
 Copyright 2000 Sun Microsystems, Inc.

JAIN JCC 09/21/00 Version 0.8.4 Overview

JAINtm, a set of Javatm APIs for
Integrated Networks

JAIN
JAVA CALL CONTROL (JCC)

APPLICATION PROGRAMMING INTERFACE
(API)

Version 0.8.4

Overview of the API

September 18, 2000

 Copyright 2000 Sun Microsystems, Inc.

JAIN JCC 09/21/00 Version 0.8.4 Overview

Table of Contents

1. EXECUTIVE SUMMARY.. 4

2. INTRODUCTION.. 7

2.1 SERVICE DRIVERS .. 7
2.2 NETWORK ARCHITECTURE AND PROTOCOLS... 7
2.3 CALL CONTROL PACKAGE HIERARCHY .. 8

3. BASIC COMPONENTS OF THE API .. 9

3.1 BASIC API PATTERNS: LISTENERS AND FACTORIES.. 10
3.2 EVENT AND LISTENER INHERITANCE DIAGRAMS... 10

4. JAVA CALL PROCESSING (JCP) ... 12

4.1 JCP FINITE STATE MACHINES .. 12

5. JAVA CALL CONTROL (JCC) .. 14

5.1 JCC FINITE STATE MACHINES.. 14
5.1.1 JCC Provider .. 14
5.1.2 JCC Call ... 14
5.1.3 JCC Connection .. 15

5.2 API METHODS AND USAGE .. 16

6. RELATIONSHIP OF JCC AND JCP TO JTAPI AND PARLAY APIS.. 17

 Copyright 2000 Sun Microsystems, Inc.

JAIN JCC 09/21/00 Version 0.8.4 Overview

List of Figures
FIGURE 1: JCP AND JCC INHERITANCE RELATIONSHIP .. 8
FIGURE 2: OBJECT MODEL OF A TWO-PARTY CALL ... 9
FIGURE 3: API PROGRAMMING PATTERN USING JAVA LISTENERS.. 10
FIGURE 4: JCC AND JCP EVENT AND LISTENER INHERITANCE DIAGRAMS... 11
FIGURE 5: JCP AND JCC PROVIDER FINITE STATE MACHINE .. 12
FIGURE 6: JCP CALL OBJECT FINITE STATE MACHINE... 13
FIGURE 7: JCP CONNECTION OBJECT FINITE STATE MACHINE .. 13
FIGURE 8: JCC CALL OBJECT FSM .. 14
FIGURE 9: JCC CONNECTION OBJECT FSM ... 16
FIGURE 10: RELATIONSHIP OF JCC PACKAGES TO JTAPI AND PARLAY ... 17

JAIN JCC 09/21/00 Version 0.8.4 Overview 4

1. Executive Summary1

The Java Call Control (JCC) Application Programming Interface (API) is a Java interface for creating,2
monitoring, controlling, manipulating and tearing down communications sessions in a converged PSTN,3
packet-switched, and wireless environment. It provides facilities for first-party as well as third-party4
applications, and is applicable to network elements (such as switches or Call Agents) both at the network5
periphery (e.g. Class 5 or end-office switches) and at the core (e.g. Class 4 or tandem switches).6

JCC allows applications to be invoked or triggered during session set-up in a manner similar in spirit to7
the way in which Intelligent Network (IN) or Advanced Intelligent Network (AIN) services can be8
invoked. JCC thus allows programmers to develop applications that can execute on any platform that9
supports the API, increasing the market for their applications. It also allows service providers to rapidly10
and efficiently offer services to end users by developing the services themselves, by outsourcing11
development, purchasing services developed by third parties, or a combination thereof.12

The API is not intended to open up telecommunications networks’ signaling infrastructure for public13
usage. Rather, network capabilities are intended to be encapsulated and made visible using object14
technology in a secure, manageable, and billable manner. This approach allows independent service15
developers to develop applications supported by the network without compromising network security and16
reliability.17

The API is specified in terms of a coherent collection of related and interacting objects that model18
different physical and logical elements involved in a session, and related functions. Applications interact19
with these objects via an object-oriented Listener paradigm. Note that the API is applicable to control of20
voice, data or multimedia sessions, and not just voice calls, but for convenience we often use the word21
“call” in the specification. Also note that “call” is understood to include multiparty multimedia sessions22
over the integrated (PSTN, packet, and/or wireless) network.23

