
)

Abstract
This is the Public Review draft of the Java Logging APIs proposed in JSR-047.

There are change bars relative to the Community Review draft (0.50).

There is a change history on page 79.

Java Logging APIs

Editor: Graham Hamilton (kgh@sun.com
October 18, 2000DRAFT 0.55

Copyright© 2000 Sun Microsystems, Inc.

Java Software

cus-

ap.

mon
of re-
ging

(a) di-
rvices.

x and
to en-
tions.

ginal

de-

te log-
trol
1 Requirements

This section outlines the main requirements and goals for the Java Logging APIs.

1.1 Target Users

The central goal of the logging APIs is to support maintaining and servicing software at
tomer sites. There are four main target uses of the logs:

• Problem diagnosis by end users and system administrators.
• Problem diagnosis by field service engineers.
• Returning detailed information for diagnosis by the development team.
• Problem diagnosis by developers

These four uses have somewhat different requirements, but there is considerable overl

1.1.1 End Users and System Administrators

For end users and system administrators it is desirable to provide simple logging of com
problems that can be fixed or tracked locally. This includes such things as running out
sources, security failures, and simple configuration errors. In general, this level of log
should be very easy to use, and the logs should be self explanatory.

Full internationalization of this logging information is required.

For system management purposes it is highly desirable that Java logging output can be
rected to existing logging services and (b) forwarded to network system management se

1.1.2 Diagnosis by Field Service Engineers

Field service engineers will use the logs to help diagnose:

• Configuration errors
• Performance bottlenecks
• Bugs in the application or in the platform

The logging information used by service engineers may be considerably more comple
considerably more verbose than that used by system administrators. It must be possible
able extra logging in particular subsystems and to enable subsystem specific logging op

1.1.3 Diagnosis by the development organization

When a problem occurs in the field it may be necessary to return information to the ori
development organization for diagnosis.

This logging information may be extremely detailed and fairly inscrutable. It may include
tailed tracing information on the internal execution of particular subsystems.

It must be easy for the system administrator or field service engineer to enable appropria
ging and to capture the log output. Typically it will be desirable to have fairly fine grain con
over exactly what is logged and on the level of logging information that is produced.

Typically such logging information will not require internationalization.
Sun Microsystems Inc. 2 Logging APIs

Java Software

e log-
ed by

Is to
t.

n re-

. The

o have
for

ram.
hav-
dify

sub-

rest

reas

rve

a pro-
vels.
1.1.4 Use by developers

Logging may be used to help debug an application under development. This may includ
ging information generated by the target application and also logging information generat
lower level libraries.

This usage is perfectly reasonable. However it it is definitely not a goal of the logging AP
replace the use of normal debugging and profiling tools in the development environmen

1.2 Configuration requirements

There needs to be both static and dynamic control over logging.

1.2.1 Static Control

Static control should allow field service staff to setup a particular configuration and the
launch the application with the new logging settings.

It should be easy for system administrators or end-users to configure the logging system
default configuration should make only modest use of system resources.

Several programs may be sharing one copy of the JRE. It may be desirable to be able t
different logging configuration options for different programs, or to provide special options
a particular run of a given program.

1.2.2 Dynamic Control

It is necessary to allow dynamic updates to the logging configuration within a running prog
For long lived services it may be desirable to make minor adjustments to logging without
ing to restart the service. Additionally, some programs way wish to programatically mo
their logging configuration as they run.

1.3 Granularity of logging

It appears desirable to support granularity of logging in two different dimensions, first by
system and second by priority or level.

1.3.1 Functional areas

A field service engineer might be interested in tracing all events in AWT, but have no inte
in socket events or memory management.

It is therefore desirable to allow logging to be enabled or disabled for different functional a
of the system.

1.3.2 Logging Levels

Logging is relatively expensive. We want to allow fine grain logging, but in order to prese
system performance we will normally want to disable most logging.

It appears desirable to allow logging to be enabled based on a system of levels, so that
gram can be configured to output logging for some levels while ignoring output at other le
Sun Microsystems Inc. 3 Logging APIs

Java Software

ech-

Other

wards

pport
1.3.3 Filters

In addition to having logging levels, it is also desirable to support a more general filter m
anism so that application code can attach arbitrary filters to control logging output.

1.4 Pluggable Handlers

It should be possible to direct logging information to a variety of back-end log Handlers.

Some back-end Handlers will be delivered as part of this JSR (see the javadoc below).
Handlers may be developed by third parties and delivered on top of the core platform.

For example, an application server vendor may develop a Java logging service that for
Java logging requests into a vendor specific logging mechanism.

1.5 Internationalization

The Logging Framework should support easy internationalization of log messages.

The support for internationalization should be based on the normal internationalization su
in the Java platform.
Sun Microsystems Inc. 4 Logging APIs

Java Software

s an

ay
r

nally)
.

d their
nore

ords
chain.

abled.
n test
ize
atting
ple, a
2 Logging API Overview

The logging APIs are described in detail in javadoc later in this note. This section provide
overview of key elements.

2.1 Overview of Control Flow

Applications make logging calls onLoggerobjects. These Logger objects allocateLogRecord
objects which are passed toHandlerobjects for publication. Both Loggers and Handlers m
use loggingLevelsand (optionally)Filters to decide if they are interested in a particula
LogRecord. When it is necessary to publish a LogRecord externally, a Handler can (optio
use aFormatterto localize and format the message, before publishing it to an I/O stream

The LogManager class keeps track of a set of global Handlers. By default all Loggers sen
output to this standard set of global Handlers. But Loggers may also be configured to ig
the global Handler list and/or to send output to specific target Handlers.

Some Handlers may direct output to other Handlers. For example, theMemoryHandlermain-
tains an internal ring buffer of LogRecords and on trigger events it publishes its LogRec
through a target Handler. In such cases, any formatting is done by the last Handler in the

The APIs are structured so that calls on the Logger APIs can be cheap when logging is dis
If logging is disabled for a given log level, then the Logger can make a cheap compariso
and return. If logging is enabled for a given log level, the Logger is still careful to minim
costs before passing the LogRecord into the Handlers. In particular, localization and form
(which are relatively expensive) are deferred until the Handler requests them. For exam

Loggerapplication
Handler

outside world

Filter FormatterFilter

Logger
application

Handler
outside world

Filter Formatter

Memory
Handler

Filter Filter
Sun Microsystems Inc. 5 Logging APIs

Java Software

at-

e
er val-

owest

t it

”. The
ypically
. For
a.awt
isible

ppear

l for a
g”

The
is as-

ke
t it

es. For
name.
l the

nities
MemoryHandler can maintain a circular buffer of LogRecords without having to pay form
ting costs.

2.2 Log Levels

Each log message has an associated logLevel. The Level gives a rough guide to the importanc
and urgency of a log message. Log level objects encapsulate an integer value, with high
ues indicating higher priorities.

Seven standard log levels are defined in the Level class. They range from FINEST (the l
priority, with the lowest value) to SEVERE (the highest priority, with the highest value).

2.3 Loggers

Client code sends log request toLoggerobjects. Each logger keeps track of a log level tha
is interested in and discards log requests that are below this level.

Loggers are normally named entities, using dot separated names such as “java.awt
namespace is hierarchical and is managed by the LogManager. The namespace should t
be aligned with the Java packaging namespace, but is not required to follow it slavishly
example, a Logger called “java.awt” might handle logging requests for classes in the jav
package, but it might also handle logging for classes in sun.awt that support the client-v
abstractions defined in the java.awt package.

In addition to named Loggers, it is also possible to create anonymous Loggers that don’t a
in the shared namespace. See Section 2.14.

By default, loggers send their output to a set of global Handlers managed by theLogManager
infrastructure class (see 2.7 below).

The LogManager class allows log levels to be updated for named loggers. Setting a leve
given named Logger will also affect all its children. So setting a log level for “javax.swin
will also affect javax.swing.text” and “javax.swing.table” and “javax.swing.table.header”.
LogManager keeps track of level settings and when a new named Logger is created it
signed the appropriate Level for its point in the naming hierarchy.

2.4 Logging methods
Note to reviewers: I realize some people would prefer that all logging methods should require source
class name and method name. I also realize other people would prefer that none of the methods ta
source class name or method name. We are trying to please a diverse community, and at the momen
looks like we need to support both variants.

The logger class provides a large set of convenience methods for generating log messag
convenience, there are methods for each of logging levels, named after the logging level
Thus rather than calling “logger.log(Constants.WARNING, ...” a developer can simply cal
convenience method “logger.warning(...”

There are two different styles of logging methods, to meet the needs of different commu
of users.
Sun Microsystems Inc. 6 Logging APIs

Java Software

. These
f any

ethod
ire de-

ine
into
tion
tions

e the

-
-

nal-
.

s in-
First, there are methods that take an explicit source class name and source method name
methods are intended for developers who want to be able to quickly locate the source o
given logging message. An example of this style is:

void warning(String sourceClass, String sourceMethod, String msg);

Second, there are a set of methods that do not take explicit source class or source m
names. These are intended for developers who want easy-to-use logging and do not requ
tailed source information.

void warning(String msg);

For this second set of methods, the Logging framework will make a “best effort” to determ
which class and method called into the logging framework and will add this information
the LogRecord. However, it is important to realize that this automatically inferred informa
may only be approximate. The latest generation of virtual machines do extensive optimiza
when JITing and may entirely remove stack frames, making it impossible to reliably locat
calling class and method.

Note to reviewers: This is exactly the same situation as with Throwable backtraces. The information in
a Throwable backtrace is also only approximate. This issue has been discussed with the Java Virtual Ma
chine spec lead, and it is clear that the current JVM spec does not require that accurate call stack infor
mation be provided and it is also very unlikely that such a requirement would be added, as it would
prevent potential JIT optimizations.

2.5 Handlers

The following handlers will be provided as part of J2SE:

• StreamHandler. A simple handler for writing formatted records to an OutputStream.
• ConsoleHandler. A simple handler for writing formatted records to System.err.
• FileHandler.A handler to write formatted log records to either a single file, or a set of

rotating log files.
• SocketHandler. A handler to write formatted log records to remote TCP ports.
• MemoryHandler. A handler to buffer log records in memory.

It is fairly straightforward to develop new Handlers. Developers requiring specific functio
ity can either develop a Handler from scratch, or subclass one of the provided Handlers

2.6 Formatters

J2SE will include two standard Formatters:

• XMLFormatter. Writes detailed XML structured information.
• SimpleFormatter. Write brief “human readable” summaries of log records.

As with Handlers it is fairly straightforward to develop new Formatters.

2.7 The LogManager

There is a global LogManager object that keeps track of global logging information. Thi
cludes:
Sun Microsystems Inc. 7 Logging APIs

Java Software

el
g

y

tLog-
perty.
r own

ad

used
from
tails.

n of

d to
ied in

tems
of the

e” to

de-
re im-

e and
ake

sys-
rded.
• A hierarchical namespace of named Loggers. This includes recording the logging lev
settings for various points in the namespace, which can be used to initialize the loggin
levels for new Loggers.

• A set of logging control properties read from the configuration file (see 2.8 below).
• A set of “global Handlers” that are the default handlers used by all Loggers (unless the

are disabled for a given Logger)

There is a single LogManager object that can be retrieved using the static LogManager.ge
Manager object. This is created during LogManager initialization, based on a system pro
This property allows container applications (such as EJB containers) to substitute thei
subclass of LogManager in place of the default class.

2.8 Configuration File

The logging configuration can be initialized using a logging configuration file that will be re
at startup. This logging configuration file is in standard java.util.Properties format.

Alternatively, the logging configuration can be initialized by specifying a class that can be
for reading initialization properties. This mechanism allows configuration data to be read
arbitrary sources, such as LDAP, JDBC, etc. See the LogManager javadoc for more de

There is a small set of global configuration information. This is specified in the descriptio
the LogManager class and includes a list of global Handlers to install during startup.

The initial configuration may specify levels for particular loggers. These levels are applie
the named logger and any loggers below it in the naming hierarchy. The levels are appl
the order they are defined in the configuration file.

The initial configuration may contain arbitrary properties for use by Handlers or by subsys
doing logging. By convention these properties should use names starting with the name
handler class or the name of the main Logger for the subsystem.

For example, the MemoryHandler uses a property “java.util.logging.MemoryHandler.siz
determine the default size for its ring buffer.

2.9 Default Configuration

We need to decide on a default logging configuration to ship with the JRE. This is only a
fault, and can be overridden by ISVs, system admins, and end users. However defaults a
portant.

We need to make sure that the default configuration makes only limited use of disk spac
also that it doesn’t flood the user with information. At the same time we would like to m
sure to always capture key failure information.

The proposed default configuration will establish two global Handlers, one for a file in the
tem temporary directory and one for the console. Only high priority messages will be reco

Set the logging level for the root of the namespace.

This becomes the default logging level for all Loggers.

.level= INFO
Sun Microsystems Inc. 8 Logging APIs

Java Software

s

s

I calls

l log

nd
ify

For-
log
List of global handlers

handlers = java.util.logging.FileHandler, \

java.util.logging.ConsoleHandler

Properties for the FileHandler

java.util.logging.FileHandler.limit = 50000

java.util.logging.FileHandler.count = 3

java.util.logging.FileHandler.pattern = %t/java%u.%g.log

Default level for ConsoleHandler. This can be used to

limit the levels that are displayed on the console even

when the global default has been set to a trace level.

java.util.logging.ConsoleHandler.level = INFO

2.10 Dynamic configuration updates

Programmers can update the logging configuration at run time in a variety of ways:

• FileHandlers, MemoryHandlers, and PrintHandlers can all be created with variou
attributes.

• The LogManager allows new global Handlers to be added and old ones removed.
• New Loggers can be created and can be supplied with specific Handlers.
• The LogManager.setLevel method allows new logging levels to be specified for tree

within the Logger namespace.

2.11 Native Methods

There are no native APIs for logging.

Native code that wishes to use the Java Logging mechanisms should make normal JN
into the Java APIs for logging.

2.12 XML DTD

The XML DTD used by the XMLFormatter is specified in Appendix A.

The DTD is designed with a “<log>” element as the top-level document. Then individua
records are written as “<record>” elements.

Note to reviewers: Originally we tried to simply have a stream of <record> elements with no encom-
passing document. However standard XML parsers expect to deal with a single document element a
cope poorly with a stream of independent elements. It is also necessary to have an XML header to spec
the DTD and character-set encoding.

Note that in the event of JVM crashes it may not be possible to cleanly terminate an XML
matter stream with the appropriate closing </log>. Therefore tools that are analyzing
records should be prepared to cope with un-terminated streams.
Sun Microsystems Inc. 9 Logging APIs

Java Software

n con-

e log-
ular

o pre-

con-

of the
n cre-
g con-
ever

er.get-
ce and

ogging

can-
artic-
as the
e mes-
sage

rvice
ages

d as
pro-

read.
made
2.13 Unique Message IDs

The Java Logging APIs do not provide any direct support for unique message IDs.

