the user. The web client forwards the

authentication data to the web server, where it is validated by the web server, as

shown in FIGURE 3-2.

FIGURE 3-2 Initial Authentication

This validation mechanism could be local to the server, or it could leverage the

underlying security services. The web server then sets a credential for the user.

Step 3: URL Authorization

The web server determines if the user whose identity is captured in the

credential is authorized to access the resource represented by the URL. The web

server performs the authorization decision by consulting the security policy

(derived from the deployment descriptor) associated with the web resource to

determine the security roles that are permitted access to the resource. The web

container then tests the user’s credentials against each role to determine if it can

map the user to the role. FIGURE 3-3 shows this process.

FIGURE 3-3 URL Authorization

The evaluation stops with an “is authorized” outcome on the first role that the

web container is able to map the user to. A “not authorized” outcome is reached

if the web container is unable to map the user to any of the permitted roles.

Web Client

Web Server

credential

Authentication data

Form

Web Client

Request access to
protected resource

Web Server

credential

Session
Context

A
uthorization

JSP/Servlet
Object
Chapter 3 Security 3-3

Step 4: Fulfilling the Original Request

If the user is authorized, the web server returns the result of the original URL

request, as shown in FIGURE 3-4.

FIGURE 3-4 Fulfilling the Original Request

In this case, the response of a JSP page is returned. Next, the user performs some

action (perhaps posting form data) that needs to be handled by the business

logic component of the application.

Step 5. Invoking Enterprise Bean Business Methods

When the JSP page performs the remote method call to the enterprise bean, the

user’s credential is used to establish (as shown in FIGURE 3-5) a secure association

between the JSP page and the enterprise bean. The association is implemented

as two related security contexts, one in the web server and one in the EJB

container.

FIGURE 3-5 Invoking an Enterprise Bean Business Method

The EJB container is responsible for enforcing access control on the enterprise

bean method; it does so by consulting the security policy (derived from the

deployment descriptor) associated with the enterprise bean to determine the

security roles that are permitted access to the method. Then for each role, the

EJB container will use the security context associated with the call to determine

if it can map the caller to the role. The evaluation stops with an “is authorized”

outcome on the first role that the EJB container is able to map the caller to. A

Web Client

Web Server

credential

Session
Context

JSP/Servlet
Object

Post to business logic

Result of request

Web Client

Web Server

credential

Session
Context

JSP/Servlet
Object

EJB Container

EJB

A
uthorization

 Credential used to
establish security association

remote call

Security
Context

Security
Context
3-4 Java™ 2 Platform Enterprise Edition, v1.3 Public Draft (Sun Microsystems, Inc.)

“not authorized” outcome is reached if the container is unable to map the caller

to any of the permitted roles and results in an exception being thrown by the

container, and propagated back to the caller (in this case the JSP page). If the call

“is authorized”, the container dispatches control to the enterprise bean method,

which then returns a result to the caller.

The platform provides two sets of methods for use by security aware

applications: the EJBContext methods isCallerInRole and

getCallerPrincipal available to enterprise beans through the EJB container,

and the HttpServletRequest methods isUserInRole and

getUserPrincipal available to servlets and JSP pages through the web

container. When an enterprise bean calls the isCallerInRole method, the

enterprise bean container determines if the caller (as represented by the security

context) is in the specified role. When an enterprise bean calls the

getCallerPrincipal method, the enterprise bean container returns the

principal associated with the security context. The web container APIs behave

similarly.

3.3 Security Architecture
This section describes the J2EE security architecture on which the security

requirements defined by this specification are based.

3.3.1 Goals

1. Portability: The J2EE security architecture must support the Write Once, Run

Anywhere™ application property.

2. Transparency: Application Component Providers should not have to know

anything about security to write an application.

3. Isolation: The J2EE platform will perform authentication and access control,

and its ability to do so will be established by the Deployer and managed by

the System Administrator.

By divorcing responsibility for security from the application, this specification

ensures greater portability of J2EE applications.

4. Extensibility: The use of platform services by security aware applications

must not compromise application portability. For applications that need

access to information available in the security environment, this specification
Chapter 3 Security 3-5

provides APIs in the component programming model for the purpose of

interacting with container/server security information. Applications that

restrict their interactions to the provided APIs should retain portability.

5. Flexibility: Mechanisms and declarations of security properties of

applications should not impose a particular security policy, but facilitate the

implementation of security policies specific to the particular J2EE installation.

6. Abstraction: A component’s security requirements are logically specified

using deployment descriptors. Security roles and access requirements are

mapped into environment specific security roles, users, and policies. A

Deployer may choose to modify the security properties to be consistent with

the deployment environment. The deployment descriptor should document

which parameters can be modified and which should not.

7. Independence: Required security behaviors and deployment contracts should

be implementable using a variety of popular security technologies.

8. Compatibility testing: The J2EE security requirements architecture must be

expressed in a manner that allows for an unambiguous determination of

whether or not an implementation is compatible.

9. Secure interoperability: Components executing in one J2EE product must be

able to securely invoke services provided by another J2EE product from a

different vendor. Those services may be provided by either web components

or enterprise beans.

3.3.2 Non Goals

1. This specification does not dictate a specific security policy. Security policy

for applications and for enterprise information systems vary for many

reasons. This specification allows Product Providers to provide people the

technology to implement and administer the policies they require.

2. This specification does not mandate a specific security technology, such as

Kerberos, PK, NIS+, NTLM, etc.

3. This specification does not require that the J2EE security behaviors be

universally implementable (i.e., using any or all security technologies).

4. This specification does not afford any warranty or assurance of the effective

security of a J2EE product.
3-6 Java™ 2 Platform Enterprise Edition, v1.3 Public Draft (Sun Microsystems, Inc.)

3.3.3 Terminology

This section introduces the terminology that is used to describe the security

requirements of the J2EE platform.

Principal

A principal is an entity that can be authenticated by an authentication protocol

in a security service that is deployed in an enterprise. A principal is identified

using a principal name and authenticated using authentication data. The content

and format of the principal name and the authentication data depend upon

the authentication protocol.

Security Policy Domain

A security policy domain (referred to as security domain) is a scope over which

security policies are defined and enforced by a security administrator of the

security service. A security policy domain is also sometimes referred to as a

realm. This specification uses the term security policy domain or security

domain.

Security Technology Domain

A security technology domain is the scope over which the same security

mechanism (e.g., Kerberos) is used to enforce a security policy. A single

security technology domain may include multiple security policy domains,

for example.

Security Attributes

A set of security attributes is associated with every principal. The security

attributes have many uses (e.g., access to protected resources, auditing of

users, etc.). Security attributes can be associated with a principal by an

authentication protocol and/or by the J2EE Product Provider.

The J2EE platform does not specify the security attributes that can be

associated with a principal.

Credential

A credential might contain or reference information (security attributes) that

can authenticate a principal to additional services. A principal acquires a

credential upon authentication or from another principal that allows its

credential to be used (delegation).

This specification does not specify the contents or the format of a credential,

because both can vary widely.
Chapter 3 Security 3-7

3.3.4 Container Based Security

To achieve the goals for security in a J2EE environment, security for components

is provided by their containers. A container provides security in two forms:

■ Declarative security.

■ Programmatic security.

3.3.5 Declarative Security

Declarative security refers to the means of expressing an application’s security

structure, including security roles, access control, and authentication

requirements in a form external to the application. The deployment descriptor is

the primary vehicle for declarative security in the J2EE platform.

A deployment descriptor is a contract between an Application Component

Provider and a Deployer or Application Assembler. In the context of J2EE

security, it can be used by an application programmer to represent an

application’s security related environmental requirements. Groups of

components are associated with a deployment descriptor.

The application’s logical security requirements are mapped by a Deployer to a

representation of the security policy that is specific to the environment at

deployment time. A Deployer uses a deployment tool to process the deployment

descriptor.

At runtime, the container uses the security policy that was derived from the

deployment descriptor and configured by the Deployer to enforce authorization

(see Section 3.3.8, “Authorization Model”).

3.3.6 Programmatic Security

Programmatic security is used by security aware applications. Programmatic

security is useful when declarative security alone is not sufficient to express the

security model of the application. Programmatic security consists of two

methods of the EJB EJBContext interface and two methods of the servlet

HttpServletRequest interface:

■ isCallerInRole (EJBContext)
■ getCallerPrincipal (EJBContext)
■ isUserInRole (HttpServletRequest)
■ getUserPrincipal (HttpServletRequest)
3-8 Java™ 2 Platform Enterprise Edition, v1.3 Public Draft (Sun Microsystems, Inc.)

These methods allow components to make business logic decisions based on the

security role of the caller or remote user. They also allow the component to

determine the principal name of the caller or remote user to use as a database

key, for example. (Note that the form and content of principal names will vary

widely between products and enterprises, and portable components will not

depend on the actual contents of a principal name.)

3.3.7 Distributed Security

Some Product Providers may produce J2EE products in which the containers for

various component types are distributed. In a distributed environment,

communication between J2EE components can be subject to security attacks (for

example, data modification and replay attacks).

Such threats can be countered by using a secure association to secure

communications. A secure association is shared security state information which

permits secure communication between two components. Establishing a secure

association could involve several steps such as:

1. Authenticating the target principal to the client and/or authenticating the

client to the target principal.

2. Negotiating a quality of protection, such as confidentiality or integrity.

3. Establishing a security context between the components.

Since a container provides security in J2EE, secure associations for a component

are typically established by a container. Secure associations for web access are

specified here. Secure associations for access to enterprise beans are described in

the EJB specification..

A J2EE Product Provider may allow control over the quality of protection or

other aspects of secure association at deployment time. These aspects depend

upon the application and are essentially application requirements. Applications

can specify their quality of protection requirements for access to web resources

using elements in their deployment descriptor. This specification does not define

any mechanisms that an Application Component Provider can use to

communicate an enterprise bean’s requirements for secure associations.
Chapter 3 Security 3-9

3.3.8 Authorization Model

The J2EE authorization model is based on the concept of security roles. A

security role is a logical grouping of users that is defined by an Application

Component Provider or Assembler. It is then mapped by a Deployer to security

identities (e.g., principals, groups, etc.) in the operational environment. A

security role can be used either with declarative security or with programmatic

security.

Declarative authorization can be used to control access to an enterprise bean

method and is specified in the deployment descriptor. An enterprise bean

method can be associated with a method-permission element in the

deployment descriptor. The method-permission element contains a list of

methods that can be accessed by a given security role. If the calling principal is

in one of the security roles allowed access to a method, the principal is allowed

to execute the method. Conversely, if the calling principal is in none of the roles,

the caller is not allowed to execute the method. Access to web resources can be

protected in a similar manner.

A security role can be used in the EJBContext method isCallerInRole and

the HttpServletRequest method isUserInRole . Each method returns true
if the calling principal is in the specified security role.

3.3.9 Role Mapping

Enforcement of either programmatic or declarative security depends upon

determining if the principal associated with an incoming request of an

enterprise bean or web resource is in a given security role or not. A container

makes this determination based on the security attributes of the calling

principal. For example,

1. A Deployer could have mapped a security role to a user group in the

operational environment. In this case, the user group to which the calling

principal belongs is retrieved from its security attributes. If the principal’s

user group matches the user group in the operational environment that the

security role has been mapped to, the principal is in the security role.

2. A Deployer could have mapped a security role to a principal name in a

security policy domain. In this case, the principal name of the calling

principal is retrieved from its security attributes. If this principal is the same

as the principal name to which the security role was mapped, the calling

principal is in the security role.
3-10 Java™ 2 Platform Enterprise Edition, v1.3 Public Draft (Sun Microsystems, Inc.)

The source of security attributes may vary across implementations of the J2EE

platform. Security attributes could have been transmitted in the calling

principal’s credential or in the security context. If security attributes are not

transmitted, they may be retrieved from a trusted third party such as a directory

service or security service.

3.3.10 HTTP Login Gateways

Secure interoperability between enterprise beans in different security policy

domains is not addressed in this specification. A future version will specify an

interoperability protocol (based on industry standards) that will allow EJB

containers in different domains to interoperate securely.

To gain access to another J2EE product that may be incompatible (i.e., in terms

of communications protocols, security technology, or policy domain), a

component may choose to log in to a foreign server via HTTP. HTTP over SSL

can be used to provide secure, interoperable communication between J2EE

products from different providers. An application component can be configured

to use SSL mutual authentication when accessing a remote resource using HTTP.

Applications using HTTP in this way may want to exchange data using XML or

some other structured format, rather than HTML.

We call this use of HTTP with SSL mutual authentication to access a remote

service an HTTP Login Gateway. Requirements in this area are specified in

Section 3.4.1, “Web Clients.”

3.3.11 User Authentication

User authentication is the process by which a user proves his or her identity to

the system. This authenticated identity is then used to perform authorization

decisions for accessing J2EE application components. An end user can

authenticate using either of the two supported client types:

■ Web client

■ Application client

3.3.11.1 Web Client

A web client can authenticate a user to a web server using one of the following

mechanisms:

■ HTTP Basic Authentication
Chapter 3 Security 3-11

■ HTTPS Client Authentication

■ Form Based Authentication

HTTP Digest Authentication is not widely supported by web browsers and

hence is not required.

The Deployer or System Administrator determines which method to apply to an

application or groups of applications. A web client can employ a web server as

its authentication proxy. In this case, the client’s credentials are established for

the client in the server, where they may be used by the server to perform

authorization decisions, to act as the client in calls to enterprise beans, or to

negotiate secure associations with resources.

Current web browsers commonly rely on proxy authentication.

HTTP Basic Authentication

HTTP Basic Authentication is the authentication mechanism supported by the

HTTP protocol. This mechanism is based on a username and password. A web

server requests a web client to authenticate the user. As part of the request, the

web server passes the realm in which the user is to be authenticated. The web

client obtains the username and the password from the user and transmits them

to the web server. The web server then authenticates the user in the specified

realm (referred to as HTTP Realm in this document).

HTTP Basic Authentication is not secure. Passwords are sent with a simple

base64 encoding. The target server is not authenticated. Additional protection

can be applied to overcome these weaknesses. For example, the password may

be protected by applying security at the transport layer (e.g., HTTPS) or at the

network layer (e.g., IPSEC or VPN).

Despite its limitations, the HTTP Basic Authentication mechanism is included in

this specification because it is widely used in many form based applications.

HTTPS Authentication

End user authentication using HTTPS (HTTP over SSL) is a strong

authentication mechanism. This mechanism requires the user to possess a Public

Key Certificate (PKC). Currently, PKC is rarely used by end users on the

Internet. However, it is useful in e-commerce applications and also for single-

signon from within the browser. For these reasons, it is a required feature of the

J2EE platform.
3-12 Java™ 2 Platform Enterprise Edition, v1.3 Public Draft (Sun Microsystems, Inc.)

Form Based Authentication

The look and feel of the “login screen” cannot be controlled with the web

browser’s built-in authentication mechanisms. This specification introduces the

ability to package a standard HTML or servlet/JSP based form for logging in.

The login form allows customization of the user interface. The form based

authentication mechanism is described in the Servlet specification.

Web Single Signon

HTTP is a stateless protocol. However, many web applications need support for

sessions that can maintain state across multiple requests from a client. Therefore,

it is desirable to:

1. Make login mechanisms and policies a property of the environment the web

application is deployed in.

2. Be able to use the same login session to represent a user to all the applications

that they access.

3. Require the user to re-authenticate only when crossing a security policy

domain.

Credentials that are acquired through a web login process are associated with

the session. The container uses these credentials to establish a security context

for the session. The container uses the security context to determine

authorization for access to web resources and for the establishment of secure

associations with other components or with enterprise beans.

Login Session

In the J2EE platform, login session support is provided by a Servlet container.

When a user successfully authenticates with a web server, the container

establishes a login session context for the user. The login session contains the

credentials associated with the user.1

1.This is true where the client is stateless with respect to authentication, and as such,

requires that the server act as its proxy and maintain its login context. In this case

login session state is made available for use by the client by giving the client a

reference (to use with its requests) to its authentication state stored on the server.

Cookies or URL re-writing are used to carry such references. If SSL mutual

authentication is used as the authentication protocol, the client can manage its own

authentication context, and need not depend on references.
Chapter 3 Security 3-13

3.3.11.2 Application Client

Application clients (described in detail in Chapter 9) are client programs that

may directly (i.e., without the help of a web browser and without traversing a

web server) interact with enterprise beans. Of course, application clients may

also access web resources.

Application clients, like the other J2EE application component types, execute in

a managed environment that is provided by an appropriate container.

Application clients are expected to have access to a graphical display and input

device and can expect to communicate with a human user.

Application clients are used to authenticate the end user to the J2EE platform,

for instance when accessing protected web resources or enterprise beans.

3.3.11.3 Lazy Authentication

There is a cost associated with authentication. For example, an authentication

process may require exchanging multiple messages across the network.

Therefore, it is desirable to perform authentication only when necessary (i.e.,

lazy authentication). With lazy authentication, an end user is not required to

authenticate until the user tries to access a protected resource.

Lazy authentication can be used by first tier clients (applets, application clients)

when they access protected resources that require authentication. When a user

tries to access such a resource, the user can be asked to provide the needed

authentication data. If a user is successfully authenticated, the user is allowed to

access the resource.
3-14 Java™ 2 Platform Enterprise Edition, v1.3 Public Draft (Sun Microsystems, Inc.)

3.4 User Authentication Requirements

3.4.1 Web Clients

The J2EE Product Provider must support several methods of web based user

authentication.

3.4.1.1 Web Single Signon

All J2EE compatible web servers must support single signon by maintaining a

login session for each web user. This allows applications to remain independent

of the details of implementing and securing login information. This also

provides the J2EE Product Provider with the flexibility to choose authentication

mechanisms independent of the applications secured by these mechanisms. It

must be possible for one login session to span more than one application,

allowing a user to log in once and access multiple applications.

3.4.1.2 Login Sessions

All J2EE products must support login sessions as described in the Servlet

specification.

Lazy authentication must be supported by web servers for protected web

resources. If authentication is required, then one of the three required login

mechanisms listed in the next section may be used.

3.4.1.3 Required Login Mechanisms

All J2EE products are required to support three login mechanisms: HTTP basic

authentication, SSL mutual authentication, and form-based login. An

application is not required to use any of these mechanisms, but they are

required to be available for any application’s use.

HTTP Basic Authentication

All J2EE products are required to support HTTP basic authentication (RFC2068).

Platform Providers are also required to support basic authentication over SSL.

SSL Mutual Authentication
Chapter 3 Security 3-15

SSL 3.01 and the means to perform mutual (client and server) certificate based

authentication are required by this specification.

All J2EE products must support the following cipher suites to ensure

interoperable authentication with clients:

■ SSL_RSA_EXPORT_WITH_RC4_40_MD5
■ SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA

These cipher suites are supported by the major web browsers and meet the U.S.

government export restrictions.

Form Based Login

The web application deployment descriptor contains an element that causes a

J2EE product to associate an HTML form resource (perhaps dynamically

generated) with the web application. If the Deployer chooses this form of

authentication (over HTTP basic, or SSL certificate based authentication), this

form must be used as the user interface for login to the application.

The form based login mechanism and web application deployment descriptors

are described in the Servlet 2.2 specification.

3.4.1.4 Unauthenticated Users

Web containers are required to support access to web resources by clients that

have not authenticated themselves to the container. This is the common mode of

access to web resources on the Internet. A web container reports that no user has

been authenticated by returning null from the HttpServletRequest method

getUserPrincipal .

The EJB specification requires that the EJBContext method

getCallerPrincipal always return a valid Principal object. It can never

return null . However, it’s important that components running in a web

container be able to call enterprise beans, even when no user has been

authenticated in the web container. When a call is made in such a case from a

component in a web container to an enterprise bean, a J2EE product must

provide a principal for use in the call.

A J2EE product may provide a principal for use by unauthenticated callers using

many approaches, including, but not limited to:

■ Always use a single distinguished principal.

■ Use a different distinguished principal per server, or per session, or per

application.

1.The SSL 3.0 specification is available at: http://home.netscape.com/eng/ssl3
3-16 Java™ 2 Platform Enterprise Edition, v1.3 Public Draft (Sun Microsystems, Inc.)

■ Allow the deployer or system administrator to choose which principal to use.

This specification does not specify how a J2EE product should choose a

principal to represent unauthenticated users, although future versions of this

specification may add requirements in this area.

3.4.2 Application Clients

To satisfy the authentication and authorization constraints enforced by the

enterprise bean containers and web containers, the application client container

must authenticate the application user. The techniques used may vary based on

the implementation of the application client container and are beyond the

control of the application. The application client container may integrate with a

J2EE product’s authentication system, to provide a single signon capability, or

the container may authenticate the user when the application is started. The

container may delay authentication until it is necessary to access a protected

resource or enterprise bean.

If the container needs to interact with the user to gather authentication data, the

container must provide an appropriate user interface. In addition, an application

client may provide a class that implements the

javax.security.auth.callback.CallbackHandler interface and specify

the class name in its deployment descriptor (see Section 9.7, “J2EE:application-

client XML DTD” for details). The Deployer may override the callback handler

specified by the application and require use of the container’s default

authentication user interface instead.

If use of a callback handler has been configured by the Deployer, the application

client container must instantiate an object of this class and use it for all

authentication interactions with the user. The application’s callback handler

must support all the Callback objects specified in the

javax.security.auth.callback package.

Application clients execute in an environment controlled by a J2SE security

manager and are subject to the security permissions defined in TABLE 6-2, "J2EE

Security Permissions Set". Although this specification does not define the

relationship between the operating system identity associated with a running

application client and the authenticated user identity, a J2EE product’s ability to

relate these identities is a fundamental aspect of single signon.

Additional application client requirements are described in Chapter 9 of this

specification.
Chapter 3 Security 3-17

3.4.3 Resource Authentication Requirements

Resources within an enterprise are often deployed in security policy domains

that are different from the security policy domain to which the component

belongs. Because the authentication mechanisms used to authenticate the caller

to resources can vary widely, a J2EE product must provide the ability to

authenticate in the security policy domain of the resource.