The API is structured into the following three functional areas; this document describes only the first24
two, while the third will be the output of a separate JAIN Edit Group:25

• Elementary Call Control: JCP. The Java Call Processing (JCP) package includes the very26
basic facilities required for initiating and answering calls. It is likely that the facilities27
offered by this package will be too elementary for many if not most carrier-grade28
deployments. However, as explained later, it represents an important conceptual cornerstone29
for unifying the call control APIs developed by the Java Telephony API (JTAPI), JAIN and30
Parlay expert groups. It also represents a simple first step of software that can then be31
implemented, tested, reused and logically extended to a full implementation of the Java Call32
Control API.33

• Core Call Control: JCC. The Java Call Control (JCC) package includes the facilities34
required for observing, initiating, answering, processing and manipulating calls, as well as35
for invoking applications and returning results during call processing. It is likely that the36
facilities offered by this package will suffice for implementing most, but not all, of the basic37
and value-added services offered by carriers.38

• Extended Call Control: JCAT. The Java Coordination and Transactions (JCAT) package39
includes facilities similar to JCC, but extended to provide finer granularity of call control. In40

JAIN JCC 09/21/00 Version 0.8.4 Overview 5

particular, unlike JCC, JCAT enables all common AIN applications as well as other1
integrated voice/data and next-generation services.2

For all the packages above, applications may be executing on the switching platform itself (e.g. a3
softswitch or Call Agent platform) or in a coordinated, distributed fashion across multiple general-4
purpose or special-purpose platforms.5

The JCC and JCP APIs define four objects, which model the key call processing objects manipulated by6
most services. These are a Provider, Call, Connection, and Address. Several of these objects contain7
finite state machines that model the state of a call, and provide facilities for allowing applications to8
register and be invoked, on a per-user basis, when relevant points in call processing are reached.9

The JCP and JCC APIs described in this document are intended to be consistent with the APIs issued by10
the JTAPI and Parlay groups. In the case of JTAPI, the JCP API represents an elementary call control11
package that forms the common base of both JCC and JTAPI; thus JCC and JTAPI are very consistent in12
this respect. In the case of Parlay, JCC is in fact the Java version of the Parlay API for call control as13
accepted by the JAIN Service Provider API (SPA) group that is standardizing Java instantiations of the14
Parlay API. However, as of this writing, the Java version of the Parlay call control API (i.e., JCC) is15
similar but, unfortunately, not functionally identical to the UML version of the Parlay call control API; it16
is hoped that future revisions to the JCC and Parlay call control APIs will close this gap.17

This document is a high-level overview of the JCC API. It is not a substitute for the actual JCC18
specification, which is a companion to this document. An additional document provides UML diagrams19
(“call flows”) describing how the API can used to implement example services, such as first and third-20
party originated and terminated calls and Virtual Private Network (VPN).21

22

23

JAIN JCC 09/21/00 Version 0.8.4 Overview 7

2. Introduction1

This document provides a framework for Application Programming Interfaces (APIs) to support network2
services over integrated networks. The APIs described are the Java Call Processing (JCP) and Java Call3
Control (JCC) APIs.4

2.1 Service Drivers5

This API is intended to allow carriers to offer a wide variety of integrated voice/data services over a6
common PSTN/packet/wireless network infrastructure, even though most of the focus in the industry7
today is on offering telephony services over such a network.8

The API definition was carried out with some example services in mind. These services are:9

• First and Third-party originated and terminated calls10
• Voice virtual private network (VPN),11
• Toll-free number translation12
• Voice-activated dialing,13
• Click-to-dial,14
• Meet-me conference15

Needless to say, the API can be used to implement a wide variety of other integrated voice and data16
applications beyond the examples mentioned above. A companion document provides UML sequence17
diagrams as examples of how the first two applications above can be implemented with the API.18

2.2 Network architecture and protocols19

The API defines a programming interface to next-generation converged networks in terms of an abstract,20
object-oriented specification. As such it is designed to hide the details of the specifics of the underlying21
network architecture and protocols from the application programmer to the extent possible.22

Thus the network may consist of the PSTN, a packet (IP or ATM) network, a wireless network, or a23
combination of these, without affecting the development of services using the API. The API is also24
independent of network signaling and transport protocols. Thus the network may be using various call25
control protocols and technologies, for example, SGCP, MGCP, SIP, H.323, ISUP, DSS1/Q.931, and26
DSS2/Q.2931, without the explicit knowledge of the application programmer. Indeed, different legs of a27
call may be using different signaling protocols and be on different underlying networks.28

