PUBLIC DRAFT 1 - SUBJECT TO CHANGE

JavaServer Pages™
Specification

Versonl.2-publicdraft1 (PD1)

please send comments to j p-gpec-comments@eng.sun.com

August 15, 2000 Eduardo Pelegri-Llopart, editor
%& Sun 901 San Antonio Road
% ‘ o Palo Alto, CA 94303 USA
microsystems 650960-1300 fax: 650 969-9131

We’re the det in.com™

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
JavaServer Pages(TM) (JSP) Specification (“ Specification™)

Version: 1.2
Satus. Pre-FCS
Release: August 15, 2000

Copyright 2000 Sun Microsystems, Inc.
901 San Antonio Road, Palo Alto, California 94303, U.S.A.
All rights reserved.

NOTICE

The Specification is protected by copyright and the information described therein may be protected by one or
more U.S. patents, foreign patents, or pending applications. Except as provided under the following license,
no part of the Specification may be reproduced in any form by any means without the prior written authoriza-
tion of Sun Microsystems, Inc. (“Sun”) and its licensors, if any. Any use of the Specification and the informa-
tion described therein will be governed by the terms and conditions of this license and the Export Control and
Generd Terms as set forth in Sun’s website Legal Terms. By viewing, downloading or otherwise copying the
Specification, you agree that you have read, understood, and will comply with all of the terms and conditions
set forth herein.

Subject to the terms and conditions of thislicense, Sun hereby grants you a fully-paid, non-exclusive, non-
transferable, worldwide, limited license (without the right to sublicense) under Sun’sintellectual property
rights to review the Specification internally for the purposes of evaluation only. Other than this limited
license, you acquire no right, title or interest in or to the Specification or any other Sun intellectual property.
The Specification contains the proprietary and confidential information of Sun and may only be used in accor-
dance with the license terms set forth herein. This license will expire ninety (90) days from the date of
Release listed above and will terminate immediately without notice from Sun if you fail to comply with any
provision of thislicense. Upon termination, you must cease use of or destroy the Specification.

TRADEMARKS

No right, title, or interest in or to any trademarks, service marks, or trade names of Sun or Sun’slicensorsis
granted hereunder. Sun, Sun Microsystems, the Sun logo, Java, the Java Coffee Cup logo, and JavaServer
Pages are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

DISCLAIMER OF WARRANTIES

THE SPECIFICATION ISPROVIDED “AS1S” AND ISEXPERIMENTAL AND MAY CONTAIN
DEFECTS OR DEFICIENCIESWHICH CANNOT OR WILL NOT BE CORRECTED BY SUN. SUN
MAKES NO REPRESENTATIONS OR WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT THAT THE CONTENTS OF THE SPECIFICATION ARE SUIT-
ABLE FOR ANY PURPOSE OR THAT ANY PRACTICE OR IMPLEMENTATION OF SUCH CON-

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

TENTSWILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADE SECRETS OR
OTHER RIGHTS. Thisdocument does not represent any commitment to release or implement any portion of
the Specification in any product.

THE SPECIFICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL
ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION THEREIN; THESE
CHANGES WILL BE INCORPORATED INTO NEW VERSIONS OF THE SPECIFICATION, IF ANY.
SUN MAY MAKE IMPROVEMENTS AND/OR CHANGES TO THE PRODUCT(S) AND/OR THE PRO-
GRAM(S) DESCRIBED IN THE SPECIFICATION AT ANY TIME. Any use of such changesin the Speci-
fication will be governed by the then-current license for the applicable version of the Specification.

LIMITATION OF LIABILITY

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL SUN OR ITSLICENSORS BE
LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUE, PROFITS
OR DATA, OR FOR SPECIAL, INDIRECT, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAM-
AGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT
OF OR RELATED TO ANY FURNISHING, PRACTICING, MODIFYING OR ANY USE OF THE SPECI-
FICATION, EVEN IF SUN AND/OR ITS LICENSORS HAVE BEEN ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES.

You will indemnify, hold harmless, and defend Sun and its licensors from any claims based on your use of the
Specification for any purposes other than those of internal evaluation, and from any claimsthat later versions
or releases of any Specification furnished to you are incompatible with the Specification provided to you
under this license.

RESTRICTED RIGHTSLEGEND

If this Software is being acquired by or on behalf of the U.S. Government or by a U.S. Government prime
contractor or subcontractor (at any tier), then the Government’s rightsin the Software and accompanying doc-
umentation shall be only as set forth in thislicense; thisis in accordance with 48 C.F.R. 227.7201 through
227.7202-4 (for Department of Defense (DoD) acquisitions) and with 48 C.F.R. 2.101 and 12.212 (for non-
DoD acquisitions).

REPORT

You may wish to report any ambiguities, inconsi stencies or inaccuracies you may find in connection with your
evaluation of the Specification (“ Feedback”). To the extent that you provide Sun with any Feedback, you
hereby: (i) agree that such Feedback is provided on a non-proprietary and non-confidential basis, and (ii)
grant Sun a perpetual, non-exclusive, worldwide, fully paid-up, irrevocable license, with the right to subli-
cense through multiple levels of sublicensees, to incorporate, disclose, and use without limitation the Feed-
back for any purpose related to the Specification and future versions, implementations, and test suites thereof.

3 JavaServer Pages 1.2 Specification - PD1+ August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

Contents

SHALUS. ..ottt 12
The Java CommuNity ProCESS..........cceeiverieeienieeneenieereese e 12

The JCP and this SpeCification..........cccooveeienienenicceieeeee 13
THIS DI .. 13
Preface ..o e 14
Who should read thisdocumentcceeveiiniiiinciieneeee 14
Related DOCUMENTScoviiieieiiieeie ettt 15
HIStOrCal NOLE ... 15
ACKNOWIEAGMENTS.....ceiiiiiiieere e 16
Chapter 1: OVENVIBWcccooiiiieiiieereeeeeee ettt 18
The JavaServer Pages™ Technologyccoceveeeenineeneenieneenns 18
BasiC CONCEPLScveeieieereeriietee ettt s 20
What iSaJSP Page?.......ccviiiiiieeiee e 20

Web ApPPliCaLIONS.coiieiiiiiiric s 20
Components and CONLAINEN'S.coeerereererieeieene e e 21
Tranglation and EXeCUtion SEPScoveeverieeeeienieeneenieas 21

Contents

4

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

FEAUIES IN ISP ... 21

JSP Pages and the Java 2 Enterprise Edition Specification.22

Chapter 2: Core Syntax and SemantiCS.........cccvveriereeneneeeesinees 24
What iIS@JISP PagE.cceiieeieriie et 24
Web Containers and Web Components...........cccoecveerennnee 25
XML Document for aJSP Page.........ccccoevevieneniiicnnnne 25
Tranglation and Execution Phases............ccocvviviiieeinnen, 25
Events Exposed to JSP Pagescccoceveevenenienineese i 26
Compiling JSP PagesS.........ccveuiiiiiiiiiiniiriee e 26

WED APPIICAIIONS ..o e 27
Relative URL Specifications within an Application........... 28
Syntactic Elements of aJSP Page..........cccvvieieniinenieies 28
Elements and Template Dataccoeevevieeeeiineeieniee e 28
Element SYNtaX.........cooveerieiieieeriree e 29

Start and End Tags.......ccovereeiiiiiieiieiee s 30
Empty EIements.........coooiiiiiiieeeeeee e 30
ALtribUte VAIUES........coiiiic e 30
WhItE SPECE......coviitiiiiie et e 30

Error Handlingcoooveeieiieneece s 31
Tranglation Time Processing Errors.........cocooveeeveneeneninee 32
Request Time Processing Errors.........coveveveeeenineeseneee 32
COMMENES.....coitiiiieir ittt 33
Quoting and Escape CONVENLIONSoeererieeneniireesieeieesieeeenes 33
Overall Semantics of aJSP Pagecccocvveriiiiniineiie e 34
OB ECES ..ttt s 35
Objects and Variablesccevieniiiieiiieeece e 36
ObjJECtS AN SCOPES.....ceerveerieiiriierie sttt 36

5 JavaServer Pages 1.2 Specification - public draft 1 « August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

IMPliCit OBJECES......oieeiiiiiiiiirie s 37

The pageContext ODJECt.........coevrereirereeee s 39
Template Text SEMANLICSooveviiie e e 39
DITECHIVES ...ttt 39
The page DIreCliVe. ..o 39

The taglib DIreCtiVecceiiiiiriiie s 44
SCripting EIEMENtSc.ooviiiiiieeee e 46
DEClaralioNSccveevieieerieiee et e 47
SCHPHIELS ..t 48
EXPrESSIONS ...ttt e 48
ACTIONS ..ttt e 49
Tag Attribute Interpretation Semanticsc.ccoveveeveeieneenennens 50
Request Time Attribute Values............cocovnieneniiceencnenn 50

The id AttrDULE......cooie e 51

The scope AttribULe.........coooiieiie 52
Chapter 3: Localization [SSUES..........cccueeieriiriierieieeneeieeie e 54
L8N ISSUES.....cutieeieeeiieee ettt e s e e nneean 54
Specifying Content TYPESovvrveeeririere e 54
Delivering Localized Contentc.ecvvvvenienieeesiniene 55
Chapter 4: Standard Actionsand Directives.........cccceveerieeieeneennee. 56
Standard DITECLIVESccoiiiieieiesie et 56
The include DIreCtiVe........ccoiiiiiiiiie e 56
Including Datain JSP Pages..........cccovrvernienienicie s 57
StaNdard ACHIONS ..ot e 58
JYPIUSEBEANS ...ttt 58
<JYPISELPIOPEITY > ...ttt 61

< IPIGEtPrOPEITY> ...ttt 64

Contents

6

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

SJIPINCIUAES ... 65
SJPforward> ..o 66

1S O 0= 1 1 RS 67

1S 0 o] 11 o 1 >RSP 68
Chapter 5: JSP Pages as XML DOCUMENLS.........ccoooerverererieenininne 72
Why an XML Representationcccceoeveeneiienieeninecseneeneeniens 72
DOCUMENE TYPE.....ooiiiiiieiieiee e 73
The jsp:root Elementccoeiiiiiiiiieeceeeceeeecee 73
PUBLIC D oot 73
DITECLIVES. ...ttt sttt ettt 74
The page direCtive ... 74
Theinclude DIr€CtiVeccviiiiii e 74

The taglib DIireCtiVe.....cceeieiiieeeee e 75
SCripting EIEMENtS.c..coiiiiiiiiiiteeeee e 75
DEClAralioNS.......ccoveveeieie et 75
SCHPHIELS. ...eceee et 76
EXPrESSIONS. ...coiveiiiiiie ettt 76
ACTIONS. ...ttt 76
Transforming a JSP Page into an XML Document 76
QuOtiNG CONVENLIONS.......cooieieiiieiieeiee et 77
Request-Time Attribute EXpressions...........ccocveeveneeneenns 77

DTD for the XML dOCUMENcoviriiiieiieieeieere e 78
Chapter 6: The JSP CONtAINEYcccoeiieriiiieriirie e 80
The ISP Page MOE!ccooviiiiiiiieeece e 80
JSP Page Implementation Class.........ccccucvereneeneniineeneneeseee 82
APL CONIACESoeiiviereie ittt 83
Request and Response Parameters..........ccoccevccevieeerenennnns 84

7 JavaServer Pages 1.2 Specification - public draft 1 « August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

Omitting the extends Attribute............ccoooviiiieiincien 85
Using the extends Attribute...........cooovveeiene e 88
BUFFEITNG .o e 88
Precompilationcooeeiiiieie e 89
Request Parameter Names............ccoccevviiiiniieciienceeeee 89
Precompilation Protocolcoeeveiiniiiienicnencecnee 89
Chapter 7: SCriPiNg ...coveeoeieeeeiee e 92
OVErall SETUCLUME ..ottt 92
Declarations SECLION.........cccuiiiririiie et 94
[Nitialization SECHIONccoeiviriiiieeeee s 94
MEIN SECLION ...t 9
Chapter 8: Core AP ..o 96
JSP Page Implementation Object CONtract..........c..cceeeevereenennens 96
JSPPAGE ... 96
HIPJISPPAgE ... 98
JSPFACIONY ... 99
JSPENGINEINTO ..o 101
IMPliCIt ODJECES. ..o s 101
PagECONTEXTee et 102
JSPWWIILEY ..ttt 110
An Implemention EXample..........ccoooeiiieiiiieneeere e 117
EXCEPLIONS ...ttt 118
JSPEXCEPLION ..ottt 118
JSPTAGEXCEPLION ... e 119
Chapter 9: Tag EXtENSIONS ...cc.eiiiiieiieieeieeieieeee e 120
INEFOTUCTION ...ttt 120

Contents

8

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

GOBIS. .ottt e 121
OVEIVIBIW ..ottt ere e 121
Simple EXamMPIES.......cooiiiiiiiieeceee e 123

Tag Libraries. ..o 125
Packaged Tag Libraries.........cccoeieniinenicicinec e 126
Location of Java Classes.........ccoeeierieerenieeeeniniee e 126

Tag Library dir€Ctivecocvvieiiiiiirc e 126

The Tag Library DESCIHPLOrecveiieiieieiiieese e 127
TLD resource Pathooeveeieieeieninee e 127
Taglib map in Web.Xml ..o 128
Determining the TLD Resource Path.............cccoecvienenneee. 129
Trangdation-Time Class Loaderccocvveeriinenieniesenes 131
Assembling aWeb Application..........ccocoviiiieininienenee 131
WEI-KNOWN URIS ...t 131

The Tag Library Descriptor FOrmatcoeevoeneeneneeiieninnes 132
ValidaEION ... e 139
Trangdation-Time MechaniSms...........cccvverenenicie s 140
REQUESE-TIME EFTOIS.....cueiiiiiii et 141
Conventions and Other ISSUES...........cooveeieriinieenenieereeieeree e 141
How to Define New Implicit Objectsccooveeieneeneenne 141
Access to Vendor-Specific informationc.ccccoeceeeeneee. 142
Customizing aTag Libraryccceveeveenneenineeneneceeen, 142
Chapter 10: Tag EXtension APl ... 144
Simple Tag HandIersoooeiiieniinieeeeeeee e 145
L T 147
[TEIAIONTAY «.veeeeveereeriie ettt e e 150
TAGSUPPOIT ...t 151

9 JavaServer Pages 1.2 Specification - public draft 1 « August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

Tag Handlers that want Access to their Body Content 154
BOAYCONENT ...t e 155

BOOY TG .. eeveeieie ettt e 156

BOAY TAQSUPPOIT ..o e 158

Tag Lif@ CYCIe...ciiiiiee e 160
Cooperating ACHIONS.cccoiieieie ettt e 162
Translation-time ClaSSeScccveverieeeniee e 163
TagLibraryInfocooooeiiiieiee e 165
TAGINFO. et 166
TagAttribULEINFO.....eveiii e 169
PAgEINTO ... e 170
TagLibraryValidatorcccooieeiienieneeeeece e 171
TAGEXIAINTO ..o 172
TagDALA.eeeiieie e 173
Variabl€INfO ..o 175
Appendix A: Packaging JSP Pages.........ccccceveierieniniene e 180
Backward Compatibility NOte........ccccoereirecerece e 180
A very Smple ISP Page.........ccociiniininiiii i 180
The JSP page packaged as sourcein aWARfile.......ccccooveeenee. 181
The Servlet for the compiled JSP page.........coccvveiveincnccee e 181
The Web Application DeSCIHPLOr........c.cvveeirecireeireires e 183
The WAR for the compiled JSP page.........cccoeoveireinenicne e 183
ApPPendixB: Changesccoiiieiiiiieseereeeeee e 184
Changesbetween 1.1 and 1.2 PD1cccooiiiiennieeiece e 184
Organizational ChanQeS..........ccovveeereeeireeireeireereseen e 184

NEW DOCUMENLccooiiiiiieieire e 184
AdItIoONSTO AP ... 185

Contents 10

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

ClarifiCatiONS ..o e e 185

ChaNGES. ...ttt e e 185

Changes between 1.0 and 1.1ccoocireiriineeireeese e e 185
AUITIONS......ceeivieeiiieeee e 186

ChaNGES. ...ttt e e 186
APPENAIXC: GIOSSANY ...veevieirinteeiete ettt 188

11 JavaServer Pages 1.2 Specification - public draft 1 « August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

Status

The Java Community Process

This specification is being developed following the Java Community Process (JCP - see
http://java.sun.com/jcp). The JCP produces a specification using three communities: an
expert community (the expert group), the participants of the JCP, and the public-at-large.
The expert group is responsible for the authoring of the specification through a collection of
drafts. Specification drafts move from the expert community, through the participants, to the
public, gaining in detail and completeness, always feeding the comments back to the original
expert group. The expert group lead is responsible for facilitating the workings of the expert
group, for authoring the specification, and for delivering the reference implementation and
the conformance test suite.

The term proposed final draft is used in the JCP to indicate a version of the spec that is
believed to be complete and ready but has not been validated by final test suites,
implementation efforts and public feedback. The expert group may perform changes to the
specification based on this feedback, but changes will be relatively minor.

When the expert group determines that it has a specification that meets its needs, and there is
both a conformance test suite and a final reference implementation that i mplements the
specification and passes the test suite, the expert group will submit the final draft for
approval by the Executive Comittee.

It is important to emphasi ze that any draft that is not final can change, perhaps even in
significant ways. Vendors, in particular, should use judgement in deciding what parts of the
specification they should start implementing. The expert group will try to convey the
confidence level of specific features as well as possible and will not indulge in gratituous
changes.

Status 12

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

The JCP and this Specification

The JCP is designed to be a very flexible process so each expert group can address the
requirements of the specific communities it serves.

The JCP indicates minimum requirements regarding the availability of the reference
implementation and test suites but individual specifications can have additional requirements.
The reference implementation for JSP 1.2 and Servlet 2.3 will be developed as an open
source project, under an agreement with the Apache Software Foundation.

This Draft

This document is the Public Draft 1 (PD1) of the JavaServer Pages 1.2 Specification. This
draft is intended to include all featuresin JSP 1.2. The specification will change based on
feedback from a number of sources including:

* Public.

¢ Implementation efforts.

e Test suite efforts.

¢ Use of the implementation to write actual applications.

This draft includes an up-to-date changes appendix.
We expect to release at least one more public draft before the end of this year.

We expect to submit the final spec for approva by the EC in the second quarter of the year
2001.

Errata Work

13

Most of JSP 1.2 specification is carried over from the JSP 1.1 specification. As vendors and
users have been using the JSP 1.1 technology in earnest, issues have surfaced in the
specification document. These issues are being collected as erratas and are being propagated
into the JSP 1.2 specification. Erratas are being discussed in a forum that includes the large
majority of the JSP 1.1 expert group, plus a significant number of other vendors,
implementors and the like, under the facilitation of Eduardo Pelegri-Llopart in the role of the
“JSP 1.1 interpretation guru”. This group, commonly refered to by the name of the mailing
list it uses - jsp-tfag-comments@eng.sun.com - operates without any non-disclosure
agreement and has open membership. Contact pelegri@eng.sun.com if you feel you should
be included.

The first errata (1.1_a) is now available for public review at the public JSP web site. A
second errata (1.1_b) is the last planned errata and is being worked on.

JavaServer Pages 1.2 Specification - PD1+ August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

Preface

This is the expert draft 3 of the JavaServer Pages™ 1.2 Specification. This specification is
being developed following the Java Community Process. Comments from Experts,
Participants, and the Public will be reviewed and incorporated into the specification where
applicable.
JSP 1.2 extends JSP 1.1 in a number of ways, including:

¢ Using Servlet 2.3 as the foundations for its semantics.

¢ Correcting and making available the mapping from a JSP page to an XML document,
and exploiting this in authoring tools and trand ation-time validation.

« Improving on authoring support.

* Improving on |18N support.

« Fixing the infamous “flush before you include” limitation in JSP 1.1.
¢ Refinements on tag library runtime support.

Unlike JSP 1.1, JSP 1.2 assumes the Java 2 platform.

Details on the conditions under which this document is distributed are described in the
license on page 2.

Who should read this document

This document is intended to be the authoritative description of the JSP 1.2 specification.
Although the specification is not intended to be overly formal, it is not a User’s Guide, and
we expect other documents to be created that will cater to different readerships.

Preface 14

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

A companion document to this specification: “Using JavaServer Pages™ Technology”
provides an overview of the technology and includes descriptions of different methodologies
for using it. The “Using” document isintended to lag this specification only briefly and it is
not going to be a replacement for the type of in-depth presentation and guideance that we
expect will be found in other material that will follow.

Related Documents

JSP 1.2 assumes the Java 2 platform version 1.2.

Implementors of JSP containers and authors of JSP pages will be interested in a number of
other documents, of which the following are worth mentioning explicitly.

TABLE P-1 Some Related Web Sites

JSP home page http://java.sun.com/products/jsp

Servlet home page http://java.sun.com/products/serviet

Java 2 Platform, Standard Edition http://java.sun.com/products/jdk/1.2
Java 2 Platform, Enterprise Edition http://java.sun.com/j2ee

XML in the Java Platform home page http://java.sun.com/xml
JavaBeans " technol ogy home page http://java.sun.com/beans

XML home page at W3C http://www.w3.org/ XML

HTML home page at W3C http://www.w3.org/MarkUp
XML.org home page http://www.xml.org

Historical Note

15

We would like to remember the original individuals that started the web server work in the
Java platform. James Gosling started writing a Web Server in Java in 1994/1995, that
became the foundation for Servlets. A larger project emerged in 1996 with Pavani Diwanji as
lead engineer and many other key members. From this project came the Java Web Server
product at Sun.

>>>MORE HISTORY STILL TO BE FILLED IN<<<

Things started to move quickly in 1999. The servlet expert group, with James Davidson as
lead, delivered the Servlet 2.1 specification in January and the Servlet 2.2 specification in
December, while, the JSP group, with Larry Cable and Eduardo Pelegri-Llopart as |eads,
delivered JSP 1.0 in June and JSP 1.1 in December.

JavaServer Pages 1.2 Specification - PD1+ August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

The year 2000 has seen a lot of activity, with many implementations of containers, tools,
books, and training that target JSP 1.1, Servlet 2.2, and the Java 2 Enterprise Edition
platform. There has also been increased activity on tag libraries and on many different
approaches on how to organize all these features together. See the “Using JavaServer
Pages’ Technology” for details on that area.

It isimpossible to track the industry in a printed document; the industry pages at the web site
at http://java.sun.com/products/jsp do a better job.

Acknowledgments

Many people contributed to the JavaServer Pages specifications. We want to thank the
community that implemented the reference implementation, and the vendors that have
implemented the spec. >MORE NAMES HERE<<.

We want to thank all the book authors, and the web sites that are tracking and facilitating the
creation of the JSP community. >> MORE NAMES HERE<<

Last, but certainly not least important, we thank the software developers, Web authors and
members of the general public who have read this specification, used the reference
implementation, and shared their experience. You are the reason the JavaServer Pages
technology exists.

Preface 16

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

17 JavaServer Pages 1.2 Specification - PD1« August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

CHAPTER 1

Overview

This chapter provides an overview of the JavaServer Pages technol ogy.

1.1 TheJavaServer Pages™ Technology

JavaServer Pages technology is the Java' technology in the J2EE platform for building
applications containing dynamic Web content such as HTML, DHTML, XHTML and XML.
The JavaServer Pages technology enables the authoring of Web pages that create dynamic
content easily but with maximum power and flexibility.

Basic Concepts

The JavaServer Pages technology provides atextual description for the creation of aresponse
from arequest. The technology builds on the following concepts:

¢ Template Data

Substantial portions of most dynamic content is actually fixed. The JSP technology allow
for the natural manipulation of this data.

¢ Addition of Dynamic Data

The JSP technology allows the addition of dynamic data to the template datain a way that
is simple yet powerful.

¢ Encapsulation of Functionality

The JSP technology provides two related mechanisms for the encapsulation of
functionality: the standard JavaBeans component architecture and the tag library
mechanism.

Overview 18

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

Good Tool Support

We believe that good tool support leads to significantly improved productivity.
Accordingly, the JSP technology has features that enable the creation of good authoring
tools.

The result is a flexible and powerful server-side technology.

Benefits of the JavaServer Pages Technology

19

The JavaServer Pages technology offers a number of benefits:

Write Once, Run Anywhere™ properties

The JavaServer Pages technology is platform independent, both in its dynamic Web pages,
its Web servers, and its underlying server components. You can author JSP pages on any
platform, run them on any Web server or Web enabled application server, and access them
from any Web browser. You can also build the server components on any platform and run
them on any server.

High quality tool support

The Write Once, Run Anywhere properties of JSP allows the user to choose best-of-breed
tools. Additionally, an explicit goal of the JavaServer Pages design is to enable the
creation of high quality portable tools.

Separation of Roles

JSP support the separation of roles: devel opers write components that interact with server-
side objects; authors put static data and dynamic content together to create presentations
best suited for their intended audiences. Each of these roles emphasizes different types of
abilities and, although these abilities may all be present in the same individual, they most
commonly will not. A subset of the developer community may be focused in creating
reusable components intented to be used by authors.

Reuse of components and tag libraries

The JavaServer Pages technology emphasizes the use of reusable components such as:
JavaBeans' " components, Enterprise JavaBeans' components and tag libraries. These
components can be used in interactive tools for component development and page
composition. This saves considerable development time while giving the cross-platform
power and flexibility of the Java programming language and other scripting languages.

Separation of dynamic and static content

The JavaServer Pages technology enables the separation of static content from dynamic
content that is inserted into the static template. This greatly ssimplifies the creation of
content. This separation is supported by beans specifically designed for the interaction
with server-side objects, and, specialy, by the tag extension mechanism.

Support for scripting and actions

JavaServer Pages 1.2 Specification - PD1+ August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

The JavaServer Pages technology supports scripting elements as well as actions. Actions
permit the encapsulation of useful functionality in a convenient form that can also be
manipulated by tools; scripts provide a mechanism to glue together this functionality in a
per-page manner.

* Wb access layer for N-tier enterprise application architecture(s)
The JavaServer Pages technology is an integral part of the Java 2 Platform Enterprise
Edition (J2EE), which brings Java technology to enterprise computing. You can now
develop powerful middle-tier server applications, using a Web site that uses JavaServer
Pages technology as a front end to Enterprise JavaBeans components in a J2EE compliant
environment.

1.2

1.2.1

1.2.2

Basic Concepts

This section introduces the basic concepts that will be defined formally later in the
specification.

What is a JSP Page?

A JSP page is a text-based document that describes how to process a request to create a
response. The description intermixes template data with some dynamic actions and leverages
on the Java 2 Platform.

The features in the JSP technology support a number of different paradigms for authoring of
dynamic content; the document “Using the JavaServer Pages(tm) Technology” expands on
this topic.

Web Applications

The concept of a Web application is inherited from the Servlet specification. A Web
application can be composed from:

¢ Java Runtime Environment(s) running in the server (required)

e JSP page(s), that handle requests and generate dynamic content

¢ Servlet(s), that handle requests and generate dynamic content

« Server-side JavaBeans components that encapsul ate behavior and state

Chapter 1 Overview 20

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

1.2.3

1.2.4

1.2.5

21

e Static HTML, DHTML, XHTML, XML and similar pages.

¢ Client-side Java Applets, JavaBeans components, and arbitrary Java class files

« Java Runtime Environment(s) (downloadable via the Plugin) running in client(s)

JThe JavaServer Pages specification inherits from the Servlet specification the concepts of

Applications, ServletContexts, Sessions, Requests and Responses. See the Java Servlet 2.3
specification for more details.

Components and Containers

JSP pages and Servlet classes are collectively referred as Web Components. JSP pages are
delivered to a Container that provides the services indicated in the JSP Component Contract.

The separation of components from containers allows reuse of components, with quality-of-
service features being provided by the container.

Translation and Execution Steps

JSP pages are textual components. They go through two phases: a translation phase, and a
request phase. Trandation is done once per page. The request phase is done once per
request.

The result of the translation phase is the creation of a Servlet class: the JSP page
implementation class which will be instantiated at request time. The JSP page
implementation object handles requests and creates responses.

It is possible to perform the translation phase early (what sometimes is called compiling the
JSP pages into Servlets) and deliver in a Web Application, transparently, a Servlet class that
will behave as the textual representation of the JSP page.

The translation phase may also be done by the JSP container at deployment time, or on-
demand as the requests reach a JSP page that has not yet been translated.

Features in JSP

The key features of JavaServer Pages are:

e Standard directives
¢ Standard actions

JavaServer Pages 1.2 Specification - PD1+ August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

e Scripting elements
¢ Tag Extension mechanism
e Template content

1.2.6 JSP Pages and the Java 2 Enterprise Edition
Specification

Most of the integration of JSP pages within the J2EE 1.3 platform is inherited from the
reliance on the Servlet 2.3 specification.

Chapter 1 Overview 22

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

23 JavaServer Pages 1.2 Specification - PD1« August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

CHAPTER 2

Core Syntax and
Semantics

This chapter describes the core syntax and semantics of the JavaServer Pages (JSP) 1.2
Specification.

2.1

What i1s a JSP Page

A JSP page is a textual document that describes how to create a response object from a
reguest object for a given protocol, possibly creating and/or using some other objects.

A JSP page describes this mapping by defining a JSP page implementation class, a subclass
of Servlet (see Chapter 6) that implements the semantics of the JSP page. At request time, a
request intended for a JSP page is delivered to a JSP page implementation object of the
appropriate class.

All JSP containers must support HTTP as a protocol for requests and responses, but a
container may also support additional request/response protocols. The default request and
response objects (see XXXX) are of type HttpServletRequest and HttpServletResponse,
respectively.

Core Syntax and Semantics 24

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

2.1.1

2.1.2

2.1.3

25

Web Containers and Web Components

A JSP container is a system-level entity that provides life-cycle management and runtime
support for JSP pages and Servlet components. Requests sent to a JSP page are delivered by the
JSP container to the appropriate JSP page implementation object. The term Web Container is
synonymous to that of a JSP container.

A Web component is either a Servlet or a JSP page. A web component may use the services
of its container. The servlet element in aweb.xml deployment descriptor is used to describe
both types of web components; note that most JSP page components are defined implicitly in
the deployment descriptor through the use of an implicit .jsp extension mapping.

XML Document for a JSP Page

All JSP pages have an equivalent XML document. This eguivalent XML document is the
view of the JSP page that is exposed to the translation phase (see below).

A JSP page can also be written directly as its equivalent XML document. Unlikein JSP 1.0
and JSP 1.1 containers, the XML document itself can be delivered to a JSP container for
processing.

It is not valid to intermix “standard syntax” and XML syntax inside the same source file.

A JSP page (in either syntax) can include via a directive a JSP page in any syntax. |.e.
within each unit one syntax is used but each unit can use either syntax.

Translation and Execution Phases

A JSP container is responsible for two separate activities. One is determining a JSP page
implementation class that corresponds to a given JSP page. The other is managing one or
more instances of this class in response to requests and other events.

During the translation phase the container locates (or creates) the JSP page implementation
class that corresponds to a given JSP page. The process is determined by the semantics of
the JSP pages, of the standard directives and actions, and of the custom actions in the tag
libraries used in the page. A tag library can optionally provide a transformation to extend the
translation phase, and a validation method to validate that a JSP page is correctly using the
library.

A JSP container has some freedom in the details of the JSP page implementation class which
it may exploit to address quality-of-service (most notably performance) issues.

JavaServer Pages 1.2 Specification - PD1+ August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

2.1.4

2.1.5

During the execution phase the JSP container delivers events to the JSP page implemention
object. The container is aso responsible for instantiating request and response objects. The
details of the contract between the JSP page implementation class and the JSP container is
described in Chapter 6.

If the JSP page is delivered to the JSP container in source form, the trandation of a JSP
source page can occur at any time between initial deployment of the JSP page into the
runtime environment of a JSP container and the receipt and processing of a client request for
the target JSP page. Section 2.1.5 describes how to perform the translation phase ahead of
deployment.

Events Exposed to JSP Pages

A JSP page may also indicate how some events are to be handled.

In JSP 1.1 only init and destroy events can be described: the first time a request is delivered
to a JSP page a jsplnit() method, if present, will be called to prepare the page. Similarly, a
JSP container can reclaim the resources used by a JSP page at any time that a request is not
being serviced by the JSP page by invoking first its jspDestroy() method; this is the same
life-cycle as that of Serviets.

Compiling JSP Pages

JSP pages may be compiled into its JSP page implementation class plus some deployment
information. This enables the use of JSP page authoring tools and JSP tag libraries to author
a Servlet. This has several benefits:

¢ Removal of the start-up lag that occurs when a JSP page delivered as source receives the
first request.