Those applications or subsystems requiring unique message IDs should define their ow
ventions and include the unique IDs in the message strings, where appropriate.

2.14 Security

The principal security requirement is that untrusted code should not be able to change th
ging configuration. Specifically, if the logging configuration has been set up to log a partic
category of information to a particular handler, then untrusted code should not be able t
vent or disrupt that logging.

A new security permission LoggingPermission is defined to control updates to the logging
figuration.

Trusted applications are given the appropriate LoggingPermission so they can call any
logging configuration APIs. Untrusted applets are a different story. Untrusted applets ca
ate and use named Loggers in the normal way, but they are not allowed to change loggin
trol settings, such as adding or removing handlers, or changing logging levels. How
untrusted applets are able to create and use their own “anonymous” Loggers, using Logg
AnonymousLogger. These anonymous Loggers are not registered in the global namespa
their methods are not access checked, allowing even untrusted code to change their l
control settings.

The logging framework does not attempt to prevent spoofing. The sources of logging calls
not be determined reliably, so when a LogRecord is published that claims to be from a p
ular source class and source method, it may be a fabrication. Similarly, formatters such
XMLFormatter do not attempt to protect themselves against nested log messages insid
sage strings. Thus, a spoof LogRecord might contain a spoof set of XML inside its mes
string to make it look as if there was an additional XML record in the output.

In addition, the logging framework does not attempt to protect itself against denial of se
attacks. Any given logging client can flood the logging framework with meaningless mess
in an attempt to conceal some important log message.

2.15 Configuration Management

Currently the APIs are structured so that an initial set of configuration information is rea
properties from a configuration file. The configuration information may then be changed
gramatically by calls on the various logging classes and objects.

In addition, there are methods on LogManager that allow the configuration file to be re
When this happens, the configuration file values will override any changes that have been
programatically.
Sun Microsystems Inc. 10 Logging APIs

Java Software

kage.
them

g Re-
strings.

class
g sup-

dress
want

XML-
d pro-

there-
eters.
ed to se-
ecord
g Ob-
ails.

rs are
analo-

s the

og-
hus a
ay im-
pro-

g the
2.16 Packaging

All the Logging classes are in the java.* part of the namespace, in the java.util.logging pac
This helps to emphasize that they are part of the core platform and that people can rely on
being available.

2.17 Localization

Log messages may need to be localized.

Each Logger may have a Resource Bundle name associated with it. The correspondin
source Bundle can be used to map between raw message strings and localized message

Normally localization will be performed by Formatters. As a convenience, the Formatter
provides a formatMessage method that provides some basic localization and formattin
port.

2.18 Remote access and serialization

As with most Java platform APIs, the logging APIs are designed for use inside a single ad
space. All calls are intended to be local. However, it is expected that some Handlers will
to forward their output to other systems. There are a variety of ways of doing this:

Some Handlers (such as the SocketHandler) may write data to other systems using the
Formatter. This provides a simple, standard, inter-change format which can be parsed an
cessed on a variety of systems.

Some Handlers may wish to pass LogRecord objects over RMI. The LogRecord class is
fore serializable. However there is a problem in how to deal with the LogRecord param
Some parameters may not be serializable and other parameters may have been design
rialize much more state than is required for logging. To avoid these problems the LogR
class has a custom writeObject method which converts the parameters to strings (usin
ject.toString()) before writing them out. See the javadoc for the LogRecord class for det

Most of the logging classes are not intended to be serializable. Both Loggers and Handle
very stateful classes and are tied into a specific virtual machine. In this respect they are
gous to the java.io classes which are also not serializable.

2.19 J2EE issues

For J2EE applications, the J2EE container typically controls the environment and provide
shared services that are used by all the contained components.

All the “global” state in the Logging APIs is maintained in the LogManager class. The L
Manager APIs allow a program to substitute its own version of the LogManager class. T
J2EE container can replace the standard LogManager class with its own subclass that m
plement different rules for managing “global” state. For example, a J2EE container might
vide separate logging namespaces for logically distinct applications that are sharin
container.
Sun Microsystems Inc. 11 Logging APIs

Java Software

ents.
andler
rt of the
ts that

sed on
r ob-

t to a
Typically, J2EE containers will provide standard output Handlers for use by J2EE compon
So typically J2EE components (such as EJBs) should not expect to create their own H
classes, but should expect to use standard Handlers that have been configured as pa
container. However, J2EE components can freely create their own named Logger objec
use the standard Handlers.

3 Examples

3.1 Simple use

Here’s a small program that does logging using the default configuration.

This program relies on the global handlers that were established by the LogManager ba
the configuration file. It creates its own Logger object and then makes calls to that Logge
ject to report various events.

package com.wombat;

import java.util.logging.*;

public class Nose {

// Obtain a suitable logger.

private static Logger logger = Logger.getLogger(“com.wombat.nose”);

public static void main(String argv[]) {

// Log a FINE tracing message

logger.fine(“doing stuff”);

try {

Wombat.sneeze();

} catch (Error ex) {

// Log the Error.

logger.log(Level.WARNING, “trouble sneezing”, ex);

}

logger.fine(“done”);

}

}

3.2 Changing the configuration

Here’s a small program that dynamically adjusts the logging configuration to send outpu
specific file and to get lots of information on wombats:

public static void main(String argv[]) {

LogManager.removeAllGlobalHandlers();

Handler fh = new FileHandler(“%t/wombat.log”);

LogManager.addGlobalHandler(fh);

LogManager.setLevel(“com.wombat”, Level.FINEST);

...

}

Sun Microsystems Inc. 12 Logging APIs

Java Software

gura-
3.3 Simple use, ignoring global configuration

Here’s a small program that sets up it own logging Handler and ignores the global confi
tion. Note that the logging output will still go to the global handlers.

package com.wombat;

import java.util.logging.*;

public class Nose {

private static Logger logger = Logger.getLogger(“com.wombat.nose”);

private static FileHandler fh = new FileHandler(“mylog.txt”);

public static void main(String argv[]) {

// Send logger output to our FileHandler.

logger.addHandler(fh);

// Request that every detail gets logged.

logger.setLevel(Level.ALL);

// Log a simple INFO message.

logger.info(“doing stuff”);

try {

Wombat.sneeze();

} catch (Error ex) {

logger.log(Level.WARNING, “trouble sneezing”, ex);

}

logger.fine(“done”);

}

}

3.4 Sample XML output

Here’s a small sample of what some XMLFormatter XML output looks like:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<!DOCTYPE log SYSTEM "logger.dtd">

<log>

<record>

 <date>2000-08-23 19:21:05</date>

 <millis>967083665789</millis>

 <sequence>1256</sequence>

 <logger>kgh.test.fred</logger>

 <level>INFO</level>

 <class>kgh.test.XMLTest</class>

 <method>writeLog</method>

 <thread>10</thread>

 <message>Hello world!</message>

</record>

</log>
Sun Microsystems Inc. 13 Logging APIs

Java Software
Sun Microsystems Inc. 14 Logging APIs

Java Software
package

java.util.logging

Class Summary

Interfaces

Filter A Filter can be used to provide fine grain control over what is logged, beyond the con-
trol provided by log levels.

Classes

ConsoleHandler This handler publishes log records to System.err.

FileHandler Simple file logging Handler.

Formatter A Formatter provides support for formatting LogRecords.

Handler A Handler object takes log messages from a Logger and exports them.

Level The Level class defines a set of standard logging levels that can be used to control log-
ging output.

Logger A Logger object is used to log messages for a specific system or application compo-
nent.

LoggingPermission The permission which the SecurityManager will check when code that is running with
a SecurityManager calls one of the logging control methods (such as LogManager.set-
Level).

LogManager There is a single global LogManager object that is used to maintain a set of shared
state about Loggers and log services.

LogRecord LogRecord objects are used to pass logging requests between the logging framework
and individual log Handlers.

MemoryHandler Handler that buffers requests in a circular buffer in memory.

SimpleFormatter Print a brief summary of the LogRecord in a human readable format.

SocketHandler Simple network logging handler.

StreamHandler Stream based logging Handler.

XMLFormatter Format a LogRecord into a standard XML format.
Sun Microsystems Inc. 14 Logging APIs

Java Software

maries.

rties.

util.log-

default
java.util.logging

ConsoleHandler
Syntax
public class ConsoleHandler extends java.util.logging.StreamHandler

java.lang.Object
|
+-- java.util.logging.Handler

|
+-- java.util.logging.StreamHandler

|
+-- java.util.logging.ConsoleHandler

Description
This handler publishes log records to System.err. By default the SimpleFormatter is used to generate brief sum

Configuration: By default each ConsoleHandler is initialized using the following LogManager configuration prope
If properties are not defined (or have invalid values) then the specified default values are used.

• java.util.logging.ConsoleHandler.level specifies the default level for the Handler (defaults to Level.INFO).
• java.util.logging.ConsoleHandler.filter specifies the name of a Filter class to use (defaults to no Filter).
• java.util.logging.ConsoleHandler.formatter specifies the name of a Formatter class to use (defaults to java.

ging.SimpleFormatter).
• java.util.logging.ConsoleHandler.encoding the name of the character set encoding to use (defaults to the

platform encoding).

Since: 1.4

Constructors

ConsoleHandler()

public ConsoleHandler()

Create a ConsoleHandler for System.err.

The ConsoleHandler is configured based on LogManager properties (or their default values).

Member Summary

Constructors
ConsoleHandler() Create a ConsoleHandler for System.err.

Methods
close() Override "StreamHandler.close" to do a flush but not to close the output stream.
publish(LogRecord) Publish a LogRecord.
Sun Microsystems Inc. 15 Logging APIs

Java Software

here.
Methods

close()

public void close()

Override "StreamHandler.close" to do a flush but not to close the output stream. That is, we donot close System.err.

Overrides: StreamHandler.close() in classStreamHandler

publish(LogRecord)

public void publish(LogRecord record)

Publish a LogRecord.

The logging request was made initially to a Logger object, which initialized the LogRecord and forwarded it

Overrides: StreamHandler.publish(LogRecord) in classStreamHandler

Parameters:
record - description of the log event
Sun Microsystems Inc. 16 Logging APIs

Java Software

Succes-

s. If

til.log-

latform

le. If

details.

d to the
java.util.logging

FileHandler
Syntax
public class FileHandler extends java.util.logging.StreamHandler

java.lang.Object
|
+-- java.util.logging.Handler

|
+-- java.util.logging.StreamHandler

|
+-- java.util.logging.FileHandler

Description
Simple file logging Handler.

The Handler can either write to a specified file, or it can write to a rotating set of files.

For a rotating set of files, as each file reaches a given size limit, it is closed, rotated out, and a new file opened.
sively older files are named by adding "0", "1", "2", etc into the base filename.

By default buffering is enabled in the IO libraries but each log record is flushed out when it is complete.

By default the XMLFormatter class is used for formatting.

Configuration: By default each FileHandler is initialized using the following LogManager configuration propertie
properties are not defined (or have invalid values) then the specified default values are used.

• java.util.logging.FileHandler.level specifies the default level for the Handler (defaults to Level.ALL).
• java.util.logging.FileHandler.filter specifies the name of a Filter class to use (defaults to no Filter).
• java.util.logging.FileHandler.formatter specifies the name of a Formatter class to use (defaults to java.u

ging.XMLFormatter)
• java.util.logging.FileHandler.encoding the name of the character set encoding to use (defaults to the default p

encoding).
• java.util.logging.FileHandler.limit specifies an approximate maximum amount to write (in bytes) to any one fi

this is zero, then there is no limit. (Defaults to no limit).
• java.util.logging.FileHandler.count specifies how many output files to cycle through (defaults to 1).
• java.util.logging.FileHandler.pattern specifies a pattern for generating the output file name. See below for

(Defaults to "%t/java.log").
A pattern consists of a string that includes the following special components that will be replaced at runtime:

• "/" the local pathname separator
• "%t" the system temporary directory
• "%h" the value of the "user.home" system property
• "%g" the generation number to distinguish rotated logs
• "%u" a unique number to resolve conflicts
• "%%" translates to a single percent sign "%"

If no "%g" field has been specified and the file count is greater than one, then the generation number will be adde
end of the generated filename, after a dot.
Sun Microsystems Inc. 17 Logging APIs

Java Software

olaris
o to

s cur-
il File-

ill be

.0.txt,

system.

t val-

pattern
Thus for example a pattern of "%t/java%g.log" with a count of 2 would typically cause log files to be written on S
to /var/tmp/java0.log and /var/tmp/java1.log whereas on Windows 95 they would be typically written t
C:\TEMP\java0.log and C:\TEMP\java1.log

Generation numbers follow the sequence 0, 1, 2, etc.

Normally the "%u" unique field is set to 0. However, if the FileHandler tries to open the filename and finds the file i
rently in use by another process it will increment the unique number field and try again. This will be repeated unt
Handler finds a file name that is not currently in use. If there is a conflict and no "%u" field has been specified, it w
added at the end of the filename after a dot. (This will be after any automatically added generation number.)

Thus if three processes were all trying to log to fred%u.%g.txt then they might end up using fred0.0.txt, fred1
fred2.0.txt as the first file in their rotating sequences.

Note that the use of unique ids to avoid conflicts is only guaranteed to work reliably when using a local disk file

Since: 1.4

Constructors

FileHandler()

public FileHandler()

Construct a default FileHandler. This will be configured entirely from LogManager properties (or their defaul
ues).

Throws: SecurityException - if a security manager exists and if the caller does not have
LoggingPermission("control").

FileHandler(String)

public FileHandler(java.lang.String pattern)

Initialize a FileHandler to write to the given filename.

The FileHandler is configured based on LogManager properties (or their default values) except that the given
argument is used as the filename pattern, the file limit is set to no limit, and the file count is set to one.

There is no limit on the amount of data that may be written, so use this with care.

Member Summary

Constructors
FileHandler() Construct a default FileHandler.
FileHandler(String) Initialize a FileHandler to write to the given filename.
FileHandler(String,
int, int)

Initialize a FileHandler to write to a set of files.

Methods
close() Close all the files.
publish(LogRecord) Format and publish a LogRecord.
Sun Microsystems Inc. 18 Logging APIs

Java Software

file,

pattern
to the
Parameters:
pattern - the name of the output file

Throws: SecurityException - if a security manager exists and if the caller does not have
LoggingPermission("control").

FileHandler(String, int, int)

public FileHandler(java.lang.String pattern, int limit, int count)

Initialize a FileHandler to write to a set of files. When (approximately) the given limit has been written to one
another file will be opened. The output will cycle through a set of count files.