A Product Provider must support both of the following:

1. Configured Identity. Specification of the principal and authentication data for

a resource by the Deployer at deployment time. A J2EE container must

authenticate to the resource using the specified principal and authentication

data; the application component must not need to provide this data. If the

authentication data is stored by a J2EE container, then its confidentiality is the

responsibility of the Product Provider.

2. Programmatic Authentication. Specification of the principal and

authentication data for a resource by the application component at runtime

using APIs appropriate to the resource. The application may obtain the

principal and authentication data through a variety of mechanisms, including

receiving them as parameters, obtaining them from the component’s

environment, etc.

In addition, the following techniques are recommended but not required by this

specification:

3. Principal Mapping. A resource principal is determined by mapping from the

identity and/or security attributes of the initiating/caller principal. In this

case, a resource principal does not inherit identity or security attributes of a

principal that it has been mapped from; the resource principal gets its identity

and security attributes based on the mapping.

4. Caller Impersonation. A resource principal acts on behalf of an initiating/

caller principal. Acting on behalf of a caller principal requires that the caller’s

identity and credentials be delegated to the underlying resource manager.

The mechanism by which this is accomplished is specific to a security

mechanism and an application server implementation.

In some scenarios, a caller principal can be a delegate of an initiating

principal. In this case, a resource principal transitively impersonates an

initiating principal.
3-18 Java™ 2 Platform Enterprise Edition, v1.3 Public Draft (Sun Microsystems, Inc.)

The support for principal delegation is typically specific to a security

mechanism. For example, Kerberos supports a mechanism for the delegation

of authentication. (Refer to the Kerberos v5 specification for more details.)

The security technology specific details are out of the scope of this

specification.

5. Credentials Mapping. This technique may be used when an application

server and EIS support different authentication domains. For example, the

initiating principal has been authenticated and has public key certificate-

based credentials. The security environment for the resource manager is

configured with the Kerberos authentication service. The application server is

configured to map the public key certificate-based credentials associated with

the initiating principal to the Kerberos credentials.

Additional information on resource authentication requirements can be found in

the Connector specification.

3.5 Authorization Requirements
To support the authorization models described in this chapter, the following

requirements are imposed on J2EE products.

3.5.1 Code Authorization

A J2EE product may restrict the use of certain J2SE classes and methods to

secure and insure proper operation of the system. The minimum set of

permissions that are required for a J2EE product are defined in Section 6.2, “Java

2 Platform, Standard Edition (J2SE) Requirements.” All J2EE products must be

capable of deploying application components with exactly these permissions.

A J2EE Product Provider may choose to enable selective access to resources

using the J2SE 1.2 protection model. The mechanism used is J2EE product

dependent.

A future version of the J2EE deployment descriptor definition (see Chapter 8)

may make it possible to express any additional permissions that a component

needs.
Chapter 3 Security 3-19

3.5.2 Caller Authorization

A J2EE product must enforce the access control rules specified at deployment

time (see Section 3.6, “Deployment Requirements”) and more fully described in

the EJB and Servlet specifications.

It must be possible to configure a J2EE product so that the propagated caller

identity is used in authorization decisions. This is, for all calls to all enterprise

beans from a single application within a single J2EE product, the principal name

returned by the EJBContext method getCallerPrincipal must be the same

as that returned by the first enterprise bean in the call chain. If the first

enterprise bean in the call chain is called by a servlet or JSP page, the principal

name must be the same as that returned by the HttpServletRequest method

getUserPrincipal in the calling servlet or JSP page. (However, if the

HttpServletRequest method getUserPrincipal returns null , the

principal used in calls to enterprise beans is not specified by this specification,

although it must still be possible to configure enterprise beans to be callable by

such components.) Note that this does not require delegation of credentials, only

identification of the caller. This principal must be the principal used in

authorization decisions for access to all enterprise beans in the call chain. The

requirements in this paragraph apply only when a J2EE product has been

configured to propagate caller identity.

J2EE products must also support the Run As capability that allows the

Application Component Provider and the Deployer to specify an identity under

which an enterprise bean or web component must run. In this case the original

caller identity is not propagated to subsequent components in the call chain;

instead the Run As identity is propagated. Note that this specification doesn’t

specify any relationship between the Run As identity and any underlying

operating system identity that may be used to access system resources such as

files.

3.6 Deployment Requirements
The deployment descriptor describes the contract between the Application

Component Provider or Assembler and the Deployer. All J2EE products must

implement the access control semantics described in the EJB, JSP, and Servlet

specifications, and provide a means of mapping the deployment descriptor

security roles to the actual roles exposed by a J2EE product.
3-20 Java™ 2 Platform Enterprise Edition, v1.3 Public Draft (Sun Microsystems, Inc.)

While most J2EE products will allow the Deployer to customize the role

mappings and change the assignment of roles to methods, all J2EE products

must support the ability to deploy applications and components using exactly

the mappings and assignments specified in their deployment descriptors.

As described in the EJB specification and the Servlet specification, a J2EE

product must provide a deployment tool or tools capable of assigning the

security roles in deployment descriptors to the entities that are used to

determine role membership at authorization time.

Application developers will need to specify (in the application’s deployment

descriptors) the security requirements of an application in which some

components may be accessed by unauthenticated users as well as authenticated

users (as described above in Section 3.4.1.4, “Unauthenticated Users”).

Applications express their security requirements in terms of security roles,

which the Deployer maps to users (principals) in the operational environment at

deployment time. An application might define a role representing all

authenticated and unauthenticated users and configure some enterprise bean

methods to be accessible by this role.

To support such usage, this specification requires that it be possible to map an

application defined security role to the universal set of application principals

independent of authentication.

3.7 Future Directions

3.7.1 Auditing

This specification does not specify requirements for the auditing of security

relevant events, nor APIs for application components to generate audit records.

A future version of this specification may include such a specification for

products that choose to provide auditing.
Chapter 3 Security 3-21

3-22 Java™ 2 Platform Enterprise Edition, v1.3 Public Draft (Sun Microsystems, Inc.)

CHAPTER 4

Transaction Management

This chapter describes the transaction management and runtime environment

that must be supported by Product Providers on the Java™ 2 Platform,

Enterprise Edition (J2EE).

Product Providers must transparently support transactions that span multiple

components and transactional resources within a single J2EE product, as

described in this chapter. These requirements must be met regardless of whether

the J2EE product is implemented as a single process, multiple processes on the

same node, or multiple processes on multiple network nodes.

The following components are considered transactional resources and must

behave as specified here:

■ JDBC connections

■ JMS sessions

■ Resource adapter connections for resource adapters specifying the

XA_TRANSACTIONtransaction level

4.1 Overview
A J2EE Product Provider must support a transactional application that is

comprised of a combination of Servlets or JSP pages accessing multiple

enterprise beans within a single transaction. Each component may also acquire

one or more connections to access one or more transactional resource managers.

For example, in FIGURE 4-1, the call tree starts from a Servlet or JSP page

accessing multiple enterprise beans, which in turn may access other enterprise

beans. The components access resource managers via connections.
4-1

FIGURE 4-1 Servlets/JSP pages accessing enterprise Beans

The Application Component Provider specifies, using a combination of

programmatic and declarative transaction demarcation APIs, how the platform

must manage transactions on behalf of the application.

For example, the application may require that all the components in FIGURE 4-1

access resources as part of a single transaction. The Platform Provider must

provide the transaction capabilities to support such a scenario.

This specification does not define how the components and the resources are

partitioned or distributed within a single J2EE product. In order to achieve the

transactional semantics required by the application, the J2EE Product Provider is

free to execute the application components sharing a transaction in the same

Java virtual machine, or distribute them across multiple virtual machines.

The rest of this chapter describes the transactional requirements for a J2EE

product in more detail.

Client JSP/
Servlet

EJBean

EJBean

EJBean

EJBean

EJBean

EJBean

connection

connection

connection

connection
connection

connection
connections

O
ne or m

ore transactional resource m
anagers

1a

1b

2a

2b

2c

2d

:

:

:

:

4-2 Java™ 2 Platform Enterprise Edition, v1.3 Public Draft (Sun Microsystems, Inc.)

4.2 Requirements
This section defines the transaction support requirements for the J2EE Product

Provider.

4.2.1 Web Components

Servlets and JSP pages are allowed to demarcate transactions using the

javax.transaction.UserTransaction interface, defined in the JTA

specification. These web components are allowed to access multiple resource

managers and invoke multiple enterprise beans within a single transaction. The

web component assumes that the transaction is automatically propagated to the

enterprise beans (subject to the enterprise bean transaction attributes, e.g., such

beans must use Container Managed Transactions) and transactional resource

managers.

The J2EE platform must meet the following requirements:

■ The J2EE platform must provide an object implementing the

javax.transaction.UserTransaction interface to both servlets and

JSP pages. The platform must publish the UserTransaction object in the

Java™ Naming and Directory Interface (JNDI) name space available to web

components under the name java:comp/UserTransaction .

■ If a web component invokes an enterprise bean from a thread associated with

a JTA transaction, the J2EE platform must propagate the transaction context

with the enterprise bean invocation. Whether the target enterprise bean will

be invoked in this transaction context or not is determined by the rules

defined in the EJB specification.

Note that this transaction propagation requirement applies only to

invocations of enterprise beans in the same J2EE product instance as the

invoking component. Invocations of enterprise beans in another J2EE product

instance (e.g., using the EJB interoperability protocol) need not propagate the

transaction context; see the EJB specification for details.

■ If a web component accesses a transactional resource manager from a thread

associated with a JTA transaction, the J2EE platform must ensure that the

resource access is included as part of the JTA transaction.

■ If a web component creates a thread, the J2EE platform must ensure that the

newly created thread is not associated with any JTA transaction.
Chapter 4 Transaction Management 4-3

The Product Provider is not required to support import of a transaction context

by a web component from its client.

The Product Provider is not required to support transaction context propagation

across multiple web components accessed via an HTTP request. If a web

component associated with a transaction makes an HTTP request to another

web component, the transaction context is not propagated to the target servlet or

page. (The HTTP protocol does not support such transaction context

propagation.)

However, when another web component is invoked through the

RequestDispatcher interface, any active transaction context must be

propagated to the called web component.

A web component may only start a transaction in its service method. A

transaction that is started by a servlet or JSP page must be completed before the

service method returns. That is, transactions may not span web requests from

a client. Returning from the service method with an active transaction context

is an error. The web container is required to detect this error and abort the

transaction.

There are many subtle and complex interactions between the use of

transactional resources and threads. To ensure correct operation, web

components should obey the following guidelines, and the web container must

support at least these usages.

■ JTA transactions should be started and completed only from the thread in

which the service method is called. If the web component creates additional

threads for any purpose, these threads should not attempt to start JTA

transactions.

■ Transactional resources may be acquired and released by a thread other than

the service method thread, but should not be shared between threads.

■ Transactional resource objects (e.g., JDBC Connection objects) should not be

stored in static fields.

■ For web components implementing SingleThreadModel , transactional

resource objects may be stored in class instance fields.

■ For web components not implementing SingleThreadModel , transactional

resource objects should not be stored in class instance fields, and should be

acquired and released within the same invocation of the service method.

■ Enterprise beans may be invoked from any thread used by a web component.

Transaction context propagation requirements are described above and in the

EJB specification.
4-4 Java™ 2 Platform Enterprise Edition, v1.3 Public Draft (Sun Microsystems, Inc.)

4.2.2 Enterprise JavaBeans™ Components

The J2EE Product Provider must implement support for transactions as defined

in the EJB specification.

4.2.3 Application Clients

The J2EE Product Provider is not required to provide any transaction

management support for application clients.

4.2.4 Applet Clients

The J2EE Product Provider is not required to provide any transaction

management support for applets.

4.2.5 Transactional JDBC™ Technology Support

A J2EE product must support a JDBC technology database as a transactional

resource manager. The platform must enable transactional JDBC API access from

servlets, JSP pages, and enterprise beans.

It must be possible to access the JDBC technology database from multiple

application components within a single transaction. For example, a servlet may

wish to start a transaction, access a database, invoke an enterprise bean that

accesses the same database as part of the same transaction, and finally commit

the transaction.

4.2.6 Transactional JMS Support

A J2EE product must support a JMS provider as a transactional resource

manager. The platform must enable transactional JMS access from servlets, JSP

pages, and enterprise beans.

It must be possible to access the JMS provider from multiple application

components within a single transaction. For example, a servlet may wish to start

a transaction, send a JMS message, invoke an enterprise bean that also sends a

JMS message as part of the same transaction, and finally commit the transaction.
Chapter 4 Transaction Management 4-5

4.2.7 Transactional Resource Adapter Support

A J2EE product must support resource adapters that use XA_TRANSACTION
mode as transactional resource managers. The platform must enable

transactional access to the resource adapter from servlets, JSP pages, and

enterprise beans.

It must be possible to access the resource adapter from multiple application

components within a single transaction. For example, a servlet may wish to start

a transaction, access the resource adapter, invoke an enterprise bean that also

accesses the resource adapter as part of the same transaction, and finally commit

the transaction.

4.3 Transaction Interoperability

4.3.1 Multiple J2EE Platform Interoperability

This specification does not require the Product Provider to implement any

particular protocol for transaction interoperability across multiple J2EE

products. J2EE compatibility requires neither interoperability among identical

J2EE products from the same Product Provider, nor among heterogeneous J2EE

products from multiple Product Providers.

Note – We recommend that J2EE Product Providers use the IIOP transaction

propagation protocol defined by OMG and described in the OTS specification

(and implemented by the Java Transaction Service), for transaction

interoperability when using the EJB interoperability protocol based on RMI-

IIOP. We plan to require the IIOP transaction propagation protocol as the EJB

server transaction interoperability protocol in a future release of this

specification.

4.3.2 Support for Transactional Resource Managers

This specification requires all J2EE products to support the

javax.transaction.xa.XAResource interface, as specified in the

Connector specification. This specification does not require that JDBC drivers or
4-6 Java™ 2 Platform Enterprise Edition, v1.3 Public Draft (Sun Microsystems, Inc.)

JMS providers use the javax.transaction.xa.XAResource interface,

although they must meet the requirements of a transactional resource manager

described in this chapter. In particular, it must be possible to combine operations

on one or more JDBC databases, one or more JMS sessions, one or more

enterprise beans, and all resource adapters supporting the XA_TRANSACTION
mode in a single JTA transaction.

4.4 System Administration Tools
Although there are no compatibility requirements for system administration

capabilities, the J2EE Product Provider will typically include tools that allow the

System Administrator to perform the following tasks:

■ Integrate transactional resource managers with the platform.

■ Configure the transaction management parts of the platform.

■ Monitor transactions at runtime.

■ Receive notifications of abnormal transaction processing conditions (such as

abnormally high number of transaction rollbacks).
Chapter 4 Transaction Management 4-7

4-8 Java™ 2 Platform Enterprise Edition, v1.3 Public Draft (Sun Microsystems, Inc.)

CHAPTER 5

Naming

This chapter describes the naming system requirements for the Java™ 2

Platform, Enterprise Edition (J2EE). These requirements are based on features

defined in the JNDI specification.

Note – This chapter is largely derived from the EJB specification chapter,

“Enterprise bean environment.”

5.1 Overview
The Application Assembler and Deployer should be able to customize an

application’s business logic without accessing the application’s source code.

In addition, ISVs typically develop applications that are, to a large degree,

independent from the operational environment in which the application will be

deployed. Most applications must access resources and external information.

The key issue is how applications can locate the external information without

knowledge of how the external information is named and organized in the

target operational environment.

This specification defines naming requirements for the J2EE platform that

address both of the above issues.

This chapter is organized as follows.

■ Section 5.2 defines the interfaces that specify and access the application

component’s naming environment. The section illustrates the use of the

application component’s naming environment for generic customization of

the application component’s business logic.
5-1

■ Section 5.3 defines the interfaces for obtaining the home interface of an

enterprise bean using an EJB reference. An EJB reference is a special entry in

the application component’s environment.

■ Section 5.4 defines the interfaces for obtaining a resource manager connection

factory using a resource manager connection factory reference. A resource

manager connection factory reference is a special entry in the application

component’s environment.

Only J2EE application clients, enterprise beans, and web components are

required to have access to a JNDI naming environment. Only the containers for

these application component types must provide the naming environment

support described here.

The deployment descriptor entries described here are present in identical form

in the deployment descriptor DTDs for each of these application component

types. See the corresponding specification of each application component type

for the details.

5.2 Java Naming and Directory Interface™
(JNDI) Naming Context
The application component’s naming environment is a mechanism that allows

customization of the application component’s business logic during deployment

or assembly. The application component’s environment allows the application

component to be customized without the need to access or change the

application component’s source code.

The container implements the application component’s environment, and

provides it to the application component instance as a JNDI naming context. The

application component’s environment is used as follows:

1. The application component’s business methods access the environment using

the JNDI interfaces. The Application Component Provider declares in the

deployment descriptor all the environment entries that the application

component expects to be provided in its environment at runtime.

2. The container provides an implementation of the JNDI naming context that

stores the application component environment. The container also provides

the tools that allow the Deployer to create and manage the environment of

each application component.
5-2 Java™ 2 Platform Enterprise Edition, v1.3 Public Draft (Sun Microsystems, Inc.)

3. The Deployer uses the tools provided by the container to initialize the

environment entries that are declared in the application component’s

deployment descriptor. The Deployer can set and modify the values of the

environment entries.

4. The container makes the environment naming context available to the

application component instances at runtime. The application component’s

instances use the JNDI interfaces to obtain the values of the environment

entries.

Each application component defines its own set of environment entries. All

instances of an application component within the same container share the same

environment entries. Application component instances are not allowed to

modify the environment at runtime.

Note – Terminology warning: The application component’s “environment”

should not be confused with the “environment properties” defined in the JNDI

documentation. The JNDI environment properties are used to initialize and

configure the JNDI naming context itself. The application component’s

environment is accessed through a JNDI naming context for direct use by the

application component.

The following subsections describe the responsibilities of each J2EE Role.

5.2.1 Application Component Provider’s

Responsibilities

This section describes the Application Component Provider’s view of the

application component’s environment, and defines his or her responsibilities. It

does so in two sections, the first describing API for accessing environment

entries, and the second describing syntax for declaring the environment entries.

5.2.1.1 Access to application component’s environment

An application component instance locates the environment naming context

using the JNDI interfaces. An instance creates a

javax.naming.InitialContext object by using the constructor with no

arguments, and looks up the naming environment via the InitialContext
under the name java:comp/env . The application component’s environment

entries are stored directly in the environment naming context, or in any of its

direct or indirect subcontexts.
Chapter 5 Naming 5-3

The value of an environment entry is of the Java programming language type

declared by the Application Component Provider in the deployment descriptor.

The following code example illustrates how an application component accesses

its environment entries.

public void setTaxInfo(int numberOfExemptions, ...)
throws InvalidNumberOfExemptionsException {

...

// Obtain the application component’s environment naming context.
Context initCtx = new InitialContext();
Context myEnv = (Context)initCtx.lookup("java:comp/env");

// Obtain the maximum number of tax exemptions
// configured by the Deployer.
Integer max = (Integer)myEnv.lookup(“maxExemptions”);

// Obtain the minimum number of tax exemptions
// configured by the Deployer.
Integer min = (Integer)myEnv.lookup(“minExemptions”);

// Use the environment entries to customize business logic.
if (numberOfExeptions > max.intValue() ||

 numberOfExemptions < min.intValue())
 throw new InvalidNumberOfExemptionsException();

// Get some more environment entries. These environment
// entries are stored in subcontexts.
String val1 = (String)myEnv.lookup(“foo/name1”);
Boolean val2 = (Boolean)myEnv.lookup(“foo/bar/name2”);

// The application component can also lookup using full pathnames.
Integer val3 = (Integer)

initCtx.lookup("java:comp/env/name3");
Integer val4 = (Integer)

initCtx.lookup("java:comp/env/foo/name4");
...

}

5-4 Java™ 2 Platform Enterprise Edition, v1.3 Public Draft (Sun Microsystems, Inc.)

5.2.1.2 Declaration of environment entries

The Application Component Provider must declare all the environment entries

accessed from the application component’s code. The environment entries are

declared using the env-entry elements in the deployment descriptor. Each

env-entry element describes a single environment entry. The env-entry
element consists of an optional description of the environment entry, the

environment entry name relative to the java:comp/env context, the expected

Java programming language type of the environment entry value (i.e., the type

of the object returned from the JNDI lookup method), and an optional

environment entry value.

The environment entry values may be one of the following Java types: String ,

Byte , Short , Integer , Long , Boolean , Double , and Float .

If the Application Component Provider provides a value for an environment

entry, the value can be changed later by the Application Assembler or Deployer.

The value must be a string that is valid for the constructor of the specified type

that takes a single String parameter.

The following example is the declaration of environment entries used by the

application component whose code was illustrated in the previous subsection.

...
<env-entry>

<description>
The maximum number of tax exemptions
allowed to be set.

</description>
<env-entry-name>maxExemptions</env-entry-name>
<env-entry-type>java.lang.Integer</env-entry-type>
<env-entry-value>15</env-entry-value>

</env-entry>
<env-entry>

<description>
The minimum number of tax exemptions
allowed to be set.

</description>
<env-entry-name>minExemptions</env-entry-name>
<env-entry-type>java.lang.Integer</env-entry-type>
<env-entry-value>1</env-entry-value>

</env-entry>
<env-entry>

<env-entry-name>foo/name1</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>
Chapter 5 Naming 5-5

<env-entry-value>value1</env-entry-value>
</env-entry>
<env-entry>

<env-entry-name>foo/bar/name2</env-entry-name>
<env-entry-type>java.lang.Boolean</env-entry-type>
<env-entry-value>true</env-entry-value>

</env-entry>
<env-entry>

<description>Some description.</description>
<env-entry-name>name3</env-entry-name>
<env-entry-type>java.lang.Integer</env-entry-type>

</env-entry>
<env-entry>

<env-entry-name>foo/name4</env-entry-name>
<env-entry-type>java.lang.Integer</env-entry-type>
<env-entry-value>10</env-entry-value>

</env-entry>
...

5.2.2 Application Assembler’s Responsibilities

The Application Assembler is allowed to modify the values of the environment

entries set by the Bean Provider, and is allowed to set the values of those

environment entries for which the Bean Provider has not specified any initial

values.

