Federated Management Architecture
(FMA) Specification

Version 1.0

Revision 0.0
November 12, 1999

Copyright © 1999 Sun Microsystems, Inc.
901 San Antonio Road, Palo Alto, CA 94303 USA
All rights reserved. Copyright in this document is owned by Sun Microsystems, Inc.

Sun Microsystems, Inc. (SUN) hereby grants to you at no charge a nonexclusive,
nontransferable, worldwide, limited license (without the right to sublicense) under Sun's
intellectual property rights in the Federated Management Architecture Specification
(Specification) to use the Specification for internal evaluation purposes only. Other than
this limited license, you acquire no right, title, or interest in or to the Specification and
you shall have no right to use the Specification for productive or commercial use.

The Specification is the confidential and proprietary information of Sun Microsystems,
Inc. (Confidential Information). You may not disclose such Confidential Information to
any third part and shall use it only in accordance with the terms of this license.

THIS SPECIFICATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT. SUN SHALL NOT BE
LIABLE FOR ANY DAMAGES SUFFERED BY YOU AS A RESULT OF USING
THIS SPECIFICATION.

THIS SPECIFICATION COULD INCLUDE TECHNICAL INACCURACIES OR
TYPOGRAPHICAL ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE
INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE SPECIFICATION. SUN MICROSYSTEMS, INC. MAY MAKE
IMPROVEMENTS AND/OR CHANGES IN THE SPECIFICATION AT ANY TIME,

IN ITS SOLE DISCRETION. SUN IS UNDER NO OBLIGATION TO PRODUCE
FURTHER VERSIONS OF THE SPECIFICATION OR ANY PRODUCT OR
TECHNOLOGY BASED UPON THE SPECIFICATION. NOR IS SUN UNDER ANY
OBLIGATION TO LICENSE THE SPECIFICATION OR ANY ASSOCIATED
TECHNOLOGY, NOW OR IN THE FUTURE, FOR PRODUCTIVE OR OTHER USE.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the U.S. government is subject to restrictions of FAR
52.227-14(g)(2)(6/87) and FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and
DFAR 227.7202-1(a).

Sun, the Sun Logo, Sun Microsystems, Jini,, JavaBeans, FederatedBeans JDK, Java
Solaris, NEO, Netra, NFS, ONC, ONC+, OpenWindows, PC-NFS, EmbeddedJava,
PersonalJdava, SNM, SunNet Manager, Solaris sunbrust design, Solstice, SunCore,
SolarNet, SunWeb, Sun Workstation, The Network Is The Computer, ToolTalk, Ultra,
Ultracomputing, Ultraserver, Where The Network Is Going, Sun WorkShop, XView,

Java WorkShop, and the Java Coffee Cup logo are trademarks or registered trademarks of
Sun Microsystems, Inc. in the United States and other countries.

Fedaated Manegamant Architedure Soedfication

Table Of Contents

TABLE OF FIGURES.......ooo ittt ettt e ettt e ettt e e e et e e e st e e e eab e e e s esbbeeesaabseeeaaabseeeenabaeesebbeseeansbesnanrenens Xl
ABOUT THIS DOCUMENT ..ottt ettt ettt e ettt e e e e iate e e e str e e e e sabaeeseabeeesasbeeessabaeeesaabaeessasbesaasbeeessnsens X111
Y 7 U 1SR RP Xl

2 ANNOTATIONSctctteteeetreeeieteeeesetreeesaibreeesabreesaassesesasseeeaassasasaassesesasseeesassseeesssaeesassesssanstesssasreessnsseeesns X1
3 CHANGESIN THISVERSION ..cciiiiuuttieeieeeeeeittnteeeeeesesiussesseeeessaaisssssesessssassssssssessssssssssssssesesssnnssssssesessannnnnes Xl

N 0 Y 11V 1= N £ T PSSR Xl
INTRODUGCTION .ttt ettt ettt e ettt e e e etbe e e s eba e e e s aabaeeeaassaee e e breeesassreeeeaasseeesaasseeesasseeesesbeseasbaeeesanrenens 1
L T VO | 0] = N T2 =S 1

B DOCUMENT GOALSuutiiiiiieeeeeiittteereeeeseetttaeeeeeeeseaasaaaeeeeeeeaaaassaseaeeeeeaaaassssaeseeeesasassssaeeeeesssanssraneeeesenssrnnnes 1

7 SPECIFICATION BOUNDARIES........utttiiieeeiiiiititteeeeeeeesittreeeeeessassaassaeeeeesaassasaseeeeeeseaassssaseeesesssnasssssneeeessannnnnes 1
SECTION 1: ANALY SISIMODEL .cccictviiiictiie ettt eite e ettt e e st e e e ebbeeesebseeesesbsseesassaeesensresesansseeesnnns 3
8 THREE TIERED ARCHITECTURE.....uuttttteeeeiiitttteeeeeessaaisssseeeeeessamissssssseseessaasssssssseeessammssssssesessssmssssssssesessnnnnnnes 5
I A 1 1T= o | OSSO PPPRRRRPPR 5

I < oV o SR PPPRRRRRTR 6

oG T IV =T = To 1= o s o U o= OSSP 7

O HIGH LEVEL REQUIREMENTS. .. . uuuuttuuutsssussnns 8

LS I A VU 1 (o 0’= L=\ = =T 1= . o SO 8

9.2 Provide High Integrity ManagemENtcoouieiiiieiiee et cte et eeee et e e s teesae e sae e e seeesseeesnneesnaeennneenns 8

9.3 Providea Smple Programming MOGEL...........ccoveiiiiiiiiiiii e sre e 8

LS B 106 (=AY P =T T 11 o | SO 8

9.5 Centralized MaNAQEMENTLcccuiiiiie e e e e st e eee e e s e e st e e sae e e teeesseeessseessseeesseeeaseeessseesnseeanseeenseeenns 8

9.6 Provide Highly Available ManagemEntccceicueriiiiiiee i sieeses s e stee et steesre e e e s e e snneesee e e 8

9.7 The Management Infrastructure Should Not Be A Management Headache..............ccccccoevieeeiieennene, 8

10 A SPECT REQUIREMENTS . ..ttt e e ee e e e s e s e s s s s s s s s e e s s s s e s s e ssesasasassaesasaasssssssssessssesssseseesesssssseseseeeeesseeseeeeseeeeeees 9
O I R o1 11 o] 1 1= GO SO U PRSP RRPO 9

0 2 o o o R I = SR 9

O N 1 2= 101 Tox 1 o o SRRSO 9

11 INSTALLATION REQUIREMENTS etttuuiiiietiittttieteeestesssssaeeeessesssssesesssssssnineseesessssmeessesssseeessessseeeen 9
S R B)Y/ 1 7= 1 ol 0 =11 o o RS 9

12 REGISTRATION REQUIREMENTS ...ttt iiiii ettt ettt ettt ettt ettt et e 10
121 Management SErVEr LOOKUD.......ccuiiiiee e st ee e s e st e et e e s e e s e e sneeeneeesnteesnneeeneeennneenns 10
S < A Tt oo (U o RS 10
SECTION 2: DYNAMIC SERVICES......cco ittt ettt ettt eettee e ettt e e s et e e e s etaae e e eabaeessasaeesesraeessssseesansraeeean 11
13 EXTENDED RMI SEMANTICS ... uutiiiiiiie e e s ittt e e e s eeeitee e e e e e e e e tsaaeeeeeesesnaasaeeeeeeeeassssssseeeeeesannneanneeeeenann 12
G R == 110 (=X @ o 1= ot 1 1S = =14 o SR 13
13.2 Remote Class MEthOO INVOCALIONvuiieiiiiee ettt et et e e e eb e e e s eaba e e e eareeeesneeesnnees 13
TG T o TTo g 1N 7= T = o 2R 13

Fedaated Manegamant Architedure Soedfication iii

G R a4 1 =Y A 0] 1= () 1A 14

14 PROGRAMMING INTERFACES VS. IMPLEMENTATIONScciii it e e e e ettt ettt ettt e e e e e e e e e e e 14
15 THE STRUCTURE OF DYNAMIC SERVICES ...eeiiieiiiiitttteeteeessseittreeeeeesssessssssseseessassssssssesessasssssssssessesansnsnnes 15
TN RS = VT o YRS 15
ST =0 T o @ o= ox SR 15
15.3 PUBIIC INEEITACE.viii ittt et e e e e et e e et e e s ebb e e e s eabaeeeesbaeeeestesabeeeesanbeeessnnens 15
T S = Y Tor= N 1 g o = =101 =1 o TR 15
15.4.1 [0 T 01 O o= ot =TSP PSP 15
15.4.2 Hidden ObjECES @NO ClASSESccuviiueeieeiie ittt sttt sttt sttt et st e bt e bt et e saeenbeenbeseee e 16
15.4.3 REMOLE ODJECLS BNA ClASSES. ...ttt ettt et be ettt e b e et eabe et e sneenbeeneesreenee 16

RS = [Tl =T = To 1 o SR 16
1551 Y = = PRSPPSO 16
155.2 S T 0o TSSO PPTPROPPPRTRIN 16
BT BV 4 = £ o0 1 oo OSSPSR TPROTTR 16

16 Y Loy = = = = = N I T 17
L16.1 REFEIENE ClaSSES. .. uuiiiiitiieeiitiei e ettt e ettt e e ettt e e ettt e e s et e e e e eebbeeeeeabaeeesasbeeesabbeeeseabseeeeasbssanbeeeesasreeessnsees 17
A == = =0 A o= o =R 17
16.3 Exclusion of RMI REMOLE ObJECESceiiiiiiiiie i sieeceeesee s te e s e s et e e st e e st e e eteeeneeesneeesneennaeennes 17
17 PROXIES ..ttt 17
18 (000) 1= RSP 19
18.1 Logical Thread IdentifiersS.......cccciiie et s ee e st e e e e e reeenreeennes 19
ST 1 2= 101 Tox o g SO 19
ST B o1 1 (o)1 1= S OO 19
19 THE STATION INTERFACEuutttieiieeeeeeittteeeeeesseeittseeeeeeesaassssseeseeesaaassssssaaeessasasssasseseesssaasssssseseesannnsnnes 21
S N RV 1= 1 0o S o =1 1= TSR 21
LS S 71 o gl =T T = oo R 22
S TG TS 7= o g 1 1o o) (U o S 22
19,4 The SAtiON INEITACEveiii ittt ettt e st s et e e e s bt e e e e st b e e e s eabeeeesbbeeeeteeeesaabeeessnnees 22
20 9] ==) 1Y 1= N PR 24
20.1 DePloyment DEfiNITION.ccuieiieeciie e s ee e s e e e e e st eete e e sneeesneeeenreeeneenrneesneeeenneas 24
20.2 ClassLoaders and DEPIOYMENL..........cociiiiieeiiie e eree st e e rtee e e see e ste e et e e srae e snte e steeesneesneeesnnes 24
21 SPECIFYING A TYPE OF REFERENT OBUJIECTuuttiiiiieeesieitireeeeeeessasussssesesessessssssssseesssansssssssseesssesnsssssssees 29
22 @ r = 0] LS R 29
23 PROXY BINDING......iccutttteiieeeiieiiitteeee e e s s eereeeeeeesseesssseeeeeeesaassssaaeeeeesaaaassssaseeeessaaaasssasneeeesssansssraneesenanes 30
23.1 Proxy Binding During Proxy INSantiationcceeieeeiieeiiee e seeesee e s ree e e 30
23.2 Proxy Binding During ProxXy VWFaDPINGcecveeiiie e eieeeseeesieesteeeeeesieeesseeesnseeenneessneesnneesnseesnsnen 30
24 PROXY REBINDING.....utttttiieeeiieiititteeeeeeseasitsreseeeessaaasssssseesesaasassesssesessaassssssseessssasssssssseesesssmssssseseesessanns 31
25 PROXY TO REFERENT OVERVIEWS ...ccieiiiicittttereeeeeeeeittseeeeeeessasssssssssseesssassssssssesssassssssssssesesssssssssssseesesnans 31
25.1 Referent Object MethOd INVOCALION........ccuiiiiiiiie e e et e e e nae e e mneeesnnes 32
25.2 Referent Class MEthOO INVOCALION........c.veiiiiiiiiie ettt ettt e e s eaba e e e s eare e et e s enbeee s 33
25.3 Referent Object INSaNtiatioNcciiviiiiie it e e e s e e st e e eneeeenre s 34
25.4 Wrapping a Referent Object With @ ProXyeoiveeiiie i 35
DTS T o 0 A VA = = o o 1 o S 36
26 ADJIUNCT IMODIFIERS ..ettiietiiiittttteeeeeeseeiutttaeeeeessssstssseseeessaaassaasaseeesaaaasssssseeeessasasssaseeseesaaaassssneeeesasanssnes 37
b2 T R O = 13 Y o o = SRRSO 37
DG T © o] 1= o 1Y oo 1= S 37
DR T Y, = 10 o 1Y, oo [= OO SRO PP 38
26.4 MOITIEr PrECOOBNCE.......cvvee ettt e e e e e et e e e et e e e s ebbeeesesbbeeeessaeseesraeeeennrees 39

Fedaated Manegamant Architedure Soedfication

26.5 ACCESSING MOGITIErS.....ceeiuieeiiie ettt s e st e et e e saae e snte e snbeeeneeentneesnneesnneas 39

26.6 PermiSSIDIE MOOITiEIS.......ccii ittt e e e e e r e s e e s s s e bbb e e e e s e e e s ssbbbbeessesssbbbaneeeesesannnes 39
27 PROXY CLASS DETAILS oottt 41
D T = 0 V1 11 = TS 41
27.2 Remotely Exposed Methods and CONSLIUCLONSveeieeeriiecieecreeeseeesteestee e seee s e ste e e saee e snae e snae e 42
ARG TIATLY =10 o 1< g O] 1= | U o (o SO 42
= (U= S = Lo 7= O L= S 42
27.5 Clonable and SEraliZAbIE.........oocoii i e e e e e e s r e e e s s e s sbarreeeeeeeesnnare 43
27.6 getReferentObjectClassName() and getReferentClassClassName()veevveeereeevieesieeeieeesiee e 43
28 NETWORK CLASS LOADINGccoiiiiiii ettt ettt 43
28.1 ClassLoaders and DEPIOYMENLScccieiiieeiiieeiie e see e ste e st e stee e saee e ste e ste e e stee e snee e snteesteeesneeeneeesnres 43
28.2 ClassLoading During Remote INStantiation..........c.ecieeeiieeiiee e see e esee et saenee s 44
28.3 Class Loading During Remote Class Method INVOCALIONS...........cccueeiieeiiie e see e 44
28.4 ClassLoading DUring ACHIVALIONcuiiiuieiiie e cee s ste e e e s e see e e rna e e e e e sneeesneeennerneeesnnes 45
29 JAVABEANS CONVENTIONS ... eeeeeeeeeeee e e e ee e e e e e e s e e e e s s s e s s s e e e s s e ssseessaseaaasssssessseseessssssssssesesssesessseeeseeseeseeeeeeees 45
30 TRUSTED THIRD PARTY ARCHITECTURE ...uiiiieeeeeeeeeeeee e e e s s s ee e s e e e e e e s s e e e s s s s s e e e e asesseseessssessessssssssssssssssssssssssees 48
G051 20 T2 1 1SS 48
GO 2 Tc o (< = 1o LR 48
31 SCOPE OF SPECIFICATION .vvvvvvususssnnns 49
31.1 Client/Sation to the JAAS (AUtNENLICALION)cccuieeiiie e e e e e e 49
312 JAASTO the SECUMTY SEIVICES...iiitiieiieeiieeectee e sttt ste e s et e s tee e s e e st e e et e e sse e e sateeenseeenseeesssestaeesneeesnnes 49
31.3 Service Objectsto the JAAS (AULhOFIiZation)cceeieeiiee i 49
O O 1T o (o =) |V S 49
315 Referent ODJECISTO SAtON......cueeiiieiiei it ee e e e s be e e be e e sree e sate e s neeesneeesnreas 49
32 TERMS AND DEFINITIONS ...t eee e e e e e e e e e e e e s e e e e e s e e e e s s e e e e e e e e e e e e easasessesssesssaasesssaesesseeseseesseseeeeesseseeeeeaeeeees 49
G722 IS U o= RS 50
72 = T 0o o 7| RS 50
32.3 SAUONSVEISUS JVIVIS....cciiiiiiiitteeie i e e e e ettt e e e e e e s s eab e et e e e e e s s saa b b e e e e sassssaabbbaseesasessassbbaaeseesssbbbaneeeesssansnes 50
S = oW 128 o xS 51
G 7228 T (o [52
Y S T <o (< = 1o LR 53
32.7 Security Manager and Class LOAOENS.......c.uveivieiiie ettt se e ee st e e siee et e e st e e e aa e e sneeesnneeennee s 54
I S IS = oW 1R = = TS 54
33 SECURITY TOPOLOGY ..uvvvuvvvrurususssessnnnns 55
G T I O][0 (- 56
34 JAAS AUTHENTICATION OVERVIEW. . .ieeeeeeeeeeeeeeeeeee e e e e s e e e e e e s e e e eesesaaeaesssassassesessesssesesssssssesesssessesseseeseeeees 57
35 MANAGEMENT EXTENSION TO JAAS AUTHENTICATION ...cctti et e eeieee ettt ettt ettt e e e e e e e e e e e e e e 57
ST S = oW 1 AR = = TS 57
ST S = oW 1= T o= S 62
35.3 WEI KNOWN SUDJECL ...t ettt et e et e et e e st e e e e e e nae e neeesnteeenneeeneeen 64
36 AAUTHORIZATION 1ot s e e e e e e e e e e e e e e s s e e e e e e s easasassaasaaaaaaassssassssssasssssssssssssasseseseeeeeeeeseesesssnnnns 65
G RN 1Y A Y @V L =YY R 65
G T2 Y/ oo [} [o= 14 0] -3 66
CISRCTIES = 1[0 AN (g Vo 7= o] o 1R 66
37 CLIENT TO PROXY etttttuttuttttttsustsesssssssssesssessssessreesssesssesses..ss.. 68
38 R = N O TS 7 1) 68
S0 I 1 1 01 T o 68