The FileHandler is configured based on LogManager properties (or their default values) except that the given
argument is used as the filename pattern, the file limit is set to the limit argument, and the file count is set
given count argument.

The count must be at least 1.

Parameters:
pattern - the pattern for naming the output file

limit - the maximum number of bytes to write to any one file

count - the number of files to use

Throws: SecurityException - if a security manager exists and if the caller does not have
LoggingPermission("control").

Methods

close()

public void close()

Close all the files.

Overrides: StreamHandler.close() in classStreamHandler

Throws: SecurityException - if a security manager exists and if the caller does not have
LoggingPermission("control").

publish(LogRecord)

public void publish(LogRecord record)

Format and publish a LogRecord.

Overrides: StreamHandler.publish(LogRecord) in classStreamHandler

Parameters:
record - description of the log event
Sun Microsystems Inc. 19 Logging APIs

Java Software

gable
arded.
java.util.logging

Filter
Syntax
public interface Filter

Description
A Filter can be used to provide fine grain control over what is logged, beyond the control provided by log levels.

Each Logger and each Handler can have a filter associated with it. The Logger or Handler will call the isLog
method to check if a given LogRecord should be published. If isLoggable returns false, the LogRecord will be disc

Since: 1.4

Methods

isLoggable(LogRecord)

public boolean isLoggable(LogRecord record)

Check if a given log record should be published.

Parameters:
record - a LogRecord

Returns: true if the log record should be published.

Member Summary

Methods
isLoggable(LogRecord) Check if a given log record should be published.
Sun Microsystems Inc. 20 Logging APIs

Java Software

onverts

rds. The
java.util.logging

Formatter
Syntax
public abstract class Formatter

java.lang.Object
|
+-- java.util.logging.Formatter

Direct Known Subclasses: SimpleFormatter , XMLFormatter

Description
A Formatter provides support for formatting LogRecords.

Typically each logging Handler will have a Formatter associated with it. The Formatter takes a LogRecord and c
it to a string.

Some formatters (such as the XMLFormatter) need to wrap head and tail strings around a set of formatted reco
getHeader and getTail methods can be used to obtain these strings.

Since: 1.4

Constructors

Formatter()

protected Formatter()

Construct a new formatter.

Member Summary

Constructors
Formatter() Construct a new formatter.

Methods
format(LogRecord) Format the given log record and return the formatted string.
formatMes-
sage(LogRecord)

Localize and format the message string from a log record.

getHead(Handler) Return the header string for a set of formatted records.
getTail(Handler) Return the tail string for a set of formatted records.
Sun Microsystems Inc. 21 Logging APIs

Java Software

ssage
e mes-

rmatter

source-
ay use

for
rrent
Methods

format(LogRecord)

public abstract java.lang.String format(LogRecord record)

Format the given log record and return the formatted string.

The resulting formatted String will normally include a localized and formated version of the LogRecord's me
field. The LogRecord.formatMessage convenience method can (optionally) be used to localize and format th
sage field.

Parameters:
record - the log record to be formatted.

Returns: the formatted log record

formatMessage(LogRecord)

public java.lang.String formatMessage(LogRecord record)

Localize and format the message string from a log record. This method is provided as a convenience for Fo
subclasses to use when they are performing formatting.

The message string is first localized to a format string using the record's ResourceBundle. (If there is no Re
Bundle, or if the message key is not found, then the key is used as the format string.) The format String m
either java.text style formatting or (starting in JDK 1.4) printf style formatting:

• If there are no parameters, no formatter is used.
• Otherwise, if the string contains "{0" then java.text.MessageFormat is used to format the string.
• Otherwise printf style formatting is used.

NOTE TO REVIEWERS : I am making a forward reference here to the printf style formatting that is planned
Merlin. This formatting will be fully internationalizable and is likely to be significantly easier to use than the cu
java.text formatting, so it seems useful to support it.

Parameters:
record - the log record containing the raw message

Returns: a localized and formatted message

getHead(Handler)

public java.lang.String getHead(Handler h)

Return the header string for a set of formatted records.

This base class returns an empty string, but this may be overriden by subclasses.

Parameters:
h - The target handler.

Returns: header string

getTail(Handler)

public java.lang.String getTail(Handler h)

Return the tail string for a set of formatted records.
Sun Microsystems Inc. 22 Logging APIs

Java Software
This base class returns an empty string, but this may be overriden by subclasses.

Parameters:
h - The target handler.

Returns: tail string
Sun Microsystems Inc. 23 Logging APIs

Java Software

sole or

propri-

the spe-
java.util.logging

Handler
Syntax
public abstract class Handler

java.lang.Object
|
+-- java.util.logging.Handler

Direct Known Subclasses: MemoryHandler , StreamHandler

Description
A Handler object takes log messages from a Logger and exports them. It might for example, write them to a con
write them to a file, or send them to a network logging service, or forward them to an OS log, or whatever.

A Handler can be disabled by doing a setLevel(Level.OFF) and can be re-enabled by doing a setLevel with an ap
ate level.

Handler classes typically use LogManager properties to set default values for Filter, Formatter, and Level. See
cific documentation for each concrete Handler class.

Since: 1.4

Member Summary

Constructors
Handler() Default constructor.
Handler(Formatter) Construct a Handler with the given formatter.

Methods
close() Close the Handler and free all associated resources.
flush() Flush any buffered output.
getEncoding() Return the character encoding for this Handler.
getException() Report on the most recent exception (if any) to have been detected while writing to

this Handler.
getFilter() Get the current filter for this Handler.
getFormatter() Return the Formatter for this Handler.
getLevel() Get the log level specifying which messages will be logged by this Handler.
isLoggable(LogRecord) Check if this Handler would actually log a given LogRecord.
publish(LogRecord) Publish a LogRecord.
setEncoding(String) Set the character encoding used by this Handler.
setException(Excep-
tion)

Set the most recent IO exception.

setFilter(Filter) Set a filter to control output on this Handler.
setFormatter(Format-
ter)

Set a Formatter.

setLevel(Level) Set the log level specifying which message levels will be logged by this handler.
Sun Microsystems Inc. 24 Logging APIs

Java Software

should

e result
Constructors

Handler()

protected Handler()

Default constructor. The resulting Handler has a log level of ALL, no formatter, and no filter.

Handler(Formatter)

protected Handler(Formatter formatter)

Construct a Handler with the given formatter.

Parameters:
formatter - Formatter to be used to format output.

Methods

close()

public abstract void close()

Close the Handler and free all associated resources.

The close method will perform a "flush" and then close the Handler. After close has been called this Handler
no longer be used. Method calls may either be silently ignored or may throw runtime exceptions.

Throws: SecurityException - if a security manager exists and if the caller does not have
LoggingPermission("control").

flush()

public abstract void flush()

Flush any buffered output.

getEncoding()

public java.lang.String getEncoding()

Return the character encoding for this Handler.

Returns: The encoding name. May be null, which indicates the default encoding should be used.

getException()

public java.lang.Exception getException()

Report on the most recent exception (if any) to have been detected while writing to this Handler.

Does a "flush" and then reports the underlying IO status. If the most recent write has been successful then th
will be null. Otherwise it will be an exception value that a subclass has set using setException.

Returns: null if recent IO operations have succeeded, otherwise the most recently detected exception.
Sun Microsystems Inc. 25 Logging APIs

Java Software

el will

y make

here.

e local-
getFilter()

public Filter getFilter()

Get the current filter for this Handler.

Returns: a filter object (may be null)

getFormatter()

public Formatter getFormatter()

Return the Formatter for this Handler.

Returns: the formatter (may be null).

getLevel()

public Level getLevel()

Get the log level specifying which messages will be logged by this Handler. Message levels lower than this lev
be discarded.

Returns: the level of messages being logged.

isLoggable(LogRecord)

public boolean isLoggable(LogRecord record)

Check if this Handler would actually log a given LogRecord.

This method checks if the LogRecord has an appropriate level and whether it satisfies any Filter. It also ma
other Handler specific checks that might prevent a handler from logging the LogRecord.

Parameters:
record - a LogRecord

Returns: true if the log record would be logged.

publish(LogRecord)

public abstract void publish(LogRecord record)

Publish a LogRecord.

The logging request was made initially to a Logger object, which initialized the LogRecord and forwarded it

The Handler is responsible for formatting the message, when and if necessary. The formatting should includ
ization.

Parameters:
record - description of the log event

setEncoding(String)

public void setEncoding(java.lang.String encoding)

Set the character encoding used by this Handler.

The encoding should be set before any LogRecords are written to the Handler.

Parameters:
Sun Microsystems Inc. 26 Logging APIs

Java Software

ler, so it

ub-

an this

certain
encoding - The name of a supported character encoding. May be null, to indicate the default platform
encoding.

Throws: SecurityException - if a security manager exists and if the caller does not have
LoggingPermission("control").

UnsupportedEncodingException - if the named encoding is not supported.

setException(Exception)

protected void setException(java.lang.Exception exception)

Set the most recent IO exception.

This protected method allows subclasses to record any exception that happens while doing IO on this hand
can later be retrieved by a call on getException.

Parameters:
exception - An exception that occurred during a write. May be null, to clear exception state.

setFilter(Filter)

public void setFilter(Filter newFilter)

Set a filter to control output on this Handler.

For each call of "publish" the Handler will call this Filter (if it is non-null) to check if the log record should be p
lished or discarded.

Parameters:
newFilter - a filter object (may be null)

Throws: SecurityException - if a security manager exists and if the caller does not have
LoggingPermission("control").

setFormatter(Formatter)

public void setFormatter(Formatter newFormatter)

Set a Formatter. This formatter will be used to format LogRecords for this Handler.

Some Handlers may not use Formatters, in which case the formatter will be remembered, but not used.

Parameters:
newFormatter - the formatter to use (may not be null)

Throws: SecurityException - if a security manager exists and if the caller does not have
LoggingPermission("control").

setLevel(Level)

public void setLevel(Level newLevel)

Set the log level specifying which message levels will be logged by this handler. Message levels lower th
value will be discarded.

The intention is to allow developers to turn on voluminous logging, but to limit the messages that are sent to
Handlers.

Parameters:
newLevel - the new value for the log level
Sun Microsystems Inc. 27 Logging APIs

Java Software
Throws: SecurityException - if a security manager exists and if the caller does not have
LoggingPermission("control").
Sun Microsystems Inc. 28 Logging APIs

Java Software

g Level
ng at all

ogging

should
ty across
java.util.logging

Level
Syntax
public class Level implements java.io.Serializable

java.lang.Object
|
+-- java.util.logging.Level

All Implemented Interfaces: java.io.Serializable

Description
The Level class defines a set of standard logging levels that can be used to control logging output. The loggin
objects are ordered and are specified by ordered integers. Enabling logging at a given level also enables loggi
higher levels.

Clients should normally use the predefined Level constants such as Level.SEVERE.

The levels in descending order are:

• SEVERE (highest value)
• WARNING
• INFO
• CONFIG
• FINE
• FINER
• FINEST (lowest value)

In addition there is a level OFF that can be used to turn off logging, and a level ALL that can be used to enable l
of all messages.

It is possible for third parties to define additional logging levels by subclassing Level. In such cases subclasses
take care to chose unique integer level values and to ensure that they maintain the Object uniqueness proper
serialization by defining a suitable readResolve method.

Since: 1.4

Member Summary

Fields
ALL ALL indicates that all messages should be logged.
CONFIG CONFIG is a message level for static configuration messages.
FINE FINE is a message level providing tracing information.
FINER FINER indicates a fairly detailed tracing message.
FINEST FINEST indicates a highly detailed tracing message
INFO INFO is a message level for informational messages.
OFF OFF is a special level that can be used to turn off logging.
SEVERE SEVERE is a message level indicating a serious failure.
Sun Microsystems Inc. 29 Logging APIs

Java Software

g prob-
e CPU

evels
output,

o not

e prob-

ng an
Fields

ALL

public static final Level ALL

ALL indicates that all messages should be logged.

CONFIG

public static final Level CONFIG

CONFIG is a message level for static configuration messages.

CONFIG messages are intended to provide a variety of static configuration information, to assist in debuggin
lems that may be associated with particular configurations. For example, CONFIG message might include th
type, the graphics depth, the GUI look-and-feel, etc.

FINE

public static final Level FINE

FINE is a message level providing tracing information.

All of FINE, FINER, and FINEST are intended for relatively detailed tracing. The exact meaning of the three l
will vary between subsystems, but in general, FINEST should be used for the most voluminous detailed
FINER for somewhat less detailed output, and FINE for the lowest volume (and most important) messages.

In general the FINE level should be used for information that will be broadly interesting to developers who d
have a specialized interest in the specific subsystem.

FINE messages might include things like minor (recoverable) failures. Issues indicating potential performanc
lems are also worth logging as FINE.

FINER

public static final Level FINER

FINER indicates a fairly detailed tracing message. By default logging calls for entering, returning, or throwi
exception are traced at this level.

WARNING WARNING is a message level indicating a potential problem.

Constructors
Level(String, int) Create a named Level with a given integer value.

Methods
equals(Object) Compare two objects for value equality.
hashCode() Generate a hashcode.
intValue() Get the integer value for this level.
parse(String) Parse a level name string into a Level.
toString()

Member Summary
Sun Microsystems Inc. 30 Logging APIs

Java Software

ed for

prevent
s.

gers, or

e con-
y sub-
FINEST

public static final Level FINEST

FINEST indicates a highly detailed tracing message

INFO

public static final Level INFO

INFO is a message level for informational messages.

Typically INFO messages will be written to the console or its equivalent. So the INFO level should only be us
reasonably significant messages that will make sense to end users and system admins.

OFF

public static final Level OFF

OFF is a special level that can be used to turn off logging.

SEVERE

public static final Level SEVERE

SEVERE is a message level indicating a serious failure.

In general SEVERE messages should describe events that are of considerable importance and which will
normal program execution. They should be reasonably intelligible to end users and to system administrator

WARNING

public static final Level WARNING

WARNING is a message level indicating a potential problem.

In general WARNING messages should describe events that will be of interest to end users or system mana
which indicate potential problems.

Constructors

Level(String, int)

protected Level(java.lang.String name, int value)

Create a named Level with a given integer value.

Note that this constructor is "protected" to allow subclassing. In general clients of logging should use one of th
stant Level objects such as SEVERE or FINEST. However, if clients need to add new logging levels, they ma
class Level and define new constants.

Parameters:
name - the name of the Level, for example "SEVERE".

value - an integer value for the level.
Sun Microsystems Inc. 31 Logging APIs

Java Software

n Level
Methods

equals(Object)

public boolean equals(java.lang.Object ox)

Compare two objects for value equality.

Overrides: java.lang.Object.equals(java.lang.Object) in class java.lang.Object

Returns: true if and only if the two objects have the same level value.

hashCode()

public int hashCode()

Generate a hashcode.