5.2.3 Deployer’s Responsibilities

The Deployer must ensure that the values of all the environment entries

declared by an application component are set to meaningful values.

The Deployer can modify the values of the environment entries that have been

previously set by the Application Component Provider and/or Application

Assembler, and must set the values of those environment entries for which no

value has been specified.

5.2.4 J2EE Product Provider’s Responsibilities

The J2EE Product Provider has the following responsibilities:
5-6 Java™ 2 Platform Enterprise Edition, v1.3 Public Draft (Sun Microsystems, Inc.)

■ Provide a deployment tool that allows the Deployer to set and modify the

values of the application component’s environment entries.

■ Implement the java:comp/env environment naming context, and provide it

to the application component instances at runtime. The naming context must

include all the environment entries declared by the Application Component

Provider, with their values supplied in the deployment descriptor or set by

the Deployer. The environment naming context must allow the Deployer to

create subcontexts if they are needed by an application component.

■ The container must ensure that the application component instances have

only read access to their environment variables. The container must throw the

javax.naming.OperationNotSupportedException from all the

methods of the javax.naming.Context interface that modify the

environment naming context and its subcontexts.

5.3 Enterprise JavaBeans™ (EJB) References
This section describes the programming and deployment descriptor interfaces

that allow the Application Component Provider to refer to the homes of

enterprise beans using “logical” names called EJB references. The EJB references

are special entries in the application component’s naming environment. The

Deployer binds the EJB references to the enterprise bean’s homes in the target

operational environment.

The deployment descriptor also allows the Application Assembler to link an EJB

reference declared in one application component to an enterprise bean contained

in an ejb-jar file in the same J2EE application. The link is an instruction to the

tools used by the Deployer describing the binding of the EJB reference to the

home of the specified target enterprise bean.

5.3.1 Application Component Provider’s

Responsibilities

This subsection describes the Application Component Provider’s view and

responsibilities with respect to EJB references.It does so in two sections, the first

describing the API for accessing EJB references, and the second describing the

syntax for declaring the EJB references.
Chapter 5 Naming 5-7

5.3.1.1 Programming interfaces for EJB references

The Application Component Provider must use EJB references to locate the

home interfaces of enterprise bean as follows.

■ Assign an entry in the application component’s environment to the reference.

(See subsection 5.3.1.2 for information on how EJB references are declared in

the deployment descriptor.)

■ This specification recommends, but does not require, that all references to

enterprise beans be organized in the ejb subcontext of the application

component’s environment (i.e., in the java:comp/env/ejb JNDI context).

■ Look up the home interface of the referenced enterprise bean in the

application component’s environment using JNDI.

The following example illustrates how an application component uses an EJB

reference to locate the home interface of an enterprise bean.

public void changePhoneNumber(...) {
...

// Obtain the default initial JNDI context.
Context initCtx = new InitialContext();

// Look up the home interface of the EmployeeRecord
// enterprise bean in the environment.
Object result = initCtx.lookup(

"java:comp/env/ejb/EmplRecord");

// Convert the result to the proper type.
EmployeeRecordHome emplRecordHome = (EmployeeRecordHome)

javax.rmi.PortableRemoteObject.narrow(result,
EmployeeRecordHome.class);

...
}

In the example, the Application Component Provider assigned the environment

entry ejb/EmplRecord as the EJB reference name to refer to the home of an

enterprise bean.
5-8 Java™ 2 Platform Enterprise Edition, v1.3 Public Draft (Sun Microsystems, Inc.)

5.3.1.2 Declaration of EJB references

Although the EJB reference is an entry in the application component’s

environment, the Application Component Provider must not use a env-entry
element to declare it. Instead, the Application Component Provider must declare

all the EJB references using the ejb-ref elements of the deployment descriptor.

This allows the consumer of the application component’s jar file (i.e., the

Application Assembler or Deployer) to discover all the EJB references used by

the application component.

Each ejb-ref element describes the interface requirements that the referencing

application component has for the referenced enterprise bean. The ejb-ref
element contains an optional description element; and the mandatory ejb-
ref-name, ejb-ref-type , home, and remote elements.

The ejb-ref-name element specifies the EJB reference name; its value is the

environment entry name used in the application component code. The ejb-
ref-type element specifies the expected type of the enterprise bean; its value

must be either Entity or Session . The home and remote elements specify the

expected Java types of the referenced enterprise bean’s home and remote

interfaces.

The following example illustrates the declaration of EJB references in the

deployment descriptor.

...
<ejb-ref>

<description>
This is a reference to the entity bean that
encapsulates access to employee records.

</description>
<ejb-ref-name>ejb/EmplRecord</ejb-ref-name>
<ejb-ref-type>Entity</ejb-ref-type>
<home>com.wombat.empl.EmployeeRecordHome</home>
<remote>com.wombat.empl.EmployeeRecord</remote>

</ejb-ref>

<ejb-ref>
<ejb-ref-name>ejb/Payroll</ejb-ref-name>
<ejb-ref-type>Entity</ejb-ref-type>
<home>com.aardvark.payroll.PayrollHome</home>
<remote>com.aardvark.payroll.Payroll</remote>

</ejb-ref>

<ejb-ref>
Chapter 5 Naming 5-9

<ejb-ref-name>ejb/PensionPlan</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<home>com.wombat.empl.PensionPlanHome</home>
<remote>com.wombat.empl.PensionPlan</remote>

</ejb-ref>
...

5.3.2 Application Assembler’s Responsibilities

The Application Assembler can use the ejb-link element in the deployment

descriptor to link an EJB reference to a target enterprise bean. The link will be

observed by the deployment tools.

The Application Assembler specifies the link to an enterprise bean as follows:

■ The Application Assembler uses the optional ejb-link element of the ejb-
ref element of the referencing application component. The value of the

ejb-link element is the name of the target enterprise bean. (It is the name

defined in the ejb-name element of the target enterprise bean.) The target

enterprise bean can be in any ejb-jar file in the same J2EE application as the

referencing application component.

■ Alternatively, to avoid the need to rename enterprise beans to have unique

names within an entire J2EE application, the Application Assembler may use

the following syntax in the ejb-link element of the referencing application

component. The Application Assembler specifies the path name of the ejb-jar

file containing the referenced enterprise bean and appends the ejb-name of

the target bean separated from the path name by “#”. The path name is

relative to the referencing application component jar file.

■ The Application Assembler must ensure that the target enterprise bean is

type-compatible with the declared EJB reference. This means that the target

enterprise bean must be of the type indicated in the ejb-ref-type element,

and that the home and remote interfaces of the target enterprise bean must be

Java type-compatible with the interfaces declared in the EJB reference.

The following example illustrates the use of the ejb-link element in the

deployment descriptor. The enterprise bean reference should be satisfied by the

bean named EmployeeRecord . The EmployeeRecord enterprise bean may be

packaged in the same module as the component making this reference, or it may

be packaged in another module within the same J2EE application as the

component making this reference.

...
<ejb-ref>
5-10 Java™ 2 Platform Enterprise Edition, v1.3 Public Draft (Sun Microsystems, Inc.)

<description>
This is a reference to the entity bean that
encapsulates access to employee records. It
has been linked to the entity bean named
EmployeeRecord in this application.

</description>
<ejb-ref-name>ejb/EmplRecord</ejb-ref-name>
<ejb-ref-type>Entity</ejb-ref-type>
<home>com.wombat.empl.EmployeeRecordHome</home>
<remote>com.wombat.empl.EmployeeRecord</remote>
<ejb-link>EmployeeRecord</ejb-link>

</ejb-ref>
...

The following example illustrates using the ejb-link element to indicate an

enterprise bean reference to the ProductEJB enterprise bean that is in the same

J2EE application unit but in a different ejb-jar file.

...
<ejb-ref>

<description>
This is a reference to the entity bean that
encapsulates access to a product. It
has been linked to the entity bean named
ProductEJB in the product.jar file in this application.

</description>
<ejb-ref-name>ejb/Product</ejb-ref-name>
<ejb-ref-type>Entity</ejb-ref-type>
<home>com.acme.products.ProductHome</home>
<remote>com.acme.products.Product</remote>
<ejb-link>../products/product.jar#ProductEJB</ejb-link>

</ejb-ref>
...

5.3.3 Deployer’s Responsibilities

The Deployer is responsible for the following:

■ The Deployer must ensure that all the declared EJB references are bound to

the homes of enterprise beans that exist in the operational environment. The

Deployer may use, for example, the JNDI LinkRef mechanism to create a

symbolic link to the actual JNDI name of the target enterprise bean’s home.
Chapter 5 Naming 5-11

■ The Deployer must ensure that the target enterprise bean is type-compatible

with the types declared for the EJB reference. This means that the target

enterprise bean must be of the type indicated in the ejb-ref-type element,

and that the home and remote interfaces of the target enterprise bean must be

Java type-compatible with the home and remote interfaces declared in the EJB

reference.

■ If an EJB reference declaration includes the ejb-link element, the Deployer

must bind the enterprise bean reference to the home of the enterprise bean

specified as the link’s target.

5.3.4 J2EE Product Provider’s Responsibilities

The J2EE Product Provider must provide the deployment tools that allow the

Deployer to perform the tasks described in the previous subsection. The

deployment tools provided by the J2EE Product Provider must be able to

process the information supplied in the ejb-ref elements in the deployment

descriptor.

At the minimum, the tools must be able to:

■ Preserve the application assembly information in the ejb-link elements by

binding an EJB reference to the home interface of the specified target

enterprise bean.

■ Inform the Deployer of any unresolved EJB references, and allow him or her

to resolve an EJB reference by binding it to a specified compatible target

enterprise bean.

5.4 Resource Manager Connection Factory
References
A resource manager connection factory is an object that is used to create

connections to a resource manager. For example, an object that implements the

javax.sql.DataSource interface is a resource manager connection factory

for java.sql.Connection objects that implement connections to a database

management system.

This section describes the application component programming and deployment

descriptor interfaces that allow the application component code to refer to

resource factories using logical names called resource manager connection

factory references. The resource manager connection factory references are
5-12 Java™ 2 Platform Enterprise Edition, v1.3 Public Draft (Sun Microsystems, Inc.)

ry
special entries in the application component’s environment. The Deployer binds

the resource manager connection factory references to the actual resource

manager connection factories that exist in the target operational environment.

Because these resource manager connection factories allow the Container to

affect resource management, the connections acquired through the resource

manager connection factory references are called managed resources (e.g. these

resource manager connection factories allow the Container to implement

connection pooling and automatic enlistment of the connection with a

transaction).

Resource manager connection factory objects accessed through the naming

environment are only valid within the component instance that performed the

lookup. See the individual component specifications for additional restrictions

that may apply.

5.4.1 Application Component Provider’s

Responsibilities

This subsection describes the Application Component Provider’s view of

locating resource factories and defines his or her responsibilities. It does so in

two sections, the first describing the API for accessing resource manager

connection factory references, and the second describing the syntax for declaring

the factory references.

5.4.1.1 Programming interfaces for resource manager connection facto
references

The Application Component Provider must use resource manager connection

factory references to obtain connections to resources as follows.

■ Assign an entry in the application component’s naming environment to the

resource manager connection factory reference. (See subsection 5.4.1.2 for

information on how resource manager connection factory references are

declared in the deployment descriptor.)

■ This specification recommends, but does not require, that all resource

manager connection factory references be organized in the subcontexts of the

application component’s environment, using a different subcontext for each

resource manager type. For example, all JDBC™ DataSource references

should be declared in the java:comp/env/jdbc subcontext, all JMS

connection factories in the java:comp/env/jms subcontext, all JavaMail

connection factories in the java:comp/env/mail subcontext, and all URL

connection factories in the java:comp/env/url subcontext.
Chapter 5 Naming 5-13

■ Lookup the resource manager connection factory object in the application

component’s environment using the JNDI interface.

■ Invoke the appropriate method on the resource manager connection factory

method to obtain a connection to the resource. The factory method is specific

to the resource type. It is possible to obtain multiple connections by calling

the factory object multiple times.

The Application Component Provider has two choices with respect to dealing

with associating a principal with the resource manager access:

■ Allow the Deployer to set up principal mapping or resource manager signon

information. In this case, the application component code invokes a resource

manager connection factory method that has no security-related parameters.

■ Sign on to the resource from the application component code. In this case, the

application component invokes the appropriate resource manager connection

factory method that takes the signon information as method parameters.

The Application Component Provider uses the res-auth deployment

descriptor element to indicate which of the two resource authentication

approaches is used.

We expect that the first form (i.e., letting the Deployer set up the resource signon

information) will be the approach used by most application components.

The following code sample illustrates obtaining a JDBC connection.

public void changePhoneNumber(...) {
...

// obtain the initial JNDI context
Context initCtx = new InitialContext();

// perform JNDI lookup to obtain resource manager connection factory
javax.sql.DataSource ds = (javax.sql.DataSource)

initCtx.lookup("java:comp/env/jdbc/EmployeeAppDB");

// Invoke factory to obtain a resource. The security
// principal for the resource is not given, and therefore
// it will be configured by the Deployer.
java.sql.Connection con = ds.getConnection();
...

}

5-14 Java™ 2 Platform Enterprise Edition, v1.3 Public Draft (Sun Microsystems, Inc.)

in
5.4.1.2 Declaration of resource manager connection factory references
deployment descriptor

Although a resource manager connection factory reference is an entry in the

application component’s environment, the Application Component Provider

must not use an env-entry element to declare it.

Instead, the Application Component Provider must declare all the resource

manager connection factory references in the deployment descriptor using the

resource-ref elements. This allows the consumer of the application

component’s jar file (i.e., the Application Assembler or Deployer) to discover all

the resource manager connection factory references used by an application

component.

Each resource-ref element describes a single resource manager connection

factory reference. The resource-ref element consists of the description
element; and the mandatory res-ref-name , res-type , and res-auth
elements. The res-ref-name element contains the name of the environment

entry used in the application component’s code. The name of the environment

entry is relative to the java:comp/env context (e.g., the name should be jdbc/
EmployeeAppDB rather than java:comp/env/jdbc/EmployeeAppDB). The

res-type element contains the Java type of the resource manager connection

factory that the application component code expects. The res-auth element

indicates whether the application component code performs resource signon

programmatically, or whether the container signs on to the resource based on

the principal mapping information supplied by the Deployer. The Application

Component Provider indicates the signon responsibility by setting the value of

the res-auth element to Application or Container .

A resource manager connection factory reference is scoped to the application

component whose declaration contains the resource-ref element. This means

that the resource manager connection factory reference is not accessible from

other application components at runtime, and that other application

components may define resource-ref elements with the same res-ref-
name without causing a name conflict.

The type declaration allows the Deployer to identify the type of the resource

manager connection factory.

Note that the indicated type is the Java programming language type of the

resource manager connection factory, not the type of the connection.

The following example is the declaration of resource references used by the

application component illustrated in the previous subsection.

...
Chapter 5 Naming 5-15

<resource-ref>
<description>

A data source for the database in which
the EmployeeService enterprise bean will
record a log of all transactions.

</description>
<res-ref-name>jdbc/EmployeeAppDB</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Container</res-auth>

</resource-ref>

5.4.1.3 Standard resource manager connection factory types

The Application Component Provider must use the javax.sql.DataSource
resource manager connection factory type for obtaining JDBC API connections.

The Application Component Provider must use the

javax.jms.QueueConnectionFactory or the

javax.jms.TopicConnectionFactory for obtaining JMS connections.

The Application Component Provider must use the javax.mail.Session
resource manager connection factory type for obtaining JavaMail connections.

The Application Component Provider must use the java.net.URL resource

manager connection factory type for obtaining URL connections.

It is recommended that the Application Component Provider name JDBC API

data sources in the java:comp/env/jdbc subcontext, all JMS connection

factories in the java:comp/env/jms subcontext, all JavaMail API connection

factories in the java:comp/env/mail subcontext, and all URL connection

factories in the java:comp/env/url subcontext.

The J2EE Connector Extension allows an application component to use the API

described in this section to obtain resource objects that provide access to

additional back-end systems.

5.4.2 Deployer’s Responsibilities

The Deployer uses deployment tools to bind the resource manager connection

factory references to the actual resource factories configured in the target

operational environment.

The Deployer must perform the following tasks for each resource manager

connection factory reference declared in the deployment descriptor:
5-16 Java™ 2 Platform Enterprise Edition, v1.3 Public Draft (Sun Microsystems, Inc.)

■ Bind the resource manager connection factory reference to a resource

manager connection factory that exists in the operational environment. The

Deployer may use, for example, the JNDI LinkRef mechanism to create a

symbolic link to the actual JNDI name of the resource manager connection

factory. The resource manager connection factory type must be compatible

with the type declared in the res-type element.

■ Provide any additional configuration information that the resource manager

needs for opening and managing the resource. The configuration mechanism

is resource manager specific, and is beyond the scope of this specification.

■ If the value of the res-auth element is Container , the Deployer is

responsible for configuring the signon information for the resource manager .

This is performed in a manner specific to the container and resource manager;

it is beyond the scope of this specification.

For example, if principals must be mapped from the security domain and

principal realm used at the application component level to the security domain

and principal realm of the resource manager, the Deployer or System

Administrator must define the mapping. The mapping is performed in a manner

specific to the container and resource manager; it is beyond the scope of this

specification.

5.4.3 J2EE Product Provider’s Responsibilities

The J2EE Product Provider is responsible for the following:

■ Provide the deployment tools that allow the Deployer to perform the tasks

described in the previous subsection.

■ Provide the implementation of the resource manager connection factory

classes that are required by this specification.

■ If the Application Component Provider set the res-auth of a resource

reference to Application , the container must allow the application

component to perform explicit programmatic signon using the resource

manager’s API.

■ The container must provide tools that allow the Deployer to set up resource

signon information for the resource manager references whose res-auth
element is set to Container . The minimum requirement is that the Deployer

must be able to specify the user/password information for each resource

manager connection factory reference declared by the application component,

and the container must be able to use the user/password combination for

user authentication when obtaining a connection by invoking the resource

manager connection factory.
Chapter 5 Naming 5-17

Although not required by this specification, we expect that containers will

support some form of a single signon mechanism that spans the application

server and the resource managers. The container will allow the Deployer to set

up the resources such that the principal can be propagated (directly or through

principal mapping) to a resource manager, if required by the application.

While not required by this specification, most J2EE products will provide the

following features:

■ A tool to allow the System Administrator to add, remove, and configure a

resource manager for the J2EE Server.

■ A mechanism to pool resources for the application components and otherwise

manage the use of resources by the container. The pooling must be

transparent to the application components.

5.4.4 System Administrator’s Responsibilities

The System Administrator is typically responsible for the following:

■ Add, remove, and configure resource managers in the J2EE Server

environment.

In some scenarios, these tasks can be performed by the Deployer.

5.5 Resource Environment References
This section describes the programming and deployment descriptor interfaces

that allow the Application Component Provider to refer to administered objects

that are associated with resource (for example, JMS Destinations) by using

“logical” names called resource environment references. The resource

environment references are special entries in the application component’s

environment. The Deployer binds the resource environment references to

administered objects in the target operational environment.

5.5.1 Application Component Provider’s

Responsibilities

This subsection describes the Application Component Provider’s view and

responsibilities with respect to resource environment references.
5-18 Java™ 2 Platform Enterprise Edition, v1.3 Public Draft (Sun Microsystems, Inc.)

5.5.1.1 Resource environment reference programming interfaces

The Application Component Provider must use resource environment references

to locate administered objects, such as JMS Destinations, that are assoicated with

resources as follows.

■ Assign an entry in the application component’s environment to the reference.

(See subsection 5.5.1.2 for information on how resource environment

references are declared in the deployment descriptor.)

■ This specification recommends, but does not require, that all resource

environment references be organized in the appropriate subcontext of the

component’s environment for the resource type (e.g., in the java:comp/
env/jms JNDI context for JMS Destinations).

■ Look up the administered object in the application component’s environment

using JNDI.

The following example illustrates how an application component uses a

resource environment reference to locate a JMS Destination .

// Obtain the default initial JNDI context.
Context initCtx = new InitialContext();

// Look up the JMS StockQueue in the environment.
Object result = initCtx.lookup(

"java:comp/env/jms/StockQueue");

// Convert the result to the proper type.
javax.jms.Queue queue = (javax.jms.Queue)result;

In the example, the Application Component Provider assigned the environment

entry jms/StockQueue as the resource environment reference name to refer to

a JMS queue.

5.5.1.2 Declaration of resource environment references in deployment
descriptor

Although the resource environment reference is an entry in the application

component’s environment, the Application Component Provider must not use a

env-entry element to declare it. Instead, the Application Component Provider

must declare all references to administered objects associated with resources

using the resource-env-ref elements of the deployment descriptor. This

allows the application component’s jar file consumer to discover all the resource

environment references used by the application component.
Chapter 5 Naming 5-19

Each resource-env-ref element describes the requirements that the

referencing application component has for the referenced administered object.

The resource-env-ref element contains an optional description element;

and the mandatory resource-env-ref-name and resource-env-ref-
type elements.

The resource-env-ref-name element specifies the resource environment

reference name; its value is the environment entry name used in the application

component code. The name of the environment entry is relative to the

java:comp/env context (e.g., the name should be jms/StockQueue rather

than java:comp/env/jms/StockQueue). The resource-env-ref-type
element specifies the expected type of the referenced object. For example, in the

case of a JMS Destination, its value must be either javax.jms.Queue or

javax.jms.Topic .

A resource environment reference is scoped to the application component whose

declaration contains the resource-env-ref element. This means that the

resource environment reference is not accessible to other application

components at runtime, and that other application components may define

resource-env-ref elements with the same resource-env-ref-name
without causing a name conflict.

The following example illustrates the declaration of resource environment

references in the deployment descriptor.

...
<resource-env-ref>

<description>
This is a reference to a JMS queue used in the
processing of Stock info

</description>
<resource-env-ref-name>

jms/StockInfo
</resource-env-ref-name>
<resource-env-ref-type>

javax.jms.Queue
</resource-env-ref-type>

</resource-env-ref>
...