Fedaated Manegamant Architedure Soedfication Pagev

Vi

11T 1 2o o S 68

1T N e o 1 S 68
39 DELEGATION 1eitiieiiiiittiteeteeeeseeeiiaseeeeeessaestaseeeeeesaaaaasseaaeeaesaaassssseeeeesaaaasassaseeesssassasssasneeeesssansssraneessannes 69
40 N IEWV S . tttttee e e e e e ettt e e e e e e e ettt eeeeeeeeeaaaaaeeeeeeeeeaasaaaeeeeeeeaa R aeeaeeeeeeeaaaantaeeeeeeeaaanaraeeeeeeeaaarereeaeeeeaanrrrenes 69

O O 7= D= Y= Lo = S 69

O S = Vo N B =Y = o o= S 69

IO RGNS Vi =10 Y (40 T K (= Lo (RS 70
41 SYNCHRONIZED/ TRANSACTIONS. ...1veieitreeeeiitreeesestreessesseeesaissesesasssessasseessssseeesassssessssssssssssssesessssssessnssens 73
42 TRANSACTIONS CREATED ON BEHALF OF AN OBUJECT ...eeiiiicttiriieeeeeseeiiireeeeeesseeiasnreseeeessennnnsssseessssnsnsnnes 73
43 (D] =7 o T e Lo N == = N o 74
44 SYNCHRONIZED/LOGICAL THREADccvveieeiitreeeeeteeeeietteeessisseeesesseeesassssessssssessassssessssssssssssssesssssesesssssens 75
45 LOGICAL THREADS CREATED ON BEHALF OF AN OBUJECTcccutvieiiieeeeseciireeeeeeessesineneseeeesseennnnnnneeeeesennns 75
46 DISTRIBUTED DEADLOCKeeiiiittttetieeeeseeittteeeeeesseesistsseeeeeessessssssssseeesssassssssssesssesssssssssessessessasssssseeseenann 76
47 (000)N 2) I = 1= TP 7
48 CONTROLLER ARCHITECTUREcceiiiutttteteeeessaeittsseeeesessaaassssssssesssassssssssesessaassssssssseessenssssssssesssessssssssseees 77

FE N R 7o 11]| 1= =TSP 77

i W o o OO 78

48.3 Sate Distribution Between Stations and the Controller SErVICEoocvveveviviei i 78

48.4 Sation RESPONSIDIITIES.cciieeeieece e e st e e e et e e ae e e nnee e nnreenanes 78

48.4.1 REMOLE INSLANLI AL ON ...ttt e e e e et e e s ebb e e sbbeeesebbeeesabbeeesbbeeesbbeeesbsbeeessnbaeesssbeeessreeesnes 78
48.4.2 CoNtroller ODJECE LITEIIME.....ciueeiiiie ettt sttt e be st sbeesbe e b e sbeenbesneen 79
48.4.3 REMOtE MEINOO INVOCEEIONvvveiiirii it cetiee ettt ertte e ettt e et e e e e tae e s ebaeesesbeeeeasbeeeeasbeeesassreeesssseeesssseeesnns 79
48.4.4 FaIlE0 LEASE RENEWELvveiiitiie ettt et e e e ettt e e e eab e e e s e abe e e s abbeeesabteeesabbessesssbaeesssseesessseeennns 79
48.4.5 S e [0 gl R s - o SRRSO 79
48.4.6 Notify Controller Objects of POSSDIE LOCK LOSS.........oiieiiiiiiieiesiierie ettt e 79
48.4.7 [TS 1 0100 o] o £ ST 80

485 Client RESPONSIDIITIES ...cuveeiiee et e e e et e e e e s e e s aeeeneeenneeennneennnes 80
49 SYNCHRONIZED/CONTROLLER ... uttteeiettteeeiitreeesateeesaeseeessisseeesasssessassseessssssssassssssssssssessssssssessssssessnssens 80
50 CONTROLLERS CREATED ON BEHALF OF AN THREADcutttiiiieeeeiiiiireeeeeeseesiireeeeeeessesssnssseeesssssnssnssssenns 81
51 (D] =7 o T e Lo N == = N o 8l
52 CLIENTS AS CONTROLLERS. . 11tttteetiiittttttteeessasitsseeeeeessaasasseseeeessasassssesseeessaanssssssseeessemsasssssseesesesnnssssseees 8l
53 REFERENT OBJECTS AS CONTROLLERS.uutttttteeeeiiiittreereeesesasissrseeeeeessamissssseeeesssamssssssseeeesesamssssssseeeeennns 8l

53.1 Immutable Relationship Between Controller and ODJECL...........ccceeviieiieeiier e 82

LS I O00 a1 o | = g 1 O] p 1 S OO RO RO 82

53.3 Releasing LockS HElA by @ CONLIOIIESooiveeiiie et 82
54 CONTROL RESERVATIONS. .. ttttttteeeiiiitttteeteeesseaitsseeeesessaatssssseeeessaaissssssessssaamsssssssesesssmsssssssseesesssnsssssseees 83
55 SPECIFYING PERSISTENT OBUJECTS . .uuttttiiiieeeiieittrteeeeeessasitsseeeeeessasissssssessssesssssssseessssmsssssssseesesssnssssssseens 85
56 KINDS OF PERSISTENT STATE ...uutttitiieeeeiiiittteeeeeessaasissseeeeeesssaaissssssesesssassssssseesessamassssseesessesssssssssessessas 86

LT R (= (= To TSROSO 86

LTI 1 2o | S 86

LT N = o 1 S 87
57 READING STATE. ...t iittteeiiee e e e esiireee e e e e e s esateeeeeeeeesaataaeeeeeeeaassssaseeeeesaaaassssaseeeessaasasssasnessesssaassreneesennnes 87

LY A% R Ve 1Y o] o OSSO 87

YA | ==Y ([0 g 7AYo o o SRRSO 87
58 WV RITING STATE ...uttteiiieeeieeittteeeeeeeeesittreeeeeessaaasaseeeeeeeeaaassraseeeeesaasassssaeseeessaaassasaseeeessasasrsaneeeeesssnssnnes 87

LTS R 1 01 = L=\ (o) ISP 87

58.2 TranSaCtioN COMIMITS......cccureieiiirieeeietteeeeiitreeeseitreeesetbeeessetreeesebeeeesebaeeesasbaeesasbeeesasreeeeasseesnbeeeesassenens 88

LTS TS T 11 VAT o1 = 11 o o S 88

Fedaated Manegamant Architedure Soedfication

58.4 Optimization for LOGIC ODJECLS......ccuiiiiieiieie s cieesee et e e ste e st e e e e e s e e saeeeneeesneeessaeeseesnneesnneas 89

59 ACCESS OF PERSISTENT OBJIECTS USING PROXIES ... eeieieee ettt ettt e e e e e e e e e e e e e e e e e e e neeneeeeeeeas 89
60 CONCURRENT OPERATIONSuuuuuuustustsss..——— 89
60.1 Operationin Progress on Methods Not Synchronized/Transaction............ccceeveeevieesceeecieeseee e, 89
60.2 Operationin Progress on Methods Synchronized/ Transaction.............ccevcveevieesieesiee e seee e 20
60.3 Operation Initiated on Methods Not Synchronized/Transactionccceeceeevieesieescee e 20
60.4 Operation Initiated with New Transaction on Methods Synchronized/Transaction............ccccceevveeneen. 90
60.5 Operation Initiated with Old Transaction on Methods Synchronized/Transactionccccccvvcvennenns 90
60.6 FECIHYING thE SEIVICE ENIY .. oeiiiie ettt e s e et et e e snee e s te e e te e e sseeteeesneeeanneas 91
LSO I 1SS R 92
60.8 Responseto Lease RENEWaAl FaIlUME........ccueeiiie it ee et e e e e e s eenee s 92
(SO S < AV, (o= 1 =T 92
61 OV ERVIEW.....0utuuuueeessesssnns 93
62 INTERNATIONALIZATION ...oiiiiiiiieeee et ettt ettt ettt et e e et et e e et e e et e e et e e e e et et et e e e e e e e et et e et e e e e e et e et et e e e e e e e e e e e e e eeeeeeeaeeees 94
L2 T W0 o= | Tz o =Y =S Vo SR 94
62.2 Providing RESOUICE FIIES........uee ettt sttt e s e et e e r e e sa e e s te e e nbe e e snatneesneeennneas 97
63 0 0 I 174 1 L) 98
L5225 A T 0T 11T T = S 98
63.2 Localization IMplEmMENtaLiON..........cccuie i e e e sre e e e e e nse e e sreeeseeesneeeanneas 98
64 SERIALIZATION OF IVIESSAGESuuuvvuuuuursss.ss.s.....................................———— 98
(S R = T LU (R (0 B < A= <R 98
(37 - T 1N (RN (OB < A= LR 99
64.3 LOW RiSK SUDStIULION OBJECLES.ccuviiiieiccee ettt e st e e e e e e sneeesneeennee s 99
64.4 Messages as PUDIiC INEEITACES.........cuie et ree e sae e eneeeenneas 99
65]SS S D I [0 =] I = 101
66 INTERNATIONALIZATION AND LOCALIZATION OF THROWABLES.cciiiiiii ettt 102
67 STACK TRACES AND THROWABLE SERIALIZATION ...uuuuuuuutueuerssrrsses 102
68 RULES FOR HANDLING THROWABLESccoiiiiiiiiieee ettt ettt ettt ettt e e e e e e 103
69 COMPOSITE THROWABLE INTERFACE ... 0uuuuvveettssssessssssssssesss.s.s.....s................. 103
70 COMPOSITE EXCEPTION CLASS. .. uuuuutuutuurtuursrrrsssreresssssssssssessssesssssss............................—........................ 104
71 COMPOSI TE ERROR CLASS. .. uuuuutuuuturrtesrussusrrsersssesrsssssssessssessss.s.......................—................................——. 105
72 (e = = N0 Nl B = =10] 1 N[106
SECTION 3: STATIC (BASE) SERVICES......ci oottt et e s e ta e st ste e e nnaeesnaeesneeesnaeennneenns 109
73 NO TRANSACTION SERVICE .. ittt i i ieiiiee ettt ettt ettt ettt ettt ettt ettt e e e e e e e e e e et eeees 113
74 FAILED TRANSACTION SERVICE......ii ittt it ittt ettt ettt ettt ettt ettt e e e e 113
75 RECOVERED TRANSACTION SERVICEcciiiiiiieieee ettt ettt ettt ettt ettt et 113
76 CONTROLLER AND CONTROLLER GENERATIONS. . .uuuuvvurussssssrsses 115
77 CONTROLLER SERVICE INTERFACE ...vvvvuvvtuurrsrssssrrsssssssssssessn. 116
78 CONTROLLER INTERFAGCEuvvuuuuuuususss.sssssss............................. 119
79 N O O N =T I = = 3 = = A/ [t =S 121
80 FAILED CONTROLLER SERVICE .. it it i it ittt ettt ettt ettt ettt ettt ettt ettt e e e e e 121
81 CONTROLLER SERVICE RECOVERY ...vvvvtuvtuttiieiuesrrsessrresreseseesssessssssssssssss.ss.s.....................................——— 122
82 BREAKING CONTROLLER SERVICE LOCKSciiiii it 122
83 LOG SERVICE INTERFACES.ottt ittt ettt ettt ettt 123
o0 00 0o /1= T - SR 123
83.2 TheLOg SErVICE INEITACE ... uei it e et e e e e reenre e e nneeennes 125

Fedaated Manegamant Architedure Soedfication Page vii

83.3 RErEVING LOG MESSAGESueieieiieiiie it ettt e st estee e te e e s tee e s ateesteeeaeeessaeesnteeanseeeseeenseeesnsentesenseeennns 126

83.31 [S0 o= =TT 126
83.3.2 SIS (o 1T 127
83.4 REMOVING LOG MESSAGES.ueiiveeiitiieitieeiiee et eestee e stteesnte e s te e e stee e snteesnteesteeeaseeesseeesnteeanseeeneeenseeennns 128
84 POSTING FAILURE SCENARIOS ... oottt ettt ettt 129
o I =S (1o [= L= o1 /2T 129
84.2 L0og Service UNaVail@bl@..........cc.eeeiiieiiie et e ettt nnes 129
84.3 MarshaliNg FAIIUIEccuee et e e e s e et e e sre e e snte e s teenreeenneeennes 129
84.4 Log Service Failure Whil@ WHIING........oeiiiiiiiii et 129
85 USE OF THE JINI TECHNOLOGY EVENT MECHANISM ..uuuiiiiiiiiiiiiieieeeeeeesiieeeeeeseesssiieesessssssssnneseessssssnnnns 131
86 B = V2= N =N = o 132
86.1 INherited EVENt PrOPEITiES......cccuieiiee e csee ettt et s e st e e et e e e e snte e snteeeneeesneeesneeeennes 132
86.1.1 Y= 0 L0 | OO PUUSUSOURUPUUPPPPPPPRTPRRt 132
86.1.2 [F= 1007 o: QRPN 132
86.1.3 S o 0C 1ol U o TP 132
86.1.4 10T 132
86.2 DecClared EVENt PrOPErTIES......coiiii ettt e st s e e e e e sate e sa e e snteesnre eeenreeenes 132
86.2.1 QLIS o oS URTPRUPURRPRON 132
86.2.2 BaSe EVENE ODJECLc.veiiieieieteeie ettt sttt ettt et s bt e bt et e et e entenbe e b e bt nbeennes 133

ST B = oo A Y=o A o= o S 133
87 Y= NS = A VAT = LN = LY = 134
88 0] = 102, 136
89 CHAIN OF RESPONSIBILITY tvvvvuvurususssnnns 137
90 SUBSCRIBINGuvvvvvssnns 137
90.1 ODBSErVING LISENEIS......oc ettt et te e st e st e e saae e ste e e te e e aeeeaaseesnneeenseeereesnseeenseeennes 137
90.2 REPONSDIE LISLENEIS ... veieiee ettt st et e e e e st e et e et e e s e e s sa e e snteeenseeeneeesneeenneeeennes 137
90.3 EVENE SErVICE AS LISLENEIS. .. .eveeeiiiee e eiettee e e e ettt e e e e e e s bbb e e e e e s e s s bbb e e e s eesessabbbaeessessssaseeseasesannes 138
90.4 Listeners as GOOO CitiZENS.......uuveiiiieiiiiiiieeiiie e e s s ettt e e e e e s s s sb e e e e e s s s s ssbbbaeeeesesssssbbrseeessssassreeessssanses 138

