
PUBLIC DRAFT 1 - SUBJECT TO CHANGE

JavaServer Pages™
Specification
Version 1.2 - public draft 1 (PD1)

please send comments to jsp-spec-comments@eng.sun.com

Public Draft

August 15, 2000 Eduardo Pelegrí-Llopart, editor

901 San Antonio Road
Palo Alto, CA 94303 USA
650 960-1300 fax: 650 969-9131

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
JavaServer Pages(TM) (JSP) Specification (“Specification”)

Version: 1.2
Status: Pre-FCS
Release: August 15, 2000
Copyright 2000 Sun Microsystems, Inc.
901 San Antonio Road, Palo Alto, California 94303, U.S.A.
All rights reserved.

NOTICE
The Specification is protected by copyright and the information described therein may be protected by one or
more U.S. patents, foreign patents, or pending applications. Except as provided under the following license,
no part of the Specification may be reproduced in any form by any means without the prior written authoriza-
tion of Sun Microsystems, Inc. (“Sun”) and its licensors, if any. Any use of the Specification and the informa-
tion described therein will be governed by the terms and conditions of this license and the Export Control and
General Terms as set forth in Sun’s website Legal Terms. By viewing, downloading or otherwise copying the
Specification, you agree that you have read, understood, and will comply with all of the terms and conditions
set forth herein.

Subject to the terms and conditions of this license, Sun hereby grants you a fully-paid, non-exclusive, non-
transferable, worldwide, limited license (without the right to sublicense) under Sun’s intellectual property
rights to review the Specification internally for the purposes of evaluation only. Other than this limited
license, you acquire no right, title or interest in or to the Specification or any other Sun intellectual property.
The Specification contains the proprietary and confidential information of Sun and may only be used in accor-
dance with the license terms set forth herein. This license will expire ninety (90) days from the date of
Release listed above and will terminate immediately without notice from Sun if you fail to comply with any
provision of this license. Upon termination, you must cease use of or destroy the Specification.

TRADEMARKS
No right, title, or interest in or to any trademarks, service marks, or trade names of Sun or Sun’s licensors is
granted hereunder. Sun, Sun Microsystems, the Sun logo, Java, the Java Coffee Cup logo, and JavaServer
Pages are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

DISCLAIMER OF WARRANTIES
THE SPECIFICATION IS PROVIDED “AS IS” AND IS EXPERIMENTAL AND MAY CONTAIN
DEFECTS OR DEFICIENCIES WHICH CANNOT OR WILL NOT BE CORRECTED BY SUN. SUN
MAKES NO REPRESENTATIONS OR WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT THAT THE CONTENTS OF THE SPECIFICATION ARE SUIT-
ABLE FOR ANY PURPOSE OR THAT ANY PRACTICE OR IMPLEMENTATION OF SUCH CON-
 2

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
TENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADE SECRETS OR
OTHER RIGHTS. This document does not represent any commitment to release or implement any portion of
the Specification in any product.

THE SPECIFICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL
ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION THEREIN; THESE
CHANGES WILL BE INCORPORATED INTO NEW VERSIONS OF THE SPECIFICATION, IF ANY.
SUN MAY MAKE IMPROVEMENTS AND/OR CHANGES TO THE PRODUCT(S) AND/OR THE PRO-
GRAM(S) DESCRIBED IN THE SPECIFICATION AT ANY TIME. Any use of such changes in the Speci-
fication will be governed by the then-current license for the applicable version of the Specification.

LIMITATION OF LIABILITY
TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL SUN OR ITS LICENSORS BE
LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUE, PROFITS
OR DATA, OR FOR SPECIAL, INDIRECT, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAM-
AGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT
OF OR RELATED TO ANY FURNISHING, PRACTICING, MODIFYING OR ANY USE OF THE SPECI-
FICATION, EVEN IF SUN AND/OR ITS LICENSORS HAVE BEEN ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES.

You will indemnify, hold harmless, and defend Sun and its licensors from any claims based on your use of the
Specification for any purposes other than those of internal evaluation, and from any claims that later versions
or releases of any Specification furnished to you are incompatible with the Specification provided to you
under this license.

RESTRICTED RIGHTS LEGEND
If this Software is being acquired by or on behalf of the U.S. Government or by a U.S. Government prime
contractor or subcontractor (at any tier), then the Government’s rights in the Software and accompanying doc-
umentation shall be only as set forth in this license; this is in accordance with 48 C.F.R. 227.7201 through
227.7202-4 (for Department of Defense (DoD) acquisitions) and with 48 C.F.R. 2.101 and 12.212 (for non-
DoD acquisitions).

REPORT
You may wish to report any ambiguities, inconsistencies or inaccuracies you may find in connection with your
evaluation of the Specification (“Feedback”). To the extent that you provide Sun with any Feedback, you
hereby: (i) agree that such Feedback is provided on a non-proprietary and non-confidential basis, and (ii)
grant Sun a perpetual, non-exclusive, worldwide, fully paid-up, irrevocable license, with the right to subli-
cense through multiple levels of sublicensees, to incorporate, disclose, and use without limitation the Feed-
back for any purpose related to the Specification and future versions, implementations, and test suites thereof.
3 JavaServer Pages 1.2 Specification - PD1 • August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
Contents

Status.. 12

The Java Community Process.. 12

The JCP and this Specification.. 13

This Draft .. 13

Preface ... 14

Who should read this document .. 14

Related Documents ... 15

Historical Note .. 15

Acknowledgments ... 16

Chapter 1: Overview ... 18

The JavaServer Pages™ Technology .. 18

Basic Concepts .. 20

What is a JSP Page? ... 20

Web Applications ... 20

Components and Containers... 21

Translation and Execution Steps .. 21
 Contents 4

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
Features in JSP ...21

JSP Pages and the Java 2 Enterprise Edition Specification.22

Chapter 2: Core Syntax and Semantics ..24

What is a JSP Page...24

Web Containers and Web Components25

XML Document for a JSP Page ..25

Translation and Execution Phases.......................................25

Events Exposed to JSP Pages ...26

Compiling JSP Pages..26

Web Applications ..27

Relative URL Specifications within an Application28

Syntactic Elements of a JSP Page ..28

Elements and Template Data ..28

Element Syntax...29

Start and End Tags ..30

Empty Elements..30

Attribute Values ..30

White Space..30

Error Handling ...31

Translation Time Processing Errors32

Request Time Processing Errors ...32

Comments ..33

Quoting and Escape Conventions ..33

Overall Semantics of a JSP Page ...34

Objects ...35

Objects and Variables ...36

Objects and Scopes ...36
5 JavaServer Pages 1.2 Specification - public draft 1 • August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
Implicit Objects.. 37

The pageContext Object... 39

Template Text Semantics .. 39

Directives .. 39

The page Directive ... 39

The taglib Directive ... 44

Scripting Elements .. 46

Declarations ... 47

Scriptlets .. 48

Expressions .. 48

Actions .. 49

Tag Attribute Interpretation Semantics 50

Request Time Attribute Values... 50

The id Attribute.. 51

The scope Attribute .. 52

Chapter 3: Localization Issues .. 54

I18N Issues.. 54

Specifying Content Types .. 54

Delivering Localized Content .. 55

Chapter 4: Standard Actions and Directives 56

Standard Directives ... 56

The include Directive... 56

Including Data in JSP Pages... 57

Standard Actions ... 58

<jsp:useBean>.. 58

<jsp:setProperty> ... 61

<jsp:getProperty>... 64
 Contents 6

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
<jsp:include> ..65

<jsp:forward> ...66

<jsp:param>..67

<jsp:plugin> ...68

Chapter 5: JSP Pages as XML Documents72

Why an XML Representation ..72

Document Type..73

The jsp:root Element ..73

Public ID ..73

Directives ...74

The page directive ..74

The include Directive ...74

The taglib Directive ..75

Scripting Elements ...75

Declarations..75

Scriptlets ...76

Expressions...76

Actions...76

Transforming a JSP Page into an XML Document76

Quoting Conventions ..77

Request-Time Attribute Expressions77

DTD for the XML document ...78

Chapter 6: The JSP Container ..80

The JSP Page Model ..80

JSP Page Implementation Class ...82

API Contracts ...83

Request and Response Parameters84
7 JavaServer Pages 1.2 Specification - public draft 1 • August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
Omitting the extends Attribute ... 85

Using the extends Attribute.. 88

Buffering ... 88

Precompilation .. 89

Request Parameter Names.. 89

Precompilation Protocol ... 89

Chapter 7: Scripting .. 92

Overall Structure ... 92

Declarations Section.. 94

Initialization Section ... 94

Main Section ... 94

Chapter 8: Core API.. 96

JSP Page Implementation Object Contract 96

JspPage .. 96

HttpJspPage ... 98

JspFactory .. 99

JspEngineInfo .. 101

Implicit Objects ... 101

PageContext ... 102

JspWriter .. 110

An Implemention Example.. 117

Exceptions ... 118

JspException .. 118

JspTagException .. 119

Chapter 9: Tag Extensions .. 120

Introduction ... 120
 Contents 8

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
Goals...121

Overview ..121

Simple Examples ..123

Tag Libraries..125

Packaged Tag Libraries...126

Location of Java Classes...126

Tag Library directive ..126

The Tag Library Descriptor ...127

TLD resource path ..127

Taglib map in web.xml ...128

Determining the TLD Resource Path129

Translation-Time Class Loader ...131

Assembling a Web Application...131

Well-Known URIs ..131

The Tag Library Descriptor Format ...132

Validation ..139

Translation-Time Mechanisms..140

Request-Time Errors...141

Conventions and Other Issues ..141

How to Define New Implicit Objects141

Access to Vendor-Specific information142

Customizing a Tag Library ...142

Chapter 10: Tag Extension API...144

Simple Tag Handlers ...145

Tag..147

IterationTag ..150

TagSupport ...151
9 JavaServer Pages 1.2 Specification - public draft 1 • August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
Tag Handlers that want Access to their Body Content 154

BodyContent .. 155

BodyTag ... 156

BodyTagSupport .. 158

Tag Life Cycle... 160

Cooperating Actions.. 162

Translation-time Classes ... 163

TagLibraryInfo ... 165

TagInfo... 166

TagAttributeInfo... 169

PageInfo ... 170

TagLibraryValidator ... 171

TagExtraInfo .. 172

TagData .. 173

VariableInfo ... 175

Appendix A: Packaging JSP Pages... 180

Backward Compatibility Note .. 180

A very simple JSP page .. 180

The JSP page packaged as source in a WAR file 181

The Servlet for the compiled JSP page... 181

The Web Application Descriptor.. 183

The WAR for the compiled JSP page... 183

Appendix B: Changes .. 184

Changes between 1.1 and 1.2 PD1 ... 184

Organizational Changes .. 184

New Document ... 184

Additions to API ... 185
 Contents 10

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
Clarifications ... 185

Changes ... 185

Changes between 1.0 and 1.1 ... 185

Additions... 186

Changes ... 186

Appendix C: Glossary ..188
11 JavaServer Pages 1.2 Specification - public draft 1 • August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
Status

The Java Community Process
This specification is being developed following the Java Community Process (JCP - see
http://java.sun.com/jcp). The JCP produces a specification using three communities: an
expert community (the expert group), the participants of the JCP, and the public-at-large.
The expert group is responsible for the authoring of the specification through a collection of
drafts. Specification drafts move from the expert community, through the participants, to the
public, gaining in detail and completeness, always feeding the comments back to the original
expert group. The expert group lead is responsible for facilitating the workings of the expert
group, for authoring the specification, and for delivering the reference implementation and
the conformance test suite.

The term proposed final draft is used in the JCP to indicate a version of the spec that is
believed to be complete and ready but has not been validated by final test suites,
implementation efforts and public feedback. The expert group may perform changes to the
specification based on this feedback, but changes will be relatively minor.

When the expert group determines that it has a specification that meets its needs, and there is
both a conformance test suite and a final reference implementation that implements the
specification and passes the test suite, the expert group will submit the final draft for
approval by the Executive Comittee.

It is important to emphasize that any draft that is not final can change, perhaps even in
significant ways. Vendors, in particular, should use judgement in deciding what parts of the
specification they should start implementing. The expert group will try to convey the
confidence level of specific features as well as possible and will not indulge in gratituous
changes.
 Status 12

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
The JCP and this Specification
The JCP is designed to be a very flexible process so each expert group can address the
requirements of the specific communities it serves.

The JCP indicates minimum requirements regarding the availability of the reference
implementation and test suites but individual specifications can have additional requirements.
The reference implementation for JSP 1.2 and Servlet 2.3 will be developed as an open
source project, under an agreement with the Apache Software Foundation.

This Draft
This document is the Public Draft 1 (PD1) of the JavaServer Pages 1.2 Specification. This
draft is intended to include all features in JSP 1.2. The specification will change based on
feedback from a number of sources including:

• Public.
• Implementation efforts.
• Test suite efforts.
• Use of the implementation to write actual applications.

This draft includes an up-to-date changes appendix.

We expect to release at least one more public draft before the end of this year.

We expect to submit the final spec for approval by the EC in the second quarter of the year
2001.

Errata Work
Most of JSP 1.2 specification is carried over from the JSP 1.1 specification. As vendors and
users have been using the JSP 1.1 technology in earnest, issues have surfaced in the
specification document. These issues are being collected as erratas and are being propagated
into the JSP 1.2 specification. Erratas are being discussed in a forum that includes the large
majority of the JSP 1.1 expert group, plus a significant number of other vendors,
implementors and the like, under the facilitation of Eduardo Pelegri-Llopart in the role of the
“JSP 1.1 interpretation guru”. This group, commonly refered to by the name of the mailing
list it uses - jsp-tfaq-comments@eng.sun.com - operates without any non-disclosure
agreement and has open membership. Contact pelegri@eng.sun.com if you feel you should
be included.

The first errata (1.1_a) is now available for public review at the public JSP web site. A
second errata (1.1_b) is the last planned errata and is being worked on.
13 JavaServer Pages 1.2 Specification - PD1 • August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
Preface

This is the expert draft 3 of the JavaServer Pages™ 1.2 Specification. This specification is
being developed following the Java Community Process. Comments from Experts,
Participants, and the Public will be reviewed and incorporated into the specification where
applicable.

JSP 1.2 extends JSP 1.1 in a number of ways, including:

• Using Servlet 2.3 as the foundations for its semantics.

• Correcting and making available the mapping from a JSP page to an XML document,
and exploiting this in authoring tools and translation-time validation.

• Improving on authoring support.

• Improving on I18N support.

• Fixing the infamous “flush before you include” limitation in JSP 1.1.

• Refinements on tag library runtime support.

Unlike JSP 1.1, JSP 1.2 assumes the Java 2 platform.

Details on the conditions under which this document is distributed are described in the
license on page 2.

Who should read this document
This document is intended to be the authoritative description of the JSP 1.2 specification.
Although the specification is not intended to be overly formal, it is not a User’s Guide, and
we expect other documents to be created that will cater to different readerships.
 Preface 14

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
A companion document to this specification: “Using JavaServer Pages™ Technology”
provides an overview of the technology and includes descriptions of different methodologies
for using it. The “Using” document is intended to lag this specification only briefly and it is
not going to be a replacement for the type of in-depth presentation and guideance that we
expect will be found in other material that will follow.

Related Documents
JSP 1.2 assumes the Java 2 platform version 1.2.

Implementors of JSP containers and authors of JSP pages will be interested in a number of
other documents, of which the following are worth mentioning explicitly.

Historical Note
We would like to remember the original individuals that started the web server work in the
Java platform. James Gosling started writing a Web Server in Java in 1994/1995, that
became the foundation for Servlets. A larger project emerged in 1996 with Pavani Diwanji as
lead engineer and many other key members. From this project came the Java Web Server
product at Sun.

>>>MORE HISTORY STILL TO BE FILLED IN<<<

Things started to move quickly in 1999. The servlet expert group, with James Davidson as
lead, delivered the Servlet 2.1 specification in January and the Servlet 2.2 specification in
December, while, the JSP group, with Larry Cable and Eduardo Pelegri-Llopart as leads,
delivered JSP 1.0 in June and JSP 1.1 in December.

TABLE P-1 Some Related Web Sites

JSP home page http://java.sun.com/products/jsp

Servlet home page http://java.sun.com/products/servlet

Java 2 Platform, Standard Edition http://java.sun.com/products/jdk/1.2

Java 2 Platform, Enterprise Edition http://java.sun.com/j2ee

XML in the Java Platform home page http://java.sun.com/xml

JavaBeans™ technology home page http://java.sun.com/beans

XML home page at W3C http://www.w3.org/XML

HTML home page at W3C http://www.w3.org/MarkUp

XML.org home page http://www.xml.org
15 JavaServer Pages 1.2 Specification - PD1 • August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
The year 2000 has seen a lot of activity, with many implementations of containers, tools,
books, and training that target JSP 1.1, Servlet 2.2, and the Java 2 Enterprise Edition
platform. There has also been increased activity on tag libraries and on many different
approaches on how to organize all these features together. See the “Using JavaServer
Pages™ Technology” for details on that area.

It is impossible to track the industry in a printed document; the industry pages at the web site
at http://java.sun.com/products/jsp do a better job.

Acknowledgments
Many people contributed to the JavaServer Pages specifications. We want to thank the
community that implemented the reference implementation, and the vendors that have
implemented the spec. >>MORE NAMES HERE<<.

We want to thank all the book authors, and the web sites that are tracking and facilitating the
creation of the JSP community. >> MORE NAMES HERE<<

Last, but certainly not least important, we thank the software developers, Web authors and
members of the general public who have read this specification, used the reference
implementation, and shared their experience. You are the reason the JavaServer Pages
technology exists.
 Preface 16

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
17 JavaServer Pages 1.2 Specification - PD1 • August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
CHAPTER 1

Overview

This chapter provides an overview of the JavaServer Pages technology.

1.1 The JavaServer Pages™ Technology
JavaServer Pages™ technology is the Java™ technology in the J2EE platform for building
applications containing dynamic Web content such as HTML, DHTML, XHTML and XML.
The JavaServer Pages technology enables the authoring of Web pages that create dynamic
content easily but with maximum power and flexibility.

Basic Concepts

The JavaServer Pages technology provides a textual description for the creation of a response
from a request. The technology builds on the following concepts:

• Template Data

Substantial portions of most dynamic content is actually fixed. The JSP technology allow
for the natural manipulation of this data.

• Addition of Dynamic Data

The JSP technology allows the addition of dynamic data to the template data in a way that
is simple yet powerful.

• Encapsulation of Functionality

The JSP technology provides two related mechanisms for the encapsulation of
functionality: the standard JavaBeans component architecture and the tag library
mechanism.
 Overview 18

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
• Good Tool Support

We believe that good tool support leads to significantly improved productivity.
Accordingly, the JSP technology has features that enable the creation of good authoring
tools.

The result is a flexible and powerful server-side technology.

Benefits of the JavaServer Pages Technology

The JavaServer Pages technology offers a number of benefits:

• Write Once, Run Anywhere™ properties

The JavaServer Pages technology is platform independent, both in its dynamic Web pages,
its Web servers, and its underlying server components. You can author JSP pages on any
platform, run them on any Web server or Web enabled application server, and access them
from any Web browser. You can also build the server components on any platform and run
them on any server.

• High quality tool support

The Write Once, Run Anywhere properties of JSP allows the user to choose best-of-breed
tools. Additionally, an explicit goal of the JavaServer Pages design is to enable the
creation of high quality portable tools.

• Separation of Roles

JSP support the separation of roles: developers write components that interact with server-
side objects; authors put static data and dynamic content together to create presentations
best suited for their intended audiences. Each of these roles emphasizes different types of
abilities and, although these abilities may all be present in the same individual, they most
commonly will not. A subset of the developer community may be focused in creating
reusable components intented to be used by authors.

• Reuse of components and tag libraries

The JavaServer Pages technology emphasizes the use of reusable components such as:
JavaBeans™ components, Enterprise JavaBeans™ components and tag libraries. These
components can be used in interactive tools for component development and page
composition. This saves considerable development time while giving the cross-platform
power and flexibility of the Java programming language and other scripting languages.

• Separation of dynamic and static content

The JavaServer Pages technology enables the separation of static content from dynamic
content that is inserted into the static template. This greatly simplifies the creation of
content. This separation is supported by beans specifically designed for the interaction
with server-side objects, and, specially, by the tag extension mechanism.

• Support for scripting and actions
19 JavaServer Pages 1.2 Specification - PD1 • August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
The JavaServer Pages technology supports scripting elements as well as actions. Actions
permit the encapsulation of useful functionality in a convenient form that can also be
manipulated by tools; scripts provide a mechanism to glue together this functionality in a
per-page manner.

• Web access layer for N-tier enterprise application architecture(s)

The JavaServer Pages technology is an integral part of the Java 2 Platform Enterprise
Edition (J2EE), which brings Java technology to enterprise computing. You can now
develop powerful middle-tier server applications, using a Web site that uses JavaServer
Pages technology as a front end to Enterprise JavaBeans components in a J2EE compliant
environment.

1.2 Basic Concepts
This section introduces the basic concepts that will be defined formally later in the
specification.

1.2.1 What is a JSP Page?
A JSP page is a text-based document that describes how to process a request to create a
response. The description intermixes template data with some dynamic actions and leverages
on the Java 2 Platform.

The features in the JSP technology support a number of different paradigms for authoring of
dynamic content; the document “Using the JavaServer Pages(tm) Technology” expands on
this topic.

1.2.2 Web Applications
The concept of a Web application is inherited from the Servlet specification. A Web
application can be composed from:

• Java Runtime Environment(s) running in the server (required)

• JSP page(s), that handle requests and generate dynamic content

• Servlet(s), that handle requests and generate dynamic content

• Server-side JavaBeans components that encapsulate behavior and state
Chapter 1 Overview 20

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
• Static HTML, DHTML, XHTML, XML and similar pages.

• Client-side Java Applets, JavaBeans components, and arbitrary Java class files

• Java Runtime Environment(s) (downloadable via the Plugin) running in client(s)

JThe JavaServer Pages specification inherits from the Servlet specification the concepts of
Applications, ServletContexts, Sessions, Requests and Responses. See the Java Servlet 2.3
specification for more details.

1.2.3 Components and Containers
JSP pages and Servlet classes are collectively referred as Web Components. JSP pages are
delivered to a Container that provides the services indicated in the JSP Component Contract.

The separation of components from containers allows reuse of components, with quality-of-
service features being provided by the container.

1.2.4 Translation and Execution Steps
JSP pages are textual components. They go through two phases: a translation phase, and a
request phase. Translation is done once per page. The request phase is done once per
request.

The result of the translation phase is the creation of a Servlet class: the JSP page
implementation class which will be instantiated at request time. The JSP page
implementation object handles requests and creates responses.

It is possible to perform the translation phase early (what sometimes is called compiling the
JSP pages into Servlets) and deliver in a Web Application, transparently, a Servlet class that
will behave as the textual representation of the JSP page.

The translation phase may also be done by the JSP container at deployment time, or on-
demand as the requests reach a JSP page that has not yet been translated.

1.2.5 Features in JSP
The key features of JavaServer Pages are:

• Standard directives
• Standard actions
21 JavaServer Pages 1.2 Specification - PD1 • August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
• Scripting elements
• Tag Extension mechanism
• Template content

1.2.6 JSP Pages and the Java 2 Enterprise Edition
Specification
Most of the integration of JSP pages within the J2EE 1.3 platform is inherited from the
reliance on the Servlet 2.3 specification.
Chapter 1 Overview 22

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
23 JavaServer Pages 1.2 Specification - PD1 • August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
CHAPTER 2

Core Syntax and
Semantics

This chapter describes the core syntax and semantics of the JavaServer Pages (JSP) 1.2
Specification.

2.1 What is a JSP Page
A JSP page is a textual document that describes how to create a response object from a
request object for a given protocol, possibly creating and/or using some other objects.

A JSP page describes this mapping by defining a JSP page implementation class, a subclass
of Servlet (see Chapter 6) that implements the semantics of the JSP page. At request time, a
request intended for a JSP page is delivered to a JSP page implementation object of the
appropriate class.

All JSP containers must support HTTP as a protocol for requests and responses, but a
container may also support additional request/response protocols. The default request and
response objects (see XXXX) are of type HttpServletRequest and HttpServletResponse,
respectively.
 Core Syntax and Semantics 24

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
2.1.1 Web Containers and Web Components
A JSP container is a system-level entity that provides life-cycle management and runtime
support for JSP pages and Servlet components. Requests sent to a JSP page are delivered by the
JSP container to the appropriate JSP page implementation object. The term Web Container is
synonymous to that of a JSP container.

A Web component is either a Servlet or a JSP page. A web component may use the services
of its container. The servlet element in a web.xml deployment descriptor is used to describe
both types of web components; note that most JSP page components are defined implicitly in
the deployment descriptor through the use of an implicit .jsp extension mapping.

2.1.2 XML Document for a JSP Page
All JSP pages have an equivalent XML document. This equivalent XML document is the
view of the JSP page that is exposed to the translation phase (see below).

A JSP page can also be written directly as its equivalent XML document. Unlike in JSP 1.0
and JSP 1.1 containers, the XML document itself can be delivered to a JSP container for
processing.

It is not valid to intermix “standard syntax” and XML syntax inside the same source file.

A JSP page (in either syntax) can include via a directive a JSP page in any syntax. I.e.
within each unit one syntax is used but each unit can use either syntax.

2.1.3 Translation and Execution Phases
A JSP container is responsible for two separate activities. One is determining a JSP page
implementation class that corresponds to a given JSP page. The other is managing one or
more instances of this class in response to requests and other events.

During the translation phase the container locates (or creates) the JSP page implementation
class that corresponds to a given JSP page. The process is determined by the semantics of
the JSP pages, of the standard directives and actions, and of the custom actions in the tag
libraries used in the page. A tag library can optionally provide a transformation to extend the
translation phase, and a validation method to validate that a JSP page is correctly using the
library.

A JSP container has some freedom in the details of the JSP page implementation class which
it may exploit to address quality-of-service (most notably performance) issues.
25 JavaServer Pages 1.2 Specification - PD1 • August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
During the execution phase the JSP container delivers events to the JSP page implemention
object. The container is also responsible for instantiating request and response objects. The
details of the contract between the JSP page implementation class and the JSP container is
described in Chapter 6.

If the JSP page is delivered to the JSP container in source form, the translation of a JSP
source page can occur at any time between initial deployment of the JSP page into the
runtime environment of a JSP container and the receipt and processing of a client request for
the target JSP page. Section 2.1.5 describes how to perform the translation phase ahead of
deployment.

2.1.4 Events Exposed to JSP Pages
A JSP page may also indicate how some events are to be handled.

In JSP 1.1 only init and destroy events can be described: the first time a request is delivered
to a JSP page a jspInit() method, if present, will be called to prepare the page. Similarly, a
JSP container can reclaim the resources used by a JSP page at any time that a request is not
being serviced by the JSP page by invoking first its jspDestroy() method; this is the same
life-cycle as that of Servlets.

2.1.5 Compiling JSP Pages
JSP pages may be compiled into its JSP page implementation class plus some deployment
information. This enables the use of JSP page authoring tools and JSP tag libraries to author
a Servlet. This has several benefits:

• Removal of the start-up lag that occurs when a JSP page delivered as source receives the
first request.

• Reduction of the footprint needed to run a JSP container, as the java compiler is not
needed.

If a JSP page implementation class depends on some support classes in addition to the JSP
1.2 and Servlet 2.3 classes, the support classes will have to be included in the packaged WAR
so it will be portable across all JSP containers.

A JSP page is compiled in the context of some Web Application, which provides resolution
to relative URL specifications that are used in include directives (and elsewhere), taglib
references, and translation-time actions used in custom actions.

A JSP page can also be compiled at deployment time.
Chapter 2 Core Syntax and Semantics 26

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
Appendix A contains two examples of packaging of JSP pages. One shows a JSP page that is
delivered in source form (probably the most common case) within a WAR. The other shows
how a JSP page is translated into a JSP page implementation class plus deployment
information indicating the classes needed and the mapping between the original URL that
was directed to the JSP page and the location of the Servlet.

2.2 Web Applications
A Web Application is a collection of resources that are available through some URLs. A
prototypical Web application can be composed from:

• Java Runtime Environment(s) running in the server (required)

• JSP page(s), that handle requests and generate dynamic content

• Servlet(s), that handle requests and generate dynamic content

• Server-side JavaBeans components that encapsulate behavior and state

• Static HTML, DHTML, XHTML, XML and similar pages.

• Client-side Java Applets, JavaBeans components, and arbitrary Java class files

• Java Runtime Environment(s) (downloadable via the Plugin) running in client(s)

Web applications are described in more detail in the Servlet 2.3 specification.

A Web Application contains a deployment descriptor web.xml that contains information
about the JSP pages, Servlets, and other resources used in the Web Application. The
Deployment Descriptor is described in detail in the Servlet 2.3 specification.

JSP 1.2 requires that all these resources are to be implicitly associated with and accessible
through a unique ServletContext instance, which is available as the application implicit
object (Section 2.8.3).

The application to which a JSP page belongs is reflected in the application object and has
impact on the semantics of the following elements:

• The include directive (Section 4.1.1)

• The jsp:include action element (Section 4.2.4).

• The jsp:forward action (Section 4.2.5).

JSP 1.2 supports portable packaging and deployment of Web Applications through the
Servlet 2.3 specification. The JavaServer Pages specification inherits from the Servlet
specification the concepts of Applications, ServletContexts, Sessions, Requests and
Responses.
27 JavaServer Pages 1.2 Specification - PD1 • August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
2.2.1 Relative URL Specifications within an
Application
Elements may use relative URL specifications, which are called “URI paths” in the Servlet
2.1 specification. These paths are as in RFC 2396 specification; i.e. only the path part, no
scheme nor authority. Some examples are:

“myErrorPage.jsp”
“/errorPages/SyntacticError.jsp”
“/templates/CopyrightTemplate.html”

When such a path starts with a “/”, it is to be interpreted by the application to which the JSP
page belongs; i.e. its ServletContext object provides the base context URL. We call
these paths “context-relative paths”.

When such a path does not start with a “/”, it is to be interpreted relative to the current JSP
page: the current page is denoted by some path starting with “/” which is then modified by
the new specification to produce a new path that starts with “/”; this final path is the one
interpreted through the ServletContext object. We call these paths “page-relative
paths”.