Overrides: java.lang.Object.hashCode() in class java.lang.Object

Returns: a hashcode based on the level value

intValue()

public final int intValue()

Get the integer value for this level. This integer value can be used for efficient ordering comparisons betwee
objects.

Returns: the integer value for this level.

parse(String)

public static Level parse(java.lang.String name)

Parse a level name string into a Level.

The argument string may consist of either a level name or an integer value.

For example:

• "SEVERE"
• "1000"

Parameters:
level - string to be parsed

Returns: parsed value

Throws: NullPointerException - if the name is null

IllegalArgumentException - if the value is neither one of the known names nor an integer.

toString()

public final java.lang.String toString()

Overrides: java.lang.Object.toString() in class java.lang.Object

Returns: the string name of the Level, for example "INFO".
Sun Microsystems Inc. 32 Logging APIs

Java Software

named,
be based
ssible to

Logger

of des-

ainst a
ately.

in the
evel or

ill then
ill then

caliza-
apping
ed.

.

exter-

source

require

ethod
only
java.util.logging

Logger
Syntax
public class Logger

java.lang.Object
|
+-- java.util.logging.Logger

Description
A Logger object is used to log messages for a specific system or application component. Loggers are normally
using a hierarchical dot-separated namespace. Logger names can be arbitrary strings, but they should normally
on the package name or class name of the logged component, such as java.net or javax.swing. In additon it is po
create "anonymous" Loggers that are not stored in the Logger namespace.

Logger objects may be obtained by calls on one of the getLogger factory methods. These will either create a new
or return a suitable existing Logger.

Logging messages will be forwarded to registered Handler objects, which can forward the messages to a variety
tinations, including consoles, files, OS logs, etc.

On each logging call the Logger initially performs a cheap check of the request level (e.g. SEVERE or FINE) ag
log level maintained by the logger. If the request level is lower than the log level, the logging call returns immedi

The log level is originally initialized based on the properties from the logging configuration file, as described
description of the LogManager class. However it may also be dynamically changed by calls on the Logger.setL
LogManager.setLevel methods.

After passing this initial (cheap) test, the Logger will allocate a LogRecord to describe the logging message. It w
call a Filter (if present) to do a more detailed check on whether the record should be published. If that passes it w
publish the LogRecord to the target Handlers.

Most of the logger output methods take a "msg" argument. This msg argument may be either a raw value or a lo
tion key. During formatting, if the logger has a localization ResourceBundle and if the ResourceBundle has a m
for the msg string, then the msg string is replaced by the localized value. Otherwise the original msg string is us

Formatting (including localization) is the responsibility of the output Handler, which will typically call a Formatter

Note that formatting need not occur synchronously. It may be delayed until a LogRecord is actually written to an
nal sink.

There are various logging convenience methods:

First, to make it easier to identify the source of a logging request there are a set of logging methods that take the
class name and the source method name. For example:

• void warning(String sourceClass, string sourceMethod, String msg);
Second, for developers who do not wish to provide this source information there are also methods that do not
these arguments. For example:

• void warning(String msg);
For this second set of methods, the Logging framework will make a "best effort" to determine which class and m
called into the logging method. However, it is important to realize that this automatically inferred information may
Sun Microsystems Inc. 33 Logging APIs

Java Software

JITing
be approximate (or may even be quite wrong!). Virtual machines are allowed to do extensive optimizations when
and may entirely remove stack frames, making it impossible to reliably locate the calling class and method.

All methods on Logger are multi-thread safe.

Subclassing Information: Subclasses of Logger are required to provide their own getLogger factory methods. In
order to intercept all logging output, subclasses need only override the log(LogRecord) method. All the other
log() methods are implemented as calls on this log(LogRecord) method.

Since: 1.4

Member Summary

Fields
global The "global" Logger object is provided as a convenience to developers who are mak-

ing casual use of the Logging package.

Constructors
Logger(String,
String)

Protected method to construct a logger for a named subsystem.

Methods
addHandler(Handler) Add a log Handler to receive logging messages.
config(String) Log a CONFIG message.
config(String,
Object[])

Log a CONFIG message, with an array of object arguments.

config(String,
String, String)

Log a CONFIG message, specifying source class and method.

config(String,
String, String,
Object[])

Log a CONFIG message, specifying source class and method, with an array of object
arguments.

entering(String,
String)

Log a procedure entry.

entering(String,
String, Object[])

Log a procedure entry, with parameters.

exiting(String,
String)

Log a procedure return.

exiting(String,
String, Object)

Log a procedure return, with result object.

fine(String) Log a FINE message.
fine(String,
Object[])

Log a FINE message, with an array of object arguments.

fine(String, String,
String)

Log a FINE message, specifying source class and method.

fine(String, String,
String, Object[])

Log a FINE message, specifying source class and method, with an array of object
arguments.

finer(String) Log a FINER message.
finer(String,
Object[])

Log a FINER message, with an array of object arguments.

finer(String, String,
String)

Log a FINER message, specifying source class and method.

finer(String, String,
String, Object[])

Log a FINER message, specifying source class and method, with an array of object
arguments.

finest(String) Log a FINEST message.
finest(String,
Object[])

Log a FINEST message, with an array of object arguments.
Sun Microsystems Inc. 34 Logging APIs

Java Software
finest(String,
String, String)

Log a FINEST message, specifying source class and method.

finest(String,
String, String,
Object[])

Log a FINEST message, specifying source class and method, with an array of object
arguments.

getAnonymousLogger() Create an anonymous Logger.
getAnonymousLog-
ger(String)

Create an anonymous Logger.

getFilter() Get the current filter for this Logger.
getHandlers() Get the Handlers associated with this logger.
getLevel() Get the log level specifying which messages will be logged by this logger.
getLogger(String) Find or create a logger for a named subsystem.
getLogger(String,
String)

Find or create a logger for a named subsystem.

getName() Get the name for this logger.
getResourceBundle() Retrieve the localization resource bundle for this logger.
getResourceBundle-
Name()

Retrieve the localization resource bundle name for this logger.

getUseGlobalHan-
dlers()

Discover whether or not this logger is sending its output to the set of global handlers
managed by the LogManager.

info(String) Log an INFO message.
info(String,
Object[])

Log an INFO message, with an array of object arguments.

info(String, String,
String)

Log an INFO message, specifying source class and method.

info(String, String,
String, Object[])

Log an INFO message, specifying source class and method, with an array of object
arguments.

isLoggable(Level) Check if a message of the given level would actually be logged by this logger.
log(Level, String) Log a message, with no arguments.
log(Level, String,
Object[])

Log a message, with an array of object arguments.

log(Level, String,
String, String)

Log a message, specifying source class and method, with no arguments.

log(Level, String,
String, String,
Object[])

Log a message, specifying source class and method, with an array of object argu-
ments.

log(Level, String,
String, String, Throw-
able)

Log a message, specifying source class and method, with associated Throwable infor-
mation.

log(Level, String,
Throwable)

Log a message, with associated Throwable information.

log(LogRecord) Log a LogRecord.
removeHandler(Han-
dler)

Remove a log Handler.

setFilter(Filter) Set a filter to control output on this Logger.
setLevel(Level) Set the log level specifying which message levels will be logged by this logger.
setUseGlobalHan-
dlers(boolean)

Specify whether or not this logger should send its output to the set of global handlers
managed by the LogManager.

severe(String) Log a SEVERE message.
severe(String,
Object[])

Log a SEVERE message, with an array of object arguments.

severe(String,
String, String)

Log a SEVERE message, specifying source class and method.

severe(String,
String, String,
Object[])

Log a SEVERE message, specifying source class and method, with an array of object
arguments.

Member Summary
Sun Microsystems Inc. 35 Logging APIs

Java Software

ogging
d create
er-Log-

he
ymous

May
Fields

global

public static final Logger global

The "global" Logger object is provided as a convenience to developers who are making casual use of the L
package. Developers who are making serious use of the logging package (for example in products) shoul
and use their own Logger objects, with appropriate names, so that logging can be controlled on a suitable p
ger granularity.

The global logger is initialized by calling Logger.getLogger("global").

Constructors

Logger(String, String)

protected Logger(java.lang.String name, java.lang.String resourceBundleName)

Protected method to construct a logger for a named subsystem.

The logger will be initially configured with a level of Level.ALL and with useGlobalHandlers true.

Parameters:
name - A name for the logger. This should be a dot-separated name and should normally be based on t
package name or class name of the subsystem, such as java.net or javax.swing. It may be null for anon
Loggers.

resourceBundleName - name of ResourceBundle to be used for localizing messages for this logger.
be null if none of the messages require localization.

Throws: MissingResourceException - if the ResourceBundleName is non-null and no corresponding
resource can be found.

Methods

throwing(String,
String, Throwable)

Log throwing an exception.

warning(String) Log a WARNING message.
warning(String,
Object[])

Log a WARNING message, with an array of object arguments.

warning(String,
String, String)

Log a WARNING message, specifying source class and method.

warning(String,
String, String,
Object[])

Log a WARNING message, specifying source class and method, with an array of
object arguments.

Member Summary
Sun Microsystems Inc. 36 Logging APIs

Java Software

se the
andler

he reg-

he reg-

he reg-
addHandler(Handler)

public void addHandler(Handler handler)

Add a log Handler to receive logging messages.

By default, Loggers send their output to all the global handlers. Application programmers only need to u
addHandler method if they are configuring a Logger with a non-global output handler. Adding a non-global h
does not affect the use of global handlers.

Parameters:
handler - a logging Handler

Throws: SecurityException - if a security manager exists and if the caller does not have
LoggingPermission("control").

config(String)

public void config(java.lang.String msg)

Log a CONFIG message.

If the logger is currently enabled for the CONFIG message level then the given message is forwarded to all t
istered output Handler objects.

Parameters:
msg - The string message (or a key in the message catalog)

config(String, Object[])

public void config(java.lang.String msg, java.lang.Object[] params)

Log a CONFIG message, with an array of object arguments.

If the logger is currently enabled for the CONFIG message level then the given message is forwarded to all t
istered output Handler objects.

Parameters:
msg - The string message (or a key in the message catalog)

params - array of parameters to the message

config(String, String, String)

public void config(java.lang.String sourceClass, java.lang.String sourceMethod,

java.lang.String msg)

Log a CONFIG message, specifying source class and method.

If the logger is currently enabled for the CONFIG message level then the given message is forwarded to all t
istered output Handler objects.

Parameters:
sourceClass - name of class that issued the logging request

sourceMethod - name of method that issued the logging request

msg - The string message (or a key in the message catalog)

config(String, String, String, Object[])
Sun Microsystems Inc. 37 Logging APIs

Java Software

he reg-

Y", log

Y", log

ssage
public void config(java.lang.String sourceClass, java.lang.String sourceMethod,

java.lang.String msg, java.lang.Object[] params)

Log a CONFIG message, specifying source class and method, with an array of object arguments.

If the logger is currently enabled for the CONFIG message level then the given message is forwarded to all t
istered output Handler objects.

Parameters:
sourceClass - name of class that issued the logging request

sourceMethod - name of method that issued the logging request

msg - The string message (or a key in the message catalog)

params - array of parameters to the message

entering(String, String)

public void entering(java.lang.String sourceClass, java.lang.String sourceMethod)

Log a procedure entry.

This is a convenience method that can be used to log entry to a method. A LogRecord with message "ENTR
level FINER, and the given sourceMethod and sourceClass is logged.

Parameters:
sourceClass - name of class that issued the logging request

sourceMethod - name of method that is being entered

entering(String, String, Object[])

public void entering(java.lang.String sourceClass, java.lang.String sourceMethod,

java.lang.Object[] params)

Log a procedure entry, with parameters.

This is a convenience method that can be used to log entry to a method. A LogRecord with message "ENTR
level FINER, and the given sourceMethod, sourceClass, and params is logged.

Parameters:
sourceClass - name of class that issued the logging request

sourceMethod - name of method that is being entered

params - array of parameters to the method being entered

exiting(String, String)

public void exiting(java.lang.String sourceClass, java.lang.String sourceMethod)

Log a procedure return.

This is a convenience method that can be used to log returning from a method. A LogRecord with me
"RETURN", log level FINER, and the given sourceMethod and sourceClass is logged.

Parameters:
sourceClass - name of class that issued the logging request

sourceMethod - name of the method
Sun Microsystems Inc. 38 Logging APIs

Java Software

ssage

regis-

regis-

regis-
exiting(String, String, Object)

public void exiting(java.lang.String sourceClass, java.lang.String sourceMethod,

java.lang.Object result)

Log a procedure return, with result object.

This is a convenience method that can be used to log returning from a method. A LogRecord with me
"RETURN", log level FINER, and the gives sourceMethod, sourceClass, and result object is logged.

Parameters:
sourceClass - name of class that issued the logging request

sourceMethod - name of the method

result - Object that is being returned

fine(String)

public void fine(java.lang.String msg)

Log a FINE message.

If the logger is currently enabled for the FINE message level then the given message is forwarded to all the
tered output Handler objects.

Parameters:
msg - The string message (or a key in the message catalog)

fine(String, Object[])

public void fine(java.lang.String msg, java.lang.Object[] params)

Log a FINE message, with an array of object arguments.

If the logger is currently enabled for the FINE message level then the given message is forwarded to all the
tered output Handler objects.

Parameters:
msg - The string message (or a key in the message catalog)

params - array of parameters to the message

fine(String, String, String)

public void fine(java.lang.String sourceClass, java.lang.String sourceMethod, java.lang.String

msg)

Log a FINE message, specifying source class and method.

If the logger is currently enabled for the FINE message level then the given message is forwarded to all the
tered output Handler objects.

Parameters:
sourceClass - name of class that issued the logging request

sourceMethod - name of method that issued the logging request

msg - The string message (or a key in the message catalog)

fine(String, String, String, Object[])
Sun Microsystems Inc. 39 Logging APIs

Java Software

regis-

regis-

regis-

regis-
public void fine(java.lang.String sourceClass, java.lang.String sourceMethod, java.lang.String

msg, java.lang.Object[] params)

Log a FINE message, specifying source class and method, with an array of object arguments.

If the logger is currently enabled for the FINE message level then the given message is forwarded to all the
tered output Handler objects.

Parameters:
sourceClass - name of class that issued the logging request

sourceMethod - name of method that issued the logging request

msg - The string message (or a key in the message catalog)

params - array of parameters to the message

finer(String)

public void finer(java.lang.String msg)

Log a FINER message.

If the logger is currently enabled for the FINER message level then the given message is forwarded to all the
tered output Handler objects.

Parameters:
msg - The string message (or a key in the message catalog)

finer(String, Object[])

public void finer(java.lang.String msg, java.lang.Object[] params)

Log a FINER message, with an array of object arguments.