L LR =TSSR 139
91 V4= O] = =1 N 139
L @ 015 = Y1 o [TS = 1= =S 139
91.2 REPONSDIE LISLENEISveieiiie ettt e e e e e s e et e et e et e e s saeesnteeenseeeneeesneeenneeesnnes 139

(el R Y < | S STV (oY IS (<] [TR 140
91,4 SEOUENCE NUMDEIS......eeeiiie et et e et ee et e e te e s te e st e e s rae e s st e e s teesteeeaseeessteesnteeanteeesneeesnteeantesnsenennenennes 140
92 T RANSACTIONS. ¢ e e e e e e e e e s e e e e e e e e e e e e e s e e e easaasaeaaaaaaaaaasasasaaaasasasssesesassesesessseseeseeeeeeeesssnanns 140
93 Y= S = YA o =l o = = TS S = ! = 140
94 MANAGEMENT FACADES. ...t iiiitettitiiie e et tetsttaaeeeeeteasta e e eeeeseasaaa i aseesesssaaaaassesssssaaaaseeseessrannaesesessssnnnnnns 141
S R = o I = o 141
(e Y < 0| €Tl 1< &= L1 o OO 141
94.3 Event Trandation and POSLINGcveiiiiiiiieiie e cee e st ste et e e e saa e e st e e sne e enaeesnneesnnenneeennes 141
S Y = o T (= 1 0 S 141

(e I Y < o | OXa g = = 1o] R 141
95 SCHEDULINGSERVICE INTERFACEuuuvvuuteuttstsssssrsss.s................................——. 143
96 1 = 146
97 785G, 146
98 SCHEDULES ..vvvtttvvsessnns 146
99 TASK PERFORMANCE ... e e s e e e s e e e e e s e e e e e e e e e e s e e e e e e aeeseasaeessesaessasssseseeseeseeseaeeseseseeaseseeeeeeaeeaeeees 148
LSS 0 K I 01 == o [148

viii Fedaated Manegamant Architedure Soedfication

100 SCHEDULING CONFLICTS. . i itiiiiiiiie e ettt 149

101 PROTECTION FROM TASK EXCEPTIONS......cciiiiiiiiiii ettt 149
102 SCHEDULING SERVICE FAILURE......cooi i 149
[T IO 1S SN T 151
INDEX oeeiiiii ittt e et et e e e e e e e et e e e e e e e ea s b —eeeeeeeeeasab———eeeeeeeeasbba—aeeeeeee e bbb etaeeeeeeaaababeeeeeesaaabarrrreeeeeaaarrrrees 155

Fedaated Manegamant Architedure Soedfication Page ix

Table of Figures

Figure 1. The Three Tiered Architecture of Management AppliCations.ccceevieeiieii e 5
Figure 2. Intradomain FEABIAtION.eeiiii e s e s e s e e e e s e e sae e e aaaeess eesnteeanreeeseesnneeannes 6
Figure 3. Interdomain FEABIAtION.oiiiii et re e s e e s e e s e e sae e e saeeees e e snteeenreeeseesnneesnnes 7
Figure 4. Architectural Layering of RMI Semantics with Dynamic Services Semantics.........ocovvveevveesieeseessiinnnns 13
Figure 5. A Comparison of Local Java Programming (top) and Remote Programming using Proxies and referents. 18
Figure 7. Referent Object Method INVOCELION.c.ceeiiieiiieciee e st e et se e st e e e e e s e e ssaeeseesnaeesnneeennneens 32
Figure 8. Referent Class Method INVOCALION.ccuieiiieiiie e ee et e e e e e e s nee e snreeeneeens 33
Figure 9. Referent ObjeCt INStANtIatiON.eeeiiieiee e s e et e e saee e s be e ste e e seeesaeeesneeesnneeenneens 34
Figure 10. Wrapping a Referent Object With @PrOXY.cccviiiii i 35
Figure 11. ProXy REDINAING.ccveiiieiic ettt e st e e e e st e e s ee e eseeesnaeenteeesneeesneeesnneeennnnens 36
Figure 12. SECUNtY ATChITECIUIE.eiiiiie et e st e e s e e st e e e st e e sate e sateesnbeenneeesneeesneeesnneeannneans 48
Figure 13. Security services, Security Domains, Federations, Stations, and Clients.cccceeveeeevee e cvcieesciee e 55
Figure 14. Remote AUthOrization MOGEL.cc.eeeiiie e e et e e e sr e e s ree e snreeenneens 60
Figure 15. Remote AULhOri ZatiON SEQUENCE.ccciie e e et st s tee s tee e e e s te e st e s ssee e seeesateeeneesreesneeesnneeenneans 61
Figure 16. State Diagram of Object Methods Synchronized with Respect to Transactions.ccvevveevieevcieeiiienns 73
Figure 17. State Diagram of Object Methods Synchronized with Respect to Logical Threads...........ccccccevveiveeneen. 75
Figure 18. State Diagram of Object Methods Synchronized with Respect to Controllers.........ccovvveveeiiee e e, 81

Fedaated Manegamant Architedure Soedfication Page xi

About This Document

1 Status

This document is a draft for public review, as defined by the Java™ Community Process
(JCP).

2 Annotations

Note — In this document you will notice several paragraphs appear in this style. These are
areas where we specifically invite comment. Consider them as “notes to reviewers”.

Terms inbold Italics are particularly important and are defined in the glossary.

3 Changes in this Version

This version is a major revision.

4 Comments

Please direct comments to core-ri@thor.central.sun.com.

Fedaated Manegamant Architedure Soedfication Page xiii

Introduction

5 Audience

Thereaders of this document are assumed to be technica and versed in object oriented

design, the Unified Modeling Language (UML), Jini™ technology, and Java technology.
The audience is assumed to be implementers of this specification or of components which
are deployed on such an implementation. In the latter case, this specification is intended
as a reference rather than a guide.

6 Document Goals

This specification defines the Federated Management Archite&ig) (sufficiently for
vendors providing implementations of the specification. As the scope of the platform
includes the interactions between an implementation and deployed components, this
specification also places constraints on the behavior of components in their contracts with
the implementation. However, this specification is not intended as a guide for vendors
writing or using management components. Design guidelines for management
components and their use of supporting technologies such as Web Based Enterprise
Management (WBEM) is the subject of other related documents.

7 Specification Boundaries

In leading the development of this specification, Sun has placed boundary conditions that
must not be violated and must remain part of the JCP. In particular, architecture is to be
based on Java technology and Jini technology. Java technology is used as the primary
mechanism for achieving platform neutrality. Given platform neutrality, one may derive
other forms of neutrality such as protocol neutrality. Language neutrality is not a goal for
the initial specification, but can be approached later through other means. While this
specification is Java technology centric, it is not Solaris operating environment centric.
The primary validation platforms are NT and the Solaris operating environment.

Fedaated Manegamant Architedure Soedfication Page 1

Section 1: Analysis Model

This section presents an analysis model of management applications as assemblies of
management services, management clients, and managed resources. The modd illustrates
how management services can use other management services, the interface between
management services and clients, as well as the interface between management services
and managed resources such as storage devices and applications. When management
services are assembled in hierarchies, complex storage systems can be made to appear
simple because users of the system interact only with the top-levels of the hierarchy at a
high level of abstraction. In particular, it is desirable that a given storage system be
managed at the samelevel of abstraction asthe provided data. For example, when
managing a database appliance, an administrator would ideally manage the performance,
size, and other characteristics of tables rather than manipulating the disks and volumes on
which the database runs.

The analysis model describes the form of a solution to the management problem. The
solution model, described after the analysis model, specifies the infrastructure designed
to support such solutions.

Fedaated Manegamant Architedure Soedfication Page 3

The Analysis Model

8 Three Tiered Architecture

Thethreetiered architecture has been validated in many application domains and has
well known properties. As applied to management, the first tier isthe management client
tier, the second tier isthe management servicestier, and the third tier isthe managed
resourcetier. Clients are hosted by Java Virtua Machines (JVMs), servicesby IVMs
enabled as management servers, and resources by any appropriate host machineincluding

I

©
@@ o

Services

Resources

Figure 1. The Three Tiered Architecture of Management Applications.

The client communicates with management services, which ensures that the third tier, the
resource tier, is manipulated in a controlled and consi stent manner.

8.1 Client

The client locates and communi cates with management services. Often the client isthe
user interface for an administrative user, but thisis not always the case. Clients are

Fedaated Manegamant Architedure Soedfication Page 5

The Analysis Model

considered transitory. Objects associated exclusively with the client are only expected to
live aslong asthe client process, even if the client terminates abnormally or becomes
unreachable. Thisisalso truefor client objects that have been transferred to a
management server. For the purposes of defining expected high availahility, itis
acceptable to restart the client in order to reestablish management capabilitiesin response
to the failure of a management server.

Java clients can locate and communi cate with management services directly. Outside of
this specification, there can be bridges to connect non-Java clients. An example bridge
would be a servlet that allows using a browser for management. The servlet would
communicate with the browser using HTTP/HTML and with the services tier using Java
Remote Method Invocation (RMI).

Other than specifying how clients communicate with management services, this
specification will not define the architecture or design of management clients.

Services

Management logic is comprised of services hosted by management servers. Management
services are classified in anumber of ways including whether they are transent,
persistent, static, or dynamic.

Management is divided into digoint domains. Each management domain hasasingle
management server, called the shared management server, representing the domain asa
whoale. There may be more than one shared server for the purposes of redundancy, but the
entirereplication group istreated asasingle logical server.

Appliances, such as encapsulated file servers, can aso have embedded management
serversto host services that are privateto the appliance. This class of server is called the
private management server. The union of shared and private management servers within
asingle domain is called an intradomain federation.

Domain
Shared
Q
Appliance @ Appliance
Q

QQQQ QQQQ

Appliance

QQQQ

Figure 2. Intradomain Federation.

Fedaated Manegamant Architedure Soedfication

The Analysis Model

The union of the shared management servers of each domain forms the strictly
hierarchical interdomain federation.

Domain

Q
Domain Domain
QQQQ QQQQ

Figure 3. Interdomain Federation.

Shared management servers of different domains may communicate with one ancther.
Private management servers may not communicate across domain boundaries.

8.3 Managed Resources

Theresourcetier includes amix of heterogeneous managed resources such as devices,
appliances, systems, and applications. Unlike business applications, most of the state that
is interesting to management resides not in a database but in managed resources. A
number of standards exist or are emerging, such as Web Based Enterprise Management
(WBEM), for communicating with managed resources.

While management servers will provide built-in support for WBEM, the architecture is
protocol neutral. If the managed resource is capable of hosting a VM, it can choose to
embed a private management server and be managed using inter-service communication,
in which case the managed resource is called an appliance. Thistechnique hasthe
advantage of propagating the features of management services to the appliance. Thus,
management services can be dynamically ingtalled, updated, and otherwise manipulated
within an appliance.

9 High Level Requirements

9.1 Automate Management

Management to date has been dominated by monitoring. Moving from monitoring to
contralling and, finally, to automated or policy based management, requires infrastructure
support, such as control arbitration, not found in the current generation of management
products.

Fedaated Manegamant Architedure Soedfication Page 7

The Analysis Model

9.2

9.3

9.4

9.5

9.6

9.7

Provide High Integrity Management

As managed systems become more automated and complex, it becomes essential for the
platform to provide some guarantees about the integrity of the management activities.
Thisrequirement drives such features as security, transactions, and the control arbitration
as the set of mechanismsthat protect management integrity.

Provide a Simple Programming Model

Vendors providing management components will generally not be expertsin distributed
Java programming. The specification should be biased towards simplicity rather than
completeness or performance to minimize the cost of creating services by vendors who
are not Javatechnology centric. The simplicity can be achieved using a mix of
development tooals, class factoring, and any other applicable techniques.

Remote Management

Management shall be possible from remote |ocations, including outside firewalls and
possibly over unsecured networks.

Centralized Management
It shall be possible to manage an entire management domain from a single location.

Provide Highly Available Management

The management services of highly available systems should themselves be highly
available. Highly avail able means that one can proceed with management tasks following
the loss of a management server. The continuation is not necessarily transparent, just
possible.

The Management Infrastructure Should Not Be A Management Headache

The sol ution to the management problem should not itself be a management problem.
Thisrequirement drives a simple management solution compared to similar technologies
such as application servers.

10 Aspect Requirements

10.1

The implementation of this specification must support the following aspects applied to
management services.

Controller

An important objective of the specification is providing the infrastructure to support
contral arbitration. The primitive required for arbitration is called the controller aspect of
the management services model and must support durable (long term) exclusive locking
of resources.

Fedaated Manegamant Architedure Soedfication

The Analysis Model

10.2 Logical Thread

As the specification isintended to support active, autonomous management applications,
it must be able to support concurrent and reentrant conditions with respect to threads.
Management applications are made of distributed components, so the services model
introduces the concept of alogical thread that spans processes. Thus, behavior with
respect to threads can be specified with respect to logical threadsingead of language
threads.

10.3 Transaction

Most distributed object models provide some form of transaction support to aid in
protecting the integrity of the resource layer. The specified transactions are inherited
from the Jini programming model and focus on supporting large numbers of
heterogeneous resources, rather than a single large resource (database). In many respects
they may be thought of as a distributed form of try/catch rather than the more classic
transaction model supported by transaction monitors and application servers.

11 Installation Requirements

11.1 Dynamic Installation

The specification must provide for the dynamic installation and updating of management
services without requiring that management servers be restarted. Installation shall support
both temporary installs as well as durable ingalls.

12 Registration Requirements

12.1 Management Server Lookup

Management servers shdl registered with awell known lookup service where they may
be located by clients and other management servers. Management servers shall be well
good Jini technology citizens with respect to registration.

12.2 Service Lookup

Management services shall registered with awell known lookup service where they may
be located by clients and other management services. Management services shall be well
good Jini technology citizens with respect to registration.

Fedaated Manegamant Architedure Soedfication Page 9

Section 2: Dynamic Services

While the analysis model describes the problem domain, which in the case of
infrastructure is a solution to a higher order problem, the solution model describes the
form of a solution. The problem is providing the infrastructure needed to support three
tiered management applications as described by the analysis modd . The specified
solution to this problem provides a component model based on Jni technology services.

The specification classifies management services as static or dynamic. Static services,
called base services, include the transaction manager, logging, and other services
considered always present in amanagement domain as part of the environment. These
services are supplied as part of an implementation of this specification. As such, the
deployment of base services and the hosting environment are implementation rather than
specification issues. For example, the logging service could be implemented as an
Enterprise Java Beans (EJB) or even anative implementation exposed through a Java
facade.

Dynamic services are supplied independent of a management server implementation.
Since a vendor boundary exists between dynamic services and the management server
implementation on which they run, this boundary must be specified so that dynamic
services may be portabl e between management server implementations. The dynamic
services model specifies the involved contracts and compromises the majority of this
specification.

The dynamic services model extends Java RMI to support a higher level (application
level) of abstraction appropriate for management applications. The added abstractions
include the following.

1) The propagation of contextual information including security and controller
information.

2) Reference fault rebinding to allow management serversto be recovered on a
different host than the one on which they were started.

3) Management aspects (security, transaction, controller)
4) Transactional persistence

5) Remote class method (procedural) invocations.

6) Remote object ingantiation.

Fedaated Manegamant Architedure Soedfication Page 11

The Dynamic Services Model

Management servers, cdled sationsin the context of dynamic services, host management
services that, in turn, communicate with other management services or managed
resources. Resources may be accessed using Web Based Enterprise Management
(WBEM), Simple Network Management Protocol (SNMP), or any other means
appropriate to a particular situation. Stations are Jini technology services and registered
with the lookup services serving the management domain to which the station belongs.
One can consider tations as services that host dynamic services.

13 Extended RMI Semantics

The dynamic services model adds application layer semanticsto complement RMI
remote communi cation semantics for usage patterns common in the management domain.