The JSP specification uniformly interprets all these paths in the context of the Web server
where the JSP page is deployed; i.e. the specification goes through a map translation. The
semantics applies to translation-time phase, and to request-time phase.

2.3 Syntactic Elements of a JSP Page
This section describes the basic syntax rules of the JSP pages.

2.3.1 Elements and Template Data
A JSP page has some elements and some template data. An element is an instance of an
element type that are known to the JSP container; template data is everything else: i.e.
anything that the JSP translator does not know about.

The type of an element describes its syntax and its semantics. If the element has attributes,
the type also describes the attribute names, their valid types, and their interpretation. If the
element defines objects, the semantics includes what objects it defines and their types.
Chapter 2 Core Syntax and Semantics 28

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
2.3.2 Element Syntax
There are three types of elements: directive elements, scripting elements, and action
elements.

Directives

Directives provide global information that is conceptually valid independent of any specific
request received by the JSP page; they provide information for the translation phase.

Directive elements have a syntax of the form <%@ directive ...%>

Actions

The interpreation of an action may, and often will, depend on the details of the specific
request received by the JSP page; actions provide information for the request processing
phase. Actions can either be standard, i.e. defined in this specification, or custom, i.e.
provided via the portable tag extension mechanism.

Action elements follow the syntax of XML elements: they have either a start tag (including
the element name) possibly with attributes, an optional body, and a matching end tag, or they
have an empty tag possibly with attributes:

<mytag attr1=”attribute value” ...>
body
</mytag>

and

<mytab attr1=”attribute value” .../>

An element has an element type describing its tag name, its valid attributes and its semantics;
we refer to the type by its tag name.

JSP tags are case-sensitive, as in XML and XHTML.

An action may create some objects and may make them available to the scripting elements
through some scripting-specific variables.
29 JavaServer Pages 1.2 Specification - PD1 • August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
Scripting Elements

Scripting elements provide glue around template text and actions. There are three types of
scripting elements: declarations, scriptlets and expressions. Declarations follow the syntax
<%! ... %>; scriptlets follow the syntax <% %>; expressions follow the syntax <%= ...
%>.

2.3.3 Start and End Tags
Elements that have distinct start and end tags (with enclosed body) must start and end in the
same file. You cannot begin a tag in one file and end it in another.

This applies also to elements in the alternate syntax. For example, a scriptlet has the syntax
<% scriptlet %>. Both the opening <% characters and the closing %> characters must be in
the same physical file.

2.3.4 Empty Elements
Following the XML specification, an element described using an empty tag is
indistinguishable from one using a start tag, an empty body, and an end tag.

2.3.5 Attribute Values
Following the XML specification, attribute values always appear quoted. Both single and
double quotes can be used. The entities ' and " are available to describe single
and double quotes.

See also Section 2.13.1, “Request Time Attribute Values.

2.3.6 White Space
In HTML and XML, white space is usually not significant, with some exceptions. One
exception is that an XML file must start with the characters <?xml, with no leading
whitespace characters.
Chapter 2 Core Syntax and Semantics 30

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
This specification follows the whitespace behavior defined for XML, that is; all white space
within the body text of a document is not significant, but is preserved.

For example, since directives generate no data and apply globally to the JSP page, the
following input file is translated into the corresponding result file:

For this input,

The result is

As another example, for this input,

The result is

2.4 Error Handling
Errors may occur at translation time or at request time. This section describes how such
errors are treated by a compliant implementation.

<?xml version=”1.0” ?>

This is the default value <%@ page buffer=”8kb” %>

The rest of the document goes here

<?xml version=”1.0” ?>

note the empty line

The rest of the document goes here

<% response.setContentType(“....”);

note no white between
the two elements

whatever... %><?xml version=”1.0” ?>

<%@ page buffer=”8kb” %>

The rest of the document goes here

no leading space <?xml version=”1.0” ?>

note the empty line

The rest of the document goes here
31 JavaServer Pages 1.2 Specification - PD1 • August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
2.4.1 Translation Time Processing Errors
The translation of a JSP page source into a corresponding JSP page implementation class
using the Java technology by a JSP container can occur at any time between initial
deployment of the JSP page into the runtime environment of a JSP container, and the receipt
and processing of a client request for the target JSP page. If translation occurs prior to the
JSP container receiving a client request for the target (untranslated) JSP page then error
processing and notification is implementation dependent. Fatal translation failures shall result
in subsequent client requests for the translation target to also be failed with the appropriate
error; for HTTP protocols, error status code 500 (Server Error).

2.4.2 Request Time Processing Errors
During the processing of client requests, arbitrary runtime errors can occur in either the body
of the JSP page implementation class or in some other code (Java or other implementation
programming language) called from the body of the JSP page implementation class. Such
errors are realized in the page implementation using the Java programming language
exception mechanism to signal their occurrence to caller(s) of the offending behavior1.

These exceptions may be caught and handled (as appropriate) in the body of the JSP page
implementation class.

However, any uncaught exceptions thrown from the body of the JSP page implementation
class result in the forwarding of the client request and uncaught exception to the
errorPage URL specified by the offending JSP page (or the implementation default
behavior, if none is specified).

The offending java.lang.Throwable describing the error that occurred is stored in the
javax.ServletRequest instance for the client request using the putAttribute()
method, using the name “javax.servlet.jsp.jspException”. Names starting with
the prefixes “java” and “javax” are reserved by the different specifications of the Java
platform; the “javax.servlet” prefix is used by the Servlet and JSP specifications.

If the errorPage attribute of a page directive names a URL that refers to another JSP, and
that JSP indicates that it is an error page (by setting the page directive’s isErrorPage
attribute to true) then the “exception” implicit scripting language variable of that page
is initialized to the offending Throwable reference

1. Note that this is independent of scripting language; this requires that unhandled errors occurring in a scripting language
environment used in a JSP container implementation to be signalled to the JSP page implementation class via the Java
programming language exception mechanism.
Chapter 2 Core Syntax and Semantics 32

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
2.5 Comments
There are two types of comments in a JSP page: comments to the JSP page itself,
documenting what the page is doing; and comments that are intended to appear in the
generated document sent to the client.

Generating Comments in Output to Client

In order to generate comments that appear in the response output stream to the requesting
client, the HTML and XML comment syntax is used, as follows:

<!-- comments ... -->

These comments are treated as uninterpreted template text by the JSP container. If the
generated comment is to have dynamic data, this can be obtained through an expression
syntax, as in:

<!-- comments <%= expression %> more comments ... -->

JSP Comments

A JSP comment is of the form

<%-- anything but a closing --%> ... --%>

The body of the content is ignored completely. Comments are useful for documentation but
also to “comment out” some portions of a JSP page. Note that JSP comments do not nest.

Note that an alternative way to place a “comment” in JSP is to do so by using the comment
mechanism of the scripting language. For example:

<% /** this is a comment ... **/ %>

2.6 Quoting and Escape Conventions
The following quoting conventions apply to JSP pages. Anything else is not processed.
33 JavaServer Pages 1.2 Specification - PD1 • August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
Quoting in Scripting Elements
• A literal %> is quoted by %\>

Quoting in Template Text
• A literal <% is quoted by <\%

Quoting in Attributes
• A ‘ is quoted as \’

• A “ is quoted as \”

• A \ is quoted as \\

• A %> is quoted as %\>

• A <% is quoted as <\%

XML Representation

The quoting conventions are different to those of XML. See Chapter 5.

2.7 Overall Semantics of a JSP Page
A JSP page implementation class defines a _jspService() method mapping from the request
to the response object. Some details of this transformation are specific to the scripting
language used; see Chapter 7. Most details are not language specific and are described in this
chapter.

Most of the content of a JSP page is devoted to describing what data is written into the
output stream of the response (usually sent back to the client). The description is based on a
JspWriter object that is exposed through the implicit object out (see Section 2.8.3,
“Implicit Objects). Its value varies:

• Initially, out is a new JspWriter object. This object may be different from the stream
object from response.getWriter(), and may be considered to be interposed on the latter in
order to implement buffering (see Section 2.10.1, “The page Directive). This is the initial
out object. JSP page authors are prohibited from writing directly to either the
PrintWriter or OutputStream associated with the ServletResponse.
Chapter 2 Core Syntax and Semantics 34

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
• Within the body of some actions, out may be temporarily re-assigned to a different
(nested) instance of JspWriter object. Whether this is or is not the case depends on the
details of the actions semantics. Typically the content, or the results of processing the
content, of these temporary streams is appended to the stream previously referred to by
out, and out is subsequently re-assigned to refer to that previous (nesting) stream. Such
nested streams are always buffered, and require explicit flushing to a nesting stream or
discarding of their contents.

• If the initial out JspWriter object is buffered, then depending upon the value of the
autoFlush attribute of the page directive, the content of that buffer will either be
automatically flushed out to the ServletResponse output stream to obviate overflow,
or an exception shall be thrown to signal buffer overflow. If the initial out JspWriter is
unbuffered, then content written to it will be passed directly through to the
ServletResponse output stream.

A JSP page can also describe what should happen when some specific events occur. In JSP
1.1, the only events that can be described are initialization and destruction of the page; these
are described using “well-known method names” in declaration elements (see page 81).
Future specifications will likely define more events as well as a more structured mechanism
for describing the actions to take.

2.8 Objects
A JSP page can access, create, and modify server-side objects. Objects can be made visible
to actions and to scripting elements. Actions can access objects using a name in the
PageContext object. Scripting elements can also have access to some objects directly via a
scripting variable. Some implicit objects are visible via scripting variables in any JSP page.

A default file can be used to modify consistently the list of objects that are automatically
visible in a page.

An object has a scope describing what entities can access the object.

When an object is exposed through a scripting variable the variable has a scope within the
page.
35 JavaServer Pages 1.2 Specification - PD1 • August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
2.8.1 Objects and Variables
An object may be made accessible to code in the scripting elements through a scripting
language variable. An element can define scripting variables that will contain, at process
request-time, a reference to the object defined by the element, although other references exist
depending on the scope of the object.

An element type indicates the name and type of such variables although details on the name
of the variable may depend on the Scripting Language. The scripting language may also
affect how different features of the object are exposed; for example, in the JavaBeans
specification, properties are exposed via getter and setter methods, while these are available
directly in the JavaScript™ programming language.

The exact rules for the visibility of the variables are scripting language specific. Chapter 7
defines the rules for when the language attribute of the page directive is “java”.

2.8.2 Objects and Scopes
A JSP page can create and/or access some Java objects when processing a request. The JSP
specification indicates that some objects are created implicitly, perhaps as a result of a
directive (see Section 2.8.3, “Implicit Objects); other objects are created explicitly through
actions; objects can also be created directly using scripting code. The created objects have a
scope attribute defining where there is a reference to the object and when that reference is
removed.

The created objects may also be visible directly to the scripting elements through some
scripting-level variables (see Section 2.8.3, “Implicit Objects).

Each action and declaration defines, as part of its semantics, what objects it defines, with
what scope attribute, and whether they are available to the scripting elements.

Objects are always created within some JSP page instance that is responding to some request
object. There are several scopes:

• page - Objects with page scope are accessible only within the page where they are
created. All references to such an object shall be released after the response is sent back
to the client from the JSP page or the request is forwarded somewhere else. References to
objects with page scope are stored in the pageContext object.

• request - Objects with request scope are accessible from pages processing the same
request where they were created. All references to the object shall be released after the
request is processed; in particular, if the request is forwarded to a resource in the same
runtime, the object is still reachable. References to objects with request scope are stored
in the request object.
Chapter 2 Core Syntax and Semantics 36

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
• session - Objects with session scope are accessible from pages processing requests that
are in the same session as the one in which they were created. It is not legal to define an
object with session scope from within a page that is not session-aware (see Section 2.10.1,
“The page Directive). All references to the object shall be released after the associated
session ends. References to objects with session scope are stored in the session object
associated with the page activation.

• application - Objects with application scope are accessible from pages processing
requests that are in the same application as they one in which they were created. All
references to the object shall be released when the runtime environment reclaims the
ServletContext. Objects with application scope can be defined (and reached) from
pages that are not session-aware. References to objects with application scope are stored
in the application object associated with a page activation.

A name should refer to a unique object at all points in the execution, i.e. all the different
scopes really should behave as a single name space. A JSP container implementation may or
not enforce this rule explicitly due to performance reasons.

2.8.3 Implicit Objects
JSP page authors have access to certain implicit objects that are always available for use
within scriptlets and expressions, without being declared first. All scripting languages are
required to provide access to these objects.

Each implicit object has a class or interface type defined in a core Java technology or Java
Servlet API package, as shown in TABLE 2-1.

TABLE 2-1 Implicit Objects Available in JSP Pages

Implicit Variable Of Type What It Represents Scope

request protocol dependent subtype of:
javax.servlet.ServletRequest
e.g:
javax.servlet.HttpServletRequest

The request triggering the
service invocation.

request

response protocol dependent subtype of:
javax.servlet.ServletResponse
e.g:
javax.servlet.HttpServletResponse

The response to the request. page

pageContext javax.servlet.jsp.PageContext The page context for this JSP
page.

page
37 JavaServer Pages 1.2 Specification - PD1 • August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
In addition, in an error page, you can access the exception implicit object, described in
TABLE 2-2.

Object names with prefixes jsp, _jsp, jspx and _jspx, in any combination of upper and
lower case, are reserved by the JSP specification.

See Section 9.6.1 for some non-normative conventions for the introduction of new implicit
objects.

session javax.servlet.http.HttpSession The session object created for
the requesting client (if any).

This variable is only valid for
Http protocols.

session

application javax.servlet.ServletContext The servlet context obtained
from the servlet configuration
object (as in the call
getServletConfig().get
Context())

application

out javax.servlet.jsp.JspWriter An object that writes into the
output stream.

page

config javax.servlet.ServletConfig The ServletConfig for this
JSP page

page

page java.lang.Object the instance of this page’s
implementation class processing
the current requesta

page

a. When the scripting language is “java” then “page” is a synonym for “this” in the body of the page.

TABLE 2-2 Implicit Objects Available in Error Pages

Implicit Variable Of Type What It Represents scope

exception java.lang.Throwable The uncaught Throwable that
resulted in the error page being
invoked.

page

TABLE 2-1 Implicit Objects Available in JSP Pages

Implicit Variable Of Type What It Represents Scope
Chapter 2 Core Syntax and Semantics 38

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
2.8.4 The pageContext Object
A PageContext provides an object that encapsulates implementation-dependent features
and provides convenience methods. A JSP page implementation class can use a
PageContext to run unmodified in any compliant JSP container while taking advantage of
implementation-specific improvements like high performance JspWriters.

See Chapter 8 for more details.

2.9 Template Text Semantics
The semantics of template (or uninterpreted) Text is very simple: the template text is passed
through to the current out JspWriter implicit object, after applying the substitutions of
Section 2.6, “Quoting and Escape Conventions.

2.10 Directives
Directives are messages to the JSP container. Directives have this syntax:

<%@ directive { attr=”value” }* %>

There may be optional white space after the “<%@” and before “%>”.

This syntax is easy to type and concise but it is not XML-compatible. Chapter 5 describes the
mapping of directives into XML elements.

Directives do not produce any output into the current out stream.

There are three directives: the page and the taglib directives are described next, while the
include directive is described in the next chapter.

2.10.1 The page Directive
The page directive defines a number of page dependent attributes and communicates these
to the JSP container.
39 JavaServer Pages 1.2 Specification - PD1 • August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
A translation unit (JSP source file and any files included via the include directive) can
contain more than one instance of the page directive, all the attributes will apply to the
complete translation unit (i.e. page directives are position independent). However, there shall
be only one occurrence of any attribute/value defined by this directive in a given translation
unit with the exception of the “import” attribute; multiple uses of this attribute are
cumulative (with ordered set union semantics). Other such multiple attribute/value
(re)definitions result in a fatal translation error.

The attribute/value namespace is reserved for use by this, and subsequent, JSP
specification(s).

Unrecognized attributes or values result in fatal translation errors.

Examples

The following directive provides some user-visible information on this JSP page:

<%@ page info=”my latest JSP Example” %>

The following directive requests no buffering, indicates that the page is thread safe, and
provides an error page.

<%@ page buffer=”none” isThreadSafe=”yes” errorPage=”/oops.jsp” %>

The following directive indicates that the scripting language is based on Java, that the types
declared in the package com.myco are directly available to the scripting code, and that a
buffering of 16K should be used.

<%@ page language=”java” import=”com.myco.*” buffer=”16k” %>

2.10.1.1 Syntax
<%@ page page_directive_attr_list %>

page_directive_attr_list ::= { language=”scriptingLanguage” }
{ extends=”className” }
{ import=”importList” }
{ session=”true|false” }
{ buffer=”none|sizekb” }
{ autoFlush=”true|false” }
{ isThreadSafe=”true|false” }
{ info=”info_text” }
{ errorPage=”error_url” }
{ isErrorPage=”true|false” }
{ contentType=”ctinfo” }
Chapter 2 Core Syntax and Semantics 40

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
The details of the attributes are as follows:

language Defines the scripting language to be used in the scriptlets, expression
scriptlets, and declarations within the body of the translation unit (the
JSP page and any files included using the include directive below).

In JSP 1.2, the only defined and required scripting language value for
this attribute is “java”. This specification only describes the
semantics of scripts for when the value of the language attribute is
“java”.

When “java” is the value of the scripting language, the Java
Programming Language source code fragments used within the
translation unit are required to conform to the Java Programming
Language Specification in the way indicated in Chapter 7.

All scripting languages must provide some implicit objects that a JSP
page author can use in declarations, scriptlets, and expressions. The
specific objects that can be used are defined in Section 2.8.3, “Implicit
Objects.”

All scripting languages must support the Java Runtime Environment
(JRE). All scripting languages must expose the Java technology object
model to the script environment, especially implicit variables,
JavaBeans component properties, and public methods.

Future versions of the JSP specification may define additional values
for the language attribute and all such values are reserved.

It is a fatal translation error for a directive with a non-”java”
language attribute to appear after the first scripting element has been
encountered.

extends The value is a fully qualified Java programming language class name,
that names the superclass of the class to which this JSP page is
transformed (see Chapter 6).

This attribute should not be used without careful consideration as it
restricts the ability of the JSP container to provide specialized
superclasses that may improve on the quality of rendered service. See
Section 9.6.1 for an alternate way to introduce objects into a JSP page
that does not have this drawback.
41 JavaServer Pages 1.2 Specification - PD1 • August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
import An import attribute describes the types that are available to the
scripting environment. The value is as in an import declaration in the
Java programming language, i.e. a (comma separated) list of either a
fully qualified Java programming language type name denoting that
type, or of a package name followed by the “.*” string, denoting all
the public types declared one in that package. The import list shall be
imported by the translated JSP page implementation and are thus
available to the scripting environment.

The default import list is java.lang.*, javax.servlet.*,
javax.servlet.jsp.* and javax.servlet.http.*.

This value is currently only defined when the value of the language
directive is “java”.

session Indicates that the page requires participation in an (http) session.

If “true” then the implicit script language variable named
“session” of type javax.servlet.http.HttpSession
references the current/new session for the page.

If “false” then the page does not participate in a session; the
“session” implicit variable is unavailable, and any reference to it
within the body of the JSP page is illegal and shall result in a fatal
translation error.

Default is “true”.

buffer Specifies the buffering model for the initial “out” JspWriter to
handle content output from the page.

If “none”, then there is no buffering and all output is written directly
through to the ServletResponse PrintWriter.

The size can only be specified in kilobytes, and the suffix “kb” is
mandatory.

If a buffer size is specified (e.g 12kb) then output is buffered with a
buffer size not less than that specified.

Depending upon the value of the “autoFlush” attribute, the contents
of this buffer is either automatically flushed, or an exception is raised,
when overflow would occur.

The default is buffered with an implementation buffer size of not less
than 8kb.
Chapter 2 Core Syntax and Semantics 42

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
autoFlush Specifies whether the buffered output should be flushed automatically
(“true” value) when the buffer is filled, or whether an exception
should be raised (“false” value) to indicate buffer overflow.

The default is “true”.

Note: it is illegal to set autoFlush to “false” when
“buffer=none”.

isThreadSafe Indicates the level of thread safety implemented in the page.

If “false” then the JSP container shall dispatch multiple outstanding
client requests, one at a time, in the order they were received, to the
page implementation for processing.

If “true” then the JSP container may choose to dispatch multiple
outstanding client requests to the page simultaneously.

Page authors using “true” must ensure that they properly
synchronize access to page shared state.

Default is “true”.

Note that even if the isThreadSafe attribute is “false” the JSP page
author must ensure that access to any shared objects shared in either
the ServletContext or the HttpSession are properly
synchronized.

info Defines an arbitrary string that is incorporated into the translated page,
that can subsequently be obtained from the page’s implementation of
Servlet.getServletInfo() method.

isErrorPage Indicates if the current JSP page is intended to be the URL target of
another JSP page’s errorPage.

If “true”, then the implicit script language variable “exception”
is defined and its value is a reference to the offending Throwable
from the source JSP page in error.

If “false” then the “exception” implicit variable is unavailable,
and any reference to it within the body of the JSP page is illegal and
shall result in a fatal translation error.

Default is “false”
43 JavaServer Pages 1.2 Specification - PD1 • August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
2.10.2 The taglib Directive
The set of significant tags a JSP container interprets can be extended through a “tag library”.

errorPage Defines a URL to a resource to which any Java programming language
Throwable object(s) thrown but not caught by the page
implementation are forwarded to for error processing.

The provided URL spec is as in Section 2.2.1.

The resource named has to be a JSP page in this version of the
specification.

If the URL names another JSP page then, when invoked that JSP
page’s exception implicit script variable shall contain a reference
to the originating uncaught Throwable.

The default URL is implementation dependent.

Note the Throwable object is transferred by the throwing page
implementation to the error page implementation by saving the object
reference on the common ServletRequest object using the
setAttribute() method, with a name of

“javax.servlet.jsp.jspException”.

Note: if autoFlush=true then if the contents of the initial
JspWriter has been flushed to the ServletResponse output
stream then any subsequent attempt to dispatch an uncaught exception
from the offending page to an errorPage may fail.

When an error page is also indicated in the web.xml descriptor, the
JSP error page applies first, then the web.xml page.

contentType Defines the character encoding for the JSP page and for the response
of the JSP page and the MIME type for the response of the JSP page.

Values are either of the form “TYPE” or “TYPE; charset=CHARSET”
with an optional white space after the “;”. CHARSET, if present, must
be the IANA value for a character encoding. TYPE is a MIME type,
see the IANA registry for useful values.

The default value for TYPE is “text/html”; the default value for the
character encoding is ISO-8859-1.

See Section 3.1.2 for complete details on character encodings.
Chapter 2 Core Syntax and Semantics 44

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
The taglib directive in a JSP page declares that the page uses a tag library, uniquely
identifies the tag library using a URI and associates a tag prefix that will distinguish usage of
the actions in the library.

If a JSP container implementation cannot locate a tag library description, a fatal translation
error shall result.

It is a fatal translation error for the taglib directive to appear after actions using the prefix
introduced by the taglib directive.

A tag library may include a validation method that will be consulted to determine if a JSP
page is correctly using the tag library functionality.

See Chapter 9 for more specification details. And see Section B.2 for an implementation
note.

Examples

In the following example, a tag library is introduced and made available to this page using
the super prefix; no other tags libraries should be introduced in this page using this prefix.
In this particular case, we assume the tag library includes a doMagic element type, which is
used within the page.

<%@ taglib uri=”http://www.mycorp/supertags” prefix=”super” />
...
<super:doMagic>
...
</super:doMagic>

2.10.2.1 Syntax
<%@ taglib uri=”tagLibraryURI” prefix=”tagPrefix” %>
45 JavaServer Pages 1.2 Specification - PD1 • August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
where the attributes are:

A fatal translation-time error will result if the JSP page translator encounters a tag with name
prefix:Name using a prefix introduced using the taglib directive, and Name is not recognized
by the corresponding tag library.

2.11 Scripting Elements
Scripting elements are commonly used to manipulate objects and to perform computation that
affects the content generated.

There are three classes of scripting elements: declarations, scriptlets and expressions. The
scripting language used in the current page is given by the value of the language directive
(see Section 2.10.1, “The page Directive). In JSP 1.2, the only value defined is “java”.

Declarations are used to declare scripting language constructs that are available to all other
scripting elements. Scriptlets are used to describe actions to be performed in response to
some request. Scriplets that are program fragments can also be used to do things like
iterations and conditional execution of other elements in the JSP page. Expressions are
complete expressions in the scripting language that get evaluated at response time;
commonly the result is converted into a string and then inserted into the output stream.

All JSP containers must support scripting elements based on the Java programming language.
Additionally, JSP containers may also support other scripting languages. All such scripting
languages must support:

• Manipulation of Java objects.

• Invocation of methods on Java objects.

• Catching of Java language exceptions.

uri Either an absolute URI or a relative URI specification that uniquely
identifies the tag library descriptor associated with this prefix.

The URI is used to locate a description of the tag library as indicated
in Chapter 9.

tagPrefix Defines the prefix string in <prefix>:<tagname> that is used to
distinguish a custom action, e.g <myPrefix:myTag>

prefixes jsp:, jspx:, java:, javax:, servlet:, sun:, and sunw: are reserved.

Empty prefixes are illegal in this version of the specification.
Chapter 2 Core Syntax and Semantics 46

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
The precise definition of the semantics for scripting done using elements based on the Java
programming language is given in Chapter 7.

The semantics for other scripting languages are not precisely defined in this version of the
specification, which means that portability across implementations cannot be guaranteed.
Precise definitions may be given for other languages in the future.

Each scripting element has a “<%”-based syntax as follows:

<%! this is a declaration %>
<% this is a scriptlet %>
<%= this is an expression %>

White space is optional after “<%!”, “<%”, and “<%=”, and before “%>”.

The equivalent XML elements for these scripting elements are described in Section 5.4.

2.11.1 Declarations
Declarations are used to declare variables and methods in the scripting language used in a
JSP page. A declaration should be a complete declarative statement, or sequence thereof,
according to the syntax of the scripting language specified.

Declarations do not produce any output into the current out stream.

Declarations are initialized when the JSP page is initialized and are made available to other
declarations, scriptlets, and expressions.

Examples

For example, the first declaration below declares an integer, and initializes it to zero; while
the second declaration declares a method.

<%! int i = 0; %>

<%! public String f(int i) { if (i<3) return(“...”); ... } %>

Syntax
<%! declaration(s) %>
47 JavaServer Pages 1.2 Specification - PD1 • August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
2.11.2 Scriptlets
Scriptlets can contain any code fragments that are valid for the scripting language specified
in the language directive. Whether the code fragment is legal depends on the details of the
scripting language; see Chapter 7.

Scriptlets are executed at request-processing time. Whether or not they produce any output
into the out stream depends on the actual code in the scriptlet. Scriptlets can have side-
effects, modifying the objects visible in them.

When all scriptlet fragments in a given translation unit are combined in the order they appear
in the JSP page, they shall yield a valid statement or sequence thereof, in the specified
scripting language.

If you want to use the %> character sequence as literal characters in a scriptlet, rather than to
end the scriptlet, you can escape them by typing %\>.

Examples

Here is a simple example where the page changed dynamically depending on the time of day.

<% if (Calendar.getInstance().get(Calendar.AM_PM) == Calendar.AM) {%>
Good Morning
<% } else { %>
Good Afternoon
<% } %>

Syntax
<% scriptlet %>

2.11.3 Expressions
An expression element in a JSP page is a scripting language expression that is evaluated and
the result is coerced to a String which is subsequently emitted into the current out
JspWriter object.

If the result of the expression cannot be coerced to a String then either a translation time
error shall occur, or, if the coercion cannot be detected during translation, a
ClassCastException shall be raised at request time.
Chapter 2 Core Syntax and Semantics 48

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
A scripting language may support side-effects in expressions. If so, they take effect when the
expression is evaluated. Expressions are evaluated left-to-right in the JSP page. If the
expressions appear in more than one run-time attribute, they are evaluated left-to-right in the
tag. An expression might change the value of the out object, although this is not something
to be done lightly.

The contents of an expression must be a complete expression in the scripting language in
which they are written.

Expressions are evaluated at HTTP processing time. The value of an expression is converted
to a String and inserted at the proper position in the .jsp file.

Examples

In the next example, the current date is inserted.

<%= (new java.util.Date()).toLocaleString() %>

Syntax
<%= expression %>

2.12 Actions
Actions may affect the current out stream and use, modify and/or create objects. Actions may,
and often will, depend on the details of the specific request object received by the JSP page.

The JSP specification includes some action types that are standard and must be implemented
by all conforming JSP containers. New action types are introduced using the taglib
directive.

The syntax for action elements is based on XML; the only transformation needed is due to
quoting conventions (see Section 5.5).
49 JavaServer Pages 1.2 Specification - PD1 • August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
2.13 Tag Attribute Interpretation
Semantics
Generally, all custom and standard action attributes and their values either remain
uninterpreted by, or have well defined action-type specific semantics known to, a conforming
JSP container. However there are two exceptions to this general rule: some attribute values
represent request-time attribute values and are processed by a conforming JSP container, and
the id and scope attributes have special interpretation.

2.13.1 Request Time Attribute Values
Action elements (both standard and custom) can define named attributes and associated
values. Typically a JSP page treats these values as fixed and immutable but the JSP 1.2
provides a mechanism to describe a value that is computed at request time.

An attribute value of the form ”<%= scriptlet_expr %>” or ‘<%= scriptlet_expr %>’ denotes
a request-time attribute value. The value denoted is that of the scriptlet expression involved.
Request-time attribute values can only be used in actions. If there are more than one such
attribute in a tag, the expressions are evaluated left-to-right.

Only attribute values can be denoted this way (e.g. the name of the attribute is always an
explicit name), and the expression must appear by itself (e.g. multiple expressions, and
mixing of expressions and string constants are not permitted; instead perform these
operations within the expression).

The resulting value of the expression depends upon the expected type of the attribute’s value.
The type of an action element indicates the valid Java programming languag type for each
attribute value; the default is java.lang.String.

By default, all attributes have page translation-time semantics. Attempting to specify a
scriptlet expression as a value for an attribute that has page translation time semantics is
illegal, and will result in a fatal translation error. The type of an action element indicates
whether a given attribute will accept request-time attribute values.

Most attributes in the actions defined in the JSP 1.2 specification have page translation-time
semantics.