5.5.2 Deployer’s Responsibilities

The Deployer is responsible for the following:
5-20 Java™ 2 Platform Enterprise Edition, v1.3 Public Draft (Sun Microsystems, Inc.)

■ The Deployer must ensure that all the declared resource environment

references are bound to administered objects that exist in the operational

environment. The Deployer may use, for example, the JNDI LinkRef
mechanism to create a symbolic link to the actual JNDI name of the target

object.

■ The Deployer must ensure that the target object is type-compatible with the

type declared for the resource environment reference. This means that the

target object must be of the type indicated in the resource-env-ref-type
element.

5.5.3 J2EE Product Provider’s Responsibilities

The J2EE Product Provider must provide the deployment tools that allow the

Deployer to perform the tasks described in the previous subsection. The

deployment tools provided by the J2EE Product Provider must be able to

process the information supplied in the resource-env-ref elements in the

deployment descriptor.

At the minimum, the tools must be able to inform the Deployer of any

unresolved resource environment references, and allow him or her to resolve a

resource environment reference by binding it to a specified compatible target

object in the environment.

5.6 UserTransaction References
Certain J2EE application component types are allowed to use the JTA

UserTransaction interface to start, commit, and abort transactions. Such

application components can find an appropriate object implementing the

UserTransaction interface by looking up the JNDI name java:comp/
UserTransaction . The container is only required to provide java:comp/
UserTransaction for those components that can validly make use of it. Any

such UserTransaction object is only valid within the component instance that

performed the lookup. See the individual component definitions for further

information.

The following example illustrates how an application component acquires and

uses a UserTransaction object.
Chapter 5 Naming 5-21

public void updateData(...) {
...

// Obtain the default initial JNDI context.
Context initCtx = new InitialContext();

// Look up the UserTransaction object.
UserTransaction tx = (UserTransaction)initCtx.lookup(

"java:comp/UserTransaction");

// Start a transaction.
tx.begin();
...
// Perform transactional operations on data.
...
// Commit the transaction.
tx.commit();
...

}

5.6.1 Application Component Provider’s

Responsibilities

The Application Component Provider is responsible for using the defined name

to lookup the UserTransaction object. Only some application component

types are required to have access to a UserTransaction object; see TABLE 6-1 in

this specification and the EJB specification for details.

5.6.2 Deployer’s Responsibilities

The Deployer has no specific responsibilities associated with the

UserTransaction object.

5.6.3 J2EE Product Provider’s Responsibilities

The J2EE Product Provider is responsible for providing an appropriate

UserTransaction object as required by this specification.
5-22 Java™ 2 Platform Enterprise Edition, v1.3 Public Draft (Sun Microsystems, Inc.)

5.6.4 System Administrator’s Responsibilities

The System Administrator has no specific responsibilities associated with the

UserTransaction object.
Chapter 5 Naming 5-23

5-24 Java™ 2 Platform Enterprise Edition, v1.3 Public Draft (Sun Microsystems, Inc.)

CHAPTER 6

Application Programming Interface

The Java™ 2 Platform, Enterprise Edition (J2EE) provides a number of APIs for

use by J2EE applications, starting with the core Java APIs and including several

Java Standard Extensions. This chapter describes the requirements for those

APIs.

6.1 Required APIs
J2EE application components execute in runtime environments provided by the

containers that are a part of the J2EE platform. The J2EE platform supports four

separate types of containers, one for each J2EE application component type -

application client containers, applet containers, web containers for servlets and

JSP pages, and enterprise bean containers. The containers provide all application

components with the Java 2 Platform, Standard Edition, v1.3 (J2SE) APIs, which

include the following enterprise APIs:

■ JavaIDL API

■ JDBC Core API

■ RMI-IIOP API

■ JNDI API

The containers for all application component types must provide Java

Compatible™ runtime environments. In particular, a J2EE product must provide

an applet execution environment that is J2SE 1.3 compatible. Since typical

browsers don’t yet provide such support, the J2EE platform may make use of

the Java Plugin to provide the required applet execution environment. Use of

the Java Plugin is not required, but a J2EE product is required to provide a J2SE

1.3 compatible applet execution environment.

The specifications for the J2SE components are available at http://
java.sun.com/products/jdk/1.3/docs/ .
6-1

The J2EE platform also includes a number of Java Standard Extensions. TABLE 6-1

indicates which Standard Extensions are required to be available in each type of

container. TABLE 6-1 also indicates the required version of the Standard

Extension.

The APIs included in the J2EE platform must be included in their entirety.

Definitions for all classes and interfaces required by the specifications must be

included. Some of the APIs include interfaces that are intended to be

implemented by an application server. In some cases a J2EE product is not

required to provide objects that implement such interfaces. Nonetheless, the

definitions of such interfaces must be included in the J2EE platform.

TABLE 6-1 J2EE-Required Java Standard Extensions

Standard Extension app client applet web EJB

JDBC 2.0 Extension Y N Y Y

EJB 2.0 Y1

1.Application clients can only make use of the enterprise bean client APIs.

N Y2

2.Servlets and JSP pages can only make use of the enterprise bean client APIs.

Y

Servlets 2.3 N N Y N

JSP 1.2 N N Y N

JMS 1.0 Y N Y Y

JTA 1.0 N N Y Y

JavaMail 1.2 N N Y Y

JAF 1.0 N N Y Y

JAXP 1.1 Y N Y Y

Connector 1.0 N N Y Y

JAAS 1.0 Y N Y Y
6-2 Java™ 2 Platform Enterprise Edition, v1.3 Public Draft (Sun Microsystems, Inc.)

6.2 Java 2 Platform, Standard Edition (J2SE)
Requirements

6.2.1 Programming Restrictions

The J2EE programming model splits the responsibilities between the

Application Component Providers and the J2EE Product Provider. As a result of

this split, the Application Component Providers focus on writing business logic

and the J2EE Product Providers focus on providing a managed system

infrastructure in which the application components can be deployed. This

division of responsibilities requires that the application components do not

contain functionality that would clash with the functions provided by the J2EE

platform. If an application component tried to provide a function that the J2EE

platform implements, the J2EE platform could not properly manage the

function.

Thread management is one example of functionality that would clash with the

J2EE platform’s function. If enterprise beans were allowed to manage threads,

the J2EE platform could not manage the life cycle of the enterprise beans, and it

could not properly manage transactions.

This means that the application components must not use certain Java 2

Platform, Standard Edition (J2SE) functions. Because we do not want to subset

the J2SE platform, and we want a J2SE product to be usable without

modification by the J2EE Product Providers in the J2EE platform, we use the

J2SE security permissions mechanism to express the programming restrictions

imposed on Application Component Providers. We specify the J2SE security

permissions that the J2EE Product Provider must provide for the execution of

each application component type. We call these permissions the J2EE security

permissions set. The J2EE security permissions set is part of the J2EE API

contract.

Since the exact set of security permissions in use in any installation is a matter of

policy, this specification does not define a fixed set of permissions. Instead, the

J2EE security permissions set defines the minimum set of permissions that

application components should expect. Application components that need

permissions not in this minimal set should describe their requirements in their

documentation. (A future version of this specification will allow these security

requirements to be specified in the deployment descriptor for application

components.) All J2EE products must be capable of deploying application
Chapter 6 Application Programming Interface 6-3

components that require the set of permissions described here. Some J2EE

products will allow the set of permissions available to a component to be

configurable, providing some components with more or fewer permissions than

those described here.

From the Application Component Provider’s perspective, the provider must

ensure that the application components do not use functions that would conflict

with the J2EE security permission set.

The J2SE security permissions are fully described in http://java.sun.com/
products/jdk/1.3/docs/guide/security/permissions.html .

TABLE 6-2 lists the J2EE security permissions set. This is the typical set of

permissions that components of each type should expect to have.

TABLE 6-2 J2EE Security Permissions Set

Security Permissions Target Action

Application Clients

java.awt.AWTPermission accessClipboard

java.awt.AWTPermission accessEventQueue

java.awt.AWTPermission showWindowWithout

WarningBanner

java.lang.RuntimePermission exitVM

java.lang.RuntimePermission loadLibrary

java.lang.RuntimePermission queuePrintJob

java.net.SocketPermission * connect

java.net.SocketPermission localhost:1024- accept,listen

java.io.FilePermission * read, write

java.util.PropertyPermission * read

Applet Clients

java.net.SocketPermission codebase connect

java.util.PropertyPermission limited read

Servlets/JSPs

java.lang.RuntimePermission loadLibrary

java.lang.RuntimePermission queuePrintJob
6-4 Java™ 2 Platform Enterprise Edition, v1.3 Public Draft (Sun Microsystems, Inc.)

Note that an operating system that hosts a J2EE product may impose additional

security restrictions of its own that must be taken into account. For instance, the

user identity under which a servlet executes is not likely to have permission to

read and write all files.

6.2.2 Additional Requirements

6.2.2.1 Networking

The J2SE platform includes a pluggable mechanism for supporting multiple

URL protocols through the java.net.URLStreamHandler class and

java.net.URLStreamHandlerFactory interface.

The following URL protocols must be supported:

■ file

Only reading from a file URL need be supported, that is, the corresponding

URLConnection object’s getOutputStream method may fail with an

UnknownServiceException . Of course, file access is restricted according to

the permissions described above.

■ http

Only version 1.0 of the HTTP protocol need be supported, although HTTP 1.1

is allowed. An http URL must support both input and output.

■ https

SSL version 3.0 must be supported by https URL objects. Both input and

output must be supported.

java.net.SocketPermission * connect

java.io.FilePermission * read, write

java.util.PropertyPermission * read

EJB Components

java.lang.RuntimePermission queuePrintJob

java.net.SocketPermission * connect

java.util.PropertyPermission * read

TABLE 6-2 J2EE Security Permissions Set

Security Permissions Target Action
Chapter 6 Application Programming Interface 6-5

The J2SE platform also includes a mechanism for converting a URL’s byte

stream to an appropriate object, using the java.net.ContentHandler class

and java.net.ContentHandlerFactory interface. A ContentHandler
object converts from a MIME byte stream to an object. ContentHandler objects

are typically accessed indirectly using the getContent method of URLand

URLConnection .

When accessing data of the following MIME types using the getContent
method, objects of the corresponding Java type listed in TABLE 6-3 must be

returned.

Many environments will use HTTP proxies rather than connecting directly to

HTTP servers. If HTTP proxies are being used in the local environment, the

HTTP support in the J2SE platform should be configured to use the proxy

appropriately; application components must not be required to configure proxy

support in order to use an http URL.

Most enterprise environments will include a firewall that limits access from the

internal network (intranet) to the public Internet, and vice versa. While it is

typical for access using the HTTP protocol to pass through such firewalls,

perhaps by using proxy servers, it is not typical that general TCP/IP traffic,

including RMI-JRMP, RMI-IIOP, etc., can pass through firewalls. This of course

has implications on the use of various protocols to communicate between

application components. This specification requires only that, where local policy

allows, HTTP access through firewalls be possible. Some J2EE products may

provide support for tunneling other communication through firewalls, perhaps

using HTTP, but this is neither specified nor required.

6.2.2.2 AWT

AWT provides the ability to read binary image data and convert it into a

java.awt.image object, using the createImage methods in

java.awt.Toolkit . The AWT Toolkit must support binary data in the GIF and

JPEG formats.

TABLE 6-3 Java Type of Objects Returned When Using the getContent Method

MIME Type Java Type

image/gif java.awt.Image

image/jpeg java.awt.Image
6-6 Java™ 2 Platform Enterprise Edition, v1.3 Public Draft (Sun Microsystems, Inc.)

6.2.2.3 JDBC™ API

The JDBC API allows for access to a wide range of data storage systems. The

J2SE platform does not require that a system meeting the Java Compatible™

quality standards provide a database that is accessible through the JDBC API. To

allow for the development of portable applications, this specification does

require that such a database be available and accessible from a J2EE product

through the JDBC API. Such a database must be accessible from web

components, enterprise beans, and application clients, but need not be accessible

from applets. In addition, the driver for the database must meet the JDBC

Compatible requirements in the JDBC specification.

J2EE applications should not attempt to load JDBC drivers directly. Instead, they

should use the technique recommended in the JDBC specification and perform a

JNDI lookup to locate a DataSource object. The JNDI name of the DataSource
object should be chosen as described in Section 5.4, “Resource Manager

Connection Factory References”. The J2EE platform must be able to supply a

DataSource that does not require the application to supply any authentication

information when obtaining a database connection. Of course, applications may

also supply a user name and password explicitly when connecting to the

database.

When a JDBC API connection is used in an enterprise bean, the transaction

characteristics will typically be controlled by the container. The component

should not attempt to change the transaction characteristics of the connection,

commit the transaction, rollback the transaction, or set autocommit mode.

Attempts to make changes that are incompatible with the current transaction

context may result in a SQLException being thrown. The EJB specification

contains the precise rules for enterprise beans.

Similar restrictions apply when a component creates a transaction using the JTA

UserTransaction interface. The component should not attempt operations on

the JDBC Connection object that would conflict with the transaction context.

Drivers supporting the JDBC API used in a J2EE environment must meet a

number of additional requirements on their implementation of JDBC APIs,

described below.

■ Drivers are required to provide accurate and complete metadata through the

Connection.getMetaData method. J2EE applications should examine the

DatabaseMetaData object and adapt their behavior to the capabilities of the

current database. How this information is used to create portable applications

that are independent of the underlying database vendor and driver is beyond

the scope of this specification.
Chapter 6 Application Programming Interface 6-7

■ Drivers must support stored procedures

(DatabaseMetaData.supportsStoredProcedures must return true).

The driver must also support the full JDBC API escape syntax for calling

stored procedures with the following methods on the Statement ,

PreparedStatement , and CallableStatement classes:

■ executeUpdate
■ executeQuery

Support for calling stored procedures using the method execute on the

Statement , PreparedStatement , and CallableStatement interfaces is

not required because some databases don’t support returning more than a

single ResultSet from a stored procedure.

■ Drivers must support all of the CallableStatement methods that apply to

SQL92 types, including the following:

■ getBigDecimal(int parameterIndex)
■ getBoolean
■ getByte
■ getBytes
■ getDate(int parameterIndex)
■ getDate(int parameterIndex, Calendar cal)
■ getDouble(int parameterIndex)
■ getFloat(int parameterIndex)
■ getInt
■ getLong
■ getObject(int parameterIndex)
■ getShort
■ getString
■ getTime(int parameterIndex)
■ getTime(int parameterIndex, Calendar cal)
■ getTimestamp(int parameterIndex)
■ getTimestamp(int parameterIndex, Calendar cal)
■ registerOutParameter(int parameterIndex, int sqlType)
■ registerOutParameter(int parameterIndex, int sqlType, int

scale)
■ wasNull()

Support for the new BLOB, CLOB, ARRAY, REF, STRUCTand JAVA_OBJECT
types is not required. All parameter types (IN , OUT, and INOUT) must be

supported.

■ Full support for PreparedStatements is required. This implies support for

the following methods:

■ setAsciiStream
■ setBigDecimal
6-8 Java™ 2 Platform Enterprise Edition, v1.3 Public Draft (Sun Microsystems, Inc.)

■ setBinaryStream(int parameterIndex, InputStream x, int
length)

■ setBoolean
■ setByte
■ setBytes
■ setCharacterStream
■ setDate(int parameterIndex, Date x)
■ setDate(int parameterIndex, Date x, Calendar cal)
■ setDouble
■ setFloat
■ setInt
■ setLong
■ setNull
■ setObject(int parameterIndex, Object x)
■ setObject(int parameterIndex, Object x, int

targetSqlType)
■ setObject(int parameterIndex, Object x, int

targetSqlType, int scale)
■ setShort
■ setString
■ setTime(int parameterIndex, Time x)
■ setTime(int parameterIndex, Time x, Calendar cal)
■ setTimestamp(int parameterIndex, Timestamp x)
■ setTimestamp(int parameterIndex, Timestamp x, Calendar

cal)

Support for the new BLOB, CLOB, ARRAY, REF, STRUCTand JAVA_OBJECT
types is not required. Support for the PreparedStatement method

getMetaData is not required. This method must throw an SQLException if

it is not supported.

■ Full support for batch updates is required. This implies support for the

following methods on the Statement , PreparedStatement , and

CallableStatement classes:

■ addBatch
■ clearBatch
■ executeBatch

Drivers are free to implement these methods any way they choose (including

a non-batching implementation) as long as the semantics are correct.

■ A driver must provide full support for DatabaseMetaData and

ResultSetMetaData . This implies that all of the methods in the

DatabaseMetaData interface must be implemented and must behave as
Chapter 6 Application Programming Interface 6-9

specified in the JDBC 2.1 specification. None of the methods in

DatabaseMetaData and ResultSetMetaData may throw an exception

because they are not implemented.

■ The JDBC API core specification requires that JDBC compliant drivers

provide support for the SQL92, Transitional Level, DROP TABLEcommand,

full support for the CASCADEand RESTRICToptions is required. As many

popular databases do not support DROP TABLEas specified in the SQL92

specification, the following clarification is required.

A JDBC 2.1 compliant driver is required to support the DROP TABLE
command as specified by the SQL92, Transitional Level. However, support for

the CASCADEand RESTRICToptions of DROP TABLEis optional. In addition,

the behavior of DROP TABLEis implementation defined when there are views

or integrity constraints defined that reference the table that is being dropped.

6.2.2.4 Java™IDL

JavaIDL allows applications to access any CORBA object, written in any

language, using the standard IIOP protocol. The J2EE security restrictions

typically prevent all application component types except application clients

from creating and exporting a CORBA object, but all J2EE application

component types can be clients of CORBA objects.

A J2EE product must support JavaIDL as defined by chapters 1 - 8, 13, and 15 of

the CORBA 2.3.1 specification, available at http://cgi.omg.org/cgi-bin/
doc?formal/99-10-07 , and the IDL To Java Language Mapping Specification,

available at http://cgi.omg.org/cgi-bin/doc?ptc/2000-01-08 .

A J2EE product must provide a COSNaming service to support the EJB

interoperability requirements. It must be possible to access this COSNaming

service using the JavaIDL COSNaming APIs. Applications with appropriate

privileges must be able to lookup objects in the COSNaming service.

COSNaming is defined in the Interoperable Naming Service specification,

available at http://cgi.omg.org/cgi-bin/doc?formal/2000-06-19 .

6.2.2.5 RMI-JRMP

JRMP is the Java technology-specific Remote Method Invocation (RMI) protocol.

The J2EE security restrictions typically prevent all application component types

except application clients from creating and exporting an RMI object, but all

J2EE application component types can be clients of RMI objects.
6-10 Java™ 2 Platform Enterprise Edition, v1.3 Public Draft (Sun Microsystems, Inc.)

6.2.2.6 RMI-IIOP

RMI-IIOP allows objects defined using RMI style interfaces to be accessed using

the IIOP protocol. It must be possible to make any enterprise bean accessible via

RMI-IIOP. Some J2EE products will simply make all enterprise beans always

(and only) accessible via RMI-IIOP; other products might control this via an

administration or deployment action. These and other approaches are allowed,

provided that any enterprise bean (or by extension, all enterprise beans) can be

made accessible using RMI-IIOP.

All components accessing enterprise beans must use the narrow method of the

javax.rmi.PortableRemoteObject class, as described in the EJB

specification. Because enterprise beans may be deployed using other RMI

protocols, portable applications must not depend on the characteristics of RMI-

IIOP objects (e.g., the use of the Stub and Tie base classes) beyond what is

specified in the EJB specification.

The J2EE security restrictions typically prevent all application component types,

except application clients, from creating and exporting an RMI-IIOP object. All

J2EE application component types can be clients of RMI-IIOP objects. J2EE

applications should also use JNDI to lookup non-EJB RMI-IIOP objects. The

JNDI names used for such non-EJB RMI-IIOP objects should be configured at

deployment time using the standard environment entries mechanism (see

Section 5.2, “Java Naming and Directory Interface™ (JNDI) Naming Context”).

The application should fetch the name from JNDI using an environment entry

and then use that name to lookup the RMI-IIOP object. Typically such names

will be configured to be names in the COSNaming name service.

This specification does not provide a portable way for applications to bind

objects to names in a name service. Some products may support use of JNDI and

COSNaming for binding objects, but this is not required. Portable J2EE

applications can create non-EJB RMI-IIOP server objects for use as callback

objects or to pass in calls to other RMI-IIOP objects.

Note that while RMI-IIOP alone doesn’t specify how to propagate the current

security context or transaction context, the EJB interoperability specification

does define such context propagation. This specification only requires that the

use of RMI-IIOP to access enterprise beans be able to propagate context

information (as defined in the EJB specification); uses of RMI-IIOP to access

objects other than enterprise beans may or may not propagate context

information.

The RMI-IIOP specification describes how portable Stub and Tie classes can be

created. A J2EE application that defines or uses RMI-IIOP objects other than

enterprise beans must include such portable Stub and Tie classes in the
Chapter 6 Application Programming Interface 6-11

application package. Stub and Tie objects for enterprise beans must not be

included with the application; they will be generated, if needed, by the J2EE

product at deployment time or at run time.

RMI-IIOP is defined by chapters 5, 6, 13, 15, and section 10.6.2 of the CORBA

2.3.1 specification, available at http://cgi.omg.org/cgi-bin/
doc?formal/99-10-07 , and by the Java™ Language To IDL Mapping
Specification, available at http://cgi.omg.org/cgi-bin/doc?ptc/2000-
01-06 .

6.2.2.7 JNDI

A J2EE product must make the following types of objects available in the

application visible JNDI namespace - EJBHomeobjects, JTA UserTransaction
objects, JDBC API DataSource objects, JMS ConnectionFactory and

Destination objects, JavaMail Session objects, and resource manager

connection factory objects (as specified in the Connector specification). The JNDI

implementation in a J2EE product must be capable of supporting all of these

uses in a single application component using a single JNDI InitialContext .

Application components will generally create a JNDI InitialContext using

the default constructor with no arguments. The application component may

then perform lookups on that InitialContext to find objects as specified

above.

The names used to perform lookups for J2EE objects are application-dependent;

the application component’s deployment descriptor lists all of the names and

the type of object expected to correspond to each name. The Deployer configures

the JNDI namespace to make appropriate components available. The JNDI

names used to lookup such objects must be in the JNDI java: namespace. See

Chapter 5, “Naming” for details.