Dynamic Services Model
Context Information

8 T

o %—‘ g

— >

2 | 2|5

= | 2| 5§

8 | 8| =

S 2 <

RMI| Semantics
(Object Methods)

Figure 4. Architectural Layering of RMI Semantics with Dynamic Services Semantics.

Fedaated Manegamant Architedure Soedfication Page 12

The Dynamic Services Model

13.1

13.2

13.3

13.4

Remote Object Instantiation

Stations support remote ingtantiation of objects without the need to create explicit remote
factories by providing areflective remote instantiation service that may be used directly
asalow-level interface or indirectly through Proxies (described later).

Remote Class Method Invocation

Stations al so support remote invocation of class methods by providing areflective class
method invocation service that may be used directly as alow-leve interface or indirectly
through Proxies (described later).

High Availability
To support highly available stations, the dynamic services model defines areference
faulting/rebinding scheme. A failed station may be restarted on another host and
communi cations with the objects hosted by that station will fail over to the new location.
This mechaniam is distinct from the RMI activation reference faulting for the purposes of
activation within the bounds of a single host.

Context Information

The management architecture described in this specification is an explicit three tiered
architecture. Thereisasource of activity (client, resource, service, etc.), an arbitrarily
deep chain of logic that islargdly stateless, and finally, the managed resources
themselves at the end of the logic chain. The resources must be guarded against
inappropriate access. Some such access can be malicious and must be guarded against
using a security mechanism. Other inappropriate access can include accessing the
resource using multiple, concurrent threads or transactions.

The information needed to guard aresource is passed implicitly in context. Thus, the
context information includes the following.

1) Security (unauthorized access).

2) Transactions (concurrent access under more than one transaction).
3) Logical Thread (concurrent access under more than one thread).
4) Controller (concurrent access by more than one contralling entity).

14 Programming Interfaces vs. Implementations

This specification defines the programming interfaces that station implementations must
support. Separating programming interfaces from implementation is done using several
mechanisms to handl e abstractions of object methods, class methods, and constructors.

Object methods are abstracted using Java interfaces. The specification definesand a
number of such interfaces in the javax.sxi package and sub-packages. |mplementations
provide concrete classes that implement these interfaces. Javainterfaces, however, do not
provide a way of abstracting class (static) methods or constructors, both of which require

Fedaated Manegamant Architedure Soedfication Page 13

The Dynamic Services Model

an abstraction mechanism in order to cleanly separate the specification from the
implementation.

Constructors are class operations much like class (static) methods. When a constructor
must be abstracted for the specification, it isreplaced with a class (static) factory method.
Thisreduces the problem of interface/implementation separation to object methods and
class (static) methods.

Static methods are abstracted using implementation forwarding. For example, consider

aclass Awith a classmethod f oo() . The specification provides an abstract classA ina
specification package (javax.sxi...) with the class mettmag) . The implementation of

the method fetches a reference toithgementation classA and invokes$ oo() on the
implementation class. This class has the same unqualified Aamg,resides in an
implementation package. A system property, “javax.sxi.implementation”, provides the
implementation package. Thus, all such implementation classes reside, for convenience,
in the same package as defined by the system property “javax.sxi.implementation”. If the
implementation package is not provided, “com.sun.sxi.implementation” is used as the
default. Note that this property is static and cannot be changed at runtime.

15 The Structure of Dynamic Services

14

Dynamic services all have a common structure and deployment. The structure is
dominated by the requirement to be a good, network loadable Jini citizens.

Service Proxy

The service proxy is a Jini proxy that is registered by value with the lookup services
serving a particular management domain. Remote operations invoked on the proxy are
forwarded to the remote point objects - the remote entry point to the service. Generally,
there is a single point object that implements the same interface as the service proxy, but
this is not required.

Point Objects

Point objects are the entry points into a service. Other objects that comprise the interface
of the service are exposed, directly or indirectly, by the point objects. Objects may also
be exposed through remote instantiation and class method invocations. These operations
do not require access to the service through the service proxy.

Public Interface

The public interface of a service is the set of all objects, classes, and interfaces that may
be exposed to clients of the service. Not all of these entities may be statically determined.
For example, consider a service defining a method that returns an object of interface I.
The class of the actual object returned may be anything that implements I. This
implementation is part of the public interface because a client of the service would need
to load this class in order to communicate with the service. This kind of problem may be
reduced by using final classes and JDK classes as the arguments, return values, and
exceptions of remote operations when allowable by good design.

Fedaated Manegamant Architedure Soedfication

The Dynamic Services Model

The public interface does not include remote objects: just the Proxies (or stub in the case
of RMI) to the remote objects. Since remote objects reside in the VM hosting the
service, they do not need to be loaded by a client of the service and, therefore, or not
considered part of the public interface. The client will, however, need to load the client
side representation (proxy) of the remote object. Thus, Proxies and RMI stubs are
considered part of the public interface. The service proxy itself belongs to the public
interface.

15.4 Service Implementation

The parts of the service that are not the public interface are considered the service
implementation.

15.4.1 Point Objects

Point objects, previoudy described, are part of the service implementation as a special
kind of remote object.

15.4.2 Hidden Objects and Classes

Many, if not most, of the service implementation is composed of hidden objects and
classes. Hidden objects and classes are not exposed in any way to the client of the
service. Clientsnever communicate directly, or apparently directly, with hidden objects
and classes as they do remote objects and classes.

15.4.3 Remote Objects and Classes

Remote objects and classes, which reside in the VM hosting the service, are referred to
remotely using Proxies, and are considered part of the implementation. Remote objects
and classes are known collectively asremote referents.

15.5 Service Packaging

15.5.1 JAR Files

Services are packaged into two JARs for deployment: the implementation JAR and the
interface JAR. Thetwo JAR files are known collectively as a deployment group. The
classes and resources needed to support the implementation and public interface shall be
contained in the implementation JAR. Only the classes and resources needed to support
the public interface shall be placed in the interface JAR. If theimplementation JAR is
named x.jar, then the interface JAR must be named x-dl.jar in accordance with Jini
technology naming conventions. 'dl’ is case insensitive. Each JAR shall be salf sufficient
in that it contains all of the classes and resources needed to load any of the contained
classes with the exception that the following infrastructure classes may be omitted.

1) JDK classes
2) Jini classes
3) Javaextensons

Fedaated Manegamant Architedure Soedfication Page 15

The Dynamic Services Model

4) Classes defined in this specification

Thisis smilar to applet packaging except that the result is a deployment group (two
JARS) rather than asingle JAR. The second JAR, theinterface JAR, isa dtrict subset of
thefird.

15.5.2 Signing

The deployment JAR files shall be signed to enable security. Stations are encouraged not
to grant any permission to anonymous code.

15.5.3 Versioning

The deployment JAR files are required to contain Java package version information in
the manifest according to the Java Package V ersioning specification.

16 Remote Referents

Remote referents are the targets of remote operations and include referent classes and
referent objects. Referent objects may be stateful and are further classified astransient or
persistent. Referent classes are sateless. only constant static fields are permitted.

16.1 Referent Classes

Stations, by providing generic factory and invocation services, permit class operations
including class method invocation and instantiation. These operations obey extended
RMI semantics asiif the class was treated as aremote object.

16.2 Referent Objects

Referent objects are remote objects that support extended RMI semantics. The three
aspects (logical thread, transaction, and controller) may be applied to referent objects.
Referent objects are either transient or persistent.

16.3 Exclusion of RMI Remote Objects

The station security model depends on passing all remote access to the station through a
well controlled gateway. The use of RMI remote objects from within a station would
circumvent the security model and is therefore prohibited. Remote objects should instead
be proxied and participate in the extended RMI semantics of this specification.

17 Proxies

Remote operations are performed on referents, class or object, by invoking local
operations on a Proxy object or class. Proxy classes are created during development,
preferably with awizard type tool, and often packaged as part of both the implementation
and interface JARS. The devel oper can choose to expose all public operations of the
referent to the Proxy, or just a subset. Operations on a Proxy class are forwarded to the
referent class while operations on a Proxy object are forwarded to the referent object.

16 Fedaated Manegamant Architedure Soedfication

The Dynamic Services Model

A Proxy refersto asingle referent. However, a single referent can have many Proxies just
asalocal object can have many references.

A client can aobtain a Proxy object in one of three ways:
1) remoteingantiation,
2) receiving the Proxy as aresult of aremote operation, or
3) receiving aProxy as an argument to aremote operation invoked on the client.

VM

®e o

VM VM

@ Aol Referent

Figure 5. A Comparison of Local Java Programming (top) and Remote Programming
using Proxies and referents.

As shown above, when areference and object coexist in the same VM, the reference
points directly to the object: in effect thereferent. In contrast, when thereference exists
in adifferent VM than the referent, the reference points to a Proxy, which
communicates, through the station infrastructure, with the referent. When the Proxy and
the referent implement the same interfaces, the client islargely unaware of whether the
referent existslocally or remotely. That isnot to say that referent always appearsto be
local, but rather that it always appearsto be remote and may be local.

It isimportant to note that while local and remote operations appear similar, they have
different behaviors, particularly with respect to failure modes and latency. Theintent in
making remote programming appear similar to local programming isto minimize the
learning curve, not to hide the fact the remote operations must be treated differently than
local operations.

Fedaated Manegamant Architedure Soedfication Page 17

The Dynamic Services Model

18 Context

Proxy classes are independent of station implementations and, therefore, can be used
againgt any station implementation. The neutrality of the implementation is achieved by
defining an interface between the Proxy and the station proxy for communicating with a
station. The station proxy isaJini proxy (the station isa Jini service), rather than a Proxy
in the sense of Proxies and referents. In this specification, proxy is used in the generic
sense of the Proxy Pattern and in the specific senses of referents and of Jini proxies.
When a proxy isreferred to with respect to referents, the word Proxy is capitalized to
provide differentiation.

Proxies are durable in that they can be serialized for the purposes of persistence. When
Proxies are not live, however, they do not participate in the distributed garbage collector.
Thus, it is possible that persisting a Proxy allows a transient referent to be prematurely
garbage collected.

Certain contextual information can be associated with athread of execution, both locally
and across remote operations. With the exception of security, this context information is
accessed on both the client and server side using methods on the

j ava. sxi . conmon. Cont ext class. The contextua information includes

Logi cal Threadl D, Tr ansact i on, and Cont r ol | er. The security context is accessed
using the Subject class of the Java Authorization and Authentication Service (JAAS) and
is described fully the JAAS specification.

18.1 Logical Thread Identifiers

When the Proxy and itsreferent liein different IV Ms, they execute in different language
threads. This can cause reentrancy problems when the logical thread of execution spans
JVMs and thread concurrency control is based on language threads. To permit reentry
and support other thread related constructs, the concept of alogical thread isintroduced.
During aremote operation that spans JVMs, both the caller and the called threads belong
to the same logical thread. This allows concurrency control to be based on logical threads
rather than language threads, if so desired.

Each logical thread isuniquely identified, with respect to the universe, by its

Logi cal ThreadI D. A logical thread is assigned to alanguage thread when 1) the
language thread firgt invokes a remote operation or 2) when servicing aremote operation.
Thus, the infrastructure isthe only entity allowed to set the Logi cal Threadl D of a
language thread.

One can query the Logi cal Thr eadl D of the current thread using the Cont ext class.
Thereturned ID is opaque, but can be compared for equality using equal s() .

18.2 Transactions

18

Transactions areissued by a Jini transaction service: one of the base management
services. The semantics and transaction interfaces are more fully described in the Jini
Transaction Specification. One can query the transaction associated with the current
thread using thej avax. sxi . common. Cont ext class.

Fedaated Manegamant Architedure Soedfication

The Dynamic Services Model

18.3 Controller

Whilelogical threads and transactions are considered short-lived, bounded by the lives of
one or more processes, controllersare long lived. Controllers are assigned to each
contraller object or client. Clients must obtain a controller directly from the controller
service. Stationshosting controller objects obtain controllers for these objects on their
behalf.

Clients obtain a controller from the controller service and retain the context for the life of
the client by maintaining the associated lease. Clients must cancel the lease at the end of
their lives. The controller service will cancel locks held by a controller in response to
|ease expiration, presumably indicating that the client has unexpectedly failed or
otherwise become irrelevant. Controllers can exclusively lock resources for the life of the
contraller. The locking mechanism is covered further in the controller aspect chapter.

i nport javax.sxi.services.controller.ControllerService;
i mport javax.sxi.services.controller.dientController;
i nport | avax.sxi.services. Servi ceFi nder;

Control l erService controller =
Ser vi ceFi nder. get Control | er Servi ce();

ClientController aController =
control ler.newClientController(5*60*1000);

package javax.sxi.conmmon;

import java.io.Serializable
i nport | avax.sxi.services.controller.*;
inport net.jini.core.transaction.server.*;

/**Cont extual information associated with a thread of
* execution. This information is propagated inplicitly
* during a renote operation
*/

public class Context inplenments Serializable

/** The enpty context */
static public final Context EMPTY_CONTEXT

/** Logical thread of this context.*/
public Logi cal Threadl D get Logi cal Thread();

/** Transaction associated this context. */
public ServerTransaction getTransaction()

/** Controller of this context. */
public Controller getController();

Fedaated Manegamant Architedure Soedfication Page 19

The Dynamic Services Model

/**Construct a new Context object.
* @aram Control |l er
* controller to associate with current thread
* @aramtransaction
* transaction to associate with current thread
*/
public Cont ext (
Controller controller,
Server Transacti on transaction);

/**Return the Context associated with the current

* thread of execution. If the current thread has no
* associated Context, the default Context is

* returned.

* @eturn Context context associated with the current
* t hr ead.

*/

public static Context get Context () ;

/**Associate this context with the calling thread. The
* Context previously associated will be returned

* (default Context, if no Context was associated). A
* |ogical thread IDwll be set for the Context when
* this method is invoked (unless a logical thread |ID
* is already established for the thread).

* @eturn Context context previously associated

* with current thread (nay be the default Context)
*/

public static Context set Cont ext (

Cont ext cont ext
/**Set the default Context. This object will be
* returned by getContext() for any calling

* thread that has no associ at ed Context.
* @eturn Context context previously set as default

* (EMPTY_CONTEXT i f none)
*/
public static Context set Def aul t Cont ext (

Cont ext cont ext

/**1f called within a referent controller object wile
* servicing a renpte operation, this nethod cancels
* any | ocks held by the associated controller.

* @hrows RenoteException If not able to contact the

* control l er service.
*/
public static void cancel Locks()

t hr ows Renot eExcepti on;

19 The Station Interface

Stations are Jini technology services for hosting dynamic management services. The
primary responsibility of a station is providing means of introducing servicesinto the

20 Fedaated Manegamant Architedure Soedfication

The Dynamic Services Model

station: ingtantiation and ingtallation. A secondary responsibility is providing a
mechanism for invoking methods on referents.

19.1 Method Signatures

Method signatures, as String objects, are used to specify methods and constructors.
Signatures consist of the method name followed by the method descriptor, as specified by
the Java Virtual Machine Specification. For example, the signature of the method 'voi d
foo(lnteger i, int j)' isfoo(Ljava/lang/Integer;l)V.Congructor
signatures are method signatures with the special name of <i ni t >.

19.2 Station Registration

Stations must register themselves with the all Jini lookup services servicing the
management domain to which the station belongs. The group name for a management
domain is the management domain name. Theregistered service item must contain a
proxy that implements the Station interface and a Sngleitem of type

j avax. sxi . common. St at i onAddr ess. Stations shall monitor the existence of lookup
services and register with any new relevant lookup services that join the network. In
short, stations shall be good Jini citizens.

19.3 Station Lookup

The station proxy isaJini proxy and islooked up using a

j avax. sxi . conmon. St at i onAddr ess, aspecialization of the
net.jini.lookup.entry. Servicelnfo class. The
net.jini.lookup.entry. Servicel nfo class providesthefollowing fields.

1) Manufacturer
2) Modd

3) Name

4) Seria number
5) Vendor

6) Version

j avax. sxi . common. St at i onAddr ess adds an additional fidld, role. All fidldsare
public, so it is possible to base lookups on any of the fields. In accordance with the Jini
specification, empty fields are treated aswild cards for the purposes of |ookup.