The following attributes accept request-time attribute expressions:
• The value attribute of jsp:setProperty (2.13.2).
• The beanName attribute of jsp:useBean (2.13.1).
• The page attribute of jsp:include (2.13.4).
Chapter 2 Core Syntax and Semantics 50

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
• The page attribute of jsp:forward (2.13.5).
• The value attribute of jsp:param (2.13.6).

Note – There is an anomaly: we cannot use a custom tag to provide the value of an
argument to another custom tag. For example, one cannot use jsp:getProperty... There are
several ways to address this.

2.13.2 The id Attribute
The id=”name” attribute/value tuple in an element has special meaning to a JSP container,
both at page translation time, and at client request processing time; in particular:

• the name must be unique within the translation unit, and identifies the particular element
in which it appears to the JSP container and page.

 Duplicate id’s found in the same translation unit shall result in a fatal translation error.

• In addition, if the action type creates one or more object instance at client request
processing time, one of these objects will usually be associated by the JSP container with
the named value and can be accessed via that name in various contexts through the
pagecontext object described later in this specification.

 Furthermore, the name is also used to expose a variable (name) in the page’s scripting
language environment. The scope of this scripting language dependent variable is
dependent upon the scoping rules and capabilities of the actual scripting language used in
the page. Note that this implies that the name value syntax shall comply with the variable
naming syntax rules of the scripting language used in the page.

 Chapter 7 provides details for the case where the language attribute is ”java”.

For example, the <jsp:usebean id=”name” class=”className” .../> action
defined later herein uses this mechanism in order to, possibly instantiate, and subsequently
expose the named JavaBeans component to a page at client request processing time.

For example:

<% { // introduce a new block %>
...
<jsp:useBean id=”customer” class=”com.myco.Customer” />

<%
/*
 * the tag above creates or obtains the Customer Bean
 * reference, associates it with the name “customer” in the
 * PageContext, and declares a Java programming language
 * variable of the
 * same name initialized to the object reference in this
51 JavaServer Pages 1.2 Specification - PD1 • August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
 * block’s scope.
 */
%>
...
<%= customer.getName(); %>
...

<% } // close the block %>

<%
// the variable customer is out of scope now but
// the object is still valid (and accessible via pageContext)
%>

2.13.3 The scope Attribute
The scope=”page|request|session|application” attribute/value tuple is
associated with, and modifies the behavior of the id attribute described above (it has both
translation time and client request processing time semantics). In particular it describes the
namespace, the implicit lifecycle of the object reference associated with the name, and the
APIs used to access this association, as follows:

page The named object is available from the
javax.servlet.jsp.PageContext for the current page.

This reference shall be discarded upon completion of the current
request by the page body.

It is illegal to change the instance object associated, such that its
runtime type is a subset of the type of the current object previously
associated.

request The named object is available from the current page’s
ServletRequest object using the getAttribute(name)
method.

This reference shall be discarded upon completion of the current client
request.

It is illegal to change the value of an instance object so associated,
such that its runtime type is a subset of the type(s) of the object
previously so associated.
Chapter 2 Core Syntax and Semantics 52

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
session The named object is available from the current page’s HttpSession
object (which can in turn be obtained from the ServletRequest
object) using the getValue(name) method.

This reference shall be discarded upon invalidation of the current
session.

It is Illegal to change the value of an instance object so associated,
such that its new runtime type is a subset of the type(s) of the object
previously so associated.

Note it is a fatal translation error to attempt to use session scope
when the JSP page so attempting has declared, via the <%@ page
... %> directive (see later) that it does not participate in a
session.

application The named object is available from the current page’s
ServletContext object using the getAttribute(name)
method.

This reference shall be discarded upon reclamation of the
ServletContext.

It is Illegal to change the value of an instance object so associated,
such that its new runtime type is a subset of the type(s) of the object
previously so associated.
53 JavaServer Pages 1.2 Specification - PD1 • August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
CHAPTER 3

Localization Issues

This chapter will describe localization issues with JSP.

3.1 I18N Issues
I18N will be reviewed to track the Servlet 2.3 resolutions.

We expect the global file to be useful in configuring portions of the JSP page sources
according to locales.

3.1.1 Specifying Content Types
A JSP page can use the contentType attribute of the page directive to indicate the content
type of the response it provides to requests. Since this value is part of a directive, a given
page will always provide the same content type. If a page determines that the response
should be of a different content type, it should do so “early”, determine what other JSP page
or Servlet will handle this request and it should forward the request to the other JSP page or
Servlet.

A registry of content types names is kept by IANA. See:

ftp://venera.isi.edu/in-notes/iana/assignments/media-types/media-types
 Localization Issues 54

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
3.1.2 Delivering Localized Content
The Java Platform support for localized content is based on a uniform representation of text
internally as Unicode 2.0 (ISO010646) characters and the support for a number of character
encodings to and from Unicode.

Any Java Virtual Machine (JVM) must support Unicode and Latin-1 encodings but most
support many more. The character encodings supported by the JVM from Sun are described
at:

http://java.sun.com/products/jdk/1.1/docs/guide/intl/encoding.doc.html

The JSP 1.1 specification assumes that JSP pages that will deliver content in a given
character encoding will be written in that character encoding. In particular, the
contentType attribute of the page directive describes both the character encoding of the
JSP page and the character encoding of the resulting stream.

The valid names to describe the character encodings are those of IANA. They are described
at:

ftp://venera.isi.edu/in-notes/iana/assignments/character-sets

The contentType attribute must only be used when the character encoding is organized
such that ASCII characters stand for themselves, at least until the contentType attribute is
found. The directive containing the contentType attribute should appear as early as
possible in the JSP page.

The default character set encoding is ISO-8859-1 (also known as latin-1).

A JSP container may use some implementation-dependent heuristics and/or structure to
determine what is the expected character encoding of a JSP page and then verify that
contentType attribute is as expected.

A JSP container will raise a translation-time error if an unsupported character encoding is
requested.

See Section B.1 for some implementation notes.
55 JavaServer Pages 1.2 Specification - PD1 • August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
CHAPTER 4

Standard Actions and
Directives

This chapter describes the standard actions of JSP 1.2. The chapter also describes the
include directive, as it could1 be described using the tag extension mechanism in JSP 1.2,
while the page and taglib directives are more basic and cannot be described this way.

4.1 Standard Directives
The include directive is described here.

4.1.1 The include Directive
The include directive is used to substitute text and/or code at JSP page translation-time.
The <%@ include file=”relativeURLspec” %> directive inserts the text of the
specified resource into the .jsp file. The included file is subject to the access control
available to the JSP container. The file attribute is as in Section 2.2.1.

A JSP container can include a mechanism for being notified if an included file changes, so
the container can recompile the JSP page. However, the JSP 1.2 specification does not have
a way of directing the JSP container that included files have changed.

1. Strictly speaking, the syntax cannot be described using the tag mechanism, but otherwise it can.
 Standard Actions and Directives 56

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
Examples

The following example requests the inclusion, at translation time, of a copyright file. The file
may have elements which will be processed too.

<%@ include file=”copyright.html” %>

4.1.1.1 Syntax
<%@ include file="relativeURLspec" %>

4.1.2 Including Data in JSP Pages
Including data is a significant part of the tasks in a JSP page. Accordingly, the JSP 1.2
specification has two include mechanisms suited to different tasks. A summary of their
semantics is shown in TABLE 4-1.

The Spec column describes what type of specification is valid to appear in the given element.
The JSP specification requires a relative URL spec. The reference is resolved by the Web/
Application server and its URL map is involved.

An include directive regards a resource like a JSP page as a static object; i.e. the bytes in the
JSP page are included. An include action regards a resource like a JSP page as a dynamic
object; i.e. the request is sent to that object and the result of processing it is included.

TABLE 4-1 Summary of Include Mechanisms in JSP 1.2

Syntax What Phase Spec Object Description Section

<%@ include file=... %> directive translation-
time

virtual static Content is parsed by
JSP container.

4.1.1

<jsp:include page= /> action request-time virtual static
and
dynamic

Content is not parsed; it
is included in place.

4.2.4
57 JavaServer Pages 1.2 Specification - PD1 • August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
4.2 Standard Actions
The JSP 1.2 specification defines some standard action types that are always available,
regardless of the version of the JSP container or Web server the developer uses. The standard
action types are in addition to any custom types specific to a given JSP container
implementation.

4.2.1 <jsp:useBean>
A jsp:useBean action associates an instance of a Java programming language object
defined within a given scope available with a given id via a newly declared scripting
variable of the same id.

The jsp:useBean action is quite flexible; its exact semantics depends on the attributes
given. The basic semantic tries to find an existing object using id and scope; if it is not
found it will attempt to create the object using the other attributes. It is also possible to use
this action only to give a local name to an object define elsewhere, as in another JSP page or
in a Servlet; this can be done by using the type attribute and not providing neither class
nor beanName attributes.

At least one of type and class must be present, and it is not valid to provide both class
and beanName. If type and class are present, class must be assignable (in the Java
platform sense) to type; failure to do so is a translation-time error.

The attribute beanName is the name of a Bean, as specified in the JavaBeans specification
for an argument to the instantiate() method in java.beans.Beans. I.e. it is of the form “a.b.c”,
which may be either a class, or the name of a resource of the form “a/b/c.ser” that will be
resolved in the current ClassLoader. If this is not true, a request-time exception, as indicated
in the semantics of instantiate() will be raised. The value of this attribute can be a request-
time attribute expression.

The actions performed are:

1. Attempt to locate an object based on the attribute values (id, scope). The inspection is
done appropriately synchronized per scope namespace to avoid non-deterministic
behavior.

2. Define a scripting language variable with the given id in the current lexical scope of the
scripting language of the specified type (if given) or class (if type is not given).
Chapter 4 Standard Actions and Directives 58

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
3. If the object is found, the variable’s value is initialized with a reference to the located
object, cast to the specified type. If the cast fails, a
java.lang.ClassCastException shall occur. This completes the processing of
this useBean action.

If the jsp:useBean element had a non-empty body it is ignored. This completes the
processing of this useBean action.

4. If the object is not found in the specified scope and neither class nor beanName are given,
a java.lang.InstantiationException shall occur. This completes the
processing of this useBean action.

5. If the object is not found in the specified scope; and the class specified names a non-
abstract class that defines a public no-args constructor, then that class is instantiated, and
the new object reference is associated the with the scripting variable and with the
specified name in the specified scope using the appropriate scope dependent association
mechanism (see PageContext). After this, step 7 is performed.

If the object is not found, and the class is either abstract, an interface, or no public
no-args constructor is defined therein, then a
java.lang.InstantiationException shall occur. This completes the processing
of this useBean action.

6. If the object is not found in the specified scope; and beanName is given, then the method
instantiate() of java.beans.Beans will be invoked with the ClassLoader of the
Servlet object and the beanName as arguments. If the method succeeds, the new object
reference is associated the with the scripting variable and with the specified name in the
specified scope using the appropriate scope dependent association mechanism (see
PageContext). After this, step 7 is performed.

7. If the jsp:useBean element has a non-empty body, the body is processed. The variable
is initialized and available within the scope of the body. The text of the body is treated as
elsewhere; if there is template text it will be passed through to the out stream; scriptlets
and action tags will be evaluated.

A common use of a non-empty body is to complete initializing the created instance; in
that case the body will likely contain jsp:setProperty actions and scriptlets. This
completes the processing of this useBean action.

Examples

In the following example, a Bean with name “connection” of type
“com.myco.myapp.Connection” is available after this element; either because it was
already created or because it is newly created.

<jsp:useBean id=”connection” class=”com.myco.myapp.Connection” />

In this next example, the timeout property is set to 33 if the Bean was instantiated.
59 JavaServer Pages 1.2 Specification - PD1 • August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
<jsp:useBean id=”connection” class=”com.myco.myapp.Connection”>
<jsp:setProperty name=”connection” property=”timeout” value=”33”>

</jsp:useBean>

In our final example, the object should have been present in the session. If so, it is given the
local name wombat with WombatType. A ClassCastException may be raised if the
object is of the wrong class, and an InstantiationException may be raised if the
object is not defined.

<jsp:useBean id=”wombat” type=”my.WombatType” scope=”session”/>

4.2.1.1 Syntax
This action may or not have a body. If the action has no body, it is of the form:

<jsp:useBean id="name" scope="page|request|session|application"
typeSpec />

typeSpec ::=class=”className” |
class=”className” type=”typeName” |
type=”typeName” class=”className” |
beanName=”beanName” type=”typeName” |
type=”typeName” beanName=”beanName” |
type=”typeName”

If the action has a body, it is of the form:

<jsp:useBean id="name" scope="page|request|session|application"
typeSpec >

body
</jsp:useBean>

In this case, the body will be invoked if the Bean denoted by the action is created. Typically,
the body will contain either scriptlets or jsp:setProperty tags that will be used to
modify the newly created object, but the contents of the body is not restricted.
Chapter 4 Standard Actions and Directives 60

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
The <jsp:useBean> tag has the following attributes:

4.2.2 <jsp:setProperty>
The jsp:setProperty action sets the value of properties in a Bean. The name attribute
denotes an object that must be defined before this action appears.

id The name used to identify the object instance in the specified scope’s
namespace, and also the scripting variable name declared and
initialized with that object reference. The name specified is case
sensitive and shall conform to the current scripting language variable-
naming conventions.

scope The scope within which the reference is available. The default value is
page. See the description of the scope attribute defined earlier herein

class The fully qualified name of the class that defines the implementation of
the object. The class name is case sensitive.

If the class and beanName attributes are not specified the object must
be present in the given scope.

beanName The name of a Bean, as expected by the instantiate() method of the
java.beans.Beans class.

This attribute can accept a request-time attribute expression as a value.

type If specified, it defines the type of the scripting variable defined.

This allows the type of the scripting variable to be distinct from, but
related to, that of the implementation class specified.

The type is required to be either the class itself, a superclass of the
class, or an interface implemented by the class specified.

The object referenced is required to be of this type, otherwise a
java.lang.ClassCastException shall occur at request time
when the assignment of the object referenced to the scripting variable
is attempted.

If unspecified, the value is the same as the value of the class
attribute.
61 JavaServer Pages 1.2 Specification - PD1 • August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
There are two variants of the jsp:setProperty action. Both variants set the values of one or
more properties in the Bean based on the type of the properties. The usual Bean introspection
is done to discover what properties are present, and, for each, its name, whether they are
simple or indexed, their type, and setter and getter methods. Introspection also indicates if a
given property type has a PropertyEditor class.

Properties in a Bean can be set from one or more parameters in the request object, from a
String constant, or from a computed request-time expression. Simple and indexed properties
can be set using setProperty.

String constants and request parameter values can be used to assign values to any a type that
has a PropertyEditor class. When that is the case, the setAsText(String) method is used. A
conversion failure arises if the method throws an IllegalArgumentException.

String constantsand request parameter values can also be used to assing to the types as listed
in TABLE 4-2; the conversion applied is that shown in the table.

Request-time expressions can be assigned to properties of any type; no automatic
conversions will be performed.

When assigning values to indexed properties the value must be an array; the rules described
in the previous paragraph apply to the elements.

A conversion failure leads to an error; the error may be at translation or at request-time.

Examples

The following two elements set a value from the request parameter values.

<jsp:setProperty name=”request” property=”*” />
<jsp:setProperty name=”user” property=”user” param=”username” />

TABLE 4-2 Valid assignments in jsp:setProperty

Property Type Conversion on String Value

boolean or Boolean As indicated in java.lang.Boolean.valueOf(String)

byte or Byte As indicated in java.lang.Byte.valueOf(String)

char or Character As indicated in java.lang.Character.valueOf(String)

double or Double As indicated in java.lang.Double.valueOf(String)

int or Integer As indicated in java.lang.Integer.valueOf(String)

float or Float As indicated in java.lang.Float.valueOf(String)

long or Long As indicated in java.lang.Long.valueOf(String)
Chapter 4 Standard Actions and Directives 62

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
The following element sets a property from a value

<jsp:setProperty name=”results” property=”row” value=”<%= i+1 %>” />

4.2.2.1 Syntax
<jsp:setProperty name="beanName" prop_expr />

prop_expr ::= property="*" |
property=”propertyName”|
property=”propertyName” param="parameterName"|
property=”propertyName” value=”propertyValue”

propertyValue ::= string

The value propertyValue can also be a request-time attribute value, as described in Section 2.4.2.

propertyValue ::= expr_scriptlet1

The <jsp:setProperty> element has the following attributes:

1. See syntax for expression scriptlet “<%= ... %>”

name The name of a Bean instance defined by a <jsp:useBean> element or
some other element. The Bean instance must contain the property you
want to set. The defining element must appear before the
<jsp:setProperty> element in the same file.

property The name of the Bean property whose value you want to set

If you set propertyName to * then the tag will iterate over the
current ServletRequest parameters, matching parameter names
and value type(s) to property names and setter method type(s), setting
each matched property to the value of the matching parameter. If a
parameter has a value of ““, the corresponding property is not
modified.
63 JavaServer Pages 1.2 Specification - PD1 • August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
4.2.3 <jsp:getProperty>
An <jsp:getProperty> action places the value of a Bean instance property, converted to
a String, into the implicit out object, from which you can display the value as output. The
Bean instance must be defined as indicated in the name attribute before this point in the page
(usually via a useBean action).

The conversion to String is done as in the println() methods, i.e. the toString() method
of the object is used for Object instances, and the primitive types are converted directly.

If the object is not found, a request-time exception is raised.

The value of the name attribute in jsp:setProperty and jsp:getProperty will refer to an object
that obtained from the pageContext object through its findAttribute() method.

The object named by the name must have been “introduced” to the JSP processor using either
the jsp:useBean action or a custom action with an associated VariableInfo entry for this
name.

Note: a consequence of the previous paragraph is that objects that are stored in, say, the
session by a front component are not automatically visible to jsp:setProperty and
jsp:getProperty actions in that page unless a jsp:useBean action, or some other action, makes
them visible.

If the JSP processor can ascertain that there is an alternate way guaranteed to access the same
object, it can use that information. For example it may use a scripting variable, but it must
guarantee that no intervening code has invalidated the copy held by the scripting variable -
i.e. the truth is always the value held by the pageContext object

param The name of the request parameter whose value you want to give to a
Bean property. The name of the request parameter usually comes from a
Web form

If you omit param, the request parameter name is assumed to be the
same as the Bean property name

If the param is not set in the Request object, or if it has the value of ““,
the jsp:setProperty element has no effect (a noop).

An action may not have both param and value attributes.

value The value to assign to the given property.

This attribute can accept a request-time attribute expression as a value.

An action may not have both param and value attributes.
Chapter 4 Standard Actions and Directives 64

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
Examples

<jsp:getProperty name=”user” property=”name” />

4.2.3.1 Syntax
<jsp:getProperty name=”name” property=”propertyName” />

The attributes are:

4.2.4 <jsp:include>
A <jsp:include .../> element provides for the inclusion of static and dynamic
resources in the same context as the current page. See TABLE 4-1 for a summary of include
facilities.

The resource is specified using a relativeURLspec that is interpreted in the context of the
Web server (i.e. it is mapped).

An included page only has access to the JspWriter object and it cannot set headers. This
precludes invoking methods like setCookie(). A request-time Exception will be raised if
this constraint is not satisfied. The constraint is equivalent to the one imposed on the
include() method of the RequestDispatcher class.

A jsp:include action may have jsp:param subelements that can provide values for
some parameters in the request to be used for the inclusion.

Request processing resumes in the calling JSP page, once the inclusion is completed.

If the page output is buffered then the buffer is flushed prior to the inclusion. See Section B.4
for an implementation note.

Examples

<jsp:include page=”/templates/copyright.html”/>

name The name of the object instance from which the property is obtained.

property Names the property to get.
65 JavaServer Pages 1.2 Specification - PD1 • August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
4.2.4.1 Syntax
<jsp:include page=”urlSpec” flush="true"/>

and

<jsp:include page=”urlSpec” flush="true">
{ <jsp:param /> }*

</jsp:include>

The first syntax just does a request-time inclusion. In the second case, the values in the
param subelements are used to augment the request for the purposes of the inclusion.

The valid attributes are:

4.2.5 <jsp:forward>
A <jsp:forward page=”urlSpec” /> element allows the runtime dispatch of the
current request to a static resource, a JSP pages or a Java Servlet class in the same context as
the current page. A jsp:forward effectively terminates the execution of the current page. The
relative urlSpec is as in Section 2.2.1.

The request object will be adjusted according to the value of the page attribute.

A jsp:forward action may have jsp:param subelements that can provide values for
some parameters in the request to be used for the forwarding.

If the page output is buffered then the buffer is cleared prior to forwarding.

If the page output was unbuffered and anything has been written to it, an attempt to forward
the request will result in an IllegalStateException.

Examples

The following element might be used to forward to a static page based on some dynamic
condition.

page The URL is a relative urlSpec is as in Section 2.2.1.

Accepts a request-time attribute value (which must evaluate to a String
that is a relative URL specification).

flush Optional boolean attribute. If the value is “true”, the buffer is flushed.
The default value is “false”.
Chapter 4 Standard Actions and Directives 66

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
<% String whereTo = “/templates/”+someValue; %>
<jsp:forward page=’<%= whereTo %>’ />

4.2.5.1 Syntax
<jsp:forward page=”relativeURLspec” />

and

<jsp:forward page=”urlSpec”>
{ <jsp:param /> }*

</jsp:forward>

This tag allows the page author to cause the current request processing to be effected by the
specified attributes as follows:

4.2.6 <jsp:param>
The jsp:param element is used to provide key/value information. This element is used in
the jsp:include, jsp:forward and jsp:plugin elements.

When doing jsp:include or jsp:forward, the included page or forwarded page will
see the original request object, with the original parameters augmented with the new
parameters, with new values taking precedence over existing values when applicable. The
scope of the new parameters is the jsp:include or jsp:forward call; i.e. in the case of an
jsp:include the new parameters (and values) will not apply after the include. This is the
same behavior as in the ServletRequest include and forward methods (see Section
8.1.1 in the Servlet 2.2 specification).

For example, if the request has a parameter A=foo and a parameter A=bar is specified for
forward, the forwarded request shall have A=bar,foo. Note that the new param has
precedence.

4.2.6.1 Syntax
<jsp:param name="name" value="value" />

page The URL is a relative urlSpec is as in Section 2.2.1.

Accepts a request-time attribute value (which must evaluate to a String
that is a relative URL specification).
67 JavaServer Pages 1.2 Specification - PD1 • August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
This action has two mandatory attributes: name and value. Name indicates the name of the
parameter, value, which may be a request-time expression, indicates its value.

4.2.7 <jsp:plugin>
The plugin action enables a JSP page author to generate HTML that contains the appropriate
client browser dependent constructs (OBJECT or EMBED) that will result in the download
of the Java Plugin software (if required) and subsequent execution of the Applet or
JavaBeans component specified therein.

The <jsp:plugin> tag is replaced by either an <object> or <embed> tag, as
appropriate for the requesting user agent, and emitted into the output stream of the response.
The attributes of the <jsp:plugin> tag provide configuration data for the presentation of
the element, as indicated in the table below.

The <jsp:param> elements indicate the parameters to the Applet or JavaBeans
component.

The <jsp:fallback> element indicates the content to be used by the client browser if the
plugin cannot be started (either because OBJECT or EMBED is not supported by the client
browser or due to some other problem). If the plugin can start but the Applet or JavaBeans
component cannot be found or started, a plugin specific message will be presented to the
user, most likely a popup window reporting a ClassNotFoundException.

The actual plugin code needs not be bundled with the JSP container and a reference to SUN’s
plugin location can be used instead, although some vendors will choose to include the plugin
for the benefit of their customers.

Examples
<jsp:plugin type=applet code=”Molecule.class” codebase=”/html” >

<jsp:params>
<jsp:param

name=”molecule”
value=”molecules/benzene.mol”/>

</jsp:params>
<jsp:fallback>
 <p> unable to start plugin </p>
</jsp:fallback>

</jsp:plugin>
Chapter 4 Standard Actions and Directives 68

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
4.2.7.1 Syntax
<jsp:plugintype="bean|applet"

code="objectCode"
codebase="objectCodebase"
{ align="alignment" }
{ archive="archiveList" }
{ height="height" }
{ hspace="hspace" }
{ jreversion="jreversion" }
{ name="componentName" }
{ vspace="vspace" }
{ width="width" }
{ nspluginurl="url" }
{ iepluginurl="url" } >

{ <jsp:params>
{ <jsp:param name="paramName" value=”paramValue" /> }+

 </jsp:params> }

{ <jsp:fallback> arbitrary_text </jsp:fallback> }

</jsp:plugin>

type Identifies the type of the component; a Bean, or an Applet.

code As defined by HTML spec

codebase As defined by HTML spec

align As defined by HTML spec

archive As defined by HTML spec

height As defined by HTML spec

hspace As defined by HTML spec

jreversion Identifies the spec version number of the JRE the component requires
in order to operate; the default is: “1.2”

name As defined by HTML spec

vspace As defined by HTML spec

title As defined by the HTML spec
69 JavaServer Pages 1.2 Specification - PD1 • August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
width As defined by HTML spec

nspluginurl URL where JRE plugin can be downloaded for Netscape Navigator,
default is implementation defined.

iepluginurl URL where JRE plugin can be downloaded for IE, default is
implementation defined.
Chapter 4 Standard Actions and Directives 70

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
71 JavaServer Pages 1.2 Specification - PD1 • August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
CHAPTER 5

JSP Pages as XML
Documents

This chapter defines a standard XML document for each JSP page.

All JSP pages have an equivalent XML document. This equivalent XML document is the
view of the JSP page that is exposed to the translation phase (see below).

A JSP page can also be written directly as its equivalent XML document. Unlike in JSP 1.0
and JSP 1.1 containers, the XML document itself can be delivered to a JSP container for
processing.

It is not valid to intermix “standard syntax” and XML syntax inside the same source file.

A JSP page (in either syntax) can include via a directive a JSP page in any syntax. I.e.
within each unit one syntax is used but each unit can use either syntax.

5.1 Why an XML Representation
There are a number of reasons why it would be impractical to define JSP pages as XML
documents when the JSP page is to be authored manually:

• An XML document must have a single top element; a JSP page is conveniently organized
as a sequence of template text and elements.

• In an XML document all tags are “significant”; to “pass through” a tag, it needs to be
escaped using a mechanism like CDATA. In a JSP page, tags that are undefined by the
JSP specification are passed through automatically.
 JSP Pages as XML Documents 72

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
• Some very common programming tokens, like “<“ are significant to XML; the JSP
specification provides a mechanism (the <% syntax) to “pass through” these tokens.

On the other hand, the JSP specification is not gratuitously inconsistent with XML: all
features have been made XML-compliant as much as possible.

The hand-authoring friendliness of JSP pages is very important for the initial adoption of the
JSP technology; this is also likely to remain important in later time-frames, but tool
manipulation of JSP pages will take a stronger role then. In that context, there is an ever
growing collection of tools and APIs that support manipulation of XML documents.

The JSP 1.2 specification addresses both requirements by providing a friendly syntax and
also defining a standard XML document for a JSP page.

5.2 Document Type

5.2.1 The jsp:root Element
An XML document representing a JSP page has jsp:root as its root element type. The
root is also the place where taglibs will insert their namespace attributes. The top element has
an xmlns attribute that enables the use of the standard elements defined in the JSP 1.1
specification.

<jsp:root
xmlns:jsp=”http://java.sun.com/products/jsp/dtd/jsp_1_2.dtd”>

remainder of transformed JSP page
</jsp:root>

5.2.2 Public ID
The proposed Document Type Declaration is:

<! DOCTYPE root
PUBLIC“-//Sun Microsystems Inc.//DTD JavaServer Pages Version 1.1//EN”

“http://java.sun.com/products/jsp/dtd/jspcore_1_2.dtd”>
73 JavaServer Pages 1.2 Specification - PD1 • August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
5.3 Directives
A directive in a JSP page is of the form

<%@ directive { attr=”value” }* %>

Most directives get translated into an element of the form:

<jsp:directive.directive { attr=”value” }* />

5.3.1 The page directive
In the XML document corresponding to JSP pages, the page directive is represented using
the syntax:

<jsp:directive.page page_directive_attr_list />

See Section 2.10.1 for description of page_directive_attr_list.

Example

The directive:

<%@ page info=”my latest JSP Example” %>

corresponds to the XML element:

<jsp:directive.page info=”my latest JSP Example” />

5.3.2 The include Directive
In the XML document corresponding to JSP pages, the include directive is represented using
the syntax:

<jsp:directive.include file="relativeURLspec” flush="true|false" />

Examples

Below are two examples, one in JSP syntax, the other using XML syntax:
Chapter 5 JSP Pages as XML Documents 74

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
<%@ include file=”copyright.hmtl” %>

<jsp:directive.include file=”htmldocs/logo.html” />

5.3.3 The taglib Directive
In the XML document corresponding to JSP pages, the taglib directive is represented as an
xmlns: attribute within the root element of the JSP page document.

5.4 Scripting Elements
The JSP 1.2 specification has three scripting language elements—declarations, scriptlets, and
expressions. The scripting elements have a “<%”-based syntax as follows:

<%! this is a declaration %>
<% this is a scriptlet %>
<%= this is an expression %>

5.4.1 Declarations
In the XML document corresponding to JSP pages, declarations are represented using the
syntax:

<jsp:declaration> declaration goes here </jsp:declaration>

For example, the second example from Section 2.11.1:

<%! public String f(int i) { if (i<3) return(“...”); ... } %>

is translated using a CDATA statement to avoid having to quote the “<“ inside the
jsp:declaration.

<jsp:declaration> <![CDATA[public String f(int i) { if (i<3)
return(“...”); }]]> </jsp:declaration>

DTD Fragment
<!ELEMENT jsp:declaration (#PCDATA) >
75 JavaServer Pages 1.2 Specification - PD1 • August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
5.4.2 Scriptlets
In the XML document corresponding to JSP pages, directives are represented using the
syntax:

<jsp:scriptlet> code fragment goes here </jsp:scriptlet>

DTD Fragment
<!ELEMENT jsp:scriptlet (#PCDATA) >

5.4.3 Expressions
In the XML document corresponding to JSP pages, directives are represented using the
syntax:

<jsp:expression> expression goes here </jsp:expression>

DTD Fragment
<!ELEMENT jsp:expression (#PCDATA) >

5.5 Actions
The syntax for action elements is based on XML; the only transformations needed are due to
quoting conventions and the syntax of request-time attribute expressions.