One particular name is defined by this specification. For all application

components that have access to the JTA UserTransaction interface, the

appropriate UserTransaction object can be found using the name

java:comp/UserTransaction .

The name used to lookup a particular J2EE object may be different in different

application components. In general, JNDI names can not be meaningfully

passed as arguments in remote calls from one application component to another

remote component (for example, in a call to an enterprise bean).
6-12 Java™ 2 Platform Enterprise Edition, v1.3 Public Draft (Sun Microsystems, Inc.)

The JNDI java: namespace is commonly implemented as symbolic links to other

naming systems. Different underlying naming services may be used to store

different kinds of objects, or even different instances of objects. It is up to a J2EE

product to provide the JNDI service providers necessary to access the various

J2EE-defined objects.

Different JNDI service providers may provide different capabilities, for instance,

some service providers may provide only read-only access to the data in the

name service. This specification requires that the J2EE platform provide the

ability to perform lookup operations as described above.

All J2EE products must provide a COSNaming name service to meet the EJB

interoperability requirements. In addition, a COSNaming JNDI service provider

must be available in the web, EJB, and application client containers. It will also

typically be available in the applet container, but this is not required. (A

COSNaming JNDI service provider is a part of the J2SE 1.3 SDK and JRE from

Sun, but is not a required component of the J2SE specification.) The COSNaming

JNDI service provider specification is available at http://java.sun.com/
j2se/1.3/docs/guide/jndi/jndi-cos.html .

See Chapter 5, “Naming” for the complete naming requirements for the J2EE

platform.

The JNDI specification is available at http://java.sun.com/products/
jndi/docs.html .

6.3 JDBC™ 2.0 Standard Extension
Requirements
The JDBC 2.0 standard extension includes APIs for row sets, connection naming

via JNDI, connection pooling, and distributed transaction support. The

connection pooling and distributed transaction features are intended for use by

JDBC drivers to coordinate with an application server. J2EE products are not

required to support the application server facilities described by these APIs,

although they may prove useful. The Connector architecture defines an SPI that

essentially extends the functionality of the JDBC SPI with additional security

functionality as well as providing a full packaging and deployment functionality

for resource adapters. A future version of this specification may require support

for deploying JDBC drivers as resource adapters using the Connector

architecture.
Chapter 6 Application Programming Interface 6-13

The JDBC 2.0 standard extension specification is available at http://
java.sun.com/products/jdbc/jdbcse2.html.

6.4 Enterprise JavaBeans™ (EJB) 2.0
Requirements
This specification requires that a J2EE product provide support for enterprise

beans as specified in the EJB 2.0 specification. The EJB specification is available

at http://java.sun.com/products/ejb/docs.html .

This specification does not impose any additional requirements at this time.

Note that the EJB 2.0 specification includes the specification of the EJB

interoperability protocol based on RMI-IIOP. All containers that support EJB

clients must be capable of using the EJB interoperability protocol to invoke

enterprise beans. All EJB containers must support the invocation of enterprise

beans in the container using the EJB interoperability protocol. A J2EE product

may also support other protocols for the invocation of enterprise beans.

6.5 Servlet 2.3 Requirements
The Servlet specification defines the packaging and deployment of web

applications, standalone and as part of a J2EE application. The Servlet

specification also addresses security, both standalone and within the J2EE

platform. A J2EE product must support these optional components of the Servlet

specification. The Servlet specification includes additional requirements on web

containers that are part of a J2EE product; a J2EE product must meet these

requirements as well.

The Servlet specification defines distributable web applications. To support J2EE

applications that are distributable, this specification adds the following

requirements.

A distributable application may only place objects of the following types into a

javax.servlet.http.HttpSession object using the setAttribute or

putValue methods:

■ java.io.Serializable

■ javax.ejb.EJBObject
6-14 Java™ 2 Platform Enterprise Edition, v1.3 Public Draft (Sun Microsystems, Inc.)

■ javax.ejb.EJBHome

■ javax.transaction.UserTransaction

■ a javax.naming.Context object for the java:comp/env context

Web containers may throw an IllegalArgumentException if an object that is

not one of the above types is passed to the setAttribute or putValue
methods of an HttpSession object corresponding to a distributable session.

This exception indicates to the programmer that the web container does not

support moving the object between VMs. A web container that supports multi-

VM operation must ensure that, when a session is moved from one VM to

another, all objects of the above types are accurately recreated on the target VM.

The Servlet specification is available at http://java.sun.com/products/
servlet .

6.6 JavaServer Pages™ (JSP) 1.2
Requirements
JSP depends on and builds on the Servlet framework. A J2EE product must

support the entire JSP specification.

The JSP specification is available at http://java.sun.com/products/jsp .

6.7 Java™ Message Service (JMS) 1.0
Requirements
A Java Message Service provider must be included in a J2EE product. The JMS

implementation must provide support for both JMS point-to-point and publish/

subscribe messaging, and thus must make those facilities available using the

ConnectionFactory and Destination APIs.

The JMS specification defines several interfaces intended for integration with an

application server. A J2EE product need not provide objects that implement

these interfaces, and portable J2EE applications must not use these interfaces:

■ javax.jms.ServerSession
■ javax.jms.ServerSessionPool
■ javax.jms.ConnectionConsumer
Chapter 6 Application Programming Interface 6-15

■ all javax.jms XA interfaces

Note that the JMS API creates threads to deliver messages to message listeners.

The use of this message listener facility may be limited by the restrictions on the

use of threads in various containers. In EJB containers, for instance, it is

typically not possible to create threads. The following methods must not be used

by application components executing in containers that prevent them from

creating threads:

■ javax.jms.Session method setMessageListener
■ javax.jms.Session method getMessageListener
■ javax.jms.Session method run
■ javax.jms.QueueConnection method createConnectionConsumer
■ javax.jms.TopicConnection method createConnectionConsumer
■ javax.jms.TopicConnection method

createDurableConnectionConsumer

In addition, use of the following methods may interfere with the connection

management functions of the container; applications in web and EJB containers

must not use these methods on javax.jms.Connection objects:

■ setExceptionListener
■ stop
■ setClientID

A J2EE container may throw a JMSException if the application component

violates these restrictions.

The latest JMS 1.0 specification is version 1.0.2 and is available at http://
java.sun.com/products/jms .

6.8 Java™ Transaction API (JTA) 1.0
Requirements
JTA defines the UserTransaction interface that is used by applications to start

and commit or abort transactions. Enterprise beans are expected to get

UserTransaction objects through the EJBContext ’s getUserTransaction
method. Other application components get a UserTransaction object through

a JNDI lookup using the name java:comp/UserTransaction .

JTA also defines a number of interfaces that are used by an application server to

communicate with a transaction manager, and for a transaction manager to

interact with a resource manager. These interfaces must be supported as
6-16 Java™ 2 Platform Enterprise Edition, v1.3 Public Draft (Sun Microsystems, Inc.)

described in the Connector specification. In addition, support for other

transaction facilities may be provided by a J2EE product, transparently to the

application.

The latest JTA 1.0 specification is version 1.0.1 and is available at http://
java.sun.com/products/jta .

6.9 JavaMail™ 1.2 Requirements
The JavaMail API allows for access to email messages contained in message

stores, and for the creation and sending of email messages using a message

transport. Specific support is included for Internet standard MIME messages.

Access to message stores and transports is through protocol providers

supporting specific store and transport protocols. The JavaMail API specification

does not require any specific protocol providers, but the JavaMail reference

implementation includes an IMAP message store provider and an SMTP

message transport provider.

Configuration of the JavaMail API is typically done by setting properties in a

Properties object that is used to create a javax.mail.Session object using

a static factory method. To allow the J2EE platform to configure and manage

JavaMail API sessions, an application component that uses the JavaMail API

should request a Session object using JNDI, and should list its need for a

Session object in its deployment descriptor using a resource-ref element. A

JavaMail API Session object should be considered a resource factory, as

described in Section 5.4, “Resource Manager Connection Factory References.”

This specification requires that the J2EE platform support

javax.mail.Session objects as resource factories, as described in that section.

The J2EE platform requires that a message transport be provided that is capable

of handling addresses of type javax.mail.internet.InternetAddress
and messages of type javax.mail.internet.MimeMessage . The default

message transport must be properly configured to send such messages using the

send method of the javax.mail.Transport class. Any authentication needed

by the default transport must be handled without need for the application to

provide a javax.mail.Authenticator or to explicitly connect to the

transport and supply authentication information.

This specification does not require that a J2EE product support any message

store protocols.
Chapter 6 Application Programming Interface 6-17

Note that the JavaMail API creates threads to deliver notifications of Store ,

Folder , and Transport events. The use of these notification facilities may be

limited by the restrictions on the use of threads in various containers. In EJB

containers, for instance, it is typically not possible to create threads.

The JavaMail API uses the JavaBeans Activation Framework API to support

various MIME data types. The JavaMail API must include

javax.activation.DataContentHandlers for the following MIME data

types, corresponding to the Java programming language type indicated in

TABLE 6-4.

The JavaMail API specification is available at http://java.sun.com/
products/javamail .

6.10 JavaBeans™ Activation Framework 1.0
Requirements
The JavaBeans Activation Framework integrates support for MIME data types

into the Java platform. MIME byte streams can be converted to and from Java

programming language objects, using

javax.activation.DataContentHandler objects. JavaBeans components

can be specified for operating on MIME data, such as viewing or editing the

data. The JavaBeans Activation Framework also provides a mechanism to map

filename extensions to MIME types.

The JavaBeans Activation Framework is used by the JavaMail API to handle the

data included in email messages; typical applications will not need to use the

JavaBeans Activation Framework directly, although applications making

sophisticated use of email may need it.

TABLE 6-4 JavaMail API MIME Data Type to Java Type Mappings

Mime Type Java Type

text/plain java.lang.String

multipart/* javax.mail.internet.MimeMultipart

message/rfc822 javax.mail.internet.MimeMessage
6-18 Java™ 2 Platform Enterprise Edition, v1.3 Public Draft (Sun Microsystems, Inc.)

This specification requires that the J2EE platform need only provide the

DataContentHandlers specified above for the JavaMail API. This

specification requires the J2EE platform to provide a

javax.activation.MimetypesFileTypeMap that supports the mappings

listed in TABLE 6-5.

The JavaBeans Activation Framework 1.0 specification is available at http://
java.sun.com/beans/glasgow/jaf.html .

6.11 Java™ API for XML Parsing (JAXP) 1.1
Requirements
JAXP includes the industry standard SAX and DOM APIs, as well as a

pluggability API that allows SAX and DOM parsers to be plugged into the

framework, and allows applications to find such parsers that support the

features needed by the application.

All J2EE products must provide at least one SAX parser and at least one DOM

parser. There must be a SAX parser or parsers that support both validation

modes (on and off). There must be a DOM parser or parsers that support both

validation modes (on and off). The SAX and DOM parsers may or may not

provide namespace support.

The JAXP specification is available at http://java.sun.com/xml .

TABLE 6-5 Filename Extension to MIME Type Mappings

MIME Type Filename Extensions

text/html html htm

text/plain txt text

image/gif gif GIF

image/jpeg jpeg jpg jpe JPG
Chapter 6 Application Programming Interface 6-19

6.12 J2EE™ Connector Architecture 1.0
Requirements
All EJB containers and all web containers must support the Connector APIs. All

such containers must support Resource Adapters that use any of the specified

transaction capabilities. The J2EE deployment tools must support deployment of

Resource Adapters, as defined in the Connector specification, and must support

the deployment of applications that use Resource Adapters.

The Connector specification is available at http://java.sun.com/j2ee/
connector/ .

6.13 Java™ Authentication and
Authorization Service (JAAS) 1.0
Requirements
All EJB containers and all web containers must support the use of the JAAS

APIs as specified in the Connector specification. All application client containers

must support use of the JAAS APIs as specified in Chapter 9, “Application

Clients.”

The JAAS specification is available at http://java.sun.com/products/
jaas .
6-20 Java™ 2 Platform Enterprise Edition, v1.3 Public Draft (Sun Microsystems, Inc.)

CHAPTER 7

Interoperability

This chapter describes the interoperability requirements for the Java™ 2

Platform, Enterprise Edition (J2EE).

7.1 Introduction to Interoperability
The J2EE platform will be used by enterprise environments that support clients

of many different types. Often, these enterprise environments will add new

services to their existing Enterprise Information Systems. These enterprise

environments very likely will be using different hardware platforms and various

software applications written in different languages.

Enterprise environments may leverage the J2EE platform to bring together

applications written in such languages as C++ and Visual Basic. One or more of

these existing applications may be running on a personal computer platform,

while others may be running on Unix® workstations. In addition, these

enterprise environments may also be supporting standalone Java technology-

based applications that are not directly supported by the J2EE platform.

The J2EE platform provides indirect support for various types of clients,

different hardware platforms, and a multitude of software applications through

its interoperability requirements. To an Application Component Provider or

System Administrator in an enterprise environment, the interoperability features

of the J2EE platform permit the underlying disparate systems to work together

seamlessly. In addition, the platform hides much of the complexity required to

join these pieces.

The interoperability requirements for the current J2EE platform release allows:

■ J2EE applications to connect to legacy systems using CORBA or low-level

Socket interfaces.
7-1

■ J2EE applications to connect to other J2EE applications across multiple J2EE

products. The J2EE products can be from multiple Product Providers or they

can be from the same Provider.

This specification allows J2EE applications to connect to EIS or legacy systems.

At the current time, these connections may be accomplished using CORBA

services or low-level Socket interfaces.

In addition, this specification requires that J2EE applications be allowed to

connect to other J2EE applications. These other J2EE applications may be

running on other J2EE platforms. J2EE applications must also be able to connect

and work with J2EE applications written by other Application Providers. In this

version of the specification, interoperability between J2EE applications running

in different platforms is accomplished through the HTTP protocol, possibly

using SSL, or the EJB interoperability protocol based on IIOP.

7.2 Interoperability Protocols
This specification requires that a J2EE product support a standard set of

protocols and formats to ensure interoperability. The specification requires

support for the following groups of protocols and formats:

■ Internet protocols

■ OMG protocols

■ Java technology protocols

■ Data formats

Many of these protocols and formats are supported by J2SE and by the

underlying operating system.

7.2.1 Internet Protocols

Internet protocols define the standards by which the different pieces of the

platform communicate with each other. The J2EE platform requires support for

the following Internet protocols:

■ TCP/IP protocol family—This is the core component of Internet

communication. TCP/IP and UDP/IP are the standard transport protocols for

the Internet.
7-2 Java™ 2 Platform Enterprise Edition, v1.3 Public Draft (Sun Microsystems, Inc.)

■ HTTP 1.0—This is the core protocol of Web communication. As with TCP/IP,

HTTP 1.0 is supported by J2SE and the underlying operating system. A J2EE

web container must be capable of advertising its HTTP services on the

standard HTTP port, port 80.

■ SSL 3.0, TLS 1.0—SSL 3.0 (Secure Socket Layer) represents the security layer

for Web communication. It is available indirectly when using the https URL

as opposed to the http URL. A J2EE web container must be capable of

advertising its HTTPS service on the standard HTTPS port, port 443. SSL 3.0

and TLS 1.0 are also required as part of the EJB interoperability protocol, as

defined in the EJB specification.

7.2.2 OMG Protocols

This specification requires the J2EE platform to support the following Object

Management Group (OMG) based protocols:

■ IIOP (Internet Inter-ORB Protocol)—Supported by Java IDL and RMI-IIOP in

J2SE. Java IDL provides standards-based interoperability and connectivity

through the Common Object Request Broker Architecture (CORBA). CORBA

specifies the Object Request Broker (ORB) which allows applications to

communicate with each other regardless of location. This interoperability is

delivered through IIOP, and is typically found in an intranet setting. IIOP can

be used as an RMI protocol using the RMI-IIOP technology. IIOP is defined in

Chapters 13 and 15 of the CORBA 2.3.1 specification, available at http://
cgi.omg.org/cgi-bin/doc?formal/99-10-07 .

■ EJB interoperability protocol—The EJB interoperability protocol is based on

IIOP (GIOP 1.2) and the (draft) CSIv2 CORBA Secure Interoperability

specification. The EJB interoperability protocol is defined in the EJB

specification.

■ COSNaming—The COSNaming protocol is an IIOP-based protocol to access a

name service. The EJB interoperability protocol requires the use of the

COSNaming protocol to lookup EJB objects using the JNDI API. In addition,

it must be possible to use the JavaIDL COSNaming API to access the

COSNaming name service. All J2EE products must provide a COSNaming

name service that meets the requirements of the Interoperable Naming

Service specification, available at http://cgi.omg.org/cgi-bin/
doc?formal/2000-06-19 . This name service may be provided as a separate

name server or as a protocol bridge or gateway to another name service; this

specification does not prescribe or preclude either approach.
Chapter 7 Interoperability 7-3

7.2.3 Java Technology Protocols

This specification also requires the J2EE platform to support the JRMP protocol,

which is the Java technology-specific Remote Method Invocation (RMI) protocol.

JRMP is a required component of J2SE and is one of the two required RMI

protocols. IIOP, also required by J2SE, is the other required RMI protocol, see

above.

JRMP is a distributed object model for the Java programming language.

Distributed systems, which run in different address spaces and often on

different hosts, must still be able to communicate with each other. JRMP permits

program-level objects in different address spaces to invoke remote objects using

the semantics of the Java programming language object model.

Complete information on the JRMP specification can be found at http://
java.sun.com/products/jdk/1.2/docs/guide/rmi .

7.2.4 Data Formats

In addition to the protocols that allow communication between components, this

specification also requires J2EE platform support for a number of data formats.

These formats provide a definition for data that is exchanged between

components.

The following data formats must be supported:

■ HTML 3.2—This represents the minimum web standard. It is not directly

supported by J2EE APIs. However, it must be able to be displayed by J2EE

web clients.

■ Image file formats—The J2EE platform must support both GIF and JPEG

images. Support for these formats is provided by the java.awt.image APIs

(see the URL: http://java.sun.com/products/jdk/1.2/docs/api/
java/awt/image/package-summary.html) and by J2EE web clients.

■ JAR files—JAR (Java Archive) files are the standard packaging format for Java

technology-based application components, including the ejb-jar specialized

format, the Web application archive (war) format, the Resource Adapter

archive (rar), and the J2EE enterprise application archive (ear) format. JAR is

a platform-independent file format that permits many files to be aggregated

into one file. This allows multiple Java components to be bundled into one

JAR file and downloaded to a browser in a single HTTP transaction. JAR file

formats are supported by the java.util.jar and java.util.zip
packages. For complete information on the JAR specification, see the URL:

http://java.sun.com/products/jdk/1.2/docs/guide/jar .
7-4 Java™ 2 Platform Enterprise Edition, v1.3 Public Draft (Sun Microsystems, Inc.)

■ Class file format—The class file format is specified in the Java Virtual

Machine specification. Each class file contains one Java programming

language type—either a class or an interface—and consists of a stream of 8-bit

bytes. For complete information on the class file format, see the URL: http:/
/java.sun.com/docs/books/vmspec .
Chapter 7 Interoperability 7-5

7-6 Java™ 2 Platform Enterprise Edition, v1.3 Public Draft (Sun Microsystems, Inc.)

CHAPTER 8

Application Assembly and
Deployment

This chapter specifies Java™ 2 Platform, Enterprise Edition (J2EE) requirements

for assembling, packaging, and deploying a J2EE application. The main goal of

these requirements is to provide scalable modular application assembly and

portable deployment of J2EE applications into any J2EE product.

J2EE applications are composed of one or more J2EE components and one J2EE

application deployment descriptor. The deployment descriptor lists the

application’s components as modules. A J2EE module represents the basic unit

of composition of a J2EE application. J2EE modules consist of one or more J2EE

components and one component level deployment descriptor. The flexibility and

extensibility of the J2EE component model facilitates the packaging and

deployment of J2EE components as individual components, component

libraries, or J2EE applications.
8-1

FIGURE 8-1 shows the composition model for J2EE deployment units and includes

the optional usage of alternate deployment descriptors by the application

package to preserve the signing of the original J2EE modules.

FIGURE 8-1 J2EE Deployment

EJB

EJB

EJB

Web client
module

DD

2

WEB

WEB

DD

3

EJB
module

DD

EJB

EJB

EJB

4

3

DD

2

DD

APP
DD

1

DD

DD
1

DD
2

DD
3

Deployment
Tool

add/delete modules

Components J2EE ApplicationJ2EE Modules

EJB
module

DD

1

application
client

module

Resource

module

DD

Adapter

Resource

module

DD

Adapter
5

DD

5

DD
5

8-2 Java™ 2 Platform Enterprise Edition, v1.3 Public Draft (Sun Microsystems, Inc.)

8.1 Application Development Life Cycle
The development life cycle of a J2EE application begins with the creation of

discrete J2EE components. These components are then packaged with a

component level deployment descriptor to create a J2EE module. J2EE modules

can be deployed as stand-alone units or can be assembled with a J2EE

application deployment descriptor and deployed as a J2EE application.

FIGURE 8-2 shows the life cycle of a J2EE application.

FIGURE 8-2 J2EE Application Life Cycle

8.1.1 Component Creation

The EJB, Servlet, application client, and Connector specifications include the

XML document type definition (DTD) of the associated component level

deployment descriptors and component packaging architecture required to

produce J2EE modules. (The application client specification is found in

Chapter 9 of this document.)

deploy

Deployment

Processed by
Deployer

Assembly
Assembled and
Augmented by

Application
Assembler

Created by
Component
Provider

Creation

Enterprise
Components

J2EE Container/Server

J2EE Module J2EE APP
Chapter 8 Application Assembly and Deployment 8-3

8.1.2 Component Packaging: Composing a J2EE

module

A J2EE module is a collection of one or more J2EE components of the same

container type with one component deployment descriptor of that type.

Deployment descriptors for J2EE modules are extensible. Any number of

components of the same container type can be packaged together with a single a

container-specific J2EE deployment descriptor to produce a J2EE module.

■ A J2EE module represents the basic unit of composition of a J2EE application.