194 The Station Interface
All gation proxies must implement the Station interface.

Fedaated Manegamant Architedure Soedfication Page 21

The Dynamic Services Model

22

package javax.sxi.conmmon;

i mport net.jini.core.lookup. Servicel D,
i mport java.rm . Renote;

i mport java.rm . Renot eExcepti on;

i mport java.rnm . UnknownObj ect Excepti on;

public interface Station extends Renote

/**1 nvoke a static nethod.
* Requires security pernission as described in
*/ j avax. sxi .security. AccessPerni ssion.
*
oj ect i nvokeSt ati cMet hod(
String cl assNane,
String met hodSi gnat ur e,
oj ect[] arguments,
Cont ext cont ext

t hr ows Renot eExcepti on,
I nvocat i onTar get Excepti on,
I'I'l egal AccessExcepti on,
I'I'l egal Argunent Excepti on;

/**I nvoke a constructor. The result nmay be an obj ect
* passed by value or Bindlnformation depending on the

* target of the invocation. |If the target has an

* available Proxy class, Bindlnformation is returned.
* Otherwi se the newy constructed object will be

* returned by value. In the latter case, if the

* object is not serializable a RenoteException will

* be thrown.

* Requires security pernission as described in

*/ j avax. sxi .security. AccessPerni ssi on.

*

oj ect i nvokeConst ruct or (

String cl assNane,

String constructorSignature,
oj ect[] arguments,

Cont ext cont ext

t hr ows Renot eExcepti on,
I nvocat i onTar get Excepti on,
I'I'l egal AccessExcepti on,
I'I'l egal Argunment Excepti on,
I nstantiati onExcepti on;

/**Rebind to a referent. Proxies, after relocating
* a station, can rebind to the referent.

* @aram cookie As returned during renote

* constructor invocation.

*/

Bi ndl nf or mati on rebind(Obj ect cookie)

t hr ows Renot eExcept i on,
UnknownQbj ect Except i on;

Fedaated Manegamant Architedure Soedfication

The Dynamic Services Model

/**Low cost roundtrip conmuni cation check.
* @hrows RenoteException if ping fails.
*/

voi d pi ng()

t hr ows Renot eExcepti on;

static public final class Bindlnformation

/** I nformati on needed to relocate this
* particular station.

*/

public final ServicelD stationlD;

/** Informati on needed to relocate referent. */
public final bject cooki e;

/** | nvocation path to referent */
public final Acceptor referent;

20 Deployment

Stations that are shared management servers must implement the

j avax. sxi . common. Depl oynent St at i on interface. Stationsthat are private
management servers may optionally implement the

j avax. sxi . common. Depl oynent St at i on interface if they support deployment.

20.1 Deployment Definition
Deployment, as used in this specification, is the process of giving classes and resources,
packaged as JARs, to a station. Deployment is generally part of an installation process. A
single deployment is one deployment operation. If the same deployment group is
deployed multiple times, even to the same station, each is consdered adigtinct
deployment.

20.2 Class Loaders and Deployment

Deployments and class | oaders have a one-to-one relationship. To remain compatible
with RMI class loading, this mapping impliesthat each deployment is given a unique
code base. This code base shall consist of two ordered URLs. Thefirgt isa URL that may
be used to load the public interface JAR and the second is a URL that may be used to
load the implementation JAR. Note that the URLs are generated by the station to ensure
uniqueness of the code base and may not have any resemblance, in name, to the JARs of
the deployment group presented for deployment. Only HTTP is alowed as a protocol for
code base URLs.

A classthat isloaded from a deployment group must be annotated with the code base of

the deployment according to RMI class loader semantics. Thisrequirement helps ensure
that when objects of that class are passed outside of the originating VM, network class

loading will work as outlined in the RMI specification.

Fedaated Manegamant Architedure Soedfication Page 23

The Dynamic Services Model

package j avax.sxi.conmmon;

i mport java.rm . Renot eExcepti on;
i mport java.net.URL;
import net.jini.core.lease. Lease;

/**The proxies for stations that support depl oyment
* nust inplement the DeploynmentStation interface.
*/

public interface Depl oyment Station extends Station

/**Depl oy a deploynment group. If the |ease duration
* is specified as Lease. FOREVER, the | ease does not
need to be maintained; however, the installing
entity nust guarantee that the depl oynent group
will be recalled when appropriate. O her |ease
values will result in a | ease that must be
mai nt ai ned. A cancell ed or expired | ease rel eases
t he depl oynent group for garbage coll ection.
<P>This version of install should be used when
possible as it pernmits the JARS to be pulled rather
t han pushed. Note that the provide URLs may not
have any rel ationship to the code base resulting
fromthe installation.
Requi res security perm ssion as described in
javax. sxi .security. AccessPerni ssion.
@aram i npl enent ati onJar JAR cont ai ni ng the

i mpl enent ati on resour ces.
@aram interfaceJar JAR containing the

public interface resources.
@aram | easeDur ati on Requested | ease duration

for the deploynment. May be Lease. NO LEASE.
@renot eException Error comrunicating with the

station or an unexpected exception.
@ hrows Depl oynent Excepti on Unabl e

to depl oy for reasons nested within the

Depl oynent Excepti on.
@hrows |11 egal Argunent Exception null argunent,

invalid URL, or invalid JARfile.

E R I SRR I N N

*/
Lease depl oy(
URL i npl enent at i onJar,
URL i nterfaceldar,
| ong | easeDur at i on,
Cont ext cont ext

t hr ows Renot eExcepti on,
I nstal | ati onExcepti on;

24 Fedaated Manegamant Architedure Soedfication

The Dynamic Services Model

/**Install a deployment group. |If the | ease duration
* is specified as Lease. FOREVER, the | ease does not

need to be maintained; however, the installing
entity nust guarantee that the depl oynent group
wi Il be uninstalled when appropriate. Oher |ease
values will result in a | ease that must be
mai nt ai ned. A cancell ed or expired | ease rel eases
t he depl oynent group for garbage coll ection.
<P>This version of install is used when installing
froma location that will not accept http
connections. Thus, the JAR files nust be pushed
during the call rather than pulled. The URL form of
install should be used when ever possible.
Requi res security perm ssion as described in
javax. sxi .security. AccessPerni ssion.
@aram i npl enent ati onJar JAR cont ai ni ng t he

i mpl enent ati on resour ces.
@aram interfaceJar JAR containing the

public interface resources.
@aram | easeDur ati on Requested | ease duration

for the deploynment. May be Lease. NO LEASE.
@=enot eException Error comrunicating with the

station or an unexpected exception.
@ hrows Depl oynent Excepti on Unabl e

to depl oy for reasons nested within the

Depl oynent Excepti on.
@hrows |11 egal Argunent Exception null argunent,

or invalid JAR file.

E I . T R S I R N

*

*/
Lease depl oy(
byte[] inpl enentationJar,
byte[] interfacedar,
| ong | easeDurat i on,
Cont ext cont ext

t hr ows Renot eExcepti on,
I nstal | ati onExcepti on;

Fedaated Manegamant Architedure Soedfication Page 25

The Dynamic Services Model

/**Renmove the deployment group identified by the given
* code base. There is no assurance that the code base
being recalled is not in use.
Requi res security perm ssion as described in
javax. sxi .security. AccessPerni ssion.
@ar am codeBase Code base to recall. null results
in an |11l egal Argunent Excepti on.
@=enot eException Error comrunicating with the
station or an unexpected exception.
@ hrows UnknownCodeBaseException The code base
is not a known code base.
@ hrows Depl oynent Excepti on Unabl e
to recall for reasons nested within the
Depl oynent Excepti on.
@hrows |11 egal Argunent Exception null argunent,
invalid URL, or invalid JARfile.

E I I A

*/
voi d recal | (
String codeBase,
Cont ext cont ext

t hr ows Renot eExcepti on,
UnknownCodeBaseExcept i on,
Depl oynent Excepti on;

/**List all of the installed depl oynent groups.

* Returns an enpty list if no deploynment groups

have been install ed.

Requi res security perm ssion as described in

javax. sxi .security. AccessPerni ssion.

@renot eException Error comrunicating with the
station or an unexpected exception.

@eturn Alist of inventory records. The |ist
is empty if the inventory is enpty.

E B I
~

Depl oynent[] getlnventory(Context context)
t hr ows Renot eExcepti on;

26 Fedaated Manegamant Architedure Soedfication

The Dynamic Services Model

/**CGet the code base for the |atest version of the

* given package that is conpatible with the supplied
version. Conpatibility between versions is defined

i n java.l ang. Package.

Requi res security perm ssion as described in

javax. sxi .security. AccessPerni ssion.

@ar am packageNanme The fully qualified package
name such as "com sun.x.y".

@ar am versi on Requested version with which the
the returned code base should be conpati bl e.

@renot eException Error comrunicating with the
station or an unexpected exception.

@ hrows UnknownPackageException The package
i s not known.

@hrows |11 egal Argunent Exception null argunent.

I . R R

*

*/
String get CodeBase(
String packageNare,
String version,
Cont ext cont ext

t hr ows Renot eException
UnknownPackageExcepti on;

/**CGet the code base for the latest version of the
* given package.
* Requires security pernission as described in
* javax.sxi.security. AccessPerm ssion.

* @hrows |11 egal Argunment Exception null argunent.
*/
String get CodeBase(

String packageNare,
Cont ext cont ext

t hr ows Renot eException
UnknownPackageExcepti on;

/**Each depl oynent has a record of type Depl oynent
* in the inventory.

* @ee getlnventory()

*/

public static final class Deploynment

/** Fully qualified package nane. */
public final String packageNane;

/** Version as defined by java.lang. Package. */
public final String version;

/** Code base as a space delinmted ordered Iist
* of URLs.

*/

public final String codeBase;

Fedaated Manegamant Architedure Soedfication

Page 27

The Dynamic Services Model

21 Specifying a Type of Referent Object

22 Acceptors

28

Each referent object must declareitstype. The declaration is done by initializing the
congtant field Ref er ent Type with one of three constants.

package j avax.sxi.server;

public interface ReferentType

String TRANSI ENT = “Transient”;
String PERSISTENT = “Persistent”;
String PERSISTENT_LOGIC = “PersistentLogic”;

}

public class MyRemote implements ReferentType

public static final String ReferentType = PERSISTENT;

In this example, the MyRemote is declaring itself as persistent. If the station does not
support the specified type of referent, the referent cannot be used in the station. Simple
stations are only required to support transent referents. Shares management serversare
required to support al kinds of referents.

Persistent logic indicates a statel ess persistent referent object. In comparison to stateful
persistent objects, the station can make certain optimizations if it knows thereferent to be
stateless. This optimization isdescribed in alater chapter.

The view of "proxy->referent ", though useful for initial explanations, is not sufficient
to fully specify the remote communications between a Proxy and itsreferent object. In
particular, because Proxies and stations are potentially supplied by different vendors, the
interface between Proxies and station must be specified. A Proxy does not see areferent
object directly, but rather an interface representing the referent. Thisinterfaceisthe
acceptor for referent object, a one-to-one mapping.

rem ote
Proxy Acceptor Stub Acceptor Referent Object

1 0..* 1 11
Figure 6. Proxies, Acceptors and Referent Objects.

Fedaated Manegamant Architedure Soedfication

The Dynamic Services Model

package j avax. sxi.server;

i mport java.rni.Renot eExcepti on;
i nport | avax. sxi.conmon. Cont ext ;

public interface Acceptor extends Renote

/**I nvoke a nmethod on a referent object.
*/
oj ect i nvokeMet hod(
String met hodSi gnat ur e,
oj ect[] arguments,
Cont ext cont ext

t hr ows Renot eExcepti on,
I nvocat i onTar get Excepti on,
I'I'l egal AccessExcepti on,
I'I'l egal Argunent Excepti on;

The acceptor presents RMI semantics to the Proxy. Context information is made explicit
by the Proxy. In implementation, the proxy has areference to a RMI stub which refersto
the remote acceptor residing in the same JVM asthe referent object.

23 Proxy Binding

A Proxy must acquire an appropriate acceptor at such time as the Proxy acquires an
associated referent object. This happensin two scenarios. Proxy instantiation and Proxy
wrapping, described later. The process of Proxy to acceptor association is called Proxy
binding. The acceptor bound to a Proxy possibly becomesinvalid when astation is
restarted on a different machine, such aswhen reacting to afailed host in ahigh
availability scenario.

23.1 Proxy Binding During Proxy Instantiation

The Proxy constructor obtains a station proxy from alookup service using the sation
address passed to the Proxy constructor, by convention asthe last argument to the
constructor. The Proxy then invokes i nvokeConst r uct or () on the station proxy,
which returns an acceptor for the newly constructed referent object.

23.2 Proxy Binding During Proxy Wrapping

In the second case, Proxy wrapping, a Proxy is ingtantiated with a single argument, the
referent object itsalf, using a special constructor called the wrapping constructor. The
Proxy isingantiated in the station containing the referent object; thus, Proxy wrapping is
not aremote operation. In the wrapping constructor, the Proxy invokes the

j avax. sxi . server. Local St ati on. export() method to retrieve an acceptor for the
referent object to be wrapped. The newly instantiated Proxy object may then be passed
remotely as aremote reference to the referent object.

Fedaated Manegamant Architedure Soedfication Page 29

The Dynamic Services Model

package j avax.sxi.server;

i mport javax. sxi.common. Stati on;
i mport javax. sxi.conmmon. Stati on. Bi ndl nf or mati on;

public final class Local Station
/**Return the | ocal station.
*/
static public Station getStation();
/**Provide an acceptor for the given referent object.
* Should only be called by Proxies and then only from
* a wrapping constructor.
*/

static public Bindlnformation export(Cbject object);

}

24 Proxy Rebinding

The acceptor bound to a Proxy possibly becomes invalid when a station isrestarted on a
different machine, such as when reacting to a failed host in a high availability scenario.
The Proxy must be able to rebind to the acceptor in such cases. Theinformation required
to rebind includes the service ID of the station, to uniquely identify it among other
stations, and a cookie, issued by the station as part of the binding information, to uniquely
identify the referent object within the gation. All of thisinformation is provided by the
station during initial binding and must be retained by the proxy.

When a Proxy is unable to communicate with areferent object and the Proxy determines
that thisislikely because the hosting station isno longer reachable

(j avax. sxi . cormon. St at i on. pi ng()), then the Proxy should initiate rebinding. The
rebinding involves rel ocating the station using the service ID and, if successful,
requesting a fresh acceptor for thereferent object using the

j avax. sxi . common. St ati on. rebi nd() operation.

25 Proxy to Referent Overviews

The following sequence diagrams are summaries of end-to-end remote communication.
They elide exceptiona and minor flows for the sake of clarity.

30 Fedaated Manegamant Architedure Soedfication

The Dynamic Services Model

25.1 Referent Object Method Invocation

1

2)

3)

4)

5)

Client Proxy Acceptor Referent

1 1: foo() ‘

2: extract context ‘ ‘

<]

3: remote invokeMethod() ‘

4: establish context

-

5: foo()

Figure 7. Referent Object Method Invocation.

The client invokes the object operation f oo() on the Proxy. The Proxy will aready
have been bound to an acceptor when the Proxy was instantiated.

The Proxy extracts context (transaction, etc.) information to be passed explicitly to
the acceptor.

The Proxy forwards the invocation request to the acceptor. Thisisaremote
operation.

The acceptor uses the explicitly passed context information to establish athread local
context.

Finally, the acceptor invokesf oo() on thereferent object.

Fedaated Manegamant Architedure Soedfication Page 31

The Dynamic Services Model

32

25.2

Referent Class Method Invocation

1
2)

3)

4)
5)
6)
7

Client Proxy Station Proxy Station Referent Class
Class

1 1:fo()

2: Iookup station proxy

3: extract context ‘

—

4: invokeClass Method()

|
5: private - remote

6: establis h context

7: foo()

Figure 8. Referent Class Method Invocation.

The client invokes the class operation f oo() , a static method, on the Proxy class.

The Proxy class will need to lookup an appropriate station proxy by querying a
lookup service with the station address supplied as the last argument to the static
method call.

The Proxy extracts context (transaction, etc.) information to be passed explicitly to
the station proxy.

The Proxy class passes the operation request to the station proxy.

The station proxy forwards the request to the station.

The station uses the explicitly passed context information to establish a context.
Finally, the station invokesf oo() on thereferent class.