If the logger is currently enabled for the FINER message level then the given message is forwarded to all the
tered output Handler objects.

Parameters:
msg - The string message (or a key in the message catalog)

params - array of parameters to the message

finer(String, String, String)

public void finer(java.lang.String sourceClass, java.lang.String sourceMethod, java.lang.String

msg)

Log a FINER message, specifying source class and method.

If the logger is currently enabled for the FINER message level then the given message is forwarded to all the
tered output Handler objects.

Parameters:
sourceClass - name of class that issued the logging request

sourceMethod - name of method that issued the logging request

msg - The string message (or a key in the message catalog)

finer(String, String, String, Object[])
Sun Microsystems Inc. 40 Logging APIs

Java Software

regis-

e regis-

e regis-

e regis-
public void finer(java.lang.String sourceClass, java.lang.String sourceMethod, java.lang.String

msg, java.lang.Object[] params)

Log a FINER message, specifying source class and method, with an array of object arguments.

If the logger is currently enabled for the FINER message level then the given message is forwarded to all the
tered output Handler objects.

Parameters:
sourceClass - name of class that issued the logging request

sourceMethod - name of method that issued the logging request

msg - The string message (or a key in the message catalog)

params - array of parameters to the message

finest(String)

public void finest(java.lang.String msg)

Log a FINEST message.

If the logger is currently enabled for the FINEST message level then the given message is forwarded to all th
tered output Handler objects.

Parameters:
msg - The string message (or a key in the message catalog)

finest(String, Object[])

public void finest(java.lang.String msg, java.lang.Object[] params)

Log a FINEST message, with an array of object arguments.

If the logger is currently enabled for the FINEST message level then the given message is forwarded to all th
tered output Handler objects.

Parameters:
msg - The string message (or a key in the message catalog)

params - array of parameters to the message

finest(String, String, String)

public void finest(java.lang.String sourceClass, java.lang.String sourceMethod,

java.lang.String msg)

Log a FINEST message, specifying source class and method.

If the logger is currently enabled for the FINEST message level then the given message is forwarded to all th
tered output Handler objects.

Parameters:
sourceClass - name of class that issued the logging request

sourceMethod - name of method that issued the logging request

msg - The string message (or a key in the message catalog)

finest(String, String, String, Object[])
Sun Microsystems Inc. 41 Logging APIs

Java Software

e regis-

and will
be no

can be
trusted
ndler on

It is

and will
be no

can be
trusted
ndler on

It is
public void finest(java.lang.String sourceClass, java.lang.String sourceMethod,

java.lang.String msg, java.lang.Object[] params)

Log a FINEST message, specifying source class and method, with an array of object arguments.

If the logger is currently enabled for the FINEST message level then the given message is forwarded to all th
tered output Handler objects.

Parameters:
sourceClass - name of class that issued the logging request

sourceMethod - name of method that issued the logging request

msg - The string message (or a key in the message catalog)

params - array of parameters to the message

getAnonymousLogger()

public static Logger getAnonymousLogger()

Create an anonymous Logger. The newly created Logger is not registered in the LogManager namespace
not be affected by updates to the logging configuration or by calls on LogManager.setLevel. There will also
access checks on updates to the logger.

This factory method is primarily intended for use from applets. Because the resulting Logger is anonymous it
kept private by the creating class. This removes the need for normal security checks, which in turn allows un
applet code to update the control state of the Logger. For example an applet can do a setLevel or an addHa
an anonymous Logger.

The new logger is initially configured with the logging level for the root name ("") from the LogManager class.
initially configured to use the LogManager's global handlers.

Returns: a newly created private Logger

getAnonymousLogger(String)

public static Logger getAnonymousLogger(java.lang.String resourceBundleName)

Create an anonymous Logger. The newly created Logger is not registered in the LogManager namespace
not be affected by updates to the logging configuration or by calls on LogManager.setLevel. There will also
access checks on updates to the Logger.

This factory method is primarily intended for use from applets. Because the resulting Logger is anonymous it
kept private by the creating class. This removes the need for normal security checks, which in turn allows un
applet code to update the control state of the Logger. For example an applet can do a setLevel or an addHa
an anonymous Logger.

The new logger is initially configured with the logging level for the root name ("") from the LogManager class.
initially configured to use the LogManager's global handlers.

Parameters:
resourceBundleName - name of ResourceBundle to be used for localizing messages for this logger.

Returns: a newly created private Logger

Throws: MissingResourceException - if the named ResourceBundle cannot be found.

getFilter()
Sun Microsystems Inc. 42 Logging APIs

Java Software

el will

me it is

nfig-
space.

he

me it is

send
s will

rce bun-
alArgu-
public Filter getFilter()

Get the current filter for this Logger.

Returns: a filter object (may be null)

getHandlers()

public Handler [] getHandlers()

Get the Handlers associated with this logger.

The resulting array includes all Handlers set with addHandler, but excludes global Handlers.

Returns: an array of all registered Handlers

Throws: SecurityException - if a security manager exists and if the caller does not have
LoggingPermission("control").

getLevel()

public Level getLevel()

Get the log level specifying which messages will be logged by this logger. Message levels lower than this lev
be discarded.

Returns: the level of messages being logged.

getLogger(String)

public static Logger getLogger(java.lang.String name)

Find or create a logger for a named subsystem. If a logger has already been created with the given na
returned. Otherwise a new logger is created.

If a new logger is created its log level will be configured based on the LogManager configuration and it will co
ured to send logging output to all global output Handlers. It will be registered in the LogManager global name
This will mean it will be affected by subsequent LogManager.setLevel calls.

Parameters:
name - A name for the logger. This should be a dot-separated name and should normally be based on t
package name or class name of the subsystem, such as java.net or javax.swing

Returns: a suitable Logger

getLogger(String, String)

public static Logger getLogger(java.lang.String name, java.lang.String resourceBundleName)

Find or create a logger for a named subsystem. If a logger has already been created with the given na
returned. Otherwise a new logger is created.

If a new logger is created its log level will be configured based on the LogManager and it will configured to
logging output to all global output Handlers. It will be registered in the LogManager global namespace. Thi
mean it will be affected by subsequent LogManager.setLevel calls.

If the named Logger already exists and does not yet have a localization resource bundle then the given resou
dle name is used. If the named Logger already exists and has a different resource bundle name then an Illeg
mentException is thrown.

Parameters:
Sun Microsystems Inc. 43 Logging APIs

Java Software

he

anager.

regis-
name - A name for the logger. This should be a dot-separated name and should normally be based on t
package name or class name of the subsystem, such as java.net or javax.swing

resourceBundleName - name of ResourceBundle to be used for localizing messages for this logger.

Returns: a suitable Logger

Throws: MissingResourceException - if the named ResourceBundle cannot be found.

IllegalArgumentName - if the Logger already exists and uses a different resource bundle name.

getName()

public java.lang.String getName()

Get the name for this logger.

Returns: logger name. Will be null for anonymous Loggers.

getResourceBundle()

public java.util.ResourceBundle getResourceBundle()

Retrieve the localization resource bundle for this logger.

Returns: localization bundle (may be null)

getResourceBundleName()

public java.lang.String getResourceBundleName()

Retrieve the localization resource bundle name for this logger.

Returns: localization bundle name (may be null)

getUseGlobalHandlers()

public boolean getUseGlobalHandlers()

Discover whether or not this logger is sending its output to the set of global handlers managed by the LogM

Returns: true if output is to be sent to the LogManager's global handlers.

info(String)

public void info(java.lang.String msg)

Log an INFO message.

If the logger is currently enabled for the INFO message level then the given message is forwarded to all the
tered output Handler objects.

Parameters:
msg - The string message (or a key in the message catalog)

info(String, Object[])

public void info(java.lang.String msg, java.lang.Object[] params)

Log an INFO message, with an array of object arguments.
Sun Microsystems Inc. 44 Logging APIs

Java Software

regis-

regis-

regis-
If the logger is currently enabled for the INFO message level then the given message is forwarded to all the
tered output Handler objects.

Parameters:
msg - The string message (or a key in the message catalog)

params - array of parameters to the message

info(String, String, String)

public void info(java.lang.String sourceClass, java.lang.String sourceMethod, java.lang.String

msg)

Log an INFO message, specifying source class and method.

If the logger is currently enabled for the INFO message level then the given message is forwarded to all the
tered output Handler objects.

Parameters:
sourceClass - name of class that issued the logging request

sourceMethod - name of method that issued the logging request

msg - The string message (or a key in the message catalog)

info(String, String, String, Object[])

public void info(java.lang.String sourceClass, java.lang.String sourceMethod, java.lang.String

msg, java.lang.Object[] params)

Log an INFO message, specifying source class and method, with an array of object arguments.

If the logger is currently enabled for the INFO message level then the given message is forwarded to all the
tered output Handler objects.

Parameters:
sourceClass - name of class that issued the logging request

sourceMethod - name of method that issued the logging request

msg - The string message (or a key in the message catalog)

params - array of parameters to the message

isLoggable(Level)

public boolean isLoggable(Level level)

Check if a message of the given level would actually be logged by this logger.

Parameters:
level - a message logging level

Returns: true if the given message level is currently being logged.

log(Level, String)

public void log(Level level, java.lang.String msg)

Log a message, with no arguments.
Sun Microsystems Inc. 45 Logging APIs

Java Software

e regis-

nd for-

e regis-

nd for-
If the logger is currently enabled for the given message level then the given message is forwarded to all th
tered output Handler objects.

Parameters:
level - One of the message level identifiers, e.g. SEVERE

msg - The string message (or a key in the message catalog)

log(Level, String, Object[])

public void log(Level level, java.lang.String msg, java.lang.Object[] params)

Log a message, with an array of object arguments.

If the logger is currently enabled for the given message level then a corresponding LogRecord is created a
warded to all the registered output Handler objects.

Parameters:
level - One of the message level identifiers, e.g. SEVERE

msg - The string message (or a key in the message catalog)

params - array of parameters to the message

log(Level, String, String, String)

public void log(Level level, java.lang.String sourceClass, java.lang.String sourceMethod,

java.lang.String msg)

Log a message, specifying source class and method, with no arguments.

If the logger is currently enabled for the given message level then the given message is forwarded to all th
tered output Handler objects.

Parameters:
level - One of the message level identifiers, e.g. SEVERE

sourceClass - name of class that issued the logging request

sourceMethod - name of method that issued the logging request

msg - The string message (or a key in the message catalog)

log(Level, String, String, String, Object[])

public void log(Level level, java.lang.String sourceClass, java.lang.String sourceMethod,

java.lang.String msg, java.lang.Object[] params)

Log a message, specifying source class and method, with an array of object arguments.

If the logger is currently enabled for the given message level then a corresponding LogRecord is created a
warded to all the registered output Handler objects.

Parameters:
level - One of the message level identifiers, e.g. SEVERE

sourceClass - name of class that issued the logging request

sourceMethod - name of method that issued the logging request

msg - The string message (or a key in the message catalog)

params - array of parameters to the message
Sun Microsystems Inc. 46 Logging APIs

Java Software

Record

meters
r to the

Record

meters
r to the

es can
log(Level, String, String, String, Throwable)

public void log(Level level, java.lang.String sourceClass, java.lang.String sourceMethod,

java.lang.String msg, java.lang.Throwable thrown)

Log a message, specifying source class and method, with associated Throwable information.

If the logger is currently enabled for the given message level then the given arguments are stored in a Log
which is forwarded to all registered output handlers.

Note that the thrown argument is stored in the LogRecord thrown property, rather than the LogRecord para
property. Thus is it processed specially by output Formatters and is not treated as a formatting paramete
LogRecord message property.

Parameters:
level - One of the message level identifiers, e.g. SEVERE

sourceClass - name of class that issued the logging request

sourceMethod - name of method that issued the logging request

msg - The string message (or a key in the message catalog)

thrown - Throwable associated with log message.

log(Level, String, Throwable)

public void log(Level level, java.lang.String msg, java.lang.Throwable thrown)

Log a message, with associated Throwable information.

If the logger is currently enabled for the given message level then the given arguments are stored in a Log
which is forwarded to all registered output handlers.

Note that the thrown argument is stored in the LogRecord thrown property, rather than the LogRecord para
property. Thus is it processed specially by output Formatters and is not treated as a formatting paramete
LogRecord message property.

Parameters:
level - One of the message level identifiers, e.g. SEVERE

msg - The string message (or a key in the message catalog)

thrown - Throwable associated with log message.

log(LogRecord)

public void log(LogRecord record)

Log a LogRecord.

All the other logging methods in this class call through this method to actually perform any logging. Subclass
override this single method to capture all log activity.

The current logger's name, resource bundle, and resource bundle name will be set into the LogRecord.

Parameters:
record - the LogRecord to be published

removeHandler(Handler)

public void removeHandler(Handler handler)
Sun Microsystems Inc. 47 Logging APIs

Java Software

ub-

s value

anager.

he reg-
Remove a log Handler.

Returns silently if the given Handler is not found.

Parameters:
handler - a logging Handler

Throws: SecurityException - if a security manager exists and if the caller does not have
LoggingPermission("control").

setFilter(Filter)

public void setFilter(Filter newFilter)

Set a filter to control output on this Logger.

After passing the initial "level" check, the Logger will call this Filter to check if a log record should really be p
lished.

Parameters:
newFilter - a filter object (may be null)

Throws: SecurityException - if a security manager exists and if the caller does not have
LoggingPermission("control").

setLevel(Level)

public void setLevel(Level newLevel)

Set the log level specifying which message levels will be logged by this logger. Message levels lower than thi
will be discarded. The level value Level.OFF can be used to turn off logging.

Parameters:
newLevel - the new value for the log level

Throws: SecurityException - if a security manager exists and if the caller does not have
LoggingPermission("control").

setUseGlobalHandlers(boolean)

public void setUseGlobalHandlers(boolean useGlobalHandlers)

Specify whether or not this logger should send its output to the set of global handlers managed by the LogM

Parameters:
useGlobalhandlers - true if output is to be sent to the LogManager's global handlers.

Throws: SecurityException - if a security manager exists and if the caller does not have
LoggingPermission("control").

severe(String)

public void severe(java.lang.String msg)

Log a SEVERE message.

If the logger is currently enabled for the SEVERE message level then the given message is forwarded to all t
istered output Handler objects.

Parameters:
msg - The string message (or a key in the message catalog)
Sun Microsystems Inc. 48 Logging APIs

Java Software

he reg-

he reg-

he reg-

done

Record
severe(String, Object[])

public void severe(java.lang.String msg, java.lang.Object[] params)

Log a SEVERE message, with an array of object arguments.

If the logger is currently enabled for the SEVERE message level then the given message is forwarded to all t
istered output Handler objects.