¢ Reduction of the footprint needed to run a JSP container, as the java compiler is not
needed.

If a JSP page implementation class depends on some support classes in addition to the JSP
1.2 and Servlet 2.3 classes, the support classes will have to be included in the packaged WAR
so it will be portable across all JSP containers.

A JSP page is compiled in the context of some Web Application, which provides resol ution
to relative URL specifications that are used in include directives (and elsewhere), taglib
references, and trand ation-time actions used in custom actions.

A JSP page can also be compiled at deployment time.

Chapter 2 Core Syntax and Semantics 26

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

Appendix A contains two examples of packaging of JSP pages. One shows a JSP page that is
delivered in source form (probably the most common case) within a WAR. The other shows
how a JSP page is translated into a JSP page implementation class plus deployment
information indicating the classes needed and the mapping between the original URL that
was directed to the JSP page and the location of the Servlet.

2.2

27

Web Applications

A Web Application is a collection of resources that are available through some URLs. A
prototypical Web application can be composed from:

¢ Java Runtime Environment(s) running in the server (required)

« JSP page(s), that handle requests and generate dynamic content

¢ Servlet(s), that handle requests and generate dynamic content

« Server-side JavaBeans components that encapsul ate behavior and state

e Static HTML, DHTML, XHTML, XML and similar pages.

¢ Client-side Java Applets, JavaBeans components, and arbitrary Java class files

¢ Java Runtime Environment(s) (downloadable via the Plugin) running in client(s)

Web applications are described in more detail in the Servlet 2.3 specification.

A Web Application contains a deployment descriptor web. xm that contains information
about the JSP pages, Servlets, and other resources used in the Web Application. The
Deployment Descriptor is described in detail in the Servlet 2.3 specification.

JSP 1.2 requires that all these resources are to be implicitly associated with and accessible
through a unique ServletContext instance, which is available as the application implicit
object (Section 2.8.3).

The application to which a JSP page belongs is reflected in the application object and has
impact on the semantics of the following elements:

e Theinclude directive (Section 4.1.1)

e The jsp:include action element (Section 4.2.4).

e The jsp:forward action (Section 4.2.5).

JSP 1.2 supports portable packaging and deployment of Web Applications through the
Servlet 2.3 specification. The JavaServer Pages specification inherits from the Servlet

specification the concepts of Applications, ServletContexts, Sessions, Requests and
Responses.

JavaServer Pages 1.2 Specification - PD1+ August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

2.2.1

Relative URL Specifications within an
Application

Elements may use relative URL specifications, which are called “URI paths’ in the Servlet
2.1 specification. These paths are as in RFC 2396 specification; i.e. only the path part, no
scheme nor authority. Some examples are:

“myErrorPage.jsp”
“/errorPages/ SyntacticError.jsp”
“/tenpl at es/ Copyri ght Tenpl ate. htm ”

When such a path starts with a*“/”, it is to be interpreted by the application to which the JSP
page belongs; i.e. its Ser vl et Cont ext object provides the base context URL. We call
these paths “context-rel ative paths’.

When such a path does not start with a“/”, it is to be interpreted relative to the current JSP
page: the current page is denoted by some path starting with “/” which is then modified by
the new specification to produce a new path that starts with “/”; this final path is the one
interpreted through the Ser vl et Cont ext object. We call these paths “page-relative
paths’.

The JSP specification uniformly interprets all these paths in the context of the Web server
where the JSP page is deployed; i.e. the specification goes through a map translation. The
semantics applies to translation-time phase, and to reguest-time phase.

2.3

2.3.1

Syntactic Elements of a JSP Page

This section describes the basic syntax rules of the JSP pages.

Elements and Template Data

A JSP page has some elements and some template data. An element is an instance of an
element type that are known to the JSP container; template data is everything else: i.e.
anything that the JSP translator does not know about.

The type of an element describes its syntax and its semantics. If the element has attributes,
the type also describes the attribute names, their valid types, and their interpretation. If the
element defines objects, the semantics includes what objects it defines and their types.

Chapter 2 Core Syntax and Semantics 28

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

2.3.2

29

Element Syntax

There are three types of elements: directive elements, scripting elements, and action
elements.

Directives

Directives provide global information that is conceptually valid independent of any specific
regquest received by the JSP page; they provide information for the translation phase.

Directive elements have a syntax of the form <% @ directive ...%>

Actions

The interpreation of an action may, and often will, depend on the details of the specific
request received by the JSP page; actions provide information for the request processing
phase. Actions can either be standard, i.e. defined in this specification, or custom, i.e.
provided via the portable tag extension mechanism.

Action elements follow the syntax of XML elements: they have either a start tag (including
the element name) possibly with attributes, an optional body, and a matching end tag, or they
have an empty tag possibly with attributes:

<mytag attrl="attribute value” ...>
body
</mytag>

and
<mytab attrl="attribute value” .../>

An element has an element type describing its tag name, its valid attributes and its semantics;
we refer to the type by its tag name.

JSP tags are case-sensitive, asin XML and XHTML.

An action may create some objects and may make them available to the scripting elements
through some scripting-specific variables.

JavaServer Pages 1.2 Specification - PD1+ August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

2.3.3

2.3.4

2.3.5

2.3.6

Scripting Elements

Scripting elements provide glue around template text and actions. There are three types of
scripting elements: declarations, scriptlets and expressions. Declarations follow the syntax
<%! ... %>; scriptlets follow the syntax <% %>; expressions follow the syntax <%-= ...
%>.

Start and End Tags

Elements that have distinct start and end tags (with enclosed body) must start and end in the
same file. You cannot begin atag in one file and end it in another.

This applies also to elements in the aternate syntax. For example, a scriptlet has the syntax
<% scriptlet %>. Both the opening <% characters and the closing %> characters must bein
the same physical file.

Empty Elements

Following the XML specification, an element described using an empty tag is
indistinguishable from one using a start tag, an empty body, and an end tag.

Attribute Values

Following the XML specification, attribute values always appear quoted. Both single and
double quotes can be used. The entities & apos; and & quot; are available to describe single
and double quotes.

See also Section 2.13.1, “Request Time Attribute Values.

White Space

In HTML and XML, white space is usually not significant, with some exceptions. One
exception is that an XML file must start with the characters <?xml , with no leading
whitespace characters.

Chapter 2 Core Syntax and Semantics 30

PUBLIC DRAFT 1 - SUBJECT TO CHANGE
This specification follows the whitespace behavior defined for XML, that is; all white space
within the body text of a document is not significant, but is preserved.

For example, since directives generate no data and apply globally to the JSP page, the
following input file is translated into the corresponding result file:

For this input,

<?xm version="1.0" ?>
This is the default value <%@ page buffer="8kb” %
The rest of the docunent goes here

Theresult is

<?xm version="1.0" ?>

note the empty line

The rest of the docunent goes here

As anot her exanpl e, for this input,

<% r esponse. set Content Type(“....");

note no white between what ever... %<?xnl version="1.0" ?>
the two elements

<%@ page buffer="8kb"” %
The rest of the docunent goes here

Theresult is

no leading space <?xml version="1.0" ?>
note the empty line

The rest of the docunent goes here

2.4 Error Handling

Errors may occur at translation time or at request time. This section describes how such
errors are treated by a compliant implementation.

31 JavaServer Pages 1.2 Specification - PD1« August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

24.1

2.4.2

Translation Time Processing Errors

The translation of a JSP page source into a corresponding JSP page implementation class
using the Java technology by a JSP container can occur at any time between initial
deployment of the JSP page into the runtime environment of a JSP container, and the receipt
and processing of a client request for the target JSP page. If translation occurs prior to the
JSP container receiving a client request for the target (untranslated) JSP page then error
processing and notification is implementation dependent. Fatal translation failures shall result
in subsequent client requests for the translation target to also be failed with the appropriate
error; for HTTP protocols, error status code 500 (Server Error).

Request Time Processing Errors

During the processing of client requests, arbitrary runtime errors can occur in either the body
of the JSP page implementation class or in some other code (Java or other implementation
programming language) called from the body of the JSP page implementation class. Such
errors are realized in the page implementation using the Java programming language
exception mechanism to signal their occurrence to caller(s) of the offending behavior®.

These exceptions may be caught and handled (as appropriate) in the body of the JSP page
implementation class.

However, any uncaught exceptions thrown from the body of the JSP page implementation
class result in the forwarding of the client request and uncaught exception to the

err or Page URL specified by the offending JSP page (or the implementation default
behavior, if none is specified).

The offending j ava. | ang. Thr owabl e describing the error that occurred is stored in the
j avax. Ser vl et Request instance for the client request using the put At tri but e()
method, using the name “j avax. servl et.j sp.j spExcepti on”. Names starting with
the prefixes “j ava” and “j avax” are reserved by the different specifications of the Java
platform; the “j avax. ser vl et " prefix is used by the Servlet and JSP specifications.

If theer r or Page attribute of apage directive names a URL that refers to another JSP, and
that JSP indicates that it is an error page (by setting the page directive’'s i SErr or Page
attribute to t r ue) then the “except i on” implicit scripting language variable of that page
isinitialized to the offending Thr owabl e reference

1. Notethat thisisindependent of scripting |anguage; this requires that unhandled errorsoccurring in ascripting language
environment used in a JSP container implementation to be signall ed to the JSP page implementation classviathe Java
programming language exception mechanism.

Chapter 2 Core Syntax and Semantics 32

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

2.5

Comments

There are two types of comments in a JSP page: comments to the JSP page itself,
documenting what the page is doing; and comments that are intended to appear in the
generated document sent to the client.

Generating Comments in Output to Client

In order to generate comments that appear in the response output stream to the requesting
client, the HTML and XML comment syntax is used, as follows:

<!-- comments ... -->
These comments are treated as uninterpreted template text by the JSP container. If the

generated comment is to have dynamic data, this can be obtained through an expression
syntax, asin:

<l-- comments <% expression % nore comments ... -->

JSP Comments

A JSP comment is of the form
<% - anything but a closing --% ... --%

The body of the content is ignored completely. Comments are useful for documentation but
also to “comment out” some portions of a JSP page. Note that JSP comments do not nest.

Note that an alternative way to place a “comment” in JSP is to do so by using the comment
mechanism of the scripting language. For example:

<% /** this is a comment ... **/ %

2.6

Quoting and Escape Conventions

The following quoting conventions apply to JSP pages. Anything else is not processed.

JavaServer Pages 1.2 Specification - PD1+ August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

Quoting in Scripting Elements
« A literal %> is quoted by %\>

Quoting in Template Text
* A literal <% is quoted by <\%

Quoting in Attributes
e A 'isquoted asV

¢ A “isquoted as\”

¢« A\isquoted as\\

¢ A %> is quoted as %\>

e A <% isquoted as <\%

XML Representation

The quoting conventions are different to those of XML. See Chapter 5.

2.7 Overal Semantics of aJSP Page

A JSP page implementation class defines a _jspService() method mapping from the request
to the response object. Some details of this transformation are specific to the scripting
language used; see Chapter 7. Most details are not language specific and are described in this
chapter.

Most of the content of a JSP page is devoted to describing what data is written into the
output stream of the response (usually sent back to the client). The description is based on a
JspW i t er object that is exposed through the implicit object out (see Section 2.8.3,
“Implicit Objects). Its value varies:

e Initialy, out isanew JspW it er object. This object may be different from the stream
object from response.getWriter(), and may be considered to be interposed on the latter in
order to implement buffering (see Section 2.10.1, “ The page Directive). Thisis theinitial
out object. JSP page authors are prohibited from writing directly to either the
Print Witer or Qut put St r eamassociated with the Ser vl et Response.

Chapter 2 Core Syntax and Semantics 34

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

¢ Within the body of some actions, out may be temporarily re-assigned to a different
(nested) instance of JspW i t er object. Whether thisisor is not the case depends on the
details of the actions semantics. Typically the content, or the results of processing the
content, of these temporary streams is appended to the stream previously referred to by
out, and out is subsequently re-assigned to refer to that previous (nesting) stream. Such
nested streams are always buffered, and require explicit flushing to a nesting stream or
discarding of their contents.

e If theinitial out JspW i t er object is buffered, then depending upon the value of the
aut oFl ush attribute of the page directive, the content of that buffer will either be
automatically flushed out to the Ser vl et Response output stream to obviate overflow,
or an exception shall be thrown to signal buffer overflow. If theinitial out JspW i t er is
unbuffered, then content written to it will be passed directly through to the
Ser vl et Response output stream.

A JSP page can also describe what should happen when some specific events occur. In JSP
1.1, the only events that can be described are initialization and destruction of the page; these
are described using “well-known method names” in declaration elements (see page 81).
Future specifications will likely define more events as well as a more structured mechanism
for describing the actions to take.

2.8

Objects

A JSP page can access, create, and modify server-side objects. Objects can be made visible
to actions and to scripting elements. Actions can access objects using a name in the

PageContext object. Scripting elements can also have access to some objects directly via a
scripting variable. Some implicit objects are visible via scripting variables in any JSP page.

A default file can be used to modify consistently the list of objects that are automatically
visible in a page.

An object has a scope describing what entities can access the object.

When an object is exposed through a scripting variable the variable has a scope within the
page.

JavaServer Pages 1.2 Specification - PD1+ August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

2.8.1

2.8.2

Objects and Variables

An object may be made accessible to code in the scripting elements through a scripting
language variable. An element can define scripting variables that will contain, at process
reguest-time, areference to the object defined by the element, although other references exist
depending on the scope of the object.

An element type indicates the name and type of such variables although details on the name
of the variable may depend on the Scripting Language. The scripting language may aso
affect how different features of the object are exposed; for example, in the JavaBeans
specification, properties are exposed via getter and setter methods, while these are available
directly in the JavaScript™ programming language.

The exact rules for the visibility of the variables are scripting language specific. Chapter 7
defines the rules for when the | anguage attribute of the page directive is “java’.

Objects and Scopes

A JSP page can create and/or access some Java objects when processing a request. The JSP
specification indicates that some objects are created implicitly, perhaps as a result of a
directive (see Section 2.8.3, “Implicit Objects); other objects are created explicitly through
actions; objects can also be created directly using scripting code. The created objects have a
scope attribute defining where there is a reference to the object and when that reference is
removed.

The created objects may also be visible directly to the scripting elements through some
scripting-level variables (see Section 2.8.3, “Implicit Objects).

Each action and declaration defines, as part of its semantics, what objects it defines, with
what scope attribute, and whether they are available to the scripting elements.

Objects are always created within some JSP page instance that is responding to some request
object. There are several scopes:

« page - Objects with page scope are accessible only within the page where they are
created. All references to such an object shall be released after the response is sent back
to the client from the JSP page or the request is forwarded somewhere else. References to
objects with page scope are stored in the pageCont ext object.

¢ request - Objects with request scope are accessible from pages processing the same
request where they were created. All references to the object shall be released after the
request is processed; in particular, if the request is forwarded to a resource in the same
runtime, the object is still reachable. References to objects with request scope are stored
in ther equest object.

Chapter 2 Core Syntax and Semantics 36

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

2.8.3

session - Objects with session scope are accessible from pages processing reguests that
are in the same session as the one in which they were created. It is not legal to define an
object with session scope from within a page that is not session-aware (see Section 2.10.1,
“The page Directive). All references to the object shall be released after the associated
session ends. References to objects with session scope are stored in the sessi on object
associated with the page activation.

application - Objects with application scope are accessible from pages processing
requests that are in the same application as they one in which they were created. All
references to the object shall be released when the runtime environment reclaims the
Ser vl et Cont ext . Objects with application scope can be defined (and reached) from
pages that are not session-aware. References to objects with application scope are stored
in the appl i cat i on object associated with a page activation.

A name should refer to a unique object at al pointsin the execution, i.e. al the different
scopes really should behave as a single name space. A JSP container implementation may or
not enforce this rule explicitly due to performance reasons.

Implicit Objects

JSP page authors have access to certain implicit objects that are always available for use
within scriptlets and expressions, without being declared first. All scripting languages are
required to provide access to these objects.

Each implicit object has a class or interface type defined in a core Java technology or Java
Servlet APl package, as shown in TABLE 2-1.

TABLE 2-1 Implicit Objects Available in JSP Pages

Implicit Variable Of Type What It Represents Scope
request protocol dependent subtype of: The request triggering the request
j avax. servl et. Ser vl et Request service invocation.
eg:
javax. servlet. Htt pServl et Request
response protocol dependent subtype of: The response to the request. page
j avax. servl et. Ser vl et Response
eg:
j avax. servl et. Htt pServl et Response
pageCont ext javax. servl et.]jsp. PageCont ext The page context for this JSP page
page.

37

JavaServer Pages 1.2 Specification - PD1+ August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

TABLE 2-1 Implicit Objects Available in JSP Pages

Implicit Variable Of Type What It Represents Scope

sessi on javax.servlet.http. H t pSessi on The session object created for session
the requesting client (if any).
This variable is only valid for
Http protocols.

application javax.servlet.ServletContext The servlet context obtained application
from the servlet configuration
object (as in the call
get Servl et Confi g().get
Context())

out javax.servlet.jsp.JspWiter An object that writes into the page
output stream.

config javax. servl et. Servl et Confi g The Ser vl et Confi g for this page
JSP page

page java. |l ang. Obj ect the instance of this page's page

implementation class processing
the current request?

a When the scripting language is “java’ then “page” is asynonym for “this” in the body of the page.

In addition, in an error page, you can access the except i on implicit object, described in

TABLE 2-2.

TABLE 2-2 Implicit Objects Available in Error Pages
Implicit Variable Of Type What It Represents scope
exception j ava. |l ang. Thr owabl e The uncaught Thr owabl e that page

resulted in the error page being
invoked.

Object names with prefixesj sp, _j sp, j spx and _j spx, in any combination of upper and
lower case, are reserved by the JSP specification.

See Section 9.6.1 for some non-normative conventions for the introduction of new implicit
objects.

Chapter 2

Core Syntax and Semantics 38

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

2.8.4

The pageContext Object

A PageCont ext provides an object that encapsulates i mplementation-dependent features
and provides convenience methods. A JSP page implementation class can use a

PageCont ext to run unmodified in any compliant JSP container while taking advantage of
implementation-specific improvements like high performance JspWi t ers.

See Chapter 8 for more details.

2.9

Template Text Semantics

The semantics of template (or uninterpreted) Text is very simple: the template text is passed
through to the current out JspW i t er implicit object, after applying the substitutions of
Section 2.6, “Quoting and Escape Conventions.

2.10

2.10.1

39

Directives

Directives are messages to the JSP container. Directives have this syntax:
<%@ directive { attr="value’ }* %

There may be optional white space after the “<%@” and before “%>".

This syntax is easy to type and concise but it is not XML-compatible. Chapter 5 describes the
mapping of directives into XML elements.

Directives do not produce any output into the current out stream.

There are three directives: the page and the taglib directives are described next, while the
include directive is described in the next chapter.

The page Directive

The page directive defines a number of page dependent attributes and communicates these
to the JSP container.

JavaServer Pages 1.2 Specification - PD1+ August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

2.10.1.1

A translation unit (JSP source file and any files included viathei ncl ude directive) can
contain more than one instance of the page directive, al the attributes will apply to the
compl ete translation unit (i.e. page directives are position independent). However, there shall
be only one occurrence of any attribute/value defined by this directive in a given trandation
unit with the exception of the “i nport ” attribute; multiple uses of this attribute are
cumulative (with ordered set union semantics). Other such multiple attribute/value
(re)definitions result in a fatal translation error.

The attribute/value namespace is reserved for use by this, and subsequent, JSP
specification(s).

Unrecognized attributes or values result in fatal translation errors.

Examples

The following directive provides some user-visible information on this JSP page:
<%@ page info="ny |atest JSP Exanple’” %

The following directive requests no buffering, indicates that the page is thread safe, and
provides an error page.

<%@ page buffer="none” isThreadSafe="yes” errorPage="/oops.jsp” %

The following directive indicates that the scripting language is based on Java, that the types
declared in the package com.myco are directly available to the scripting code, and that a
buffering of 16K should be used.

<%@ page | anguage="java” inport="com nyco.*"” buffer="16k" %

Syntax

<@ page page_directive_attr_list %

page_directive_attr_list ::= { | anguage="scri pti ngLanguage” }
ext ends="cl assNane” }
i mport="1inportList” }
session="true|fal se” }
buf f er =" none| si zekb” }
aut oFl ush="true| f al se” }
i sThreadSaf e="true| fal se” }
info="info_text” }
errorPage="error_url” }
i sErrorPage="true|fal se” }
cont ent Type="cti nfo” }

Lot W W W e e R e W W

Chapter 2 Core Syntax and Semantics 40

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

The details of the attributes are as follows:

| anguage

ext ends

41

Defines the scripting language to be used in the scriptlets, expression
scriptlets, and declarations within the body of the translation unit (the
JSP page and any files included using the i ncl ude directive below).

In JSP 1.2, the only defined and required scripting language value for
this attribute is “j ava”. This specification only describes the
semantics of scripts for when the value of the language attribute is
“java’.

When “j ava” is the value of the scripting language, the Java
Programming Language source code fragments used within the
translation unit are required to conform to the Java Programming
Language Specification in the way indicated in Chapter 7.

All scripting languages must provide some implicit objects that a JSP
page author can use in declarations, scriptlets, and expressions. The
specific objects that can be used are defined in Section 2.8.3, “Implicit
Objects.”

All scripting languages must support the Java Runtime Environment
(JRE). All scripting languages must expose the Java technology object
model to the script environment, especially implicit variables,
JavaBeans component properties, and public methods.

Future versions of the JSP specification may define additional values
for the language attribute and all such values are reserved.

It is afatal translation error for a directive with anon-"j ava”
language attribute to appear after the first scripting element has been
encountered.

The value is afully qualified Java programming language class name,
that names the superclass of the class to which this JSP page is
transformed (see Chapter 6).

This attribute should not be used without careful consideration as it
restricts the ability of the JSP container to provide specialized
superclasses that may improve on the quality of rendered service. See
Section 9.6.1 for an alternate way to introduce objects into a JSP page
that does not have this drawback.

JavaServer Pages 1.2 Specification - PD1+ August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

i mport

sessi on

buf fer

An import attribute describes the types that are available to the
scripting environment. The value is as in an import declaration in the
Java programming language, i.e. a (comma separated) list of either a
fully qualified Java programming language type name denoting that
type, or of a package name followed by the “.*” string, denoting all
the public types declared one in that package. The import list shall be
imported by the translated JSP page implementation and are thus
available to the scripting environment.

The default import listisj ava. | ang. *,j avax. servl et . *,
javax.servlet.jsp.* andjavax. servlet. http.*.

Thisvalueis currently only defined when the value of thel anguage
directive is“j ava”.
Indicates that the page requires participation in an (http) session.

If “t rue” then the implicit script language variable named
“sessi on” of typej avax. servl et. http. Ht t pSessi on
references the current/new session for the page.

If “f al se” then the page does not participate in a session; the
“sessi on” implicit variable is unavailable, and any reference to it
within the body of the JSP pageisillegal and shall result in a fatal
translation error.

Default is“t r ue”.

Specifies the buffering model for the initial “out ” JspW i ter to
handle content output from the page.

If “none”, then there is no buffering and all output is written directly
through to the Ser vl et Response PrintWiter.

The size can only be specified in kilobytes, and the suffix “kb” is
mandatory.

If a buffer size is specified (e.g 12kb) then output is buffered with a
buffer size not less than that specified.

Depending upon the value of the “aut oFl ush” attribute, the contents
of this buffer is either automatically flushed, or an exception is raised,
when overflow would occur.

The default is buffered with an implementation buffer size of not less
than 8kb.

Chapter 2 Core Syntax and Semantics

42

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

aut oFl ush

i sThreadSaf e

info

i sError Page

Specifies whether the buffered output should be flushed automatically
(“t rue” value) when the buffer isfilled, or whether an exception
should be raised (“f al se” value) to indicate buffer overflow.

The default is“t rue”.

Note: it isillegal to set aut oFl ush to “f al se” when
“buf f er =none”.

Indicates the level of thread safety implemented in the page.

If “f al se” then the JSP container shall dispatch multiple outstanding
client requests, one at a time, in the order they were received, to the
page implementation for processing.

If “t r ue” then the JSP container may choose to dispatch multiple
outstanding client requests to the page simultaneously.

Page authors using “t r ue” must ensure that they properly
synchronize access to page shared state.

Default is“t rue”.

Note that even if the isThreadSafe attribute is “f al se” the JSP page
author must ensure that access to any shared objects shared in either
the Ser vl et Cont ext or the Ht t pSessi on are properly
synchronized.

Defines an arbitrary string that is incorporated into the translated page,
that can subsequently be obtained from the page's implementation of
Servl et . get Servl et nfo() method.

Indicates if the current JSP page is intended to be the URL target of
another JSP page’'s er r or Page.

If “t r ue”, then the implicit script language variable “except i on”
is defined and its value is a reference to the offending Thr owabl e
from the source JSP page in error.

If “f al se” then the “excepti on” implicit variable is unavailable,
and any reference to it within the body of the JSP pageisillegal and
shall result in a fatal translation error.

Default is“f al se”

43 JavaServer Pages 1.2 Specification - PD1+ August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

error Page

content Type

Defines a URL to aresource to which any Java programming language
Thr owabl e object(s) thrown but not caught by the page
implementation are forwarded to for error processing.

The provided URL spec is asin Section 2.2.1.

The resource named has to be a JSP page in this version of the
specification.

If the URL names another JSP page then, when invoked that JSP
page's except i on implicit script variable shall contain a reference
to the originating uncaught Thr owabl e.

The default URL is implementation dependent.

Note the Thr owabl e object is transferred by the throwing page
implementation to the error page implementation by saving the object
reference on the common Ser vl et Request object using the

set Attri but e() method, with a name of

“j avax.servlet.jsp.jspException”.

Note: if aut oFl ush=t r ue then if the contents of the initial
JspW i t er has been flushed to the Ser vl et Response output
stream then any subsequent attempt to dispatch an uncaught exception
from the offending page to an er r or Page may fail.

When an error page is also indicated in the web.xml descriptor, the
JSP error page applies first, then the web.xml page.

Defines the character encoding for the JSP page and for the response
of the JSP page and the MIME type for the response of the JSP page.

Values are either of the form “TYPE” or “TY PE; charset=CHARSET"
with an optional white space after the“;”. CHARSET, if present, must
be the IANA value for a character encoding. TY PE is a MIME type,
see the IANA registry for useful values.

The default value for TYPE is “text/html”; the default value for the
character encoding is 1SO-8859-1.

See Section 3.1.2 for complete details on character encodings.

2.10.2 Thet agl i b Directive

The set of significant tags a JSP container interprets can be extended through a “tag library”.

Chapter 2 Core Syntax and Semantics 44

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

2.10.2.1

Thet agl i b directive in a JSP page declares that the page uses a tag library, uniquely
identifies the tag library using a URI and associates a tag prefix that will distinguish usage of
the actions in the library.

If a JSP container implementation cannot locate a tag library description, a fatal translation
error shall result.

It is afatal translation error for thet agl i b directive to appear after actions using the prefix
introduced by the t agl i b directive.

A tag library may include a validation method that will be consulted to determine if a JSP
page is correctly using the tag library functionality.

See Chapter 9 for more specification details. And see Section B.2 for an implementation
note.

Examples
In the following example, atag library is introduced and made available to this page using
the super prefix; no other tags libraries should be introduced in this page using this prefix.

In this particular case, we assume the tag library includes a doMagi ¢ element type, which is
used within the page.

<y@taglib uri="http://ww. mycorp/supertags” prefix="super” />
<super : doMagi c>

</ super : doMagi c>

Syntax

<v@taglib uri="taglLi braryURl " prefix="tagPrefix” %

JavaServer Pages 1.2 Specification - PD1+ August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

where the attributes are:

uri Either an absolute URI or arelative URI specification that uniquely
identifies the tag library descriptor associated with this prefix.

The URI is used to locate a description of the tag library as indicated
in Chapter 9.

tagPrefix Defines the prefix string in <pr ef i x>: <t agnane> that is used to
distinguish a custom action, e.g <myPrefix:myTag>

prefixes jsp:, jspx:, java:, javax:, servlet:, sun:, and sunw: are reserved.
Empty prefixes are illegal in this version of the specification.
A fatal translation-time error will result if the JSP page trandator encounters a tag with name

prefix:Name using a prefix introduced using the taglib directive, and Name is not recognized
by the corresponding tag library.

2.11

Scripting Elements

Scripting elements are commonly used to manipul ate objects and to perform computation that
affects the content generated.

There are three classes of scripting elements: declarations, scriptlets and expressions. The
scripting language used in the current page is given by the value of the language directive
(see Section 2.10.1, “The page Directive). In JSP 1.2, the only value defined is“ | ava” .

Declarations are used to declare scripting language constructs that are available to all other
scripting elements. Scriptlets are used to describe actions to be performed in response to
some request. Scriplets that are program fragments can also be used to do things like
iterations and conditional execution of other elements in the JSP page. Expressions are
complete expressions in the scripting language that get evaluated at response time;
commonly the result is converted into a string and then inserted into the output stream.

All JSP containers must support scripting elements based on the Java programming language.
Additionally, JSP containers may also support other scripting languages. All such scripting
languages must support:

¢ Manipulation of Java objects.
¢ Invocation of methods on Java objects.
e Catching of Javalanguage exceptions.

Chapter 2 Core Syntax and Semantics 46

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

2.11.1

47

The precise definition of the semantics for scripting done using elements based on the Java
programming language is given in Chapter 7.

The semantics for other scripting languages are not precisely defined in this version of the
specification, which means that portability across implementations cannot be guaranteed.
Precise definitions may be given for other languages in the future.

Each scripting element has a “<%"-based syntax as follows:

<0 this is a declaration %
<%this is a scriptlet %
<%= this is an expression %

White space is optional after “<%!”, “<%", and “<%=", and before “%>".

The equivalent XML elements for these scripting elements are described in Section 5.4.

Declarations

Declarations are used to declare variables and methods in the scripting language used in a
JSP page. A declaration should be a complete declarative statement, or sequence thereof,
according to the syntax of the scripting language specified.

Declarations do not produce any output into the current out stream.

Declarations are initialized when the JSP page is initialized and are made available to other
declarations, scriptlets, and expressions.

Examples

For example, the first declaration below declares an integer, and initializes it to zero; while
the second declaration declares a method.

< int i =0; %
<0 public String f(int i) { if (i<3) return(“..."); ... } %
Syntax

<% declaration(s) %

JavaServer Pages 1.2 Specification - PD1+ August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

2.11.2

2.11.3

Scriptlets

Scriptlets can contain any code fragments that are valid for the scripting language specified
in the | anguage directive. Whether the code fragment is legal depends on the details of the
scripting language; see Chapter 7.

Scriptlets are executed at request-processing time. Whether or not they produce any output
into the out stream depends on the actual code in the scriptlet. Scriptlets can have side-
effects, modifying the objects visible in them.

When all scriptlet fragments in a given trandation unit are combined in the order they appear
in the JSP page, they shall yield a valid statement or sequence thereof, in the specified
scripting language.

If you want to use the % character sequence as literal charactersin a scriptlet, rather than to
end the scriptlet, you can escape them by typing % >.

Examples

Here is a simple example where the page changed dynamically depending on the time of day.

<% if (Calendar.getinstance().get(Calendar.AM_PM) == Calendar.AM) {%>
Good Morning

<% } else { %>

Good Afternoon

<% } %>

Syntax

<% scriptlet %

Expressions

An expression element in a JSP page is a scripting language expression that is evaluated and
the result is coerced to a St r i ng which is subsequently emitted into the current out
JspWi t er object.

If the result of the expression cannot be coerced to a St ri ng then either atrandation time
error shall occur, or, if the coercion cannot be detected during translation, a
Cl assCast Except i on shall be raised at request time.

Chapter 2 Core Syntax and Semantics 48

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

A scripting language may support side-effects in expressions. If so, they take effect when the
expression is evaluated. Expressions are evaluated left-to-right in the JSP page. If the
expressions appear in more than one run-time attribute, they are evaluated left-to-right in the
tag. An expression might change the value of the out object, although this is not something
to be done lightly.

The contents of an expression must be a complete expression in the scripting language in
which they are written.

Expressions are evaluated at HTTP processing time. The value of an expression is converted
to a String and inserted at the proper position in the .j sp file.

Examples

In the next example, the current date is inserted.

<% (new java.util.Date()).tolLocal eString() %

Syntax

<% expression %

2.12

49

Actions

Actions may affect the current out stream and use, modify and/or create objects. Actions may,
and often will, depend on the details of the specific request object received by the JSP page.