Fedaated Manegamant Architedure Soedfication

The Dynamic Services Model

25.3 Referent Object Instantiation

Client Proxy Station Proxy Station Referent Object

L1 <init>()

2: Iookup station proxy

S

4: invokeConstructo ()

5: private - remote|

6: establish c ontext

3: extract context ‘
r

I

7: <init>()

8: create acceptor for referent object

P

9: return acceptor

10: bind acceptor

e
|
\

Figure 9. Referent Object Instantiation.

1) Theclient ingtantiates a Proxy using any one of the available constructors. The last
argument of the constructor isthe station address of the station that isto host the
referent object.

2) TheProxy classwill need to lookup an appropriate station proxy by querying a
lookup service with the station address supplied as the last argument to the
constructor.

3) The Proxy extracts context (transaction,etc.) information to be passed explicitly to
the station proxy.

4) The Proxy class passes the operation request to the station proxy.
5) The station proxy forwards the request to the station.
6) The station usesthe explicitly passed context information to establish a context.

Fedaated Manegamant Architedure Soedfication Page 33

The Dynamic Services Model

7) The station locally instantiates the referent object.
8) The station must now create an acceptor for the new referent object.

9) Thenewly creating acceptor is eventually returned to the Proxy as an acceptor
embedded in abinding information object.

10) The Proxy then binds thereturned acceptor. All remote method invocations on the
Proxy will now be forwarded through the acceptor to the referent object.

25.4 Wrapping a Referent Object with a Proxy

To pass areferent object by reference during aremote operation, the referent must be
wrapped with a Proxy. Each Proxy class provides a wrapper constructor for this purpose.
Note that the wrapping islocal to the referent object being wrapped: no remote callsare
involved. The wrapping sequence is similar to object instantiation except that the referent
already exists and the Proxy communicates with the local station rather than aremote
station.

Client Proxy LocalStation

-1 <init>(referent) ‘
|
2: export(referent)
——

3: create acceptor for the referent

—

4: return acceptor in bind info
S —

5: bind acceptor

< |

Figure 10. Wrapping a Referent Object with a Proxy.

1) Theclient invokes the Proxy wrapper constructor, passing the referent object as the
only argument. In this sense, aclient is ssimply the entity invoking the wrapping
constructor of the Proxy.

2) The Proxy, from within the wrapping constructor, requests an acceptor from the local
station by doing an export. The export provides a binding information object which
contains the acceptor.

34 Fedaated Manegamant Architedure Soedfication

The Dynamic Services Model

3
4)

The station creates an acceptor for thereferent object.
The station returns a binding information object, which contains and acceptor, to the

Proxy. The acceptor should already be substituted with an acceptor stub so that RMI
semantics will be followed when invoking methods on the Proxy.

5) The Proxy then binds thereturned acceptor. All remote method invocations on the
Proxy will now be forwarded through the acceptor to the referent object.

25.5 Proxy Rebinding

In highly available installations, a station may move to a failover host if the original host
fails. Thismove can cause al acceptor stubs issued by the original incarnation of the
station to become invalid. Proxies, upon failure of the original acceptors, proceed through
arebinding process to retrieve fresh acceptor stubs from the station at its new location.
The following sequence diagram shows therebinding in the context of a failed object
method invocation.

Client Proxy Stale Acceptor Restarted Fresh Acceptor| |Referent Object
Station
1 1: foo() ‘ ‘ ‘
2: extract context ‘ ‘ ‘ ‘
3: failed invocation attempt ‘

4: lookup station /I-H ‘ ‘ ‘
5: rebind()‘ ‘ ‘ ‘
6: remo# invokeMethodo/l-H ‘ ‘

‘ ‘ il
‘ ‘ 7: establish context ‘

‘ ‘ 8: foo()
i I ‘ ‘ ‘

Figure 11. Proxy Rebinding.

1) Theclient invokes the object operation f oo() on the Proxy.

2) The Proxy extracts context (transaction, etc.) information to be passed explicitly to
the acceptor.

Fedaated Manegamant Architedure Soedfication Page 35

The Dynamic Services Model

3)

4)

5)

6)
7
8)

The Proxy attempts aremote call to the stale acceptor, no longer in existence,
resulting in an exception. If the exception indicates that the station has become
unreachable, the proxy shall continue with the rebinding, otherwise the exception
shall be thrown to the client.

The Proxy looks up the restarted station using the original service ID of the station,
retained during the original binding process.

The Proxy requests a fresh acceptor stub from the station. From this point on the
invocation proceeds as with the normal object method invocation.

The Proxy forwards the invocation request to the acceptor.
The acceptor uses the explicitly passed context information to establish a context.
Finally, the acceptor invokesf oo() on thereferent object.

26 Adjunct Modifiers

Java defines anumber of well-known modifiers, such as satic and public, that may be
applied to classes and methods. The dynamic services model extendsthis set with
additional modifiers, adjunct modifiers, which have specific meanings to the station
infrastructure. Because the Java language is not to be extended with application class
features, adjunct modifiers are expressed as hit fields (i nt) in various well-known
congtant fields. These fields shall be considered immutable; however, they are not
declared as final to alow for the possibility that they originate from sources other than
the devel oper, such as a deployment policy defined by an administrator.

36

26.1

26.2

Class Modifiers

Modifiers are attached to a class using the private static field cl assModi f i er s. With
the exception of the controller modifier, the modifiers do not apply to the classitsalf, but
rather establish a set of default modifiersthat apply to the class (static) methods of the
class.

}

public class AC ass

|'o'ri'vate static int classMdifiers = ...;

Object Modifiers

Modifiers are attached to an object using the private field obj ect Modi fi ers. The
modifiers establish a set of default modifiers that apply to the methods of objects of the
given class.

Fedaated Manegamant Architedure Soedfication

The Dynamic Services Model

public class AC ass

|'o'ri'vate int objectMdifiers = ...;

}

26.3 Method Modifiers

Method modifiers attach modifiers to a class method, object method, or constructor. The
method or constructor is specified asa signature, as defined in the previous Method
Signature section.

package j avax. sxi.server;
public final class MethodMdifiers

/**Construct a nethod nodifier. The signature is as
* defined by the object nodel, and, therefore,
* includes constructors.
* @aram signature Signature of the method or
* constructor to which this nodifier set applies.
* @aramnodifiers Mdifier bit field for this
* met hod or constructor.
*/
public Met hodvbdi fi er s(
String signature, int nodifiers

[**NModi fier bit field for this nmethod or constructor.
*/
i nt get Modi fiers();

/**Si gnature of the method or constructor to which
* this nodifier set applies.

*/

String get Signature();

Modifiers are attached to methods (class or object) using the static table
met hodModi f i er s. Thetable has an entry for each method or constructor for which
modifiers are specified. Methods without modifiers need not be present in the table.

Fedaated Manegamant Architedure Soedfication Page 37

The Dynamic Services Model

38

26.4

26.5

26.6

public class AC ass

|'o'ri'vate static MethodModi fiers[] nethodModifiers =
new Met hodModifier(...),

}

Modifier Precedence

With the exception of the controller modifier, adjunct modifiers only have meaning at the
method or constructor level. Modifiers attached to classes and objects simply establish
default modifiers for the class or object methods. Thus, class and object modifiers can be
overridden by modifiers attached to individual methods. Adjunct modifiers are
overridden in sets of independent modifier categories. Effectively each setisan
enumeration of exclusive modifiers. That isto say, that only one modifier of a given set
can be applied to the class or method.

Accessing Modifiers

Adjunct modifiers shall never be accessed directly but rather through the

j avax. sxi . server. Adj unct Modi fi ers class. Thereturned modifiers arethe
explicitly declared modifiers and do not apply the modifier precedencerules. Thus, if a
class has modifiers but its methods do not, get Met hodModi fi er s() will return O rather
than the class modifiers.

Permissible Modifiers

The following modifiers are permissible. The modifiers are categorized as aspect
modifiers or security modifiers. The semantics of each modifier set will be defined in a
subsequent section of this specification.

package j avax. sxi.server;

public abstract class Mddifiers

~——

/
/ Controller nodifier set
/

/**For classes only: decl ares object of the class
* to be controllers.

*/

public static final int 1S CONTROLLER = 0x0200;

Fedaated Manegamant Architedure Soedfication

The Dynamic Services Model

public static boolean isController(int nodifier);

Security nodifiers.
Sensitivity Set

~———
~—— —

/**Communi cati ons need not be protected against
* undetected tanpering or third party view ng.
*/
public static final int PUBLIC = 0x0000;

/** Communi cati ons need not be protected agai nst

* third party view ng, but should be protected

* agai nst undetected tanpering.

*/

public static final int SENSITIVE = 0x0001;
/**Communi cati ons shoul d be protected agai nst

* third party viewi ng and undetected tanpering.

*/

public static final int CONFI DENTI AL = 0x0002;
public static boolean isPublic(int nodifier);
public static boolean isSensitive(int nodifier);
public static boolean isConfidential(int nodifier);

Security nodifiers.
Del egati on set

~—— —
~ i~ — —

/**I ndicates that this nethods uses client delegation.
* In general, this means that the nethod requests the
* client Subject and then intends to authenticate
* jtself with the client Subject.

*/
public static final int USES DELEGATI ON = 0x0010;

public static boolean usesDel egation(
int nodifier
);

Conponent nodi fiers.
Transacti on set

~—— —
~ i~ — —

/**I ndicates that the nethod is synchronized with

* respect to transactions.

*/

public static final int SYNCHRONI ZED TRANSACTI ON
= 0x0040;

public static boolean isSynchronizedTransacti on(
int nodifier

Fedaated Manegamant Architedure Soedfication Page 39

The Dynamic Services Model

Conmponent nodi fi ers.
Logi cal thread set

~—— —
~ i~ — —

/**I ndicates that the nethod is synchronized with

* respect to |ogical threads.

*/

public static final int SYNCHRONI ZED LOG CAL_THREAD
= 0x0080;

public static boolean isSynchronizedLogi cal Thread(
int nodifier

Conmponent nodi fi ers.
Control ler set

~———
~—— —

/**I ndi cates that the nethod is synchronized with
* respect to controllers.
*/

public static final int SYNCHRONI ZED CONTROLLER
= 0x0100;

public static boolean isSynchronizedController(

int nodifier
public static int getd assModifiers(dass clazz);
public static int get Qbj ect Modi fi ers(Obj ect object);
public static int get Met hodModi fi ers(Met hod nethod);

public static int get Construct or Modi fi ers(
Constructor ctor

27 Proxy Class Details

The Pr oxy interface isthe public interface that must be implemented by all Proxy
classes.

27.1 Proxy interface

The Pr oxy interface includes a method returning the class name of the referent object’s
class.

40 Fedaated Manegamant Architedure Soedfication

The Dynamic Services Model

package javax.sxi.client;

/**
* Interface for Proxies.
*/
public interface Proxy extends Serializable, O oneable

/**Returns the name of the referent object
* cl ass.

*/

String get Ref erent Cbj ect A assNarne() ;

/**Indicates if the Proxy refers to a valid referent
* object. If isValid() returns false, the referent
* object may still exist, but has becone, at |east
* nonentarily and perhaps permanently, unreachabl e.
* @eturn Returns true if the Proxy refers to a valid

* referent object.
*/
bool ean isvalid();

27.2 Remotely Exposed Methods and Constructors

Implementations of the Pr oxy interface contain selected methods, constructors, and
interfaces that are to be exposed through the Proxy. Signatures for exposed methods are
identical to those of thereferent with the following exceptions.

1) Class (d¢atic) methods have an additional last argument of type
j avax. sxi . conrmon. St at i onAddr ess.

2) Constructors have an additional last argument of type
j avax. sxi . conrmon. St at i onAddr ess.

3) All remote methods and constructorsthrow j ava. r mi . Renot eExcept i on.

27.3 Wrapper Constructor

Pr oxy classes must contain awrapper constructor that takes a single argument of the
typej ava. | ang. Obj ect , i.e, MyProxy(Cbj ect object). Thewrapper
constructor allows areferent object to be effectively passed by value as an argument to a
remote method call or returned by value from aremote method call. The referent object
passed to the wrapper congtructor must be an instance of the referent class or am

java. |l ang. ||l egal Argunment Except i on will be thrown by the wrapper constructor.

27.4 equals() and hashCode()

equal s() andhashCode() follow RMI semantics associated with stubs. Thus, two
Pr oxi es are considered equal if and only if they refer to the same referent object.

Fedaated Manegamant Architedure Soedfication Page 41

The Dynamic Services Model

Clonable and Serializable

The Pr oxy interface extendsj ava. | ang. Cl onabl e andj ava. i 0. Seri al i zabl e.
Proxy classes must implement j ava. | ang. d onabl e such that thecl one() method
returns anew Proxy that refersto the same referent object. Proxy classes must implement
java.io. Serializable.

getReferentObjectClassName() and getReferentClassClassName()

Proxy classes contain methods for returning the class name of both the referent object’s
class and thereferent class's class. These may differ if thereferent object’s classisan
extension or implementation of the referent class's class.

The method get Ref er ent Qbj ect G assNane() returnsthe class of the referent object.
Thereferent object is the target object of remote object method invocations on the Proxy
object. Thus, get Ref er ent Cbj ect d assNane() isdeclared asan object method on
the Proxy.

The method get Ref erent O assd assNane() returnsthe class of the referent class.
Thereferent classisthe target class of remote class (static) method invocations on the
Proxy class. Thus, get Ref erent d assCl assNane() isdeclared as a static method on
the Proxy.

28 Network Class Loading

42

RMI network classloading provides a mechanism by which argument and return value
(including exceptions) classes may be loaded. The dynamic services model inheritsthis
mechanism and extendsit to include network class loading of referent classes when
performing remote instantiation and class method invocations.

Class Loaders and Deployments

As previously mentioned, each deployment has a single, unique code base and associated
class loader. One can consider a station as containing the primordial classloader (also
known as the system or null class |oader) and a number of deployment class |oaders,
which are children of the primordial classloader. The primordia class |oader |oads
infrastructure including the Java Runtime Environment (JRE), extensions, Jini
technology classes, and the FMA implementation classes. The java.rmi.server.codebase
property is the code base assigned to classes |oaded by the primordial class loader. When
one of these classesis passed to aremote VM, the remote VM will use the RMI code
base property of the originating VM to load the class. This property cannot be changed
at runtime; therefore, updates to the infrastructure classes require restarting the station
JVM. Thevalue of the RMI code base property isimplementation dependent.

Unlikeinfrastructure, classes and resources for dynamic services are not placed in the
CLASSPATH or loaded by the primordial classloader. They are packaged into a
deployment group and deployed on a station. The station accepts the JARs and stores
them somewhere such that they may be accessed through the HT TP class server
associated with or contained by the station. The station assigns a code base, containing
the URLs that can be used to network |oad the JARS, to the deployment. The station also

Fedaated Manegamant Architedure Soedfication

The Dynamic Services Model

inspects the manifest of the JARs in order to build an inventory map of package/version
tuples to code bases. When the station needs to |oad a class to support remote
instantiation, remote class method invocation, or activation, the station consults this map
to retrieve the code base associated with the latest version of the class's package. Given
this code base, the station then requests the RMI class |oader to load the needed class.

28.2 Class Loading During Remote Instantiation
During remote instantiation, the station needs to |oad the class of the object to be
instantiated. The search for the class shall proceed as follows.

1) Retrievethe code base of the latest version of the class's package using thelocal
inventory.

2) If acode base was found, attempt to load the class using
java.rm.server.RM d assLoader. The RMI class|oader will aways
attempt to use the parent class |oader before trying the code base.

3) If acode base was not found, attempt to the class using the primordia class
loader (j ava. | ang. d ass. f or Nane(...)).

4) If theclasshas till not been found, attempt to load the class using the client’s
RMI code base, if not null. This code base is embedded in the operation request.
The client isthe VM requesting the remote operation.

28.3 Class Loading During Remote Class Method Invocations
During remote class method invocation, the station needs to load thereferent class. The
search for the class shall proceed as follows.

1) Retrievethe code base of the latest version of the class's package using thelocal
inventory.

2) If acode base was found, attempt to load the class using
java.rm.server.RM d assLoader. The RMI class|oader will aways
attempt to use the parent class loader before trying the code base.