5.6 Transforming a JSP Page into an
XML Document
The standard XML document for a JSP page is defined by transformation of the JSP page.
Chapter 5 JSP Pages as XML Documents 76

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
• Add a <jsp:root> element as the root. Enable a “jsp” namespace prefix for the standard
tags within this root.

• Convert all the <% elements into valid XML elements as described in Section 5.4.1 and
following sections.

• Convert the quotation mechanisms appropriately.

• Convert the taglib directive into namespace attributes of the <jsp:root> element.

• Create CDATA elements for all segments of the JSP page that do not correspond to JSP
elements.

A quick summary of the transformation is shown in TABLE 5-1:

5.6.1 Quoting Conventions
The quoting rules for the JSP 1.2 specification are designed to be friendly for hand authoring,
they are not valid XML conventions.

Quoting conventions are converted in the generation of the XML document from the JSP
page. This is not yet described in this version of the specification.

5.6.2 Request-Time Attribute Expressions
Request-time attribute expressions are of the form “<%= expression %>”. Although this
syntax is consistent with the syntax used elsewhere in a JSP page, it is not a legal XML
syntax. The XML mapping for these expressions is into values of the form “%= expression’
%”, where the JSP specification quoting convention has been converted to the XML quoting
convention.

TABLE 5-1 XML standard tags for directives and scripting elements

JSP page element XML equivalent

<%@ page ... %> <jsp:directive.page ... />

<%@ taglib ... %> jsp:root element is annotated with namespace information.

<%@ include ... %> <jsp:directive.include .../>

<%! ... %> <jsp:declaration> </jsp:declaration>

<% ... %> <jsp:scriptlet> </jsp:scriptlet>

<%= %> <jsp:expression> </jsp:expression>
77 JavaServer Pages 1.2 Specification - PD1 • August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
Note – The JSP 1.1 syntax does not allow the use of custom actions to construct attribute
values. This is issue # 4.

5.7 DTD for the XML document
The following is a DTD for the current XML mapping:

FIGURE 5-1 DTD for the XML document

<!ENTITY % jsp.body “
(#PCDATA
|jsp:directive.page
|jsp:directive.include
|jsp:scriptlet
|jsp:declaration
|jsp:expression
|jsp:include
|jsp:forward
|jsp:useBean
|jsp:setProperty
|jsp:getProperty
|jsp:plugin
|jsp:fallback
|jsp:params
|jsp:param)*
“>

<!ELEMENT jsp:useBean %jsp.body;>
<!ATTLIST jsp:useBean
id ID #REQUIRED
class CDATA#REQUIRED
scope (page|session|request|application) “page”>

<!ELEMENT jsp:setProperty EMPTY>
<!ATTLIST jsp:setProperty
name IDREF#REQUIRED
propertyCDATA#REQUIRED
value CDATA#IMPLIED
param CDATA#IMPLIED>
Chapter 5 JSP Pages as XML Documents 78

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
<!ELEMENT jsp:getProperty EMPTY>
<!ATTLIST jsp:getProperty
name IREF #REQUIRED
propertyCDATA#REQUIRED>

<!ELEMENTjsp:includeEMPTY>
<!ATTLISTjsp:include
flush (true|false)"false"
page CDATA#REQUIRED>

<!ELEMENT jsp:forward EMPTY>
<!ATTLISTjsp:forward
page CDATA#REQUIRED>

<!ELEMENT jsp:scriptlet (#PCDATA)>

<!ELEMENT jsp:declaration (#PCDATA)>

<!ELEMENT jsp:expression (#PCDATA)>

<!ELEMENT jsp:directive.page EMPTY>
<!ATTLIST jsp:directive.page
languageCDATA“java”
extendsCDATA#IMPLIED
contentTypeCDATA“text/html; ISO-8859-1”
import CDATA#IMPLIED
session(true|false)“true”
buffer CDATA“8kb”
autoFlush(true|false)“true”
isThreadSafe(true|false)“true”
info CDATA#IMPLIED
errorPageCDATA#IMPLIED
isErrorPage(true|false)“false”>

<!ELEMENT jsp:directive.include EMPTY>
<!ATTLIST jsp:directive.include
file CDATA #REQUIRED>

<!ELEMENT jsp:root %jsp.body;>
<!ATTLIST jsp:root
xmlns:jspCDATA#FIXED “http://java.sun.com/products/jsp/dtd/
jsp_1_0.dtd”>
79 JavaServer Pages 1.2 Specification - PD1 • August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
CHAPTER 6

The JSP Container

This chapter provides details on the contracts between a JSP container and a JSP page.

This chapter is independent on the Scripting Language used in the JSP page. Chapter 7
provides the details specific to when the language directive has “java” as its value.

This chapter also presents the precompilation protocol (see Section 6.4).

JSP page implementation classes should use the JspFactory and PageContext classes so they
will take advantage of platform-specific implementations.

6.1 The JSP Page Model
A JSP page is represented at execution time by a JSP page implementation object and is
executed by a JSP container. The JSP page implementation object implements a Servlet. The
JSP container delivers requests from a client to a JSP page implementation object and
responses from the JSP page implementation object to the client.

The JSP page describes how to create a response object from a request object for a given
protocol, possibly creating and/or using in the process some other objects. A JSP page may
also indicate how some events (in JSP 1.1 only init and destroy events) are to be handled.

The Protocol Seen by the Web Server

It is the role of the JSP container to first locate the appropriate instance of the JSP page
implementation class and then to deliver requests to it according to the Servlet protocol. As
indicated elsewhere, a JSP container may need to create such a class dynamically from the
JSP page source before delivering a request and response objects to it.
 The JSP Container 80

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
Thus, Servlet defines the contract between the JSP container and the JSP page
implementation class. When the HTTP protocol is used, the contract is described by the
HttpServlet class. Most pages use the HTTP protocol, but other protocols are allowed by this
specification.

The JSP container automatically makes available to the JSP page implementation object a
number of server-side objects. See Section 2.8.3.

The Protocol Seen by the JSP Page Author

The JSP specification also defines the contract between the JSP container and the JSP page
author. This is, what assumptions can an author make for the actions described in the JSP
page.

The main portion of this contract is the _jspService() method that is generated automatically
by the JSP container from the JSP page. The details of this contract is provided in Chapter 7.

The contract also describes how a JSP author can indicate that some actions must be taken
when the init() and destroy() methods of the page implementation occur. In JSP 1.1 this is
done by defining methods with name jspInit() and jspDestroy() in a declaration scripting
element in the JSP page. Before the first time a request is delivered to a JSP page a jspInit()
method, if present, will be called to prepare the page. Similarly, a JSP container can reclaim
the resources used by a JSP page at any time that a request is not being serviced by the JSP
page by invoking first its jspDestroy() method, if present.

A JSP page author may not (re)define any of the Servlet methods through a declaration
scripting element.

The JSP specification reserves the semantics of methods and variables starting with jsp, _jsp,
jspx and _jspx, in any combination of upper and lower case.

The HttpJspPage Interface

The enforcement of the contract between the JSP container and the JSP page author is aided
by requiring that the Servlet class corresponding to the JSP page must implement the
HttpJspPage interface (or the JspPage interface if the protocol is not HTTP).
81 JavaServer Pages 1.2 Specification - PD1 • August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
FIGURE 6-1 Contracts between a JSP Page and a JSP Container.

The involved contracts are shown in FIGURE 6-1. We now revisit this whole process in more
detail.

6.2 JSP Page Implementation Class
The JSP container creates a JSP page implementation class for each JSP page.

The name of the JSP page implementation class is implementation dependent.

The JSP Page implementation object belongs to an, implementation-dependent, named
package. The package used is implementation-dependent, and may even vary between one
JSP and another, so minimal assumptions should be made. One implication of this is that
classes in the unnamed package should not be used without an explicit “import” of the class

The creation of the implementation class for a JSP page may be done solely by the JSP
container, or it may involve a superclass provided by the JSP page author through the use of
the extends attribute in the jsp directive.

JSP Container JSP Page

jspInit

jspDestroy

_jspService

init event

destroy event

request

response

<%!
public void jspInit()...

public void jspDestroy()...
%>
<html>
This is the response..
</html>

REQUEST PROCESSING TRANSLATION PHASE
PHASE
Chapter 6 The JSP Container 82

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
The extends mechanism is available for sophisticated users and it should be used with
extreme care as it restricts what some of the decisions that a JSP container can take, e.g. to
improve performance.

The JSP page implementation class will implement Servlet and the Servlet protocol
will be used to deliver requests to the class.

A JSP page implementation class may depend on some support classes; if it does, and the
JSP page implementation class is packaged into a WAR, those classes will have to be
included in the packaged WAR so it will be portable across all JSP containers.

A JSP page author writes a JSP page expecting that the client and the server will
communicate using a certain protocol. The JSP container must then guarantee that requests
from and responses to the page use that protocol. Most JSP pages use HTTP, and their
implementation classes must implement the HttpJspPage interface, which extends
JspPage. If the protocol is not HTTP, then the class will implement an interface that
extends JspPage.

6.2.1 API Contracts
The contract between the JSP container and a Java class implementing a JSP page
corresponds to the Servlet interface; refer to the Servlet specification for details.

The contract between the JSP container and the JSP page author is described in TABLE 6-1.
The responsibility for adhering to this contract rests only on the JSP container
implementation if the JSP page does not use the extends attribute of the jsp directive;
otherwise, the JSP page author guarantees that the superclass given in the extends attribute
supports this contract.

TABLE 6-1 How the JSP Container Processes JSP Pages

Comments Methods the JSP Container Invokes
83 JavaServer Pages 1.2 Specification - PD1 • August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
6.2.2 Request and Response Parameters
As shown in TABLE 6-1, the methods in the contract between the JSP container and the JSP
page require request and response parameters.

The formal type of the request parameter (which this specification calls
<ServletRequestSubtype>) is an interface that extends
javax.servlet.ServletRequest. The interface must define a protocol-dependent
request contract between the JSP container and the class that implements the JSP page.

Likewise, the formal type of the response parameter (which this specification calls
<ServletResponseSubtype>) is an interface that extends
javax.servlet.ServletResponse. The interface must define a protocol-dependent
response contract between the JSP container and the class that implements the JSP page.

The request and response interfaces together describe a protocol-dependent contract between
the JSP container and the class that implements the JSP page. The contract for HTTP is
defined by the javax.servlet.http.HttpServletRequest and
javax.servlet.http.HttpServletResponse interfaces.

The JspPage interface refers to these methods, but cannot describe syntactically the
methods involving the Servlet(Request,Response) subtypes. However, interfaces for
specific protocols that extend JspPage can, just as HttpJspPage describes them for the
HTTP protocol.

JSP containers that conform to this specification (in both JSP page implementation classes
and JSP container runtime) must implement the request and response interfaces for the
HTTP protocol as described in this section.

Method is optionally defined in JSP page.
Method is invoked when the JSP page is
initialized.
When method is called all the methods in
servlet, including getServletConfig() are
available

void jspInit()

Method is optionally defined in JSP page.
Method is invoked before destroying the
page.

void jspDestroy()

Method may not be defined in JSP page.
The JSP container automatically
generates this method, based on the
contents of the JSP page.
Method invoked at each client request.

void _jspService(<ServletRequestSubtype>,
<ServletResponseSubtype>) throws
IOException, ServletException
Chapter 6 The JSP Container 84

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
6.2.3 Omitting the extends Attribute
If the extends attribute of the language directive (see Section 2.10.1, “The page
Directive) in a JSP page is not used, the JSP container can generate any class that satisfies
the contract described in TABLE 6-1 when it transforms the JSP page.

In the following code examples, CODE EXAMPLE 6-1 illustrates a generic HTTP superclass
named ExampleHttpSuper. CODE EXAMPLE 6-2 shows a subclass named _jsp1344 that
extends ExampleHttpSuper and is the class generated from the JSP page. By using
separate _jsp1344 and ExampleHttpSuper classes, the JSP page translator needs not
discover if the JSP page includes a declaration with jspInit() or jspDestroy(); this
simplifies very significantly the implementation.
85 JavaServer Pages 1.2 Specification - PD1 • August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
CODE EXAMPLE 6-1 A Generic HTTP Superclass

imports javax.servlet.*;
imports javax.servlet.http.*;
imports javax.servlet.jsp.*;

/**
* An example of a superclass for an HTTP JSP class
*/

abstract class ExampleHttpSuper implements HttpJspPage {
private ServletConfig config;

final public void init(ServletConfig config) throws ServletException {
this.config = config;
jspInit();

}

final public ServletConfig getServletConfig() {
return config;

}

// This one is not final so it can be overridden by a more precise method
public String getServletInfo() {

return “A Superclass for an HTTP JSP”; // maybe better?
}

final public void destroy() {
jspDestroy();

}

/**
* The entry point into service.
*/

final public void service(ServletRequest req, ServletResponse res)
throws ServletException, IOException {

// casting exceptions will be raised if an internal error.
HttpServletRequest request = (HttpServletRequest) req;
HttpServletResponse response = (HttpServletResponse) res;

_jspService(request, resonse);

/**
* abstract method to be provided by the JSP processor in the subclass
* Must be defined in subclass.
*/

abstract public void _jspService(HttpServletRequest request,
HttpServletResponse response) throws ServletException, IOException;

}

Chapter 6 The JSP Container 86

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
CODE EXAMPLE 6-2 The Java Class Generated From a JSP Page
imports javax.servlet.*;
imports javax.servlet.http.*;
imports javax.servlet.jsp.*;

/**
* An example of a class generated for a JSP.
*
* The name of the class is unpredictable.
* We are assuming that this is an HTTP JSP page (like almost all are)
*/

class _jsp1344 extends ExampleHttpSuper {

// Next code inserted directly via declarations.
// Any of the following pieces may or not be present
// if they are not defined here the superclass methods
// will be used.

public void jspInit() {....}
public void jspDestroy() {....}

// The next method is generated automatically by the
// JSP processor.
// body of JSP page

public void _jspService(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {

// initialization of the implicit variables

HttpSession session = request.getSession();
ServletContext context =

getServletConfig().getServletContext();

// for this example, we assume a buffered directive

JSPBufferedWriter out = new
JSPBufferedWriter(response.getWriter());

// next is code from scriptlets, expressions, and static text.

}

}

87 JavaServer Pages 1.2 Specification - PD1 • August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
6.2.4 Using the extends Attribute
If the JSP page author uses extends, the generated class is identical to the one shown in
CODE EXAMPLE 6-2, except that the class name is the one specified in the extends attribute.

The contract on the JSP page implementation class does not change. The JSP container
should check (usually through reflection) that the provided superclass:

• Implements HttpJspPage if the protocol is HTTP, or JspPage otherwise.

• All of the methods in the Servlet interface are declared final.

Additionally, it is the responsibility of the JSP page author that the provided superclass
satisfies:

• The service() method of the Servlet API invokes the _jspService() method.

• The init(ServletConfig) method stores the configuration, makes it available as
getServletConfig, then invokes jspInit.

• The destroy method invokes jspDestroy.

A JSP container may give a fatal translation error if it detects that the provided superclass
does not satisfy these requirements, but most JSP containers will not check them.

6.3 Buffering
The JSP container buffers data (if the jsp directive specifies it using the buffer attribute) as it
is sent from the server to the client. Headers are not sent to the client until the first flush
method is invoked. Therefore, none of the operations that rely on headers, such as the
setContentType, redirect, or error methods are valid until the flush method is
executed and the headers are sent.

The javax.servlet.jsp.JspWriter class buffers and sends output. The
JspWriter class is used in the _jspPageService method as in the following example:

import javax.servlet.jsp.JspWriter;

static JspFactory _jspFactory = JspFactory.getDefaultFactory();

_jspService(<SRequest> request, <SResponse> response) {

// initialization of implicit variables...

PageContext pageContext = _jspFactory.createPageContext(
this,
request,
Chapter 6 The JSP Container 88

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
response,
false,
PageContext.DEFAULT_BUFFER,
false

);
JSPWriter out = pageContext.getOut();
//
// the body goes here using "out"
//
out.flush();

}

You can find the complete listing of javax.servlet.jsp.JspWriter in Chapter 8.

With buffering turned on, you can still use a redirect method in a scriptlet in a .jsp file, by
invoking response.redirect(someURL) directly.

6.4 Precompilation
A JSP page that is using the HTTP protocol will receive HTTP requests. JSP 1.2 compliant
containers must support a simple precompilation protocol, as well as some basic reserved
parameter names. Note that the precompilation protocol should not be confused with the
notion of compiling a JSP page into a Servlet class (Appendix A).

6.4.1 Request Parameter Names
All request parameter names that start with the prefix "jsp" are reserved by the JSP
specification and should not be used by any user or implementation except as indicated by
the specification.

All JSPs pages should ignore (not depend on) any parameter that starts with "jsp_"

6.4.2 Precompilation Protocol
A request to a JSP page that has a request parameter with name "jsp_precompile" is a
precompilation request. The "jsp_precompile" parameter may have no value, or may have
values "true" or "false". In all cases, the request should not be delivered to the JSP page.
89 JavaServer Pages 1.2 Specification - PD1 • August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
The intention of the precompilation request is that of a hint to the JSP container to
precompile the JSP page into its JSP page implementation class. The hint is conveyed by
given the parameter the value "true" or no value, but note that the request can be just ignored
in all cases.

For example:

1. ?jsp_precompile

2. ?jsp_precompile="true"

3. ?jsp_precompile="false"

4. ?foobar="foobaz"&jsp_precompile="true"

5. ?foobar="foobaz"&jsp_precompile="false"

1, 2 and 4 are legal; the request will not be delivered to the page. 3 and 5 are legal; the
request will be delivered to the page with no changes.

6. ?jsp_precompile="foo"

This is illegal and will generate an HTTP error; 500 (Server error).
Chapter 6 The JSP Container 90

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
91 JavaServer Pages 1.2 Specification - PD1 • August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
CHAPTER 7

Scripting

This chapter describes the details of the Scripting Elements when the language directive
value is “java”. The scripting language is based on the Java programming language (as
specified by “The Java Language Specification”), but note that there is no valid JSP page, or
a subset of a page, that is a valid Java program.

The details of the relationship between the scripting declarations, scriptlets, and scripting
expressions and the Java programming language is explained in detail in the following
sections. The description is in terms of the structure of the JSP page implementation class;
recall that a JSP container need not necessarily generate the JSP page implementation class
but it must behave as if one existed.

7.1 Overall Structure
Some details of what makes a JSP page legal are very specific to the scripting language used
in the page. This is especially complex since scriptlets are just language fragments, not
complete language statements.

Valid JSP Page

A JSP page is valid for a Java Platform if and only if the JSP page implementation class
defined by TABLE 7-1 (after applying all include directives), together with any other classes
defined by the JSP container, is a valid program for the given Java Platform, and if it passes
the validation methods for all the tag libraries associated with the JSP page.
 Scripting 92

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
Sun Microsystems reserves all names of the form {_}jsp_* and {_}jspx_*, in any
combination of upper and lower case, for the JSP specification. Names of this form that are
not defined in this specification are reserved by Sun for future expansion.

Implementation Flexibility

The transformations described in this Chapter need not be performed literally; an
implementation may want to implement things differently to provide better performance,
lower memory footprint, or other implementation attributes.

TABLE 7-1 Structure of the JavaProgramming Language Class

Optional imports clause as
indicated via jsp directive

import name1

SuperClass is either
selected by the JSP
container or by the JSP
author via jsp directive.

Name of class (_jspXXX)
is implementation
dependent.

class _jspXXX extends SuperClass

Start of body of JSP page
implementation class

{

(1) Declaration Section // declarations ...

signature for generated
method

public void _jspService(<ServletRequestSubtype> request,
<ServletResponseSubtype> response)
throws ServletException, IOException {

(2) Implicit Objects Section // code that defines and initializes request, response, page,
pageContext etc.

(3) Main Section // code that defines request/response mapping

close of _jspService
method

}

close of _jspXXX }
93 JavaServer Pages 1.2 Specification - PD1 • August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
7.2 Declarations Section
The declarations section correspond to the declaration elements.

The contents of this section is determined by concatenating all the declarations in the page in
the order in which they appear.

7.3 Initialization Section
This section defines and initializes the implicit objects available to the JSP page. See
Section 2.8.3, “Implicit Objects.

7.4 Main Section
This section provides the main mapping between a request and a response object.

The contents of code segment 2 is determined from scriptlets, expressions, and the text body
of the JSP page. These elements are processed sequentially; a translation for each one is
determined as indicated below, and its translation is inserted into this section. The translation
depends on the element type:

1. Template data is transformed into code that will place the template data into the stream
currently named by the implicit variable out. All white space is preserved.

Ignoring quotation issues and performance issues, this corresponds to a statement of the
form:

out.print(template);

2. A scriptlet is transformed into its Java statement fragment.

3. An expression is transformed into a Java statement to insert the value of the expression,
converted to java.lang.String if needed, into the stream currently named by the
implicit variable out. No additional newlines or space is included.

Ignoring quotation and performance issues, this corresponds to a statement of the form:

out.print(expression);
Chapter 7 Scripting 94

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
4. An action defining one or more objects is transformed into one or more variable
declarations for these objects, together with code that initializes these variables. The
visibility of these variables is affected by other constructs, like the scriptlets.

The semantics of the action type determines the name of the variables (usually that of the
id attribute, if present) and their type. The only standard action in the JSP specification
that defines objects is the jsp:usebean action; the name of the variable introduced is that
of the id attribute, its type is that of the class attribute.

Note that the value of the scope attribute does not affect the visibility of the variables
within the generated program, it only affects where (and thus for how long) there will be
additional references to the object denoted by the variable.
95 JavaServer Pages 1.2 Specification - PD1 • August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
CHAPTER 8

Core API

The javax.servlet.jsp package contains a number of classes and interfaces that describe and
define the contracts between a JSP page implementation class and the runtime environment
provided for an instance of such a class by a conforming JSP container.

8.1 JSP Page Implementation Object
Contract
This section describes the basic contract between a JSP Page implementation object and its
container. The main contract is defined by the classes JspPage and HttpJspPage. The
JspFactory class describes the mechanism to portably instantiate all needed runtime
objects, and JspEngineInfo provides basic information on the current JSP container.

None of the classes described here are intended to be used by JSP page authors; an example
of how these classes may be used is included elsewhere in this chapter.

8.1.1 JspPage

Syntax
public interface JspPage extends javax.servlet.Servlet

All Known Subinterfaces: HttpJspPage
Chapter 8 Core API 96

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
All Superinterfaces: javax.servlet.Servlet

Description

The JspPage interface describes the generic interaction that a JSP Page Implementation
class must satisfy; pages that use the HTTP protocol are described by the HttpJspPage
interface.

JspPage objects are obtained from the JspFactory object.

Two plus One Methods

The interface defines a protocol with 3 methods; only two of them: jspInit() and jspDestroy()
are part of this interface as the signature of the third method: _jspService() depends on the
specific protocol used and cannot be expressed in a generic way in Java.

A class implementing this interface is responsible for invoking the above methods at the
apropriate time based on the corresponding Servlet-based method invocations.

The jspInit() and jspDestroy() methods can be defined by a JSP author, but the _jspService()
method is defined authomatically by the JSP processor based on the contents of the JSP
page.

_jspService()

The _jspService()method corresponds to the body of the JSP page. This method is defined
automatically by the JSP container and should never be defined by the JSP page author.

If a superclass is specified using the extends attribute, that superclass may choose to perform
some actions in its service() method before or after calling the _jspService() method. See
using the extends attribute in the JSP_Engine chapter of the JSP specification.

The specific signature depends on the protocol supported by the JSP page.
public void _jspService(ServletRequestSubtype request,

ServletResponseSubtype response)
throws ServletException, IOException;

8.1.1.1 Methods
public void jspDestroy()

The jspDestroy() method is invoked when the JSP page is about to be destroyed. A JSP
page can override this method by including a definition for it in a declaration element. A
JSP page should redefine the destroy() method from Servlet

public void jspInit()
97 JavaServet Pages 1.2 Specification - PD1 • August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
The jspInit() method is invoked when the JSP page is initialized. It is the responsibility of
the JSP implementation (and of the class mentioned by the extends attribute, if present)
that at this point invocations to the getServletConfig() method will return the desired
value. A JSP page can override this method by including a definition for it in a declaration
element. A JSP page should redefine the init() method from Servlet

8.1.2 HttpJspPage

Syntax
public interface HttpJspPage extends JspPage

All Superinterfaces: JspPage, javax.servlet.Servlet

Description

The HttpJspPage interface describes the interaction that a JSP Page Implementation Class
must satisfy when using the HTTP protocol.

HttpJspPage objects are obtained from the JspFactory class.

The behaviour is identical to that of the JspPage, except for the signature of the _jspService
method, which is now expressable in the Java type system and included explicitly in the inter-
face.

See Also: JspPage

8.1.2.1 Methods
public void _jspService(javax.servlet.http.HttpServletRequest request,

javax.servlet.http.HttpServletResponse response)

The _jspService()method corresponds to the body of the JSP page. This method is defined
automatically by the JSP container and should never be defined by the JSP page author.

If a superclass is specified using the extends attribute, that superclass may choose to per-
form some actions in its service() method before or after calling the _jspService() method.
See using the extends attribute in the JSP_Engine chapter of the JSP specification.

Throws:
IOException, ServletException
Chapter 8 Core API 98

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
8.1.3 JspFactory

Syntax
public abstract class JspFactory

Description

 The JspFactory is an abstract class that defines a number of factory methods available
to a JSP page at runtime for the purposes of creating instances of various interfaces and
classes used to support the JSP implementation.

A conformant JSP Engine implementation will, during it’s initialization instantiate an imple-
mentation dependent subclass of this class, and make it globally available for use by JSP
implementation classes by registering the instance created with this class via the static
setDefaultFactory() method.

The PageContext and the JspEngineInfo classes are the only implementation-dependent
classes that can be created from the factory.

JspFactory objects should not be used by JSP page authors.

8.1.3.1 Constructors
public JspFactory()

8.1.3.2 Methods
public static synchronized JspFactory getDefaultFactory()

Returns: the default factory for this implementation

public abstract JspEngineInfo getEngineInfo()

 called to get implementation-specific information on the current JSP engine

Returns: a JspEngineInfo object describing the current JSP engine

public abstract PageContext getPageContext(javax.servlet.Servlet
servlet, javax.servlet.ServletRequest request,
javax.servlet.ServletResponse response,
java.lang.String errorPageURL, boolean needsSession,
int buffer, boolean autoflush)
99 JavaServet Pages 1.2 Specification - PD1 • August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
 obtains an instance of an implementation dependent javax.servlet.jsp.PageContext
abstract class for the calling Servlet and currently pending request and response.

This method is typically called early in the processing of the _jspService() mehtod of a
JSP implementation class in order to obtain a PageContext object for the request being
processed.

Invoking this method shall result in the PageContext.initialize() method being invoked.
The PageContext returned is properly initialized.

All PageContext objects obtained via this method shall be released by invoking release-
PageContext().

Parameters:
servlet - the requesting servlet

config - the ServletConfig for the requesting Servlet

request - the current request pending on the servlet

response - the current response pending on the servlet

errorPageURL - the URL of the error page for the requesting JSP, or null

needsSession - true if the JSP participates in a session

buffer - size of buffer in bytes, PageContext.NO_BUFFER if no buffer,
PageContext.DEFAULT_BUFFER if implementation default.

autoflush - should the buffer autoflush to the output stream on buffer overflow, or
throw an IOException?

Returns: the page context

See Also: PageContext

public abstract void releasePageContext(PageContext pc)

 called to release a previously allocated PageContext object. results in Page-
Context.release() being invoked. This method should be invoked prior to returning from
the _jspService() method of a JSP implementation class.

Parameters:
pc - A PageContext previously obtained by getPageContext()

public static synchronized void setDefaultFactory(JspFactory deflt)

 set the default factory for this implementation. It is illegal for any principal other than the
JSP Engine runtime to call this method.

Parameters:
default - The default factory implementation
Chapter 8 Core API 100

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
8.1.4 JspEngineInfo

Syntax
public abstract class JspEngineInfo

Description

The JspEngineInfo is an abstract class that provides information on the current JSP
engine.

8.1.4.1 Constructors
public JspEngineInfo()

8.1.4.2 Methods
public abstract java.lang.String getSpecificationVersion()

Return the version number of the JSP specification that is supported by this JSP engine.

Specification version numbers that consists of positive decimal integers separated by
periods “.”, for example, “2.0” or “1.2.3.4.5.6.7”. This allows an extensible number to
be used to represent major, minor, micro, etc versions. The version number must begin
with a number.

Returns: the specification version, null is returned if it is not known

8.2 Implicit Objects
The PageContext object and the JspWriter are available by default as implicit
objects.
101 JavaServet Pages 1.2 Specification - PD1 • August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
8.2.1 PageContext

Syntax
public abstract class PageContext

Description

 A PageContext instance provides access to all the namespaces associated with a JSP page,
provides access to several page attributes, as well as a layer above the implementation
details.

The PageContext class is an abstract class, designed to be extended to provide imple-
mentation dependent implementations thereof, by conformant JSP engine runtime environ-
ments. A PageContext instance is obtained by a JSP implementation class by calling the
JspFactory.getPageContext() method, and is released by calling JspFactory.releasePage-
Context().

An example of how PageContext, JspFactory, and other classes can be used within a JSP Page
Implementation object is given elsewhere.

The PageContext provides a number of facilities to the page/component author and page
implementor, including: a single API to manage the various scoped namespaces a number of
convenience API’s to access various public objects a mechanism to obtain the JspWriter for
output a mechanism to manage session usage by the page a mechanism to expose page direc-
tive attributes to the scripting environment mechanisms to forward or include the current
request to other active components in the application a mechanism to handle errorpage excep-
tion processing

Methods Intended for Container Generated Code

Some methods are intended to be used by the code generated by the container, not by code
written by JSP page authors, or JSP tag library authors.

The methods supporting lifecycle are initialize() and release()

The following methods enable the management of nested JspWriter streams to implement
Tag Extensions: pushBody() and popBody()

Methods Intended for JSP authors

Some methods provide uniform access to the diverse scopes objects. The implementation
must use the underlying Servlet machinery corresponding to that scope, so information can be
passed back and forth between Servlets and JSP pages. The methods are: setAttribute(),
getAttribute(), findAttribute(), removeAttribute(), getAttributes-
Scope() and getAttributeNamesInScope() .
Chapter 8 Core API 102

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
The following methods provide convenient access to implicit objects: getOut(), get-
Exception(), getPage() getRequest(), getResponse(), getSession(),
getServletConfig() and getServletContext().