The JSP specification includes some action types that are standard and must be implemented
by all conforming JSP containers. New action types are introduced using thet agl i b
directive.

The syntax for action elements is based on XML; the only transformation needed is due to
quoting conventions (see Section 5.5).

JavaServer Pages 1.2 Specification - PD1+ August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

2.13

2.13.1

Tag Attribute Interpretation
Semantics

Generally, all custom and standard action attributes and their values either remain
uninterpreted by, or have well defined action-type specific semantics known to, a conforming
JSP container. However there are two exceptions to this general rule: some attribute values
represent request-time attribute values and are processed by a conforming JSP container, and
the id and scope attributes have special interpretation.

Request Time Attribute Values

Action elements (both standard and custom) can define named attributes and associated
values. Typically a JSP page treats these values as fixed and immutable but the JSP 1.2
provides a mechanism to describe a value that is computed at request time.

An attribute value of the form " <%= scriptlet_expr %>" or ‘<%= scriptlet_expr %> denotes
a request-time attribute value. The value denoted is that of the scriptlet expression involved.
Request-time attribute values can only be used in actions. If there are more than one such
attribute in a tag, the expressions are evaluated | eft-to-right.

Only attribute values can be denoted this way (e.g. the name of the attribute is always an
explicit name), and the expression must appear by itself (e.g. multiple expressions, and
mixing of expressions and string constants are not permitted; instead perform these
operations within the expression).

The resulting val ue of the expression depends upon the expected type of the attribute’s value.
The type of an action element indicates the valid Java programming languag type for each
attribute value; the default isj ava. | ang. Stri ng.

By default, all attributes have page translation-time semantics. Attempting to specify a
scriptlet expression as a value for an attribute that has page translation time semantics is
illegal, and will result in afatal trandation error. The type of an action element indicates
whether a given attribute will accept request-time attribute val ues.

Most attributes in the actions defined in the JSP 1.2 specification have page translation-time
semantics.

The following attributes accept request-time attribute expressions:
e The value attribute of jsp:setProperty (2.13.2).

¢ The beanName attribute of jsp:useBean (2.13.1).

¢ The page attribute of jsp:include (2.13.4).

Chapter 2 Core Syntax and Semantics 50

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

2.13.2

51

The page attribute of jsp:forward (2.13.5).
The value attribute of jsp:param (2.13.6).

Not e — Thereisan anomaly: we cannot use a custom tag to provide the value of an
argument to another custom tag. For example, one cannot use jsp:getProperty... There are
several ways to address this.

Thei d Attribute

Thei d="name” attribute/value tuple in an element has special meaning to a JSP container,
both at page translation time, and at client request processing time; in particular:

the name must be unique within the trandation unit, and identifies the particular element
in which it appears to the JSP container and page.

Duplicate i d’s found in the same translation unit shall result in a fatal translation error.

In addition, if the action type creates one or more object instance at client request
processing time, one of these objects will usually be associated by the JSP container with
the named value and can be accessed via that name in various contexts through the
pagecont ext object described later in this specification.

Furthermore, the name is also used to expose a variable (name) in the page’s scripting
language environment. The scope of this scripting language dependent variable is
dependent upon the scoping rules and capabilities of the actual scripting language used in
the page. Note that this implies that the name value syntax shall comply with the variable
naming syntax rules of the scripting language used in the page.

Chapter 7 provides details for the case where the language attributeis " j ava”.

For example, the <j sp: usebean id="nane” class="classNane” .../> action
defined later herein uses this mechanism in order to, possibly instantiate, and subsequently
expose the named JavaBeans component to a page at client request processing time.

For example:

<%{ // introduce a new bl ock %

<j sp: useBean id="custoner” class="com nyco. Customer” />

<%

/*

* the tag above creates or obtains the Custoner Bean

* reference, associates it with the nane “custonmer” in the
* PageCont ext, and decl ares a Java programm ng | anguage

* variable of the

* same nane initialized to the object reference in this

JavaServer Pages 1.2 Specification - PD1+ August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

2.13.3

* bl ock’s scope.

*/

%

<%= customer.getNane(); %

<%} // close the block %

<%

/1 the variable customer is out of scope now but

/1 the object is still valid (and accessibl e via pageCont ext)
%

The scope Attribute

The scope="page| request | sessi on| application” attribute/value tupleis
associated with, and modifies the behavior of the i d attribute described above (it has both
translation time and client request processing time semantics). In particular it describes the
namespace, the implicit lifecycle of the object reference associated with the name, and the
APIs used to access this association, as follows:

page The named object is available from the
j avax. servl et.j sp. PageCont ext for the current page.

This reference shall be discarded upon completion of the current
request by the page body.

Itisillegal to change the instance object associated, such that its
runtime type is a subset of the type of the current object previously
associated.

request The named object is available from the current page’s
Ser vl et Request object using the get At t ri but e(nanme)
method.

This reference shall be discarded upon completion of the current client
request.

Itisillegal to change the value of an instance object so associated,
such that its runtime type is a subset of the type(s) of the object
previously so associated.

Chapter 2 Core Syntax and Semantics 52

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

sessi on

application

The named object isavailable from the current page’sHt t pSessi on
object (which can in turn be obtained from the Ser vl et Request
object) using the get Val ue(name) method.

This reference shall be discarded upon invalidation of the current
session.

Itislllegal to change the value of an instance object so associated,
such that its new runtime type is a subset of the type(s) of the object
previously so associated.

Note it is afatal translation error to attempt to use sessi on scope
when the JSP page so attempting has declared, via the <%@ page
%> directive (see later) that it does not participate in a

sessi on.

The named object is available from the current page’s
Ser vl et Cont ext object using the get At t ri but e(nanme)
method.

This reference shall be discarded upon reclamation of the
Ser vl et Cont ext .

Itis lllegal to change the value of an instance object so associated,
such that its new runtime type is a subset of the type(s) of the object
previously so associated.

JavaServer Pages 1.2 Specification - PD1+ August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

CHAPTER 3

Localization I ssues

This chapter will describe localization issues with JSP.

3.1

3.11

| 18N |ssues

118N will be reviewed to track the Servlet 2.3 resolutions.

We expect the global file to be useful in configuring portions of the JSP page sources
according to locales.

Specifying Content Types

A JSP page can use the cont ent Ty pe attribute of the page directive to indicate the content
type of the response it provides to reguests. Since this value is part of a directive, a given
page will always provide the same content type. If a page determines that the response
should be of adifferent content type, it should do so “early”, determine what other JSP page
or Servlet will handle this request and it should forward the request to the other JSP page or
Servlet.

A registry of content types names is kept by IANA. See:

ftp://venera.isi.edu/in-notes/iana/assignments/media-types/media-types

Localization Issues 54

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

3.12

Delivering Localized Content

The Java Platform support for localized content is based on a uniform representation of text
internally as Unicode 2.0 (1SO010646) characters and the support for a number of character
encodings to and from Unicode.

Any Java Virtual Machine (JVM) must support Unicode and Latin-1 encodings but most
support many more. The character encodings supported by the VM from Sun are described
at:

http://java.sun.com/products/jdk/1.1/docs/guide/intl/encoding.doc.html

The JSP 1.1 specification assumes that JSP pages that will deliver content in a given
character encoding will be written in that character encoding. In particular, the

cont ent Type attribute of the page directive describes both the character encoding of the
JSP page and the character encoding of the resulting stream.

The valid names to describe the character encodings are those of IANA. They are described
at:

ftp://venera.isi.edu/in-notes/iana/assignments/character-sets

The cont ent Type attribute must only be used when the character encoding is organized
such that ASCII characters stand for themselves, at least until the cont ent Type attributeis
found. The directive containing the cont ent Type attribute should appear as early as
possible in the JSP page.

The default character set encoding is 1SO-8859-1 (also known as latin-1).

A JSP container may use some i mplementation-dependent heuristics and/or structure to
determine what is the expected character encoding of a JSP page and then verify that
cont ent Type attribute is as expected.

A JSP container will raise a translation-time error if an unsupported character encoding is
requested.

See Section B.1 for some implementation notes.

JavaServer Pages 1.2 Specification - PD1+ August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

CHAPTER 4

Standard Actions and
Directives

This chapter describes the standard actions of JSP 1.2. The chapter also describes the
include directive, as it could? be described usi ng the tag extension mechanism in JSP 1.2,
while the page and taglib directives are more basic and cannot be described this way.

4.1 Standard Directives

The include directive is described here.

4.1.1 Theinclude Directive

Thei ncl ude directive is used to substitute text and/or code at JSP page translation-time.
The<%@ i nclude file="rel ati veURLspec” % directive inserts the text of the
specified resource into the .j sp file. The included file is subject to the access control
available to the JSP container. Thef i | e attribute is asin Section 2.2.1.

A JSP container can include a mechanism for being notified if an included file changes, so
the container can recompile the JSP page. However, the JSP 1.2 specification does not have
away of directing the JSP container that included files have changed.

1. Strictly speaking, the syntax cannot be described using the tag mechanism, but otherwise it can.

Standard Actions and Directives 56

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

Examples

The following example requests the inclusion, at translation time, of a copyright file. Thefile
may have elements which will be processed too.

<%@include file="copyright.htm” %

4111 Syntax

<%@include file="rel ati veURLspec" %

4.1.2 Including Data in JSP Pages

Including data is a significant part of the tasks in a JSP page. Accordingly, the JSP 1.2
specification has two include mechanisms suited to different tasks. A summary of their
semantics is shown in TABLE 4-1.

TABLE 4-1 Summary of Include Mechanisms in JSP 1.2

Syntax What Phase Spec Object Description Section
<%@ include file=... %> directive translation- virtual static Content is parsed by 411
time JSP container.
<jsp:include page= /> action request-time virtual static Content is not parsed; it 4.2.4
and isincluded in place.
dynamic

The Spec column describes what type of specification is valid to appear in the given element.
The JSP specification requires a relative URL spec. The reference is resolved by the Web/
Application server and its URL map is involved.

An include directive regards a resource like a JSP page as a static object; i.e. the bytesin the
JSP page are included. An include action regards a resource like a JSP page as a dynamic
object; i.e. the request is sent to that object and the result of processing it is included.

57 JavaServer Pages 1.2 Specification - PD1« August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

4.2

4.2.1

Standard Actions

The JSP 1.2 specification defines some standard action types that are always available,
regardless of the version of the JSP container or Web server the devel oper uses. The standard
action types are in addition to any custom types specific to a given JSP container
implementation.

<Jsp:useBean>

A j sp: useBean action associates an instance of a Java programming language object
defined within a given scope available with agiveni d viaanewly declared scripting
variable of the same i d.

The j sp: useBean action is quite flexible; its exact semantics depends on the attributes
given. The basic semantic tries to find an existing object using i d and scope,; if it is not
found it will attempt to create the object using the other attributes. It is also possible to use
this action only to give alocal name to an object define elsewhere, as in another JSP page or
in a Servlet; this can be done by using the t ype attribute and not providing neither cl ass
nor beanName attributes.

At least one of t ype and cl ass must be present, and it is not valid to provide both cl ass
and beanName. If t ype and cl ass are present, cl ass must be assignable (in the Java
platform sense) to t ype; failure to do so is a trandation-time error.

The attribute beanNane is the name of a Bean, as specified in the JavaBeans specification
for an argument to the instantiate() method in javabeans.Beans. |.e. it is of the form “a.b.c”,
which may be either a class, or the name of a resource of the form “a/b/c.ser” that will be
resolved in the current ClassLoader. If thisis not true, a request-time exception, as indicated
in the semantics of instantiate() will be raised. The value of this attribute can be a request-
time attribute expression.

The actions performed are:

1. Attempt to locate an object based on the attribute values (i d, scope). The inspection is
done appropriately synchronized per scope namespace to avoid non-deterministic
behavior.

2. Define a scripting language variable with the given i d in the current lexical scope of the
scripting language of the specified t ype (if given) or cl ass (if typeis not given).

Chapter 4 Standard Actions and Directives 58

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

59

3. If the object is found, the variable’'s value is initialized with a reference to the located

object, cast to the specified t ype. If the cast fails, a
java.l ang. C assCast Except i on shal occur. This completes the processing of
thisuseBean action.

If thej sp: useBean element had a non-empty body it is ignored. This completes the
processing of this useBean action.

. If the object is not found in the specified scope and neither class nor beanName are given,

ajava.l ang. I nstantiati onExcepti on shall occur. This completes the
processing of this useBean action.

. If the object is not found in the specified scope; and the cl ass specified names a non-

abstract class that defines a public no-args constructor, then that class is instantiated, and
the new object reference is associated the with the scripting variable and with the
specified name in the specified scope using the appropriate scope dependent association
mechanism (see PageCont ext). After this, step 7 is performed.

If the object is not found, and the class is either abstract, an i nt er f ace, or no public
no-args constructor is defined therein, then a

java.l ang. | nstantiati onExcepti on shall occur. Thiscompletes the processing
of this useBean action.

. If the object is not found in the specified scope; and beanNane is given, then the method

instantiate() of j ava. beans. Beans will be invoked with the ClassL oader of the
Servlet object and the beanName as arguments. If the method succeeds, the new object
reference is associated the with the scripting variable and with the specified name in the
specified scope using the appropriate scope dependent association mechanism (see
PageCont ext). After this, step 7 is performed.

. If thej sp: useBean element has a non-empty body, the body is processed. The variable

isinitialized and available within the scope of the body. The text of the body is treated as
elsewhere; if there is template text it will be passed through to the out stream; scriptlets
and action tags will be evaluated.

A common use of a hon-empty body is to complete initializing the created instance; in
that case the body will likely contain j sp: set Property actions and scriptlets. This
completes the processing of this useBean action.

Examples

In the following example, a Bean with name “connection” of type
“com nyco. nyapp. Connecti on” is available after this element; either because it was
already created or because it is newly created.

<j sp: useBean id="connection” class="com nyco. nyapp. Connecti on” />

In this next example, thet i meout property is set to 33 if the Bean was instantiated.

JavaServer Pages 1.2 Specification - PD1+ August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

4211

<j sp: useBean i d="connecti on” class="com nyco. nyapp. Connection”>
<j sp: set Property nanme="connection” property="tineout” val ue="33">
</ j sp: useBean>

In our final example, the object should have been present in the session. If so, it is given the
local name wombat with Worrbat Type. A Cl assCast Except i on may be raised if the
object is of the wrong class, and an | nst anti ati onExcepti on may be raised if the
object is not defined.

<j sp: useBean id="wonbat” type="ny.Wnbat Type” scope="session”/>

Syntax

This action may or not have a body. If the action has no body, it is of the form:

<j sp: useBean i d="nanme" scope="page|request|session|application”
typeSpec />

typeSpec ::=class="cl assNane” |
cl ass="cl assName” type="typeNane” |
type="typeNane” cl ass="cl assNane” |
beanNane="beanName” type="typeNane” |
type="typeNane” beanNane="beanNane” |
type="typeNanme”

If the action has a body, it is of the form:
<j sp: useBean i d="nanme" scope="page|request|session|application”
typeSpec >
body
</ j sp: useBean>

In this case, the body will be invoked if the Bean denoted by the action is created. Typically,
the body will contain either scriptlets or j sp: set Property tags that will be used to
modify the newly created object, but the contents of the body is not restricted.

Chapter 4 Standard Actions and Directives 60

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

The <j sp: useBean> tag has the following attributes:

id The name used to identify the object instance in the specified scope’s
namespace, and also the scripting variable name declared and
initialized with that object reference. The name specified is case
sensitive and shall conform to the current scripting language variable-
naming conventions.

scope The scope within which the reference is available. The default value is
page. See the description of the scope attribute defined earlier herein

cl ass The fully qualified name of the class that defines the implementation of
the object. The class name is case sensitive.

If the class and beanName attributes are not specified the object must
be present in the given scope.

beanName The name of a Bean, as expected by the instantiate() method of the
j ava. beans. Beans class.

This attribute can accept a request-time attribute expression as a value.

type If specified, it defines the type of the scripting variable defined.

This allows the type of the scripting variable to be distinct from, but
related to, that of the implementation class specified.

The type is required to be either the class itself, a superclass of the
class, or an interface implemented by the class specified.

The object referenced is required to be of this type, otherwise a

j ava. |l ang. Cl assCast Except i on shall occur at request time
when the assignment of the object referenced to the scripting variable
is attempted.

If unspecified, the value is the same as the value of the cl ass
attribute.

42.2 <jsp:setProperty>

The j sp: set Property action sets the value of propertiesin a Bean. The nane attribute
denotes an object that must be defined before this action appears.

61 JavaServer Pages 1.2 Specification - PD1« August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

There are two variants of the jsp:setProperty action. Both variants set the values of one or
more properties in the Bean based on the type of the properties. The usual Bean introspection
is done to discover what properties are present, and, for each, its name, whether they are
simple or indexed, their type, and setter and getter methods. Introspection also indicates if a
given property type has a PropertyEditor class.

Properties in a Bean can be set from one or more parameters in the request object, from a
String constant, or from a computed request-time expression. Simple and indexed properties
can be set using setProperty.

String constants and request parameter values can be used to assign values to any a type that
has a PropertyEditor class. When that is the case, the setAsText(String) method is used. A
conversion failure arises if the method throws an |1legal ArgumentException.

String constantsand request parameter values can also be used to assing to the types as listed
in TABLE 4-2; the conversion applied is that shown in the table.

Request-time expressions can be assigned to properties of any type; no automatic
conversions will be performed.

When assigning values to indexed properties the value must be an array; the rules described
in the previous paragraph apply to the elements.

A conversion failure leads to an error; the error may be at trandation or at request-time.

TABLE 4-2 Valid assignments in jsp:setProperty

Property Type Conversion on String Value

boolean or Boolean As indicated in java.lang.Bool ean.val ueOf (String)
byte or Byte As indicated in java.lang.Byte.valueOf(String)

char or Character As indicated in java.lang.Character.val ueOf (String)
double or Double As indicated in java.lang.Double.valueOf(String)
int or Integer As indicated in java.lang.Integer.valueOf(String)
float or Float As indicated in java.lang.Float.valueOf(String)
long or Long As indicated in javalang.Long.valueOf(String)
Examples

The following two elements set a value from the request parameter values.

<j sp:set Property name="request” property="*" />
<j sp:set Property nanme="user” property="user” paran¥”’username” />

Chapter 4 Standard Actions and Directives 62

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

4221

The following element sets a property from avalue

<j sp:set Property name="results” property="row’ value="<% i+1 %" />

Syntax

<j sp: set Property nanme="beanName" prop_expr />

prop_expr ::= property="*" |
property="propertyName” |
property="propertyName” param="par amet er Nane" |
property="propertyNanme” val ue="propertyVal ue”

propertyValue ::= string
The value propertyValue can also be a request-time attribute value, as described in Section 2.4.2.
propertyVal ue ::= expr_scriptlet 1

The <j sp: set Propert y> element has the following attributes:

name The name of a Bean instance defined by a <j sp: useBean> element or
some other element. The Bean instance must contain the property you
want to set. The defining element must appear before the
<j sp: set Propert y> element in the same file.

property The name of the Bean property whose val ue you want to set

If you set pr opert yNane to* then the tag will iterate over the
current Ser vl et Request parameters, matching parameter names
and value type(s) to property names and setter method type(s), setting
each matched property to the value of the matching parameter. If a
parameter has a value of ““, the corresponding property is not
modified.

1. Seesyntax for expression scriptlet “<%-= ... %>"

JavaServer Pages 1.2 Specification - PD1+ August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

4.2.3

par am The name of the request parameter whose value you want to give to a
Bean property. The name of the request parameter usually comes from a
Web form

If you omit par am the request parameter name is assumed to be the
same as the Bean property name

If the param is not set in the Request object, or if it has the value of ““,
thej sp: set Property element has no effect (a noop).

An action may not have both par amand val ue attributes.

val ue The value to assign to the given property.
This attribute can accept a request-time attribute expression as a value.

An action may not have both par amand val ue attributes.

<Jsp:getProperty>

An<j sp: get Propert y> action places the value of a Bean instance property, converted to
aStri ng, into theimplicit out object, from which you can display the value as output. The
Bean instance must be defined as indicated in the name attribute before this point in the page
(usually via auseBean action).

The conversion to String is done as in the printin() methods, i.e. thet oSt ri ng() method
of the object is used for Object instances, and the primitive types are converted directly.

If the object is not found, a request-time exception is raised.

The value of the name attribute in jsp:setProperty and jsp:getProperty will refer to an object
that obtained from the pageContext object through its findAttribute() method.

The object named by the name must have been “introduced” to the JSP processor using either
the jsp: useBean action or a custom action with an associated Variablelnfo entry for this
name.

Note: a consequence of the previous paragraph is that objects that are stored in, say, the
session by a front component are not automatically visible to jsp:setProperty and
jsp:getProperty actionsin that page unless a jsp:useBean action, or some other action, makes
them visible.

If the JSP processor can ascertain that there is an alternate way guaranteed to access the same
object, it can use that information. For example it may use a scripting variable, but it must
guarantee that no intervening code has invalidated the copy held by the scripting variable -
i.e. the truth is always the value held by the pageContext object

Chapter 4 Standard Actionsand Directives 64

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

4231

4.2.4

Examples

<j sp:getProperty nane="user” property="nanme” />

Syntax

<j sp: get Property nanme="nane” property="propertyNane” />

The attributes are:

name The name of the object instance from which the property is obtained.

property Names the property to get.

<Jsp:include>

A <jsp:include .../>element provides for the inclusion of static and dynamic
resources in the same context as the current page. See TABLE 4-1 for a summary of include
facilities.

The resource is specified using a relativeURL spec that is interpreted in the context of the
Web server (i.e. it is mapped).

An included page only has access to the JspW i t er object and it cannot set headers. This
precludes invoking methods like set Cooki e(). A request-time Exception will be raised if
this constraint is not satisfied. The constraint is equivalent to the one imposed on the

i ncl ude() method of the Request Di spat cher class.

Aj sp:include action may have j sp: par amsubelements that can provide values for
some parameters in the request to be used for the inclusion.

Request processing resumes in the calling JSP page, once the inclusion is completed.

If the page output is buffered then the buffer is flushed prior to the inclusion. See Section B.4
for an implementation note.

Examples

<jsp:include page="/templates/copyright.ntml” />

JavaServer Pages 1.2 Specification - PD1+ August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

4241

4.2.5

Syntax

<j sp:include page="url Spec” flush="true"/>

and

<j sp:include page="url Spec” flush="true">
{ <jsp:param.... /> }*
</jsp:include>

The first syntax just does a request-time inclusion. In the second case, the values in the
param subelements are used to augment the request for the purposes of the inclusion.

The valid attributes are:

page The URL is arelative urlSpec is as in Section 2.2.1.

Accepts arequest-time attribute value (which must evaluate to a String
that is arelative URL specification).

flush Optional boolean attribute. If the value is “true”, the buffer is flushed.
The default value is “false”.

<jsp:forward>

A <jsp:forward page="url Spec” /> element allows the runtime dispatch of the
current request to a static resource, a JSP pages or a Java Servlet class in the same context as
the current page. A jsp:forward effectively terminates the execution of the current page. The
relative urlSpec is asin Section 2.2.1.

The request object will be adjusted according to the value of the page attribute.

Aj sp: forward action may have j sp: par amsubelements that can provide values for
some parameters in the request to be used for the forwarding.

If the page output is buffered then the buffer is cleared prior to forwarding.

If the page output was unbuffered and anything has been written to it, an attempt to forward
the request will result inan | | | egal St at eExcepti on.

Examples

The following element might be used to forward to a static page based on some dynamic
condition.

Chapter 4 Standard Actions and Directives 66

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

4251

4.2.6

426.1

67

<% String whereTo = “/tenpl ates/”+soneVal ue; %
<jsp:forward page=' <% whereTo %' />

Syntax

<j sp:forward page="rel ati veURLspec” />

and

<j sp: forward page="url Spec” >
{ <jsp:param.... /> }*

</jsp: forward>

This tag allows the page author to cause the current request processing to be effected by the
specified attributes as follows:

page The URL is arelative urlSpec is as in Section 2.2.1.

Accepts arequest-time attribute value (which must evaluate to a String
that is arelative URL specification).

<jsp:param>

Thej sp: par amelement is used to provide key/value information. This element isused in
thej sp:include,jsp:forwardandjsp: pl ugi n elements.

When doing j sp: i ncl ude or j sp: f or war d, the included page or forwarded page will
see the origina reguest object, with the original parameters augmented with the new
parameters, with new values taking precedence over existing values when applicable. The
scope of the new parameters is the jsp:include or jsp:forward call; i.e. in the case of an

j sp:incl ude the new parameters (and values) will not apply after the include. Thisisthe
same behavior asin the Ser vl et Request i ncl ude and f or war d methods (see Section
8.1.1in the Servlet 2.2 specification).

For example, if the request has a parameter A=foo and a parameter A=bar is specified for
forward, the forwarded request shall have A=bar,foo. Note that the new param has
precedence.

Syntax

<j sp: param name="nanme" val ue="val ue" />

JavaServer Pages 1.2 Specification - PD1+ August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

4.2.7

This action has two mandatory attributes: name and value. Name indicates the name of the
parameter, value, which may be a request-time expression, indicates its val ue.

<jsp:plugin>

The plugin action enables a JSP page author to generate HTML that contains the appropriate
client browser dependent constructs (OBJECT or EMBED) that will result in the download
of the Java Plugin software (if required) and subsequent execution of the Applet or
JavaBeans component specified therein.

The <j sp: pl ugi n> tag is replaced by either an <obj ect > or <enbed> tag, as
appropriate for the requesting user agent, and emitted into the output stream of the response.
The attributes of the <j sp: pl ugi n> tag provide configuration data for the presentation of
the element, as indicated in the table below.

The <j sp: par anm> elements indicate the parameters to the Applet or JavaBeans
component.

The<j sp: f al | back> element indicates the content to be used by the client browser if the
plugin cannot be started (either because OBJECT or EMBED is not supported by the client
browser or due to some other problem). If the plugin can start but the Applet or JavaBeans
component cannot be found or started, a plugin specific message will be presented to the
user, most likely a popup window reporting a ClassNotFoundException.

The actual plugin code needs not be bundled with the JSP container and areference to SUN’s
plugin location can be used instead, although some vendors will choose to include the plugin
for the benefit of their customers.

Examples

<j sp: plugi n type=appl et code="Ml ecul e.cl ass” codebase="/htm"” >
<j sp: par ans>
<j sp: par am
name="nol ecul e”
val ue="nol ecul es/ benzene. nol "/ >
</j sp: parans>
<j sp: fall back>
<p> unable to start plugin </p>
</jsp:fall back>
</j sp: pl ugi n>

Chapter 4 Standard Actions and Directives 68

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

42.7.1

69

Syntax

<j sp: pl ugi ntype="bean| appl et "
code="obj ect Code"
codebase="obj ect Codebase"

e e e e e R Rt e Rt e e

al i gn="al i gnment" }
ar chi ve="ar chi veLi st" }
hei ght =" hei ght"
hspace="hspace"
jreversion="jreversion"
nane="conponent Nane" }
vspace="vspace" }
w dt h="wi dt h"

nspl ugi nurl ="url"
i epl ugi nurl ="url"

e e i

B e el

<j sp: par ans>

{ <j sp: param nane="paranmNane" val ue="par anval ue" /> }+
</jsp: paranms> }

{ <jsp:fallback> arbitrary_text </jsp:fallback> }

</j sp: pl ugi n>

type
code
codebase
align

ar chi ve
hei ght
hspace

jreversion

name
vspace

title

Identifies the type of the component; a Bean, or an Applet.
As defined by HTML spec
As defined by HTML spec
As defined by HTML spec
As defined by HTML spec
As defined by HTML spec
As defined by HTML spec

Identifies the spec version number of the JRE the component requires
in order to operate; the default is: “1.2"

As defined by HTML spec
As defined by HTML spec
As defined by the HTML spec

JavaServer Pages 1.2 Specification - PD1+ August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

w dt h As defined by HTML spec

nspl ugi nurl URL where JRE plugin can be downloaded for Netscape Navigator,
default is implementation defined.

i eplugi nurl URL where JRE plugin can be downloaded for IE, default is
implementation defined.

Chapter 4 Standard Actions and Directives 70

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

71 JavaServer Pages 1.2 Specification - PD1« August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

CHAPTER 5

JSP Pages as XML
Documents

This chapter defines a standard XML document for each JSP page.

All JSP pages have an equivalent XML document. This eguivalent XML document is the
view of the JSP page that is exposed to the translation phase (see below).

A JSP page can also be written directly as its equivalent XML document. Unlikein JSP 1.0
and JSP 1.1 containers, the XML document itself can be delivered to a JSP container for
processing.

It is not valid to intermix “standard syntax” and XML syntax inside the same source file.

A JSP page (in either syntax) can include via a directive a JSP page in any syntax. |.e.
within each unit one syntax is used but each unit can use either syntax.

5.1

Why an XML Representation

There are a number of reasons why it would be impractical to define JSP pages as XML
documents when the JSP page is to be authored manually:

¢« An XML document must have a single top element; a JSP page is conveniently organized
as a sequence of template text and elements.

¢ Inan XML document all tags are “significant”; to “pass through” atag, it needs to be
escaped using a mechanism like CDATA. In a JSP page, tags that are undefined by the
JSP specification are passed through automatically.

JSP Pages as XML Documents 72

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

« Some very common programming tokens, like “<* are significant to XML; the JSP
specification provides a mechanism (the <% syntax) to “pass through” these tokens.

On the other hand, the JSP specification is not gratuitously inconsistent with XML: al
features have been made XML-compliant as much as possible.

The hand-authoring friendliness of JSP pages is very important for the initial adoption of the
JSP technology; thisis also likely to remain important in later time-frames, but tool
manipulation of JSP pages will take a stronger role then. In that context, there is an ever
growing collection of tools and APIs that support manipulation of XML documents.

The JSP 1.2 specification addresses both requirements by providing a friendly syntax and
also defining a standard XML document for a JSP page.

5.2

5.2.1

5.2.2

73

Document Type

The jsp:root Element

An XML document representing a JSP page hasj sp: r oot asitsroot element type. The
root is also the place where taglibs will insert their namespace attributes. The top element has
an xm ns attribute that enables the use of the standard elements defined in the JSP 1.1
specification.
<j sp: r oot

xm ns:jsp="http://java. sun.com products/jsp/dtd/jsp_1_2.dtd">

renmai nder of transforned JSP page

</jsp:root>

Public ID

The proposed Document Type Declaration is:

<! DOCTYPE r oot
PUBLI C*'-//Sun M crosystenms Inc.//DTD JavaServer Pages Version 1.1//EN
“http://java. sun. com products/jsp/dtd/jspcore_1_2.dtd”>

JavaServer Pages 1.2 Specification - PD1+ August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

5.3

5.3.1

5.3.2

Directives

A directive in a JSP page is of the form
<%@ directive { attr="value’ }* %

Most directives get translated into an element of the form:

<j sp:directive. directive{ attr="valug" }* />

The page directive

In the XML document corresponding to JSP pages, the page directive is represented using
the syntax:

<jsp:directive. page page_directive_attr_list />

See Section 2.10.1 for description of page_directive_attr_li st.

Example

The directive:
<%@ page info="ny | atest JSP Exanple” %

corresponds to the XML element:
<jsp:directive. page info="ny | atest JSP Exanple” />

Theil ncl ude Directive

In the XML document corresponding to JSP pages, the include directive is represented using
the syntax:

<jsp:directive.include file="rel ativeURLspec” flush="true|false" />

Examples

Below are two examples, one in JSP syntax, the other using XML syntax:

Chapter 5 JSP Pagesas XML Documents 74

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

<%@include file="copyright.hntl” %
<jsp:directive.include file="htm docs/logo. htm” />

5.3.3 Thet agli b Directive

In the XML document corresponding to JSP pages, the taglib directive is represented as an
xmins: attribute within the root element of the JSP page document.

5.4 Scripting Elements

The JSP 1.2 specification has three scripting language elements—declarations, scriptlets, and
expressions. The scripting elements have a “<%”-based syntax as follows:

<08 this is a declaration %
<%this is a scriptlet %
<%= this is an expression %

5.4.1 Declarations

In the XML document corresponding to JSP pages, declarations are represented using the
syntax:

<j sp: decl aration> declaration goes here </jsp:declaration>

For example, the second example from Section 2.11.1:
<0 public String f(int i) { if (i<3) return(“...”); ... } %

is translated using a CDATA statement to avoid having to quote the “<* inside the
jsp:declaration.