■ The deployment descriptor for a J2EE module contains all of the declarative

data required to deploy the components in the module. The deployment

descriptor for a J2EE module also contains assembly instructions that describe

how the components are composed into an application.

■ An individual J2EE module can be deployed as a stand-alone J2EE module

without an application level deployment descriptor.

■ The J2EE platform supports the use of bundled extensions as specified in

Support for Extensions and Applications in Version 1.2 of the Java™ Platform
(available at http://java.sun.com/products/jdk/1.2/docs/guide/
extensions/spec.html). Using this mechanism a J2EE .jar file can

reference utility classes or other shared classes packaged in a separate .jar
file and included in the same J2EE application package. The J2EE deployment

tools must process all such referenced files when processing a J2EE module

this is or contains a .jar file. Any deployment descriptors in referenced

.jar files are ignored when processing the referencing .jar file.

8.1.3 Application Assembly

A J2EE application consists of one or more J2EE modules and one J2EE

application deployment descriptor. A J2EE application is packaged using the

Java Archive (JAR) file format into a file with a .ear (Enterprise ARchive)

filename extension. A minimal J2EE application package will only contain J2EE

modules and the application deployment descriptor. A J2EE application package

may also include libraries referenced by J2EE modules, help files and

documentation to aid the deployer, etc.

The deployment of a portable J2EE application should not depend on any

entities that may be contained in the package other than those defined by this

specification. Deployment of a portable J2EE application must be possible using

only the application deployment descriptor and the J2EE modules (and their

dependent libraries) and descriptors listed in it.
8-4 Java™ 2 Platform Enterprise Edition, v1.3 Public Draft (Sun Microsystems, Inc.)

The J2EE application deployment descriptor represents the top level view of a

J2EE application’s contents. The J2EE application deployment descriptor is

specified by the J2EE:application XML document type definition (DTD) (see

Section 8.4, “J2EE:application XML DTD”).

8.1.3.1 Customization

In certain cases, a J2EE application will need customization before it can be

deployed into the enterprise. New J2EE modules may be added to the

application. Existing modules may be removed from the application. Some J2EE

modules may need custom content created, changed, or replaced. For example,

an application consumer may need to use an html editor to add company

graphics to a template login page that was provided with a J2EE web

application.

8.1.4 Deployment

During the deployment phase of an application’s life cycle, the application is

installed on the J2EE platform and then is configured and integrated into the

existing infrastructure. Each J2EE module listed in the application deployment

descriptor must be deployed according to the requirements of the specification

for the respective J2EE module type. Each module listed must be installed in the

appropriate container type and the environment properties of each module must

be set appropriately in the target container to reflect the values declared by the

deployment descriptor element for each component.

8.2 Application Assembly
This section specifies the sequence of steps that are typically followed when

composing a J2EE application.

▼ Assembling a J2EE Application

1. Select the J2EE modules that will be used by the application.

2. Create an application directory structure.
Chapter 8 Application Assembly and Deployment 8-5

The directory structure of an application is arbitrary. The structure should be

designed around the requirements of the contained components.

3. Reconcile J2EE module deployment parameters.

The deployment descriptors for the J2EE modules must be edited to link

internally satisfied dependencies and eliminate any redundant security role

names. An optional element alt-dd (described in Section 8.4,

“J2EE:application XML DTD”) may be used when it is desirable to preserve

the original deployment descriptor. The element alt-dd specifies an alternate

deployment descriptor to use at deployment time. The edited copy of the

deployment descriptor file may be saved in the application directory tree in a

location determined by the Application Assembler. If the alt-dd element is

not present, the Deployer must read the deployment descriptor directly from

the JAR.

a. Link the internally satisfied dependencies of all components in every

module contained in the application. For each component dependency,

there must only be one corresponding component that fulfills that

dependency in the scope of the application.

i. For each ejb-link , there must be only one matching ejb-name in the

scope of the entire application (see Section 5.3, “Enterprise JavaBeans™

(EJB) References”).

ii. Dependencies that are not linked to internal components must be

handled by the Deployer as external dependencies that must be met by

resources previously installed on the platform. External dependencies

must be linked to the resources on the platform during deployment.

b. Synchronize security role-names across the application. Rename unique

role-names with redundant meaning to a common name.

4. Create an XML deployment descriptor for the application.

The deployment descriptor must be named “application.xml ” and must

reside in the top level of the META-INF directory of the application .ear file.

The deployment descriptor must be a valid XML document according to the

document type definition (DTD) for a J2EE:application XML document. The

deployment descriptor must include an XML document type definition with a

PUBLIC identifier of either “-//Sun Microsystems//J2EE Application
1.2//EN ” or “-//Sun Microsystems//J2EE Application 1.3//EN ”.

5. Package the application.

a. Place the J2EE modules and the deployment descriptor in the appropriate

directories. The deployment descriptor must be located at

META-INF/application.xml.
8-6 Java™ 2 Platform Enterprise Edition, v1.3 Public Draft (Sun Microsystems, Inc.)

b. Package the application directory hierarchy in a file using the Java Archive

(JAR) file format. The file should be named with a .ear filename

extension.

▼ Adding and Removing Modules

After the application is created, J2EE modules may be added or removed before

deployment. When adding or removing a module the following steps must be

performed:

1. Decide on a location in the application package for the new module.

Optionally create new directories in the application package hierarchy to

contain any J2EE modules that are being added to the application.

2. Copy the new J2EE modules to the desired location in the application

package. The packaged modules are inserted directly in the desired location;

the modules are not unpackaged.

3. Edit the deployment descriptors for the J2EE modules to link the

dependencies which are internally satisfied by the J2EE modules included in

the application.

4. Edit the J2EE application deployment descriptor to meet the content

requirements of the J2EE platform and the validity requirements of the

J2EE:application XML DTD.

8.3 Deployment
The J2EE platform supports two types of deployment units:

■ Stand-alone J2EE modules.

■ J2EE applications, consisting of one or more J2EE modules. A J2EE

application must include one J2EE application deployment descriptor.

Any J2EE platform must be able to accept a J2EE application delivered as a .ear
file or a stand-alone J2EE module delivered as a .jar or .war file (as

appropriate to its type).
Chapter 8 Application Assembly and Deployment 8-7

▼ Deploying a Stand-Alone J2EE Module

This section specifies the requirements for deployment of a stand-alone J2EE

module.

1. The deployment tool must first read the J2EE module deployment descriptor

from the package. See the EJB and Servlet specifications for the required

location and name of the deployment descriptor for each component type.

2. The deployment tool must deploy all of the components listed in the J2EE

module deployment descriptor according to the deployment requirements of

the respective J2EE component specification. All classes in .jar files

referenced from other .jar files using the Class-Path manifest header

must be included in the deployment.

3. The deployment tool must allow the Deployer to configure the container to

reflect the values of all the properties declared by the deployment descriptor

element for each component.

▼ Deploying a J2EE Application

This section specifies the requirements for deployment of a J2EE application.

1. The deployment tool must first read the J2EE application deployment

descriptor from the application .ear file (META-INF/application.xml).

2. The deployment tool must open each of the J2EE modules listed in the J2EE

application deployment descriptor and read the J2EE module deployment

descriptor from the package. See the Enterprise JavaBeans, Servlet, and

application client specifications for the required location and name of the

deployment descriptor for each component type. (The application client

specification is Chapter 9, “Application Clients”.)

3. The deployment tool must install all of the components described by each

module deployment descriptor into the appropriate container according to

the deployment requirements of the respective J2EE component specification.

All classes in .jar files referenced from other .jar files using the Class-
Path manifest header must be included in the deployment.

4. The deployment tool must allow the Deployer to configure the container to

reflect the values of all the properties declared by the deployment descriptor

element for each component.

5. Repeat steps 2 through 4 until all the modules listed in the application

deployment descriptor have been deployed.
8-8 Java™ 2 Platform Enterprise Edition, v1.3 Public Draft (Sun Microsystems, Inc.)

8.4 J2EE:application XML DTD
This section provides the XML DTD for the J2EE application deployment

descriptor. The XML grammar for a J2EE application deployment descriptor is

defined by the J2EE:application document type definition. The granularity of

composition for J2EE application assembly is the J2EE module. A

J2EE:application deployment descriptor contains a name and description for the

application and the URI of a UI icon for the application, as well a list of the J2EE

modules that comprise the application. The content of the XML elements is in

general case sensitive. This means, for example, that <role-name>Manager</
role-name> is a different role than <role-name>manager</role-name> .

All valid J2EE application deployment descriptors must contain the following

DOCTYPE declaration:

<!DOCTYPE application PUBLIC "-//Sun Microsystems, Inc.//DTD
J2EE Application 1.3//EN" "http://java.sun.com/j2ee/dtds/
application_1_3.dtd">

or the DOCTYPE declaration from a previous version of this specification. (See

Appendix A, “Previous Version DTDs.”)

FIGURE 8-3 shows a graphic representation of the structure of the J2EE:application

XML DTD.

FIGURE 8-3 J2EE:application XML DTD Structure

The DTD that follows defines the XML grammar for a J2EE application

deployment descriptor.

application

icon display-name description? module+

connector | ejb | java | web alt-dd?large-iconsmall-icon

web-uri context-root?

security-role*

description? role-name
Chapter 8 Application Assembly and Deployment 8-9

<!--

The alt-dd element specifies an optional URI to the post-
assembly version of the deployment descriptor file for a
particular J2EE module. The URI must specify the full pathname
of the deployment descriptor file relative to the application’s
root directory . If alt-dd is not specified, the deployer must
read the deployment descriptor from the default location and
file name required by the respective component specification.

-->

<!ELEMENT alt-dd (#PCDATA)>

<!--

The application element is the root element of a J2EE
application deployment descriptor.

-->

<!ELEMENT application (icon?, display-name, description?,
module+, security-role*)>

<!--

The connector element specifies the URI of a resource adapter
archive file, relative to the top level of the application
package.

-->

<!ELEMENT connector (#PCDATA)>

<!--

The context-root element specifies the context root of a web
application.

-->

<!ELEMENT context-root (#PCDATA)>

<!--

The description element provides a human readable description
of the application. The description element should include any
information that the application assembler wants to provide the
deployer.

-->
8-10 Java™ 2 Platform Enterprise Edition, v1.3 Public Draft (Sun Microsystems, Inc.)

<!ELEMENT description (#PCDATA)>

<!--

The display-name element specifies an application name.

The application name is assigned to the application by the
application assembler and is used to identify the application
to the deployer at deployment time.

-->

<!ELEMENT display-name (#PCDATA)>

<!--

The ejb element specifies the URI of an ejb-jar, relative to
the top level of the application package.

-->

<!ELEMENT ejb (#PCDATA)>

<!--

The icon element contains a small-icon and large-icon element
which specify the URIs for a small and a large GIF or JPEG icon
image to represent the application in a GUI.

-->

<!ELEMENT icon (small-icon?, large-icon?)>

<!--

The java element specifies the URI of a java application client
module, relative to the top level of the application package.

-->

<!ELEMENT java (#PCDATA)>

<!--

The large-icon element specifies the URI for a large GIF or
JPEG icon image to represent the application in a GUI.

-->

<!ELEMENT large-icon (#PCDATA)>
Chapter 8 Application Assembly and Deployment 8-11

<!--

The module element represents a single J2EE module and contains
a connector, ejb, java, or web element, which indicates the
module type and contains a path to the module file, and an
optional alt-dd element, which specifies an optional URI to the
post-assembly version of the deployment descriptor.

The application deployment descriptor must have one module
element for each J2EE module in the application package.

-->

<!ELEMENT module ((connector | ejb | java | web), alt-dd?)>

<!--

The role-name element contains the name of a security role.

-->

<!ELEMENT role-name (#PCDATA)>

<!--

The security-role element contains the definition of a security
role which is global to the application. The definition
consists of a description of the security role, and the
security role name. The descriptions at this level override
those in the component level security-role definitions and must
be the descriptions tool display to the deployer.

-->

<!ELEMENT security-role (description?, role-name)>

<!--

The small-icon element specifies the URI for a small GIF or
JPEG icon image to represent the application in a GUI.

-->

<!ELEMENT small-icon (#PCDATA)>

<!--

The web element contains the web-uri and context-root of a web
application module.

-->

<!ELEMENT web (web-uri, context-root)>
8-12 Java™ 2 Platform Enterprise Edition, v1.3 Public Draft (Sun Microsystems, Inc.)

<!--

The web-uri element specifies the URI of a web application
file, relative to the top level of the application package.

-->

<!ELEMENT web-uri (#PCDATA)>

<!--

The ID mechanism is to allow tools to easily make tool-specific
references to the elements of the deployment descriptor.

 -->

<!ATTLIST alt-dd id ID #IMPLIED>

<!ATTLIST application id ID #IMPLIED>

<!ATTLIST connector id ID #IMPLIED>

<!ATTLIST context-root id ID #IMPLIED>

<!ATTLIST description id ID #IMPLIED>

<!ATTLIST display-name id ID #IMPLIED>

<!ATTLIST ejb id ID #IMPLIED>

<!ATTLIST icon id ID #IMPLIED>

<!ATTLIST java id ID #IMPLIED>

<!ATTLIST large-icon id ID #IMPLIED>

<!ATTLIST module id ID #IMPLIED>

<!ATTLIST role-name id ID #IMPLIED>

<!ATTLIST security-role id ID #IMPLIED>

<!ATTLIST small-icon id ID #IMPLIED>

<!ATTLIST web id ID #IMPLIED>

<!ATTLIST web-uri id ID #IMPLIED>
Chapter 8 Application Assembly and Deployment 8-13

8-14 Java™ 2 Platform Enterprise Edition, v1.3 Public Draft (Sun Microsystems, Inc.)

CHAPTER 9

Application Clients

This chapter describes application clients in the Java™ 2 Platform, Enterprise

Edition (J2EE).

9.1 Overview
Application clients are first tier client programs that execute in their own Java™

virtual machines. Application clients follow the model for Java technology-

based applications - they are invoked at their main method and run until the

virtual machine is terminated. However, like other J2EE application

components, application clients depend on a container to provide system

services. The application client container may be very light-weight compared to

other J2EE containers, providing only the security and deployment services

described below

9.2 Security
Application clients have the same authentication requirements and may use the

same authentication techniques as other J2EE application components.

Unprotected web resources may be accessed without authentication.

Authentication when accessing protected web resources may use HTTP Basic

authentication, SSL client authentication, or HTTP Login Form authentication.

Lazy authentication may be used.
9-1

Authentication is required when accessing enterprise beans. The authentication

mechanisms for enterprise beans are unspecified. Lazy authentication may be

used.

The application client may authenticate its user in a number of ways. The

techniques used are platform-dependent and not under control of the

application client. The application client container may integrate with the

platform’s authentication system, providing a single signon capability. The

application client container may authenticate the user when the application is

started. The application client container may use lazy authentication, only

authenticating the user when it needs to access a protected resource. This

version of this specification does not describe the technique used to authenticate

the user.

If the container needs to interact with the user to gather authentication data, the

container must provide an appropriate user interface. In addition, an application

client may provide a class that implements the

javax.security.auth.callback.CallbackHandler interface and specify

the class name in its deployment descriptor (see Section 9.7, “J2EE:application-

client XML DTD” for details). The Deployer may override the callback handler

specified by the application and require use of the container’s default

authentication user interface instead.

If use of a callback handler has been configured by the Deployer, the application

client container must instantiate an object of this class and use it for all

authentication interactions with the user. The application’s callback handler

must support all the Callback objects specified in the

javax.security.auth.callback package.

Note that in the case of HTTP Login Form authentication, the authentication

user interface is provided by the server (in the form of an HTML page delivered

in response to an HTTP request) and must be displayed by the application

client.

Application clients execute in an environment with a SecurityManager installed

and have similar security Permission requirements as Servlets. The security

Permission requirements are described fully in Chapter 6, “Application

Programming Interface.”
9-2 Java™ 2 Platform Enterprise Edition, v1.3 Public Draft (Sun Microsystems, Inc.)

9.3 Transactions
Application clients are not required to have direct access to the transaction

facilities of the J2EE platform. A J2EE product is not required to provide a JTA

UserTransaction object for use by application clients. Of course, application

clients can invoke enterprise beans that start transaction, and they can use the

transaction facilities of the JDBC API. If a JDBC API transaction is open when an

application client invokes an enterprise bean, the transaction context is not

required to be propagated to the EJB server.

9.4 Naming
As with all J2EE components, application clients use JNDI to lookup enterprise

beans, get access to resource managers, access configurable parameters set at

deployment time, etc. Application clients use the java: JNDI namespace to

access these items, see Chapter 5, “Naming” for details.

9.5 Application Programming Interfaces
Application clients have all the facilities of the JavaTM 2 Platform, Standard

Edition (subject to security restrictions), as well as various standard extensions,

as described in Chapter 6, “Application Programming Interface.” Each

application client executes in its own Java virtual machine. Application clients

start execution at the main method of the class specified in the Main-Class
attribute in the manifest file of the application client’s jar file (although note that

application client container code will typically execute before the application

client itself, in order to prepare the environment of the container, install a

SecurityManager , initialize the name service client library, etc.).
Chapter 9 Application Clients 9-3

9.6 Packaging and Deployment
Application clients are packaged in jar files and include a deployment descriptor

similar to other J2EE application components. The deployment descriptor

describes the enterprise beans and external resources referenced by the

application. As with other J2EE application components, access to resources

must be configured at deployment time, names assigned for enterprise beans

and resources, etc.

The tool used to deploy an application client, and the mechanism used to install

the application client, is not specified. Very sophisticated J2EE products may

allow the application client to be deployed on a J2EE server and automatically

made available to some set of (usually intranet) clients. Other J2EE products

may require the J2EE application bundle containing the application client to be

manually deployed and installed on each client machine. And yet another

approach would be for the deployment tool on the J2EE server to produce an

installation package that could be taken to each client to install the application

client. There are many possibilities here and this specification doesn’t prescribe

any one; it only defines the package format for the application client and the

things that must be possible during the deployment process.

How an application client is invoked by an end user is unspecified. Typically a

J2EE Product Provider will provide an application launcher that integrates with

the application client machine’s native operating system, but the level of such

integration is unspecified.

9.7 J2EE:application-client XML DTD
The XML grammar for a J2EE application client deployment descriptor is

defined by the J2EE:application-client document type definition. The root

element of the deployment descriptor for an application client is application-
client . The content of the XML elements is in general case sensitive. This

means, for example, that <res-auth>Container</res-auth> must be used,

rather than <res-auth>container</res-auth> .

All valid application-client deployment descriptors must contain the

following DOCTYPE declaration:

<!DOCTYPE application-client PUBLIC "-//Sun Microsystems,
Inc.//DTD J2EE Application Client 1.3//EN" "http://
java.sun.com/j2ee/dtds/application-client_1_3.dtd">
9-4 Java™ 2 Platform Enterprise Edition, v1.3 Public Draft (Sun Microsystems, Inc.)

or the DOCTYPE declaration from a previous version of this specification. (See

Appendix A, “Previous Version DTDs.”)
Chapter 9 Application Clients 9-5

FIGURE 9-1 shows the structure of the J2EE:application-client XML DTD.

FIGURE 9-1 J2EE:application-client XML DTD Structure

<!--

The application-client element is the root element of an
application client deployment descriptor.

The application client deployment descriptor describes the EJB
components and external resources referenced by the
application client.

-->

<!ELEMENT application-client (icon?, display-name,
description?, env-entry*, ejb-ref*, resource-ref*, resource-
env-ref*, callback-handler?)>

<!--

The callback-handler element names a class provided by the
application. The class must have a no args constructor and must
implement the javax.security.auth.callback.CallbackHandler
interface. The class will be instantiated by the application
client container and used by the container to collect
authentication information from the user.

application-client

icon display-name description? env-entry* ejb-ref* resource-ref*

small-icon large-icon

resource-env-ref* callback-handler?

resource-env-ref-typeresource-env-ref-name

env-entry-namedescription? env-entry-type env-entry-value?

description? ejb-ref-name ejb-ref-type home remote ejb-link?

description? res-ref-name res-type res-auth

description?
9-6 Java™ 2 Platform Enterprise Edition, v1.3 Public Draft (Sun Microsystems, Inc.)

-->

<!ELEMENT callback-handler (#PCDATA)>

<!--

The description element is used to provide text describing the
parent element. The description element should include any
information that the application-client file producer wants to
provide to the consumer of the application-client file (i.e.,
to the Deployer). Typically, the tools used by the application-
client file consumer will display the description when
processing the parent element that contains the description.

-->

<!ELEMENT description (#PCDATA)>

<!--

The display-name element contains a short name that is intended
to be displayed by tools.

-->

<!ELEMENT display-name (#PCDATA)>

<!--

The ejb-link element is used in the ejb-ref element to specify
that an EJB reference is linked to an enterprise bean in the
encompassing J2EE Application package. The value of the ejb-
link element must be the ejb-name of an enterprise bean in the
same J2EE Application package.

Example: <ejb-link>EmployeeRecord</ejb-link>

Alternatively, the name in the ejb-link element may be composed
of a path name specifying the ejb-jar containing the referenced
enterprise bean with the ejb-name of the target bean appended
and separated from the path name by “#”. The path name is
relative to the jar file containing the referencing component.
This allows multiple enterprise beans with the same ejb-name
to be uniquely identified.

Example: <ejb-link>../products/product.jar#ProductEJB</ejb-
link>

Used in: ejb-ref

-->
Chapter 9 Application Clients 9-7

<!ELEMENT ejb-link (#PCDATA)>

<!--

The ejb-ref element is used for the declaration of a reference
to an enterprise bean’s home. The declaration consists of an
optional description; the EJB reference name used in the code
of the referencing application client; the expected type of the
referenced enterprise bean; the expected home and remote
interfaces of the referenced enterprise bean; and an optional
ejb-link information. The optional ejb-link element is used to
specify the referenced enterprise bean.

-->

<!ELEMENT ejb-ref (description?, ejb-ref-name, ejb-ref-type,
home, remote, ejb-link?)>

<!--

The ejb-ref-name element contains the name of an EJB reference.
The EJB reference is an entry in the application client’s
environment. It is recommended that name is prefixed with "ejb/
".