The following methods provide support for forwarding, inclusion and error handling:
forward(), include(), and handlePageException().

8.2.1.1 Fields
public static final java.lang.String APPLICATION

name used to store ServletContext in PageContext name table

public static final int APPLICATION_SCOPE

application scope: named reference remains available in the ServletContext until it is
reclaimed.

public static final java.lang.String CONFIG

name used to store ServletConfig in PageContext name table

public static final java.lang.String EXCEPTION

name used to store uncaught exception in ServletRequest attribute list and PageContext
name table

public static final java.lang.String OUT

name used to store current JspWriter in PageContext name table

public static final java.lang.String PAGE

name used to store the Servlet in this PageContext’s nametables

public static final int PAGE_SCOPE

page scope: (this is the default) the named reference remains available in this Page-
Context until the return from the current Servlet.service() invocation.

public static final java.lang.String PAGECONTEXT

name used to store this PageContext in it’s own name tables

public static final java.lang.String REQUEST

name used to store ServletRequest in PageContext name table

public static final int REQUEST_SCOPE

request scope: the named reference remains available from the ServletRequest associ-
ated with the Servlet that until the current request is completed.
103 JavaServet Pages 1.2 Specification - PD1 • August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
public static final java.lang.String RESPONSE

name used to store ServletResponse in PageContext name table

public static final java.lang.String SESSION

name used to store HttpSession in PageContext name table

public static final int SESSION_SCOPE

session scope (only valid if this page participates in a session): the named reference
remains available from the HttpSession (if any) associated with the Servlet until the Http-
Session is invalidated.

8.2.1.2 Constructors
public PageContext()

8.2.1.3 Methods
public abstract java.lang.Object findAttribute(java.lang.String name)

Searches for the named attribute in page, request, session (if valid), and application
scope(s) in order and returns the value associated or null.

Returns: the value associated or null

public abstract void forward(java.lang.String relativeUrlPath)

 This method is used to re-direct, or “forward” the current ServletRequest and Servlet-
Response to another active component in the application.

If the relativeUrlPath begins with a “/” then the URL specified is calculated relative to
the DOCROOT of the ServletContext for this JSP. If the path does not begin with
a “/” then the URL specified is calculated relative to the URL of the request that was
mapped to the calling JSP.

It is only valid to call this method from a Thread executing within a _jsp-
Service(...) method of a JSP.

Once this method has been called successfully, it is illegal for the calling Thread to
attempt to modify the ServletResponse object. Any such attempt to do so, shall
result in undefined behavior. Typically, callers immediately return from _jsp-
Service(...) after calling this method.

Parameters:
Chapter 8 Core API 104

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
relativeUrlPath - specifies the relative URL path to the target resource as
described above

Throws:
ServletException, IOException

IllegalArgumentException - if target resource URL is unresolvable

IllegalStateException - if ServletResponse is not in a state where a
forward can be performed

SecurityException - if target resource cannot be accessed by caller

public abstract java.lang.Object getAttribute(java.lang.String name)

Return the object associated with the name in the page scope or null if not found.

Parameters:
name - the name of the attribute to get

Throws:
NullPointerException - if the name is null

IllegalArgumentException - if the scope is invalid

public abstract java.lang.Object getAttribute(java.lang.String name,
int scope)

Return the object associated with the name in the specifed scope or null if not found.

Parameters:
name - the name of the attribute to set

scope - the scope with which to associate the name/object

Throws:
NullPointerException - if the name is null

IllegalArgumentException - if the scope is invalid

public abstract java.util.Enumeration getAttributeNamesInScope(int
scope)

Enumerate all the attributes in a given scope

Returns: an enumeration of names (java.lang.String) of all the attributes the specified
scope

public abstract int getAttributesScope(java.lang.String name)

Get the scope where a given attribute is defined.

Returns: the scope of the object associated with the name specified or 0
105 JavaServet Pages 1.2 Specification - PD1 • August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
public abstract java.lang.Exception getException()

The current value of the exception object (an Exception).

Returns: any exception passed to this as an errorpage

public abstract JspWriter getOut()

The current value of the out object (a JspWriter).

Returns: the current JspWriter stream being used for client response

public abstract java.lang.Object getPage()

The current value of the page object (a Servlet).

Returns: the Page implementation class instance (Servlet) associated with this
PageContext

public abstract javax.servlet.ServletRequest getRequest()

The current value of the request object (a ServletRequest).

Returns: The ServletRequest for this PageContext

public abstract javax.servlet.ServletResponse getResponse()

The current value of the response object (a ServletResponse).

Returns: the ServletResponse for this PageContext

public abstract javax.servlet.ServletConfig getServletConfig()

The ServletConfig instance.

Returns: the ServletConfig for this PageContext

public abstract javax.servlet.ServletContext getServletContext()

The ServletContext instance.

Returns: the ServletContext for this PageContext

public abstract javax.servlet.http.HttpSession getSession()

The current value of the session object (an HttpSession).

Returns: the HttpSession for this PageContext or null

public abstract void handlePageException(java.lang.Exception e)

 This method is intended to process an unhandled “page” level exception by redirecting
the exception to either the specified error page for this JSP, or if none was specified, to
perform some implementation dependent action.
Chapter 8 Core API 106

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
A JSP implementation class shall typically clean up any local state prior to invoking this
and will return immediately thereafter. It is illegal to generate any output to the client, or
to modify any ServletResponse state after invoking this call.

TODO - should handle Throwable

Parameters:
e - the exception to be handled

Throws:
ServletException, IOException

NullPointerException - if the exception is null

SecurityException - if target resource cannot be accessed by caller

public abstract void include(java.lang.String relativeUrlPath)

 Causes the resource specified to be processed as part of the current ServletRequest and
ServletResponse being processed by the calling Thread. The output of the target
resources processing of the request is written directly to the ServletResponse output
stream.

The current JspWriter “out” for this JSP is flushed as a side-effect of this call, prior to
processing the include.

If the relativeUrlPath begins with a “/” then the URL specified is calculated relative to
the DOCROOT of the ServletContext for this JSP. If the path does not begin
with a “/” then the URL specified is calculated relative to the URL of the request that
was mapped to the calling JSP.

It is only valid to call this method from a Thread executing within a _jsp-
Service(...) method of a JSP.

Parameters:
relativeUrlPath - specifies the relative URL path to the target resource to be
included

Throws:
ServletException, IOException

IllegalArgumentException - if the target resource URL is unresolvable

SecurityException - if target resource cannot be accessed by caller

public abstract void initialize(javax.servlet.Servlet servlet,
javax.servlet.ServletRequest request,
javax.servlet.ServletResponse response,
java.lang.String errorPageURL, boolean needsSession,
int bufferSize, boolean autoFlush)
107 JavaServet Pages 1.2 Specification - PD1 • August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
 The initialize emthod is called to initialize an uninitialized PageContext so that it may be
used by a JSP Implementation class to service an incoming request and response wihtin
it’s _jspService() method.

This method is typically called from JspFactory.getPageContext() in order to initialize
state.

This method is required to create an initial JspWriter, and associate the “out” name in page
scope with this newly created object.

This method should not be used by page or tag libray authors.

Parameters:
servlet - The Servlet that is associated with this PageContext

request - The currently pending request for this Servlet

response - The currently pending response for this Servlet

errorPageURL - The value of the errorpage attribute from the page directive or null

needsSession - The value of the session attribute from the page directive

bufferSize - The value of the buffer attribute from the page directive

autoFlush - The value of the autoflush attribute from the page directive

Throws:
IOException - during creation of JspWriter

IllegalStateException - if out not correctly initialized

IllegalArgumentException

public JspWriter popBody()

Return the previous JspWriter “out” saved by the matching pushBody(), and update the
value of the “out” attribute in the page scope attribute namespace of the PageConxtext

Returns: the saved JspWriter.

public BodyContent pushBody()

Return a new BodyContent object, save the current “out” JspWriter, and update the value
of the “out” attribute in the page scope attribute namespace of the PageContext

Returns: the new BodyContent

public abstract void release()

 This method shall “reset” the internal state of a PageContext, releasing all internal refer-
ences, and preparing the PageContext for potential reuse by a later invocation of initial-
ize(). This method is typically called from JspFactory.releasePageContext().
Chapter 8 Core API 108

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
Subclasses shall envelope this method.

This method should not be used by page or tag libray authors.

public abstract void removeAttribute(java.lang.String name)

Remove the object reference associated with the given name, look in all scopes in the
scope order.

Parameters:
name - The name of the object to remove.

public abstract void removeAttribute(java.lang.String name, int scope)

Remove the object reference associated with the specified name in the given scope.

Parameters:
name - The name of the object to remove.

scope - The scope where to look.

public abstract void setAttribute(java.lang.String name,
java.lang.Object attribute)

Register the name and object specified with page scope semantics.

Parameters:
name - the name of the attribute to set

attribute - the object to associate with the name

Throws:
NullPointerException - if the name or object is null

public abstract void setAttribute(java.lang.String name,
java.lang.Object o, int scope)

register the name and object specified with appropriate scope semantics

Parameters:
name - the name of the attribute to set

o - the object to associate with the name

scope - the scope with which to associate the name/object

Throws:
NullPointerException - if the name or object is null

IllegalArgumentException - if the scope is invalid
109 JavaServet Pages 1.2 Specification - PD1 • August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
8.2.2 JspWriter

Syntax
public abstract class JspWriter extends java.io.Writer

Direct Known Subclasses: BodyContent

Description

 The actions and template data in a JSP page is written using the JspWriter object that is
referenced by the implicit variable out which is initialized automatically using methods in
the PageContext object.

This abstract class emulates some of the functionality found in the java.io.BufferedWriter and
java.io.PrintWriter classes, however it differs in that it throws java.io.IOException from the
print methods while PrintWriter does not.

Buffering

The initial JspWriter object is associated with the PrintWriter object of the ServletResponse in
a way that depends on whether the page is or not buffered. If the page is not buffered, output
written to this JspWriter object will be written through to the PrintWriter directly, which will
be created if necessary by invoking the getWriter() method on the response object. But if the
page is buffered, the PrintWriter object will not be created until when the buffer is flushed, and
operations like setContentType() are legal. Since this flexibility simplifies programming sub-
stantially, buffering is the default for JSP pages.

Buffering raises the issue of what to do when the buffer is exceeded. Two approaches can be
taken:
•Exceeding the buffer is not a fatal error; when the buffer is exceeded, just flush the out-

put.
•Exceeding the buffer is a fatal error; when the buffer is exceeded, raise an exception.

Both approaches are valid, and thus both are supported in the JSP technology. The behav-
ior of a page is controlled by the autoFlush attribute, which defaults to true. In general,
JSP pages that need to be sure that correct and complete data has been sent to their client
may want to set autoFlush to false, with a typical case being that where the client is an
application itself. On the other hand, JSP pages that send data that is meaningful even
when partially constructed may want to set autoFlush to true; a case may be when the data
is sent for immediate display through a browser. Each application will need to consider
their specific needs.
Chapter 8 Core API 110

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
An alternative considered was to make the buffer size unbounded, but this has the disadvan-
tage that runaway computations may consume an unbounded amount of resources.

The “out” implicit variable of a JSP implementation class is of this type. If the page directive
selects autoflush=“true” then all the I/O operations on this class shall automatically fluch the
contents of the buffer if an overflow condition would result if the current operation were per-
formed without a flush. If autoflush=“false” then all the I/O operations on this class shall
throw an IOException if performing the current opertion would result in a buffer overflow
condition.

See Also: java.io.Writer, java.io.BufferedWriter,
java.io.PrintWriter

8.2.2.1 Fields
protected boolean autoFlush

protected int bufferSize

public static final int DEFAULT_BUFFER

constant indicating that the Writer is buffered and is using the implementation default
buffer size

public static final int NO_BUFFER

constant indicating that the Writer is not buffering output

public static final int UNBOUNDED_BUFFER

constant indicating that the Writer is buffered and is unbounded; this is used in Body-
Content

8.2.2.2 Constructors
protected JspWriter(int bufferSize, boolean autoFlush)

protected constructor.

8.2.2.3 Methods
public abstract void clear()
111 JavaServet Pages 1.2 Specification - PD1 • August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
Clear the contents of the buffer. If the buffer has been already been flushed then the clear
operation shall throw an IOException to signal the fact that some data has already been
irrevocably written to the client response stream.

Throws:
IOException - If an I/O error occurs

public abstract void clearBuffer()

Clears the current contents of the buffer. Unlike clear(), this mehtod will not throw an
IOException if the buffer has already been flushed. It merely clears the current content of
the buffer and returns.

Throws:
IOException - If an I/O error occurs

public abstract void close()

Close the stream, flushing it first

This method needs not be invoked explicitly for the initial JspWriter as the code generated
by the JSP container will automatically include a call to close().

Closing a previously-closed stream, unlike flush(),, has no effect.

Overrides: java.io.Writer.close() in class java.io.Writer

Throws:
IOException - If an I/O error occurs

public abstract void flush()

Flush the stream. If the stream has saved any characters from the various write() methods
in a buffer, write them immediately to their intended destination. Then, if that destination
is another character or byte stream, flush it. Thus one flush() invocation will flush all the
buffers in a chain of Writers and OutputStreams.

The method may be invoked indirectly if the buffer size is exceeded.

Once a stream has been closed, further write() or flush() invocations will cause an IOEx-
ception to be thrown.

Overrides: java.io.Writer.flush() in class java.io.Writer

Throws:
IOException - If an I/O error occurs

public int getBufferSize()

This method returns the size of the buffer used by the JspWriter.

Returns: the size of the buffer in bytes, or 0 is unbuffered.
Chapter 8 Core API 112

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
public abstract int getRemaining()

This method returns the number of unused bytes in the buffer.

Returns: the number of bytes unused in the buffer

public boolean isAutoFlush()

This method indicates whether the JspWriter is autoFlushing.

Returns: if this JspWriter is auto flushing or throwing IOExceptions on buffer
overflow conditions

public abstract void newLine()

Write a line separator. The line separator string is defined by the system property
line.separator, and is not necessarily a single newline (’\n’) character.

Throws:
IOException - If an I/O error occurs

public abstract void print(boolean b)

Print a boolean value. The string produced by
java.lang.String.valueOf(boolean) is translated into bytes according to
the platform’s default character encoding, and these bytes are written in exactly the
manner of the java.io.Writer.write(int) method.

Parameters:
b - The boolean to be printed

Throws:
java.io.IOException

public abstract void print(char c)

Print a character. The character is translated into one or more bytes according to the
platform’s default character encoding, and these bytes are written in exactly the manner
of the java.io.Writer.write(int) method.

Parameters:
c - The char to be printed

Throws:
java.io.IOException

public abstract void print(char[] s)

Print an array of characters. The characters are converted into bytes according to the
platform’s default character encoding, and these bytes are written in exactly the manner
of the java.io.Writer.write(int) method.
113 JavaServet Pages 1.2 Specification - PD1 • August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
Parameters:
s - The array of chars to be printed

Throws:
NullPointerException - If s is null

java.io.IOException

public abstract void print(double d)

Print a double-precision floating-point number. The string produced by
java.lang.String.valueOf(double) is translated into bytes according to the
platform’s default character encoding, and these bytes are written in exactly the manner of
the java.io.Writer.write(int) method.

Parameters:
d - The double to be printed

Throws:
java.io.IOException

See Also: java.lang.Double

public abstract void print(float f)

Print a floating-point number. The string produced by
java.lang.String.valueOf(float) is translated into bytes according to the
platform’s default character encoding, and these bytes are written in exactly the manner of
the java.io.Writer.write(int) method.

Parameters:
f - The float to be printed

Throws:
java.io.IOException

See Also: java.lang.Float

public abstract void print(int i)

Print an integer. The string produced by java.lang.String.valueOf(int) is
translated into bytes according to the platform’s default character encoding, and these
bytes are written in exactly the manner of the java.io.Writer.write(int)
method.

Parameters:
i - The int to be printed

Throws:
java.io.IOException
Chapter 8 Core API 114

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
See Also: java.lang.Integer

public abstract void print(long l)

Print a long integer. The string produced by
java.lang.String.valueOf(long) is translated into bytes according to the
platform’s default character encoding, and these bytes are written in exactly the manner
of the java.io.Writer.write(int) method.

Parameters:
l - The long to be printed

Throws:
java.io.IOException

See Also: java.lang.Long

public abstract void print(java.lang.Object obj)

Print an object. The string produced by the
java.lang.String.valueOf(Object) method is translated into bytes accord-
ing to the platform’s default character encoding, and these bytes are written in exactly
the manner of the java.io.Writer.write(int) method.

Parameters:
obj - The Object to be printed

Throws:
java.io.IOException

See Also: java.lang.Object.toString()

public abstract void print(java.lang.String s)

Print a string. If the argument is null then the string “null” is printed. Otherwise,
the string’s characters are converted into bytes according to the platform’s default char-
acter encoding, and these bytes are written in exactly the manner of the
java.io.Writer.write(int) method.

Parameters:
s - The String to be printed

Throws:
java.io.IOException

public abstract void println()

Terminate the current line by writing the line separator string. The line separator string
is defined by the system property line.separator, and is not necessarily a single
newline character (’\n’).
115 JavaServet Pages 1.2 Specification - PD1 • August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
Throws:
java.io.IOException

public abstract void println(boolean x)

Print a boolean value and then terminate the line. This method behaves as though it
invokes public abstract void print(boolean b) and then public
abstract void println() .

Throws:
java.io.IOException

public abstract void println(char x)

Print a character and then terminate the line. This method behaves as though it invokes
public abstract void print(char c) and then public abstract
void println() .

Throws:
java.io.IOException

public abstract void println(char[] x)

Print an array of characters and then terminate the line. This method behaves as though it
invokes print(char[]) and then println().

Throws:
java.io.IOException

public abstract void println(double x)

Print a double-precision floating-point number and then terminate the line. This method
behaves as though it invokes public abstract void print(double d) and
then public abstract void println() .

Throws:
java.io.IOException

public abstract void println(float x)

Print a floating-point number and then terminate the line. This method behaves as though
it invokes public abstract void print(float f) and then public
abstract void println() .

Throws:
java.io.IOException

public abstract void println(int x)
Chapter 8 Core API 116

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
Print an integer and then terminate the line. This method behaves as though it invokes
public abstract void print(int i) and then public abstract
void println() .

Throws:
java.io.IOException

public abstract void println(long x)

Print a long integer and then terminate the line. This method behaves as though it
invokes public abstract void print(long l) and then public
abstract void println() .

Throws:
java.io.IOException

public abstract void println(java.lang.Object x)

Print an Object and then terminate the line. This method behaves as though it invokes
public abstract void print(java.lang.Object obj) and then pub-
lic abstract void println() .

Throws:
java.io.IOException

public abstract void println(java.lang.String x)

Print a String and then terminate the line. This method behaves as though it invokes
public abstract void print(java.lang.String s) and then public
abstract void println() .

Throws:
java.io.IOException

8.3 An Implemention Example
An instance of an implementation dependent subclass of this abstract base class can be cre-
ated by a JSP implementation class at the begining of it’s _jspService() method via
an implementation default JspFactory .

Here is one example of how to use these classes
117 JavaServet Pages 1.2 Specification - PD1 • August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
public class foo implements Servlet {
// ...

public void _jspService(HttpServletRequest request,
HttpServletResponse response)

throws IOException, ServletException {
JspFactory factory = JspFactory.getDefaultFactory();
PageContext pageContext = factory.getPageContext(

this,
request,
response,
null, // errorPageURL
false, // needsSession
JspWriter.DEFAULT_BUFFER,
true // autoFlush

);
// initialize implicit variables for scripting env ...
HttpSession session = pageContext.getSession();
JspWriter out = pageContext.getOut();
Object page = this;
try {

// body of translated JSP here ...
} catch (Exception e) {

out.clear();
pageContext.handlePageException(e);

} finally {
out.close();

factory.releasePageContext(pageContext);
}

}

8.4 Exceptions
The JspException class is the base class for all JSP exceptions. The JspTagException
is used by the tag extension mechanism.

8.4.1 JspException

Syntax
public class JspException extends java.lang.Exception

Direct Known Subclasses: JspTagException
Chapter 8 Core API 118

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
All Implemented Interfaces: java.io.Serializable

Description

A generic exception known to the JSP engine; uncaught JspExceptions will result in an
invocation of the errorpage machinery.

8.4.1.1 Constructors
public JspException()

Construct a JspException

public JspException(java.lang.String msg)

An exception with a message

8.4.2 JspTagException

Syntax
public class JspTagException extends JspException

All Implemented Interfaces: java.io.Serializable

Description

Exception to be used by a Tag Handler to indicate some unrecoverable error. This error
is to be caught by the top level of the JSP page and will result in an error page.

8.4.2.1 Constructors
public JspTagException()

No message

public JspTagException(java.lang.String msg)

Constructor with a message.
119 JavaServet Pages 1.2 Specification - PD1 • August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
CHAPTER 9

Tag Extensions

This chapter describes the mechanisms for introducing new actions into a JSP page. The
mechanisms include a portable run-time support, a validation mechanism, and authoring tool
support, all bundled into the concept of a tag library.

The tag library concept was introduced in the JSP 1.1 specification and it incorporated run-
time support, some validation, and minimal tool authoring support. The JSP 1.2
specification has added some refinements to the run-time and authoring tool support,
significantly extended the validation step.

All JSP 1.1 tag libraries run, unchanged and without any change in behavior, in a JSP 1.2
container.

This chapter provides an overview of the mechanism and describes the Tag Library
Descriptor, and the taglib directive. The detailed description of the APIs involved follows in
Chapter 10.

9.1 Introduction
A Tag Library abstracts some functionality by defining a specialized (sub)language that
enables a more natural use of that functionality within JSP pages. The actions introduced by
the Tag Library can be used by the JSP page author in JSP pages explicitly, when authoring
the page manually, or implicitly, when using an authoring tool. Tag Libraries are particularly
useful to authoring tools because they make intent explicit and the parameters expressed in
the action instance provide information to the tool.

Actions that are delivered as tag libraries are imported into a JSP page using the taglib
directive, and can then be used in the page using the prefix given by the directive. An action
can create new objects that can then be passed to other actions or can be manipulated
programmatically through an scripting element in the JSP page.
 Tag Extensions 120

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
Tag libraries are portable: they can be used in any legal JSP page regardless of the scripting
language used in that page.

The tag extension mechanism includes information to:

• Execute a JSP page that uses the tag library.

• Author and modify a JSP page.

• Validate the JSP page.

• Present the JSP page to the end user.

A Tab Library is described via a Tag Library Descriptor (a TLD), an XML document that is
described further below.

9.1.1 Goals
The tag extension mechanism described in this chapter addresses the following goals:

Portable - An action described in a tag library must be usable in any JSP container.

Simple - Unsophisticated users must be able to understand and use this mechanism. We
would like to make it very easy for vendors of functionality to expose it through actions.

Expressive - We want to enable a wide range of actions to be described in this mechanism,
including:

• Nested actions.
n Scripting elements inside the body.
n Creation, use and updating of scripting variables.

Usable from different scripting languages - Although the JSP specification currently only
defines the semantics for scripting based on the Java programming language, we want to
leave open other scripting languages.

Building upon existing concepts and machinery- We do not want to reinvent machinery that
exists elsewhere. Also, we want to avoid future conflicts whenever we can predict them.

9.1.2 Overview
The processing of a JSP page conceptually follows this steps:

• Parsing
121 JavaServer Pages 1.2 Specification - PD1 • August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
First parse the JSP syntax, processing include directives. This produces an XML document
annotated with debug information related to the original JSP source. Information in the TLD
is needed to process the JSP document, including identifying the custom tags, so this step
requires some processing of the taglib directives.

The XML document can be input directly too. If the XML document is entered directly, the
custom tags are indicated as such.

• Validation

The tag libraries in the XML document are processed in the order they appear.

Each library is checked for a validator class and, if present, the whole document is made
available to the validation method as a PageInfo object.

Then, each custom tag in the library is checked to see if there are TagExtraInfo classes, and,
if so, the isValid() method will be consulted.

• Translation

Finally the XML document is processed to create a JSP page implementation class. This
process may involve creating scripting variables. Each custom action may provide this
information, either statically in the TLD, or in a more flexible manner using the
getVariableInfo method of a TagExtraInfo class.

• Execution

Once a JSP page implementation class has been associated with a JSP page, the class will be
treated as any other Servlet class and requests will be directed to an instance of the class. At
run-time tag handler instances will be created and methods will be invoked in them.

Tag Handlers

The JSP page implementation class instantiates tag handlers which are the basic runtime
mechanism for defining the semantics of custom actions.

A tag handler is a Java class that implements the Tag or BodyTag interfaces and that is the
run-time representation of a custom action.

The JSP page implementation class instantiates (or reuses) a tag handler object for each
action in the JSP page. This handler object is a Java object that implements the
javax.servlet.jsp.tagext.Tag interface. The handler object is responsible for the
interaction between the JSP page and additional server-side objects.

There are three main interfaces: Tag, IterationTag, and BodyTag.

• Tag defines the basic methods that are needed in all tag handlers. These methods include
setter methods to initialize a tag handler with context data and with the attribute values of
the corresponding action, and the two methods: doStartTag() and doEndTag().
Chapter 9 Tag Extensions 122

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
• IterationTag is an extension to Tag that provides one additional method:
doAfterBody() for requiring the reevaluation of the body of the tag.

• BodyTag is an extension of IterationTag with two news methods for when the tag
handler wants to manipulate its body: setBodyContent() passes a buffer (the
BodyContent object), and doInitBody() provides an opportunity to do some
activity on that buffer before the first evaluation of the body into the buffer.

The use of interfaces simplifies taking an existing Java object and making it a tag handler.
There are also two support classes that can be used as base classes: TagSupport and
BodyTagSupport.

Event Listeners

A tag library may include some classes that are event listeners (see the Servlet 2.3
specification). The listeners are listed in the tag library descriptor and the JSP container will
automatically instantiate the listener classes and register them in a way analogous to how it
is done in web.xml. Essentially, the mechanism just locates the TLDs in the Web
Application (be them in WEB-INF/classes or in WEB-INF/lib), reads their <listener>
elements and regards them as an extension of those listed in web.xml.

The order in which the listeners are registered is undefined.

9.1.3 Simple Examples
Next we describe a few prototypical uses of tag extensions, briefly sketching how they take
advantage of these mechanisms.

Simple Actions

The simplest type of action just does something, perhaps with some parameters to modify
what the “something” is, and improve reusability.

This type of action can be implemented with a tag handler that just implements the Tag
interface. The tag handler only needs to use the tag handler’s method doStartTag().
The method is invoked when the start tag is encountered and can access the attributes of the
tag and may also want to access information on the state of the JSP page; this information is
passed to the Tag object before the call to doStartTag() through several setter method
calls.
123 JavaServer Pages 1.2 Specification - PD1 • August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
Since simple actions with an empty body are common, the Tag Library Descriptor can be
used to indicate that the tag is always intended to be empty; this leads to better error
checking at translation time and to better code quality in the JSP page implementation class.

Actions with a Body

Another set of quite simple actions require something to happen when the start tag is found,
and then when the end tag is found. The Tag interface can also be used. The doEndTag()
is similar to doStartTag(), except that it is invoked when the end tag of the action is
encountered. The result of the doEndTag invocation indicates whether the remaining of the
page is to be evaluated or not.

Conditionals

In some cases, a body needs to be invoked only when some conditions happen. This is still
supported by the basic Tag interface, through the use of return values in the doStartTag()
method.

Iterations

The Tag protocol cannot be used to do iteration. For iteration the additional
IterationTag interface is needed. The doAfterBody() method is invoked to
determine whether to reevaluate the body or not.

Actions that Process their Body

Consider an example of an action that will take its body, and reevaluate it many times,
creating a stream of response data. The IterationTag protocol is used for this. But, if the
result of the reinterpretation is to be further manipulated, for whatever reason, including just
discarding it, we need some way to divert the potential output of the those reevaluations.
This is done through the creation of a BodyContent object, and the use of the
setBodyContent() method, which is part of the BodyTag interface. BodyTag also
provides another method doInitBody() which is invoked just after setBodyContent() but
before the first body evaluation to provide an opportunity to interact with the body.
Chapter 9 Tag Extensions 124

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
Cooperating Actions

Often the best way to describe some functionality is through several cooperating actions. For
example, an action may be used to describe information that leads to the creation of some
server-side object, while another action may use that object elsewhere in the page. One way
for these actions to cooperate is explicitly, via using scripting variables: one action creates an
object and gives it a name, the other refers to it through this name. Scripting variables are
discussed briefly below.

Two actions can also cooperate implicitly using different conventions. For example, perhaps
the last action applies, or perhaps there is only one action of a given type per JSP page. A
more flexible and very convenient mechanism for action cooperation is using the nesting
structure to describe scoping. Each tag handler is told of its parent tag handler (if any) using
a setter method; the findAncestorWithClass static method in TagSupport can then
be used to locate a tag handler with some given properties.

Actions Defining Scripting Variables

A custom action may create some server-side objects and make them available to the
scripting elements by creating or updating some scripting variables. The specific variables
thus effected are part of the semantics of the custom action and are the responsability of the
tag library author. This information is used at JSP page translation time and can be described
in one of two ways, either directly in the TLD for simple cases, or through subclasses of
TagExtraInfo. Either mechanism indicates what are the names and types of the scripting
variables. At request time the tag handler will associate objects to these scripting variables
through the pageContext object. It is the responsibility of the JSP page translator to
automatically supply all the required code to do the “synchronization” between the
pageObject values and the scripting variables.

9.2 Tag Libraries
A Tag Library is a collection of actions that encapsulate some functionality to be used from within
a JSP page. A Tag library is made available to a JSP page through a taglib directive that
identifies the Tag Library via a URI (Universal Resource Identifier).

The URI identifying a tag library may be any valid URI as long as it can be used to uniquely
identify the semantics of the tag library.

The URI identifying the tag library is associated with a Tag Library Description (TLD) file
and with tag handler classes as indicated in Section 9.3 below.
125 JavaServer Pages 1.2 Specification - PD1 • August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
9.2.1 Packaged Tag Libraries
JSP page authoring tools and JSP containers are required to accept a Tag Library that is
packaged as a JAR file. When packaged so the JAR file must have a tag library descriptor
file named META-INF/taglib.tld.