<j sp:declaration> <![CDATA[public String f(int i) { if (i<3)
return(“...”); } 11> </jsp:declaration>

DTD Fragment

<! ELEMENT j sp:decl arati on (#PCDATA) >

75 JavaServer Pages 1.2 Specification - PD1« August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

5.4.2

5.4.3

Scriptlets

In the XML document corresponding to JSP pages, directives are represented using the
syntax:

<jsp:scriptlet> code fragnment goes here </jsp:scriptlet>

DTD Fragment

<! ELEMENT j sp:scriptlet (#PCDATA) >

Expressions

In the XML document corresponding to JSP pages, directives are represented using the
syntax:

<j sp: expressi on> expressi on goes here </jsp:expression>

DTD Fragment

<! ELEMENT j sp: expressi on (#PCDATA) >

2.9

Actions

The syntax for action elements is based on XML; the only transformations needed are due to
quoting conventions and the syntax of reguest-time attribute expressions.

5.6

Transforming a JSP Page into an
XML Document

The standard XML document for a JSP page is defined by transformation of the JSP page.

Chapter 5 JSP Pagesas XML Documents 76

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

5.6.1

5.6.2

I

¢ Addac<j sp: root > element as the root. Enable a*“jsp” namespace prefix for the standard
tags within this root.

¢ Convert al the <% elements into valid XML elements as described in Section 5.4.1 and
following sections.

¢ Convert the quotation mechanisms appropriately.

¢ Convert thet agl i b directive into namespace attributes of the <j sp: r oot > element.

¢ Create CDATA elements for all segments of the JSP page that do not correspond to JSP
elements.

A quick summary of the transformation is shown in TABLE 5-1:

TABLE 5-1 XML standard tags for directives and scripting elements

JSP page element XML equivalent

<%@ page ... %> <jsp:directive.page ... />

<%@ taglib ... %> jsp:root element is annotated with namespace information.
<%@ include ... %> <jsp:directive.include .../>

<%! ... %> <jsp:declaration> </jsp:declaration>

<% ... %> <jsp:scriptlet> </jsp:scriptlet>

<%= %> <jsp:expression> </jsp:expression>

Quoting Conventions

The quoting rules for the JSP 1.2 specification are designed to be friendly for hand authoring,
they are not valid XML conventions.

Quoting conventions are converted in the generation of the XML document from the JSP
page. Thisis not yet described in this version of the specification.

Request-Time Attribute Expressions

Request-time attribute expressions are of the form “<%-= expression %>". Although this
syntax is consistent with the syntax used elsewhere in a JSP page, it is not alegal XML
syntax. The XML mapping for these expressions is into values of the form “%-= expression’
%", where the JSP specification quoting convention has been converted to the XML quoting
convention.

JavaServer Pages 1.2 Specification - PD1+ August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

Not e — The JSP 1.1 syntax does not allow the use of custom actions to construct attribute

values. Thisisissue # 4.

S.7

DTD for the XML document

The following isa DTD for the current XML mapping:

FIGURE 5-1 DTD for the XML document

<IENTITY % jsp. body “
(#PCDATA

| jsp:directive. page
|jsp:directive.include
| jsp:scriptlet

| j sp:decl aration

| j sp: expression

| j sp:include

| j sp: forward

| j sp: useBean

| j sp: set Property

| j sp: get Property

|j sp:plugin

| j sp: fallback

| j sp: par ans

|j sp:param*

>

<! ELEMENT j sp: useBean % sp. body; >

<! ATTLI ST j sp: useBean

id ID #REQUI RED

cl ass CDATA#REQUI RED

scope (page| session|request|application)

<! ELEMENT j sp: set Property EMPTY>
<! ATTLI ST j sp: set Property

name | DREF#REQUI RED

proper t yCDATA#REQUI RED

val ue CDATA#| MPLI ED

param CDATA#| MPLI ED>

Chapter 5

“ page” >

JSP Pages as XML Documents

78

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

<! ELEMENT j sp: get Property EMPTY>
<! ATTLI ST j sp: get Property

name | REF #REQUI RED

pr oper t yCDATA#REQUI RED>

<! ELEMENT] sp: i ncl udeEMPTY>
<! ATTLI STj sp: i ncl ude

flush (true|false)"false"
page CDATA#REQUI RED>

<! ELEMENT j sp: forward EMPTY>
<! ATTLI STj sp: forwar d
page CDATA#REQUI RED>

<! ELEMENT j sp:scriptlet (#PCDATA)>
<! ELEMENT j sp: decl arati on (#PCDATA) >
<! ELEMENT j sp: expressi on (#PCDATA) >

<! ELEMENT j sp:directive. page EMPTY>
<! ATTLI ST j sp:directive. page

| anguage CDATA"j ava”

ext endsCDATA#| MPLI ED

cont ent TypeCDATA text/htm ; |SO 8859-1"
i mport CDATA#I| MPLI ED

session(true| fal se)“true”

buf f er CDATA" 8kb”

aut oFl ush(true| fal se)“true”

i sThreadSaf e(true|fal se)“true”

info CDATA#I| MPLI ED

er r or PageCDATA#| MPLI ED

i sErrorPage(true|fal se)“fal se”>

<! ELEMENT j sp:directive.include EMPTY>
<I ATTLI ST j sp:directive.incl ude
file CDATA #REQUI RED>

<! ELEMENT j sp:root % sp. body; >

<! ATTLI ST j sp: r oot

xm ns: j SpCDATA#FI XED “http://java. sun. com product s/ jsp/ dtd/
jsp_1_0.dtd">

79 JavaServer Pages 1.2 Specification - PD1« August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

CHAPTER 6

The JSP Container

This chapter provides details on the contracts between a JSP container and a JSP page.

This chapter is independent on the Scripting Language used in the JSP page. Chapter 7
provides the details specific to when the | anguage directive has “java’ asits value.

This chapter aso presents the precompilation protocol (see Section 6.4).

JSP page implementation classes should use the JspFactory and PageContext classes so they
will take advantage of platform-specific implementations.

6.1

The JSP Page M odel

A JSP page is represented at execution time by a JSP page implementation object and is
executed by a JSP container. The JSP page implementation object implements a Servlet. The
JSP container delivers requests from a client to a JSP page implementation object and
responses from the JSP page implementation object to the client.

The JSP page describes how to create a response object from a request object for a given
protocol, possibly creating and/or using in the process some other objects. A JSP page may
also indicate how some events (in JSP 1.1 only init and destroy events) are to be handled.

The Protocol Seen by the Web Server

It is the role of the JSP container to first locate the appropriate instance of the JSP page
implementation class and then to deliver requests to it according to the Servlet protocol. As
indicated elsewhere, a JSP container may need to create such a class dynamically from the
JSP page source before delivering a request and response objects to it.

The JSP Container 80

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

Thus, Servlet defines the contract between the JSP container and the JSP page
implementation class. When the HTTP protocol is used, the contract is described by the
HttpServlet class. Most pages use the HTTP protocol, but other protocols are allowed by this
specification.

The JSP container automatically makes available to the JSP page implementation object a
number of server-side objects. See Section 2.8.3.

The Protocol Seen by the JSP Page Author

The JSP specification also defines the contract between the JSP container and the JSP page
author. This is, what assumptions can an author make for the actions described in the JSP

page.

The main portion of this contract is the _jspService() method that is generated automatically
by the JSP container from the JSP page. The details of this contract is provided in Chapter 7.

The contract also describes how a JSP author can indicate that some actions must be taken
when the init() and destroy() methods of the page implementation occur. In JSP 1.1 thisis
done by defining methods with name jspinit() and jspDestroy() in a declaration scripting
element in the JSP page. Before the first time a request is delivered to a JSP page a jsplnit()
method, if present, will be called to prepare the page. Similarly, a JSP container can reclaim
the resources used by a JSP page at any time that a request is not being serviced by the JSP
page by invoking first its jspDestroy() method, if present.

A JSP page author may not (re)define any of the Servlet methods through a declaration
scripting element.

The JSP specification reserves the semantics of methods and variables starting with jsp, _jsp,
jspx and _jspx, in any combination of upper and lower case.

The HttpJspPage Interface
The enforcement of the contract between the JSP container and the JSP page author is aided

by requiring that the Servlet class corresponding to the JSP page must implement the
Ht t pJspPage interface (or the JspPage interface if the protocol is not HTTP).

81 JavaServer Pages 1.2 Specification - PD1« August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

FI GURE 6-1 Contracts between a JSP Page and a JSP Container.

JSP Container JSP Page

initevent ——» (jsplnit <%!
public void jsplnit()...

— ublic void jspDestroy()...
request > (i pService (I;)> jp y()
response @ =-—F—
<html>
Thisisthe response..
</html>

destroy event ——p» (jspDestroy

REQUEST PROCESSING ~ TRANSLATION PHASE
PHASE

The involved contracts are shown in FIGURE 6-1. We now revisit this whole process in more
detail.

6.2 JSP Page Implementation Class

The JSP container creates a JSP page implementation class for each JSP page.
The name of the JSP page implementation class is implementation dependent.

The JSP Page implementation object belongs to an, implementation-dependent, named
package. The package used is implementation-dependent, and may even vary between one
JSP and another, so minimal assumptions should be made. One implication of thisis that
classes in the unnamed package should not be used without an explicit “import” of the class

The creation of the implementation class for a JSP page may be done solely by the JSP
container, or it may involve a superclass provided by the JSP page author through the use of
the extends attribute in the jsp directive.

Chapter 6 TheJSP Container 82

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

6.2.1

The extends mechanism is available for sophisticated users and it should be used with
extreme care as it restricts what some of the decisions that a JSP container can take, e.g. to
improve performance.

The JSP page implementation class will implement Ser vl et and the Ser vl et protocol
will be used to deliver requests to the class.

A JSP page implementation class may depend on some support classes; if it does, and the
JSP page implementation class is packaged into a WAR, those classes will have to be
included in the packaged WAR so it will be portable across all JSP containers.

A JSP page author writes a JSP page expecting that the client and the server will
communicate using a certain protocol. The JSP container must then guarantee that requests
from and responses to the page use that protocol. Most JSP pages use HTTP, and their
implementation classes must implement the Ht t pJspPage interface, which extends
JspPage. If the protocol is not HTTP, then the class will implement an interface that
extends JspPage.

APl Contracts

The contract between the JSP container and a Java class implementing a JSP page
corresponds to the Ser vl et interface; refer to the Servlet specification for details.

The contract between the JSP container and the JSP page author is described in TABLE 6-1.
The responsibility for adhering to this contract rests only on the JSP container
implementation if the JSP page does not use the extends attribute of the jsp directive;
otherwise, the JSP page author guarantees that the superclass given in the extends attribute
supports this contract.

TABLE 6-1 How the JSP Container Processes JSP Pages

Comments

Methods the JSP Container Invokes

JavaServer Pages 1.2 Specification - PD1+ August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

Method is optionally defined in JSP page. void jsplnit()

Method is invoked when the JSP page is

initialized.

When method is called all the methods in
servlet, including getServletConfig() are

available

Method is optionally defined in JSP page. voi d jspDestroy()

Method is invoked before destroying the

page.

Method may not be defined in JSP page. voi d _j spServi ce(<Servl et Request Subt ype>,
The JSP container automatically <Ser vl et ResponseSubt ype>) t hrows

generates this method, based on the

contents of the JSP page. | OException, ServletException

Method invoked at each client request.

6.2.2

Request and Response Parameters

As shown in TABLE 6-1, the methods in the contract between the JSP container and the JSP
page require request and response parameters.

The formal type of the request parameter (which this specification calls

<Ser vl et Request Subt ype>) is an interface that extends

j avax. servl et. Servl et Request . The interface must define a protocol -dependent
request contract between the JSP container and the class that implements the JSP page.

Likewise, the formal type of the response parameter (which this specification calls

<Ser vl et ResponseSubt ype>) is an interface that extends

javax. servl et. Servl et Response. The interface must define a protocol-dependent
response contract between the JSP container and the class that implements the JSP page.

The request and response interfaces together describe a protocol-dependent contract between
the JSP container and the class that implements the JSP page. The contract for HTTP is
defined by thej avax. servl et. http. Htt pSer vl et Request and

javax. servlet. http. H t pServl et Response interfaces.

The JspPage interface refers to these methods, but cannot describe syntactically the
methodsinvolving the Ser vl et (Request , Response) subtypes. However, interfaces for
specific protocols that extend JspPage can, just as Ht t pJspPage describes them for the
HTTP protocol.

JSP containers that conform to this specification (in both JSP page implementation classes
and JSP container runtime) must implement the r equest and r esponse interfaces for the
HTTP protocol as described in this section.

Chapter 6 TheJSP Container 84

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

6.2.3

Omitting the ext ends Attribute

If the ext ends attribute of the | anguage directive (see Section 2.10.1, “The page
Directive) in a JSP page is not used, the JSP container can generate any class that satisfies
the contract described in TABLE 6-1 when it transforms the JSP page.

In the following code examples, CODE EXAMPLE 6-1 illustrates a generic HT TP superclass
named Exanpl eHt t pSuper . CODE EXAMPLE 6-2 shows a subclass named _j sp1344 that
extends Exanpl eHt t pSuper and is the class generated from the JSP page. By using
separate _j spl1344 and Exanpl eHt t pSuper classes, the JSP page translator needs not
discover if the JSP page includes a declaration with j spl nit () orj spDestroy(); this
simplifies very significantly the implementation.

JavaServer Pages 1.2 Specification - PD1+ August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

CODE EXAMPLE 6-1 A Generic HTTP Superclass

imports javax.servlet.*;
imports javax.servlet.http.*;
imports javax.servlet.jsp.*;

/**

* An exanpl e of a superclass for an HTTP JSP cl ass
*/

abstract class Exanpl eHtt pSuper inplenents HttpJspPage {
private ServletConfig config;

final public void init(ServletConfig config) throws ServletException {
this.config = config;

jspinit();

}

final public ServletConfig getServletConfig() {
return config;

}

/1 This one is not final so it can be overridden by a nore precise nethod
public String getServletinfo() {
return “A Superclass for an HITP JSP"; // maybe better?

}

final public void destroy() {
j spDestroy();
}

/**

* The entry point into service.
*/

final public void service(ServletRequest req, ServletResponse res)
throws Servl et Exception, | OException {

/] casting exceptions will be raised if an internal error.
Htt pSer vl et Request request = (HtpServl et Request) req;
Htt pSer vl et Response response = (Htt pServl et Response) res;

_j spService(request, resonse);

/**

* abstract method to be provided by the JSP processor in the subclass
* Must be defined in subclass.
*/

abstract public void _jspService(HttpServl et Request request,
Htt pSer vl et Response response) throws Servl et Exception, | OException;

Chapter 6 The JSP Container

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

CODE EXAMPLE 6-2 The Java Class Generated From a JSP Page
imports javax.servlet.*;

imports javax.servlet.http.*;
imports javax.servlet.jsp.*;

/**

* An exanple of a class generated for a JSP.
*

* The nane of the class is unpredictable.

* W are assuming that this is an HTTP JSP page (like alnost all are)
*/

class _jspl344 extends Exanpl eHtt pSuper {

/1 Next code inserted directly via declarations.

/1 Any of the follow ng pieces may or not be present

/1 if they are not defined here the superclass nethods

/1 will be used.

public void jsplnit() {....}
public void jspDestroy() {....}

/1 The next nmethod is generated automatically by the
/1 JSP processor.
/1 body of JSP page
public void _jspService(HttpServl et Request request,
Ht t pSer vl et Response response)
throws Servl et Exception, | CException {
/1 initialization of the inplicit variables
Ht t pSessi on session = request. get Session();

Servl et Cont ext context =
get Servl et Confi g(). get Servl et Cont ext () ;

/1 for this exanple, we assune a buffered directive

JSPBuf feredWiter out = new
JSPBuf feredWiter(response.getWiter());

/1 next is code fromscriptlets, expressions, and static text.

87 JavaServer Pages 1.2 Specification - PD1« August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

6.2.4

Using the ext ends Attribute

If the JSP page author uses ext ends, the generated class is identical to the one shown in
CODE EXAMPLE 6-2, except that the class name is the one specified in the ext ends attribute.

The contract on the JSP page implementation class does not change. The JSP container
should check (usually through reflection) that the provided superclass:

« Implements HttpJspPage if the protocol is HTTP, or JspPage otherwise.

« All of the methods in the Ser vl et interface are declared final.

Additionally, it is the responsibility of the JSP page author that the provided superclass
satisfies:

e Theservice() method of the Servlet API invokesthe _j spSer vi ce() method.

e Theinit(Servl et Config) method stores the configuration, makes it available as
get Ser vl et Confi g, theninvokesj spl nit.

¢« Thedest r oy method invokes j spDest r oy.

A JSP container may give afatal translation error if it detects that the provided superclass
does not satisfy these requirements, but most JSP containers will not check them.

6.3

Buffering

The JSP container buffers data (if the jsp directive specifiesit using the buffer attribute) as it
is sent from the server to the client. Headers are not sent to the client until the first f | ush
method is invoked. Therefore, none of the operations that rely on headers, such as the

set Cont ent Type, redi rect, or error methods are valid until the f | ush method is
executed and the headers are sent.

Thej avax. servl et.jsp. JspWiter class buffersand sends output. The
JspWi ter classisused inthe _j spPageServi ce method asin the following example:

i nport javax.servlet.jsp.JspWiter;
static JspFactory _jspFactory = JspFactory. getDefaul t Factory();
_j spServi ce(<SRequest > request, <SResponse> response) {

/1 initialization of inplicit variables...

PageCont ext pageContext = _jspFactory. creat ePageCont ext (

this,
request,

Chapter 6 TheJSP Container 88

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

response,
fal se,
PageCont ext . DEFAULT_BUFFER,
fal se
)
JSPWiter out = pageContext.getQut();

/1

/1 the body goes here using "out"
1.

out. flush();

}

You can find the complete listing of j avax. servl et.jsp. JspWi t er in Chapter 8.

With buffering turned on, you can still use a redirect method in a scriptlet in a.j sp file, by
invoking r esponse. redi rect (someURL) directly.

6.4

6.4.1

6.4.2

89

Precompilation

A JSP page that is using the HTTP protocol will receive HTTP requests. JSP 1.2 compliant
containers must support a simple precompilation protocol, as well as some basic reserved
parameter names. Note that the precompilation protocol should not be confused with the
notion of compiling a JSP page into a Servlet class (Appendix A).

Request Parameter Names

All request parameter names that start with the prefix "jsp" are reserved by the JSP
specification and should not be used by any user or implementation except as indicated by
the specification.

All JSPs pages should ignore (not depend on) any parameter that starts with "jsp_"

Precompilation Protocol

A request to a JSP page that has a request parameter with name "jsp_precompile” is a
precompilation request. The "jsp_precompil€" parameter may have no value, or may have
values "true" or "false". In all cases, the request should not be delivered to the JSP page.

JavaServer Pages 1.2 Specification - PD1+ August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

The intention of the precompilation request is that of a hint to the JSP container to
precompile the JSP page into its JSP page implementation class. The hint is conveyed by
given the parameter the value "true" or no value, but note that the request can be just ignored
in al cases.

For example:

1. 7?sp_precompile

2. ?sp_precompile="true"

3. ?jsp_precompile="false"

4. ?oobar="foobaz"&jsp_precompile="true"
5. ?foobar="foobaz"&jsp_precompile="false"

1, 2 and 4 are legal; the request will not be delivered to the page. 3 and 5 are legal; the
request will be delivered to the page with no changes.

6. ?jsp_precompile="foo"

Thisisillegal and will generate an HTTP error; 500 (Server error).

Chapter 6 TheJSP Container 90

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

91 JavaServer Pages 1.2 Specification - PD1« August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

CHAPTER 7

Scripting

This chapter describes the details of the Scripting Elements when the language directive
value is “java’. The scripting language is based on the Java programming language (as
specified by “The Java Language Specification”), but note that there is no valid JSP page, or
a subset of a page, that is a valid Java program.

The details of the relationship between the scripting declarations, scriptlets, and scripting
expressions and the Java programming language is explained in detail in the following
sections. The description is in terms of the structure of the JSP page implementation class;
recall that a JSP container need not necessarily generate the JSP page implementation class
but it must behave as if one existed.

7.1

Overdl Structure

Some detail s of what makes a JSP page legal are very specific to the scripting language used
in the page. This is especially complex since scriptlets are just language fragments, not
complete language statements.

Valid JSP Page

A JSP page is valid for a Java Platform if and only if the JSP page implementation class
defined by TABLE 7-1 (after applying al include directives), together with any other classes
defined by the JSP container, is a valid program for the given Java Platform, and if it passes
the validation methods for all the tag libraries associated with the JSP page.

Scripting 92

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

Sun Microsystems reserves all names of the form {_}j sp_* and {_}j spx_*, inany

combination of upper and lower case, for the JSP specification. Names of this form that are

not defined in this specification are reserved by Sun for future expansion.

I mplementation Flexibility

The transformations described in this Chapter need not be performed literally; an
implementation may want to implement things differently to provide better performance,
lower memory footprint, or other implementation attributes.

TABLE 7-1

Structure of the JavaProgramming Language Class

Optional imports clause as
indicated via jsp directive

SuperClass is either
selected by the JSP
container or by the JSP
author via jsp directive.
Name of class (_jspXXX)

is implementation
dependent.

Start of body of JSP page
implementation class

(1) Declaration Section

signature for generated
method

(2) Implicit Objects Section

(3) Main Section

close of _jspService
method

close of _jspXXX

i mport nanel

class _jspXXX extends Superd ass

/] declarations ...

public void _jspService(<ServletRequest Subtype> request,
<Ser vl et ResponseSubt ype> r esponse)
throws Servl et Exception, |OException {

/'l code that defines and initializes request, response, page,
pageCont ext etc.

/'l code that defines request/response mapping

93 JavaServer Pages 1.2 Specification - PD1« August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

7.2 Declarations Section

The declarations section correspond to the declaration elements.

The contents of this section is determined by concatenating all the declarationsin the page in
the order in which they appear.

7.3 Initialization Section

This section defines and initializes the implicit objects available to the JSP page. See
Section 2.8.3, “Implicit Objects.

7.4 Main Section

This section provides the main mapping between a request and a response object.

The contents of code segment 2 is determined from scriptlets, expressions, and the text body
of the JSP page. These elements are processed sequentially; a translation for each one is
determined as indicated below, and its translation isinserted into this section. The translation
depends on the element type:

1. Template data is transformed into code that will place the template data into the stream
currently named by the implicit variable out . All white space is preserved.

Ignoring quotation issues and performance issues, this corresponds to a statement of the
form:

out.print(template);
2. A scriptlet is transformed into its Java statement fragment.

3. An expression is transformed into a Java statement to insert the value of the expression,
converted to j ava. | ang. Stri ng if needed, into the stream currently named by the
implicit variable out . No additional newlines or space is included.

Ignoring quotation and performance issues, this corresponds to a statement of the form:

out.print(expression);

Chapter 7 Scripting 94

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

95

4. An action defining one or more objects is transformed into one or more variable
declarations for these objects, together with code that initializes these variables. The
visibility of these variables is affected by other constructs, like the scriptlets.

The semantics of the action type determines the name of the variables (usually that of the
i d attribute, if present) and their type. The only standard action in the JSP specification
that defines objects is the jsp:usebean action; the name of the variable introduced is that
of thei d attribute, its type is that of the cl ass attribute.

Note that the value of the scope attribute does not affect the visibility of the variables
within the generated program, it only affects where (and thus for how long) there will be
additional references to the object denoted by the variable.

JavaServer Pages 1.2 Specification - PD1+ August 15, 2000

PUBLI C DRAFT 1 - SUBJECT TO CHANGE

CHAPTER 8

Core API

The javax.servlet.jsp package contains a number of classes and interfaces that describe and
define the contracts between a JSP page implementation class and the runtime environment
provided for an instance of such a class by a conforming JSP container.

8.1

8.11

JSP Page | mplementation Object
Contract

This section describes the basic contract between a JSP Page implementation object and its
container. The main contract is defined by the classes JspPage and Ht t pJspPage. The
JspFact ory class describes the mechanism to portably instantiate al needed runtime
objects, and JspEngi nel nf o provides basic information on the current JSP container.

None of the classes described here are intended to be used by JSP page authors; an example
of how these classes may be used isincluded elsewhere in this chapter.

JspPage
Syntax

public interface JspPage extends javax.servlet. Servlet

All Known Subinterfaces. HttpJspPage

Chapter 8 Core API 96

PUBLI C DRAFT 1 - SUBJECT TO CHANGE

8111

All Superinterfaces: javax.servlet.Servlet

Description

The JspPage interface describes the generic interaction that a JSP Page I mplementation
class must satisfy; pages that use the HTTP protocol are described by the HttpJspPage
interface.

JspPage objects are obtained from the JspFactory object.
Two plus One M ethods

Theinterface defines a protocol with 3 methods; only two of them: jsplnit() and jspDestroy()
are part of this interface as the signature of the third method: _jspService() depends on the
specific protocol used and cannot be expressed in a generic way in Java.

A class implementing this interface is responsible for invoking the above methods at the
apropriate time based on the corresponding Servlet-based method invocations.

Thejsplnit() and jspDestroy() methods can be defined by a JSP author, but the _jspService()
method is defined authomatically by the JSP processor based on the contents of the JSP
page.

_jspService()

The _jspService()method corresponds to the body of the JSP page. This method is defined
automatically by the JSP container and should never be defined by the JSP page author.

If asuperclassis specified using the extends attribute, that superclass may choose to perform
some actions in its service() method before or after calling the _jspService() method. See
using the extends attribute in the JSP_Engine chapter of the JSP specification.

The specific signature depends on the protocol supported by the JSP page.
public void _jspService(Servl et Request Subtype request,
Ser vl et ResponseSubt ype response)
t hrows Servl et Exception, | OException;

M ethods

public void jspDestroy()

The jspDestroy() method is invoked when the JSP page is about to be destroyed. A JSP
page can override this method by including a definition for it in a declaration element. A
JSP page should redefine the destroy() method from Servlet

public void jsplnit()

97 JavaServet Pages 1.2 Specification - PD1 ¢ August 15, 2000

PUBLI C DRAFT 1 - SUBJECT TO CHANGE

8.1.2

8121

The jsplnit() method is invoked when the JSP page is initialized. It is the responsibility of
the JSP implementation (and of the class mentioned by the extends attribute, if present)
that at this point invocations to the getServietConfig() method will return the desired
value. A JSP page can override this method by including a definition for it in a declaration
element. A JSP page should redefine the init() method from Servlet

HttpJdspPage

Syntax

public interface HttpJspPage extends JspPage

All Superinterfaces. JspPage, javax.serviet.Servlet

Description

The HttpJspPage interface describes the interaction that a JSP Page |mplementation Class
must satisfy when using the HTTP protocol.

HttpJspPage objects are obtained from the JspFactory class.

The behaviour is identical to that of the JspPage, except for the signature of the _jspService
method, which is now expressable in the Java type system and included explicitly in the inter-
face.

See Also: JspPage

M ethods

public void _jspService(javax.servlet.http. HtpServletRequest request,

javax.servlet. http. Ht pServl et Response response)

The _jspService()method corresponds to the body of the JSP page. This method is defined
automatically by the JSP container and should never be defined by the JSP page author.

If asuperclass is specified using the extends attribute, that superclass may choose to per-
form some actionsin its service() method before or after calling the _jspService() method.
See using the extends attribute in the JSP_Engine chapter of the JSP specification.

Throws:
| CExcepti on, Ser vl et Excepti on

Chapter 8 Core API 98

PUBLI C DRAFT 1 - SUBJECT TO CHANGE

8.1.3

8.131
public

8.1.3.2
public
public
public

JspFactory

Syntax

public abstract class JspFactory

Description

The JspFactory is an abstract class that defines a number of factory methods available
to a JSP page at runtime for the purposes of creating instances of various interfaces and
classes used to support the JSP implementation.

A conformant JSP Engine implementation will, during it's initialization instantiate an imple-
mentation dependent subclass of this class, and make it globally available for use by JSP
implementation classes by registering the instance created with this class via the static
set Def aul t Fact ory() method.

The PageContext and the JspEnginelnfo classes are the only implementation-dependent
classesthat can be created from the factory.

JspFactory objects should not be used by JSP page authors.

Constructors
JspFactory()

M ethods

static synchroni zed JspFactory get Defaul t Factory()
Returns: the default factory for thisimplementation

abstract JspEngi nel nfo get Engi nel nfo()
called to get implementation-specific information on the current JSP engine
Returns: aJspEnginelnfo object describing the current JSP engine

abstract PageCont ext get PageContext(javax.servlet. Servl et
servl et, javax.servlet. ServletRequest request,
j avax. servl et. Servl et Response response,
java.lang. String errorPageURL, bool ean needsSessi on,
int buffer, bool ean aut of | ush)

99 JavaServet Pages 1.2 Specification - PD1 ¢ August 15, 2000

PUBLI C DRAFT 1 - SUBJECT TO CHANGE

obtains an instance of an implementation dependent javax.servlet.jsp.PageContext
abstract class for the calling Servlet and currently pending reguest and response.

This method is typically called early in the processing of the _jspService() mehtod of a
JSP implementation class in order to obtain a PageContext object for the request being
processed.

Invoking this method shall result in the PageContext.initialize() method being invoked.
The PageContext returned is properly initialized.

All PageContext objects obtained via this method shall be released by invoking rel ease-
PageContext().

Parameters:
servl et - therequesting serviet

confi g - the ServletConfig for the requesting Servlet

r equest - the current request pending on the servlet

r esponse - the current response pending on the servlet

er r or PageURL - the URL of the error page for the requesting JSP, or null
needs Sessi on - true if the JSP participates in a session

buf f er - sizeof buffer in bytes, PageContext. NO_BUFFER if no buffer,
PageContext. DEFAULT_BUFFER if implementation default.

aut of | ush - should the buffer autoflush to the output stream on buffer overflow, or
throw an | OException?

Returns: the page context
See Also: PageContext
public abstract void rel easePageCont ext (PageCont ext pc)

caled to release a previousy alocated PageContext object. results in Page-
Context.release() being invoked. This method should be invoked prior to returning from
the _jspService() method of a JSP implementation class.

Parameters:
pc - A PageContext previously obtained by getPageContext()

public static synchroni zed voi d setDefaul t Factory(JspFactory deflt)

set the default factory for thisimplementation. It isillegal for any principal other than the
JSP Engine runtime to call this method.

Parameters:
def aul t - The default factory implementation

Chapter 8 Core API 100

PUBLI C DRAFT 1 - SUBJECT TO CHANGE

8.14 JspEnginelnfo

Syntax

public abstract class JspEngi nelnfo

Description

The JspEnginelnfo is an abstract class that provides information on the current JSP
engine.

8141 Constructors
publ i c JspEngi nel nfo()

8.1.4.2 Methods
public abstract java.lang. String getSpecificationVersion()
Return the version number of the JSP specification that is supported by this JSP engine.

Specification version numbers that consists of positive decimal integers separated by
periods “."”, for example, “2.0” or “1.2.3.4.5.6.7". This alows an extensible number to
be used to represent major, minor, micro, etc versions. The version number must begin
with anumber.

Returns: the specification version, null isreturned if it is not known

8.2 Implicit Objects

The PageCont ext object and the JspW i ter are available by default as implicit
objects.

101 JavaServet Pages 1.2 Specification - PD1 ¢ August 15, 2000

PUBLI C DRAFT 1 - SUBJECT TO CHANGE

8.2.1

PageContext

Syntax

public abstract class PageCont ext

Description

A PageContext instance provides access to all the namespaces associated with a JSP page,
provides access to severa page attributes, as well as a layer above the implementation
details.

The PageContext classisan abstract class, designed to be extended to provide imple-
mentation dependent implementations thereof, by conformant JSP engine runtime environ-
ments. A PageContext instance is obtained by a JSP implementation class by calling the
JspFactory.getPageContext() method, and is released by caling JspFactory.releasePage-
Context().

An example of how PageContext, JspFactory, and other classes can be used within a JSP Page
Implementation object is given elsewhere.

The PageContext provides a number of facilities to the page/component author and page
implementor, including: a single APl to manage the various scoped namespaces a number of
convenience API’s to access various public objects a mechanism to obtain the JspWriter for
output a mechanism to manage session usage by the page a mechanism to expose page direc-
tive attributes to the scripting environment mechanisms to forward or include the current
reguest to other active components in the application a mechanism to handle errorpage excep-
tion processing

M ethods Intended for Container Generated Code

Some methods are intended to be used by the code generated by the container, not by code
written by JSP page authors, or JSP tag library authors.