Used in: ejb-ref

Example: <ejb-ref-name>ejb/Payroll</ejb-ref-name>

-->

<!ELEMENT ejb-ref-name (#PCDATA)>

<!--

The ejb-ref-type element contains the expected type of the
referenced enterprise bean. The ejb-ref-type element must be
one of the following:

<ejb-ref-type>Entity</ejb-ref-type>

<ejb-ref-type>Session</ejb-ref-type>

Used in: ejb-ref

-->

<!ELEMENT ejb-ref-type (#PCDATA)>

<!--
9-8 Java™ 2 Platform Enterprise Edition, v1.3 Public Draft (Sun Microsystems, Inc.)

The env-entry element contains the declaration of an
application client’s environment entries. The declaration
consists of an optional description, the name of the
environment entry, and an optional value.

-->

<!ELEMENT env-entry (description?, env-entry-name, env-entry-
type, env-entry-value?)>

<!--

The env-entry-name element contains the name of an application
client’s environment entry.

Used in: env-entry

Example: <env-entry-name>EmployeeAppDB</env-entry-name>

-->

<!ELEMENT env-entry-name (#PCDATA)>

<!--

The env-entry-type element contains the fully-qualified Java
type of the environment entry value that is expected by the
application client’s code. The following are the legal values
of env-entry-type: java.lang.Bool-ean, java.lang.String,
java.lang.Integer, java.lang.Double, java.lang.Byte,
java.lang.Short, java.lang.Long, and java.lang.Float.

Used in: env-entry

Example:

<env-entry-type>java.lang.Boolean</env-entry-type>

-->

<!ELEMENT env-entry-type (#PCDATA)>

<!--

The env-entry-value element contains the value of an
application client’s environment entry. The value must be a
String that is valid for the constructor of the specified type
that takes a single String parameter.

Used in: env-entry

Example:

<env-entry-value>/datasources/MyDatabase</env-entry-value>
Chapter 9 Application Clients 9-9

-->

<!ELEMENT env-entry-value (#PCDATA)>

<!--

The home element contains the fully-qualified name of the
enterprise bean’s home interface.

Used in: ejb-ref

Example: <home>com.aardvark.payroll.PayrollHome</home>

-->

<!ELEMENT home (#PCDATA)>

<!--

The icon element contains a small-icon and large-icon element
which specify the URIs for a small and a large GIF or JPEG icon
image used to represent the application client in a GUI tool.

-->

<!ELEMENT icon (small-icon?, large-icon?)>

<!--

The large-icon element contains the name of a file containing
a large (32 x 32) icon image. The file name is a relative path
within the application-client jar file. The image must be
either in the JPEG or GIF format, and the file name must end
with the suffix ".jpg" or ".gif" respectively. The icon can be
used by tools.

Example:

<large-icon>lib/images/employee-service-icon32x32.jpg</large-
icon>

-->

<!ELEMENT large-icon (#PCDATA)>

<!--

The remote element contains the fully-qualified name of the
enterprise bean’s remote interface.

Used in: ejb-ref

Example:
9-10 Java™ 2 Platform Enterprise Edition, v1.3 Public Draft (Sun Microsystems, Inc.)

<remote>com.wombat.empl.EmployeeService</remote>

-->

<!ELEMENT remote (#PCDATA)>

<!--

The res-auth element specifies whether the enterprise bean code
signs on programmatically to the resource manager, or whether
the Container will sign on to the resource manager on behalf
of the bean. In the latter case, the Container uses information
that is supplied by the Deployer.

The value of this element must be one of the two following:

<res-auth>Application</res-auth>

<res-auth>Container</res-auth>

-->

<!ELEMENT res-auth (#PCDATA)>

<!--

The res-ref-name element specifies the name of the resource
factory reference name. The resource factory reference name is
the name of the application client’s environment entry whose
value contains the JNDI name of the data source.

Used in: resource-ref

-->

<!ELEMENT res-ref-name (#PCDATA)>

<!--

The res-type element specifies the type of the data source. The
type is specified by the Java interface (or class) expected to
be implemented by the data source.

Used in: resource-ref

-->

<!ELEMENT res-type (#PCDATA)>

<!--

The resource-env-ref element contains a declaration of an
application’s reference to an administered object associated
with a resource in the application’s environment. It consists
Chapter 9 Application Clients 9-11

of an optional description, the resource environment reference
name, and an indication of the resource environment reference
type expected by the application code.

Used in: application-client

Example:

<resource-env-ref>

<resource-env-ref-name>jms/StockQueue

</resource-env-ref-name>

<resource-env-ref-type>javax.jms.Queue

</resource-env-ref-type>

</resource-env-ref>

-->

<!ELEMENT resource-env-ref (description?, resource-env-ref-
name, resource-env-ref-type)>

<!--

The resource-env-ref-name element specifies the name of a
resource environment reference; its value is the environment
entry name used in the application code.

Used in: resource-env-ref

-->

<!ELEMENT resource-env-ref-name (#PCDATA)>

<!--

The resource-env-ref-type element specifies the type of a
resource environment reference.

Used in: resource-env-ref

-->

<!ELEMENT resource-env-ref-type (#PCDATA)>

<!--

The resource-ref element contains a declaration of application
clients’s reference to an external resource. It consists of an
optional description, the resource factory reference name, the
9-12 Java™ 2 Platform Enterprise Edition, v1.3 Public Draft (Sun Microsystems, Inc.)

indication of the resource factory type expected by the
application client’s code, and the type of authentication (bean
or container).

Example:

<resource-ref>

<res-ref-name>EmployeeAppDB</res-ref-name>

<res-type>javax.sql.DataSource</res-type>

<res-auth>Container</res-auth>

</resource-ref>

-->

<!ELEMENT resource-ref (description?, res-ref-name, res-type,
res-auth)

<!--

The small-icon element contains the name of a file containing
a small (16 x 16) icon image. The file name is a relative path
within the application-client jar file. The image must be
either in the JPEG or GIF format, and the file name must end
with the suffix ".jpg" or ".gif" respectively. The icon can be
used by tools.

Example:

<small-icon>lib/images/employee-service-icon16x16.jpg</small-
icon>

-->

<!ELEMENT small-icon (#PCDATA)>

<!--

The ID mechanism is to allow tools to easily make tool-specific
references to the elements of the deployment descriptor.

 -->

<!ATTLIST application-client id ID #IMPLIED>

<!ATTLIST callback-handler id ID #IMPLIED>

<!ATTLIST description id ID #IMPLIED>

<!ATTLIST display-name id ID #IMPLIED>

<!ATTLIST ejb-link id ID #IMPLIED>
Chapter 9 Application Clients 9-13

<!ATTLIST ejb-ref id ID #IMPLIED>

<!ATTLIST ejb-ref-name id ID #IMPLIED>

<!ATTLIST ejb-ref-type id ID #IMPLIED>

<!ATTLIST env-entry id ID #IMPLIED>

<!ATTLIST env-entry-name id ID #IMPLIED>

<!ATTLIST env-entry-type id ID #IMPLIED>

<!ATTLIST env-entry-value id ID #IMPLIED>

<!ATTLIST home id ID #IMPLIED>

<!ATTLIST icon id ID #IMPLIED>

<!ATTLIST large-icon id ID #IMPLIED>

<!ATTLIST remote id ID #IMPLIED>

<!ATTLIST res-auth id ID #IMPLIED>

<!ATTLIST res-ref-name id ID #IMPLIED>

<!ATTLIST res-type id ID #IMPLIED>

<!ATTLIST resource-env-ref id ID #IMPLIED>

<!ATTLIST resource-env-ref-name id ID #IMPLIED>

<!ATTLIST resource-env-ref-type id ID #IMPLIED>

<!ATTLIST resource-ref id ID #IMPLIED>

<!ATTLIST small-icon id ID #IMPLIED>
9-14 Java™ 2 Platform Enterprise Edition, v1.3 Public Draft (Sun Microsystems, Inc.)

CHAPTER 10

Service Provider Interface

The Java™ 2 Platform, Enterprise Edition (J2EE) includes the J2EE Connector

Architecture as its service provider interface. The Connector API defines how

resource adapters are packaged and integrated with any J2EE product. All J2EE

products must support the Connector APIs, as specified in the Connector

specification.

The Connector specification is available at http://java.sun.com/j2ee/
connector .
10-1

10-2 Java™ 2 Platform Enterprise Edition, v1.3 Public Draft (Sun Microsystems, Inc.)

CHAPTER 11

Future Directions

This version of the Java™ 2 Platform, Enterprise Edition (J2EE) specification

includes most of the facilities needed by enterprise applications. Still, there is

always more to be done. This chapter briefly describes our plans for future

versions of this specification. Please keep in mind that all of this is subject to

change. Your feedback is encouraged.

The following sections describe additional facilities we would like to include in

future versions of this specification. Many of the APIs included in the J2EE

platform will continue to evolve on their own and we will include the latest

version of each API.

11.1 XML Data Binding API
As XML becomes more important in the industry, more and more enterprise

applications will need to make use of XML. This specification requires basic

XML SAX and DOM support through the JAXP API, but many applications will

benefit from the easier to use XML Data Binding technology. The XML Data

Binding API is being defined through the Java Community Process as JSR-031.

XML Data Binding depends on schema languages to define the XML data. The

current widely used schema language is the DTD language. W3C is in the

process of standardizing a new XML Schema language. In addition, there are

several other schema languages in use and proposed in the industry.

In order to support emerging schema language standards quickly, the XML Data

Binding API will need to evolve more quickly than the J2EE platform. Inclusion

of the XML Data Binding API as a required component of J2EE at this time

would constrain its evolution. We expect that the next version of the J2EE

platform will require support for XML Data Binding. In the mean time, we
11-1

strongly encourage the use of this new technology by enterprise applications as

it becomes available. We expect the XML Data Binding technology to be portable

to any J2EE product.

The XML Data Binding JSR is available at http://java.sun.com/
aboutJava/communityprocess/jsr/jsr_031_xmld.html .

11.2 J2EE SPI
Many of the APIs that make up the J2EE platform include an SPI layer that

allow service providers or other system level components to be plugged in. This

specification does not describe the execution environment for all such service

providers, nor the packaging and deployment requirements for all service

providers. However, the J2EE Connector Extension does define the requirements

for certain types of service providers called resource adapters. Future versions

of this specification will more fully define the J2EE SPI.

11.3 JDBC RowSets
RowSets provide a standard way to send tabular data between the remote

components of a distributed, enterprise application. The JDBC 2.0 Standard

Extension API defines the RowSet APIs, and in the future will contain rowset

implementations, as well. Future versions of this specification will require that

the JDBC rowset implementations be supported. More information is available

at http://java.sun.com/products/jdbc .

11.4 Security APIs
It is a goal of the J2EE platform to separate security from business logic,

providing declarative security controls for application components. However,

some applications need more control over security than can be provided by this

approach. A future version of this specification may include additional APIs to

control authentication and authorization, and to allow the integration of new

security technologies.
11-2 Java™ 2 Platform Enterprise Edition, v1.3 Public Draft (Sun Microsystems, Inc.)

11.5 Deployment APIs
This specification assumes that deployment tools will be provided by with a

J2EE product by the Product Provider. J2EE Tool Providers would also like to be

able to provide deployment tools that could work with all J2EE products. Future

versions of this specification may define deployment APIs to allow the creation

of such tools.

11.6 Management APIs
J2EE applications and J2EE products must be manageable. Future versions of

this specification will include APIs to support management functions.

11.7 SQLJ Part 0
SQLJ Part 0 supports embedding of SQL statements in programs written in the

Java programming language. A compiler translates the program into a program

that uses the SQLJ Part 0 runtime. The runtime supports access to a database

using JDBC, while also allowing platform-dependent and database-specific

optimizations of such access. The SQLJ Part 0 runtime classes can be packaged

with a J2EE application that uses SQLJ Part 0, allowing that application to run

on any J2EE platform. At the current time, customer demand for SQLJ Part 0 is

not sufficient to include it as a part of the J2EE platform. If customer demand

increases, a future version of this specification may require the platform to

provide the SQLJ Part 0 runtime classes so that they do not need to be packaged

with the application. For information on SQLJ, see http://www.sqlj.org .
Chapter 11 Future Directions 11-3

11-4 Java™ 2 Platform Enterprise Edition, v1.3 Public Draft (Sun Microsystems, Inc.)

APPENDIX A

Previous Version DTDs

This appendix contains Document Type Definitions for Deployment Descriptors

frmo previous versions of the J2EE specification. All J2EE products are required

to support these DTDs as well as the DTDs specified in this version of the

specification. This ensures that applications written to previous versions of this

specification can be deployed on products supporting the current version of this

specification. In addition, there are no restrictions on mixing versions of

deployment descriptors in a single application; any combination of valid

deployment descriptor versions must be supported.

A.1 J2EE:application XML DTD
This section provides the XML DTD for the previous version of the J2EE

application deployment descriptor. A valid J2EE application deployment

descriptor may contain the following DOCTYPE declaration:

<!DOCTYPE application PUBLIC "-//Sun Microsystems, Inc.//DTD
J2EE Application 1.2//EN" "http://java.sun.com/j2ee/dtds/
application_1_2.dtd">
A-5

FIGURE A-1 shows a graphic representation of the structure of the

J2EE:application XML DTD.

FIGURE A-1 J2EE:application XML DTD Structure

The DTD that follows defines the XML grammar for a J2EE application

deployment descriptor.

<!--

The alt-dd element specifies an optional URI to the post-
assembly version of the deployment descriptor file for a
particular J2EE module. The URI must specify the full pathname
of the deployment descriptor file relative to the
application’s root directory . If alt-dd is not specified, the
deployer must read the deployment descriptor from the default
location and file name required by the respective component
specification.

-->

<!ELEMENT alt-dd (#PCDATA)>

<!--

The application element is the root element of a J2EE
application deployment descriptor.

-->

<!ELEMENT application (icon?, display-name, description?,
module+, security-role*)>

application

icon? display-name description? module+

ejb | java | web alt-dd?large-icon?small-icon?

web-uri context-root

security-role*

 description? role-name
A-6 Java™ 2 Platform Enterprise Edition, v1.3 Public Draft (Sun Microsystems, Inc.)

<!--

The context-root element specifies the context root of a web
application

-->

<!ELEMENT context-root (#PCDATA)>

<!--

The description element provides a human readable description
of the application. The description element should include any
information that the application assembler wants to provide
the deployer.

-->

<!ELEMENT description (#PCDATA)>

<!--

The display-name element specifies an application name.

The application name is assigned to the application by the
application assembler and is used to identify the application
to the deployer at deployment time.

-->

<!ELEMENT display-name (#PCDATA)>

<!--

The ejb element specifies the URI of a ejb-jar, relative to
the top level of the application package.

-->

<!ELEMENT ejb (#PCDATA)>

<!--

The icon element contains a small-icon and large-icon element
which specify the URIs for a small and a large GIF or JPEG icon
image to represent the application in a GUI.

-->

<!ELEMENT icon (small-icon?, large-icon?)>

<!--
Chapter A Previous Version DTDs A-7

The java element specifies the URI of a java application client
module, relative to the top level of the application package.

-->

<!ELEMENT java (#PCDATA)>

<!--

The large-icon element specifies the URI for a large GIF or
JPEG icon image to represent the application in a GUI.

-->

<!ELEMENT large-icon (#PCDATA)>

<!--

The module element represents a single J2EE module and contains
an ejb, java, or web element, which indicates the module type
and contains a path to the module file, and an optional alt-
dd element, which specifies an optional URI to the post-
assembly version of the deployment descriptor.

The application deployment descriptor must have one module
element for each J2EE module in the application package.

-->

<!ELEMENT module ((ejb | java | web), alt-dd?)>

<!--

The role-name element contains the name of a security role.

-->

<!ELEMENT role-name (#PCDATA)>

<!--

The security-role element contains the definition of a
security role which is global to the application. The
definition consists of a description of the security role, and
the security role name. The descriptions at this level override
those in the component level security-role definitions and
must be the descriptions tool display to the deployer.

-->

<!ELEMENT security-role (description?, role-name)>
A-8 Java™ 2 Platform Enterprise Edition, v1.3 Public Draft (Sun Microsystems, Inc.)

<!--

The small-icon element specifies the URI for a small GIF or
JPEG icon image to represent the application in a GUI.

-->

<!ELEMENT small-icon (#PCDATA)>

<!--

The web element contains the web-uri and context-root of a web
application module.

-->

<!ELEMENT web (web-uri, context-root)>

<!--

The web-uri element specifies the URI of a web application
file, relative to the top level of the application package.

-->

<!ELEMENT web-uri (#PCDATA)>

<!--

The ID mechanism is to allow tools to easily make tool-specific
references to the elements of the deployment descriptor.

 -->

<!ATTLIST alt-dd id ID #IMPLIED>

<!ATTLIST application id ID #IMPLIED>

<!ATTLIST context-root id ID #IMPLIED>

<!ATTLIST description id ID #IMPLIED>

<!ATTLIST display-name id ID #IMPLIED>

<!ATTLIST ejb id ID #IMPLIED>

<!ATTLIST icon id ID #IMPLIED>

<!ATTLIST java id ID #IMPLIED>

<!ATTLIST large-icon id ID #IMPLIED>

<!ATTLIST module id ID #IMPLIED>

<!ATTLIST role-name id ID #IMPLIED>

<!ATTLIST security-role id ID #IMPLIED>

<!ATTLIST small-icon id ID #IMPLIED>
Chapter A Previous Version DTDs A-9

<!ATTLIST web id ID #IMPLIED>

<!ATTLIST web-uri id ID #IMPLIED>

A.2 J2EE:application-client XML DTD
This section contains the XML DTD for the previous version of the application

client deployment descriptor. A valid application client deployment descriptor

may contain the following DOCTYPE declaration:

<!DOCTYPE application-client PUBLIC "-//Sun Microsystems,
Inc.//DTD J2EE Application Client 1.2//EN" "http://
java.sun.com/j2ee/dtds/application-client_1_2.dtd">

FIGURE A-2 shows the structure of the J2EE:application-client XML DTD.

FIGURE A-2 J2EE:application-client XML DTD Structure

application-client

icon? display-name description? env-entry* ejb-ref* resource-ref*

small-icon? large-icon?

description? res-ref-name res-type

description? ejb-ref-name ejb-ref-type home remote ejb-link?

env-entry-namedescription? env-entry-type

res-auth

env-entry-value?
A-10 Java™ 2 Platform Enterprise Edition, v1.3 Public Draft (Sun Microsystems, Inc.)

<!--

The application-client element is the root element of an
application client deployment descriptor.

The application client deployment descriptor describes the EJB
components and external resources referenced by the
application client.

-->

<!ELEMENT application-client (icon?, display-name,
description?, env-entry*, ejb-ref*, resource-ref*)>

<!--

The description element is used to provide text describing the
parent element. The description element should include any
information that the application-client file producer wants to
provide to the consumer of the application-client file (i.e.,
to the Deployer). Typically, the tools used by the application-
client file consumer will display the description when
processing the parent element that contains the description.

-->

<!ELEMENT description (#PCDATA)>

<!--

The display-name element contains a short name that is intended
to be displayed by tools.

-->

<!ELEMENT display-name (#PCDATA)>

<!--

The ejb-link element is used in the ejb-ref element to specify
that an EJB reference is linked to an enterprise bean in the
encompassing J2EE Application package. The value of the ejb-
link element must be the ejb-name of an enterprise bean in the
same J2EE Application package. Used in: ejb-ref

Example: <ejb-link>EmployeeRecord</ejb-link>

-->

<!ELEMENT ejb-link (#PCDATA)>
Chapter A Previous Version DTDs A-11

<!--

The ejb-ref element is used for the declaration of a reference
to an enterprise bean’s home. The declaration consists of an
optional description; the EJB reference name used in the code
of the referencing application client; the expected type of
the referenced enterprise bean; the expected home and remote
interfaces of the referenced enterprise bean; and an optional
ejb-link information. The optional ejb-link element is used to
specify the referenced enterprise bean.

-->

<!ELEMENT ejb-ref (description?, ejb-ref-name, ejb-ref-type,
home, remote, ejb-link?)>

<!--

The ejb-ref-name element contains the name of an EJB reference.
The EJB reference is an entry in the application client’s
environment. It is recommended that name is prefixed with "ejb/
". Used in: ejb-ref

Example: <ejb-ref-name>ejb/Payroll</ejb-ref-name>

-->

<!ELEMENT ejb-ref-name (#PCDATA)>

<!--

The ejb-ref-type element contains the expected type of the
referenced enterprise bean. The ejb-ref-type element must be
one of the following:

<ejb-ref-type>Entity</ejb-ref-type>

<ejb-ref-type>Session</ejb-ref-type>

Used in: ejb-ref

-->

<!ELEMENT ejb-ref-type (#PCDATA)>
A-12 Java™ 2 Platform Enterprise Edition, v1.3 Public Draft (Sun Microsystems, Inc.)

<!--

The env-entry element contains the declaration of an
application client’s environment entries. The declaration
consists of an optional description, the name of the
environment entry, and an optional value.

-->

<!ELEMENT env-entry (description?, env-entry-name, env-entry-
type, env-entry-value?)>

<!--

The env-entry-name element contains the name of an application
client’s environment entry. Used in: env-entry

Example: <env-entry-name>EmployeeAppDB</env-entry-name>

-->

<!ELEMENT env-entry-name (#PCDATA)>

<!--

The env-entry-type element contains the fully-qualified Java
type of the environment entry value that is expected by the
application client’s code. The following are the legal values
of env-entry-type: java.lang.Bool-ean, java.lang.String,
java.lang.Integer, java.lang.Double, java.lang.Byte,
java.lang.Short, java.lang.Long, and java.lang.Float.

Used in: env-entry

Example:

<env-entry-type>java.lang.Boolean</env-entry-type>

-->

<!ELEMENT env-entry-type (#PCDATA)>
Chapter A Previous Version DTDs A-13

<!--

The env-entry-value element contains the value of an
application client’s environment entry. The value must be a
String that is valid for the constructor of the specified type
that takes a single String parameter.