3) If acode base was not found, attempt to the class using the primordia class
loader (j ava. | ang. d ass. f or Nane(...)).

4) If theclasshas till not been found, attempt to load the class using the client’s
RMI code base, if not null. This code base is embedded in the operation request.
The client isthe VM requesting the remote operation.

28.4 Class Loading During Activation

During activation of a persistent object, the station needsto load the class of the object
being activated. The class shall be located according to the following sequence.

1) Retrievethe code base of the latest version of the class's package using thelocal
inventory.

Fedaated Manegamant Architedure Soedfication Page 43

The Dynamic Services Model

2) If acode base was found, attempt to load the class using
java.rm.server.RM d assLoader. The RMI class|oader will aways
attempt to use the parent class |oader before trying the code base.

3) If acode base was not found, attempt to the class using the primordia class
loader (j ava. | ang. d ass. f or Nane(...)).

4) If theclasshas till not been found, attempt step 1 using the code base stored
with the object. If this succeeds, activation shall continue but awarning, in the
form of alog message, shall be issued indicating that an out of date class has
been loaded during activation because of a backwards compatibility.

The semantics of class |oading during activation isto use the latest available version of a
particular class. If activation fails with the latest version, an attempt is made to recover by
using the version that was in effect when the object was stored. Note that this requiresthe
persistence of the object to include the code base, effective at the time of persistence, for
the object’s class. Thisis considered arecovery scenario and shall result in alog message
to that effect.

29 JavaBeans Conventions

Referent objects shdl follow the JavaBeans design patterns with respect to properties and
methods. Accordingly, methods are classified as mutators (setters), accessors (getters), or
complex (all others). Station i mplementations may use this classification of methods to
map to security mechanisms. For example, an administrator may be able to access all
methods while a user may only be able to access accessors.

44 Fedaated Manegamant Architedure Soedfication

Security

The following security mechanisms are addressed by an implementation of this security
mode:

1) Remote authentication and authorization

2) Delegation

3) Auditing

4) Cryptographic data protection (confidentiality, integrity,..)

As this specification is only concerned with standardizing vendor boundaries to allow
interoperahility, the specification standardizes only those mechanisms, such as security
domain and federations, which serve as a basis with interoperability between stations,
clients, managed resources, and dynamic services. Thisversion does not attempt to
standardize administration interfaces, such as key management, of stations, services, or
any other entity.

Thefollowing isthe list of security issues specified in this document:
1) Security topology

2) Authentication and authorization mechanism. Station authentication and
authorization is based on the Java Authentication and Authorization Service
(JAAS) and the standard Java security modd . Although the reader is assumed to
be familiar with both of these security technol ogies, the following sections
review the JAAS while presenting additional specifications and constraints
associated with this security model.

3) Role basad access control
4) Keylcertificateinfragtructure
5) Delegation

The security architectureis one of a security domain with atrusted third party, the
security service for the domain.

Fedaated Manegamant Architedure Soedfication Page 45

Security

30 Trusted Third Party Architecture

30.1

30.2

46

Security Domains

Security domains are realms of trust against which subjects are authorized and Roles
defined. Management domains and security domain, though separate concepts, are
mapped one-to-one and share the same domain name. Thus, a management domain of
name "boulder" bel ongs to a security domain of name "boulder". Each security domain
has a single well-known security services as atrusted third party. A single security
service, however, may serve more than one security domain, if supported by the
particular security service implementation.

Entitiesin one security domain do not understand nor trust the security credential's of
another security domain. When communication occurs between security domains, the
party initiating the communication must join the target security domain asa client.

Federations

As a gation may only belong to a single management domain, it may only belong to a

single security domain. A gation has an associated well known Subject representing the
authentication of the station itself. Some stations, by virtue of being authenticated asa

federation member, a specia status with a security domain, bel ong to the containing

security domain’s federation and are completely trusted by other participants in the
security domain. Clients, when discussing security, are considered to be JVMs that
participate in a security domain that are not stations. Clients may participate in more than
one security domain.

Security Domain D2
Security Domain D1 _
i Client

i Client @

Federation F1 _ Federation F2

Figure 12. Security Architecture.

Fedaated Manegamant Architedure Soedfication

Security

31 Scope of Specification

31.1

31.2

31.3

31.4

31.5

This specification standardizes only the programming interfaces at vendor boundaries.
With respect to security, the main boundaries are as follows.

Client/Station to the JAAS (Authentication)

Clients and stations must authenti cate themsel ves with the security services of the
security domains in which they participate. Such authentication is performed by the
authentication portion of the JAAStogether with a plug in login module that
communi cates with the security service of the management domain.

JAAS to the Security Services

Because the proper JAAS login modul e and the security service can be supplied by
different vendors, the interface to the security serviceis specified.

Service Objects to the JAAS (Authorization)

On the server side, service objects must be able to perform authorization checks. An
interface for performing such checksis specified as well asa migration path from JDK 1.2
to JDK 1.3, the officially supported JDK for the JAAS.

Client to Proxy

A client, in the sense of something invoking operations on a Proxy, is required to present
certain security information to the Proxy. This information, principally a Subject of
specific composition, is specified. Thispoint isaddressed in a subsequent section entitled
Client to Proxy on Page 68.

Referent Objects to Station

Referent objects inform the hosting station about the sensitivity of certain operations as
well aswhether a particular operation will require delegation. This point isaddressed in a
subsequent section entitled Referent Objects to Station on Page 68

32 Terms and Definitions

32.1

The following terms are fundamental to the security model. Additional terms and
definitions are introduced as needed in the course of the chapter.

Subject

Subject isa JAAS concept that represents the source of an operation request, such asa
person or service. Once authenticated, a Subject is populated with associated identities, or
Principals, as explained later. A Subject may also be popul ated with credentials such as
certificates, tickets, and keys. The public credentials of a Subject can be accessed without

Fedaated Manegamant Architedure Soedfication Page 47

Security

32.2

32.3

restriction. Accessing private credentials, such as private keys, requires special
permissions.

Subjects are associated with threads of execution and carried in context. Thus, at any
point in acal stack one may retrieve the Subject associated with the current thread and
perform an authorization check to verify whether the Subject has permission to perform a
particular operation. Thisauthorization based on Subject, supplied by the JAAS,
augments the Java authorization model that is based on theleve of trust in aclass. The
method of associating a subject with athread of execution and retrieving the subject
associated with the current thread is provided by the JAAS. The two security models
(JAAS and Java) are fully described in the security documentation associated with the
JAAS and the JDK.

Principal

Subjects are populated, during authentication, with Principals, aJAAS and Java
technology concept. Population of a subject requires specific permissions; thus, the
association between subjects and principalsistrusted to the same extent as the entity
performing the population (usually a JAAS Login Module). A Principal may be thought
of as one possible name for the subject. For example, the Solaris Login Module
associates three Principa s with a Subject during authentication:

1) SolarisUserPrincipal (user name),

2) SolarisNumericUserPrincipal,

3) SolarisNumericGroupPrincipa.
Each of the Principalshas atype, given by its Java class, and aname.
If the creator, generally a Login Module, of the Principa istrusted (to create only trusted
classes of Principals and give them trusted names) then the type and name of the
Principal can betrusted. If a Principa is passed remotely from a source to a destination,
the destination must be able to establish its own trust in the Principal (class and name).
This generally involves the source proving to the destination, by the presentation of

certain credentials, that it isin fact alegitimate holder of the Principal. Clearly, such
credentias are sensitive information.

Stations versus JVMs

Not all partiesin the security domain are stations. Parties that communicate with remote
objects, rather than hosting remote objects, need only be a client VM in which the
appropriate client side classes (Proxy support) have been loaded. Only in afew instances
isit necessary to treat stations asif they were different from client JVMs. In the context
of security, the following classes of VMs arereferred to by this specification:

1) JVM A client or gtation VM participating in a security domain.

2) Station A VM enabled to support the dynamic services model: capable
of hosting remote objects.

3) Client A VM capable of communicating with a station

Fedaated Manegamant Architedure Soedfication

Security

4) Authenticated JVM A VM with an authorized and well-known Subject. Authorized
objects within the VM can access and use the well-known
subject of the VM using the
j avax. sxi .security. VWl | KnownSubj ect class. If the
JVM isauthenticated as a server during communications, it will
present itswell-known Subject asitsidentity. Variationsare
authenticated station and authenticated client.

32.4 Security Policy

The security policy is a Java concept manifest by a security policy "fil€". In this context,
a"file" isusualy afilein terms of the local operating system, but can be multiplefiles or
remotely |oaded data sources specified by one or more URLSs. Java palicy files consist of
anumber of entries granting permissionsto classes, as specified by code base or the
signer of aclass. For example, the following is an entry granting code from the

/ home/ sysadm n code base directory read accessto thefile/ t mp/ abc.

grant Codebase "fil e:/home/sysadm n/" {
perm ssion java.io. FilePermssion "/tnp/abc", "read";

The JAAS extends the Java security policy file syntax to include entries that grant
permissionsto Principals and, therefore indirectly to Subjects.

/1l grant permissions to a Code/ Signers/Principals triplet

grant

Codebase "ww. f 0o. cont',

Si gnedBy "bar",

Principal comsun.security.auth. Sol arisPrincipal "duke" {
permi ssion java.io.FilePerm ssion "/duke", "read,wite";

In addition to permission grants, the policy file specifies the location of the key store
containing the certificates used to verify class signatures. See the JDK security
documentation for further information about palicy files and the palicy toal that can be
used to create and edit such files.

Policy files can be specified, using standard options, when garting aJvVM.
I mplementations can provide other means of specifying security policy files such as

secure remote loading. Authorization uses the palicy file; thus, apolicy fileisloaded into
the VM contralling the resources to be protected by the policies.

32.5 Role

Roleisaconcept introduced to ease the burden of creating and maintaining access
contral lists. The JAAS service does not standardize the Principals associated with a
Subject. As aresult, the security policies (access control lists - described later) depend,

Fedaated Manegamant Architedure Soedfication Page 49

Security

50

indirectly, on the method of authorization. For example, if the security policy granted
permissions only to SolarisUserPrincipals and a NIS login modul e was used to
authenticate a Subject, the Subject would not have any permissions because the NIS does
not populate the Subject with Solaris principals. The net effect is that independent
security policies would have to be maintained for each method of Subject authentication.
Roles, a specidization of Principal, reduce the cost of maintaining security policies by
standardizing the Principal used for management system security.

package javax.sXi.security;

i mport java.security. Principal;
import java.io.Serializable;

/**Rol e represents a standard, abstract kind of Principal
* for roles based authorization. Two roles are

* considered equal iff they have the sane Rol e nane,

* security domain name, and the same cl ass nane.

*/

public class Role inplements Principal, Serializable

/**Construct a new Role object. Role names and

* security domain names may not contain unmatched
* braces "{}".

* @aramrol eNane Nanme of the Role. This is the
* Principal name and nay be retrieved using
* Pri nci pal . get Nane()

* @aram securityDomai nNanme Nanme of the security
* dormai n agai nst which this Rol e was issued.
* @hrows |11 egal Argunent Exception rol eName or

* or securityDomai nNane are null or contain
*/ unmat ched braces.

*

public Rol e(
String rol eNane,
String securityDonai nNare

/**Cet the role name of this Role.
*/
public final String getRol eName();

/**Cet the nane of the security domai n agai nst which
* this Role was issued.

*/

public final String getSecurityDonmai nNare();

/**Cet composite name of this role in the form
* "{rol eNane}{securityDonmai nNarme}".
*/

public final String getName();

Permissions may only be granted to Roles, code bases, and signers. For example, a
security policy file might contain the following entry. Note that thistechniqueis
compatible with the JAAS and Java security.

Fedaated Manegamant Architedure Soedfication

Security

/'l Grant permissions to a Role, regardl ess of code base
/'l and signers.

grant. . . . -
Principal javax.sxi.security.Role "adm nistrator" {
permi ssion java.io.FilePerm ssion "/duke", "read,wite";

A Subject, when authorized, can be populated with many Principals, including more than
one Role, and all of these Principals are applicable to permissions within the VM in
which the Subject was authorized (local security). However, when the Subject is passed
(explicitly or implicitly) to aremote JVM, theresultant Subject in the remote VM shall
consist of asingle Principd that isa Role. In the remote propagation of Subjects, the
following rules apply:

1) Principals contained in the Subject are not propagated unless they are Roles.

2) A Role shall not be propagated unlessit has an associated Rol eKey credential.
(Role Keys are described later in relation to secure Subjects.) This credentid isthe
basis of the propagation.

3) Only Rolesthat belong to the same security domain as the remote (target) station, if
it belongsto a security domain, are digible for propagation. If the remote station
does not belong to a security domain, no Roles shall be propagated.

4) If more than one digible Role/credential pair exists, the method by which an
implementation chooses which single Role to propagate is undefined.

While the use of Roles and the propagation of only a single Role have benefits
(smplifying the security model, implementation, and maintenance), there are associated
costs. If auser is compromised, the roles to which that user can access are also
compromised. Thisisaresult of users being authorized with respect to arole rather than
respect to each user. The security model allows the end administrator, who configures the
security system, to choose an appropriate tradeoff between simplicity and the size of a
compromised Role scope. In one extreme, each user has a unique Role. Permissions
would be maintained against each user. In the other extreme, thereisasingle Role that
allows access to the entire system and is shared by all users.

32.6 Federations

A federation of stationsisthe set of authenticated stationsthat are considered astrusted
as the security server of the security domain containing the federation. A federation
member is trusted because the entity (perhaps an administrator) authenticating the station
as such istrusted to make that determination. A federation is bounded by its security
domain; thus, each security domain hasasingle, possibly empty, federation of trusted
stations. The federation name and the name of the security domain containing the
federation are the same.

Members of afederation trust each other because each has authenticated itself
specifically as amember of the federation and, as aresult, holds the private security key
of the federation. Members of the federation can use the key to secure communications

Fedaated Manegamant Architedure Soedfication Page 51

Security

32.7

32.8

among themselves. In this manner, afederation of JVMs becomes aweb of trust where
each member trusts the other and intra-federation communications can be secured. A
conseguence of this simplification is that a malicious member of the federation can
compromise the federation. Because of thisvulnerahility, the entity providing the
authentication credentials, such as a password, necessary to join afederation is
responsible for ensuring that an installation (JVM, security policies, etc.) is, in fact,
Secure.

Within a security domain, entities outside of the federation trust the federation; however,
the trust is not reciprocated: federation members do nat, in genera fully trust non-
members.

Security Manager and Class Loaders

An implementation shall not depend on ingtalling its own class |oaders or security
manager. In general, implementations shall not assume that they own the hosting VM
and shall be well behaved with existing class |oaders, including the RMI class loader, and
security manager.

Security Service

The primary responsibility of a security serviceisto provide authentication services to
the participants of a security domain. The security service provides credentials,
encapsulated in an authenticated Subject, that the authenticating party may use to prove
its authentication to other parties that trust the security service. Clients, stations, and
federations depend on the trust of the security service. The security serviceis, of course,
quite sensitive; a compromised security services can compromise the entire security
domain.

Thereisasingle security service per security, and therefore management, domain, but
security domains can share a security service. Thelimiting factor istherdiable
reachability of the security services from the security domains and the ability of a
particular security service implementation to support multiple domains, which isnot
required.

33 Security Topology

52

The following Figure shows the topology of two security domains served by a single
security service. The Figure also shows the distributed of various keys and certificates at
acertain point in time. The depicted client has been authenti cated against two security
domains and, therefore, has an authenticated subject with two different roles, one for each
security domain.

Fedaated Manegamant Architedure Soedfication

Security

Security Domain D2

Security Domain D1 _
| Client

L 1) riD1
| JsDi JSD2 4F 5] rao

Fedeyation F1 Federation F2

| Security Server |
T5 soi-TL reD1
Tiisp2-11, reD2
oA
]

? Private key ﬁ Certificate containing public key |-J Authenticated Subject

Figure 13. Security services, Security Domains, Federations, Stations, and Clients.

Private keys are shown as key icons and certificates (which contain the public keys) as
certificateicons, both with annotations as follows:

1) F<d>wheredisthe security domain name.
2) SD<d> torepresent the key pair for the security domain d.