It is assumed that the network will be able to notify the platform implementing the API regarding events29
that have occurred (e.g. call arrival) and the platform will be able to process the event as necessary and30
inform the application using the API. In addition, the application will be able to initiate actions using the31
API (e.g. call origination) that the platform will translate into appropriate protocol signaling messages to32
the network. It is the job of the platform to interface to the underlying network(s) and translate API33
methods and events to and from underlying signaling protocols as it sees fit. We stress that this34
translation is vendor-specific and is not specified by the API; thus different platform vendors may35
differentiate and compete based on the attributes (e.g. performance) of their translation.36

JAIN JCC 09/21/00 Version 0.8.4 Overview 8

2.3 Call Control Package Hierarchy1

The rest of this overview assumes some familiarity with object-oriented programming and Java concepts.2
In general, readers familiar with JTAPI will find that many of the basic concepts of the API bear3
similarity to JTAPI, and hence some knowledge of JTAPI will be helpful in reading this document and4
the specification.5

The two packages described in this document are the Java Call Processing (JCP) package, and the Java6
Call Control (JCC) package that inherits from JCP using Java inheritance, as shown in Figure 1. In7
section 6 we will discuss the relation of these two packages to JTAPI, Parlay, and the JCAT package.8

Figure 1: JCP and JCC inheritance relationship9

Java Call
Processing

(JCP)

Java Call
Control
(JCC)

JAIN JCC 09/21/00 Version 0.8.4 Overview 9

3. Basic Components of the API1

In this section we describes the basic objects of the API common to both JCP and JCC as well as the2
common design patterns to both packages.3

For both JCC and JCP, the API components consist of a related set of interfaces, classes, operations,4
events, capabilities, and exceptions. The API provides four key objects, which are common to JCP, JCC5
and more advanced packages. We provide a very brief description of the API in this overview document;6
an overview of each object and its details can be found in the description of the object interface in the7
specification. The four key objects are:8

• Provider: represents the “window” through which an application views the call processing.9

• Call: represents a call and is a dynamic “collection of physical and logical entities” that bring10
two or more endpoints together.11

• Address: represents a logical endpoint (e.g., directory number or IP address).12

• Connection: represents the dynamic association between a Call and an Address.13

The relationship among these objects is depicted pictorially in Figure 2 for a two-party call. Multiple14
parties are represented simply by additional Connections and Addresses associated with a Call; there is15
no inherent limitation in the model on the number of such parties. In traditional telephony parlance, this16
model is “symmetric” in that there is no fundamental distinction at the highest level between originating17
or terminating parties of a call, and is a “ full” model in the sense that the application, in principle, has a18
view of all parties of the call and not simply the originating or terminating party.19

Figure 2: Object model of a two-party call20

21

The purpose of a Connection object is to describe the relationship between a Call object and an Address22
object. A Connection object exists if the Address has been associated with the telephone call.23
Connection objects are immutable in terms of their Call and Address references. In other words, the Call24

Provider

Call

Connection

Address

Connection

Address

JAIN JCC 09/21/00 Version 0.8.4 Overview 10

and Address object references do not change throughout the lifetime of the Connection object instance.1
The same Connection object may not be used in another telephone call.2

3.1 Basic API patterns: Listeners and Factories3

The basic programming pattern of the API is that applications (which reside “above” the API) make4
synchronous calls to API methods. The platform or network element implementing the API can inform5
the application of underlying events (e.g. the arrival of incoming calls) by means of Java events. The6
application provides Listener objects corresponding to the events that it is interested in obtaining. IN or7
AIN-style triggers are also implemented using this basic event and Listener paradigm; to control the8
events that an application receives, event filters (described in the specification) can be defined.9

Figure 3: API programming pattern using Java Listeners10

In addition, the API also uses the Factory design pattern commonly used (and recommended) in Java. In11
brief, applications use a PeerFactory to obtain a Peer, which in Java nomenclature is “a particular12
platform-specific implementation of a Java interface or API” , i.e., a vendor's particular implementation of13
the API. Applications then use the Peer to obtain access to the Provider object.14