9.2.2 Location of Java Classes
A tag library contains classes that are intended to be instantiated at translation time and
classes that are intended to be instantiated at request time. The first ones include
TagLibraryValidator and TagExtraInfo classes. The second ones include tag handler and
event listener classes. All these classes are treated as any other Java class: in a Web
Application they must reside in the standard locations for Java classes: either in a JAR file in
the WEB-INF/lib directory or in a directory in the WEB-INF/classes directory.

The previous rule indicates that a JAR containing a packaged tag libraries can be dropped
into the WEB-INF/lib directory to make its classes available at request time (and also at
translation time, see Section 9.3.4). The mapping between the URI and the TLD is explained
further below.

9.2.3 Tag Library directive
The taglib directive in a JSP page declares that the page uses a tag library, uniquely
identifies the tag library using a URI and associates a tag prefix that will distinguish usage of
the actions in the library.

A JSP container maps the URI used in the taglib directive into a Tag Library Descriptor
in two steps: it first resolves the URI into a TLD resource path, and then it derives the TLD
object itself from the TLD resource path.

If a JSP container cannot locate a TLD resource path for a given URI, a fatal translation error
shall result. Similarly, it is a fatal translation error for a uri attribute value to resolve to two
different TLD resource paths.

It is a fatal translation error for the taglib directive to appear after actions using the prefix
introduced by the taglib directive.
Chapter 9 Tag Extensions 126

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
9.3 The Tag Library Descriptor
The Tag Library Descriptor (TLD) is an XML document that describes a tag library. The
TLD for a tag library is used by a JSP container to interpret pages that include taglib
directives referring to that tag library. The TLD is also used by JSP page authoring tools that
will generate JSP pages that use a library, and by authors who do the same manually.

The TLD includes documentation on the library as a whole and on its individual tags, version
information on the JSP container and on the tag library, and information on each of the
actions defined in the tag library.

The TLD may include a TagLibraryValidator class that can validate that a JSP page conforms
to whatever set of constraints are expected by the tag library.

Each action in the library is described by giving its name, the class for its tag handler,
optional information on the scripting variables created by the action, and information on all
the attributes of the action. Scripting variable information can be given directly in the TLD
or through a TagExtraInfo class. Each valid attribute is mentioned explicitly, with
indication on whether it is mandatory or not, whether it can accept request-time expressions,
and additional information.

A TLD file is useful as a descriptive mechanism for providing information on a Tag Library.
It has the advantage that it can be read by tools without having to instantiate objects or load
classes. The approach we follow conforms to the conventions used in other J2EE
technologies.

The DTD to the tag library descriptor is organized so that interesting elements have an
optional ID attribute. This attribute can be used by other documents, like vendor-specific
documents, to provide annotations of the TLD information. An alternative approach, based
on XML name spaces have some interesting properties but it was not pursued in part for
consistency with the rest of the J2EE descriptors.

The official DTD is described at "http://java.sun.com/j2ee/dtds/web-jsptaglibrary_1_2.dtd"

9.3.1 TLD resource path
A URI in a taglib directive is mapped into a relative URI specification (as in section 2.5.2,
i.e. a URL without a protocol and host components) that starts with “/” that is called the TLD
resource path.
127 JavaServer Pages 1.2 Specification - PD1 • August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
The TLD resource path is to be interpreted relative to the root of the Web Application and
should resolve to either a TLD file directly, or to a JAR file with a TLD at location META-
INF/taglib.tld. If the TLD resource path is not one of these two cases, a fatal translation
error will occur.

The URI describing a Tag Library is mapped to a TLD resource path though two
mechanisms: a map in web.xml, and a default mapping that is to be used if the map does
not contain the URI. The default mapping is designed for more casual use of the mechanism.

9.3.2 Taglib map in web.xml
The web.xml file can include a map between URIs and TLD resource paths. The map is
described using the taglib element of the Web Application Deployment descriptor in
WEB-INF/web.xml, as described in the Servlet 2.3 spec and in “http://java.sun.com/j2ee/
dtds/web-app_2_3.dtd”.

A taglib element has two subelements: taglib-uri and taglib-location.

<taglib>

A taglib is a subelement of web-app:

<!ELEMENT web-app taglib* >

The taglib element provides information on a tag library that is used by a JSP page within the
Web Application.

A taglib element has two subelements and one attribute:

<!ELEMENT taglib (taglib-uri, taglib-location) >
<!ATTLIST taglib id ID #IMPLIED>

<taglib-uri>

A taglib-uri element describes a URI identifying a Tag Library used in the Web
Application.

<!ELEMENT taglib-uri (#PCDATA) >
PCDATA ::= a URI spec. It may be either an absolute URI
specification, or a relative URI as in Section 2.2.1.

<taglib-location>

A taglib-location contains the location (as a resource) where to find the Tag Library
Description File for this Tag Library.
Chapter 9 Tag Extensions 128

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
<!ELEMENT taglib-location (#PCDATA) >
PCDATA ::= a resource location, as indicated in Section 2.2.1,
where to find the Tag Library Descriptor file.

Example

The use of relative URI specifications enables very short names in the taglib directive.
For example:

<%@ taglib uri=”/myPRlibrary” prefix=”x” %>

and then

<taglib>
 <taglib-uri>/myPRlibrary</taglib-uri>
 <taglib-location>/WEB-INF/tlds/PRlibrary_1_4.tld</taglib-uri>
</taglib>

9.3.3 Determining the TLD Resource Path
We next describe how to determine the TLD resource path from the uri attribute of a taglib
directive.

9.3.3.1 Definitions
An “absolute URI” is one that starts with a protocol and host. A “relative URI specification”
is as in section 2.5.2, i.e. one without the protocol and host part.

All steps are described as if they were taken, but an implementation can use a different
implementation strategy as long as the result is preserved.

9.3.3.2 Processing WEB.XML.
The web.xml for the web application may contain one or more <taglib></taglib> elements.
All such elements are considered. The result of “processing” web.xml is, per each taglib
element, two values, a TAGLIB_URI and a TAGLIB_LOCATION, as follows:

For each <taglib> element:

1 The value of the <taglib-uri> subelement is the TAGLIB_URI. This TAGLIB_URI may
be an absolute URI, or a relative URI spec starting with “/” or one not starting with “/”.
129 JavaServer Pages 1.2 Specification - PD1 • August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
2a If the <taglib-location> subelement is some relative URI specification that starts with a
“/” the TAGLIB_LOCATION is this URI.

2b If the <taglib-location> subelement is some relative URI specification that does not start
with “/”, the TAGLIB_LOCATION is the resolution of the URI relative to /WEB-INF/
web.xml (the result of this resolution is a relative URI specification that starts with “/”).

9.3.3.3 Computing the TLD Resource Path
We describe how to resolve a taglib directive to compute the TLD resource path. We do this
based on the value of the uri attribute of the taglib directive. In the description below,
ABS_URI stands for an absolute URI, ROOT_REL_URI for a relative URI that starts with “/
”, and NOROOT_REL_URI for a relative URI that does not start with “/”.

If uri=”ABS_URI”:

Look in the processed web.xml for a taglib entry whose TAGLIB_URI is ABS_URI. If
found, the corresponding TABLIB_LOCATION is the TLD resource path. If not found, a
translation error is raised.

If uri=”ROOT_REL_URI”:

Look in the processed web.xml for a taglib entry whose TAGLIB_URI is ROOT_REL_URI.
If found, the TABLIB_LOCATION for the taglib entry is the TLD resource path. If no such
entry is found, ROOT_REL_URI is the TLD resource path.

If uri=”NOROOT_REL_URI”:

Look in the processed web.xml for a taglib entry whose TAGLIB_URI is
NOROOT_REL_URI. If found, the TABLIB_LOCATION for the taglib entry is the TLD
resource path. If no such entry is found, resolve NOROOT_REL_URI relative to the current
JSP page where the directive appears. Let ROOT_REL_URI be the resolved value (this is a
relative URI specification that starts with “/” - by definition-). ROOT_REL_URI is the URL
resource path.

9.3.3.4 Examples
The web.xml map allows very explicit description of the tag libraries that are being used in a
Web Application.

The default rule allows a taglib directive to refer directly to the TLD. This arrangement
is very convenient for quick development at the expense of less flexibility and accountability.
For example in the case above, it enables:

<%@ taglib uri=”/tlds/PRlibrary_1_4.tld” prefix=”x” %>
Chapter 9 Tag Extensions 130

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
9.3.4 Translation-Time Class Loader
The set of classes available at translation time is the same as available at runtime: the classes
in the underlying Java platform, those in the JSP container, and those in the class files in
WEB-INF/classes, in the JAR files in WEB-INF/lib, and, indirectly through the use of
the class-path attribute in the META-INF/MANIFEST file of these JAR files.

9.3.5 Assembling a Web Application
As part of the process of assembling a Web Application together, the Application Assembler
will create a WEB-INF/ directory, with appropriate lib/ and classes/ subdirectories,
place JSP pages, Servlet classes, auxiliary classes, and tag libraries in the proper places and
then create a WEB-INF/web.xml that ties everything together.

Tag libraries that have been delivered in the standard format can be dropped directly into
WEB-INF/lib. The assembler may create taglib entries in web.xml for each of the
libraries that are to be used.

Part of the assembly (and later the deployment) may create and/or change information that
customizes a tag library; see Section 9.6.3.

9.3.6 Well-Known URIs
A JSP container may "know of" some specific URIs and may provide alternate
implementations for the tag libraries described by these URIs, but the user must see the same
behavior as that described by the, required, portable tag library description described by the
URI.

A JSP container must always use the mapping specified for a URI in the web.xml
deployment descriptor if present. If the deployer wants to use the platform-specific
implementation of the well-known URI, the mapping for that URI should be removed at
deployment time.

If there is no mapping for a given URI and the URI is not well-known to the JSP container,
a translation-time error will occur.

There is no guarantee that this “well-known URI” mechanism will be preserved in later
releases of the JSP specification. As experience accumulates on how to use tag extensions,
the JSP specification may incorporate new functionality that will make the “well-known
URI” mechanism unnecessary; at that point it may be removed.
131 JavaServer Pages 1.2 Specification - PD1 • August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
9.4 The Tag Library Descriptor Format
This section describes the DTD for the Tag Library Descriptor. This is the same DTD as
"http://java.sun.com/j2ee/dtds/web-jsptaglibrary_1_1.dtd", except for some formatting
changes to extract comments and make them more readable.

TLDs in the 1.1 format must be accepted by JSP 1.2 containers.

Notation
<!NOTATION WEB-JSPTAGLIB.1_1 PUBLIC “-//Sun Microsystems, Inc.//DTD
JSP Tag Library 1.2//EN”>

<taglib>

The taglib element is the document root. A taglib has two attributes.

<!ATTLIST taglib
id

ID
#IMPLIED

xmlns
CDATA
#FIXED
"http://java.sun.com/j2ee/dtds/web-jsptaglibrary_1_1.dtd"

>

A taglib element also has several subelements that define:

tlibversion the version of the tag library implementation

jspversion the version of JSP specification the tag library depends upon

shortname a simple default short name that could be used by a JSP page authoring tool to
create names with a mnemonic value; for example, the it may be used as the
preferred prefix value in taglib directives.

uri a uri uniquely identifying this taglib.

display-name The display-name element contains a short name that is intended to be
displayed by tools.

small-icon Optional large-icon that can be used by tools.

large-icon Optional large-icon that can be used by tools.
Chapter 9 Tag Extensions 132

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
info a string describing the “use” of this taglib.

validatorclass Optional TagLibraryValidator class.

listener Optional event listener specification

<!ELEMENT taglib
(tlibversion, jspversion?,
 shortname, uri?, display-name?, small-icon?, large-icon?
 info?, validatorclass?, listener*, tag+) >

<tlibversion>

Describes this version (number) of the taglibrary.

The syntax is:

<!ELEMENT tlibversion (#PCDATA) >

#PCDATA ::= [0-9]*{ “.”[0-9] }0..3

<jspversion>

Describes the JSP specification version (number) this taglibrary requires in order to function.
The default is 1.1

The syntax is:

<!ELEMENT jspversion (#PCDATA) >

#PCDATA ::= [0-9]*{ “.”[0-9] }0..3.

<shortname>

Defines a simple default short name that could be used by a JSP page authoring tool to create
names with a mnemonic value; for example, the it may be used as the preferred prefix value in
taglib directives and/or to create prefixes for IDs . Do not use white space, and do not start
with digits or underscore.

The syntax is

<!ELEMENT shortname (#PCDATA) >

#PCDATA ::= NMTOKEN

<uri>

Defines a public URI that uniquely identifies this version of the tag library. It is
recommended that the URI identifying a tag library is actually a URL to the tag library
descriptor for this specific version of the tag library.

<!ELEMENT uri (#PCDATA) >
133 JavaServer Pages 1.2 Specification - PD1 • August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
<info>

Defines an arbitrary text string describing the tag library.

<!ELEMENT info (#PCDATA) >

<validatorclass>

Defines an optional TagLibraryValidator class that can be used to validate the conformance
of a JSP page to using this tag library.

<!ELEMENT validatorClass (#PCDATA) >

<listener>

Defines an optional event listener object to be instantiated and registered automatically.

<!ELEMENT listener (listener-class) >

<listener-class>

The listener-class element declares a class in the application that must be registered as a web
application listener bean. See the Servlet 2.3 specification for details.

<!ELEMENT listener-class (#PCDATA) >

<tag>

The tag defines an action in this tag library. It has one attribute:

<!ATTLIST tag id ID #IMPLIED >

The tag may have several subelements defining:

name the unique action name

tagclass the tag handler class implementing javax.servlet.jsp.tagext.Tag

teiclass an optional subclass of
javax.servlet.jsp.tagext.TagExtraInfo

bodycontent the body content type

display-name A short name that is intended to be displayed by tools.

small-icon Optional large-icon that can be used by tools.

large-icon Optional large-icon that can be used by tools.

info Optional tag-specific information.

variable Optional scripting variable information.
Chapter 9 Tag Extensions 134

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
attribute all attributes of this action

The element syntax is as follows:

<!ELEMENT tag
(name, tagclass, teiclass?,
bodycontent?, display-name?, small-icon?, large-icon?,
info?, variable*, attribute*) >

<tagclass>

Defines the tag handler class implementing the javax.serlvet.jsp.tagext.Tag
interface. This element is required.

The syntax is:

<!ELEMENT tagclass (#PCDATA) >

#PCDATA ::= fully qualified Java class name.

<teiclass>

Defines the subclass of javax.servlet.jsp.tagext.TagExtraInfo for this tag.
This element is optional.

The syntax is:

<!ELEMENT teiclass (#PCDATA) >

 #PCDATA ::= fully qualified Java class name

<bodycontent>

Provides a hint as to the content of the body of this action. Primarily intended for use by
page composition tools.

There are currently three values specified:

tagdependent The body of the action is passed verbatim to be interpreted by the tag handler
itself, and is most likely in a different “language”, e.g. embedded SQL
statements. The body of the action may be empty.

JSP The body of the action contains elements using the JSP syntax. The body of the
action may be empty.

empty The body must be empty

The default value is “JSP”.

The syntax is:

<!ELEMENT bodycontent (#PCDATA) >
135 JavaServer Pages 1.2 Specification - PD1 • August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
#PCDATA ::= tagdependent | JSP | empty.

Values are case dependent.

<display-name>

The display-name elements contains a short name that is intended to be displayed by tools.

The syntax is:

<!ELEMENT display-name (#PCDATA) >

<large-icon>

The large-icon element contains the name of a file containing a large (32 x 32) icon image.
The file name is relative path within the tag library. The image must be either in the JPEG or
GIF format, and the file name must end with the suffix ".jpg" or ".gif" respectively. The icon
can be used by tools.

The syntax is:

<!ELEMENT large-icon (#PCDATA) >

<small-icon>

The small-icon element contains the name of a file containing a small (16 x 16) icon image.
The file name is relative path within the tag library. The image must be either in the JPEG or
GIF format, and the file name must end with the suffix ".jpg" or ".gif" respectively. The icon
can be used by tools.

The syntax is:

<!ELEMENT small-icon (#PCDATA) >

<variable>

Provides information on the scripting variables defined by this tag. It is a (translation-time)
error for a tag that has one or more variable subelements to have a TagExtraInfo class that
returns a non-null object.

The subelements of variable are of the form:

name-given the variable name as a constant.

name-from-attribute the name of an attribute whose (translation-time) value will give the name of
the variable. One of name-given or name-from-attribute is required.

class name of the class of the variable. java.lang.String is default.

declare whether the variable is declared or not. True is thedefault.
Chapter 9 Tag Extensions 136

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
scope the scope of the scripting variable defined. NESTED is default.

The syntax is:

<!ELEMENT variable
((name-given | name-from-attribute), class?,
declare?, scope?) >

<name-given>

The name for the scripting variable. One of name-given or name-from-attribute is required.

The syntax is:

<!ELEMENT name-given (#PCDATA) >

<name-from-attribute>

The name of an attribute whose (translation-time) value will give the name of the variable. One of
name-given or name-from-attribute is required.

The syntax is:

<!ELEMENT name-from-attribute (#PCDATA) >

<class>

The optional name of the class for the scripting variable. The default is java.lang.String.

The syntax is:

<!ELEMENT class (#PCDATA) >

<declare>

Whether the scripting variable is to be defined or not. See TagExtraInfo for details. This
element is optional and “true” is the default.

The syntax is:

<!ELEMENT declare #PCDATA) >

#PCDATA ::= true | false | yes | no

<scope>

The scope of the scripting variable. See TagExtraInfo for details. This element is optional
and “NESTED” is the default..

The syntax is:
137 JavaServer Pages 1.2 Specification - PD1 • August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
<!ELEMENT scope #PCDATA) >

#PCDATA ::= NESTED | AT_BEGIN | AT_END

<attribute>

Provides information on an attribute of this action. Attribute defines an id attribute for
external linkage.

<!ATTLIST attribute id ID#IMPLIED>

The subelements of attribute are of the form:

name the attributes name (required)

required if the attribute is required or optional (optional)

rtexprvalue if the attributes value may be dynamically calculated at runtime by a scriptlet
expression (optional)

type the type of the attributes value (optional)

The syntax is:

<!ELEMENT attribute
(name, required?,
rtexprvalue?, type?) >

<name>

Defines the canonical name of a tag or attribute being defined

The syntax is:

<!ELEMENT name (#PCDATA) >

#PCDATA ::= NMTOKEN

<required>

Defines if the nesting attribute is required or optional.

The syntax is:

<!ELEMENT required (#PCDATA) >

#PCDATA ::= true | false | yes | no

If not present then the default is “false”, i.e the attribute is optional.
Chapter 9 Tag Extensions 138

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
<rtexprvalue>

Defines if the nesting attribute can have scriptlet expressions as a value, i.e the value of the
attribute may be dynamically calculated at request time, as opposed to a static value
determined at translation time.

The syntax is:

<!ELEMENT rtexprvalue (#PCDATA) >

#PCDATA ::= true | false | yes | no

If not present then the default is “false”, i.e the attribute has a static value

<type>

Defines the Java type of the attributes value. For static values (those determined at
translation time) the type is always java.lang.String.

If the rtexprvalue element is true, that is the value of the nesting attribute may be calculated
from an expression scriptlet during request processing then the type defines the return type
expected from any scriptlet expression specified as the value of this attribute.

The syntax is:

<!ELEMENT type (#PCDATA) >

#PCDATA ::= fully qualified Java class name of result type

An example is:

<type>
 java.lang.Object
</type>

9.5 Validation
There are a number of reasons why the structure of a JSP page should conform to some
validation rules. Some of them are:

• Request-time semantics; e.g. a subelement requires at request-time the information from
some enclosing element.

• Authoring-tool support; e.g. some tool may require some ordering in the actions.

• Methodological constraints; e.g. a development group may want to constraint the way
some features are used.
139 JavaServer Pages 1.2 Specification - PD1 • August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
Validation can be done either at translation-time or at request-time. In general translation-
time validation provides a better user experience, and the JSP 1.2 specification provides a
very flexible translation-time validation mechanism.

9.5.1 Translation-Time Mechanisms
Some translation-time validation is represented in the Tag Library Descriptor. In some cases
a TagExtraInfo class needs to be written to supplement this information.

9.5.1.1 Attribute Information
The Tag Library Descriptor contains the basic syntactic information. In particular, the
attributes are described including their name, whether they are optional or mandatory, and
whether they accept request-time expressions. Additionally the bodycontent attribute can
be used to indicate that an action must be empty.

All constraints described in the TLD must be enforced. A tag library author can assume that
the tag handler instance corresponds to an action that satisfies all constraints indicated in the
TLD.

9.5.1.2 Validator Classes
A TagLibraryValidator class may be listed in the TLD for a tag library to request that
a JSP page be validated. The JSP page is exposed as its associated XML document through
a PageInfo class, and the validator class can do any checks the tag library author may have
found appropriate.

The validator class mechanism was introduced in the JSP 1.2 specification. We expect that
validator classes will be written based on different XML schema mechanisms (DTDs,
XSchema, Relaxx, others). A validator class for it may be incorporated into a later version
of the JSP specification if a clear schema standard appears at some point.

9.5.1.3 Syntactic Information in a TagExtraInfo Class
Additional translation-time validation can be done using the isValid method in the
TagExtraInfo class. The isValid method is invoked at translation-time and is passed a
TagData instance as its argument.
Chapter 9 Tag Extensions 140

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
The isValid mechanism was the original validation mechanism introduced in JSP 1.1 with
the rest of the Tag Extension machinery. Tag libraries that are designed to run in JSP 1.2
containers are probably best using the validator class mechanism.

9.5.2 Request-Time Errors
In some cases, additional request-time validation will be done dynamically within the
methods in the tag handler. If an error is discovered, an instance of JspException can be
thrown. If uncaught, this object will invoke the errorpage mechanism of the JSP
specification.

9.6 Conventions and Other Issues
This section is not normative, although it reflects good design practices.

9.6.1 How to Define New Implicit Objects
We advocate the following style for the introduction of implicit objects:

• Define a tag library.

• Add an action called defineObjects; this action will define the desired objects.

Then the JSP page can make these objects available as follows:

<%@ tablig prefix="me" uri="......" %>
<me:defineObjects />
.... start using the objects....

This approach has the advantage of requiring no new machinery and of making very explicit
the dependency.

In some cases there may be some implementation dependency in making these objects
available; for example, they may be providing access to some functionality that only exists in
some implementation. This can be done by having the tag extension class test at run-time for
the existence of some implementation dependent feature and raise a run-time error (this, of
course, makes the page not J2EE compliant, but that is a different discussion).

This mechanism, together with the access to metadata information allows for vendors to
innovate within the standard.
141 JavaServer Pages 1.2 Specification - PD1 • August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
Note: if a feature is added to a JSP specification, and a vendor also provides that feature
through its vendor-specific mechanism, the standard mechanism, as indicated in the JSP
specification will “win”. This means that vendor-specific mechanisms can slowly migrate
into the specification as they prove their usefulness.

9.6.2 Access to Vendor-Specific information
If a vendor wants to associate with some tag library some information that is not described in
the current version of the TLD, it can do so by inserting the information in a document it
controls, inserting the document in the WEB-INF portion of the JAR file where the Tab
Library resides, and using the standard Servlet 2.2 mechanisms to access that information.

The vendor can now use the ID machinery to refer to the element within the TLD.

9.6.3 Customizing a Tag Library
A tag library can be customized at assembly and deployment time. For example, a tag
library that provides access to databases may be customized with login and password
information.

There is no convenient place in web.xml in the Servlet 2.2 spec for customization
information A standardized mechanism is probably going to be part of a forthcoming JSP
specification, but in the meantime the suggestion is that a tag library author place this
information in a well-known location at some resource in the WEB-INF/ portion of the
Web Application and access it via the getResource() call on the ServletContext.
Chapter 9 Tag Extensions 142

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
143 JavaServer Pages 1.2 Specification - PD1 • August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
CHAPTER 10

Tag Extension API

Custom actions can be used by JSP authors and authoring tools to simplify writing JSP
pages.

A custom action has a start tag, possibly a body, and an end tag. A prototypical example is of
the form:
<x:foo att=“myObject” >

BODY
</x:foo/>

An empty tag has no body, in which case the start and end tags can be combined as follows:
<x:foo att=“myObject” />

The JavaServer Pages(tm) (JSP) 1.2 specification provides a portable mechanism for the
description of tag libraries containing:
•A Tag Library Descriptor (TLD)
•A number of Tag handler classes defining request-time behavior
•A number of classes defining translation-time behavior
•Additional resources used by the classes

Chapter 9 details the how TLDs are used in taglib directives and the format of the TLD file.
This chapter describes the methods that are available to access the TLD and the details of the
tag extension classes.

This chapter is organized in three sections. The first section presents the basic tag handler
classes. The second section describes the more complex tag handlers that need to access
their body evaluation. The last section looks at translation-time issues.
Chapter 10 Tag Extension API 144

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
10.1 Simple Tag Handlers
In this section we introduce the notion of a tag handler and describe the simplest type of tag
handler.

Tag Handler

A tag handler is a special type of run-time server-side object that is created to help evaluate
custom actions during the execution of a JSP page. A tag handler is an invisible server-side
JavaBeans component that supports an additional protocol for better integration within a JSP
page.

The protocol supported by a tag handler provides for passing of parameters, the evaluation
and reevaluation of the body of the action, and for getting access to objects and other tag
handlers in the JSP page.

Additional translation time information associated with the action indicates the name of any
scripting variables it may introduce, their types and their scope. At specific moments, the
JSP container will automatically synchronize the PageContext information with variables in
the scripting language so they can be made available directly through the scripting elements.

Properties

A tag handler has some properties. All tag handlers have a pageContext property for the JSP
page where the tag is located, and a parent property for the tag handler to the closest enclos-
ing action. Specific tag handler classes may have additional properties.

All attributes of a custom action must be JavaBeans component properties, although some
properties may not be exposed as attributes. The attributes that are visible to the JSP transla-
tor are exactly those listed in the Tag Library Descriptor (TLD).

All properties of a tag handler instance must be initialized through the appropriate setter
methods before the instance can be used. It is the responsibility of the JSP container to
invoke the appropriate setter methods to initialize these properties.

The setter methods that should be used when assigning a value to an attribute of a custom
action are determined by using the JavaBeans introspector on the tag handler class, then use
the setter method associated with the property that has the same name as the attribute in
question. An implication (unclear in the JavaBeans specification) is that there is only one
setter per property.

Unspecified attributes/properties should not be set (using a setter method).
145 JavaServet Pages 1.2 Specification - PD1 • August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
Once properly set, all properties are expected to be persistent, so that if the JSP container
ascertains that a property has already been set on a given tag handler instance, it needs not set
it again. The tag handler-specific properties can be reset using the resetCustomAttributes
method, if it exists.

Conversions

Attribute values in a JSP page are described as strings, but the corresponding properties of the
tag handler may be have other types. The following conversions are done.

When the attribute is a request-time attribute value, no conversion is done, i.e. types must
match exactly.

When the attribute is a literal string, if there is a PropertyEditor associated with the JavaBean
component, then, the setAsText() method will be used. Otherwise, the rules in Table 2-4, sec-
tion 2.13.2 will be followed.

The Tag Interface

A Tag handler that does not want to process its body can implement just the Tag interface.
There are several reasons why a tag handler will not want to process its body: because it has
none (there is a mechanism in the TLD to require the JSP parser to verify that), or because the
body is just to be “passed through”.

The Tag interface includes methods to provide page context information to the Tag Handler
instance, methods to handle the life-cycle of tag handlers, and two main methods for perform-
ing actions on a tag: doStartTag() and doEndTag(). The method doStartTag() is
invoked when encountering the start tag and its return value indicates whether the body (if
there is any) should be skipped, or evaluated and passed through to the current response
stream. The method doEndTag() is invoked when encountering the end tag; its return value
indicates whether the rest of the page should continue to be evaluated or not.

The IterationTag Interface

The IterationTag interface is used to repeatedly reevaluate the body of a custom action. The
interface has one method: doAfterBody() which is invoked after each evaluation of the
body to determine whether to reevaluate or not.

Reevaluation is requested with the value 2, which in JSP 1.1 is defined to be Body-
Tag.EVAL_BODY_TAG. That constant value is still kept in JSP 1.2 (for full backwards com-
patibility) but, to improve clarity, a new name is also available:
IterationTag.EVAL_BODY_AGAIN. To stop iterating, the returned value should be 0, which
is Tag.SKIP_BODY.
Chapter 10 Tag Extension API 146

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
The TagSupport Base Class

The TagSupport class is a base class that can be used when implementing the Tag or
IterationTag interfaces.

10.1.1 Tag

Syntax
public interface Tag

All Known Subinterfaces: BodyTag, IterationTag

Description

The interface of a simple tag handler that does not want to manipulate its body. The Tag
interface defines the basic protocol between a Tag handler and JSP page implementation
class. It defines the life cycle and the methods to be invoked at start and end tag.

Properties

The Tag interface specifies the setter and getter methods for the core pageContext and parent
properties.

The JSP page implementation object invokes setPageContext and setParent, in that order,
before invoking doStartTag() or doEndTag().

The JSP 1.2 specification has the resetCustomProperties() method to reset all custom proper-
ties to default values. Note that the JSP translator can determine whether a specific tag han-
dler class supports or not this method.

Methods

There are two main actions: doStartTag and doEndTag. Once all appropriate properties have
been initialized, the doStartTag and doEndTag methods can be invoked on the tag handler.
Between these invocations, the tag handler is assumed to hold a state that must be preserved.
After the doEndTag invocation, the tag handler is available for further invocations (and it is
expected to have retained its properties).

Release

Once all invocations on the tag handler are completed, the release method is invoked on it.
Once a release method is invoked all properties, including parent and pageContext, are
147 JavaServet Pages 1.2 Specification - PD1 • August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
assumed to have been reset to an unspecified value. The page compiler guarantees that release
will be invoked on the Tag handler before the end of the page.

Lifecycle details are collected elsewhere in the JSP specification document.

10.1.1.1 Fields
public static final int EVAL_BODY_INCLUDE

Evaluate body into existing out stream. Valid return value for doStartTag. This is an illegal
return value for doStartTag when the class implements BodyTag, since BodyTag implies
the creation of a new BodyContent.

public static final int EVAL_PAGE

Continue evaluating the page. Valid return value for doEndTag().

public static final int SKIP_BODY

Skip body evaluation. Valid return value for doStartTag and doAfterBody.

public static final int SKIP_PAGE

Skip the rest of the page. Valid return value for doEndTag.