The methods supporting lifecyclearei niti al i ze() andrel ease()

The following methods enable the management of nested JspWriter streams to implement
Tag Extensions: pushBody() and popBody/()

M ethods I ntended for JSP authors

Some methods provide uniform access to the diverse scopes objects. The implementation
must use the underlying Servlet machinery corresponding to that scope, so information can be
passed back and forth between Servlets and JSP pages. The methods are: set At tri but e(),
getAttribute(),findAttribute(), removeAttribute(), getAttributes-
Scope() andget Attri but eNanesl nScope() .

Chapter 8 Core API 102

PUBLI C DRAFT 1 - SUBJECT TO CHANGE

8.2.11
publ i

publ i

publ i

publ i

publ i

publ i

publ i

publ i

publ i

publ i

The following methods provide convenient access to implicit objects: get Qut (), get -
Exception(), get Page() get Request (), get Response(), get Session(),
get Ser vl et Confi g() andget Servl et Cont ext ().

The following methods provide support for forwarding, inclusion and error handling:
forward(),include(),andhandl ePageException().

Fields
static final java.lang.String APPLI CATI ON
name used to store ServletContext in PageContext name table
static final int APPLI CATI ON_SCOPE

application scope: named reference remains available in the ServletContext until it is
reclaimed.

static final java.lang.String CONFI G
name used to store ServletConfig in PageContext name table
static final java.lang.String EXCEPTI ON

name used to store uncaught exception in ServletRequest attribute list and PageContext
name table

static final java.lang.String OUT

name used to store current JspWriter in PageContext name table
static final java.lang.String PACE

name used to store the Servlet in this PageContext’s nametables
static final int PAGE SCOPE

page scope: (this is the default) the named reference remains available in this Page-
Context until the return from the current Servlet.service() invocation.

static final java.lang. String PAGECONTEXT
name used to store this PageContext in it's own name tables
static final java.lang.String REQUEST
name used to store ServletRequest in PageContext name table
static final int REQUEST_ SCOPE

request scope: the named reference remains available from the ServletRequest associ-
ated with the Servlet that until the current request is completed.

103 JavaServet Pages 1.2 Specification - PD1 ¢ August 15, 2000

PUBLI C DRAFT 1 - SUBJECT TO CHANGE

public
public
public
8.2.1.2
public
8.2.1.3
public
public

static final java.lang. String RESPONSE

name used to store ServletResponse in PageContext name table
static final java.lang. String SESSI ON

name used to store HttpSession in PageContext name table
static final int SESSI ON SCOPE

session scope (only valid if this page participates in a session): the named reference
remains available from the HttpSession (if any) associated with the Servlet until the Http-
Session isinvalidated.

Constructors
PageCont ext ()

M ethods

abstract java.lang.Object findAttribute(java.lang.String nane)

Searches for the named attribute in page, request, session (if valid), and application
scope(s) in order and returns the val ue associated or null.

Returns: the value associated or null
abstract void forward(java.lang.String relativeUrl Path)

This method is used to re-direct, or “forward” the current ServlietRequest and Servlet-
Response to another active component in the application.

If the relativeUrIPath begins with a“/” then the URL specified is calculated relative to
the DOCROQOT of the Ser vl et Cont ext for this JSP. If the path does not begin with
a“/” then the URL specified is calculated relative to the URL of the request that was
mapped to the calling JSP.

It is only valid to call this method froma Thread executing withina _j sp-
Service(...) methodof aJSP.

Once this method has been called successfully, it isillega for the calling Thread to
attempt to modify the Ser vl et Response object. Any such attempt to do so, shall
result in undefined behavior. Typicaly, callers immediately return from _j sp-
Service(...) after caling this method.

Parameters:

Chapter 8 Core API 104

PUBLI C DRAFT 1 - SUBJECT TO CHANGE

relativeUrl Pat h - specifies the relative URL path to the target resource as
described above

Throws:
Servl et Excepti on, | OExcepti on

1l egal Argurment Excepti on - if target resource URL is unresolvable

1l egal St at eException-if Servl et Response isnotinastatewherea
forward can be performed

SecurityExcepti on - if target resource cannot be accessed by caller
public abstract java.lang. Object getAttribute(java.lang.String nane)
Return the object associated with the name in the page scope or null if not found.

Parameters:
narme - the name of the attribute to get

Throws:
Nul | Poi nt er Excepti on - if the nameisnull

1l egal Argument Excepti on - if the scopeisinvalid

public abstract java.lang. Object getAttribute(java.lang.String nane,
i nt scope)

Return the object associated with the name in the specifed scope or null if not found.

Parameters:
name - the name of the attribute to set

scope - the scope with which to associate the name/object

Throws:
Nul | Poi nt er Excepti on - if the nameisnull

1l egal Argurment Excepti on - if the scopeisinvalid

public abstract java.util.Enumeration getAttributeNaneslnScope(int
scope)

Enumerate all the attributes in a given scope

Returns: an enumeration of names (java.lang.String) of all the attributes the specified
scope

public abstract int getAttributesScope(java.lang.String nane)
Get the scope where a given attribute is defined.

Returns: the scope of the abject associated with the name specified or 0

105 JavaServet Pages 1.2 Specification - PD1 ¢ August 15, 2000

PUBLI C DRAFT 1 - SUBJECT TO CHANGE

publ i

publ i

publ i

publ i

publ i

publ i

publ i

publ i

publ i

c

abstract java.lang. Exception get Exception()

The current value of the exception object (an Exception).

Returns: any exception passed to this as an errorpage
abstract JspWiter getCut()

The current value of the out object (a JspWiriter).

Returns: the current JspWriter stream being used for client response
abstract java.lang. Obj ect getPage()

The current value of the page object (a Servlet).

Returns: the Page implementation class instance (Servlet) associated with this
PageContext

abstract javax.servlet. Servl et Request get Request ()
The current value of the reguest object (a ServletRequest).
Returns: The ServletRequest for this PageContext
abstract javax.servlet. ServletResponse get Response()
The current value of the response object (a ServletResponse).
Returns: the ServletResponse for this PageContext
abstract javax.servlet. ServletConfig getServletConfig()
The ServletConfig instance.
Returns: the ServletConfig for this PageContext
abstract javax.servlet. ServletContext getServl et Context()
The ServletContext instance.
Returns: the ServietContext for this PageContext
abstract javax.servlet.http. HtpSessi on get Session()
The current value of the session object (an HttpSession).
Returns: the HttpSession for this PageContext or null
abstract void handl ePageException(j ava. | ang. Exception e)

This method is intended to process an unhandled “page” level exception by redirecting
the exception to either the specified error page for this JSP, or if none was specified, to
perform some implementation dependent action.

Chapter 8 Core API 106

PUBLI C DRAFT 1 - SUBJECT TO CHANGE

A JSP implementation class shall typically clean up any local state prior to invoking this
and will return immediately thereafter. It isillegal to generate any output to the client, or
to modify any ServletResponse state after invoking this call.

TODO - should handle Throwable

Parameters:
e - the exception to be handled

Throws:
Servl et Excepti on, | OExcepti on

Nul | Poi nt er Excepti on - if the exception is null
SecurityExcepti on - if target resource cannot be accessed by caller
public abstract void include(java.lang.String relativeUrl Path)

Causes the resource specified to be processed as part of the current ServlietRequest and

ServletResponse being processed by the caling Thread. The output of the target
resources processing of the request is written directly to the ServletResponse output
stream.

The current JspWriter “out” for this JSP is flushed as a side-effect of this call, prior to
processing the include.

If the relativeUrIPath beginswith a“/” then the URL specified is calculated relative to
the DOCROQOT of the Servl et Cont ext for this JSP. If the path does not begin
with a“/” then the URL specified is calculated relative to the URL of the request that
was mapped to the calling JSP.

It is only valid to call this method froma Thread executing withina _j sp-
Service(...) methodof aJSP.

Parameters:
relativeUrl Pat h - specifies the relative URL path to the target resource to be
included

Throws:
Servl et Excepti on, | OExcepti on

|1l egal Argurment Excepti on - if the target resource URL is unresolvable
SecurityExcepti on - if target resource cannot be accessed by caller

public abstract void initialize(javax.servlet.Servlet servlet,
javax. servl et. Servl et Request request,
j avax. servl et. Servl et Response response,
java.lang. String errorPageURL, bool ean needsSessi on,
int bufferSize, bool ean autoFl ush)

107 JavaServet Pages 1.2 Specification - PD1 ¢ August 15, 2000

PUBLI C DRAFT 1 - SUBJECT TO CHANGE

The initialize emthod is called to initialize an uninitialized PageContext so that it may be
used by a JSP Implementation class to service an incoming request and response wihtin
it's_jspService() method.

This method is typically caled from JspFactory.getPageContext() in order to initiaize
state.

This method is required to create aninitial JspWriter, and associate the “ out” name in page
scope with this newly created object.

This method should not be used by page or tag libray authors.

Parameters:
servl et - The Servlet that is associated with this PageContext

r equest - The currently pending request for this Servlet

r esponse - The currently pending response for this Servlet

er r or PageURL - The value of the errorpage attribute from the page directive or null
needs Sessi on - The value of the session attribute from the page directive

buf f er Si ze - Thevalue of the buffer attribute from the page directive

aut oFl ush - Thevalue of the autoflush attribute from the page directive

Throws:
| CExcepti on - during creation of JspWriter

1l egal St at eExcepti on - if out not correctly initialized
|1l egal Argunment Excepti on
public JspWiter popBody()

Return the previous JspWriter “out” saved by the matching pushBody(), and update the
value of the “out” attribute in the page scope attribute namespace of the PageConxtext

Returns: the saved JspWriter.
publ i ¢ BodyCont ent pushBody()

Return a new BodyContent object, save the current “out” JspWriter, and update the value
of the “out” attribute in the page scope attribute namespace of the PageContext

Returns: the new BodyContent
public abstract void rel ease()

This method shall “reset” the internal state of a PageContext, releasing all internal refer-
ences, and preparing the PageContext for potential reuse by a later invocation of initial-
ize(). This method is typically called from JspFactory.rel easePageContext().

Chapter 8 Core API 108

PUBLI C DRAFT 1 - SUBJECT TO CHANGE

Subclasses shall envelope this method.
This method should not be used by page or tag libray authors.
public abstract void renoveAttribute(java.lang.String nane)

Remove the object reference associated with the given name, look in all scopesin the
scope order.

Parameters:
nane - The name of the object to remove.

public abstract void renoveAttribute(java.lang.String name, int scope)
Remove the object reference associated with the specified name in the given scope.

Parameters:
nane - The name of the object to remove.

scope - The scope where to look.

public abstract void setAttribute(java.lang.String name,
java.l ang. Obj ect attribute)

Register the name and object specified with page scope semantics.

Parameters:
name - the name of the attribute to set

attri but e - the object to associate with the name

Throws:
Nul | Poi nt er Except i on - if the name or object is null

public abstract void setAttribute(java.lang.String nane,
java.lang. Object o, int scope)

register the name and object specified with appropriate scope semantics

Parameters:
name - the name of the attribute to set

0 - the object to associate with the name
scope - the scope with which to associate the name/object

Throws:
Nul | Poi nt er Excepti on - if the name or object is null

1l egal Argurment Excepti on - if the scopeisinvalid

109 JavaServet Pages 1.2 Specification - PD1 ¢ August 15, 2000

PUBLI C DRAFT 1 - SUBJECT TO CHANGE

8.2.2

JspWriter

Syntax

public abstract class JspWiter extends java.io. Witer

Direct Known Subclasses: BodyContent

Description

The actions and template data in a JSP page is written using the JspWriter object that is
referenced by the implicit variable out which isinitialized automatically using methods in
the PageContext object.

This abstract class emulates some of the functionality found in the java.io.BufferedWriter and
javaio.PrintWriter classes, however it differs in that it throws java.io.lOException from the
print methods while PrintWriter does not.

Buffering

Theinitial JspWriter object is associated with the PrintWriter object of the ServletResponse in
away that depends on whether the page is or not buffered. If the page is not buffered, output
written to this JspWriter object will be written through to the PrintWriter directly, which will
be created if necessary by invoking the getWriter() method on the response object. But if the
page is buffered, the PrintWriter object will not be created until when the buffer is flushed, and
operations like setContentType() are lega. Since this flexibility simplifies programming sub-
stantially, buffering is the default for JSP pages.

Buffering raises the issue of what to do when the buffer is exceeded. Two approaches can be

taken:

*Exceeding the buffer is not afatal error; when the buffer is exceeded, just flush the out-
put.

*Exceeding the buffer isafatal error; when the buffer is exceeded, raise an exception.

Both approaches are valid, and thus both are supported in the JSP technology. The behav-
ior of a page is controlled by the autoFlush attribute, which defaults to true. In general,
JSP pages that need to be sure that correct and complete data has been sent to their client
may want to set autoFlush to false, with a typical case being that where the client is an
application itself. On the other hand, JSP pages that send data that is meaningful even
when partially constructed may want to set autoFlush to true; a case may be when the data
is sent for immediate display through a browser. Each application will need to consider
their specific needs.

Chapter 8 Core API 110

PUBLI C DRAFT 1 - SUBJECT TO CHANGE

An aternative considered was to make the buffer size unbounded, but this has the disadvan-
tage that runaway computations may consume an unbounded amount of resources.

The“out” implicit variable of a JSP implementation classis of thistype. If the page directive
selects autoflush="true” then al the I/O operations on this class shall automatically fluch the
contents of the buffer if an overflow condition would result if the current operation were per-
formed without a flush. If autoflush="false” then all the I/O operations on this class shall
throw an 1OException if performing the current opertion would result in a buffer overflow
condition.

See Also: java.io.Witer,java.io.BufferedWiter,
java.io.PrintWiter

8.2.21 Fields
prot ected bool ean aut oFl ush
protected int bufferSize
public static final int DEFAULT_BUFFER

constant indicating that the Writer is buffered and is using the implementation default
buffer size

public static final int NO BUFFER
constant indicating that the Writer is not buffering output
public static final int UNBOUNDED BUFFER

constant indicating that the Writer is buffered and is unbounded; this is used in Body-
Content

8.2.2.2 Constructors

protected JspWiter(int bufferSize, bool ean autoFl ush)
protected constructor.

8.2.23 M ethods

public abstract void clear()

111 JavaServet Pages 1.2 Specification - PD1 ¢ August 15, 2000

PUBLI C DRAFT 1 - SUBJECT TO CHANGE

Clear the contents of the buffer. If the buffer has been already been flushed then the clear
operation shall throw an |OException to signa the fact that some data has aready been
irrevocably written to the client response stream.

Throws:
| CExcepti on - If an 1/O error occurs

public abstract void clearBuffer()

Clears the current contents of the buffer. Unlike clear(), this mehtod will not throw an
| OException if the buffer has aready been flushed. It merely clears the current content of
the buffer and returns.

Throws:
| CExcepti on - If an 1/O error occurs

public abstract void close()
Close the stream, flushing it first

This method needs not be invoked explicitly for theinitial JspWriter as the code generated
by the JSP container will automatically include a call to close().

Closing a previously-closed stream, unlike flush(),, has no effect.
Overrides: java.io.Writer.close() in class javaio.Writer

Throws:
| CExcepti on - If an 1/O error occurs

public abstract void flush()

Flush the stream. If the stream has saved any characters from the various write() methods
in a buffer, write them immediately to their intended destination. Then, if that destination
is another character or byte stream, flush it. Thus one flush() invocation will flush al the
buffersin a chain of Writers and OutputStreams.

The method may be invoked indirectly if the buffer size is exceeded.

Once a stream has been closed, further write() or flush() invocations will cause an 10EX-
ception to be thrown.

Overrides: java.io.Writer.flush() in classjava.io.Writer

Throws:
| CExcepti on - If an 1/O error occurs

public int getBufferSize()
This method returns the size of the buffer used by the JspWriter.

Returns: the size of the buffer in bytes, or 0 is unbuffered.

Chapter 8 Core API 112

PUBLI C DRAFT 1 - SUBJECT TO CHANGE

public abstract int getRemaining()
This method returns the number of unused bytes in the buffer.
Returns: the number of bytes unused in the buffer

publ i ¢ bool ean i sAutoFl ush()
This method indicates whether the JspWriter is autoFlushing.

Returns: if this JspWriter isauto flushing or throwing | OExceptions on buffer
overflow conditions

public abstract void newlLi ne()

Write a line separator. The line separator string is defined by the system property
I'i ne. separ at or, and is not necessarily asingle newline ('\n’) character.

Throws:
| CExcepti on - If an 1/O error occurs

public abstract void print(bool ean b)

Print a boolean value. The string produced by
j ava.lang. String. val ue (bool ean) is transated into bytes according to
the platform’s default character encoding, and these bytes are written in exactly the
manner of thej ava.io. Witer.wite(int) method.

Parameters:
b - Thebool ean to be printed

Throws:
java.io. |l OException

public abstract void print(char c)

Print a character. The character is translated into one or more bytes according to the
platform’s default character encoding, and these bytes are written in exactly the manner
of thej ava.io. Witer.wite(int) method.

Parameters:
c - Thechar to be printed

Throws:
java.io. |l OException

public abstract void print(char[] s)

Print an array of characters. The characters are converted into bytes according to the
platform’s default character encoding, and these bytes are written in exactly the manner
of thej ava.io. Witer.wite(int) method.

113 JavaServet Pages 1.2 Specification - PD1 ¢ August 15, 2000

PUBLI C DRAFT 1 - SUBJECT TO CHANGE

Parameters:
s - The array of chars to be printed

Throws:
Nul | Poi nt er Exception-If sisnul |

java.io.|l OException
public abstract void print(double d)

Printt a double-precision floating-point number. The string produced by
java.lang. String. val ueO (doubl e) istrandated into bytes according to the
platform’s default character encoding, and these bytes are written in exactly the manner of
thejava.io. Witer.wite(int) method.

Parameters:
d - Thedoubl e to be printed

Throws:
java.io. |l OException

SeeAlso: j ava. | ang. Doubl e
public abstract void print(float f)

Print a floating-point number. The string produced by
java.lang. String.val ueO (fl oat) is translated into bytes according to the
platform’s default character encoding, and these bytes are written in exactly the manner of
thejava.io. Witer.wite(int) method.

Parameters:
f - Thefl oat to be printed

Throws:
java.io.| OException

SeeAlso: j ava. | ang. Fl oat
public abstract void print(int i)

Print an integer. The string produced by j ava. | ang. Stri ng. val ueO (i nt) is
translated into bytes according to the platform’s default character encoding, and these
bytes are written in exactly the manner of the java.io. Witer.wite(int)
method.

Parameters:
i - Thei nt to be printed

Throws:
java.io. |l OException

Chapter 8 Core API 114

PUBLI C DRAFT 1 - SUBJECT TO CHANGE

SeeAlso: java. |l ang. | nt eger
public abstract void print(long I)

Print a long integer. The string produced by
java.lang. String.val ued (I ong) is trandated into bytes according to the
platform’s default character encoding, and these bytes are written in exactly the manner
of thej ava.io. Witer.wite(int) method.

Parameters:
| - Thel ong to be printed

Throws:
java.io. |l OException

SeeAlso: j ava. | ang. Long
public abstract void print(java.lang. Object obj)

Print an object. The string produced by the
java.lang. String. val ueOf (Obj ect) method istranslated into bytes accord-
ing to the platform’s default character encoding, and these bytes are written in exactly
the manner of thej ava.io. Witer.wite(int) method.

Parameters:
obj - The Obj ect to be printed

Throws:
java.io.|l OException

SeeAlso: java.lang. Object.toString()
public abstract void print(java.lang.String s)

Print a string. If the argument is nul | then the string “ nul | is printed. Otherwise,
the string’s characters are converted into bytes according to the platform’s default char-
acter encoding, and these bytes are written in exactly the manner of the
java.io.Witer.wite(int) method.

Parameters:
s - TheStri ng to be printed

Throws:
java.io.| OException

public abstract void println()

Terminate the current line by writing the line separator string. The line separator string
is defined by the system property | i ne. separ at or, and is not necessarily a single
newline character " \ n’).

115 JavaServet Pages 1.2 Specification - PD1 ¢ August 15, 2000

PUBLI C DRAFT 1 - SUBJECT TO CHANGE

public

public

public

public

public

public

Throws:
java.io. |l OException

abstract void println(bool ean x)

Print a boolean value and then terminate the line. This method behaves as though it
invokes public abstract void print(boolean b) and then public
abstract void println().

Throws:
java.io. |l OException

abstract void println(char x)

Print a character and then terminate the line. This method behaves as though it invokes
public abstract void print(char c¢) andthen public abstract
void println() .

Throws:
java.io. |l OException

abstract void println(char[] Xx)

Print an array of characters and then terminate the line. This method behaves as though it
invokesprint (char[]) andthenprintl n().

Throws:
java.io. |l OException

abstract void println(double x)

Print a double-precision floating-point number and then terminate the line. This method
behaves as though it invokes publ i ¢ abstract void print(double d) and
thenpublic abstract void println() .

Throws:
java.io. |l OException

abstract void println(float x)

Print a floating-point number and then terminate the line. This method behaves as though
it invokes public abstract void print(float f) and then public
abstract void println().

Throws:
java.io. |l OException

abstract void println(int x)

Chapter 8 Core API 116

PUBLI C DRAFT 1 - SUBJECT TO CHANGE

Print an integer and then terminate the line. This method behaves as though it invokes
public abstract void print(int i) andthenpublic abstract
void println() .

Throws:
java.io.|l OException

public abstract void println(long x)

Print a long integer and then terminate the line. This method behaves as though it
invokes public abstract void print(long |[|) and then public
abstract void println().

Throws:
java.io. |l OException

public abstract void println(java.lang. Cbject x)

Print an Object and then terminate the line. This method behaves as though it invokes
public abstract void print(java.lang. Object obj) andthenpub-
lic abstract void println().

Throws:
java.io. |l OException

public abstract void println(java.lang.String x)

Print a String and then terminate the line. This method behaves as though it invokes
public abstract void print(java.lang.String s) andthenpublic
abstract void println().

Throws:
java.io. |l OException

8.3

117

An Implemention Example

An instance of an implementation dependent subclass of this abstract base class can be cre-
ated by a JSP implementation class at the begining of it's _j spServi ce() method via
an implementation default JspFactory .

Here is one example of how to use these classes

JavaServet Pages 1.2 Specification - PD1 ¢ August 15, 2000

PUBLI C DRAFT 1 - SUBJECT TO CHANGE

public class foo inplenments Servlet {
I,
public void _jspService(H tpServl et Request request,
Ht t pSer vl et Response response)
throws | OException, ServletException {
JspFactory factory JspFactory. get Def aul t Factory();
PageCont ext pageCont ext fact ory. get PageCont ext (
this,
request,
response,
null, // errorPageURL
false, // needsSession
JspWiter. DEFAULT_BUFFER,
true /| aut oFl ush
)
/'l initialize inplicit variables for scripting env ...
Ht t pSessi on sessi on = pageCont ext. get Sessi on() ;
JspWiter out pageCont ext . get Qut () ;
Obj ect page this;
try {
/1 body of translated JSP here ...
} catch (Exception e) {
out.clear();
pageCont ext . handl ePageExcepti on(e);
} finally {
out.close();
factory.rel easePageCont ext (pageCont ext);

}

8.4

8.4.1

Exceptions

TheJspExcept i on classisthe base classfor al JSP exceptions. TheJspTagExcepti on
isused by the tag extension mechanism.

JspException

Syntax

public cl ass JspException extends java.lang. Exception

Direct Known Subclasses. JspTagException

Chapter 8 Core API 118

PUBLI C DRAFT 1 - SUBJECT TO CHANGE

84.11

All Implemented I nterfaces. javaio.Serializable

Description

A generic exception known to the JSP engine; uncaught JspExceptions will result in an
invocation of the errorpage machinery.

Constructors

publ i c JspException()

Construct a JspException

publ i c JspException(java.lang. String nmsg)

8.4.2

8.4.21

An exception with a message

JspTagException

Syntax

public class JspTagExcepti on extends JspException
All Implemented I nterfaces. javaio.Serializable

Description

Exception to be used by a Tag Handler to indicate some unrecoverable error. This error
is to be caught by the top level of the JSP page and will result in an error page.

Constructors

public JspTagException()

No message

publ i c JspTagException(java.lang. String nsg)

Constructor with a message.

119 JavaServet Pages 1.2 Specification - PD1 ¢ August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

CHAPTER 9

Tag Extensions

This chapter describes the mechanisms for introducing new actions into a JSP page. The
mechani sms include a portable run-time support, a validation mechanism, and authoring tool
support, al bundled into the concept of atag library.

The tag library concept was introduced in the JSP 1.1 specification and it incorporated run-
time support, some validation, and minimal tool authoring support. The JSP 1.2
specification has added some refinements to the run-time and authoring tool support,
significantly extended the validation step.

All JSP 1.1 tag libraries run, unchanged and without any change in behavior, in a JSP 1.2
container.

This chapter provides an overview of the mechanism and describes the Tag Library
Descriptor, and the taglib directive. The detailed description of the APIsinvolved followsin
Chapter 10.

9.1

| ntroduction

A Tag Library abstracts some functionality by defining a specialized (sub)language that
enables a more natural use of that functionality within JSP pages. The actions introduced by
the Tag Library can be used by the JSP page author in JSP pages explicitly, when authoring
the page manually, or implicitly, when using an authoring tool. Tag Libraries are particularly
useful to authoring tools because they make intent explicit and the parameters expressed in
the action instance provide information to the tool.

Actions that are delivered as tag libraries are imported into a JSP page using thet agl i b
directive, and can then be used in the page using the prefix given by the directive. An action
can create new objects that can then be passed to other actions or can be manipulated
programmatically through an scripting element in the JSP page.

Tag Extensions 120

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

911

912

121

Tag libraries are portable: they can be used in any legal JSP page regardless of the scripting
language used in that page.

The tag extension mechanism includes information to:

« Execute a JSP page that uses the tag library.

e Author and modify a JSP page.

* Validate the JSP page.

¢ Present the JSP page to the end user.

A Tab Library is described via a Tag Library Descriptor (a TLD), an XML document that is
described further below.

Goals

The tag extension mechanism described in this chapter addresses the following goals:
Portable - An action described in a tag library must be usable in any JSP container.

Simple - Unsophisticated users must be able to understand and use this mechanism. We
would like to make it very easy for vendors of functionality to expose it through actions.

Expressive - We want to enable a wide range of actions to be described in this mechanism,
including:

¢ Nested actions.
n Scripting elements inside the body.
» Creation, use and updating of scripting variables.

Usable from different scripting languages - Although the JSP specification currently only
defines the semantics for scripting based on the Java programming language, we want to
leave open other scripting languages.

Building upon existing concepts and machinery- We do not want to reinvent machinery that
exists elsewhere. Also, we want to avoid future conflicts whenever we can predict them.

Overview

The processing of a JSP page conceptually follows this steps:

e Parsing

JavaServer Pages 1.2 Specification - PD1+ August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

First parse the JSP syntax, processing include directives. This produces an XML document
annotated with debug information related to the original JSP source. Information in the TLD
is needed to process the JSP document, including identifying the custom tags, so this step
requires some processing of the taglib directives.

The XML document can be input directly too. If the XML document is entered directly, the
custom tags are indicated as such.

¢ Validation
The tag libraries in the XML document are processed in the order they appear.

Each library is checked for a validator class and, if present, the whole document is made
available to the validation method as a Pagelnfo object.

Then, each custom tag in the library is checked to see if there are TagExtralnfo classes, and,
if so, the isvValid() method will be consulted.

¢ Translation

Finally the XML document is processed to create a JSP page implementation class. This
process may involve creating scripting variables. Each custom action may provide this
information, either statically in the TLD, or in a more flexible manner using the
getVariablelnfo method of a TagExtralnfo class.

* Execution

Once a JSP page implementation class has been associated with a JSP page, the class will be
treated as any other Servlet class and requests will be directed to an instance of the class. At
run-time tag handler instances will be created and methods will be invoked in them.

Tag Handlers

The JSP page implementation class instantiates tag handlers which are the basic runtime
mechanism for defining the semantics of custom actions.

A tag handler is a Java class that implements the Tag or Body Tag interfaces and that is the
run-time representation of a custom action.

The JSP page implementation class instantiates (or reuses) a tag handler object for each
action in the JSP page. This handler object is a Java object that implements the

javax. servlet.jsp.tagext. Tag interface. The handler object is responsible for the
interaction between the JSP page and additional server-side objects.

There are three main interfaces: Tag, | t erati onTag, and BodyTag.

¢ Tag defines the basic methods that are needed in all tag handlers. These methods include
setter methods to initialize a tag handler with context data and with the attribute values of
the corresponding action, and the two methods: doSt art Tag() and doEndTag() .

Chapter 9 Tag Extensions 122

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

9.13

123

e IterationTag isan extension to Tag that provides one additional method:
doAf t er Body() for requiring the reevaluation of the body of the tag.

* BodyTag is an extension of IterationTag with two news methods for when the tag
handler wants to manipulate its body: set BodyCont ent () passes a buffer (the
BodyCont ent object), and dol ni t Body () provides an opportunity to do some
activity on that buffer before the first evaluation of the body into the buffer.

The use of interfaces simplifies taking an existing Java object and making it a tag handler.
There are also two support classes that can be used as base classes: TagSupport and
BodyTagSupport .

Event Listeners

A tag library may include some classes that are event listeners (see the Servlet 2.3
specification). The listeners are listed in the tag library descriptor and the JSP container will
automatically instantiate the listener classes and register them in a way analogous to how it
is done in web.xml. Essentially, the mechanism just locates the TLDs in the Web
Application (be them in WEB-INF/classes or in WEB-INF/lib), reads their <listener>
elements and regards them as an extension of those listed in web.xml.

The order in which the listeners are registered is undefined.

Simple Examples

Next we describe a few prototypical uses of tag extensions, briefly sketching how they take
advantage of these mechanisms.

Smple Actions

The simplest type of action just does something, perhaps with some parameters to modify
what the “something” is, and improve reusability.

This type of action can be implemented with a tag handler that just implements the Tag
interface. The tag handler only needs to use the tag handler’s method doSt art Tag() .
The method is invoked when the start tag is encountered and can access the attributes of the
tag and may also want to access information on the state of the JSP page; this information is
passed to the Tag object before the call to doSt art Tag() through several setter method
calls.

JavaServer Pages 1.2 Specification - PD1+ August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

Since simple actions with an empty body are common, the Tag Library Descriptor can be
used to indicate that the tag is always intended to be empty; this leads to better error
checking at translation time and to better code quality in the JSP page implementation class.

Actions with a Body

Another set of quite simple actions require something to happen when the start tag is found,
and then when the end tag is found. The Tag interface can also be used. The doEndTag()
issimilar to doSt art Tag() , except that it is invoked when the end tag of the action is
encountered. The result of the doEndTag invocation indicates whether the remaining of the
page is to be evaluated or not.

Conditionals

In some cases, a body needs to be invoked only when some conditions happen. Thisis still
supported by the basic Tag interface, through the use of return values in the doStartTag()
method.

[terations

The Tag protocol cannot be used to do iteration. For iteration the additional
IterationTag interface is needed. The doAft er Body() method isinvoked to
determine whether to reevaluate the body or not.

Actions that Process their Body

Consider an example of an action that will take its body, and reevaluate it many times,
creating a stream of response data. The IterationTag protocol is used for this. But, if the
result of the reinterpretation is to be further manipulated, for whatever reason, including just
discarding it, we need some way to divert the potential output of the those reevaluations.
This is done through the creation of a BodyCont ent object, and the use of the

set BodyCont ent () method, which is part of the Body Tag interface. BodyTag also
provides another method dol ni t Body () which isinvoked just after setBodyContent() but
before the first body evaluation to provide an opportunity to interact with the body.

Chapter 9 Tag Extensions 124

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

Cooperating Actions

Often the best way to describe some functionality is through several cooperating actions. For
example, an action may be used to describe information that |eads to the creation of some
server-side object, while another action may use that object elsewhere in the page. One way
for these actions to cooperate is explicitly, via using scripting variables: one action creates an
object and gives it a name, the other refers to it through this name. Scripting variables are
discussed briefly below.

Two actions can also cooperate implicitly using different conventions. For example, perhaps
the last action applies, or perhaps there is only one action of a given type per JSP page. A
more flexible and very convenient mechanism for action cooperation is using the nesting
structure to describe scoping. Each tag handler is told of its parent tag handler (if any) using
a setter method; the f i ndAncest or Wt hCl ass static method in TagSuppor t can then
be used to locate a tag handler with some given properties.