Parameters:
msg - The string message (or a key in the message catalog)

params - array of parameters to the message

severe(String, String, String)

public void severe(java.lang.String sourceClass, java.lang.String sourceMethod,

java.lang.String msg)

Log a SEVERE message, specifying source class and method.

If the logger is currently enabled for the SEVERE message level then the given message is forwarded to all t
istered output Handler objects.

Parameters:
sourceClass - name of class that issued the logging request

sourceMethod - name of method that issued the logging request

msg - The string message (or a key in the message catalog)

severe(String, String, String, Object[])

public void severe(java.lang.String sourceClass, java.lang.String sourceMethod,

java.lang.String msg, java.lang.Object[] params)

Log a SEVERE message, specifying source class and method, with an array of object arguments.

If the logger is currently enabled for the SEVERE message level then the given message is forwarded to all t
istered output Handler objects.

Parameters:
sourceClass - name of class that issued the logging request

sourceMethod - name of method that issued the logging request

msg - The string message (or a key in the message catalog)

params - array of parameters to the message

throwing(String, String, Throwable)

public void throwing(java.lang.String sourceClass, java.lang.String sourceMethod,

java.lang.Throwable thrown)

Log throwing an exception.

This is a convenience method to log that a method is terminating by throwing an exception. The logging is
using the FINER level.

If the logger is currently enabled for the given message level then the given arguments are stored in a Log
which is forwarded to all registered output handlers. The LogRecord's message is set to "THROW".
Sun Microsystems Inc. 49 Logging APIs

Java Software

meters
r to the

all the

all the

all the
Note that the thrown argument is stored in the LogRecord thrown property, rather than the LogRecord para
property. Thus is it processed specially by output Formatters and is not treated as a formatting paramete
LogRecord message property.

Parameters:
sourceClass - name of class that issued the logging request

sourceMethod - name of the method.

thrown - The Throwable that is being thrown.

warning(String)

public void warning(java.lang.String msg)

Log a WARNING message.

If the logger is currently enabled for the WARNING message level then the given message is forwarded to
registered output Handler objects.

Parameters:
msg - The string message (or a key in the message catalog)

warning(String, Object[])

public void warning(java.lang.String msg, java.lang.Object[] params)

Log a WARNING message, with an array of object arguments.

If the logger is currently enabled for the WARNING message level then the given message is forwarded to
registered output Handler objects.

Parameters:
msg - The string message (or a key in the message catalog)

params - array of parameters to the message

warning(String, String, String)

public void warning(java.lang.String sourceClass, java.lang.String sourceMethod,

java.lang.String msg)

Log a WARNING message, specifying source class and method.

If the logger is currently enabled for the WARNING message level then the given message is forwarded to
registered output Handler objects.

Parameters:
sourceClass - name of class that issued the logging request

sourceMethod - name of method that issued the logging request

msg - The string message (or a key in the message catalog)

warning(String, String, String, Object[])

public void warning(java.lang.String sourceClass, java.lang.String sourceMethod,

java.lang.String msg, java.lang.Object[] params)

Log a WARNING message, specifying source class and method, with an array of object arguments.
Sun Microsystems Inc. 50 Logging APIs

Java Software

all the
If the logger is currently enabled for the WARNING message level then the given message is forwarded to
registered output Handler objects.

Parameters:
sourceClass - name of class that issued the logging request

sourceMethod - name of method that issued the logging request

msg - The string message (or a key in the message catalog)

params - array of parameters to the message
Sun Microsystems Inc. 51 Logging APIs

Java Software

one of

gging
g lev-

y policy

ew Per-
java.util.logging

LoggingPermission
Syntax
public final class LoggingPermission extends java.security.BasicPermission

java.lang.Object
|
+--java.security.Permission

|
+--java.security.BasicPermission

|
+-- java.util.logging.LoggingPermission

All Implemented Interfaces: java.security.Guard, java.io.Serializable

Description
The permission which the SecurityManager will check when code that is running with a SecurityManager calls
the logging control methods (such as LogManager.setLevel).

Currently there is only one named LoggingPermission. This is "control" and it grants the ability to control the lo
configuration, for example by adding or removing Handlers, by adding or removing Filters, or by changing loggin
els.

Programmers do not normally create LoggingPermission objects directly. Instead they are created by the securit
code based on reading the security policy file.

Since: 1.4

See Also: java.security.BasicPermission , java.security.Permission , java.secu-
rity.Permissions , java.security.PermissionCollection , java.lang.SecurityManager

Constructors

LoggingPermission(String, String)

public LoggingPermission(java.lang.String name, java.lang.String actions)

Creates a new LoggingPermission object. This constructor exists for use by the Policy object to instantiate n
mission objects.

Member Summary

Constructors
LoggingPermis-
sion(String, String)

Creates a new LoggingPermission object.
Sun Microsystems Inc. 52 Logging APIs

Java Software
Parameters:
name - Permission name. Must be "control".

actions - Must be either null or the empty string.
Sun Microsystems Inc. 53 Logging APIs

Java Software

ervices.

lers and

glo-

created

s is to
wn sub-
nronza-
laceable

JRE

onfig-

" com-

n class
onfig-

sed
le.

n from

r logger.
java.util.logging

LogManager
Syntax
public class LogManager

java.lang.Object
|
+-- java.util.logging.LogManager

Description
There is a single global LogManager object that is used to maintain a set of shared state about Loggers and log s

This LogManager object:

• Manages a hierarchical namespace of Logger objects. All named Loggers are stored in this namespace.
• Manages a set of logging control properties. These are simple key-value pairs that can be used by Hand

other logging objects to configure themselves.
• Manages a list of "global" logging handlers. By default Loggers will publish all (relevant) LogRecords to all the

bal handlers.
The global LogManager object can be retrieved using LogManager.getLogManager(). The LogManager object is
during class initialization and cannot subsequently be changed.

Note to reviewers:The main reason for having a LogManager object rather than simply a class with static method
allow container applications (especially J2EE containers) to replace the standard LogManager class with their o
classes. We do not support on-the-fly replacement of the LogManager object as that would introduce tricky sych
tion problems in propagating state between the old and the new objects. Making the LogManager object non-rep
also allows client code to cache the object.

At startup the LogManager class is located using the java.util.logging.manager system property.

By default, the LogManager reads its initial configuration from a properties file "lib/logging.properties" in the
directory. If you edit that property file you can change the default logging configuration for all uses of that JRE.

In addition, the LogManager uses two optional system properties that allow more control over reading the initial c
uration:

• "java.util.logging.config.class"
• "java.util.logging.config.file"

These two properties may be set via the Preferences API, or as command line property definitions to the "java
mand, or as system property definitions passed to JNI_CreateJavaVM.

If the "java.util.logging.config.class" property is set, then the property value is treated as a class name. The give
will be loaded, an object will be instantiated, and that object's constructor is responsible for reading in the initial c
uration. (That object may use other system properties to control its configuration.)

If "java.util.logging.config.class" property isnot set, then the "java.util.logging.config.file" system property can be u
to specify a properties file (in java.util.Properties format). The initial logging configuration will be read from this fi

If neither of these properties is defined then, as described above, the LogManager will read its initial configuratio
a properties file "lib/logging.properties" in the JRE directory.

The properties for loggers and Handlers will have names starting with the dot-separated name for the handler o
Sun Microsystems Inc. 54 Logging APIs

Java Software

nd regis-

nes a
ult con-
r levels,

the Log-

a.b", but

s a log
plied

fter set-
The global logging properties may include:

• A property "handlers". This defines a whitespace separated list of class names for handler classes to load a
ter as global handlers. Each class name must be for a Handler class which has a default constructor.

• A property "config". This property is intended to allow arbitrary configuration code to be run. The property defi
whitespace separated list of class names. A new instance will be created for each named class. The defa
structor of each class may execute arbitrary code to update the logging configuration, such as setting logge
adding handlers, adding filters, etc.

Note that all classes loaded during LogManager configuration must be on the system class path. That includes
Manager class, any config classes, and any handler classes.

Loggers are organized into a naming hierarchy based on their dot separated names. Thus "a.b.c" is a child of "
"a.b1" and a.b2" are peers.

All properties whose names end with ".level" are assumed to define log levels for Loggers. Thus "foo.level" define
level for the logger called "foo" and (recursively) for any of its children in the naming hierarchy. Log Levels are ap
in the order they are defined in the properties file. Thus level settings for child nodes in the tree should come a
tings for their parents. The property name ".level" can be used to set the level for the root of the tree.

All methods on the LogManager object are multi-thread safe.

Since: 1.4

Member Summary

Constructors
LogManager() Protected constructor.

Methods
addGlobalHandler(Han-
dler)

Add a global log Handler to receive output from all loggers.

addLogger(Logger) Add a named logger.
addPropertyChangeLis-
tener(PropertyChange-
Listener)

Add an event listener to be invoked when the logging properties are re-read.

checkAccess() Check that the current context is trusted to modify the logging configuration.
flush() Flush all the global handlers.
getGlobalHandlers() Get an array of all the global Handlers.
getLevel(String) Get the log level for a given logger name.
getLogger(String) Method to find a named logger.
getLoggerNames() Get an enumeration of known logger names.
getLogManager() Return the global LogManager object.
getProperty(String) Get the value of a logging property.
publish(LogRecord) Method to post a log record to all global handlers.
readConfiguration() Reinitialize the logging properties and reread the logging configuration.
readConfigura-
tion(InputStream)

Reinitialize the logging properties and reread the logging configuration from the
given stream, which should be in java.util.Properties format.

removeAllGlobalHan-
dlers()

Remove all global log handlers.

removeGlobalHan-
dler(Handler)

Remove a global log handler.

removePropertyChange-
Listener(Property-
ChangeListener)

Remove an event listener for property change events.
Sun Microsystems Inc. 55 Logging APIs

Java Software

class the
y call-

ed.

gMan-

ts.
Constructors

LogManager()

protected LogManager()

Protected constructor. This is protected so that conatiner applications (such as J2EE containers) can sub
object. It is non-public as it is intended that there only be one LogManager object, whose value is retrieved b
ing Logmanager.getLogManager.

Methods

addGlobalHandler(Handler)

public void addGlobalHandler(Handler handler)

Add a global log Handler to receive output from all loggers.

Parameters:
handler - An output Handler

Throws: SecurityException - if a security manager exists and if the caller does not have
LoggingPermission("control").

addLogger(Logger)

public boolean addLogger(Logger l)

Add a named logger. This does nothing and returns false if a logger with the same name is already register

The Logger factory methods call this method to register each newly created Logger.

The application must retain its own reference to the Logger object to avoid it being garbage collected. The Lo
ager will only retain a weak reference.

Parameters:
l - the new logger.

Returns: true if the argument logger was registered successfully, false if a logger of that name already exis

Throws: NullPointerException - if the logger name is null.

addPropertyChangeListener(PropertyChangeListener)

public void addPropertyChangeListener(java.beans.PropertyChangeListener l)

Add an event listener to be invoked when the logging properties are re-read.

Parameters:

setLevel(String,
Level)

Set a log level for a given set of loggers.

Member Summary
Sun Microsystems Inc. 56 Logging APIs

Java Software

rmis-

to find
l - event listener

Throws: SecurityException - if a security manager exists and if the caller does not have
LoggingPermission("control").

checkAccess()

public void checkAccess()

Check that the current context is trusted to modify the logging configuration. This requires LoggingPe
sion("control").

If the check fails we throw a SecurityException, otherwise we return normally.

Throws: SecurityException - if a security manager exists and if the caller does not have
LoggingPermission("control").

flush()

public void flush()

Flush all the global handlers.

getGlobalHandlers()

public Handler [] getGlobalHandlers()

Get an array of all the global Handlers.

Returns: array of global Handlers

Throws: SecurityException - if a security manager exists and if the caller does not have
LoggingPermission("control").

getLevel(String)

public Level getLevel(java.lang.String name)

Get the log level for a given logger name. See the setLevel method for more details.

Parameters:
name - The logger name

Returns: the log level

getLogger(String)

public Logger getLogger(java.lang.String name)

Method to find a named logger.

Note that since untrusted code may create loggers with arbitrary names this method should not be relied on
Loggers for security sensitive logging.

Parameters:
name - name of the logger

Returns: matching logger or null if none is found

getLoggerNames()
Sun Microsystems Inc. 57 Logging APIs

Java Software

ers that

logging

prop-

they

be in
public java.util.Enumeration getLoggerNames()

Get an enumeration of known logger names.

Note: Loggers may be added dynamically as new classes are loaded. This method only reports on the logg
are currently registered.

Returns: enumeration of logger name strings

getLogManager()

public static LogManager getLogManager()

Return the global LogManager object.

getProperty(String)

public java.lang.String getProperty(java.lang.String name)

Get the value of a logging property.

Parameters:
name - property name

Returns: property value

publish(LogRecord)

public void publish(LogRecord record)

Method to post a log record to all global handlers.

This is used by Loggers when they wish to publish a LogRecord to all the global handlers.

readConfiguration()

public void readConfiguration()

Reinitialize the logging properties and reread the logging configuration.

The same rules are used for locating the configuration properties as are used at startup. So normally the
properties will be re-read from the same file that was used at startup.

All existing global Handlers will be closed and a new set of global Handlers will be created based on the new
erties.

Any log level definitions in the new configuration file will be applied using LogManager.setLevel() in the order
are read.

A PropertyChangeEvent will be fired after the properties are read.

Throws: SecurityException - if a security manager exists and if the caller does not have
LoggingPermission("control").

readConfiguration(InputStream)

public void readConfiguration(java.io.InputStream ins)

Reinitialize the logging properties and reread the logging configuration from the given stream, which should
java.util.Properties format. A PropertyChangeEvent will be fired after the properties are read.
Sun Microsystems Inc. 58 Logging APIs

Java Software

prop-

they

pes are

ame in
created
All existing global Handlers will be closed and a new set of global Handlers will be created based on the new
erties.

Any log level definitions in the new configuration file will be applied using LogManager.setLevel() in the order
are read.

Parameters:
ins - stream to read properties from

Throws: SecurityException - if a security manager exists and if the caller does not have
LoggingPermission("control").

removeAllGlobalHandlers()

public void removeAllGlobalHandlers()

Remove all global log handlers.

Throws: SecurityException - if a security manager exists and if the caller does not have
LoggingPermission("control").

removeGlobalHandler(Handler)

public void removeGlobalHandler(Handler handler)

Remove a global log handler.

Returns silently if the given Handler is not found.

Parameters:
handler - An output Handler

Throws: SecurityException - if a security manager exists and if the caller does not have
LoggingPermission("control").

removePropertyChangeListener(PropertyChangeListener)

public void removePropertyChangeListener(java.beans.PropertyChangeListener l)

Remove an event listener for property change events.

Returns silently if the given listener is not found.