Used in: env-entry

Example:

<env-entry-value>/datasources/MyDatabase</env-entry-value>

-->

<!ELEMENT env-entry-value (#PCDATA)>

<!--

The home element contains the fully-qualified name of the
enterprise bean’s home interface.

Used in: ejb-ref

Example: <home>com.aardvark.payroll.PayrollHome</home>

-->

<!ELEMENT home (#PCDATA)>

<!--

The icon element contains a small-icon and large-icon element
which specify the URIs for a small and a large GIF or JPEG icon
image used to represent the application client in a GUI tool.

-->

<!ELEMENT icon (small-icon?, large-icon?)>
A-14 Java™ 2 Platform Enterprise Edition, v1.3 Public Draft (Sun Microsystems, Inc.)

<!--

The large-icon element contains the name of a file containing
a large (32 x 32) icon image. The file name is a relative path
within the application-client jar file. The image must be
either in the JPEG or GIF format, and the file name must end
with the suffix ".jpg" or ".gif" respectively. The icon can be
used by tools.

Example:

<large-icon>lib/images/employee-service-icon32x32.jpg</
large-icon>

-->

<!ELEMENT large-icon (#PCDATA)>

<!--

The remote element contains the fully-qualified name of the
enterprise bean’s remote interface.

Used in: ejb-ref

Example:

<remote>com.wombat.empl.EmployeeService</remote>

-->

<!ELEMENT remote (#PCDATA)>

<!--

The res-auth element specifies whether the enterprise bean
code signs on programmatically to the resource manager, or
whether the Container will sign on to the resource manager on
behalf of the bean. In the latter case, the Container uses
information that is supplied by the Deployer.

The value of this element must be one of the two following:

<res-auth>Application</res-auth>

<res-auth>Container</res-auth>

-->

<!ELEMENT res-auth (#PCDATA)>
Chapter A Previous Version DTDs A-15

<!--

The res-ref-name element specifies the name of the resource
factory reference name. The resource factory reference name is
the name of the application client’s environment entry whose
value contains the JNDI name of the data source.

Used in: resource-ref

-->

<!ELEMENT res-ref-name (#PCDATA)>

<!--

The res-type element specifies the type of the data source.
The type is specified by the Java interface (or class) expected
to be implemented by the data source.

Used in: resource-ref

-->

<!ELEMENT res-type (#PCDATA)>

<!--

The resource-ref element contains a declaration of application
clients’s reference to an external resource. It consists of an
optional description, the resource factory reference name, the
indication of the resource factory type expected by the
application client’s code, and the type of authentication
(bean or container).

Example:

<resource-ref>

<res-ref-name>EmployeeAppDB</res-ref-name>

<res-type>javax.sql.DataSource</res-type>

<res-auth>Container</res-auth>

</resource-ref>

-->

<!ELEMENT resource-ref (description?, res-ref-name, res-type,
res-auth)>
A-16 Java™ 2 Platform Enterprise Edition, v1.3 Public Draft (Sun Microsystems, Inc.)

<!--

The small-icon element contains the name of a file containing
a small (16 x 16) icon image. The file name is a relative path
within the application-client jar file. The image must be
either in the JPEG or GIF format, and the file name must end
with the suffix ".jpg" or ".gif" respectively. The icon can be
used by tools.

Example:

<small-icon>lib/images/employee-service-icon16x16.jpg</
small-icon>

-->

<!ELEMENT small-icon (#PCDATA)>

<!--

The ID mechanism is to allow tools to easily make tool-specific
references to the elements of the deployment descriptor.

 -->

<!ATTLIST application-client id ID #IMPLIED>

<!ATTLIST description id ID #IMPLIED>

<!ATTLIST display-name id ID #IMPLIED>

<!ATTLIST ejb-link id ID #IMPLIED>

<!ATTLIST ejb-ref id ID #IMPLIED>

<!ATTLIST ejb-ref-name id ID #IMPLIED>

<!ATTLIST ejb-ref-type id ID #IMPLIED>

<!ATTLIST env-entry id ID #IMPLIED>

<!ATTLIST env-entry-name id ID #IMPLIED>

<!ATTLIST env-entry-type id ID #IMPLIED>

<!ATTLIST env-entry-value id ID #IMPLIED>

<!ATTLIST home id ID #IMPLIED>

<!ATTLIST icon id ID #IMPLIED>

<!ATTLIST large-icon id ID #IMPLIED>

<!ATTLIST remote id ID #IMPLIED>
Chapter A Previous Version DTDs A-17

<!ATTLIST res-auth id ID #IMPLIED>

<!ATTLIST res-ref-name id ID #IMPLIED>

<!ATTLIST res-type id ID #IMPLIED>

<!ATTLIST resource-ref id ID #IMPLIED>

<!ATTLIST small-icon id ID #IMPLIED>
A-18 Java™ 2 Platform Enterprise Edition, v1.3 Public Draft (Sun Microsystems, Inc.)

APPENDIX A

Revision History

A.1 Changes in Expert Draft 1

A.1.1 Additional Requirements

■ J2EE 1.3 requires J2SE 1.3.

■ A JMS provider supporting both Topics and Queues is required.

■ All referenced specifications are updated to reference their most recent

versions.

■ Added the following required APIs: JAXP 1.0, JCX 1.0, JAAS 1.0.

■ Updated application and application client deployment descriptors to new

versions, requiring support for previous versions as well.

■ Updated Chapter 4, “Transaction Management” to specify requirements for

the new transactional resources in J2EE 1.3.

■ Updated Chapter 10, “Service Provider Interface” to include the JCX API as

the J2EE SPI.

A.1.2 Removed Requirements

■ None.
A-1

A.1.3 Editorial Changes

■ Corrected TABLE 6-3 to properly refer to java.awt.Image .

■ Corrected Section 5.4.1.2, “Declaration of resource manager connection

factory references in deployment descriptor” to indicate that the valid values

for the res-auth element are Application (not Bean) and Container .

■ Updated Chapter 5, “Naming” to use terminology consistent with EJB 2.0

spec.

■ Updated references to JNDI and RMI-IIOP to reflect the fact that they’re part

of J2SE 1.3.

■ Updated Chapter 11, “Future Directions” to remove items that are now

required by J2EE 1.3.

A.2 Changes in Expert Draft 2

A.2.1 Additional Requirements

■ Updated Section 5.3, “Enterprise JavaBeans™ (EJB) References,” and

Section 9.7, “J2EE:application-client XML DTD,” to be consistent with the EJB

2.0 requirements for the ejb-link element.

■ Application client containers are required to support JAAS callback handlers.

See Section 3.4.2, “Application Clients” and Chapter 9, “Application Clients.”

■ Generalized JMS Destination references to resource environment references,

per the EJB specification. See Section 5.5, “Resource Environment References.”

■ Expanded restrictions on use of JMS APIs, based on EJB specification. See

Section 6.7, “Java™ Message Service (JMS) 1.0 Requirements.”

A.2.2 Removed Requirements

■ None.

A.2.3 Editorial Changes

■ Fixed names of JDBC classes in Section 5.4, “Resource Manager Connection

Factory References.”
A-2 Java™ 2 Platform Enterprise Edition, v1.3 Public Draft (Sun Microsystems, Inc.)

■ Clarified roles of JRMP and RMI-IIOP in Section 7.2.2, “OMG Protocols” and

Section 7.2.3, “RMI Protocols.”

■ Added resource authentication recommendations from Connector spec to

Section 3.4.3, “Resource Authentication Requirements.”

■ Added reference to XML Data Binding in Chapter 11, “Future Directions.”

■ Changed references to “JCX” to use “Connector Architecture.”

■ Removed description of new JDBC 2.1 requirements; JDBC 2.1 is included in

J2SE 1.3.

A.3 Changes in Participant Draft

A.3.1 Additional Requirements

■ Added TLS 1.0 requirement to Section 7.2.1, “Internet Protocols” to be

consistent with the EJB specification.

■ Clarified requirements on use of RMI-IIOP by enterprise beans, see

Section 6.2.2.6, “RMI-IIOP.”

■ Updated JavaMail API requirement to version 1.2.

■ Updated JAXP API requirement to version 1.1.

■ Clarified transaction propagation requirements in Section 4.2.1, “Web

Components.”

A.3.2 Removed Requirements

■ None.

A.3.3 Editorial Changes

■ Added acknowledgements.

■ Cleaned up several of the figures.

■ Added references to more specifications in Appendix B, “Related

Documents.”
Chapter A Revision History A-3

■ Moved secure interoperability requirement from Section 3.3.2, “Non Goals” to

Section 3.3.1, “Goals” to be consistent with the rest of this specification.

■ Moved J2EE-specific servlet requirements back into Section 6.5, “Servlet 2.3

Requirements.”

A.4 Changes in Public Draft

A.4.1 Additional Requirements

■ Required that the COSNaming JNDI service provider be included, see

Section 6.2.2.7, “JNDI.”

A.4.2 Removed Requirements

■ None.

A.4.3 Editorial Changes

■ Clarified that the EJB interoperability requirements require a COSNaming

name service to be provided, see Section 6.2.2.4, “Java™IDL” and

Section 7.2.2, “OMG Protocols.”

■ Added description of Run As capability to security requirements, see

Section 3.5.2, “Caller Authorization.”

■ Clarified that all J2EE products must support the use of the manifest Class-
Path header to reference other .jar files, see Section 8.1.2, “Component

Packaging: Composing a J2EE module.”

■ Clarified that all J2EE products must be able to deploy stand-alone J2EE

modules, see Section 8.3, “Deployment.”

■ Rewrote callback handler requirements to be clearer, see Section 3.4.2,

“Application Clients” and Section 9.2, “Security.”

■ The JDBC SPI will likely be replaced by the Connector SPI; updated

recommendations accordingly, see Section 6.3, “JDBC™ 2.0 Standard

Extension Requirements.”
A-4 Java™ 2 Platform Enterprise Edition, v1.3 Public Draft (Sun Microsystems, Inc.)

APPENDIX B

Related Documents

This specification refers to the following documents. The terms used to refer to

the documents in this specification are included in parentheses.

Java™ 2 Platform, Enterprise Edition Specification Version 1.3 (this specification).

Copyright 1999-2000, Sun Microsystems, Inc. Available at http://
java.sun.com/j2ee/docs.html .

Java™ 2 Platform, Enterprise Edition Technical Overview (J2EE Overview).

Copyright 1998, 1999, Sun Microsystems, Inc. Available at http://
java.sun.com/j2ee/white.html .

Java™ 2 Platform, Standard Edition, v1.3 API Specification (J2SE specification).

Copyright 1993-2000, Sun Microsystems, Inc. Available at http://
java.sun.com/products/jdk/1.3/docs/api/index.html .

Enterprise JavaBeans™ Specification, Version 2.0 (EJB specification). Copyright

1998-2000, Sun Microsystems, Inc. Available at http://java.sun.com/
products/ejb .

JavaServer Pages™ Specification, Version 1.2 (JSP specification). Copyright 1998,

1999-2000, Sun Microsystems, Inc. Available at http://java.sun.com/
products/jsp .

Java™ Servlet Specification, Version 2.3 (Servlet specification). Copyright 1998-

2000, Sun Microsystems, Inc. Available at http://java.sun.com/products/
servlet .

JDBC™ 2.1 API (JDBC specification). Copyright 1999, Sun Microsystems, Inc.

Available at http://java.sun.com/products/jdbc .

JDBC™ 2.0 Standard Extension API (JDBC extension specification). Copyright

1998, Sun Microsystems, Inc. Available at http://java.sun.com/
products/jdbc .
B-1

Java™ Naming and Directory Interface 1.2 Specification (JNDI specification).

Copyright 1998, 1999, Sun Microsystems, Inc. Available at http://
java.sun.com/products/jndi .

Java™ Message Service, Version 1.0.2 (JMS specification). Copyright 1998, Sun

Microsystems, Inc. Available at http://java.sun.com/products/jms .

Java™ Transaction API, Version 1.0.1 (JTA specification). Copyright 1998, 1999,

Sun Microsystems, Inc. Available at http://java.sun.com/products/jta .

Java™ Transaction Service, Version 1.0 (JTS specification). Copyright 1997-1999,

Sun Microsystems, Inc. Available at http://java.sun.com/products/jts .

JavaMail™ API Specification Version 1.1 (JavaMail specification). Copyright 1998,

Sun Microsystems, Inc. Available at http://java.sun.com/products/
javamail .

JavaBeans™ Activation Framework Specification Version 1.0 (JAF specification).

Copyright 1998, Sun Microsystems, Inc. Available at http://java.sun.com/
beans/glasgow/jaf.html .

J2EE™ Connector Architecture 1.0 (Connector Specification). Copyright 1999-2000,

Sun Microsystems, Inc. Available at http://java.sun.com/j2ee/
connector .

Java API for XML Parsing, Version 1.0 Final Release (JAXP Specification).

Copyright 1999-200, Sun Microsystems, Inc. Available at http://
java.sun.com/xml .

Java™ Authentication and Authorization Service (JAAS) 1.0 (JAAS Specification).

Copyright 1999-2000, Sun Microsystems, Inc. Available at http://
java.sun.com/products/jaas .

The Common Object Request Broker: Architecture and Specification (CORBA 2.3.1

Specification), Object Management Group. Available at http://cgi.omg.org/
cgi-bin/doc?formal/99-10-07 .

IDL To Java™ Language Mapping Specification, Object Management Group.

Available at http://cgi.omg.org/cgi-bin/doc?ptc/2000-01-08 .

Java™ Language To IDL Mapping Specification, Object Management Group.

Available at http://cgi.omg.org/cgi-bin/doc?ptc/2000-01-06 .

Interoperable Naming Service, Object Management Group. Available at http://
cgi.omg.org/cgi-bin/doc?formal/2000-06-19 .

Designing Enterprise Applications with the Java™ 2 Platform, Enterprise Edition ,

Copyright 2000, Sun Microsystems, Inc. Available at http://java.sun.com/
j2ee/blueprints .
B-2 Java™ 2 Platform Enterprise Edition, v1.3 Public Draft (Sun Microsystems, Inc.)

The SSL Protocol, Version 3.0. Available at http://home.netscape.com/eng/
ssl3 .
Chapter B Related Documents B-3

Sun Microsystems, Inc.

901 San Antonio Road

Palo Alto, CA 94303

650 960-1300

For U.S. Sales Office locations, call:

800 821-4643

In California:

800 821-4642

Australia: (02) 844 5000

Belgium: 32 2 716 7911

Canada: 416 477-6745

Finland: +358-0-525561

France: (1) 30 67 50 00

Germany: (0) 89-46 00 8-0

Hong Kong: 852 802 4188

Italy: 039 60551

Japan: (03) 5717-5000

Korea: 822-563-8700

Latin America: 650 688-9464

The Netherlands: 033 501234

New Zealand: (04) 499 2344

Nordic Countries: +46 (0) 8 623 90 00

PRC: 861-849 2828

Singapore: 224 3388

Spain: (91) 5551648

Switzerland: (1) 825 71 11

Taiwan: 2-514-0567

UK: 0276 20444

Elsewhere in the world,

call Corporate Headquarters:

650 960-1300

Intercontinental Sales: 650 688-9000

	Contents
	1. Introduction�1-1
	2. Platform Overview�2-1
	3. Security�3-1
	4. Transaction Management�4-1
	5. Naming�5-1
	6. Application Programming Interface�6-1
	7. Interoperability�7-1
	8. Application Assembly and Deployment�8-1
	9. Application Clients�9-1
	10. Service Provider Interface�10-1
	11. Future Directions�11-1
	A. Previous Version DTDs�5
	B. Revision History�A-1
	C. Related Documents�B-1

	Introduction
	Acknowledgements
	Acknowledgements for version 1.3

	Platform Overview
	2.1 Architecture
	2.2 Product Requirements
	2.3 Product Extensions
	2.4 Platform Roles
	2.4.1 J2EE Product Provider
	2.4.2 Application Component Provider
	2.4.3 Application Assembler
	2.4.4 Deployer
	2.4.5 System Administrator
	2.4.6 Tool Provider
	2.5 Platform Contracts
	2.5.1 J2EE API
	2.5.2 J2EE SPI
	2.5.3 Network Protocols
	2.5.4 Deployment Descriptors

	Security
	3.1 Introduction
	3.2 A Simple Example
	3.3 Security Architecture
	3.3.1 Goals
	3.3.2 Non Goals
	3.3.3 Terminology
	3.3.4 Container Based Security
	3.3.5 Declarative Security
	3.3.6 Programmatic Security
	3.3.7 Distributed Security
	3.3.8 Authorization Model
	3.3.9 Role Mapping
	3.3.10 HTTP Login Gateways
	3.3.11 User Authentication
	3.3.11.1 Web Client
	HTTP Basic Authentication
	HTTPS Authentication
	Form Based Authentication
	Web Single Signon
	Login Session

	3.3.11.2 Application Client
	3.3.11.3 Lazy Authentication

	3.4 User Authentication Requirements
	3.4.1 Web Clients
	3.4.1.1 Web Single Signon
	3.4.1.2 Login Sessions
	3.4.1.3 Required Login Mechanisms
	3.4.1.4 Unauthenticated Users

	3.4.2 Application Clients
	3.4.3 Resource Authentication Requirements
	3.5 Authorization Requirements
	3.5.1 Code Authorization
	3.5.2 Caller Authorization
	3.6 Deployment Requirements
	3.7 Future Directions
	3.7.1 Auditing

	Transaction Management
	4.1 Overview
	4.2 Requirements
	4.2.1 Web Components
	4.2.2 Enterprise JavaBeans™ Components
	4.2.3 Application Clients
	4.2.4 Applet Clients
	4.2.5 Transactional JDBC™ Technology Support
	4.2.6 Transactional JMS Support
	4.2.7 Transactional Resource Adapter Support
	4.3 Transaction Interoperability
	4.3.1 Multiple J2EE Platform Interoperability
	4.3.2 Support for Transactional Resource Managers
	4.4 System Administration Tools

	Naming
	5.1 Overview
	5.2 Java Naming and Directory Interface™ (JNDI) Naming Context
	5.2.1 Application Component Provider’s Responsibilities
	5.2.1.1 Access to application component’s environment
	5.2.1.2 Declaration of environment entries

	5.2.2 Application Assembler’s Responsibilities
	5.2.3 Deployer’s Responsibilities
	5.2.4 J2EE Product Provider’s Responsibilities
	5.3 Enterprise JavaBeans™ (EJB) References
	5.3.1 Application Component Provider’s Responsibilities
	5.3.1.1 Programming interfaces for EJB references
	5.3.1.2 Declaration of EJB references

	5.3.2 Application Assembler’s Responsibilities
	5.3.3 Deployer’s Responsibilities
	5.3.4 J2EE Product Provider’s Responsibilities
	5.4 Resource Manager Connection Factory References
	5.4.1 Application Component Provider’s Responsibilities
	5.4.1.1 Programming interfaces for resource manager connection factory references
	5.4.1.2 Declaration of resource manager connection factory references in deployment descriptor
	5.4.1.3 Standard resource manager connection factory types

	5.4.2 Deployer’s Responsibilities
	5.4.3 J2EE Product Provider’s Responsibilities
	5.4.4 System Administrator’s Responsibilities
	5.5 Resource Environment References
	5.5.1 Application Component Provider’s Responsibilities
	5.5.1.1 Resource environment reference programming interfaces
	5.5.1.2 Declaration of resource environment references in deployment descriptor

	5.5.2 Deployer’s Responsibilities
	5.5.3 J2EE Product Provider’s Responsibilities
	5.6 UserTransaction References
	5.6.1 Application Component Provider’s Responsibilities
	5.6.2 Deployer’s Responsibilities
	5.6.3 J2EE Product Provider’s Responsibilities
	5.6.4 System Administrator’s Responsibilities

	Application Programming Interface
	6.1 Required APIs
	6.2 Java 2 Platform, Standard Edition (J2SE) Requirements
	6.2.1 Programming Restrictions
	6.2.2 Additional Requirements
	6.2.2.1 Networking
	6.2.2.2 AWT
	6.2.2.3 JDBC™ API
	6.2.2.4 Java™IDL
	6.2.2.5 RMI-JRMP
	6.2.2.6 RMI-IIOP
	6.2.2.7 JNDI

	6.3 JDBC™ 2.0 Standard Extension Requirements
	6.4 Enterprise JavaBeans™ (EJB) 2.0 Requirements
	6.5 Servlet 2.3 Requirements
	6.6 JavaServer Pages™ (JSP) 1.2 Requirements
	6.7 Java™ Message Service (JMS) 1.0 Requirements
	6.8 Java™ Transaction API (JTA) 1.0 Requirements
	6.9 JavaMail™ 1.2 Requirements
	6.10 JavaBeans™ Activation Framework 1.0 Requirements
	6.11 Java™ API for XML Parsing (JAXP) 1.1 Requirements
	6.12 J2EE™ Connector Architecture 1.0 Requirements
	6.13 Java™ Authentication and Authorization Service (JAAS) 1.0 Requirements

	Interoperability
	7.1 Introduction to Interoperability
	7.2 Interoperability Protocols
	7.2.1 Internet Protocols
	7.2.2 OMG Protocols
	7.2.3 Java Technology Protocols
	7.2.4 Data Formats

	Application Assembly and Deployment
	8.1 Application Development Life Cycle
	8.1.1 Component Creation
	8.1.2 Component Packaging: Composing a J2EE module
	8.1.3 Application Assembly
	8.1.3.1 Customization

	8.1.4 Deployment
	8.2 Application Assembly
	Assembling a J2EE Application
	Adding and Removing Modules
	8.3 Deployment
	Deploying a Stand-Alone J2EE Module
	Deploying a J2EE Application
	8.4 J2EE:application XML DTD

	Application Clients
	9.1 Overview
	9.2 Security
	9.3 Transactions
	9.4 Naming
	9.5 Application Programming Interfaces
	9.6 Packaging and Deployment
	9.7 J2EE:application-client XML DTD

	Service Provider Interface
	Future Directions
	11.1 XML Data Binding API
	11.2 J2EE SPI
	11.3 JDBC RowSets
	11.4 Security APIs
	11.5 Deployment APIs
	11.6 Management APIs
	11.7 SQLJ Part 0

	Previous Version DTDs
	Revision History
	Related Documents