Actions Defining Scripting Variables

A custom action may create some server-side objects and make them available to the
scripting elements by creating or updating some scripting variables. The specific variables
thus effected are part of the semantics of the custom action and are the responsability of the
tag library author. Thisinformation is used at JSP page translation time and can be described
in one of two ways, either directly in the TLD for simple cases, or through subclasses of
TagExt r al nf 0. Either mechanism indicates what are the names and types of the scripting
variables. At request time the tag handler will associate objects to these scripting variables
through the pageContext object. It is the responsibility of the JSP page trandlator to
automatically supply all the required code to do the “synchronization” between the
pageObject values and the scripting variables.

0.2

125

Tag Libraries

A Tag Library isacollection of actions that encapsulate some functionality to be used from within
aJSP page. A Tag library is made available to a JSP page through at agl i b directive that
identifies the Tag Library via a URI (Universal Resource |dentifier).

The URI identifying atag library may be any valid URI as long as it can be used to uniquely
identify the semantics of the tag library.

The URI identifying the tag library is associated with a Tag Library Description (TLD) file
and with tag handler classes as indicated in Section 9.3 below.

JavaServer Pages 1.2 Specification - PD1+ August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

921

0.2.2

9.2.3

Packaged Tag Libraries

JSP page authoring tools and JSP containers are required to accept a Tag Library that is
packaged as a JAR file. When packaged so the JAR file must have a tag library descriptor
file named META-INF/taglib.tld.

Location of Java Classes

A tag library contains classes that are intended to be instantiated at translation time and
classes that are intended to be instantiated at request time. The first ones include
TagLibraryValidator and TagExtralnfo classes. The second ones include tag handler and
event listener classes. All these classes are treated as any other Java class: in a Web
Application they must reside in the standard locations for Java classes: either in aJAR filein
the WEB-INF/Ilib directory or in a directory in the WEB-INF/classes directory.

The previous rule indicates that a JAR containing a packaged tag libraries can be dropped
into the WEB-INF/lib directory to make its classes available at request time (and also at
translation time, see Section 9.3.4). The mapping between the URI and the TLD is explained
further below.

Tag Library directive

Thet agl i b directive in a JSP page declares that the page uses a tag library, uniquely
identifies the tag library using a URI and associates a tag prefix that will distinguish usage of
the actions in the library.

A JSP container maps the URI used in thet agl i b directive into a Tag Library Descriptor
in two steps: it first resolves the URI into a TLD resource path, and then it derives the TLD
object itself from the TLD resource path.

If a JSP container cannot locate a TLD resource path for agiven URI, afatal translation error
shall result. Similarly, it is afatal translation error for a uri attribute value to resolve to two
different TLD resource paths.

It is afatal translation error for thet agl i b directive to appear after actions using the prefix
introduced by the t agl i b directive.

Chapter 9 Tag Extensions 126

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

9.3

93.1

127

The Tag Library Descriptor

The Tag Library Descriptor (TLD) is an XML document that describes a tag library. The
TLD for atag library is used by a JSP container to interpret pages that includet agl i b
directives referring to that tag library. The TLD is also used by JSP page authoring tools that
will generate JSP pages that use a library, and by authors who do the same manually.

The TLD includes documentation on the library as awhole and on itsindividual tags, version
information on the JSP container and on the tag library, and information on each of the
actions defined in the tag library.

The TLD may include a TagLibraryValidator class that can validate that a JSP page conforms
to whatever set of constraints are expected by the tag library.

Each action in the library is described by giving its name, the class for its tag handler,
optional information on the scripting variables created by the action, and information on all
the attributes of the action. Scripting variable information can be given directly in the TLD
or through a TagExt r al nf o class. Each valid attribute is mentioned explicitly, with
indication on whether it is mandatory or not, whether it can accept request-time expressions,
and additional information.

A TLD fileis useful as a descriptive mechanism for providing information on a Tag Library.
It has the advantage that it can be read by tools without having to instantiate objects or load
classes. The approach we follow conforms to the conventions used in other J2EE
technologies.

The DTD to the tag library descriptor is organized so that interesting elements have an
optional ID attribute. This attribute can be used by other documents, like vendor-specific
documents, to provide annotations of the TLD information. An alternative approach, based
on XML name spaces have some interesting properties but it was not pursued in part for
consistency with the rest of the J2EE descriptors.

The official DTD is described at "http://java.sun.com/j2ee/dtds/web-jsptaglibrary_1_2.dtd"

TLD resource path

A URI in ataglib directive is mapped into a relative URI specification (as in section 2.5.2,
i.e. aURL without a protocol and host components) that starts with “/” that is called the TLD
resource path.

JavaServer Pages 1.2 Specification - PD1+ August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

9.3.2

The TLD resource path is to be interpreted relative to the root of the Web Application and
should resolve to either a TLD file directly, or to a JAR file with a TLD at location META-
INF/taglib.tld. If the TLD resource path is not one of these two cases, a fatal trandation
error will occur.

The URI describing a Tag Library is mapped to a TLD resource path though two
mechanisms; a map in web. xml , and a default mapping that is to be used if the map does
not contain the URI. The default mapping is designed for more casual use of the mechanism.

Taglib map in web.xml

The web. xm file can include a map between URIs and TLD resource paths. The map is
described using the t agl i b element of the Web Application Deployment descriptor in
VEEB- | NF/ web. xml , as described in the Servlet 2.3 spec and in “http://java.sun.com/j 2ee/
dtds/web-app_2_ 3.dtd".

A tagl i b element has two subelements: t agl i b-uri andtaglib-1ocation.

<taglib>

A taglib is a subelement of web-app:

<! ELEMENT web-app taglib* >

Thetaglib element provides information on atag library that is used by a JSP page within the
Web Application.

A taglib element has two subelements and one attribute:

<! ELEMENT taglib (taglib-uri, taglib-location) >

<I ATTLI ST taglib id | D #l MPLI ED>
<taglib-uri>

Ataglib-uri element describes a URI identifying a Tag Library used in the Web
Application.

<!l ELEMENT taglib-uri (#PCDATA) >
PCDATA ::= a URlI spec. It may be either an absolute URI
specification, or arelative URI as in Section 2.2.1.

<taglib-location>

A taglib-1ocati on contains the location (as a resource) where to find the Tag Library
Description File for this Tag Library.

Chapter 9 Tag Extensions 128

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

9.3.3

9331

9.33.2

129

<! ELEMENT taglib-1ocati on (#PCDATA) >
PCDATA ::= a resource | ocation, as indicated in Section 2.2.1,
where to find the Tag Library Descriptor file.

Example

The use of relative URI specifications enables very short names in the t agl i b directive.
For example:

”

<v@taglib uri="/nyPRibrary” prefix="x" %

and then

<tagli b>

<taglib-uri>/nyPRlibrary</taglib-uri>

<taglib-location> VEB-INF/tlds/PRibrary_1 4.tld</taglib-uri>
</taglib>

Determining the TLD Resource Path

We next describe how to determine the TLD resource path from the uri attribute of ataglib
directive.

Definitions

An “absolute URI” isone that starts with a protocol and host. A “relative URI specification”
isasin section 2.5.2, i.e. one without the protocol and host part.

All steps are described as if they were taken, but an implementation can use a different
implementation strategy as long as the result is preserved.

Processing WEB.XML.

The web.xml for the web application may contain one or more <taglib></taglib> elements.
All such elements are considered. The result of “processing” web.xml is, per each taglib
element, two values, a TAGLIB_URI and a TAGLIB_LOCATION, as follows:

For each <taglib> element:

1 Thevalue of the <taglib-uri> subelement is the TAGLIB_URI. This TAGLIB_URI may
be an absolute URI, or a relative URI spec starting with “/” or one not starting with “/”.

JavaServer Pages 1.2 Specification - PD1+ August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

9.3.3.3

9.3.3.4

2a If the <taglib-location> subelement is some relative URI specification that starts with a
“/” the TAGLIB_LOCATION is this URI.

2b If the <taglib-location> subelement is some relative URI specification that does not start
with “/”, the TAGLIB_LOCATION is the resolution of the URI relative to /WEB-INF/
web.xml (the result of this resolution is a relative URI specification that starts with “/”).

Computing the TLD Resource Path

We describe how to resolve ataglib directive to compute the TLD resource path. We do this
based on the value of the uri attribute of the taglib directive. In the description below,
ABS_URI stands for an absolute URI, ROOT_REL_URI for a relative URI that starts with “/
", and NOROOT_REL_URI for arelative URI that does not start with “/”.

If uri=" ABS URI":

Look in the processed web.xml for ataglib entry whose TAGLIB_URI is ABS_URI. If
found, the corresponding TABLIB_LOCATION isthe TLD resource path. If not found, a
translation error is raised.

If uri=" ROOT_REL_URI":

Look in the processed web.xml for ataglib entry whose TAGLIB_URI isROOT_REL_URI.
If found, the TABLIB_LOCATION for the taglib entry is the TLD resource path. If no such
entry is found, ROOT_REL_URI isthe TLD resource path.

If uri=" NOROOT_REL_URI":

Look in the processed web.xml for ataglib entry whose TAGLIB_URI is
NOROOT_REL_URI. If found, the TABLIB_LOCATION for the taglib entry is the TLD
resource path. If no such entry isfound, resolve NOROOT_REL_URI relative to the current
JSP page where the directive appears. Let ROOT_REL_URI be the resolved value (thisis a
relative URI specification that starts with “/” - by definition-). ROOT_REL_URI is the URL
resource path.

Examples

The web.xml map allows very explicit description of the tag libraries that are being used in a
Web Application.

The default rule allows at agl i b directive to refer directly to the TLD. This arrangement
isvery convenient for quick development at the expense of |ess flexibility and accountability.
For example in the case above, it enables:

<v@taglib uri="/tlds/PRlibrary_1 4.tld” prefix="x" %

Chapter 9 Tag Extensions 130

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

9.3.4

9.3.5

9.3.6

131

Translation-Time Class L oader

The set of classes available at trand ation time is the same as available at runtime: the classes
in the underlying Java platform, those in the JSP container, and those in the class filesin
VEB- | NF/ cl asses, inthe JAR filesin WEB- | NF/ | i b, and, indirectly through the use of
the cl ass- pat h attribute in the META- | NF/ MANI FEST file of these JAR files.

Assembling a Web Application

As part of the process of assembling a Web Application together, the Application Assembler
will create a VEB- | NF/ directory, with appropriate| i b/ and cl asses/ subdirectories,
place JSP pages, Servlet classes, auxiliary classes, and tag libraries in the proper places and
then create a \EB- | NF/ web. xml that ties everything together.

Tag libraries that have been delivered in the standard format can be dropped directly into
VEB- | NF/ | i b. The assembler may createt agl i b entries in web. xm for each of the
libraries that are to be used.

Part of the assembly (and later the deployment) may create and/or change information that
customizes a tag library; see Section 9.6.3.

Wel-Known URIs

A JSP container may "know of" some specific URIs and may provide alternate
implementations for the tag libraries described by these URIs, but the user must see the same
behavior as that described by the, required, portable tag library description described by the
URI.

A JSP container must always use the mapping specified for a URI in the web.xml
deployment descriptor if present. If the deployer wants to use the platform-specific
implementation of the well-known URI, the mapping for that URI should be removed at
deployment time.

If there is no mapping for a given URI and the URI is not well-known to the JSP container,
a translation-time error will occur.

There is no guarantee that this “well-known URI” mechanism will be preserved in later
releases of the JSP specification. As experience accumulates on how to use tag extensions,
the JSP specification may incorporate new functionality that will make the “well-known
URI” mechanism unnecessary; at that point it may be removed.

JavaServer Pages 1.2 Specification - PD1+ August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

9.4

The Tag Library Descriptor Format

This section describes the DTD for the Tag Library Descriptor. Thisis the same DTD as
"http://java.sun.com/j2ee/dtds/web-jsptaglibrary_1 1.dtd", except for some formatting
changes to extract comments and make them more readable.

TLDsin the 1.1 format must be accepted by JSP 1.2 containers.

Notation

<! NOTATI ON WEB- JSPTAGLIB.1_1 PUBLIC “-//Sun Mcrosystems, |Inc.//DTD
JSP Tag Library 1.2//EN'>

<taglib>

The taglib element is the document root. A taglib has two attributes.
<I ATTLIST taglib
id
I D
#1 MPLI ED
xm ns
CDATA
#F| XED

"http://java.sun.com j 2ee/ dt ds/ web-jsptaglibrary_1 1.dtd"
>

A taglib element also has several subelements that define:
tlibversion the version of the tag library implementation
jspversion the version of JSP specification the tag library depends upon

shortname a simple default short name that could be used by a JSP page authoring tool to
create names with a mnemonic value; for example, the it may be used as the
preferred prefix value in taglib directives.

uri auri uniquely identifying this taglib.

display-name The display-name element contains a short name that is intended to be
displayed by tools.

small-icon Optional large-icon that can be used by tools.

large-icon Optional large-icon that can be used by tools.

Chapter 9 Tag Extensions 132

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

133

info astring describing the “use” of this taglib.
validatorclass Optional TagLibraryValidator class.
listener Optional event listener specification

< ELEMENT taglib
(tlibversion, jspversion?,
shortnarme, uri ?, display-nane?, small-icon?, |arge-icon?
i nfo?, validatorclass?, listener*, tag+) >

<tlibversion>

Describes this version (number) of the taglibrary.

The syntax is:

<! ELEMENT tli bversi on (#PCDATA) >
#PCDATA ::= [0-9]*{ “.”[0-9] }0..3
<jspversion>

Describes the JSP specification version (number) this taglibrary requires in order to function.
The default is 1.1

The syntax is:

<! ELEMENT j spversion (#PCDATA) >
#PCDATA ::= [0-9]*{ “."[0-9] }O0..3.
<shorthame>

Defines a smple default short name that could be used by a JSP page authoring tool to create
names with a mnemonic value; for example, the it may be used as the preferred prefix value in
taglib directives and/or to create prefixes for IDs . Do not use white space, and do not start
with digits or underscore.

The syntax is

<! ELEMENT short nane (#PCDATA) >
#PCDATA :: = NMIOKEN

<uri>

Defines a public URI that uniquely identifies this version of the tag library. It is
recommended that the URI identifying a tag library is actually a URL to the tag library
descriptor for this specific version of the tag library.

<! ELEMENT uri (#PCDATA) >

JavaServer Pages 1.2 Specification - PD1+ August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

<info>

Defines an arbitrary text string describing the tag library.
<! ELEMENT info (#PCDATA) >

<validatorclass>

Defines an optional TagLibraryValidator class that can be used to validate the conformance
of a JSP page to using this tag library.

<! ELEMENT val i dat or d ass (#PCDATA) >

<listener>

Defines an optional event listener object to be instantiated and registered automatically.
<! ELEMENT | i stener (l'istener-class) >

<listener-class>

The listener-class element declares a class in the application that must be registered as a web
application listener bean. See the Servlet 2.3 specification for details.

<! ELEMENT | i stener-cl ass (#PCDATA) >

<tag>
The tag defines an action in this tag library. It has one attribute:
<I ATTLI ST tag id I D #l MPLIED >
The tag may have several subelements defining:
name the unique action name
tagclass the tag handler class implementing j avax. servl et.j sp. t agext . Tag

teiclass an optional subclass of
javax.servlet.jsp.tagext. TagExtral nfo

bodycontent the body content type
display-name A short name that is intended to be displayed by tools.
small-icon Optional large-icon that can be used by tools.
large-icon Optional large-icon that can be used by tools.
info Optional tag-specific information.

variable Optional scripting variable information.

Chapter 9 Tag Extensions 134

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

attribute all attributes of this action

The element syntax is as follows:

<! ELEMENT t ag
(nanme, tagclass, teiclass?,
bodycont ent ?, di spl ay-nane?, small-icon?, |arge-icon?,
info?, variable*, attribute*) >

<tagclass>

Defines the tag handler class implementing the j avax. serl vet.jsp.tagext. Tag
interface. This element is required.

The syntax is:

<! ELEMENT t agcl ass (#PCDATA) >

#PCDATA ::= fully qualified Java class nane.
<teiclass>

Defines the subclass of j avax. servl et. j sp. t agext. TagExt r al nf o for this tag.
This element is optional.

The syntax is:
<! ELEMENT teicl ass (#PCDATA) >

#PCDATA ::= fully qualified Java class nane
<bodycontent>

Provides a hint as to the content of the body of this action. Primarily intended for use by
page composition tools.

There are currently three values specified:

tagdependent The body of the action is passed verbatim to be interpreted by the tag handler
itself, and is most likely in a different “language”, e.g. embedded SQL
statements. The body of the action may be empty.

JSP The body of the action contains elements using the JSP syntax. The body of the
action may be empty.

empty The body must be empty
The default value is “JSP”.

The syntax is:
<! ELEMENT bodycontent (#PCDATA) >

135 JavaServer Pages 1.2 Specification - PD1+ August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

#PCDATA ::= tagdependent | JSP | enpty.
Val ues are case dependent.

<display-name>
The display-name elements contains a short name that is intended to be displayed by tools.

The syntax is:
<! ELEMENT di spl ay- nane (#PCDATA) >

<large-icon>

The large-icon element contains the name of afile containing a large (32 x 32) icon image.
Thefile name is relative path within the tag library. The image must be either in the JPEG or
GIF format, and the file name must end with the suffix ".jpg" or ".gif" respectively. The icon
can be used by tools.

The syntax is:
<! ELEMENT | ar ge-i con (#PCDATA) >

<small-icon>

The small-icon element contains the name of a file containing a small (16 x 16) icon image.
Thefile name is relative path within the tag library. The image must be either in the JPEG or
GIF format, and the file name must end with the suffix ".jpg" or ".gif" respectively. The icon
can be used by tools.

The syntax is:
<! ELEMENT snal | -i con (#PCDATA) >

<variable>

Provides information on the scripting variables defined by this tag. It is a (trand ation-time)
error for a tag that has one or more variable subelements to have a TagExtralnfo class that
returns a non-null object.

The subelements of variable are of the form:
name-given the variable name as a constant.

name-from-attribute the name of an attribute whose (translation-time) value will give the name of
the variable. One of name-given or name-from-attribute is required.

class name of the class of the variable. java.lang.String is default.

declare whether the variable is declared or not. True is thedefault.

Chapter 9 Tag Extensions 136

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

137

scope the scope of the scripting variable defined. NESTED is default.

The syntax is:

<! ELEMENT vari abl e
((nanme-given | nane-fromattribute), class?,
decl are?, scope?) >

<name-given>
The name for the scripting variable. One of name-given or name-from-attribute is required.

The syntax is:
<! ELEMENT nane- gi ven (#PCDATA) >

<name-from-attribute>

The name of an attribute whose (translation-time) value will give the name of the variable. One of
name-given or name-from-attribute is required.

The syntax is:
<! ELEMENT name-fromattri bute (#PCDATA) >
<class>

The optional name of the class for the scripting variable. The default is java.lang.String.

The syntax is:
<! ELEMENT cl ass (#PCDATA) >

<declare>

Whether the scripting variable is to be defined or not. See TagExtralnfo for details. This
element is optional and “true” is the default.

The syntax is:

<! ELEMENT decl are #PCDATA) >
#PCDATA ::=true | false | yes | no
<scope>

The scope of the scripting variable. See TagExtralnfo for details. This element is optional
and “NESTED?” is the default..

The syntax is:

JavaServer Pages 1.2 Specification - PD1+ August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

<! ELEMENT scope #PCDATA) >
#PCDATA ::= NESTED | AT_BEA N | AT_END

<attribute>

Provides information on an attribute of this action. Attribute defines an id attribute for
external linkage.

<I ATTLI ST attribute id | D#| MPLI ED>
The subelements of attribute are of the form:
name the attributes name (required)
required if the attribute is required or optional (optional)

rtexprvalue if the attributes value may be dynamically calculated at runtime by a scriptlet
expression (optional)

type the type of the attributes value (optional)

The syntax is:

<! ELEMENT attri bute
(nanme, required?,
rtexprval ue?, type?) >

<name>

Defines the canonical name of atag or attribute being defined

The syntax is:

<! ELEMENT name (#PCDATA) >
#PCDATA :: = NMIOKEN

<required>

Defines if the nesting attribute is required or optional.
The syntax is:

<! ELEMENT required (#PCDATA) >
#PCDATA ::=true | false | yes | no

If not present then the default is “false”, i.e the attribute is optional.

Chapter 9 Tag Extensions 138

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

<rtexprvalue>

Defines if the nesting attribute can have scriptlet expressions as a value, i.e the value of the
attribute may be dynamically calculated at request time, as opposed to a static value
determined at translation time.

The syntax is:
<! ELEMENT rtexprval ue (#PCDATA) >
#PCDATA ::=true | false | yes | no

If not present then the default is “false”, i.e the attribute has a static vaue

<type>

Defines the Java type of the attributes vaue. For static values (those determined at
translation time) the type is awaysj ava. | ang. Stri ng.

If the rtexprvalue element is true, that is the value of the nesting attribute may be calculated
from an expression scriptlet during request processing then the type defines the return type
expected from any scriptlet expression specified as the value of this attribute.

The syntax is:
<! ELEMENT type (#PCDATA) >
#PCDATA ::= fully qualified Java class nane of result type

An exampleis:

<t ype>
j ava. |l ang. Obj ect
</type>

9.5

139

Validation

There are a number of reasons why the structure of a JSP page should conform to some
validation rules. Some of them are:

¢ Request-time semantics; e.g. a subelement requires at request-time the information from
some enclosing element.

« Authoring-tool support; e.g. some tool may require some ordering in the actions.

* Methodological constraints; e.g. a development group may want to constraint the way
some features are used.

JavaServer Pages 1.2 Specification - PD1+ August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

951

9511

9.51.2

9.5.1.3

Validation can be done either at translation-time or at request-time. In general trand ation-
time validation provides a better user experience, and the JSP 1.2 specification provides a
very flexible translation-time validation mechanism.

Translation-Time Mechanisms

Some tranglation-time validation is represented in the Tag Library Descriptor. In some cases
a TagExtralnfo class needs to be written to supplement this information.

Attribute Information

The Tag Library Descriptor contains the basic syntactic information. In particular, the
attributes are described including their name, whether they are optional or mandatory, and
whether they accept request-time expressions. Additionally the bodycont ent attribute can
be used to indicate that an action must be empty.

All constraints described in the TLD must be enforced. A tag library author can assume that
the tag handler instance corresponds to an action that satisfies all constraints indicated in the
TLD.

Validator Classes

A TagLi braryVal i dat or classmay belisted inthe TLD for atag library to request that
a JSP page be validated. The JSP page is exposed as its associated XML document through
aPagel nf o class, and the validator class can do any checksthetag library author may have
found appropriate.

The validator class mechanism was introduced in the JSP 1.2 specification. We expect that
validator classes will be written based on different XML schema mechanisms (DTDs,
XSchema, Relaxx, others). A validator class for it may be incorporated into a later version
of the JSP specification if a clear schema standard appears at some point.

Syntactic Information in a TagExtralnfo Class

Additional translation-time validation can be done using the i sVal i d method in the
TagExt r al nf o class. Thei sVal i d method isinvoked at translation-time and is passed a
TagDat a instance as its argument.

Chapter 9 Tag Extensions 140

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

9.5.2

Thei sVal i d mechanism wasthe original validation mechanism introduced in JSP 1.1 with
the rest of the Tag Extension machinery. Tag libraries that are designed to run in JSP 1.2
containers are probably best using the validator class mechanism.

Request-Time Errors

In some cases, additional request-time validation will be done dynamically within the
methods in the tag handler. If an error is discovered, an instance of JspExcepti on can be
thrown. If uncaught, this object will invoke the errorpage mechanism of the JSP
specification.

9.6

9.6.1

141

Conventions and Other Issues

This section is not normative, although it reflects good design practices.

How to Define New Implicit Objects

We advocate the following style for the introduction of implicit objects:
* Define atag library.
« Add an action called defineObjects; this action will define the desired objects.

Then the JSP page can make these objects available as follows:

<v@tablig prefix="me" uri="...... "%
<me: defi neQbj ects />
start using the objects....

This approach has the advantage of requiring no new machinery and of making very explicit
the dependency.

In some cases there may be some implementation dependency in making these objects
available; for example, they may be providing access to some functionality that only existsin
some implementation. This can be done by having the tag extension class test at run-time for
the existence of some implementation dependent feature and raise a run-time error (this, of
course, makes the page not J2EE compliant, but that is a different discussion).

This mechanism, together with the access to metadata information allows for vendors to
innovate within the standard.

JavaServer Pages 1.2 Specification - PD1+ August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

9.6.2

9.6.3

Note: if afeature is added to a JSP specification, and a vendor also provides that feature
through its vendor-specific mechanism, the standard mechanism, as indicated in the JSP
specification will “win”. This means that vendor-specific mechanisms can sowly migrate
into the specification as they prove their usefulness.

Access to Vendor-Specific information

If avendor wants to associate with some tag library some information that is not described in
the current version of the TLD, it can do so by inserting the information in a document it
controls, inserting the document in the WEB-INF portion of the JAR file where the Tab
Library resides, and using the standard Servlet 2.2 mechanisms to access that information.

The vendor can now use the ID machinery to refer to the element within the TLD.

Customizing a Tag Library

A tag library can be customized at assembly and deployment time. For example, atag
library that provides access to databases may be customized with login and password
information.

There is no convenient place in web. xmi in the Servlet 2.2 spec for customization
information A standardized mechanism is probably going to be part of a forthcoming JSP
specification, but in the meantime the suggestion is that a tag library author place this
information in a well-known location at some resource in the WEB- | NF/ portion of the
Web Application and access it via the get Resour ce() call on the Ser vl et Cont ext .

Chapter 9 Tag Extensions 142

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

143 JavaServer Pages 1.2 Specification - PD1+ August 15, 2000

PUBLI C DRAFT 1 - SUBJECT TO CHANGE

cHAPTER 10

Tag Extension API

Custom actions can be used by JSP authors and authoring tools to simplify writing JSP
pages.

A custom action has a start tag, possibly abody, and an end tag. A prototypical exampleis of
the form:
<x:foo att="nyCbject” >
BODY
</ x: f ool >

An empty tag has no body, in which case the start and end tags can be combined as follows:
<x:foo att="nyCbject” />

The JavaServer Pages(tm) (JSP) 1.2 specification provides a portable mechanism for the
description of tag libraries containing:

*A Tag Library Descriptor (TLD)

*A number of Tag handler classes defining request-time behavior

*A number of classes defining translation-time behavior

*Additional resources used by the classes

Chapter 9 details the how TLDs are used in taglib directives and the format of the TLD file.
This chapter describes the methods that are available to access the TLD and the detail s of the
tag extension classes.

This chapter is organized in three sections. The first section presents the basic tag handler
classes. The second section describes the more complex tag handlers that need to access
their body evaluation. The last section looks at translation-time issues.

Chapter 10 Tag Extension API 144

PUBLI C DRAFT 1 - SUBJECT TO CHANGE

10.1

Simple Tag Handlers

In this section we introduce the notion of atag handler and describe the simplest type of tag
handler.

Tag Handler

A tag handler is a special type of run-time server-side object that is created to help evaluate
custom actions during the execution of a JSP page. A tag handler is an invisible server-side
JavaBeans component that supports an additional protocol for better integration within a JSP

page.

The protocol supported by a tag handler provides for passing of parameters, the evaluation
and reevaluation of the body of the action, and for getting access to objects and other tag
handlers in the JSP page.

Additional trandation time information associated with the action indicates the name of any
scripting variables it may introduce, their types and their scope. At specific moments, the
JSP container will automatically synchronize the PageContext information with variablesin
the scripting language so they can be made available directly through the scripting elements.

Properties

A tag handler has some properties. All tag handlers have a pageContext property for the JSP
page where the tag is located, and a parent property for the tag handler to the closest enclos-
ing action. Specific tag handler classes may have additional properties.

All attributes of a custom action must be JavaBeans component properties, although some
properties may not be exposed as attributes. The attributes that are visible to the JSP transla-
tor are exactly those listed in the Tag Library Descriptor (TLD).

All properties of a tag handler instance must be initialized through the appropriate setter
methods before the instance can be used. It is the responsibility of the JSP container to
invoke the appropriate setter methods to initialize these properties.

The setter methods that should be used when assigning a value to an attribute of a custom
action are determined by using the JavaBeans introspector on the tag handler class, then use
the setter method associated with the property that has the same name as the attribute in
question. An implication (unclear in the JavaBeans specification) is that there is only one
setter per property.

Unspecified attributes/properties should not be set (using a setter method).

145 JavaServet Pages 1.2 Specification - PD1 ¢ August 15, 2000

PUBLI C DRAFT 1 - SUBJECT TO CHANGE

Once properly set, al properties are expected to be persistent, so that if the JSP container
ascertains that a property has already been set on a given tag handler instance, it needs not set
it again. The tag handler-specific properties can be reset using the resetCustomAttributes
method, if it exists.

Conversions

Attribute values in a JSP page are described as strings, but the corresponding properties of the
tag handler may be have other types. The following conversions are done.

When the attribute is a request-time attribute value, no conversion is done, i.e. types must
match exactly.

When the attribute is aliteral string, if there is a PropertyEditor associated with the JavaBean
component, then, the setAsText() method will be used. Otherwise, the rules in Table 2-4, sec-
tion 2.13.2 will be followed.

The Tag I nterface

A Tag handler that does not want to process its body can implement just the Tag interface.
There are severa reasons why atag handler will not want to process its body: because it has
none (there is a mechanism in the TLD to require the JSP parser to verify that), or because the
body isjust to be “passed through”.

The Tag interface includes methods to provide page context information to the Tag Handler
instance, methods to handle the life-cycle of tag handlers, and two main methods for perform-
ing actions on atag: doSt art Tag() and doEndTag() . The method doSt art Tag() is
invoked when encountering the start tag and its return value indicates whether the body (if
there is any) should be skipped, or evaluated and passed through to the current response
stream. The method doEndTag() isinvoked when encountering the end tag; its return value
indicates whether the rest of the page should continue to be evaluated or not.

The lterationTag Interface

The IterationTag interface is used to repeatedly reevaluate the body of a custom action. The
interface has one method: doAf t er Body() which is invoked after each evaluation of the
body to determine whether to reevaluate or not.

Reevaluation is requested with the value 2, which in JSP 1.1 is defined to be Body-
Tag.EVAL_BODY_TAG. That constant value is still kept in JSP 1.2 (for full backwards com-
patibility) but, to improve claity, a new name is aso available:
IterationTag.EVAL_BODY_AGAIN. To stop iterating, the returned value should be 0, which
isTag.SKIP_BODY.

Chapter 10 Tag Extension API 146

PUBLI C DRAFT 1 - SUBJECT TO CHANGE

10.1.1

The TagSupport Base Class

The TagSupport class is a base class that can be used when implementing the Tag or
IterationTeg interfaces.

Tag
Syntax

public interface Tag

All Known Subinterfaces. BodyTag, IterationTag

Description

The interface of a simple tag handler that does not want to manipulate its body. The Tag
interface defines the basic protocol between a Tag handler and JSP page implementation
class. It defines the life cycle and the methods to be invoked at start and end tag.

Properties

The Tag interface specifies the setter and getter methods for the core pageContext and parent
properties.

The JSP page implementation object invokes setPageContext and setParent, in that order,
before invoking doStartTag() or doEndTag().

The JSP 1.2 specification has the resetCustomProperties() method to reset all custom proper-
tiesto default values. Note that the JSP translator can determine whether a specific tag han-
dler class supports or not this method.

M ethods

There are two main actions: doStartTag and doEndTag. Once all appropriate properties have
been initialized, the doStartTag and doEndTag methods can be invoked on the tag handler.
Between these invocations, the tag handler is assumed to hold a state that must be preserved.
After the doEndTag invocation, the tag handler is available for further invocations (and it is
expected to have retained its properties).

Release

Once all invocations on the tag handler are completed, the release method is invoked on it.
Once a release method is invoked all properties, including parent and pageContext, are

147 JavaServet Pages 1.2 Specification - PD1 ¢ August 15, 2000

PUBLI C DRAFT 1 - SUBJECT TO CHANGE

10.1.1.1
public
public
public
public

10.1.1.2
public
public

assumed to have been reset to an unspecified value. The page compiler guarantees that release
will beinvoked on the Tag handler before the end of the page.

Lifecycle details are collected elsewhere in the JSP specification document.

Fields
static final int EVAL_BODY_I NCLUDE

Evaluate body into existing out stream. Valid return value for doStartTag. Thisisanillega
return value for doStartTag when the class implements BodyTag, since BodyTag implies
the creation of a new BodyContent.

static final int EVAL_PAGE

Continue evaluating the page. Valid return value for doEndTag().
static final int SKIP_BODY

Skip body evaluation. Valid return value for doStartTag and doAfterBody.
static final int SKIP_PAGE

Skip the rest of the page. Valid return value for doEndTag.