Parameters:
l - event listener

Throws: SecurityException - if a security manager exists and if the caller does not have
LoggingPermission("control").

setLevel(String, Level)

public void setLevel(java.lang.String name, Level level)

Set a log level for a given set of loggers. Subsequently the target loggers will only log messages whose ty
greater than or equal to the given level. The level value Level.OFF can be used to turn off logging.

The given log level applies to the named Logger (if it exists), and on any other named Loggers below that n
the naming hierarchy. The name and level are recorded, and will be applied to any new Loggers that are later
matching the given name.
Sun Microsystems Inc. 59 Logging APIs

Java Software

ers
Thus, setting a level on "x.y" would affect loggers called "x.y", "x.y.z", "x.y.foo.bah" but would not affect logg
called "x.yy" or "x.z".

The empty string "" can be used to identify the root.

Parameters:
name - The logger name to update.

level - the new log level, e.g. Level.SEVERE or Level.FINER

Returns: the previous value of the level

Throws: SecurityException - if a security manager exists and if the caller does not have
LoggingPermission("control").
Sun Microsystems Inc. 60 Logging APIs

Java Software

rs.

ger be

ameters

e recip-

ot pre-
How-
d, and
java.util.logging

LogRecord
Syntax
public class LogRecord implements java.io.Serializable

java.lang.Object
|
+-- java.util.logging.LogRecord

All Implemented Interfaces: java.io.Serializable

Description
LogRecord objects are used to pass logging requests between the logging framework and individual log Handle

When a LogRecord is passed into the logging framework it logically belongs to the framework and should no lon
used or updated by the client application.

Serialization notes:

• The LogRecord class is serializable.
• Because objects in the parameters array may not be serialiable, during serialization all objects in the par

array are written as the corresponding Strings (using Object.toString).
• The ResourceBundle is not transmitted as part of the serialized form, but the resource bundle name is, and th

ient object's readObject method will atempt to locate a suitable resource bundle.
• The "thrown" property is transmitted as part of the serialized form, but because the Throwable class does n

serve stack frame information across serialization, the stack frame info will be lost from the "thrown" object.
ever, during serialization the writeObject method will ensure that a String version of the stack trace is serialize
that String will be available through the getThrownStackTrace method.

Since: 1.4

Member Summary

Constructors
LogRecord(Level,
String)

Construct a LogRecord with the given level and message values.

Methods
getLevel() Get the logging message level, for example Level.SEVERE.
getLoggerName() Get the source Logger name's
getMessage() Get the "raw" log message, before localization or formatting.
getMillis() Get event time in milliseconds since 1970.
getParameters() Get the parameters to the log message.
getResourceBundle() Get the localization resource bundle
getResourceBundle-
Name()

Get the localization resource bundle name

getSequenceNumber() Get the sequence number.
getSourceClassName() Get the name of the class that (allegedly) issued the logging request.
Sun Microsystems Inc. 61 Logging APIs

Java Software

reasing
Constructors

LogRecord(Level, String)

public LogRecord(Level level, java.lang.String msg)

Construct a LogRecord with the given level and message values.

The sequence property will be initialized with a new unique value. These sequence values are allocated in inc
order within a VM.

The millis property will be initialized to the current time.

The thread ID property wwill be initialized with a unique ID for the current thread.

All other properties will be initialized to "null".

Parameters:
level - a logging level value

msg - the raw non-localized logging message

Methods

getLevel()

public Level getLevel()

getSourceMethodName() Get the name of the method that (allegedly) issued the logging request.
getThreadID() Get an identifier for the thread where the message originated.
getThrown() Get any throwable associated with the log record.
getThrownBackTrace() Get a backtrace for any thrown associated with the log record.
setLevel(Level) Set the logging message level, for example Level.SEVERE.
setLoggerName(String) Set the source Logger name.
setMessage(String) Set the "raw" log message, before localization or formatting.
setMillis(long) Set event time.
setParame-
ters(Object[])

Set the parameters to the log message.

setResourceBun-
dle(ResourceBundle)

Set the localization resource bundle.

setResourceBundle-
Name(String)

Set the localization resource bundle name.

setSequenceNum-
ber(long)

Set the sequence number.

setSourceClass-
Name(String)

Set the name of the class that (allegedly) issued the logging request.

setSourceMethod-
Name(String)

Set the name of the method that (allegedly) issued the logging request.

setThreadID(int) Set an identifier for the thread where the message originated.
setThrown(Throwable) Set a throwable associateded with the log event.

Member Summary
Sun Microsystems Inc. 62 Logging APIs

Java Software

n entry

ult may
Get the logging message level, for example Level.SEVERE.

Returns: the logging message level

getLoggerName()

public java.lang.String getLoggerName()

Get the source Logger name's

Returns: source logger name (may be null)

getMessage()

public java.lang.String getMessage()

Get the "raw" log message, before localization or formatting.

May be null, which is equivalent to the empty string "".

This message may be either the final text or a localization key.

During formatting, if the source logger has a localization ResourceBundle and if that ResourceBundle has a
for this message string, then the message string is replaced with the localized value.

Returns: the raw message string

getMillis()

public long getMillis()

Get event time in milliseconds since 1970.

Returns: event time in millis since 1970

getParameters()

public java.lang.Object[] getParameters()

Get the parameters to the log message.

Returns: the log message parameters. May be null if there are no parameters.

getResourceBundle()

public java.util.ResourceBundle getResourceBundle()

Get the localization resource bundle

This is the ResourceBundle that should be used to localize the message string before formatting it. The res
be null if the message is not localizable, or if no suitable ResourceBundle is available.

Parameters:
bundle - localization bundle (may be null)

getResourceBundleName()

public java.lang.String getResourceBundleName()

Get the localization resource bundle name
Sun Microsystems Inc. 63 Logging APIs

Java Software

g it. The

numbers

rovided
case,

en pro-
latter
This is the name for the ResourceBundle that should be used to localize the message string before formattin
result may be null if the message is not localizable.

Parameters:
bundle - localization bundle name (may be null)

getSequenceNumber()

public long getSequenceNumber()

Get the sequence number.

Sequence numbers are normally assigned in the LogRecord constructor, which assignes unique sequence
to each new LogRecord in increasing order.

Returns: the sequence number

getSourceClassName()

public java.lang.String getSourceClassName()

Get the name of the class that (allegedly) issued the logging request.

Note that this sourceClassName is not verified and may be spoofed. This information may either have been p
as part of the logging call, or it may have been inferred automatically by the logging framework. In the latter
the information may only be approximate and may in fact describe an earlier call on the stack frame.

May be null if no information could be obtained.

Returns: the source class name

getSourceMethodName()

public java.lang.String getSourceMethodName()

Get the name of the method that (allegedly) issued the logging request.

Note that this sourceMethodName is not verified and may be spoofed. This information may either have be
vided as part of the logging call, or it may have been inferred automatically by the logging framework. In the
case, the information may only be approximate and may in fact describe an earlier call on the stack frame.

May be null if no information could be obtained.

Returns: the source method name

getThreadID()

public int getThreadID()

Get an identifier for the thread where the message originated.

This is a thread identifier within the Java VM and may or may not map to any operating system ID.

Returns: thread ID

getThrown()

public java.lang.Throwable getThrown()

Get any throwable associated with the log record.
Sun Microsystems Inc. 64 Logging APIs

Java Software

eturn

ktrace
If the event involved an exception, this will be the exception object. Otherwise null.

Returns: a throwable

getThrownBackTrace()

public java.lang.String getThrownBackTrace()

Get a backtrace for any thrown associated with the log record.

If the event involved an exception, this will be the the backtrace from the exception object. Otherwise it will r
null. The exact backtrace format is implementation specific and will vary beween VMs.

Note that this method is preferrable to obtaining a backtrace from the "getThrown()" Throwable, as the bac
may have been lost from that object if it was serialized and then deserialized.

setLevel(Level)

public void setLevel(Level level)

Set the logging message level, for example Level.SEVERE.

Parameters:
level - the logging message level

setLoggerName(String)

public void setLoggerName(java.lang.String name)

Set the source Logger name.

Parameters:
name - the source logger name (may be null)

setMessage(String)

public void setMessage(java.lang.String message)

Set the "raw" log message, before localization or formatting.

Parameters:
message - the raw message string

setMillis(long)

public void setMillis(long millis)

Set event time.

Parameters:
millis - event time in millis since 1970

setParameters(Object[])

public void setParameters(java.lang.Object[] parameters)

Set the parameters to the log message.

Parameters:
parameters - the log message parameters.
Sun Microsystems Inc. 65 Logging APIs

Java Software

ssary to
setResourceBundle(ResourceBundle)

public void setResourceBundle(java.util.ResourceBundle bundle)

Set the localization resource bundle.

Parameters:
bundle - localization bundle (may be null)

setResourceBundleName(String)

public void setResourceBundleName(java.lang.String name)

Set the localization resource bundle name.

Parameters:
name - localization bundle name (may be null)

setSequenceNumber(long)

public void setSequenceNumber(long seq)

Set the sequence number.

Sequence numbers are normally assigned in the LogRecord constructor, so it should not normally be nece
use this method.

setSourceClassName(String)

public void setSourceClassName(java.lang.String sourceClassName)

Set the name of the class that (allegedly) issued the logging request.

Parameters:
sourceClassName - the source class name

setSourceMethodName(String)

public void setSourceMethodName(java.lang.String sourceMethodName)

Set the name of the method that (allegedly) issued the logging request.

Parameters:
sourceMethodName - the source method name

setThreadID(int)

public void setThreadID(int threadID)

Set an identifier for the thread where the message originated.

Parameters:
threadID - the thread ID

setThrown(Throwable)

public void setThrown(java.lang.Throwable thrown)

Set a throwable associateded with the log event.

Parameters:
Sun Microsystems Inc. 66 Logging APIs

Java Software
throwable - a throwable
Sun Microsystems Inc. 67 Logging APIs

Java Software

. This
out its

atches

rties.
java.util.logging

MemoryHandler
Syntax
public class MemoryHandler extends java.util.logging.Handler

java.lang.Object
|
+-- java.util.logging.Handler

|
+-- java.util.logging.MemoryHandler

Description
Handler that buffers requests in a circular buffer in memory.

Normally this Handler simply stores incoming LogRecords into its memory buffer and discards earlier records
buffering is very cheap and avoids formatting costs. On certain trigger conditions, the MemoryHandler will push
current buffer contents to a target Handler, which will typically publish them to the outside world.

There are three main models for triggering a push of the buffer:

• An incoming LogRecord has a type that is greater than a pre-defined level, the "pushLevel".
• An external class calls the "push" method explicitly.
• A subclass overrides the "log" method and scans each incoming LogRecord and calls "push" if a record m

some desired criteria.
Configuration: By default each MemoryHandler is initialized using the following LogManager configuration prope
If properties are not defined (or have invalid values) then the specified default values are used.

• java.util.logging.MemoryHandler.level specifies the level for the Handler (defaults to Level.ALL).
• java.util.logging.MemoryHandler.filter specifies the name of a Filter class to use (defaults to no Filter).
• java.util.logging.MemoryHandler.size defines the buffer size (defaults to 1000).
• java.util.logging.MemoryHandler.push defines the pushLevel (defaults to level.SEVERE).

Since: 1.4

Member Summary

Constructors
MemoryHandler() Create a MemoryHandler and configure it based on LogManager configuration prop-

erties.
MemoryHandler(Han-
dler, int, Level)

Create a MemoryHandler.

Methods
close() Close the Handler and free all associated resources.
flush() Causes a flush on the target handler.
getPushLevel() Get the pushLevel.
isLoggable(LogRecord) Check if this Handler would actually log a given LogRecord into its internal buffer.
publish(LogRecord) Store a LogRecord in an internal buffer.
push() Push any buffered output to the target Handler.
Sun Microsystems Inc. 68 Logging APIs

Java Software

e given
Constructors

MemoryHandler()

public MemoryHandler()

Create a MemoryHandler and configure it based on LogManager configuration properties.

MemoryHandler(Handler, int, Level)

public MemoryHandler(Handler target, int size, Level pushLevel)

Create a MemoryHandler.

The MemoryHandler is configured based on LogManager properties (or their default values) except that th
pushLevel argument and buffer size argument are used.

Parameters:
target - the Handler to which to publish output.

size - the number of log records to buffer

pushLevel - message level to push on

Methods

close()

public void close()

Close the Handler and free all associated resources. This will also close the target Handler.

Overrides: Handler.close() in classHandler

Throws: SecurityException - if a security manager exists and if the caller does not have
LoggingPermission("control").

flush()

public void flush()

Causes a flush on the target handler.

Note that the current contents of the MemoryHandler buffer arenot written out. That requires a "push".

Overrides: Handler.flush() in classHandler

getPushLevel()

public Level getPushLevel()

setPushLevel(Level) Set the pushLevel.

Member Summary
Sun Microsystems Inc. 69 Logging APIs

Java Software

it does

Oth-
ith the
ffered

push-
Get the pushLevel.

Parameters:
the - value of the pushLevel

isLoggable(LogRecord)

public boolean isLoggable(LogRecord record)

Check if this Handler would actually log a given LogRecord into its internal buffer.

This method checks if the LogRecord has an appropriate level and whether it satisfies any Filter. However
not check whether the LogRecord would result in a "push" of the buffer contents.

Overrides: Handler.isLoggable(LogRecord) in classHandler

Parameters:
record - a LogRecord

Returns: true if the log record would be logged.

publish(LogRecord)

public void publish(LogRecord record)

Store a LogRecord in an internal buffer.

If there is a filter, its isLoggable method is called to check if the given log record isLoggable. If not we return.
erwise the given record is copied into an internal circular buffer. Then the record's type field is compared w
pushLevel. If the given level is greater than or equal to the pushLevel then "push" is called to write all bu
records to the target output Handler.

Overrides: Handler.publish(LogRecord) in classHandler

Parameters:
record - description of the log event

push()

public void push()

Push any buffered output to the target Handler.

The buffer is then cleared.

setPushLevel(Level)

public void setPushLevel(Level newLevel)

Set the pushLevel. After a log record is copied into our internal buffer, if its level is greater than or equal to the
Level, then "push" will be called.

Parameters:
newLevel - the new value of the pushLevel

Throws: SecurityException - if a security manager exists and if the caller does not have
LoggingPermission("control").
Sun Microsystems Inc. 70 Logging APIs

Java Software
java.util.logging

SimpleFormatter
Syntax
public class SimpleFormatter extends java.util.logging.Formatter

java.lang.Object
|
+-- java.util.logging.Formatter

|
+-- java.util.logging.SimpleFormatter

Description
Print a brief summary of the LogRecord in a human readable format. The summary will typically be 1 or 2 lines.