3.2 Event and Listener inheritance diagrams15

Since several objects in the API can generate events, which in turn can be trapped by different Listeners16
written by the application programmer, the Event and Listener objects are organized by inheritance. The17
inheritance diagrams are shown in Figure 4.18

19

20

21

22

Call
Listener

Call
Listener

Connection
Listener

Connection
Listener

Provider
Listener

Provider
Listener

Synchronous
method calls

Java
Events

JCC API

Network
or

Platform

CallCallProviderProvider

ConnectionConnection

ConnectionConnection

JAIN JCC 09/21/00 Version 0.8.4 Overview 11

1

2

Figure 4: JCC and JCP Event and Listener inheritance diagrams3

4

Event

Call
Event

Connection
Event

Events

Enables calls
to provide listener for
Connection events

Provider
Event

Listener

Call
Listener

Connection
Listener

Listeners

Provider
Listener

JAIN JCC 09/21/00 Version 0.8.4 Overview 12

4. Java Call Processing (JCP)1

In this section we describe the basic components of JCP. JCP is the elementary Java package from which2
more advanced call control packages inherit.3

4.1 JCP Finite State Machines4

The behavior of the JCP Provider, Call and Connection objects is specified in terms of Finite State5
Machines (FSMs), shown in Figure 5 - Figure 7 below. (Note that the Provider FSM is the same for JCP6
and JCC.)7

For the Provider FSM, the meanings of the states are as follows.8

• IN_SERVICE : This state indicates that the Provider is currently alive and available for use.9

• OUT_OF_SERVICE: This state indicates that a Provider is temporarily not available for use.10
Many methods in this API are invalid when the Provider is in this state. Providers may come11
back in service at any time; however, the application can take no direct action to cause this12
change.13

• SHUTDOWN: This state indicates that a Provider is permanently no longer available for use.14
Most methods in the API are invalid when the Provider is in this state. Applications have15
access to a method to cause a Provider to move into the SHUTDOWN state.16

17

Figure 5: JCP and JCC Provider Finite State Machine18

19

20

21

22

23

IN_SERVICE

SHUTDOWN

OUT_OF_SERVICE

JAIN JCC 09/21/00 Version 0.8.4 Overview 13

1

2

Figure 6: JCP Call object Finite State Machine3

4

5

6

Figure 7: JCP Connection object Finite State Machine7

8

JCP provides, among others, a few key methods to support its primary features of placing, answering and9
dropping calls. The JCP specification defines, for each method, the pre and post conditions of the10
method in terms of state transitions in these FSMs. We will not discuss the FSMs for the JCP Call and11
Connection objects in this overview document; an overview as well as details are provided in the12
specification of each interface (e.g. JcpConnection, JcpCall). Also note that the JCP Connection object13
FSM is identical to the JTAPI core package’s Connection object FSM.14

IDLE
IN-

PROGRESS
ALERTING CONNECTED

DIS-
CONNECTED

FAILED

UNKNOWN
* except FAILED
or DISCONNECTED

IDLE INVALIDACTIVE

JAIN JCC 09/21/00 Version 0.8.4 Overview 14

5. Java Call Control (JCC)1

In this section we briefly summarize JCC. The JCC API has the same four key objects as JCP, namely2
Provider, Call, Connection and Address. Since JCC inherits from JCP, each object may contain3
additional methods beyond those in JCP. Each object’s interface specification includes a brief overview4
of the object along with its details, so we provide only a very brief description here.5

We note that as for JCP, JCC Connection objects are immutable in terms of their Call and Address6
references. In other words, the Call and Address object references do not change throughout the lifetime7
of the Connection object instance.8

5.1 JCC Finite State Machines9

5.1.1 JCC Provider10

The JCC Provider has the same FSM as for JCP, described in Figure 5 and Section 4.1.11

5.1.2 JCC Call12

The JCC Call object FSM is shown in Figure 8.13

Figure 8: JCC Call object FSM14

Thus the JCC Call FSM is similar to the JCP Call object, but has an additional transition, from the IDLE15
to the INVALID state. The descriptions of the states are:16

• IDLE: This is the initial state for all Calls. In this state, the Call has zero Connections.17

• ACTIVE: A Call with some current ongoing activity is in this state. Calls with one or more18
associated Connections must be in this state.19

• INVALID: This is the final state for all Calls. Call objects which lose all of their Connections20
objects (via a transition of the Connection object into the DISCONNECTED state) move into this21
state. Calls in this state have zero Connections.22