M ethods
i nt doEndTag()

Process the end tag for thisinstance. This method isinvoked by the JSP page implementa-
tion object on all Tag handlers.

This method will be called after returning from doStartTag. The body of the action may or
not have been evaluated, depending on the return value of doStartTag.

If this method returns EVAL_PAGE, the rest of the page continues to be evaluated. If this
method returns SKIP_PAGE, the rest of the page is not evaluated and the request is com-
pleted. If this request was forwarded or included from another page (or Servlet), only the
current page evaluation is completed.

The JSP container will resynchronize any variable values that are indicated as so in Tag-
Extral nfo after the invocation of doEndBody().

Throws:
JspExcepti on. , JspException

int doStartTag()

Chapter 10 Tag Extension API 148

PUBLI C DRAFT 1 - SUBJECT TO CHANGE

149

public
public
public
public
public

Process the start tag for this instance. This method is invoked by the JSP page imple-
mentation object.

The doStartTag method assumes that the properties pageContext and parent have been
set. It also assumes that any properties exposed as attributes have been set too. When
this method isinvoked, the body has not yet been evaluated.

This method returns Tag.EVAL_BODY_INCLUDE or Body-
Tag.EVAL_BODY_BUFFERED to indicate that the body of the action should be evalu-
ated or SKIP_BODY to indicate otherwise. When a Tag returns
EVAL_BODY _INCLUDE the result of evaluating the body (if any) isincluded into the
current “out” JspWriter as it happens and then doEndTag() is invoked.

BodyTag.EVAL_BODY_BUFFERED isonly valid if the tag handler implements Body-
Tag.

The JSP container will resynchronize any variable valuesthat are indicated as so in Tag-
Extral nfo after the invocation of doStartBody().

Throws:
JspExcepti on. , JspException

See Also: BodyTag
Tag get Parent ()

Get the parent (closest enclosing tag handler) for this tag handler. This method is used
by the findAncestorWithClass() method in TagSupport.

Parameters:
t - The enclosing tag handler.

void rel ease()

Called on a Tag handler to release state. The page compiler guarantees that JSP page
implementation objects will invoke this method on all tag handlers, but there may be
multiple invocations on doStartTag and doEndTag in between.

void reset CustomAttri butes()
Reset all custom (i.e. not parent, not pageContext) attributes to their default values
voi d set PageCont ext (PageCont ext pc)

Set the current page context. This method is invoked by the JSP page implementation
object prior to doStartTag().

This value is *not* reset by doEndTag() and must be explicitly reset by a page imple-
mentation

void setParent(Tag t)

JavaServet Pages 1.2 Specification - PD1 ¢ August 15, 2000

PUBLI C DRAFT 1 - SUBJECT TO CHANGE

10.1.2

10.1.21

Set the parent (closest enclosing tag handler) of this tag handler. Invoked by the JSP page
implementation object prior to doStartTag().

Thisvalueis*not* reset by doEndTag() and must be explicitly reset by a page implemen-
tation. Code can assume that setPageContext has been called with the proper values before
this point.

Parameters:
t - The parent tag, or null.

|terationTag

Syntax

public interface IterationTag extends Tag

All Known Subinterfaces. BodyTag
All Superinterfaces. Tag
All Known Implementing Classes. TagSupport

Description

The IterationTag interface extends Tag by defining one additional method that controlsthe
reevaluation of its body.

A tag handler that implements IterationTag is treated as one that implements Tag regarding the
doStartTag() and doEndTag() methods. IterationTag provides a new method: doAft er -
Body/() .

The doAfterBody() method is invoked after every body evauation to control whether the body
will be reevaluated or not. If doAfterBody() returns IterationTag.EVAL_BODY_AGAIN, then
the body will be reevaluated. If doAfterBody() returns Tag.SKI1P_BODY, then the body will be
skipped and doEndTag() will be evaluated instead.

Fields

public static final int EVAL_BODY_AGAI N

Chapter 10 Tag Extension API 150

PUBLI C DRAFT 1 - SUBJECT TO CHANGE

10.1.2.2

Request the reevaluation of some body. Returned from doAfterBody. For compatibility
with JSP 1.1, the value is carefully selected to be the same as the, now deprecated,
BodyTag.EVAL_BODY_TAG,

M ethods

public int doAfterBody()

10.1.3

Process body (re)evaluation. This method is invoked by the JSP Page implementation
object after every evaluation of the body into the BodyEval uation object. The method is
not invoked if thereis no body evauation.

If doAfterBody returns EVAL_BODY_AGAIN, anew evauation of the body will hap-
pen (followed by another invocation of doAfterBody). If doAfterBody returns
SKIP_BODY no more body evaluations will occur, the value of out will be restored
using the popBody method in pageContext, and then doEndTag will be invoked.

The method re-invocations may be lead to different actions because there might have
been some changes to shared state, or because of external computation.

The JSP container will resynchronize any variable values that are indicated as so in Tag-
Extral nfo after the invocation of doAfterBody().

Returns: whether additional evaluations of the body are desired

Throws:
JspException

TagSupport

Syntax

public class TagSupport inplements lterationTag, java.io.Serializable
Direct Known Subclasses: BodyTagSupport
All Implemented Interfaces. IterationTag, java.io.Serializable, Tag

Description

A base class for defnining new tag handlers implementing Tag.

151 JavaServet Pages 1.2 Specification - PD1 ¢ August 15, 2000

PUBLI C DRAFT 1 - SUBJECT TO CHANGE

10.1.31

The TagSupport class is a utility class intended to be used as the base class for new tag han-
diers. The TagSupport class implements the Tag and IterationTag interfaces and adds addi-
tional convenience methods including getter methods for the propertiesin Tag. TagSupport has

one static method that is included to facilitate coordination among cooperating tags.

Many tag handlers will extend TagSupport and only redefine afew tags.

Fields

protected java.lang. String id

protected PageCont ext pageCont ext

10.1.3.2
public

10.1.3.3
public
public
public

Constructors
TagSupport ()

Default constructor, all subclasses are required to only define a public constructor with the
same signature, and to call the superclass constructor. This constructor is caled by the

code generated by the JSP transl ator.

M ethods

i nt doAfterBody()
Default processing for a body
Returns: SKIP_BODY

Throws:
JspException

See Also: public int doAfterBody()
i nt doEndTag()
Default processing of the end tag returning EVAL_PAGE.

Throws:
JspException

See Also: public int doEndTag()
int doStartTag()

Default processing of the start tag, returning SKIP_BODY.

Throws:

Chapter 10 Tag Extension API

152

PUBLI C DRAFT 1 - SUBJECT TO CHANGE

JspException
See Also: public int doStartTag()

public static final Tag findAncestorWthC ass(Tag from
java.l ang. C ass kl ass)

Find the instance of a given class type that is closest to a given instance. This method
uses the getParent method from the Tag interface. This method is used for coordination
among cooperating tags.

Parameters:
f r om- The instance from where to start looking.

kl ass - The subclass of Tag or interface to be matched
public java.lang.String getld()
The value of theid attribute of this tag; or null.
public Tag get Parent ()
The Tag instance most closely enclosing this tag instance.
See Also: public Tag getParent()
public java.lang. Obj ect getVal ue(java.lang. String k)
Get athe value associated with a key.

Parameters:
k - The string key.

public java.util.Enuneration getVal ues()
Enumerate the values kept by this tag handler.
public void rel ease()
Release state.
See Also: public void release()
public void renoveVal ue(java.lang. String k)
Remove a value associated with a key.

Parameters:
k - The string key.

public void setld(java.lang.String id)
Set the id attribute for this tag.

Parameters:

153 JavaServet Pages 1.2 Specification - PD1 ¢ August 15, 2000

PUBLI C DRAFT 1 - SUBJECT TO CHANGE

i d-The String for theid.

public voi d set PageCont ext (PageCont ext pageCont ext)

Set the page context.

Parameters:
pageCont enxt - The PageContext.

See Also: public void setPageContext(PageContext pc)

public void setParent(Tag t)

Set the nesting tag of this tag.

Parameters:
t - The parent Tag.

See Also: public void setParent(Tag t)

public void setValue(java.lang.String k, java.lang. Cbject 0)

Associate a value with a String key.

Parameters:
k - Thekey String.

0 - The value to associate.

10.2

Tag Handlersthat want Accessto their
Body Content

The evaluation of a body is delivered into a Body Cont ent object. This is then made avail-
able to tag handlers that implement the Body Tag interface. The Body TagSupport class
provides a useful base class to simplify writing these handlers.

If a Tag handler wants to have access to the content of its body then it must implement the
BodyTag interface. This interface extends Tag, provides three additional methods set -
BodyCont ent (BodyCont ent), dol ni t Body() and doAft er Body() and refers to
an object of type BodyContent.

A BodyContent is a subclass of JspW i t er that has afew additional methods to convert its
contents into a String, insert the contents into another JspWriter, to get a Reader into its con-
tents, and to clear the contents. Its semantics also assure that buffer size will never be
exceeded.

Chapter 10 Tag Extension API 154

PUBLI C DRAFT 1 - SUBJECT TO CHANGE

10.2.1

10.2.1.1

The JSP page implementation will create a BodyContent if the doStartTag() method returns
aEVAL_BODY_TAG. This object will be passed to dolnitBody(); then the body of the tag
will be evaluated, and during that evaluation out will be bound to the BodyContent just
passed to the BodyTag handler. Then doAfterBody() will be evaluated. If that method
returns SKIP_BODY, no more evaluations of the body will be done; if the method returns
EVAL_BODY_TAG, then the body will be evaluated, and doAfterBody() will be invoked
again.

A common use of the BodyContent is to extract its contents into a String and then use the
String as a value for some operation. Another common use is to take its contents and push it
into the out Stream that was valid when the start tag was encountered (that is available from
the PageContext object passed to the handler in setPageContext).

BodyContent

Syntax

public abstract class BodyContent extends JspWiter

Description

An encapsulation of the evaluation of the body of an action so it is available to a tag
handler. BodyContent is a subclass of JspWriter.

Note that the content of BodyContent is the result of evaluation, so it will not contain actions
and the like, but the result of their invocation.

BodyContent has methods to convert its contents into a String, to read its contents, and to
clear the contents.

The buffer size of a BodyContent object is unbounded. A BodyContent object cannot be in
autoFlush mode. It is not possible to invoke flush on a BodyContent object, as there is no
backing stream.

Instances of BodyContent are created by invoking the pushBody and popBody methods of
the PageContext class. A BodyContent is enclosed within another JspWriter (maybe another
BodyContent object) following the structure of their associated actions.

Constructors

prot ected BodyContent (JspWiter e)

Protected constructor. Unbounded buffer, no autoflushing.

155 JavaServet Pages 1.2 Specification - PD1 ¢ August 15, 2000

PUBLI C DRAFT 1 - SUBJECT TO CHANGE

10.2.1.2 M ethods
public void cl earBody()
Clear the body without throwing any exceptions.
public void flush()
Redefined flush() soitisnot legal.
Itisnot valid to flush a BodyContent because there is no backing stream behind it.
Overrides: public abstract void flush() in class JspWriter

Throws:
| OException

public JspWiter getEnclosingWiter()
Get the enclosing JspWriter.
Returns: the enclosing JspWriter passed at construction time
public abstract java.io.Reader getReader ()
Return the value of this BodyContent as a Reader.
Returns: the vaue of this BodyContent as a Reader
public abstract java.lang.String getString()
Return the value of the BodyContent as a String.
Returns: the value of the BodyContent as a String
public abstract void witeCQut(java.io. Witer out)

Write the contents of this BodyContent into a Writer. Subclasses may optimize common
invocation patterns.

Parameters:
out - Thewriter into which to place the contents of this body evaluation

Throws:
| OException

10.2.2 BodyTag

Syntax

public interface BodyTag extends |terationTag

Chapter 10 Tag Extension API 156

PUBLI C DRAFT 1 - SUBJECT TO CHANGE

All Superinterfaces. IterationTag, Tag
All Known Implementing Classes. BodyTagSupport

Description

The BodyTag interface extends IterationTag by defining additional methods that let a
tag handler manipulate the content of evaluating its body.

It isthe responsibility of the tag handler to manipulate the body content. For example the tag
handler may take the body content, convert it into a String using the bodyContent.getString
method and then use it. Or the tag handler may take the body content and write it out into its
enclosing JspWriter using the bodyContent.writeOut method.

A tag handler that implements BodyTag is treated as one that implements IterationTag,
except that the doStartTag method can return SKIP_BODY, EVAL_BODY _INCLUDE or
EVAL_BODY_BUFFERED.

If EVAL_BODY_INCLUDE isreturned, then evaluation happens asin IterationTag.

If EVAL_BODY_BUFFERED is returned, then a BodyContent object will be created to
capture the body evaluation. This object is obtained by calling the pushBody method of the
current pageContext, which additionally has the effect of saving the previous out value. The
object is returned through a call to the popBody method of the PageContext class; the call
also restores the value of out.

Theinterface provides one new property with a setter method and one new action method.

The new property is bodyContent, to contain the BodyContent object, where the JSP Page
implementation object will place the evaluation (and reevaluation, if appropriate) of the
body. The setter method (setBodyContent) will only be invoked if doStartTag() returns
EVAL_BODY_BUFFERED.

The new action methods is dolnitBody(), which is invoked right after setBodyContent() and
before the body evaluation. This method is only invoked if doStartTag() returns
EVAL _BODY_BUFFERED.

10.2.2.1 Fields
public static final int EVAL_BODY_BUFFERED

Request the creation of new buffer, a BodyContent on which to evaluate the body of this
tag. Returned from doStartTag when it implements BodyTag. Thisis an illega return
value for doStartTag when the class does not implement Body Tag.

157 JavaServet Pages 1.2 Specification - PD1 ¢ August 15, 2000

PUBLI C DRAFT 1 - SUBJECT TO CHANGE

public static final int EVAL_BODY_TAG

10.2.2.2

Deprecated. Asof JavaJSP API 1.2, use BodyTag.EVAL_BODY_BUFFERED or
lterationTag.EVAL_BODY_AGAIN.

Deprecated constant that has the same vaue as EVAL BODY_ BUFFERED and
EVAL_BODY_AGAIN. This name has been marked as deprecated to encourage the use
of the two different terms, which are much more descriptive.

M ethods

public voi d dol nitBody()

Prepare for evaluation of the body. This method is invoked by the JSP page implementa-
tion object after setBodyContent and before the first time the body is to be evaluated. The
method will not be invoked if thereis no body evaluation.

The JSP container will resynchronize any variable values that are indicated as so in Tag-
Extral nfo after the invocation of dolnitBody().

Throws:
JspException

public voi d setBodyCont ent (BodyCont ent b)

10.2.3

Set the bodyContent property. This method is invoked by the JSP page implementation
object at most once per action invocation. The method will be invoked before dolnitBody
and it will not be invoked if there is no body evaluation (for example if doStartTag()
returns EVAL_BODY_INCLUDE or SKIP_BODY).

When setBodyContent is invoked, the value of the implicit object out has already been
changed in the pageContext object. The BodyContent object passed will have not data on
it but may have been reused (and cleared) from some previous invocation.

The BodyContent object is available and with the appropriate content until after the invo-
cation of the doEndTag method, at which case it may be reused.

Parameters:
b - the BodyContent

BodyTagSupport

Syntax

public cl ass BodyTagSupport extends TagSupport i nplenents BodyTag

Chapter 10 Tag Extension API 158

PUBLI C DRAFT 1 - SUBJECT TO CHANGE

All Implemented Interfaces. BodyTag, IterationTag, java.io.Seriaizable, Tag

Description
A base class for defining tag handlers implementing BodyTag.

The BodyTagSupport class implements the BodyTag interface and adds additional conve-
nience methods including getter methods for the bodyContent property and methodsto get at
the previous out JspWiriter.

Many tag handlers will extend TagSupport and only redefine afew tags.

10.2.3.1 Fields
prot ect ed BodyContent bodyContent

10.2.3.2 Constructors
publ i ¢ BodyTagSupport ()

Default constructor, all subclasses are required to only define a public constructor with
the same signature, and to call the superclass constructor. This constructor is called by
the code generated by the JSP trandlator.

10.2.3.3 Methods
public int doAfterBody()

After the body evaluation: do not reevaluate and continue with the page. By default
nothing is done with the bodyContent data (if any).

Overrides: publicint doAfterBody() in class TagSupport
Returns: SKIP_BODY

Throws:
JspException

public int doEndTag()
Default processing of the end tag returning EVAL_PAGE.
Overrides: public int doEndTag() in class TagSupport
Returns. EVAL_PAGE

159 JavaServet Pages 1.2 Specification - PD1 ¢ August 15, 2000

PUBLI C DRAFT 1 - SUBJECT TO CHANGE

Throws:
JspException

public void dol nitBody()
Prepare for evaluation of the body just before the first body evaluation: no action.

Throws:
JspException

public int doStartTag()
Default processing of the start tag returning EVAL_BODY _TAG.
Overrides: publicint doStartTag() in class TagSupport
Returns:. EVAL_BODY_TAG;

Throws:
JspException

publ i c BodyCont ent getBodyContent ()

Get current bodyContent.

Returns: the body content.
public JspWiter getPreviousQut()

Get surrounding out Jsp\Writer.

Returns: the enclosing JspWriter, from the bodyContent.
public void rel ease()

Release state.

Overrides: public void release() in class TagSupport
public voi d setBodyCont ent (BodyCont ent b)

Prepare for evaluation of the body: stash the bodyContent away.

Parameters:
b - the BodyContent

10.3 TagLifeCycle

At execution time the implementation of a JSP page will use an available Tag instance with the
appropriate prefix and name that is not being used, initialize it, and then follow the protocol

Chapter 10 Tag Extension API 160

PUBLI C DRAFT 1 - SUBJECT TO CHANGE

161

described below. Afterwards, it will release the instance and make it available for further
use. This approach reduces the number of instances that are needed at atime.

Initialization is done by setting the properties pageContext and parent, in that order.

Once atag handler instance hasinitialized the pageContext and parent properties, al custom
properties as indicated through the attributes in the custom action instance, if any, will be set
to the values as requested, following any conversions applicable.

Custom properties may have some default values. A tag handler should set its propertes set
to any default values it may expect after the pageContext and parent properties are set. Also
custom properties may be reset to their default values using the (new) method resetCustom-
Attributes(); the values of the standard properties pageContext and parent are preserved by
this method.

All properties will be reset to an undetermined state when release() is invoked.

Unset Attributes and Tag Handlers: Reusing I nstances

Consider the following JSP fragment:
<x:foo attl="one” att2="two"/>
<x:foo attl1l="HELLO' att2="BYE'/>

To implement this fragment, the JSP page implementation object can use one or two tag han-
dier instances. If it wants to reuse the first tag handler, it just needs to do a h.set-
Att1(“HELLO"); h.setAtt2(“"BYE"); to prepare the handler for the second action.

Consider now the case of
<foo: bar attrl="abc” attr2="def”/>
<foo: bar attri1="xyz"/>

To implement this fragment, the JSP page implementation object can use two tag handler
instances, one instance on which the setter methods for & quotattrl* and & quotattr2” are
invoked, and a separate instance for when only the setter for & quotattrl” is used.

If the tag handler supports the resetCustomAttributes method, then a single tag handler
instance can also be used, provided that this method is invoked to reset the properties, and
then the setter method for & quotattrl” is used.

If the tag handler does not support the resetCustomAttributes method, a reset invocation
could be done, but then the parent and pageContext properties will have to be reset too.

A Run-Time Trace

The following figure shows the run-time trace for a complex Tag instance; methods invoked
by the JSP page code that almost never redefined by a specific Tag handler are in blue, and
the action methods are in red.

JavaServet Pages 1.2 Specification - PD1 ¢ August 15, 2000

PUBLI C DRAFT 1 - SUBJECT TO CHANGE

ATag h = new ATag();

. set PageCont ext (pageCont ext) ;
.set Parent (parent);
.setAttributel(val uel);

.set Attribut e2(val ue2);
.doStart Tag()

ju piien i e Hien M

out = pageCont ext . pushBody()
h. set BodyCont ent (out)

h. dol ni t Body()

[BODY]

h. doAf t er Body()

[BODY]

h. doAf t er Body()

out = pageCont ext. popBody()

h. doEndTaa)
h.rel ease()

10.4

Cooperating Actions

Actions can cooperate with other actions and with scripting code in a number of ways.

PageContext

Often two actions in a JSP page will want to cooperate, perhaps by one action creating some
server-side object that needs to be access by another. One mechanism for doing thisis by giv-
ing the object a name within the JSP page; the first action will create the object and associate
the name to it while the second action will use the name to retrieve the object.

For example, in the following JSP fragment the f 0o action might create a server-side object
and giveit the name “myObject”. Then the bar action might access that server-side object and
take some action.

<x:foo id="nmyCbject” />

<x:bar ref="nyCbjet” />

In a JSP implementation, the mapping “name”->value is kept by the implicit object page-

Cont ext . This object is passed around through the Tag handler instances so it can be used to
communicate information: all it is needed is to know the name under which the information is
stored into the pageContext.

Chapter 10 Tag Extension API 162

PUBLI C DRAFT 1 - SUBJECT TO CHANGE

The Runtime Stack

An alternative to explicit communication of information through a named object is implicit
coordination based on syntactic scoping.

For example, in the following JSP fragment the f 0o action might create a server-side object;
later the nested bar action might access that server-side object. The object is not named
within the pageCont ext : it is found because the specific f 0o element is the closest

enclosing instance of a known element type.
<f oo>

<bar/>
</ foo>

This functionality is supported through the Body TagSupport . fi ndAncest or Wt h-
Cl ass(Tag, C ass), which uses areference to parent tag kept by each Tag instance,
which effectively provides a run-time execution stack.

10.5

Translation-time Classes

The next classes are used at trandlation time.

Tag mapping, Tag name

A taglib directive introduces a tag library and associates a prefix to it. The TLD associated
with the library associates Tag handler classes (plus other information) with tag names. This
information is used to associate a Tag class, a prefix, and a name with each custom action
element appearing in a JSP page.

At execution time the implementation of a JSP page will use an available Tag instance with
the appropriate prefix, name, PageContext, parent, and TagData and then follow the protocol
described below. The implementation guarantees that all tag handler instances are initialized
and all are released, but the implementation can assume that previous settings are preserved
by atag handler, to reduce run-time costs.

See the Tag Extensions Chapter of the JSP 1.2 specification for more details.

Scripting Variables

JSP supports scripting variables that can be declared within a scriptlet and can be used in
another. JSP actions a so can be used to define scripting variables so they can used in script-
ing elements, or in other actions. This is very useful in some cases; for example, the
j sp: useBean standard action may define an object which can later be used through a
scripting variable.

163 JavaServet Pages 1.2 Specification - PD1 ¢ August 15, 2000

PUBLI C DRAFT 1 - SUBJECT TO CHANGE

In some cases the information on scripting variables can be described directly into the TLD
using elements. A special caseistypical interpretation of the & quotid* attribute. In other cases
the logic that decides whether an action instance will define a scripting variable may be quite
complex and the name of a TagExt r al nf o class is instead given in the TLD. The get -

Var i abl el nf o method of thisclassis used at translation time to obtain information on each
variable that will be created at request time when this action is executed. The method is passed
aTagDat a instance that contains the trandlation-time attribute values.

Validation

The TLD file contains several pieces of information that is used to do syntactic validation at
trandation-time. It also contains two extensible validation mechanisms: a TagLi brary-
Val i dat or classcan be used to validate a complete JSP page, and aTagExt r al nf o class
can be used to validate a specific action.

The TaglLibraryValidator is an addition to the JSP 1.2 specification and is very open ended,
being strictly more powerful than the TagExtralnfo mechanism. A JSP page is presented via
the Pagel nf o object, which abstracts the XML view of the JSP page.

In some cases, additiona request-time validation will be done dynamically within the methods
in the Tag instance. If an error is discovered, an instance of JspTagExcepti on can be
thrown. If uncaught, this object will invoke the errorpage mechanism of JSP.

In detail, validation is done as follows:

First the JSP page is parsed using the information in the TLD. At this stage valid mandatory
and optional attributes are checked.

Next the XML view of the pageis validated according to the validator classes (if any) in all the
tag libraries that were used in the JSP page. The view will be exposed to the vaidator classes
as an instance of a Pagelnfo class. This class will provides an InputStream (read-only) on the
page; later specifications may add other views on the page (DOM, SAX, JDOM are all candi-
dates).

The validators are invoked by iterating over all taglib directives in the page, in the order in
which they appear:

If the TLD has a <validatorClass> object then

*get an instance of the validator class (container may recycle if wanted)
«set the TagLibrarylnfo object on the instance the first time.

sinvoke the validate method on the instance.

ereport any errors found.

After checking al thetag library validator classes, the TagExtralnfo classes for al tags will be
consulted by invoking their i sVal i d method. The order of invocation of this methods is
undefined.

Chapter 10 Tag Extension API 164

PUBLI C DRAFT 1 - SUBJECT TO CHANGE

10.5.1 TagLibrarylnfo

Syntax

public abstract class TagLi brarylnfo

Description

Information available at tranglation-time on a Tag Library. This class is instantiated
from the Tag Library Descriptor file (TLD).

10.5.1.1 Fields

protected java.lang. String info
protected java.lang. String jspversion
protected java.lang. String prefix
protected java.lang. String shortnane
protected Taglnfo[] tags

protected java.lang.String tlibversion
protected java.lang. String ur
protected java.lang. String urn

10.5.1.2 Constructors

protected TagLi brarylnfo(java.lang.String prefix,
java.lang. String uri)

Constructor. This will invoke the constructors for Taginfo, and TagAttributelnfo after
parsing the TLD file.

Parameters:
prefi x - the prefix actually used by the taglib directive

uri -the URI actually used by the taglib directive

10.5.1.3 M ethods

public java.lang.String getlnfoString()
Information (documentation) for this TLD.

165 JavaServet Pages 1.2 Specification - PD1 ¢ August 15, 2000

PUBLI C DRAFT 1 - SUBJECT TO CHANGE

public
public
public
public
public
public
public
10.5.2
10.5.2.1
public

java.lang. String getPrefixString()
The prefix assigned to this taglib from the <%taglib directive
java.lang. String getReliabl eURN()

The“reliable” URN indicated in the TLD. This may be used by authoring tools as a global
identifier (the uri attribute) to use when creating an include directive for this library.

java.lang. String get RequiredVersion()
A string describing the required version of the JSP container.
java.lang. String get Short Nane()

The prefered short name (prefix) as indicated in the TLD. This may be used by authoring
tools as the prefered prefix to use when creating an include directive for this library.

Tagl nfo get Tag(java.l ang. String shortnane)
Get the Taglnfo for a given tag name, looking through all the tags in this tag library.

Parameters:
short name - The short name (no prefix) of thetag

Tagl nfo[] get Tags()

An array describing the tags that are defined in thistag library.
java.lang. String getURI ()

The value of the uri attribute from the <%@ taglib directive for thislibrary.

Taglnfo

Syntax

public class Taglnfo

Description

Tag information for atag in a Tag Library; This class is instantiated from the Tag Library
Descriptor file (TLD) and is available only at translation time.

Fields
static final java.lang.String BODY_CONTENT_EMPTY
static constant for getBodyContent() when it is empty

Chapter 10 Tag Extension API 166

PUBLI C DRAFT 1 - SUBJECT TO CHANGE

public static final java.lang. String BODY_CONTENT_JSP
static constant for getBodyContent() when it is JSP

public static final java.lang. String BODY_CONTENT_TAG DEPENDENT
static constant for getBodyContent() when it is Tag dependent

10.5.2.2 Constructors

publ i c Tagl nfo(java.lang. String tagName,
java.lang. String tagC assNanme, java.l ang. String bodycontent,
java.lang. String infoString, TagLibrarylnfo taglib,
TagExtral nfo tagExtralnfo, TagAttributelnfo[] attributelnfo)

Constructor for Taginfo. This class is to be instantiated only from the TagLibrary code
under request from some JSP code that is parsing a TLD (Tag Library Descriptor).

Parameters:
t agNane - The name of thistag

t agCl assNane - The name of the tag handler class

bodycont ent - Information on the body content of these tags

i nfoStri ng - The (optional) string information for this tag

t agl i b - Theinstance of the tag library that contains us.

t agExt r al nf o - The instance providing extra Tag info. May be null

attri but el nfo - Anarray of Attributelnfo data from descriptor. May be null;

10.5.2.3 Methods
public TagAttributelnfo[] getAttributes()

Attribute information (in the TLD) on this tag. The return is an array describing the
attributes of thistag, asindicated in the TLD. A null return means no attributes.

Returns: Thearray of TagAttributelnfo for thistag.
public java.lang. String getBodyContent ()

The bodycontent information for this tag.

Returns: the body content string.
public java.lang.String getlnfoString()

The information string for the tag.

167 JavaServet Pages 1.2 Specification - PD1 ¢ August 15, 2000

PUBLI C DRAFT 1 - SUBJECT TO CHANGE

Returns: theinfo string
public java.lang. String get TagC assNane()
Name of the class that provides the handler for this tag.
Returns: The name of the tag handler class.
publ i c TagExtral nfo get TagExtral nfo()
Theinstance (if any) for extra tag information
Returns: The TagExtralnfo instance, if any.
public TagLi brarylnfo get TagLi brary()
The instance of TabLibrarylnfo we belong to.
Returns: thetab library instance we belong to.
public java.lang. String get TagNane()
The name of the Tag.
Returns: The (short) name of the tag.
public Variablelnfo[] getVariabl el nfo(TagData dat a)

Information on the scripting objects created by this tag at runtime. Thisis a convenience
method on the associated TagExtral nfo class.

Default isnull if the tag has no “id” attribute, otherwise, {“id”, Object}

Parameters:
dat a - TagData describing this action.

Returns: Array of Variablelnfo elements.
publ i c bool ean isValid(TagData data)

Trans ation-time validation of the attributes. Thisis a convenience method on the associ-
ated TagExtralnfo class.

Parameters:
dat a - The trandation-time TagData instance.

Returns: Whether the datais valid.
public java.lang.String toString()
Stringify for debug purposes...
Overrides: java.lang.Object.toString() in class javalang.Object

Chapter 10 Tag Extension API 168

PUBLI C DRAFT 1 - SUBJECT TO CHANGE

10.5.3 TagAttributelnfo

Syntax

public class TagAttributelnfo

Description

Information on the attributes of a Tag, available at translation time. This classis instan-
tiated from the Tag Library Descriptor file (TLD).

Only the information needed to generate code is included here. Other information like
SCHEMA for validation bel ongs elsewhere.

10.5.3.1 Fields

public static final java.lang.String ID

“id” iswired into be ID. Thereis no real benefit in having it be something else IDREFs
are not handled any differently.

10.5.3.2 Constructors

public TagAttributel nfo(java.lang.String name, bool ean required,
java.lang. String type, bool ean reqTi ne)

Constructor for TagAttributelnfo. This class is to be instantiated only from the Tag-
Library code under request from some JSP code that is parsing a TLD (Tag Library
Descriptor).

Parameters:
name - The name of the attribute

requi r ed - If this attribute is required in tag instances
t ype - The name of the type of the attribute
r eqTi me - Whether this attribute hold a request-time Attribute

10.5.3.3 M ethods

publ i c bool ean canBeRequest Ti me()
Whether this attribute can hold a request-time value.

169 JavaServet Pages 1.2 Specification - PD1 ¢ August 15, 2000

PUBLI C DRAFT 1 - SUBJECT TO CHANGE

Returns: if the attribute can hold a request-time value.
public static TagAttributelnfo getldAttribute(TagAttributelnfo[] a)

Convenience static method that goes through an array of TagAttributelnfo objects and
looksfor “id".

Parameters:
a - An array of TagAttributelnfo

Returns: The TagAttributel nfo reference with name “id”
public java.lang. String getName()
The name of this attribute.
Returns: the name of the attribute
public java.lang. String get TypeName()
The type (as a String) of this attribute.
Returns: the type of the attribute
public bool ean i sRequired()
Whether this attribute is required.
Returns: if the attribute is required.
public java.lang.String toString()
Overrides: java.lang.Object.toString() in class javalang.Object

10.5.4 Pagelnfo

Syntax

public abstract class Pagelnfo

Description

Tranglation-time information on a JSP page. The information corresponds to the XML
document associ ated with the JSP page.

Objects of thistype are generated by the JSP trandlator, e.g. when being pased to a TagLibrary-
Validator instance.

Chapter 10 Tag Extension API 170

PUBLI C DRAFT 1 - SUBJECT TO CHANGE

10.5.4.1 Constructors
publ i c Pagel nfo()

10.5.4.2 Methods
public abstract java.io.|nputStream getlnputStrean()
Returns an input stream on the XML document.

Returns: Aninput stream on the document.