10.1.1.2 Methods
public int doEndTag()

Process the end tag for this instance. This method is invoked by the JSP page implementa-
tion object on all Tag handlers.

This method will be called after returning from doStartTag. The body of the action may or
not have been evaluated, depending on the return value of doStartTag.

If this method returns EVAL_PAGE, the rest of the page continues to be evaluated. If this
method returns SKIP_PAGE, the rest of the page is not evaluated and the request is com-
pleted. If this request was forwarded or included from another page (or Servlet), only the
current page evaluation is completed.

The JSP container will resynchronize any variable values that are indicated as so in Tag-
ExtraInfo after the invocation of doEndBody().

Throws:
JspException., JspException

public int doStartTag()
Chapter 10 Tag Extension API 148

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
Process the start tag for this instance. This method is invoked by the JSP page imple-
mentation object.

The doStartTag method assumes that the properties pageContext and parent have been
set. It also assumes that any properties exposed as attributes have been set too. When
this method is invoked, the body has not yet been evaluated.

This method returns Tag.EVAL_BODY_INCLUDE or Body-
Tag.EVAL_BODY_BUFFERED to indicate that the body of the action should be evalu-
ated or SKIP_BODY to indicate otherwise. When a Tag returns
EVAL_BODY_INCLUDE the result of evaluating the body (if any) is included into the
current “out” JspWriter as it happens and then doEndTag() is invoked.

BodyTag.EVAL_BODY_BUFFERED is only valid if the tag handler implements Body-
Tag.

The JSP container will resynchronize any variable values that are indicated as so in Tag-
ExtraInfo after the invocation of doStartBody().

Throws:
JspException., JspException

See Also: BodyTag

public Tag getParent()

Get the parent (closest enclosing tag handler) for this tag handler. This method is used
by the findAncestorWithClass() method in TagSupport.

Parameters:
t - The enclosing tag handler.

public void release()

Called on a Tag handler to release state. The page compiler guarantees that JSP page
implementation objects will invoke this method on all tag handlers, but there may be
multiple invocations on doStartTag and doEndTag in between.

public void resetCustomAttributes()

Reset all custom (i.e. not parent, not pageContext) attributes to their default values

public void setPageContext(PageContext pc)

Set the current page context. This method is invoked by the JSP page implementation
object prior to doStartTag().

This value is *not* reset by doEndTag() and must be explicitly reset by a page imple-
mentation

public void setParent(Tag t)
149 JavaServet Pages 1.2 Specification - PD1 • August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
Set the parent (closest enclosing tag handler) of this tag handler. Invoked by the JSP page
implementation object prior to doStartTag().

This value is *not* reset by doEndTag() and must be explicitly reset by a page implemen-
tation. Code can assume that setPageContext has been called with the proper values before
this point.

Parameters:
t - The parent tag, or null.

10.1.2 IterationTag

Syntax
public interface IterationTag extends Tag

All Known Subinterfaces: BodyTag

All Superinterfaces: Tag

All Known Implementing Classes: TagSupport

Description

The IterationTag interface extends Tag by defining one additional method that controls the
reevaluation of its body.

A tag handler that implements IterationTag is treated as one that implements Tag regarding the
doStartTag() and doEndTag() methods. IterationTag provides a new method: doAfter-
Body().

The doAfterBody() method is invoked after every body evaluation to control whether the body
will be reevaluated or not. If doAfterBody() returns IterationTag.EVAL_BODY_AGAIN, then
the body will be reevaluated. If doAfterBody() returns Tag.SKIP_BODY, then the body will be
skipped and doEndTag() will be evaluated instead.

10.1.2.1 Fields
public static final int EVAL_BODY_AGAIN
Chapter 10 Tag Extension API 150

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
Request the reevaluation of some body. Returned from doAfterBody. For compatibility
with JSP 1.1, the value is carefully selected to be the same as the, now deprecated,
BodyTag.EVAL_BODY_TAG,

10.1.2.2 Methods
public int doAfterBody()

Process body (re)evaluation. This method is invoked by the JSP Page implementation
object after every evaluation of the body into the BodyEvaluation object. The method is
not invoked if there is no body evaluation.

If doAfterBody returns EVAL_BODY_AGAIN, a new evaluation of the body will hap-
pen (followed by another invocation of doAfterBody). If doAfterBody returns
SKIP_BODY no more body evaluations will occur, the value of out will be restored
using the popBody method in pageContext, and then doEndTag will be invoked.

The method re-invocations may be lead to different actions because there might have
been some changes to shared state, or because of external computation.

The JSP container will resynchronize any variable values that are indicated as so in Tag-
ExtraInfo after the invocation of doAfterBody().

Returns: whether additional evaluations of the body are desired

Throws:
JspException

10.1.3 TagSupport

Syntax
public class TagSupport implements IterationTag, java.io.Serializable

Direct Known Subclasses: BodyTagSupport

All Implemented Interfaces: IterationTag, java.io.Serializable, Tag

Description

A base class for defnining new tag handlers implementing Tag.
151 JavaServet Pages 1.2 Specification - PD1 • August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
The TagSupport class is a utility class intended to be used as the base class for new tag han-
dlers. The TagSupport class implements the Tag and IterationTag interfaces and adds addi-
tional convenience methods including getter methods for the properties in Tag. TagSupport has
one static method that is included to facilitate coordination among cooperating tags.

Many tag handlers will extend TagSupport and only redefine a few tags.

10.1.3.1 Fields
protected java.lang.String id

protected PageContext pageContext

10.1.3.2 Constructors
public TagSupport()

Default constructor, all subclasses are required to only define a public constructor with the
same signature, and to call the superclass constructor. This constructor is called by the
code generated by the JSP translator.

10.1.3.3 Methods
public int doAfterBody()

Default processing for a body

Returns: SKIP_BODY

Throws:
JspException

See Also: public int doAfterBody()

public int doEndTag()

Default processing of the end tag returning EVAL_PAGE.

Throws:
JspException

See Also: public int doEndTag()

public int doStartTag()

Default processing of the start tag, returning SKIP_BODY.

Throws:
Chapter 10 Tag Extension API 152

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
JspException

See Also: public int doStartTag()

public static final Tag findAncestorWithClass(Tag from,
java.lang.Class klass)

Find the instance of a given class type that is closest to a given instance. This method
uses the getParent method from the Tag interface. This method is used for coordination
among cooperating tags.

Parameters:
from - The instance from where to start looking.

klass - The subclass of Tag or interface to be matched

public java.lang.String getId()

The value of the id attribute of this tag; or null.

public Tag getParent()

The Tag instance most closely enclosing this tag instance.

See Also: public Tag getParent()

public java.lang.Object getValue(java.lang.String k)

Get a the value associated with a key.

Parameters:
k - The string key.

public java.util.Enumeration getValues()

Enumerate the values kept by this tag handler.

public void release()

Release state.

See Also: public void release()

public void removeValue(java.lang.String k)

Remove a value associated with a key.

Parameters:
k - The string key.

public void setId(java.lang.String id)

Set the id attribute for this tag.

Parameters:
153 JavaServet Pages 1.2 Specification - PD1 • August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
id - The String for the id.

public void setPageContext(PageContext pageContext)

Set the page context.

Parameters:
pageContenxt - The PageContext.

See Also: public void setPageContext(PageContext pc)

public void setParent(Tag t)

Set the nesting tag of this tag.

Parameters:
t - The parent Tag.

See Also: public void setParent(Tag t)

public void setValue(java.lang.String k, java.lang.Object o)

Associate a value with a String key.

Parameters:
k - The key String.

o - The value to associate.

10.2 Tag Handlers that want Access to their
Body Content
The evaluation of a body is delivered into a BodyContent object. This is then made avail-
able to tag handlers that implement the BodyTag interface. The BodyTagSupport class
provides a useful base class to simplify writing these handlers.

If a Tag handler wants to have access to the content of its body then it must implement the
BodyTag interface. This interface extends Tag, provides three additional methods set-
BodyContent(BodyContent), doInitBody() and doAfterBody() and refers to
an object of type BodyContent.

A BodyContent is a subclass of JspWriter that has a few additional methods to convert its
contents into a String, insert the contents into another JspWriter, to get a Reader into its con-
tents, and to clear the contents. Its semantics also assure that buffer size will never be
exceeded.
Chapter 10 Tag Extension API 154

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
The JSP page implementation will create a BodyContent if the doStartTag() method returns
a EVAL_BODY_TAG. This object will be passed to doInitBody(); then the body of the tag
will be evaluated, and during that evaluation out will be bound to the BodyContent just
passed to the BodyTag handler. Then doAfterBody() will be evaluated. If that method
returns SKIP_BODY, no more evaluations of the body will be done; if the method returns
EVAL_BODY_TAG, then the body will be evaluated, and doAfterBody() will be invoked
again.

A common use of the BodyContent is to extract its contents into a String and then use the
String as a value for some operation. Another common use is to take its contents and push it
into the out Stream that was valid when the start tag was encountered (that is available from
the PageContext object passed to the handler in setPageContext).

10.2.1 BodyContent

Syntax
public abstract class BodyContent extends JspWriter

Description

An encapsulation of the evaluation of the body of an action so it is available to a tag
handler. BodyContent is a subclass of JspWriter.

Note that the content of BodyContent is the result of evaluation, so it will not contain actions
and the like, but the result of their invocation.

BodyContent has methods to convert its contents into a String, to read its contents, and to
clear the contents.

The buffer size of a BodyContent object is unbounded. A BodyContent object cannot be in
autoFlush mode. It is not possible to invoke flush on a BodyContent object, as there is no
backing stream.

Instances of BodyContent are created by invoking the pushBody and popBody methods of
the PageContext class. A BodyContent is enclosed within another JspWriter (maybe another
BodyContent object) following the structure of their associated actions.

10.2.1.1 Constructors
protected BodyContent(JspWriter e)

Protected constructor. Unbounded buffer, no autoflushing.
155 JavaServet Pages 1.2 Specification - PD1 • August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
10.2.1.2 Methods
public void clearBody()

Clear the body without throwing any exceptions.

public void flush()

Redefined flush() so it is not legal.

It is not valid to flush a BodyContent because there is no backing stream behind it.

Overrides: public abstract void flush() in class JspWriter

Throws:
IOException

public JspWriter getEnclosingWriter()

Get the enclosing JspWriter.

Returns: the enclosing JspWriter passed at construction time

public abstract java.io.Reader getReader()

Return the value of this BodyContent as a Reader.

Returns: the value of this BodyContent as a Reader

public abstract java.lang.String getString()

Return the value of the BodyContent as a String.

Returns: the value of the BodyContent as a String

public abstract void writeOut(java.io.Writer out)

Write the contents of this BodyContent into a Writer. Subclasses may optimize common
invocation patterns.

Parameters:
out - The writer into which to place the contents of this body evaluation

Throws:
IOException

10.2.2 BodyTag

Syntax
public interface BodyTag extends IterationTag
Chapter 10 Tag Extension API 156

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
All Superinterfaces: IterationTag, Tag

All Known Implementing Classes: BodyTagSupport

Description

The BodyTag interface extends IterationTag by defining additional methods that let a
tag handler manipulate the content of evaluating its body.

It is the responsibility of the tag handler to manipulate the body content. For example the tag
handler may take the body content, convert it into a String using the bodyContent.getString
method and then use it. Or the tag handler may take the body content and write it out into its
enclosing JspWriter using the bodyContent.writeOut method.

A tag handler that implements BodyTag is treated as one that implements IterationTag,
except that the doStartTag method can return SKIP_BODY, EVAL_BODY_INCLUDE or
EVAL_BODY_BUFFERED.

If EVAL_BODY_INCLUDE is returned, then evaluation happens as in IterationTag.

If EVAL_BODY_BUFFERED is returned, then a BodyContent object will be created to
capture the body evaluation. This object is obtained by calling the pushBody method of the
current pageContext, which additionally has the effect of saving the previous out value. The
object is returned through a call to the popBody method of the PageContext class; the call
also restores the value of out.

The interface provides one new property with a setter method and one new action method.

The new property is bodyContent, to contain the BodyContent object, where the JSP Page
implementation object will place the evaluation (and reevaluation, if appropriate) of the
body. The setter method (setBodyContent) will only be invoked if doStartTag() returns
EVAL_BODY_BUFFERED.

The new action methods is doInitBody(), which is invoked right after setBodyContent() and
before the body evaluation. This method is only invoked if doStartTag() returns
EVAL_BODY_BUFFERED.

10.2.2.1 Fields
public static final int EVAL_BODY_BUFFERED

Request the creation of new buffer, a BodyContent on which to evaluate the body of this
tag. Returned from doStartTag when it implements BodyTag. This is an illegal return
value for doStartTag when the class does not implement BodyTag.
157 JavaServet Pages 1.2 Specification - PD1 • August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
public static final int EVAL_BODY_TAG

Deprecated. As of Java JSP API 1.2, use BodyTag.EVAL_BODY_BUFFERED or
IterationTag.EVAL_BODY_AGAIN.

Deprecated constant that has the same value as EVAL_BODY_BUFFERED and
EVAL_BODY_AGAIN. This name has been marked as deprecated to encourage the use
of the two different terms, which are much more descriptive.

10.2.2.2 Methods
public void doInitBody()

Prepare for evaluation of the body. This method is invoked by the JSP page implementa-
tion object after setBodyContent and before the first time the body is to be evaluated. The
method will not be invoked if there is no body evaluation.

The JSP container will resynchronize any variable values that are indicated as so in Tag-
ExtraInfo after the invocation of doInitBody().

Throws:
JspException

public void setBodyContent(BodyContent b)

Set the bodyContent property. This method is invoked by the JSP page implementation
object at most once per action invocation. The method will be invoked before doInitBody
and it will not be invoked if there is no body evaluation (for example if doStartTag()
returns EVAL_BODY_INCLUDE or SKIP_BODY).

When setBodyContent is invoked, the value of the implicit object out has already been
changed in the pageContext object. The BodyContent object passed will have not data on
it but may have been reused (and cleared) from some previous invocation.

The BodyContent object is available and with the appropriate content until after the invo-
cation of the doEndTag method, at which case it may be reused.

Parameters:
b - the BodyContent

10.2.3 BodyTagSupport

Syntax
public class BodyTagSupport extends TagSupport implements BodyTag
Chapter 10 Tag Extension API 158

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
All Implemented Interfaces: BodyTag, IterationTag, java.io.Serializable, Tag

Description

A base class for defining tag handlers implementing BodyTag.

The BodyTagSupport class implements the BodyTag interface and adds additional conve-
nience methods including getter methods for the bodyContent property and methods to get at
the previous out JspWriter.

Many tag handlers will extend TagSupport and only redefine a few tags.

10.2.3.1 Fields
protected BodyContent bodyContent

10.2.3.2 Constructors
public BodyTagSupport()

Default constructor, all subclasses are required to only define a public constructor with
the same signature, and to call the superclass constructor. This constructor is called by
the code generated by the JSP translator.

10.2.3.3 Methods
public int doAfterBody()

After the body evaluation: do not reevaluate and continue with the page. By default
nothing is done with the bodyContent data (if any).

Overrides: public int doAfterBody() in class TagSupport

Returns: SKIP_BODY

Throws:
JspException

public int doEndTag()

Default processing of the end tag returning EVAL_PAGE.

Overrides: public int doEndTag() in class TagSupport

Returns: EVAL_PAGE
159 JavaServet Pages 1.2 Specification - PD1 • August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
Throws:
JspException

public void doInitBody()

Prepare for evaluation of the body just before the first body evaluation: no action.

Throws:
JspException

public int doStartTag()

Default processing of the start tag returning EVAL_BODY_TAG.

Overrides: public int doStartTag() in class TagSupport

Returns: EVAL_BODY_TAG;

Throws:
JspException

public BodyContent getBodyContent()

Get current bodyContent.

Returns: the body content.

public JspWriter getPreviousOut()

Get surrounding out JspWriter.

Returns: the enclosing JspWriter, from the bodyContent.

public void release()

Release state.

Overrides: public void release() in class TagSupport

public void setBodyContent(BodyContent b)

Prepare for evaluation of the body: stash the bodyContent away.

Parameters:
b - the BodyContent

10.3 Tag Life Cycle
At execution time the implementation of a JSP page will use an available Tag instance with the
appropriate prefix and name that is not being used, initialize it, and then follow the protocol
Chapter 10 Tag Extension API 160

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
described below. Afterwards, it will release the instance and make it available for further
use. This approach reduces the number of instances that are needed at a time.

Initialization is done by setting the properties pageContext and parent, in that order.

Once a tag handler instance has initialized the pageContext and parent properties, all custom
properties as indicated through the attributes in the custom action instance, if any, will be set
to the values as requested, following any conversions applicable.

Custom properties may have some default values. A tag handler should set its propertes set
to any default values it may expect after the pageContext and parent properties are set. Also
custom properties may be reset to their default values using the (new) method resetCustom-
Attributes(); the values of the standard properties pageContext and parent are preserved by
this method.

All properties will be reset to an undetermined state when release() is invoked.

Unset Attributes and Tag Handlers: Reusing Instances

Consider the following JSP fragment:
<x:foo att1=“one” att2=“two”/>
<x:foo att1=“HELLO” att2=“BYE”/>

To implement this fragment, the JSP page implementation object can use one or two tag han-
dler instances. If it wants to reuse the first tag handler, it just needs to do a h.set-
Att1(“HELLO”); h.setAtt2(“BYE”); to prepare the handler for the second action.

Consider now the case of:
<foo:bar attr1=“abc” attr2=“def”/>
<foo:bar attr1=“xyz”/>

To implement this fragment, the JSP page implementation object can use two tag handler
instances, one instance on which the setter methods for "attr1“ and "attr2” are
invoked, and a separate instance for when only the setter for "attr1“ is used.

If the tag handler supports the resetCustomAttributes method, then a single tag handler
instance can also be used, provided that this method is invoked to reset the properties, and
then the setter method for "attr1“ is used.

If the tag handler does not support the resetCustomAttributes method, a reset invocation
could be done, but then the parent and pageContext properties will have to be reset too.

A Run-Time Trace

The following figure shows the run-time trace for a complex Tag instance; methods invoked
by the JSP page code that almost never redefined by a specific Tag handler are in blue, and
the action methods are in red.
161 JavaServet Pages 1.2 Specification - PD1 • August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
ATag h = new ATag();
...
h.setPageContext(pageContext);
h.setParent(parent);
h.setAttribute1(value1);
h.setAttribute2(value2);
h.doStartTag()

out = pageContext.pushBody()
h.setBodyContent(out)
h.doInitBody()
[BODY]
h.doAfterBody()
.....
[BODY]
h.doAfterBody()
......
out = pageContext.popBody()

h.doEndTag()
h.release()

10.4 Cooperating Actions
Actions can cooperate with other actions and with scripting code in a number of ways.

PageContext

Often two actions in a JSP page will want to cooperate, perhaps by one action creating some
server-side object that needs to be access by another. One mechanism for doing this is by giv-
ing the object a name within the JSP page; the first action will create the object and associate
the name to it while the second action will use the name to retrieve the object.

For example, in the following JSP fragment the foo action might create a server-side object
and give it the name “myObject”. Then the bar action might access that server-side object and
take some action.
<x:foo id=“myObject” />
<x:bar ref=“myObjet” />

In a JSP implementation, the mapping “name”->value is kept by the implicit object page-
Context. This object is passed around through the Tag handler instances so it can be used to
communicate information: all it is needed is to know the name under which the information is
stored into the pageContext.
Chapter 10 Tag Extension API 162

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
The Runtime Stack

An alternative to explicit communication of information through a named object is implicit
coordination based on syntactic scoping.

For example, in the following JSP fragment the foo action might create a server-side object;
later the nested bar action might access that server-side object. The object is not named
within the pageContext: it is found because the specific foo element is the closest
enclosing instance of a known element type.
<foo>

<bar/>
</foo>

This functionality is supported through the BodyTagSupport.findAncestorWith-
Class(Tag, Class), which uses a reference to parent tag kept by each Tag instance,
which effectively provides a run-time execution stack.

10.5 Translation-time Classes
The next classes are used at translation time.

Tag mapping, Tag name

A taglib directive introduces a tag library and associates a prefix to it. The TLD associated
with the library associates Tag handler classes (plus other information) with tag names. This
information is used to associate a Tag class, a prefix, and a name with each custom action
element appearing in a JSP page.

At execution time the implementation of a JSP page will use an available Tag instance with
the appropriate prefix, name, PageContext, parent, and TagData and then follow the protocol
described below. The implementation guarantees that all tag handler instances are initialized
and all are released, but the implementation can assume that previous settings are preserved
by a tag handler, to reduce run-time costs.

See the Tag Extensions Chapter of the JSP 1.2 specification for more details.

Scripting Variables

JSP supports scripting variables that can be declared within a scriptlet and can be used in
another. JSP actions also can be used to define scripting variables so they can used in script-
ing elements, or in other actions. This is very useful in some cases; for example, the
jsp:useBean standard action may define an object which can later be used through a
scripting variable.
163 JavaServet Pages 1.2 Specification - PD1 • August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
In some cases the information on scripting variables can be described directly into the TLD
using elements. A special case is typical interpretation of the "id“ attribute. In other cases
the logic that decides whether an action instance will define a scripting variable may be quite
complex and the name of a TagExtraInfo class is instead given in the TLD. The get-
VariableInfo method of this class is used at translation time to obtain information on each
variable that will be created at request time when this action is executed. The method is passed
a TagData instance that contains the translation-time attribute values.

Validation

The TLD file contains several pieces of information that is used to do syntactic validation at
translation-time. It also contains two extensible validation mechanisms: a TagLibrary-
Validator class can be used to validate a complete JSP page, and a TagExtraInfo class
can be used to validate a specific action.

The TagLibraryValidator is an addition to the JSP 1.2 specification and is very open ended,
being strictly more powerful than the TagExtraInfo mechanism. A JSP page is presented via
the PageInfo object, which abstracts the XML view of the JSP page.

In some cases, additional request-time validation will be done dynamically within the methods
in the Tag instance. If an error is discovered, an instance of JspTagException can be
thrown. If uncaught, this object will invoke the errorpage mechanism of JSP.

In detail, validation is done as follows:

First the JSP page is parsed using the information in the TLD. At this stage valid mandatory
and optional attributes are checked.

Next the XML view of the page is validated according to the validator classes (if any) in all the
tag libraries that were used in the JSP page. The view will be exposed to the validator classes
as an instance of a PageInfo class. This class will provides an InputStream (read-only) on the
page; later specifications may add other views on the page (DOM, SAX, JDOM are all candi-
dates).

The validators are invoked by iterating over all taglib directives in the page, in the order in
which they appear:

If the TLD has a <validatorClass> object then
•get an instance of the validator class (container may recycle if wanted)
•set the TagLibraryInfo object on the instance the first time.
•invoke the validate method on the instance.
•report any errors found.

After checking all the tag library validator classes, the TagExtraInfo classes for all tags will be
consulted by invoking their isValid method. The order of invocation of this methods is
undefined.
Chapter 10 Tag Extension API 164

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
10.5.1 TagLibraryInfo

Syntax
public abstract class TagLibraryInfo

Description

Information available at translation-time on a Tag Library. This class is instantiated
from the Tag Library Descriptor file (TLD).

10.5.1.1 Fields
protected java.lang.String info

protected java.lang.String jspversion

protected java.lang.String prefix

protected java.lang.String shortname

protected TagInfo[] tags

protected java.lang.String tlibversion

protected java.lang.String uri

protected java.lang.String urn

10.5.1.2 Constructors
protected TagLibraryInfo(java.lang.String prefix,

java.lang.String uri)

Constructor. This will invoke the constructors for TagInfo, and TagAttributeInfo after
parsing the TLD file.

Parameters:
prefix - the prefix actually used by the taglib directive

uri - the URI actually used by the taglib directive

10.5.1.3 Methods
public java.lang.String getInfoString()

Information (documentation) for this TLD.
165 JavaServet Pages 1.2 Specification - PD1 • August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
public java.lang.String getPrefixString()

The prefix assigned to this taglib from the <%taglib directive

public java.lang.String getReliableURN()

The “reliable” URN indicated in the TLD. This may be used by authoring tools as a global
identifier (the uri attribute) to use when creating an include directive for this library.

public java.lang.String getRequiredVersion()

A string describing the required version of the JSP container.

public java.lang.String getShortName()

The prefered short name (prefix) as indicated in the TLD. This may be used by authoring
tools as the prefered prefix to use when creating an include directive for this library.

public TagInfo getTag(java.lang.String shortname)

Get the TagInfo for a given tag name, looking through all the tags in this tag library.

Parameters:
shortname - The short name (no prefix) of the tag

public TagInfo[] getTags()

An array describing the tags that are defined in this tag library.

public java.lang.String getURI()

The value of the uri attribute from the <%@ taglib directive for this library.

10.5.2 TagInfo

Syntax
public class TagInfo

Description

Tag information for a tag in a Tag Library; This class is instantiated from the Tag Library
Descriptor file (TLD) and is available only at translation time.

10.5.2.1 Fields
public static final java.lang.String BODY_CONTENT_EMPTY

static constant for getBodyContent() when it is empty
Chapter 10 Tag Extension API 166

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
public static final java.lang.String BODY_CONTENT_JSP

static constant for getBodyContent() when it is JSP

public static final java.lang.String BODY_CONTENT_TAG_DEPENDENT

static constant for getBodyContent() when it is Tag dependent

10.5.2.2 Constructors
public TagInfo(java.lang.String tagName,

java.lang.String tagClassName, java.lang.String bodycontent,
java.lang.String infoString, TagLibraryInfo taglib,
TagExtraInfo tagExtraInfo, TagAttributeInfo[] attributeInfo)

Constructor for TagInfo. This class is to be instantiated only from the TagLibrary code
under request from some JSP code that is parsing a TLD (Tag Library Descriptor).

Parameters:
tagName - The name of this tag

tagClassName - The name of the tag handler class

bodycontent - Information on the body content of these tags

infoString - The (optional) string information for this tag

taglib - The instance of the tag library that contains us.

tagExtraInfo - The instance providing extra Tag info. May be null

attributeInfo - An array of AttributeInfo data from descriptor. May be null;

10.5.2.3 Methods
public TagAttributeInfo[] getAttributes()

Attribute information (in the TLD) on this tag. The return is an array describing the
attributes of this tag, as indicated in the TLD. A null return means no attributes.

Returns: The array of TagAttributeInfo for this tag.

public java.lang.String getBodyContent()

The bodycontent information for this tag.

Returns: the body content string.

public java.lang.String getInfoString()

The information string for the tag.
167 JavaServet Pages 1.2 Specification - PD1 • August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
Returns: the info string

public java.lang.String getTagClassName()

Name of the class that provides the handler for this tag.

Returns: The name of the tag handler class.

public TagExtraInfo getTagExtraInfo()

The instance (if any) for extra tag information

Returns: The TagExtraInfo instance, if any.

public TagLibraryInfo getTagLibrary()

The instance of TabLibraryInfo we belong to.

Returns: the tab library instance we belong to.

public java.lang.String getTagName()

The name of the Tag.

Returns: The (short) name of the tag.

public VariableInfo[] getVariableInfo(TagData data)

Information on the scripting objects created by this tag at runtime. This is a convenience
method on the associated TagExtraInfo class.

Default is null if the tag has no “id” attribute, otherwise, {“id”, Object}

Parameters:
data - TagData describing this action.

Returns: Array of VariableInfo elements.

public boolean isValid(TagData data)

Translation-time validation of the attributes. This is a convenience method on the associ-
ated TagExtraInfo class.

Parameters:
data - The translation-time TagData instance.

Returns: Whether the data is valid.

public java.lang.String toString()

Stringify for debug purposes...

Overrides: java.lang.Object.toString() in class java.lang.Object
Chapter 10 Tag Extension API 168

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
10.5.3 TagAttributeInfo

Syntax
public class TagAttributeInfo

Description

Information on the attributes of a Tag, available at translation time. This class is instan-
tiated from the Tag Library Descriptor file (TLD).

Only the information needed to generate code is included here. Other information like
SCHEMA for validation belongs elsewhere.

10.5.3.1 Fields
public static final java.lang.String ID

“id” is wired in to be ID. There is no real benefit in having it be something else IDREFs
are not handled any differently.

10.5.3.2 Constructors
public TagAttributeInfo(java.lang.String name, boolean required,

java.lang.String type, boolean reqTime)

Constructor for TagAttributeInfo. This class is to be instantiated only from the Tag-
Library code under request from some JSP code that is parsing a TLD (Tag Library
Descriptor).

Parameters:
name - The name of the attribute

required - If this attribute is required in tag instances

type - The name of the type of the attribute

reqTime - Whether this attribute hold a request-time Attribute

10.5.3.3 Methods
public boolean canBeRequestTime()

Whether this attribute can hold a request-time value.
169 JavaServet Pages 1.2 Specification - PD1 • August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
Returns: if the attribute can hold a request-time value.

public static TagAttributeInfo getIdAttribute(TagAttributeInfo[] a)

Convenience static method that goes through an array of TagAttributeInfo objects and
looks for “id”.

Parameters:
a - An array of TagAttributeInfo

Returns: The TagAttributeInfo reference with name “id”

public java.lang.String getName()

The name of this attribute.

Returns: the name of the attribute

public java.lang.String getTypeName()

The type (as a String) of this attribute.

Returns: the type of the attribute

public boolean isRequired()

Whether this attribute is required.

Returns: if the attribute is required.

public java.lang.String toString()

Overrides: java.lang.Object.toString() in class java.lang.Object

10.5.4 PageInfo

Syntax
public abstract class PageInfo

Description

Translation-time information on a JSP page. The information corresponds to the XML
document associated with the JSP page.

Objects of this type are generated by the JSP translator, e.g. when being pased to a TagLibrary-
Validator instance.
Chapter 10 Tag Extension API 170

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
10.5.4.1 Constructors
public PageInfo()

10.5.4.2 Methods
public abstract java.io.InputStream getInputStream()

Returns an input stream on the XML document.

Returns: An input stream on the document.

10.5.5 TagLibraryValidator

Syntax
public abstract class TagLibraryValidator

Description

Translation-time validator class for a JSP page. A validator operates on the XML docu-
ment associated with the JSP page.

Validator classes are associated with a tag library via the TLD. A TagLibraryValidator
instance is associated with a given TLD and the JSP translator will invoke the setTag-
LibraryInfo method on an instance before invoking the validate method. A TagLibrary-
Validator instance may create auxiliary objects internally to perform the validation (e.g. an
XSchema validator) and may reuse it for all the pages in a given translation run.