Since: 1.4

Constructors

SimpleFormatter()

public SimpleFormatter()

Methods

format(LogRecord)

public java.lang.String format(LogRecord record)

Format the given LogRecord.

Overrides: Formatter.format(LogRecord) in classFormatter

Parameters:
record - the log record to be formatted.

Returns: a formatted log record

Member Summary

Constructors
SimpleFormatter()

Methods
format(LogRecord) Format the given LogRecord.
Sun Microsystems Inc. 71 Logging APIs

Java Software

atting.

ies. If

til.log-

ult plat-
java.util.logging

SocketHandler
Syntax
public class SocketHandler extends java.util.logging.StreamHandler

java.lang.Object
|
+-- java.util.logging.Handler

|
+-- java.util.logging.StreamHandler

|
+-- java.util.logging.SocketHandler

Description
Simple network logging handler.

LogRecords are published to a network stream connection. By default the XMLFormatter class is used for form

Configuration: By default each SocketHandler is initialized using the following LogManager configuration propert
properties are not defined (or have invalid values) then the specified default values are used.

• java.util.logging.SocketHandler.level specifies the default level for the Handler (defaults to Level.ALL).
• java.util.logging.SocketHandler.filter specifies the name of a Filter class to use (defaults to no Filter).
• java.util.logging.SocketHandler.formatter specifies the name of a Formatter class to use (defaults to java.u

ging.XMLFormatter).
• java.util.logging.SocketHandler.encoding the name of the character set encoding to use (defaults to the defa

form encoding).
• java.util.logging.SocketHandler.host specifies the target host name to connect to (no default).
• java.util.logging.SocketHandler.port specifies the target TCP port to use (no default).

The output IO stream is buffered, but is flushed after each log record.

Since: 1.4

Constructors

Member Summary

Constructors
SocketHandler() Create a SocketHandler, using only LogManager properties (or their defaults).
Sock-
etHandler(String,
int)

Construct a SocketHandler using a specified host and port.

Methods
close() Close this output stream.
publish(LogRecord) Format and publish a LogRecord.
Sun Microsystems Inc. 72 Logging APIs

Java Software

anager
SocketHandler()

public SocketHandler()

Create a SocketHandler, using only LogManager properties (or their defaults).

SocketHandler(String, int)

public SocketHandler(java.lang.String host, int port)

Construct a SocketHandler using a specified host and port. The SocketHandler is configured based on LogM
properties (or their default values) except that the given target host and port arguments are used.

Parameters:
hostName - target host.

port - target port.

Methods

close()

public void close()

Close this output stream.

Overrides: StreamHandler.close() in classStreamHandler

Throws: SecurityException - if a security manager exists and if the caller does not have
LoggingPermission("control").

publish(LogRecord)

public void publish(LogRecord record)

Format and publish a LogRecord.

Overrides: StreamHandler.publish(LogRecord) in classStreamHandler

Parameters:
record - description of the log event
Sun Microsystems Inc. 73 Logging APIs

Java Software

ies. If

util.log-

ult plat-
java.util.logging

StreamHandler
Syntax
public class StreamHandler extends java.util.logging.Handler

java.lang.Object
|
+-- java.util.logging.Handler

|
+-- java.util.logging.StreamHandler

Direct Known Subclasses: ConsoleHandler , FileHandler , SocketHandler

Description
Stream based logging Handler.

This is primarily intended as a base class or support class to be used in implementing other logging Handlers.

LogRecords are published to a given java.io.OutputStream.

Configuration: By default each StreamHandler is initialized using the following LogManager configuration propert
properties are not defined (or have invalid values) then the specified default values are used.

• java.util.logging.StreamHandler.level specifies the default level for the Handler (defaults to Level.ALL).
• java.util.logging.StreamHandler.filter specifies the name of a Filter class to use (defaults to no Filter).
• java.util.logging.StreamHandler.formatter specifies the name of a Formatter class to use (defaults to java.

ging.SimpleFormatter).
• java.util.logging.StreamHandler.encoding the name of the character set encoding to use (defaults to the defa

form encoding).

Since: 1.4

Member Summary

Constructors
StreamHandler() Create a StreamHandler, with no current output stream.
StreamHandler(Output-
Stream, Formatter)

Create a StreamHandler with a given formatter and output stream.

Methods
close() Close the current output stream.
flush() Flush any buffered messages.
isLoggable(LogRecord) Check if this Handler would actually log a given LogRecord.
publish(LogRecord) Format and publish a log record.
setEncoding(String) Set (or change) the character encoding used by this Handler.
setOutputStream(Out-
putStream)

Change the output stream.
Sun Microsystems Inc. 74 Logging APIs

Java Software

tring

return
Constructors

StreamHandler()

public StreamHandler()

Create a StreamHandler, with no current output stream.

StreamHandler(OutputStream, Formatter)

public StreamHandler(java.io.OutputStream out, Formatter formatter)

Create a StreamHandler with a given formatter and output stream.

Parameters:
output - the target output stream

formatter - Formatter to be used to format output

Methods

close()

public void close()

Close the current output stream.

The Formatter's "tail" string is written to the stream before it is closed. In addition, if the formatter's "head" s
has not yet been written to the stream, it will be written before the "tail" string.

Overrides: Handler.close() in classHandler

Throws: SecurityException - if a security manager exists and if the caller does not have
LoggingPermission("control").

SecurityException - if a security manager exists and if the caller does not have
LoggingPermission("control").

flush()

public void flush()

Flush any buffered messages.

Overrides: Handler.flush() in classHandler

isLoggable(LogRecord)

public boolean isLoggable(LogRecord record)

Check if this Handler would actually log a given LogRecord.

This method checks if the LogRecord has an appropriate level and whether it satisfies any Filter. It will also
false if no output stream has been assigned yet.

Overrides: Handler.isLoggable(LogRecord) in classHandler
Sun Microsystems Inc. 75 Logging APIs

Java Software

ired log
so, it

to the

d. Then
Parameters:
record - a LogRecord

Returns: true if the log record would be logged.

publish(LogRecord)

public void publish(LogRecord record)

Format and publish a log record.

The StreamHandler first checks if there is an OutputStream and if the given LogRecord has at least the requ
level. If not it silently returns. If so, it calls any associated Filter to check if the record should be published. If
calls its Formatter to format the record and then writes the result to the current output stream.

If this is the first LogRecord to be written to a given OutputStream, the Formatter's "head" string is written
stream before the LogRecord is written.

Overrides: Handler.publish(LogRecord) in classHandler

Parameters:
record - description of the log event

setEncoding(String)

public void setEncoding(java.lang.String encoding)

Set (or change) the character encoding used by this Handler.

The encoding should be set before any LogRecords are written to the Handler.

Overrides: Handler.setEncoding(String) in classHandler

Parameters:
encoding - The name of a supported character encoding. May be null, to indicate the default platform
encoding.

Throws: SecurityException - if a security manager exists and if the caller does not have
LoggingPermission("control").

UnsupportedEncodingException - if the named encoding is not supported.

setOutputStream(OutputStream)

protected void setOutputStream(java.io.OutputStream out)

Change the output stream.

If there is a current output stream then the formatter's tail string is written and the stream is flushed and close
the output stream is replaced with the new output stream.

Parameters:
out - New output stream. May not be null.

Throws: SecurityException - if a security manager exists and if the caller does not have
LoggingPermission("control").
Sun Microsystems Inc. 76 Logging APIs

Java Software

ed with
java.util.logging

XMLFormatter
Syntax
public class XMLFormatter extends java.util.logging.Formatter

java.lang.Object
|
+-- java.util.logging.Formatter

|
+-- java.util.logging.XMLFormatter

Description
Format a LogRecord into a standard XML format.

The DTD specification is provided as Appendix A to the Java Logging APIs specification.

The XMLFormatter can be used with arbitrary character encodings, but it is recommended that it normally be us
UTF-8. The character encoding can be set on the output Handler.

Since: 1.4

Constructors

XMLFormatter()

public XMLFormatter()

Methods

format(LogRecord)

public java.lang.String format(LogRecord record)

Member Summary

Constructors
XMLFormatter()

Methods
format(LogRecord) Format the given message to XML.
getHead(Handler) Return the header string for a set of XML formatted records.
getTail(Handler) Return the tail string for a set of XML formatted records.
Sun Microsystems Inc. 77 Logging APIs

Java Software
Format the given message to XML.

Overrides: Formatter.format(LogRecord) in classFormatter

Parameters:
record - the log record to be formatted.

Returns: a formatted log record

getHead(Handler)

public java.lang.String getHead(Handler h)

Return the header string for a set of XML formatted records.

Overrides: Formatter.getHead(Handler) in classFormatter

Parameters:
h - The target handler.

Returns: header string

getTail(Handler)

public java.lang.String getTail(Handler h)

Return the tail string for a set of XML formatted records.

Overrides: Formatter.getTail(Handler) in classFormatter

Parameters:
h - The target handler.

Returns: tail string
Sun Microsystems Inc. 78 Logging APIs

Java Software

Sun Microsystems Inc. 79 Logging APIs

4 Change History

4.1 Changes between 0.50 and 0.55:

• The ConsoleHandler, FileHandler, MemoryHandler, SocketHandler, and
StreamHandler classes now use a LogManager “filter” property to locate a default
Filter class to act as a Filter on the Handler.

• The ConsoleHandler, FileHandler, SocketHandler, and StreamHandler classes now use
a LogManager “formatter” property to locate a default Formatter class to act as the
Formatter on the Handler.

• The ConsoleHandler, FileHandler, SocketHandler, and StreamHandler classes now use
a LogManager “encoding” property to determine a default character set encoding for
the Handler.

• The javadoc in the class header for each of the Handler classes has been revised to be
more consistent in describing LogManager properties and to be clearer on what default
values are used if a property is not defined (or is not valid).

• The javadoc in each of the concrete Handler classes (in both the class header and in the
constructors) has been revised to specify that the LogManager properties (or their
defaults) are used as the default configuration for each Handler, unless explicitly
specified otherwise in a constructor.

• Removed the (false) assumption that XMLFormatter should always use UTF-8. I have
been reassured that it is OK to use any encoding (including the platform default
encoding) provided the encoding is specified in the XML header, which we do.

• The following constructors were removed. Most of them had originally been added in
response to a request to provide more consistent constructors. However, now that a
richer set of properties can be defined in the LogManager configuration, this particular
set of constructors no longer makes particular sense. For example it is unlikely that
someone will create a SocketHandler and want to use the default properties except for
Formatter. People are likely to either want a default handler configuration, or to
override wider sets of the configuration properties (especially the properties that control
where output is sent).

ConsoleHandler(Formatter)
FileHandler(Formatter)
SocketHandler(Formatter)
StreamHandler(Formatter)

• Added Section 2.19 on J2EE issues. I reviewed this with the spec lead for J2EE 1.3.
• Various minor clarifications (generally in response to specification bugs filed by the

test team).

Java Software
Appendix A: DTD for XMLFormatter output

<!-- DTD used by the java.util.logging.XMLFormatter -->
<!-- This provides an XML formatted log message. -->

<!-- The document type is "log" which consists of a sequence
 of record elements -->
<!ELEMENT log (record*)>

<!-- Each logging call is described by a record element. -->
<!ELEMENT record (date, millis, sequence, logger?, level,
class?, method?, thread?, message, key?, catalog?, param*, exception?)>

<!-- Date and time when LogRecord was created in ISO 8601 format -->
<!ELEMENT date (#PCDATA)>

<!-- Time when LogRecord was created in milliseconds since
 midnight January 1st, 1970, UTC. -->
<!ELEMENT millis (#PCDATA)>

<!-- Unique sequence number within source VM. -->
<!ELEMENT sequence (#PCDATA)>

<!-- Name of source Logger object. -->
<!ELEMENT logger (#PCDATA)>

<!-- Logging level, may be either one of the constant
 names from java.util.logging.Constants (such as "SEVERE"
 or "WARNING") or an integer value such as "20". -->
<!ELEMENT level (#PCDATA)>

<!-- Fully qualified name of class that issued
 logging call, e.g. "javax.marsupial.Wombat". -->
<!ELEMENT class (#PCDATA)>

<!-- Name of method that issued logging call.
 It may be either an unqualified method name such as
 "fred" or it may include argument type information
 in parenthesis, for example "fred(int,String)". -->
<!ELEMENT method (#PCDATA)>

<!-- Integer thread ID. -->
<!ELEMENT thread (#PCDATA)>
Sun Microsystems Inc. 80 Logging APIs

Java Software
<!-- The message element contains the text string of a log message. -->
<!ELEMENT message (#PCDATA)>

<!-- If the message string was localized, the key element provides
 the original localization message key. -->
<!ELEMENT key (#PCDATA)>

<!-- If the message string was localized, the catalog element provides
 the logger's localization resource bundle name. -->
<!ELEMENT catalog (#PCDATA)>

<!-- If the message string was localized, each of the param elements
 provides the String value (obtained using Object.toString())
 of the corresponding LogRecord parameter. -->
<!ELEMENT param (#PCDATA)>

<!-- An exception consists of an optional message string followed
 by a series of StackFrames. Exception elements are used
 for Java exceptions and other java Throwables. -->
<!ELEMENT exception (message?, frame+)>

<!-- A frame describes one line in a Throwable backtrace. -->
<!ELEMENT frame (class, method, line?)>

<!-- an integer line number within a class's source file. -->
<!ELEMENT line (#PCDATA)>
Sun Microsystems Inc. 81 Logging APIs

	Abstract
	1 Requirements
	1.1 Target Users
	1.1.1 End Users and System Administrators
	1.1.2 Diagnosis by Field Service Engineers
	1.1.3 Diagnosis by the development organization
	1.1.4 Use by developers

	1.2 Configuration requirements
	1.2.1 Static Control
	1.2.2 Dynamic Control

	1.3 Granularity of logging
	1.3.1 Functional areas
	1.3.2 Logging Levels
	1.3.3 Filters

	1.4 Pluggable Handlers
	1.5 Internationalization

	2 Logging API Overview
	2.1 Overview of Control Flow
	Logger
	Logger
	2.2 Log Levels
	2.3 Loggers
	2.4 Logging methods
	2.5 Handlers
	2.6 Formatters
	2.7 The LogManager
	2.8 Configuration File
	2.9 Default Configuration
	2.10 Dynamic configuration updates
	2.11 Native Methods
	2.12 XML DTD
	2.13 Unique Message IDs
	2.14 Security
	2.15 Configuration Management
	2.16 Packaging
	2.17 Localization
	2.18 Remote access and serialization
	2.19 J2EE issues

	3 Examples
	3.1 Simple use
	3.2 Changing the configuration
	3.3 Simple use, ignoring global configuration
	3.4 Sample XML output

	4 Change History
	4.1 Changes between 0.50 and 0.55:
	Appendix A: DTD for XMLFormatter output