10.5.5 TagL ibraryValidator

Syntax

public abstract class TagLi braryVali dator

Description

Translation-time validator class for a JSP page. A validator operates on the XML docu-
ment associ ated with the JSP page.

Validator classes are associated with a tag library via the TLD. A TagLibraryValidator
instance is associated with a given TLD and the JSP translator will invoke the setTag-
Librarylnfo method on an instance before invoking the vaidate method. A TagLibrary-
Validator instance may create auxiliary objects internally to perform the validation (e.g. an
XSchema validator) and may reuseit for all the pages in a given translation run.

10.5.5.1 Constructors
publ i c TagLi braryVal i dator ()

10.5.5.2 Methods
publ i c TagLi braryl nfo get TagLi braryl nfo()
Get the TagLibrarylInfo associated with with Validator.
Returns: The TagLibrarylnfo instance
public voi d set TagLi braryl nfo(TagLi brarylnfo tld)

171 JavaServet Pages 1.2 Specification - PD1 ¢ August 15, 2000

PUBLI C DRAFT 1 - SUBJECT TO CHANGE

Set the TagLibrarylnfo data for this validator.

Parameters:
t | d - The TagLibrarylnfo instance

public java.lang. String validate(Pagel nfo thePage)

10.5.6

Validate a JSP page. This method will return a null String if the page passed through is
valid; otherwise an error message.

Parameters:
t hePage - the JSP page object

Returns: A string indicating whether the pageisvalid or not.

TagExtralnfo

Syntax

public abstract class TagExtralnfo

Description

Optional class provided by the tag library author to describe additional translation-time
information not described in the TLD. The TagExtralnfo class is mentioned in the Tag
Library Descriptor file (TLD).

This class must be used:
«if the tag defines any scripting variables
«if the tag wants to provide translation-time validation of the tag attributes.

It is the responsibility of the JSP translator that the initial value to be returned by callsto
getTaglnfo() corresponds to a Taglnfo object for the tag being tranglated. If an explicit call
to setTaginfo() is done, then the object passed will be returned in subsequent calls to get-

Taglnfo().

The only way to affect the value returned by getTaglnfo() is through a setTaginfo() cal, and
thus, TagExtral nfo.setTaglnfo() is to be called by the JSP translator, with a Taglnfo object that
corresponds to the tag being translated. The call should happen before any invocation on
isvalid() and before any invocation on getVariablelnfo().

Chapter 10 Tag Extension API 172

PUBLI C DRAFT 1 - SUBJECT TO CHANGE

10.5.6.1 Constructors
publ i c TagExtral nfo()

10.5.6.2 Methods
public final Taglnfo getTaglnfo()
Get the Taglnfo for this class.
Returns: the taginfo instance this instance is extending
public Variablelnfo[] getVariabl el nfo(TagData dat a)

information on scripting variables defined by the tag associated with this TagExtralnfo
instance. Reguest-time attributes are indicated as such in the TagData parameter.

Parameters:
dat a - The TagData instance.

Returns: An array of Variablelnfo data.
publ i c bool ean isValid(TagData data)

Translation-time validation of the attributes. Request-time attributes are indicated as
such in the TagData parameter.

Parameters:
dat a - The TagData instance.

Returns: Whether this tag instance is valid.
public final void setTaglnfo(Taglnfo taglnfo)
Set the Taglnfo for this class.

Parameters:
t agl nf o - The Taglnfo thisinstance is extending

10.5.7 TagData

Syntax

public class TagData i npl ements java.l ang. Cl oneabl e

All Implemented Interfaces. javalang.Cloneable

173 JavaServet Pages 1.2 Specification - PD1 ¢ August 15, 2000

PUBLI C DRAFT 1 - SUBJECT TO CHANGE

Description
The (trang ation-time only) attribute/value information for atag instance.

TagData is only used as an argument to the isVaid and getVariablelnfo methods of TagExtra
Info, which areinvoked at tranglation time.

10.5.7.1 Fields
public static final java.lang. Object REQUEST_TI ME_VALUE

Distinguished value for an attribute to indicate its value is a request-time expression
(which is not yet available because TagData instances are used at translation-time).

10.5.7.2 Constructors

public TagData(java.util.Hashtable attrs)

Constructor for a TagData. If you already have the attributes in a hashtable, use this con-
structor.

Parameters:
attrs - A hashtable to get the values from.

public TagData(java.lang. Cbject[][] atts)
Constructor for TagData.
A typical constructor may be
static final oject[][] att = {{“connection”, “conn0”}, {“id", “query0”}}

static final TagbData td = new TagData(att);

All values must be Strings except for those holding the distinguished object
REQUEST TIME_VALUE.

Parameters:
att s - the static attribute and values. May be null.

10.5.7.3 Methods
public java.lang. Object getAttribute(java.lang.String attNane)

The value of the attribute. Returns the distinguished object REQUEST_TIME_VALUE if
the value isrequest time. Returns null if the attribute is not set.

Chapter 10 Tag Extension API 174

PUBLI C DRAFT 1 - SUBJECT TO CHANGE

Returns: the attribute's value object
public java.util.Enuneration getAttributes()
Enumerates the attributes.
Returns: Anenumeration of the attributesin a TagData
public java.lang.String getAttributeString(java.lang.String attNane)
Get the value for a given attribute.
Returns: the attribute value string
public java.lang.String getld()
The value of the id attribute, if available.
Returns: the vaue of theid attribute or null

public void setAttribute(java.lang.String attNane,
java. |l ang. Obj ect val ue)

Set the value of an attribute.

Parameters:
at t Nane - the name of the attribute

val ue - thevalue.

10.5.8 Variablelnfo

Syntax

public class Variablelnfo

Description

Information on the scripting variables that are created/modified by atag (at run-time).
This information is provided by TagExtralnfo classes and it is used by the translation
phase of JSP.

Scripting variables generated by a custom action may have scope page, request, session, and
application.

The class name (Variablelnfo.getClassName) in the returned objects are used to determine
the types of the scripting variables. Because of this, a custom action cannot create a scripting
variable of a primitive type. The workaround isto use “boxed” types.

175 JavaServet Pages 1.2 Specification - PD1 ¢ August 15, 2000

PUBLI C DRAFT 1 - SUBJECT TO CHANGE

The class name may be a Fully Qualified Class Name, or a short class name.

If a Fully Qualified Class Name is provided, it should refer to a class that should be in the
CLASSPATH for the Web Application (see Servlet 2.3 specification - essentialy it is WEB-
INF/lib and WEB-INF/classes). Failure to be so will lead to atranslation-time error.

If ashort class nameis given in the Variablelnfo objects, then the class name must be that of a
public classin the context of the import directives of the page where the custom action appears
(will check if thereisa JLS verbiage to refer to). The class must also be in the CLASSPATH
for the Web Application (see Servlet 2.3 specification - essentidly it is WEB-INF/lib and
WEB-INF/classes). Failure to be so will lead to a translation-time error.

Usage Comments

Frequently afully qualified class name will refer to a class that is known to the tag library and
thus, delivered in the same JAR file as the tag handlers. In amost other remaining cases it will
refer to a class that is in the platform on which the JSP processor is build (like J2EE). Using
fully qualified class names in this manner makes the usage relatively resistant to configuration
errors.

A short name is usually generated by the tag library based on some attributes passed through
from the custom action user (the author), and it is thus less robust: for instance a missing
import directive in the referring JSP page will lead to an invalid short name class and atransla-
tion error.

Synchronization Protocol

The result of the invocation on getVariablelnfo is an array of Variablelnfo objects. Each such
object describes a scripting variable by providing its name, its type, whether the variable is
new or not, and what its scopeis. Scope is best described through a picture:.

HESTED
/ ; LT BEGIN
=foo .= yr
biody
- LT ERD
=Jjfon= * -

The defined values for scope are:

Chapter 10 Tag Extension API 176

PUBLI C DRAFT 1 - SUBJECT TO CHANGE

*NESTED, if the scripting variable is available between the start tag and the end tag of
the action that definesiit.

*AT_BEGIN, if the scripting variable is available from the start tag of the action that
definesit until the end of the page.

*AT_END, if the scripting variable is available after the end tag of the action that
definesit until the end of the page.

The scope value for a variable implies what methods may affect its value and thus, in

lack of additional information, where synchronization is needed:

«for NESTED, after dolnitBody and doAfterBody for atag handler implementing Body-
Tag, and after doStart Tag otherwise.

«for AT_BEGIN, after dolnitBody, doAfterBody, and doEndTag for atag handler imple-
menting BodyTag, and doStartTag and doEndTag otherwise.

«for AT_END, after doEndTag method.

Variable Information inthe TLD

Scripting variable information can also be encoded directly for most cases into the Tag
Library Descriptor using the <variable> subelement of the <tag> element. See the JSP spec-
ification.

10.5.8.1 Fields
public static final int AT_BEG N
Scope information that scripting variableis visible after start tag
public static final int AT_END
Scope information that scripting variableis visible after end tag
public static final int NESTED
Scope information that scripting variableis visible only within the start/end tags

10.5.8.2 Constructors

public Variabl el nfo(java.lang. String var Nane,
java.lang. String classNane, bool ean declare, int scope)

Constructor These objects can be created (at tranglation time) by the TagExtralnfo
instances.

Parameters:
i d - The name of the scripting variable

177 JavaServet Pages 1.2 Specification - PD1 ¢ August 15, 2000

PUBLI C DRAFT 1 - SUBJECT TO CHANGE

cl assName - The name of the scripting variable
decl ar e - If true, it isanew variable (in some languages this will require a declaration)
scope - Indication on the lexical scope of the variable

10.5.8.3 Methods
public java.lang. String get Cl assNane()
public bool ean get Decl are()
public int getScope()
public java.lang. String getVarNane()

Chapter 10 Tag Extension API 178

PUBLI C DRAFT 1 - SUBJECT TO CHANGE

179 JavaServet Pages 1.2 Specification - PD1 ¢ August 15, 2000

APPENDIX A

Packaging JSP Pages

This appendix shows two simple examples of packaging a JSP page into a WAR for delivery
into a Web container. In the first example, the JSP page is delivered in source form. Thisis
likely to be the most common example. In the second example the JSP page is compiled into
a Servlet that uses only Servlet 2.3 and JSP 1.2 API calls; the Servlet is then packaged into a
WAR with a deployment descriptor such that it looks as the original JSP page to any client.

This appendix is non normative. Actually, strictly speaking, the appendix relates more to the
Servlet 2.3 capabilities to the JSP 1.2 capabilities. The appendix isincluded here asthisis a
feature that JSP page authors and JSP page authoring tools are interested in.

A.1 Backward Compatibility Note

Not e — We will clarify under what conditions a JSP 1.2 page can be compiled into a
Servlet that can run on a Servlet 2.2 container. At the present, the only issue that seems
important is that described in Issue # 17 of Errata 1.1_a, “PageContext and Handling
Throwable or Exception” .

A.2 A very simple JSP page

We start with a very simple JSP page Hel | oWor | d. j sp.

180

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

<%@ page info="Example JSP pre-compiled” %>
<p>

Hello World

</p>

A.3

The JSP page packaged as sourceina
WAR file

The JSP page can be packaged into a WAR file by just placing it at location "/
Hel | oWbr |1 d. j sp" the default JSP page extension mapping will pick it up. The
web. xm istrivial:

<IDOCTYPE webappSYSTEM "http://java.sun.com/j2ee/dtds/web-app_1_2.dtd">
<webapp>
<session-config>
<session-timeout> 1 </session-timeout>
</session-config>
</webapp>

A4

181

The Servlet for the compiled JSP
page

As an alternative, we will show how one can compile the JSP page into a Servlet class to run
in a JSP container.

The JSP page is compiled into a Servlet with some implementation dependent name
_jsp_Hel |l owbr | d_XXX_I npl . The Servlet code only depends on the JSP 1.2 and
Servlet 2.3 APIs, as follows:

i mports javax.servlet.*;

imports javax.servlet.http.*;
i mports javax.servlet.jsp.*;

class _jsp_Hell oWorl d_XXX_I npl
ext ends_Pl at f or mDependent _Jsp_Super _| npl {
public void _jsplnit() {

JavaServer Pages 1.2 Specification - PD1+ August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

11
}

public void jspDestroy() {
/1

}
static JspFactory _factory= JspFactory. get Defaul t Factory();

public void _jspService(HttpServletRequest request,
Ht t pSer vl et Response response)
throws | OException, ServletException

Obj ect page= this;
Ht t pSessi onsessi on= request. get Sessi on() ;
Servl et Confi gconfig= getServletConfig();
Servl et Cont ext application =

config. get Servl et Cont ext ();

PageCont ext pageCont ext
= _factory. get PageCont ext (this,

request,

response,

(String) NULL,

true,

JspW i ter. DEFAULT_BUFFER,
true

);

JspW i terout= pageContext.getQut();
/| page context creates initial JspWiter "out"

try {
out.println("<p>");
out.printin("Hello World");
out.println("</p>");

} catch (Exception e) {
pageCont ext . handl ePageException(e);

} finally {
_factory. rel easePageCont ext (pageCont ext) ;
}

Appendix 182

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

A.5 TheWeb Application Descriptor

The Servlet is made to ook as a JSP page with the following web. xm :

<! DOCTYPE webapp
SYSTEM "http://java.sun.conij2ee/ dtds/web-app_1_2.dtd">
<webapp>
<servl et>
<servl et-nanme> Hell oWrld </servl et-nanme>
<servl et-class> Hel |l oWworl d.class </servlet-class>
</ servl et >

<servl et - mappi ng>
<servl et -name> Hel |l oWorl d </servlet-nanme>
<url-pattern> /HelloWrld.jsp </url-pattern>
</ servl et - mappi ng>

<sessi on-confi g>
<session-timeout> 1 </session-tineout>
</ sessi on-confi g>
</ webapp>

A.6 TheWAR for the compiled JSP page

Finally everything is packaged together into a WAR:
/ V\EB- | NF/ web. xml
/ V\EB- | NF/ cl asses/ Hel | oWor | d. cl ass

Note that if the Servlet class generated for the JSP page had dependent on some support
classes, they would have to be included in the WAR.

183 JavaServer Pages 1.2 Specification - PD1« August 15, 2000

APPENDIX B

Changes

This appendix lists the changes in the JavaServer Pages specification.

B.1 Changesbetweenl.l1and 1.2 PD1

The following changes ocurred between the JSP 1.1 and JSP 1.2 Public Draft 1.

B.1.1 Organizational Changes

¢ Chapter 8 and 10 are now generated automatically from the javadoc sources.

¢ Created a new document to allow longer descriptions of uses of the technology.

« Created a new 118N chapter to capture Servlet 2.3 implications and others (mostly empty
for PD1).

* Removed Implementation Notes and Future appendices, as they have not been updated
yet.

B.1.2 New Document

We created a new, non-normative document, “Using JSP Technology”. The document is still
being updated to JSP 1.2 and Servlet 2.3. We moved to this document the following:

« Some of the non-normative Overview material.
« All of the appendix on tag library examples.
« Some of the material on the Tag Extensions chapter.

184

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

B.1.3 Additions to API

e jsp:include can now indicate “flush="false’”.

¢ Made the XML view of a JSP page available for input, and for validation.

« PropertyEditor.setAsText() can now be used to convert from aliteral string attribute value.

¢ New VaidatorClass and JspPage classes for validation against tag libraries.

* New lteratorTag interface to support iteration without BodyContent. Added two new
constants (EVAL_BODY_BUFFERED and EVAL_BODY _AGAIN) to help document
better how the tag protocol works; they are carefully designed so that old tag handlers will
still work unchanged, but the old name for the constant EVAL_BODY _TAG is now
deprecated.

¢ Added listener classes to the TLD.

¢ Added elements to the TLD to avoid having to write TagExtralnfo classes in the most
common cases.

¢ Added aresetCustomAttributes() method to Tag interface.

¢ Added elements to the TLD for delivering icons and descriptions to use in authoring tools.

B.1.4 Clarifications

¢ Incorporated errata 1.1 _a and (in progress) 1.1 b.

B.1.5 Changes

e JSP 1.2 is based on Servlet 2.3, in particular:
e JSP 1.2 is based on the Java 2 platform.

B.2 Changesbetweenl1.0and 1.1

The JSP 1.1 specification builds on the JSP 1.0 specification. The following changes ocurred
between the JSP 1.0 final specification and the JSP 1.1 final specification.

185 JavaServer Pages 1.2 Specification - PD1« August 15, 2000

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

Additions

B.2.1

B.2.2

Added a portable tag extension mechanism with an XML-based Tag Library Descriptor,
and a run-time stack of tag handlers. Tag handers are based on the JavaBeans component
model. Adjusted the semantics of the uri attribute in taglib directives.

Flush is now a mandatory attribute of jsp:include, and the only valid value is “true’.
Added parameters to jsp:include and jsp:forward.

Enabled the compilation of JSP pages into Servlet classes that can be transported from
one JSP container to another. Added appendix with an example of this.

Added a precompilation protocol.

Added pushBody() and popBody() to PageContext.

Added JspExcepti on and JspTagExcepti on classes.

Consistent use of the JSP page, JSP container, and similar terms.

Added a Glossary as Appendix C.

Expanded Chapter 1 so as to cover 0.92's "model 1" and "model 2".

Clarified a number of JSP 1.0 details.

Changes

Use Servlet 2.2 instead of Servlet 2.1 (as clarified in Appendix B), including distributable
JSP pages.

j sp: pl ugi n no longer can be implemented by just sending the contents of

j sp: fall back to the client.

Reserved all request parameters starting with "jsp".

Appendix 186

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

187 JavaServer Pages 1.2 Specification - PD1« August 15, 2000

APPENDIX C

Glossary

This appendix is a glossary of the main concepts mentioned in this specification.

action An element in a JSP page that can act on implicit objects and other server-side objects
or can define new scripting variables. Actions follow the XML syntax for elements
with a start tag, a body and an end tag; if the body is empty it can also use the empty
tag syntax. The tag must use a prefix.

action, standard An action that is defined in the JSP specification and is always available to a JSP file
without being imported.

action, custom An action described in a portable manner by atag library descriptor and a collection of
Java classes and imported into a JSP page by ataglib directive.

Application Assembler A person that combines JSP pages, servlet classes, HTML content, tag libraries, and
other Web content into a deployable Web application.

component contract The contract between a component and its container, including life cycle management
of the component and the APIs and protocols that the container must support.

Component Provider A vendor that provides a component either as Java classes or as JSP page source.

distributed container A JSP container that can run a Web application that is tagged as distributable and is
spread across multiple Java virtual machines that might be running on different hosts.

declaration An scripting element that declares methods, variables, or both in a JSP page.
Syntactically it is delimited by the <%! and %> characters.

directive An element in a JSP page that gives an instruction to the JSP container and is
interpreted at translation time. Syntactically it is delimited by the <%@ and %>
characters.

element A portion of a JSP page that is recognized by the JSP translator. An element can be a
directive, an action, or a scripting element.

188

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

expression

fixed template data

implicit object

JavaServer Pages
technology

JSP container

JSP file

JSP page

JSP page, front

JSP page, presentation

JSP page implementation
class

JSP page implementation
object

scripting element

189

A scripting element that contains a valid scripting language expression that is
evaluated, converted to a St ri ng, and placed into the implicit out object.
Syntactically it is delimited by the <%= and %> characters

Any portions of a JSP file that are not described in the JSP specification, such as
HTML tags, XML tags, and text. The template data is returned to the client in the
response or is processed by a component.

A server-side object that is defined by the JSP container and is always available in a
JSP file without being declared. The implicit objects arer equest, r esponse,
pageCont ext , sessi on, appl i cati on, out, confi g, page, and excepti on.

An extensible Web technology that uses template data, custom elements, scripting
languages, and server-side Java objects to return dynamic content to aclient. Typically
the template data is HTML or XML elements, and in many cases the client is a Web
browser.

A system-level entity that provides life cycle management and runtime support for JSP
and Servlet components.

A text file that contains a JSP page. In the current version of the specification, the JSP
file must have a .jsp extension.

A text-based document that uses fixed template data and JSP elements and describes
how to process a request to create a response. The semantics of a JSP page are realized
at runtime by a JSP page implementation class.

A JSP page that receives an HTTP request directly from the client. It creates, updates,
and/or accesses some server-side data and then forwards the request to a presentation
JSP page.

A JSP page that is intended for presentation purposes only. It accesses and/or updates
some server-side data and incorporates fixed template data to create content that is sent
to the client.

The Java programming language class, a Servlet, that is the runtime representation of a
JSP page and which receives the request object and updates the response object. The
page implementation class can use the services provided by the JSP container,
including both the Servlet and the JSP APIs.

The instance of the JSP page implementation class that receives the request object and
updates the response object.

A declaration, scriptlet, or expression, whose tag syntax is defined by the JSP
specification, and whose content is written according to the scripting language used in
the JSP page. The JSP specification describes the syntax and semantics for the case
where the language page attribute is "java’.

JavaServer Pages 1.2 Specification - PD1+ August 15, 2000

scriptlet

tag

tag handler

tag handler

tag library
tag library descriptor

Tag Library Provider

Web application

Web application,
distributable

Web Application
Deployer

Web component

Web Container
Provider

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

An scripting element containing any code fragment that is valid in the scripting
language used in the JSP page. The JSP specification describes what is a valid
scriptlet for the case where the language page attribute is "java'. Syntactically a
scriptlet is delimited by the <% and %> characters.

A piece of text between a left angle bracket and a right angle bracket that has a name,
can have attributes, and is part of an element in a JSP page. Tag names are known to

the JSP translator, either because the name is part of the JSP specification (in the case
of a standard action), or because it has been introduced using a Tag Library (in the case
of custom action).

A Java class that implements the Tag or the BodyTag interfaces and that is the run-time
representation of a custom action.

A JavaBean component that implements the Tag or Body Tag interfaces and is the
run-time representation of a custom action.

A collection of custom actions described by atag library descriptor and Java classes.
An XML document describing a tag library.

A vendor that provides a tag library. Typical examples may be a JSP container vendor,
a development group within a corporation, a component vendor, or a service vendor
that wants to provide easier use of their services.

An application built for the Internet, an intranet, or an extranet.

A Web application that is written so that it can be deployed in a Web container
distributed across multiple Java virtual machines running on the same host or different
hosts. The deployment descriptor for such an application uses the di st ri but abl e
element.

A person who deploys a Web application in a Web container, specifying at least the
root prefix for the Web application, and in a J2EE environment, the security and
resource mappings.

A servlet class or JSP page that runs in a JSP container and provides services in
response to requests.

A vendor that provides a servlet and JSP container that support the corresponding
component contracts.

Appendix 190

PUBLIC DRAFT 1 - SUBJECT TO CHANGE

191 JavaServer Pages 1.2 Specification - PD1« August 15, 2000

	Contents
	Chapter 1: Overview 18
	Chapter 2: Core Syntax and Semantics 24
	Chapter 3: Localization Issues 54
	Chapter 4: Standard Actions and Directives 56
	Chapter 5: JSP Pages as XML Documents 72
	Chapter 6: The JSP Container 80
	Chapter 7: Scripting 92
	Chapter 8: Core API 96
	Chapter 9: Tag Extensions 120
	Chapter 10: Tag Extension API 144
	Appendix A: Packaging JSP Pages 180
	Appendix B: Changes 184
	Appendix C: Glossary 188

	Status
	Preface
	Overview
	1.1 The JavaServer Pages™ Technology
	1.2 Basic Concepts
	1.2.1 What is a JSP Page?
	1.2.2 Web Applications
	1.2.3 Components and Containers
	1.2.4 Translation and Execution Steps
	1.2.5 Features in JSP
	1.2.6 JSP Pages and the Java 2 Enterprise Edition Specification

	Core Syntax and Semantics
	2.1 What is a JSP Page
	2.1.1 Web Containers and Web Components
	2.1.2 XML Document for a JSP Page
	2.1.3 Translation and Execution Phases
	2.1.4 Events Exposed to JSP Pages
	2.1.5 Compiling JSP Pages

	2.2 Web Applications
	2.2.1 Relative URL Specifications within an Application

	2.3 Syntactic Elements of a JSP Page
	2.3.1 Elements and Template Data
	2.3.2 Element Syntax
	Directives
	Actions
	Scripting Elements

	2.3.3 Start and End Tags
	2.3.4 Empty Elements
	2.3.5 Attribute Values
	2.3.6 White Space

	2.4 Error Handling
	2.4.1 Translation Time Processing Errors
	2.4.2 Request Time Processing Errors

	2.5 Comments
	Generating Comments in Output to Client
	JSP Comments

	2.6 Quoting and Escape Conventions
	Quoting in Scripting Elements
	Quoting in Template Text
	Quoting in Attributes
	XML Representation

	2.7 Overall Semantics of a JSP Page
	2.8 Objects
	2.8.1 Objects and Variables
	2.8.2 Objects and Scopes
	2.8.3 Implicit Objects
	2.8.4 The pageContext Object

	2.9 Template Text Semantics
	2.10 Directives
	2.10.1 The page Directive
	Examples
	2.10.1.1 Syntax

	2.10.2 The taglib Directive
	Examples
	2.10.2.1 Syntax

	2.11 Scripting Elements
	2.11.1 Declarations
	Examples
	Syntax

	2.11.2 Scriptlets
	Examples
	Syntax

	2.11.3 Expressions
	Examples
	Syntax

	2.12 Actions
	2.13 Tag Attribute Interpretation Semantics
	2.13.1 Request Time Attribute Values
	2.13.2 The id Attribute
	2.13.3 The scope Attribute

	Localization Issues
	3.1 I18N Issues
	3.1.1 Specifying Content Types
	3.1.2 Delivering Localized Content

	Standard Actions and Directives
	4.1 Standard Directives
	4.1.1 The include Directive
	Examples
	4.1.1.1 Syntax

	4.1.2 Including Data in JSP Pages

	4.2 Standard Actions
	4.2.1 <jsp:useBean>
	Examples
	4.2.1.1 Syntax

	4.2.2 <jsp:setProperty>
	Examples
	4.2.2.1 Syntax

	4.2.3 <jsp:getProperty>
	Examples
	4.2.3.1 Syntax

	4.2.4 <jsp:include>
	Examples
	4.2.4.1 Syntax

	4.2.5 <jsp:forward>
	Examples
	4.2.5.1 Syntax

	4.2.6 <jsp:param>
	4.2.6.1 Syntax

	4.2.7 <jsp:plugin>
	Examples
	4.2.7.1 Syntax

	JSP Pages as XML Documents
	5.1 Why an XML Representation
	5.2 Document Type
	5.2.1 The jsp:root Element
	5.2.2 Public ID

	5.3 Directives
	5.3.1 The page directive
	Example

	5.3.2 The include Directive
	Examples

	5.3.3 The taglib Directive

	5.4 Scripting Elements
	5.4.1 Declarations
	DTD Fragment

	5.4.2 Scriptlets
	DTD Fragment

	5.4.3 Expressions
	DTD Fragment

	5.5 Actions
	5.6 Transforming a JSP Page into an XML Document
	5.6.1 Quoting Conventions
	5.6.2 Request-Time Attribute Expressions

	5.7 DTD for the XML document

	The JSP Container
	6.1 The JSP Page Model
	The Protocol Seen by the Web Server
	The Protocol Seen by the JSP Page Author
	The HttpJspPage Interface

	6.2 JSP Page Implementation Class
	6.2.1 API Contracts
	6.2.2 Request and Response Parameters
	6.2.3 Omitting the extends Attribute
	6.2.4 Using the extends Attribute

	6.3 Buffering
	6.4 Precompilation
	6.4.1 Request Parameter Names
	6.4.2 Precompilation Protocol

	Scripting
	7.1 Overall Structure
	Valid JSP Page
	Implementation Flexibility

	7.2 Declarations Section
	7.3 Initialization Section
	7.4 Main Section

	Core API
	8.1 JSP Page Implementation Object Contract
	8.1.1 JspPage
	8.1.1.1 Methods

	8.1.2 HttpJspPage
	8.1.2.1 Methods

	8.1.3 JspFactory
	8.1.3.1 Constructors
	8.1.3.2 Methods

	8.1.4 JspEngineInfo
	8.1.4.1 Constructors
	8.1.4.2 Methods

	8.2 Implicit Objects
	8.2.1 PageContext
	8.2.1.1 Fields
	8.2.1.2 Constructors
	8.2.1.3 Methods

	8.2.2 JspWriter
	8.2.2.1 Fields
	8.2.2.2 Constructors
	8.2.2.3 Methods

	8.3 An Implemention Example
	8.4 Exceptions
	8.4.1 JspException
	8.4.1.1 Constructors

	8.4.2 JspTagException
	8.4.2.1 Constructors

	Tag Extensions
	9.1 Introduction
	9.1.1 Goals
	9.1.2 Overview
	Tag Handlers
	Event Listeners

	9.1.3 Simple Examples
	Simple Actions
	Actions with a Body
	Conditionals
	Iterations
	Actions that Process their Body
	Cooperating Actions
	Actions Defining Scripting Variables

	9.2 Tag Libraries
	9.2.1 Packaged Tag Libraries
	9.2.2 Location of Java Classes
	9.2.3 Tag Library directive

	9.3 The Tag Library Descriptor
	9.3.1 TLD resource path
	9.3.2 Taglib map in web.xml
	Example

	9.3.3 Determining the TLD Resource Path
	9.3.3.1 Definitions
	9.3.3.2 Processing WEB.XML.
	9.3.3.3 Computing the TLD Resource Path
	9.3.3.4 Examples

	9.3.4 Translation-Time Class Loader
	9.3.5 Assembling a Web Application
	9.3.6 Well-Known URIs

	9.4 The Tag Library Descriptor Format
	Notation

	9.5 Validation
	9.5.1 Translation-Time Mechanisms
	9.5.1.1 Attribute Information
	9.5.1.2 Validator Classes
	9.5.1.3 Syntactic Information in a TagExtraInfo Class

	9.5.2 Request-Time Errors

	9.6 Conventions and Other Issues
	9.6.1 How to Define New Implicit Objects
	9.6.2 Access to Vendor-Specific information
	9.6.3 Customizing a Tag Library

	Tag Extension API
	10.1 Simple Tag Handlers
	10.1.1 Tag
	10.1.1.1 Fields
	10.1.1.2 Methods

	10.1.2 IterationTag
	10.1.2.1 Fields
	10.1.2.2 Methods

	10.1.3 TagSupport
	10.1.3.1 Fields
	10.1.3.2 Constructors
	10.1.3.3 Methods

	10.2 Tag Handlers that want Access to their Body Content
	10.2.1 BodyContent
	10.2.1.1 Constructors
	10.2.1.2 Methods

	10.2.2 BodyTag
	10.2.2.1 Fields
	10.2.2.2 Methods

	10.2.3 BodyTagSupport
	10.2.3.1 Fields
	10.2.3.2 Constructors
	10.2.3.3 Methods

	10.3 Tag Life Cycle
	10.4 Cooperating Actions
	10.5 Translation-time Classes
	10.5.1 TagLibraryInfo
	10.5.1.1 Fields
	10.5.1.2 Constructors
	10.5.1.3 Methods

	10.5.2 TagInfo
	10.5.2.1 Fields
	10.5.2.2 Constructors
	10.5.2.3 Methods

	10.5.3 TagAttributeInfo
	10.5.3.1 Fields
	10.5.3.2 Constructors
	10.5.3.3 Methods

	10.5.4 PageInfo
	10.5.4.1 Constructors
	10.5.4.2 Methods

	10.5.5 TagLibraryValidator
	10.5.5.1 Constructors
	10.5.5.2 Methods

	10.5.6 TagExtraInfo
	10.5.6.1 Constructors
	10.5.6.2 Methods

	10.5.7 TagData
	10.5.7.1 Fields
	10.5.7.2 Constructors
	10.5.7.3 Methods

	10.5.8 VariableInfo
	10.5.8.1 Fields
	10.5.8.2 Constructors
	10.5.8.3 Methods

	Packaging JSP Pages
	A.1 Backward Compatibility Note
	A.2 A very simple JSP page
	A.3 The JSP page packaged as source in a WAR file
	A.4 The Servlet for the compiled JSP page
	A.5 The Web Application Descriptor
	A.6 The WAR for the compiled JSP page

	Changes
	B.1 Changes between 1.1 and 1.2 PD1
	B.1.1 Organizational Changes
	B.1.2 New Document
	B.1.3 Additions to API
	B.1.4 Clarifications
	B.1.5 Changes

	B.2 Changes between 1.0 and 1.1
	B.2.1 Additions
	B.2.2 Changes

	Glossary