10.5.5.1 Constructors
public TagLibraryValidator()

10.5.5.2 Methods
public TagLibraryInfo getTagLibraryInfo()

Get the TagLibraryInfo associated with with Validator.

Returns: The TagLibraryInfo instance

public void setTagLibraryInfo(TagLibraryInfo tld)
171 JavaServet Pages 1.2 Specification - PD1 • August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
Set the TagLibraryInfo data for this validator.

Parameters:
tld - The TagLibraryInfo instance

public java.lang.String validate(PageInfo thePage)

Validate a JSP page. This method will return a null String if the page passed through is
valid; otherwise an error message.

Parameters:
thePage - the JSP page object

Returns: A string indicating whether the page is valid or not.

10.5.6 TagExtraInfo

Syntax
public abstract class TagExtraInfo

Description

Optional class provided by the tag library author to describe additional translation-time
information not described in the TLD. The TagExtraInfo class is mentioned in the Tag
Library Descriptor file (TLD).

This class must be used:
•if the tag defines any scripting variables
•if the tag wants to provide translation-time validation of the tag attributes.

It is the responsibility of the JSP translator that the initial value to be returned by calls to
getTagInfo() corresponds to a TagInfo object for the tag being translated. If an explicit call
to setTagInfo() is done, then the object passed will be returned in subsequent calls to get-
TagInfo().

The only way to affect the value returned by getTagInfo() is through a setTagInfo() call, and
thus, TagExtraInfo.setTagInfo() is to be called by the JSP translator, with a TagInfo object that
corresponds to the tag being translated. The call should happen before any invocation on
isValid() and before any invocation on getVariableInfo().
Chapter 10 Tag Extension API 172

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
10.5.6.1 Constructors
public TagExtraInfo()

10.5.6.2 Methods
public final TagInfo getTagInfo()

Get the TagInfo for this class.

Returns: the taginfo instance this instance is extending

public VariableInfo[] getVariableInfo(TagData data)

information on scripting variables defined by the tag associated with this TagExtraInfo
instance. Request-time attributes are indicated as such in the TagData parameter.

Parameters:
data - The TagData instance.

Returns: An array of VariableInfo data.

public boolean isValid(TagData data)

Translation-time validation of the attributes. Request-time attributes are indicated as
such in the TagData parameter.

Parameters:
data - The TagData instance.

Returns: Whether this tag instance is valid.

public final void setTagInfo(TagInfo tagInfo)

Set the TagInfo for this class.

Parameters:
tagInfo - The TagInfo this instance is extending

10.5.7 TagData

Syntax
public class TagData implements java.lang.Cloneable

All Implemented Interfaces: java.lang.Cloneable
173 JavaServet Pages 1.2 Specification - PD1 • August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
Description

The (translation-time only) attribute/value information for a tag instance.

TagData is only used as an argument to the isValid and getVariableInfo methods of TagExtra-
Info, which are invoked at translation time.

10.5.7.1 Fields
public static final java.lang.Object REQUEST_TIME_VALUE

Distinguished value for an attribute to indicate its value is a request-time expression
(which is not yet available because TagData instances are used at translation-time).

10.5.7.2 Constructors
public TagData(java.util.Hashtable attrs)

Constructor for a TagData. If you already have the attributes in a hashtable, use this con-
structor.

Parameters:
attrs - A hashtable to get the values from.

public TagData(java.lang.Object[][] atts)

Constructor for TagData.

A typical constructor may be

static final Object[][] att = {{“connection”, “conn0”}, {“id”, “query0”}}
;
static final TagData td = new TagData(att);

All values must be Strings except for those holding the distinguished object
REQUEST_TIME_VALUE.

Parameters:
atts - the static attribute and values. May be null.

10.5.7.3 Methods
public java.lang.Object getAttribute(java.lang.String attName)

The value of the attribute. Returns the distinguished object REQUEST_TIME_VALUE if
the value is request time. Returns null if the attribute is not set.
Chapter 10 Tag Extension API 174

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
Returns: the attribute’s value object

public java.util.Enumeration getAttributes()

Enumerates the attributes.

Returns: An enumeration of the attributes in a TagData

public java.lang.String getAttributeString(java.lang.String attName)

Get the value for a given attribute.

Returns: the attribute value string

public java.lang.String getId()

The value of the id attribute, if available.

Returns: the value of the id attribute or null

public void setAttribute(java.lang.String attName,
java.lang.Object value)

Set the value of an attribute.

Parameters:
attName - the name of the attribute

value - the value.

10.5.8 VariableInfo

Syntax
public class VariableInfo

Description

Information on the scripting variables that are created/modified by a tag (at run-time).
This information is provided by TagExtraInfo classes and it is used by the translation
phase of JSP.

Scripting variables generated by a custom action may have scope page, request, session, and
application.

The class name (VariableInfo.getClassName) in the returned objects are used to determine
the types of the scripting variables. Because of this, a custom action cannot create a scripting
variable of a primitive type. The workaround is to use “boxed” types.
175 JavaServet Pages 1.2 Specification - PD1 • August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
The class name may be a Fully Qualified Class Name, or a short class name.

If a Fully Qualified Class Name is provided, it should refer to a class that should be in the
CLASSPATH for the Web Application (see Servlet 2.3 specification - essentially it is WEB-
INF/lib and WEB-INF/classes). Failure to be so will lead to a translation-time error.

If a short class name is given in the VariableInfo objects, then the class name must be that of a
public class in the context of the import directives of the page where the custom action appears
(will check if there is a JLS verbiage to refer to). The class must also be in the CLASSPATH
for the Web Application (see Servlet 2.3 specification - essentially it is WEB-INF/lib and
WEB-INF/classes). Failure to be so will lead to a translation-time error.

Usage Comments

Frequently a fully qualified class name will refer to a class that is known to the tag library and
thus, delivered in the same JAR file as the tag handlers. In almost other remaining cases it will
refer to a class that is in the platform on which the JSP processor is build (like J2EE). Using
fully qualified class names in this manner makes the usage relatively resistant to configuration
errors.

A short name is usually generated by the tag library based on some attributes passed through
from the custom action user (the author), and it is thus less robust: for instance a missing
import directive in the referring JSP page will lead to an invalid short name class and a transla-
tion error.

Synchronization Protocol

The result of the invocation on getVariableInfo is an array of VariableInfo objects. Each such
object describes a scripting variable by providing its name, its type, whether the variable is
new or not, and what its scope is. Scope is best described through a picture:.

The defined values for scope are:
Chapter 10 Tag Extension API 176

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
•NESTED, if the scripting variable is available between the start tag and the end tag of
the action that defines it.

•AT_BEGIN, if the scripting variable is available from the start tag of the action that
defines it until the end of the page.

•AT_END, if the scripting variable is available after the end tag of the action that
defines it until the end of the page.

The scope value for a variable implies what methods may affect its value and thus, in
lack of additional information, where synchronization is needed:
•for NESTED, after doInitBody and doAfterBody for a tag handler implementing Body-

Tag, and after doStartTag otherwise.
•for AT_BEGIN, after doInitBody, doAfterBody, and doEndTag for a tag handler imple-

menting BodyTag, and doStartTag and doEndTag otherwise.
•for AT_END, after doEndTag method.

Variable Information in the TLD

Scripting variable information can also be encoded directly for most cases into the Tag
Library Descriptor using the <variable> subelement of the <tag> element. See the JSP spec-
ification.

10.5.8.1 Fields
public static final int AT_BEGIN

Scope information that scripting variable is visible after start tag

public static final int AT_END

Scope information that scripting variable is visible after end tag

public static final int NESTED

Scope information that scripting variable is visible only within the start/end tags

10.5.8.2 Constructors
public VariableInfo(java.lang.String varName,

java.lang.String className, boolean declare, int scope)

Constructor These objects can be created (at translation time) by the TagExtraInfo
instances.

Parameters:
id - The name of the scripting variable
177 JavaServet Pages 1.2 Specification - PD1 • August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
className - The name of the scripting variable

declare - If true, it is a new variable (in some languages this will require a declaration)

scope - Indication on the lexical scope of the variable

10.5.8.3 Methods
public java.lang.String getClassName()

public boolean getDeclare()

public int getScope()

public java.lang.String getVarName()
Chapter 10 Tag Extension API 178

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
179 JavaServet Pages 1.2 Specification - PD1 • August 15, 2000

APPENDIX A

Packaging JSP Pages

This appendix shows two simple examples of packaging a JSP page into a WAR for delivery
into a Web container. In the first example, the JSP page is delivered in source form. This is
likely to be the most common example. In the second example the JSP page is compiled into
a Servlet that uses only Servlet 2.3 and JSP 1.2 API calls; the Servlet is then packaged into a
WAR with a deployment descriptor such that it looks as the original JSP page to any client.

This appendix is non normative. Actually, strictly speaking, the appendix relates more to the
Servlet 2.3 capabilities to the JSP 1.2 capabilities. The appendix is included here as this is a
feature that JSP page authors and JSP page authoring tools are interested in.

A.1 Backward Compatibility Note

Note – We will clarify under what conditions a JSP 1.2 page can be compiled into a
Servlet that can run on a Servlet 2.2 container. At the present, the only issue that seems
important is that described in Issue # 17 of Errata 1.1_a, “PageContext and Handling
Throwable or Exception”.

A.2 A very simple JSP page
We start with a very simple JSP page HelloWorld.jsp.
 180

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
<%@ page info="Example JSP pre-compiled" %>
<p>
Hello World
</p>

A.3 The JSP page packaged as source in a
WAR file
The JSP page can be packaged into a WAR file by just placing it at location "/
HelloWorld.jsp" the default JSP page extension mapping will pick it up. The
web.xml is trivial:

<!DOCTYPE webappSYSTEM "http://java.sun.com/j2ee/dtds/web-app_1_2.dtd">
<webapp>

<session-config>
<session-timeout> 1 </session-timeout>

</session-config>
</webapp>

A.4 The Servlet for the compiled JSP
page
As an alternative, we will show how one can compile the JSP page into a Servlet class to run
in a JSP container.

The JSP page is compiled into a Servlet with some implementation dependent name
_jsp_HelloWorld_XXX_Impl. The Servlet code only depends on the JSP 1.2 and
Servlet 2.3 APIs, as follows:

imports javax.servlet.*;
imports javax.servlet.http.*;
imports javax.servlet.jsp.*;

class _jsp_HelloWorld_XXX_Impl
extends_PlatformDependent_Jsp_Super_Impl {

public void _jspInit() {
181 JavaServer Pages 1.2 Specification - PD1 • August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
// ...
}

public void jspDestroy() {
// ...

}
static JspFactory _factory= JspFactory.getDefaultFactory();

public void _jspService(HttpServletRequest request,
HttpServletResponse response)

throws IOException, ServletException
{

Object page= this;
HttpSessionsession= request.getSession();
ServletConfigconfig= getServletConfig();
ServletContextapplication =

config.getServletContext();

PageContextpageContext
= _factory.getPageContext(this,

request,
response,
(String)NULL,
true,
JspWriter.DEFAULT_BUFFER,
true
);

JspWriterout= pageContext.getOut();
// page context creates initial JspWriter "out"

try {
out.println("<p>");
out.println("Hello World");
out.println("</p>");

} catch (Exception e) {
pageContext.handlePageException(e);

} finally {
_factory.releasePageContext(pageContext);

}
}

}

Appendix 182

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
A.5 The Web Application Descriptor
The Servlet is made to look as a JSP page with the following web.xml:

<!DOCTYPE webapp
SYSTEM "http://java.sun.com/j2ee/dtds/web-app_1_2.dtd">

<webapp>
<servlet>

<servlet-name> HelloWorld </servlet-name>
<servlet-class> HelloWorld.class </servlet-class>

</servlet>

<servlet-mapping>
<servlet-name> HelloWorld </servlet-name>
<url-pattern> /HelloWorld.jsp </url-pattern>

</servlet-mapping>

<session-config>
<session-timeout> 1 </session-timeout>

</session-config>
</webapp>

A.6 The WAR for the compiled JSP page
Finally everything is packaged together into a WAR:

/WEB-INF/web.xml

/WEB-INF/classes/HelloWorld.class

Note that if the Servlet class generated for the JSP page had dependent on some support
classes, they would have to be included in the WAR.
183 JavaServer Pages 1.2 Specification - PD1 • August 15, 2000

APPENDIX B

Changes

This appendix lists the changes in the JavaServer Pages specification.

B.1 Changes between 1.1 and 1.2 PD1
The following changes ocurred between the JSP 1.1 and JSP 1.2 Public Draft 1.

B.1.1 Organizational Changes
• Chapter 8 and 10 are now generated automatically from the javadoc sources.
• Created a new document to allow longer descriptions of uses of the technology.
• Created a new I18N chapter to capture Servlet 2.3 implications and others (mostly empty

for PD1).
• Removed Implementation Notes and Future appendices, as they have not been updated

yet.

B.1.2 New Document
We created a new, non-normative document, “Using JSP Technology”. The document is still
being updated to JSP 1.2 and Servlet 2.3. We moved to this document the following:

• Some of the non-normative Overview material.
• All of the appendix on tag library examples.
• Some of the material on the Tag Extensions chapter.
 184

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
B.1.3 Additions to API
• jsp:include can now indicate “flush=’false’”.
• Made the XML view of a JSP page available for input, and for validation.
• PropertyEditor.setAsText() can now be used to convert from a literal string attribute value.
• New ValidatorClass and JspPage classes for validation against tag libraries.
• New IteratorTag interface to support iteration without BodyContent. Added two new

constants (EVAL_BODY_BUFFERED and EVAL_BODY_AGAIN) to help document
better how the tag protocol works; they are carefully designed so that old tag handlers will
still work unchanged, but the old name for the constant EVAL_BODY_TAG is now
deprecated.

• Added listener classes to the TLD.
• Added elements to the TLD to avoid having to write TagExtraInfo classes in the most

common cases.
• Added a resetCustomAttributes() method to Tag interface.
• Added elements to the TLD for delivering icons and descriptions to use in authoring tools.

B.1.4 Clarifications
• Incorporated errata 1.1_a and (in progress) 1.1_b.

B.1.5 Changes
• JSP 1.2 is based on Servlet 2.3, in particular:
• JSP 1.2 is based on the Java 2 platform.

B.2 Changes between 1.0 and 1.1
The JSP 1.1 specification builds on the JSP 1.0 specification. The following changes ocurred
between the JSP 1.0 final specification and the JSP 1.1 final specification.
185 JavaServer Pages 1.2 Specification - PD1 • August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
B.2.1 Additions
• Added a portable tag extension mechanism with an XML-based Tag Library Descriptor,

and a run-time stack of tag handlers. Tag handers are based on the JavaBeans component
model. Adjusted the semantics of the uri attribute in taglib directives.

• Flush is now a mandatory attribute of jsp:include, and the only valid value is “true”.
• Added parameters to jsp:include and jsp:forward.
• Enabled the compilation of JSP pages into Servlet classes that can be transported from

one JSP container to another. Added appendix with an example of this.
• Added a precompilation protocol.
• Added pushBody() and popBody() to PageContext.
• Added JspException and JspTagException classes.
• Consistent use of the JSP page, JSP container, and similar terms.
• Added a Glossary as Appendix C.
• Expanded Chapter 1 so as to cover 0.92’s "model 1" and "model 2".
• Clarified a number of JSP 1.0 details.

B.2.2 Changes
• Use Servlet 2.2 instead of Servlet 2.1 (as clarified in Appendix B), including distributable

JSP pages.
• jsp:plugin no longer can be implemented by just sending the contents of

jsp:fallback to the client.
• Reserved all request parameters starting with "jsp".
Appendix 186

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
187 JavaServer Pages 1.2 Specification - PD1 • August 15, 2000

APPENDIX C

Glossary

This appendix is a glossary of the main concepts mentioned in this specification.

action An element in a JSP page that can act on implicit objects and other server-side objects
or can define new scripting variables. Actions follow the XML syntax for elements
with a start tag, a body and an end tag; if the body is empty it can also use the empty
tag syntax. The tag must use a prefix.

action, standard An action that is defined in the JSP specification and is always available to a JSP file
without being imported.

action, custom An action described in a portable manner by a tag library descriptor and a collection of
Java classes and imported into a JSP page by a taglib directive.

Application Assembler A person that combines JSP pages, servlet classes, HTML content, tag libraries, and
other Web content into a deployable Web application.

component contract The contract between a component and its container, including life cycle management
of the component and the APIs and protocols that the container must support.

Component Provider A vendor that provides a component either as Java classes or as JSP page source.

distributed container A JSP container that can run a Web application that is tagged as distributable and is
spread across multiple Java virtual machines that might be running on different hosts.

declaration An scripting element that declares methods, variables, or both in a JSP page.
Syntactically it is delimited by the <%! and %> characters.

directive An element in a JSP page that gives an instruction to the JSP container and is
interpreted at translation time. Syntactically it is delimited by the <%@ and %>
characters.

element A portion of a JSP page that is recognized by the JSP translator. An element can be a
directive, an action, or a scripting element.
 188

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
expression A scripting element that contains a valid scripting language expression that is
evaluated, converted to a String, and placed into the implicit out object.
Syntactically it is delimited by the <%= and %> characters

fixed template data Any portions of a JSP file that are not described in the JSP specification, such as
HTML tags, XML tags, and text. The template data is returned to the client in the
response or is processed by a component.

implicit object A server-side object that is defined by the JSP container and is always available in a
JSP file without being declared. The implicit objects are request, response,
pageContext, session, application, out, config, page, and exception.

JavaServer Pages
technology An extensible Web technology that uses template data, custom elements, scripting

languages, and server-side Java objects to return dynamic content to a client. Typically
the template data is HTML or XML elements, and in many cases the client is a Web
browser.

JSP container A system-level entity that provides life cycle management and runtime support for JSP
and Servlet components.

JSP file A text file that contains a JSP page. In the current version of the specification, the JSP
file must have a .jsp extension.

JSP page A text-based document that uses fixed template data and JSP elements and describes
how to process a request to create a response. The semantics of a JSP page are realized
at runtime by a JSP page implementation class.

JSP page, front A JSP page that receives an HTTP request directly from the client. It creates, updates,
and/or accesses some server-side data and then forwards the request to a presentation
JSP page.

JSP page, presentation A JSP page that is intended for presentation purposes only. It accesses and/or updates
some server-side data and incorporates fixed template data to create content that is sent
to the client.

JSP page implementation
class The Java programming language class, a Servlet, that is the runtime representation of a

JSP page and which receives the request object and updates the response object. The
page implementation class can use the services provided by the JSP container,
including both the Servlet and the JSP APIs.

JSP page implementation
object The instance of the JSP page implementation class that receives the request object and

updates the response object.

scripting element A declaration, scriptlet, or expression, whose tag syntax is defined by the JSP
specification, and whose content is written according to the scripting language used in
the JSP page. The JSP specification describes the syntax and semantics for the case
where the language page attribute is "java".
189 JavaServer Pages 1.2 Specification - PD1 • August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
scriptlet An scripting element containing any code fragment that is valid in the scripting
language used in the JSP page. The JSP specification describes what is a valid
scriptlet for the case where the language page attribute is "java". Syntactically a
scriptlet is delimited by the <% and %> characters.

tag A piece of text between a left angle bracket and a right angle bracket that has a name,
can have attributes, and is part of an element in a JSP page. Tag names are known to
the JSP translator, either because the name is part of the JSP specification (in the case
of a standard action), or because it has been introduced using a Tag Library (in the case
of custom action).

tag handler A Java class that implements the Tag or the BodyTag interfaces and that is the run-time
representation of a custom action.

tag handler A JavaBean component that implements the Tag or BodyTag interfaces and is the
run-time representation of a custom action.

tag library A collection of custom actions described by a tag library descriptor and Java classes.

tag library descriptor An XML document describing a tag library.

Tag Library Provider A vendor that provides a tag library. Typical examples may be a JSP container vendor,
a development group within a corporation, a component vendor, or a service vendor
that wants to provide easier use of their services.

Web application An application built for the Internet, an intranet, or an extranet.

Web application,
distributable A Web application that is written so that it can be deployed in a Web container

distributed across multiple Java virtual machines running on the same host or different
hosts. The deployment descriptor for such an application uses the distributable
element.

Web Application
Deployer A person who deploys a Web application in a Web container, specifying at least the

root prefix for the Web application, and in a J2EE environment, the security and
resource mappings.

Web component A servlet class or JSP page that runs in a JSP container and provides services in
response to requests.

Web Container
Provider A vendor that provides a servlet and JSP container that support the corresponding

component contracts.
Appendix 190

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
191 JavaServer Pages 1.2 Specification - PD1 • August 15, 2000

	Contents
	Chapter 1: Overview 18
	Chapter 2: Core Syntax and Semantics 24
	Chapter 3: Localization Issues 54
	Chapter 4: Standard Actions and Directives 56
	Chapter 5: JSP Pages as XML Documents 72
	Chapter 6: The JSP Container 80
	Chapter 7: Scripting 92
	Chapter 8: Core API 96
	Chapter 9: Tag Extensions 120
	Chapter 10: Tag Extension API 144
	Appendix A: Packaging JSP Pages 180
	Appendix B: Changes 184
	Appendix C: Glossary 188

	Status
	Preface
	Overview
	1.1 The JavaServer Pages™ Technology
	1.2 Basic Concepts
	1.2.1 What is a JSP Page?
	1.2.2 Web Applications
	1.2.3 Components and Containers
	1.2.4 Translation and Execution Steps
	1.2.5 Features in JSP
	1.2.6 JSP Pages and the Java 2 Enterprise Edition Specification

	Core Syntax and Semantics
	2.1 What is a JSP Page
	2.1.1 Web Containers and Web Components
	2.1.2 XML Document for a JSP Page
	2.1.3 Translation and Execution Phases
	2.1.4 Events Exposed to JSP Pages
	2.1.5 Compiling JSP Pages

	2.2 Web Applications
	2.2.1 Relative URL Specifications within an Application

	2.3 Syntactic Elements of a JSP Page
	2.3.1 Elements and Template Data
	2.3.2 Element Syntax
	Directives
	Actions
	Scripting Elements

	2.3.3 Start and End Tags
	2.3.4 Empty Elements
	2.3.5 Attribute Values
	2.3.6 White Space

	2.4 Error Handling
	2.4.1 Translation Time Processing Errors
	2.4.2 Request Time Processing Errors

	2.5 Comments
	Generating Comments in Output to Client
	JSP Comments

	2.6 Quoting and Escape Conventions
	Quoting in Scripting Elements
	Quoting in Template Text
	Quoting in Attributes
	XML Representation

	2.7 Overall Semantics of a JSP Page
	2.8 Objects
	2.8.1 Objects and Variables
	2.8.2 Objects and Scopes
	2.8.3 Implicit Objects
	2.8.4 The pageContext Object

	2.9 Template Text Semantics
	2.10 Directives
	2.10.1 The page Directive
	Examples
	2.10.1.1 Syntax

	2.10.2 The taglib Directive
	Examples
	2.10.2.1 Syntax

	2.11 Scripting Elements
	2.11.1 Declarations
	Examples
	Syntax

	2.11.2 Scriptlets
	Examples
	Syntax

	2.11.3 Expressions
	Examples
	Syntax

	2.12 Actions
	2.13 Tag Attribute Interpretation Semantics
	2.13.1 Request Time Attribute Values
	2.13.2 The id Attribute
	2.13.3 The scope Attribute

	Localization Issues
	3.1 I18N Issues
	3.1.1 Specifying Content Types
	3.1.2 Delivering Localized Content

	Standard Actions and Directives
	4.1 Standard Directives
	4.1.1 The include Directive
	Examples
	4.1.1.1 Syntax

	4.1.2 Including Data in JSP Pages

	4.2 Standard Actions
	4.2.1 <jsp:useBean>
	Examples
	4.2.1.1 Syntax

	4.2.2 <jsp:setProperty>
	Examples
	4.2.2.1 Syntax

	4.2.3 <jsp:getProperty>
	Examples
	4.2.3.1 Syntax

	4.2.4 <jsp:include>
	Examples
	4.2.4.1 Syntax

	4.2.5 <jsp:forward>
	Examples
	4.2.5.1 Syntax

	4.2.6 <jsp:param>
	4.2.6.1 Syntax

	4.2.7 <jsp:plugin>
	Examples
	4.2.7.1 Syntax

	JSP Pages as XML Documents
	5.1 Why an XML Representation
	5.2 Document Type
	5.2.1 The jsp:root Element
	5.2.2 Public ID

	5.3 Directives
	5.3.1 The page directive
	Example

	5.3.2 The include Directive
	Examples

	5.3.3 The taglib Directive

	5.4 Scripting Elements
	5.4.1 Declarations
	DTD Fragment

	5.4.2 Scriptlets
	DTD Fragment

	5.4.3 Expressions
	DTD Fragment

	5.5 Actions
	5.6 Transforming a JSP Page into an XML Document
	5.6.1 Quoting Conventions
	5.6.2 Request-Time Attribute Expressions

	5.7 DTD for the XML document

	The JSP Container
	6.1 The JSP Page Model
	The Protocol Seen by the Web Server
	The Protocol Seen by the JSP Page Author
	The HttpJspPage Interface

	6.2 JSP Page Implementation Class
	6.2.1 API Contracts
	6.2.2 Request and Response Parameters
	6.2.3 Omitting the extends Attribute
	6.2.4 Using the extends Attribute

	6.3 Buffering
	6.4 Precompilation
	6.4.1 Request Parameter Names
	6.4.2 Precompilation Protocol

	Scripting
	7.1 Overall Structure
	Valid JSP Page
	Implementation Flexibility

	7.2 Declarations Section
	7.3 Initialization Section
	7.4 Main Section

	Core API
	8.1 JSP Page Implementation Object Contract
	8.1.1 JspPage
	8.1.1.1 Methods

	8.1.2 HttpJspPage
	8.1.2.1 Methods

	8.1.3 JspFactory
	8.1.3.1 Constructors
	8.1.3.2 Methods

	8.1.4 JspEngineInfo
	8.1.4.1 Constructors
	8.1.4.2 Methods

	8.2 Implicit Objects
	8.2.1 PageContext
	8.2.1.1 Fields
	8.2.1.2 Constructors
	8.2.1.3 Methods

	8.2.2 JspWriter
	8.2.2.1 Fields
	8.2.2.2 Constructors
	8.2.2.3 Methods

	8.3 An Implemention Example
	8.4 Exceptions
	8.4.1 JspException
	8.4.1.1 Constructors

	8.4.2 JspTagException
	8.4.2.1 Constructors

	Tag Extensions
	9.1 Introduction
	9.1.1 Goals
	9.1.2 Overview
	Tag Handlers
	Event Listeners

	9.1.3 Simple Examples
	Simple Actions
	Actions with a Body
	Conditionals
	Iterations
	Actions that Process their Body
	Cooperating Actions
	Actions Defining Scripting Variables

	9.2 Tag Libraries
	9.2.1 Packaged Tag Libraries
	9.2.2 Location of Java Classes
	9.2.3 Tag Library directive

	9.3 The Tag Library Descriptor
	9.3.1 TLD resource path
	9.3.2 Taglib map in web.xml
	Example

	9.3.3 Determining the TLD Resource Path
	9.3.3.1 Definitions
	9.3.3.2 Processing WEB.XML.
	9.3.3.3 Computing the TLD Resource Path
	9.3.3.4 Examples

	9.3.4 Translation-Time Class Loader
	9.3.5 Assembling a Web Application
	9.3.6 Well-Known URIs

	9.4 The Tag Library Descriptor Format
	Notation

	9.5 Validation
	9.5.1 Translation-Time Mechanisms
	9.5.1.1 Attribute Information
	9.5.1.2 Validator Classes
	9.5.1.3 Syntactic Information in a TagExtraInfo Class

	9.5.2 Request-Time Errors

	9.6 Conventions and Other Issues
	9.6.1 How to Define New Implicit Objects
	9.6.2 Access to Vendor-Specific information
	9.6.3 Customizing a Tag Library

	Tag Extension API
	10.1 Simple Tag Handlers
	10.1.1 Tag
	10.1.1.1 Fields
	10.1.1.2 Methods

	10.1.2 IterationTag
	10.1.2.1 Fields
	10.1.2.2 Methods

	10.1.3 TagSupport
	10.1.3.1 Fields
	10.1.3.2 Constructors
	10.1.3.3 Methods

	10.2 Tag Handlers that want Access to their Body Content
	10.2.1 BodyContent
	10.2.1.1 Constructors
	10.2.1.2 Methods

	10.2.2 BodyTag
	10.2.2.1 Fields
	10.2.2.2 Methods

	10.2.3 BodyTagSupport
	10.2.3.1 Fields
	10.2.3.2 Constructors
	10.2.3.3 Methods

	10.3 Tag Life Cycle
	10.4 Cooperating Actions
	10.5 Translation-time Classes
	10.5.1 TagLibraryInfo
	10.5.1.1 Fields
	10.5.1.2 Constructors
	10.5.1.3 Methods

	10.5.2 TagInfo
	10.5.2.1 Fields
	10.5.2.2 Constructors
	10.5.2.3 Methods

	10.5.3 TagAttributeInfo
	10.5.3.1 Fields
	10.5.3.2 Constructors
	10.5.3.3 Methods

	10.5.4 PageInfo
	10.5.4.1 Constructors
	10.5.4.2 Methods

	10.5.5 TagLibraryValidator
	10.5.5.1 Constructors
	10.5.5.2 Methods

	10.5.6 TagExtraInfo
	10.5.6.1 Constructors
	10.5.6.2 Methods

	10.5.7 TagData
	10.5.7.1 Fields
	10.5.7.2 Constructors
	10.5.7.3 Methods

	10.5.8 VariableInfo
	10.5.8.1 Fields
	10.5.8.2 Constructors
	10.5.8.3 Methods

	Packaging JSP Pages
	A.1 Backward Compatibility Note
	A.2 A very simple JSP page
	A.3 The JSP page packaged as source in a WAR file
	A.4 The Servlet for the compiled JSP page
	A.5 The Web Application Descriptor
	A.6 The WAR for the compiled JSP page

	Changes
	B.1 Changes between 1.1 and 1.2 PD1
	B.1.1 Organizational Changes
	B.1.2 New Document
	B.1.3 Additions to API
	B.1.4 Clarifications
	B.1.5 Changes

	B.2 Changes between 1.0 and 1.1
	B.2.1 Additions
	B.2.2 Changes

	Glossary