IDLE INVALIDACTIVE

JAIN JCC 09/21/00 Version 0.8.4 Overview 15

5.1.3 JCC Connection1

The JCC Connection object has a different FSM from JCP. Note however, that the JCC Connection2
FSM is a refinement of the JCP Connection FSM (i.e., obtained by adding transitions or splitting states3
into multiple states). The FSM is shown in Figure 9. The states are described as:4

• IDLE: This state is the initial state for all new Connections. Such Connections are not actively5
part of a telephone call, yet their references to the Call and Address objects are valid.6
Connections typically do not stay in the IDLE state for long, quickly transitioning to other states.7

• AUTHORISE_CALL_ATTEMPT: This state implies that the originating or terminating terminal8
needs to be authorized for the Call.9

• ADDRESS_COLLECT: In this state the initial information package is collected from the10
originating party and is examined according to the “dialing plan” to determine the end of11
collection of addressing information.12

• ADDRESS_ANALYZE: This state is entered on the availability of complete initial information13
package/dialing string from the originating party. The information collected is analyzed and/or14
translated according to a dialing plan to determine routing address and call type.15

• CALL_DELIVERY: On the originating side this state involves selecting of the route as well as16
sending an indication of the desire to set up a call to the specified called party. On the17
terminating side this state involves checking the busy/idle status of the terminating access point.18

• ALERTING: This state implies that the Address is being notified of an incoming call.19

• CONNECTED: This state implies that a Connection and its Address are actively part of a20
telephone call. In common terms, two parties talking to one another are represented by two21
Connections in the CONNECTED state.22

• SUSPENDED: This state implies that this connection object is suspended from the call, although23
it's references to a Call and Address objects will still remain valid. This state is typically entered24
when an application above the API has been invoked (triggered) during an active call.25

• DISCONNECTED: This state implies it is no longer part of the telephone call, although its26
references to Call and Address still remain valid. A Connection in this state is interpreted as once27
previously belonging to this telephone call.28

• UNKNOWN: This state implies that the platform is unable to determine the current state of the29
Connection.30

• FAILED : This state indicates that a Connection to that end of the call has failed for some reason31
(e.g. because the party was busy.32

33

JAIN JCC 09/21/00 Version 0.8.4 Overview 16

1

Figure 9: JCC Connection object FSM2

3

5.2 API Methods and Usage4

So far we have specified the key objects in JCC (and JCP) as well as their FSMs. To understand5
operationally how these objects are used and the methods they offer, we refer the user to the UML6
sequence diagram examples in the companion document.7

JAIN JCC 09/21/00 Version 0.8.4 Overview 17

6. Relationship of JCC and JCP to JTAPI and Parlay APIs1

The relationship between JCP, JCC and the call control APIs of JTAPI and Parlay is depicted pictorially2
via the object inheritance diagram in Figure 10.3

Figure 10: Relationship of JCC packages to JTAPI and Parlay4

5

The JCP package is an elementary call control package from which all other packages inherit. The left6
ellipse in the Figure represents call control extensions for CTI type of applications, and consists of the7
JTAPI Core package as well as its extensions. The central shaded ellipse represents the domain of call8
control packages defined by the JAIN consortium. In addition to JCP and JCC, it includes the JCAT9
package to be defined to provide advanced call control and IN/AIN type of functionality.10

Finally, the Parlay extension packages (e.g. multimedia or conferencing) are intended to extend from JCC11
along the right side of the Figure. JCC itself is based around the language-neutral Parlay 2.1 Enhanced12
Call Control Service (ECCS) specification in an effort to harmonize JAIN and Parlay call control. (It is13
hoped that the gap between the language-neutral Parlay specification and JCC call control will be14
diminished as the two groups work together.) Note that for Java however, JCC is the official Java15
instantiation of Parlay call control.16

Note that with this structure a programmer using JCP and JCC is linked closely to the other Java17
specifications for call control, namely JTAPI and the Java instantiation of Parlay call control. In18
particular, the objects, methods and programming paradigms of the JCP, JCC and JTAPI packages are19
closely related and consistent, so that as a programmer develops expertise and code for one it is relevant20
to the others.21

Java Call
Processing

(JCP)

JTAPI
Core

Java Call
Control
(JCC)

Parlay
Extensions

JTAPI
Extensions

Java
Coordination &

Transactions
(JCAT)