3) R<r>D<d> torepresent the Roler in the security domain d. Note that Roles are
qualified by security domain. Although two security domains may have Roles with
the same name, they are not considered the same role because security domains are
the scope limit of Roles.

Key/certificate pairs areissued as aresult of authorization againg a security service and
are encapsulated in a Subject. Often the authorized Subject isthe well-known Subject of
the particular entity.

In text, the annotations are subscripts, the private key icon is represented by K’ and the
certificate (public key) by K. For example, the private key for the security domain 1is
represented by K'sp;. Authorized Subjects are represented by an S{ principal list}, such as
S{R1D1, R1D2}. Unauthorized Subjects have an empty list, S{}.

Stations are denoted by Sp<g-s<s> Where sisthe identification of security domain to which
the station belongs and s isthe station identification.

Private keys areissued only in response to authorization and, unlike certificates, are
never persisted or otherwise passed outside of the VM to which the security service
granted the key. Private keys are kept as a private credential of the authorized Subject.
Thus, even within the VM containing the Subject, access to privates keysis only

Fedaated Manegamant Architedure Soedfication Page 53

Security

allowed to trusted code. In general, the only code trusted with this accessis the Login
Module, which provided the private key during authorization, and the communications
infrastructure that needs the key to support secure communications. All others shall be
denied access to prevent malicious code within the VM from compromising the Role.
However, none of these mechanisms can protect the private key if the VM itself is
compromised.

33.1 Certificates

The certificate for the security domain, SD<d>, boots the security mechanism by
establishing trust in the security service itself. The means by which this certificateis
obtained, or more generally, how trust is established with this certificate, isnot part of
this specification and expected to be handled as appropriate for a particul ar
implementation and installation.

To permit implementation independence while preserving interoperability, the
specification does standardize the format of all certificatesto be X.509 (v1, v2, or v3). In
addition, security domain certificates shall have a subject distinguished name common
name equal to the name of the security domain. All role and federation certificates shall
be signed by the private key of the security domain against which the certificates were
issued. Thus, aholder of atrusted security domain certificate can establish trust in the
role and federation certificates of that security domain. The subject distinguished name
common name of Role certificates shall be the name of the Role.

The security domain certificates are the only ones that must be stored persistently. The
authorization process, in particular a Login Module (described in the following section),
must be able to locate the security domain certificate for a particular domain. Security
domain certificates shall be made available through the Java key store facility under the
alias"j avax. sxi : <security donmai n nanme>", such as

"j avax. sxi : boul der". Thekeyst or e location is specified asa URL by the
system property "j avax. sxi . securi ty. keyst or e". If this property isnot
specified, the Login Module will look for the keys stored in afile".keyst or e" in the
user'shome directory as indicated by the standard system property "user . hone". (See
the JDK documentation for a precise agorithm by which the home directory is
determined for various operating systems.) For conventional ingallations, providing the
security domain certificatesis a matter of storing the certificates in the default key store
fileusingthekeyt ool tool supplied with the JDK.

34 JAAS Authentication Overview

Authentication isthe secure process of associated Principals and, optionally, credentias
with a Subject. The association shall be done in such a manner as to be trusted by the
mechanism performing authorization. Note that both the association of a Principal with a
particular Subject and the class of the Principal must be trusted. The class of the Principal
must be trusted to trust the Principal name, which isafactor in granting permissions.

The JAAS authenti cation mechanism is designed primarily for the local (within a VM)
authentication of users. In its most basic form, the JAAS authentication algorithm

54 Fedaated Manegamant Architedure Soedfication

Security

performs a multi-phase login across one or more trusted Login Modules, with each Login
Modul e being specific to amethod of authorization, such as host based Solaris operating
environment authentication or NIS authentication. Asthe Login Modules are trusted,
(they have been granted certain permissions by the policy file associated with the VM in
which authentication is being performed) they have permission to add Principals and
credentia s to the Subject of thelogin. Thus, the composition of the resulting Subject is
trusted to the extent that therelevant policy file (and JVM) aretrusted. In general, this
level of trust is sufficient to make authorization decisions when the Subject is
authenticated in the same VM in which the authorization istaking place. Further details
can be found in the JAAS documentation.

35 Management Extension to JAAS Authentication

The JAAS is sufficient when the authentication and authorization occur in the same JVM.
In the case of the security modd of this specification, authorization and authentication
can happen in different JVMs. In particular, unless other measures are taken beyond
JAAS, the authorization process in a distributed environment cannot trust a Subject
because the authorization cannot trust the source of the Subject, nor can it trust the
communication channel by which the Subject was transferred from the authenticating
JVM to the authorizing VM. The purpose of the management extensonsto JAAS areto
establish thetrust in foreign Subjects, that is, Subjects authenticated in aremote VM.

Though the specification often refersto passing a Subject from one VM to ancther, itis
unlikely that an implementation would choose to literally pass a Subject. Rather, the
Subject would generally be reconstructed in the target VM based on security information
supplied by the source VM. In any case, the Subject is logically transferred, but the
mechanism by which this transfer is achieved isimplementation dependent.

35.1 Security Service
As previously described, the primary responsibility of the security serviceisto perform
secure authentication. It does so by supplying a JAAS Login Modul e that communi cates
with the security service to perform authorization. The Login Module appears asalocal
Login Module, but the actual authorization is performed remotely in atrusted security
service.

The JAAS, however, cannot directly use the Login Module as supplied by the security
service because the JAAS expects to be able to instantiate, not retrieve a Login Module.
Thereisalso theissue of establishing trust in the Login Module and certificates supplied
by the security service, which requires well known, but secure, access to the certificate of
the security services. In addition, trust must be established in the proxy itself.

Fedaated Manegamant Architedure Soedfication Page 55

Security

56

package javax.sXi.security;

i mport javax.security.auth. spi.Logi nMbdul e;
i mport java.rm . Renot eExcepti on;
i mport java.security.cert.CertificateException;

/**Interface inplemented by the security service proxy.
*/
public interface SecurityService extends TrustedProxy

/**Factory nmethod to get a new Logi nMbdul e for
* aut hentication.
* @aram securityDomai nNane The nane of the security

* domei n agai nst which the authentication shoul d
* be perforned.
*/
Logi nMbdul e newLogi nvbdul e(String securityDormai nName)
t hr ows

Renot eExcepti on,
CertificateException;

The proxy must be trusted to verify its communications with the security service and for
providing the certificate to the Login Modules returned by newLogi nModul e() sothat
the Login Modules can also validate their communications with the security service. In
general, thisrequiresthat the proxy fetch the certificate of a particular security domain
from the key store. The dias used to access the certificate as well as the search for the
key store file are outlined in the previous section about certificates.

To establish trust in aproxy, one must establish trust in the proxy code, which may have
been loaded from aremote source. Thisisaquestion of whether the client, not the server,
trusts the proxy. Therefore, the validation depends on information available on the client
side. A trusted proxy is a proxy to which the client has granted

j avax. sxi .security. SecurityPern ssi on with atarget of "t r ust Pr oxy". This
will requirethat the local (client side) policy file contain a grant entry granting this
permission to the proxy supplied by the security service. Note that the particular class of
this proxy will necessarily depend on the security service implementation. Changing the
implementation of a security service will require changing client side policy files. The
details of the process of trusting a proxy are genera to all secure proxies and outlined in
the following code segment.

Fedaated Manegamant Architedure Soedfication

Security

/'l Check to see if a particular object is trusted as a
/'l secure proxy. Note that this check requires that the
/'l entity doing the checking have pernission to access
/'l the protection domain of the class

/'l Runti mePer nm ssion("getProtecti onDomai n"). The

/'l proxy being checked must have the

/'l javax.sxi.security.SecurityPerm ssion("trustProxy")
/! perm ssion to be trusted.

bbbl ean trusted = fal se;

try
trusted =
aProxy. getC ass().get Protecti onDonain().inplies(
new j avax. sxi . security. SecurityPerm ssi on(
"trustProxy"
)
);

catch(Nul | Poi nterException e) { }

To establish thistrust, the proxy must have been signed, presumably by the vendor of the
security service to which the proxy refers. Note that thistrust only verifies that the class
of the proxy istrusted. A proxy class worthy of such trust must ensure that it can trust the
parties with which it communicates.

package javax.sXi.security;

/**Interface inplemented by secure proxies.
*/
public interface SecureProxy { }

Proxies may implement thej avax. sxi . security. Secur ePr oxy tag interface.
Implementations of stations may allow a mode in which proxies tagged as secure are only
allowed to be loaded into the station if they are trusted according to the described trust

testing algorithm. Thus, proxy clients can assume the proxy is trusted if it implements
j avax. sxi .security. Secur eProxy.

/'l Grant statenent for security services proxy signed by
/1 the vendor "wahoo". The "wahoo" certificate will need
/!l to be available fromthe key store.
grant Si gnedBy "wahoo" {
per m ssion javax. sxi.security. SecurityPerm ssion
"trustProxy";

}s

The proper JAAS Login Moduleisa JAAS compliant login modul e that knows how to
communicate with the security service. Theimplementation of the proper Login Module
isindependent of the security service implementation and may be provided by the

Fedaated Manegamant Architedure Soedfication Page 57

Security

58

security service vendor or as part of a software development kit. The proper Login
Moduleis athin object that, when instantiated, |ocates a security service proxy, which
shall be validated as trusted, to an appropriate remote security service. To request aLogin
Modul e from the security service, the Login Module must know the security domain
name against which authorization shall be performed. Thisnameis provided by the
system property "j avax. sxi . securi ty. domai n". Thisnameisidentica to the
name of the management domain to which the security domain belongs. From then on, all
method invocations are delegated to the Login Module provided by the security service.

JAAS

Proper Login Module

Remote Login Module supplies

‘ remote communication

Security Senice Proxy Security Senice

Figure 14. Remote Authorization Model .

Fedaated Manegamant Architedure Soedfication

Security

JAAS Proper Jini_Lookup Remote Security Security
Authorization Login Module Senvice Login Module Service Proxy Senvice

2: initialize()
o |

1l

3: locate security senice proxy for federation

: [?

ish trust in proxy

]

[1: new() ‘

4: esta

>

6: Dlvate communlcatlons

ﬂ

] |

: login())commit()/...

~

5: newLoginMo dulep
\

8: delegate operation

9: Iocal and delegated operations

™

10: private commun|cat|ons

Figure 15. Remote Authorization Sequence.

1) The JAAS authorization module instanti ates the proper Login Context. ThisLogin
Context is specified in the JAAS configuration.

2) The JAAS authorization moduleinitializes the proper Login Context. Some of the
information that must be available to the proper Login Context at the time of
initidization isthe public certificate for the security service and the security domain
name.

3) Using the security domain name, the proper Login Context can locate an appropriate
Jini lookup service using the group name "<securi ty donai n nane>", suchas
"us. co. boul der".

4) The proper Login Context must establish trust in the proxy retrieved from the lookup
service.

Fedaated Manegamant Architedure Soedfication Page 59

Security

35.2

60

5)

6)

7)

8)

9)

Once trugt has been established, the proper Login Context requests anew Login
Modul e from the security service for a particular security domain.

The security service proxy performs any needed private communications with the
security service. Note that the proxy has access to the certificate of the specified
security domain by way of the local key store.

The JAAS authori zation module can perform any number of operations on the proper
Login Context, such as! ogi n() andcommit ().

The proper Login Context del egates these operations directly to the remote Login
Module. Note that the remote Login Module isremote to the security service, but
local to the proper Login Context.

Theremote Login Module does whatever is necessary to perform the requested
operation. In general, thiswill involve both local operations and remote
communication with the security service.

10) The communication between the security service and its proxy is private. The proxy

and security services shall appropriately secure al such communications. This may
be done using the public/private key pair associated with the security services.

The security service implementation must satisfy a number of requirements:

1

2)

3)

4)

The implementation cannot assume that the VM hosting the Login Module can
perform socket accepts. In general, this meansthat some sort of duplex
communication or polling must be provided to simulate the Login Module callbacks.

All communications between the security service proxy and the security service shall
be server authenticated, tamper resistant, and private. In particular, the proxy will be
passing sensitive information, such as user names and passwords, to the security
service. Thisinformation shall not be sent as clear text. Because the proxy cannot
always distinguish between sensitive and public information, all communications
shall be private. Because the security service hasthe private key of the security
domain and the security service proxy has access to the public certificates of each
security domain (from the local key store), providing secure communications should
be straightforward.

The Login Module shall populate the Subject with asingle Role and an associated
private credential, represented asa Rol eKey, containing the private key and public
certificate of the authenticated Role. The Rol eKey and Role are matched by Role.

If the authenticated Role was as a federation member, the Role shall be of type
Feder ati onMenber .

Secure Subject

A secure Subject is an authenticated Subject containing one or more Role objects and
matching Rol eKey objects as private credentials. Referring back to Figure 13, each
private key associated with a VM (as opposed to the security services) is contained,
along with its public certificate, in the RoleKey of a secure Subject as aresult of
authenti cation.

Fedaated Manegamant Architedure Soedfication

Security

package javax.sXi.security;

import java.io.Serializable;
i mport java.security. PrivateKey;
i mport java.security.cert.Certificate;

/**Prl vate credentials associated with a Role. The
Rol e/ Rol eKey rel ati onship is established by the

* Role property of the RoleKey. The Rol eKey al so

* contalns the public key, as part of the Role's

* public certificate, and the private key for the

* Rol e.

*/

public final class RoleKey inplenments Serializable
/**Create a new Rol eKey obj ect.

* @aram key The private key for the associ ated Rol e.
* @aramcertificate The public certificate for the

* associ ated Role.
* @aramrol e The associ ated Rol e.
*/

public Rol eKey(
Privat eKey key,
Certificate certificate,
Role role);

/**Cet the private key for the associated Role. */
public PrivateKey get Key();

/**Cet the public certificate for the associated Role.
*/
public Certificate getCertificate();

/**CGet the associated Role. */
public Role get Rol e();

If the secure Subject was the result of the authentication of a federation member, then the
Role associated with the Subject is a FederationMember object.

package javax.sXi.security;

/**Special Role issued to nenbers of a federation.
* Note that FederationMenber may be subcl assed to
* establishRoles even within a Federati on.

*/
public cl ass Federati onMenber extends Rol e

/**Construct a new Federati onMenber Rol e object.

* @aramrol eName Name of the Role. Should not be
nul | or contain unbal anced braces.

@ar am securityDormai nName Nane of the security
dormai n issuing the Role. Should not be
nul | or contain unbal anced braces.

@hrows |11 egal Argunent Exception if rol eNane or
securitybDomai nNanme is null or contains un-
bal anced braces "{}".

E I

Fedaated Manegamant Architedure Soedfication Page 61

Security

35.3

62

*/
public Feder at i onMenber (
String rol eNane,
String securityDonai nNare

The private credentids of a secure Subject shall never be exposed directly on the
network, in persistent storage, or other unsecured environment.

Well Known Subject

Each authenticated station has a well-known, authenticated Subject. Authentication or re-
authentication can occur at any time simply by proceeding through the remote
authorization procedure and making the authenticated Subject well known. Authorized
objects have access to the well-known Subject and can, therefore, assume the identity of
the well-known Subject. Only privileged objects, such asthe communication
infrastructure, shall be allowed access to the Rol eKey of the well-known Subject. This
requires the permissions as specified by the JAAS. Usually only the Login Module has
permission toinvokej avax. sxi . security. Vel | KnownSubj ect . set Subj ect () to
change the well known authenticated Subject.

Fedaated Manegamant Architedure Soedfication

Security

package javax.sXi.security;

i mport javax.security.auth. Subject;

/:*Support for setting and getting a well known Subject.
pu/bl ic final abstract class Wl | KnownSubj ect

/**Set the well known Subject.
* Requires javax.sxi.security.SecurityPerm ssion wth
a target of "setSubject".
@aram The well known Subject. May be null to
cl ear.
@eturn The previous well known Subject.
@hrows java.security.AccessControl Exception
if permission to set the Subject is not
granted to the caller.

I

*/
public static Subject setSubject(Subject subject)
t hrows AccessControl Excepti on;

/**CGet the well known Subject.

* Requires javax.sxi.security.SecurityPerm ssion wth
* a target of "getSubject".

* @eturn The wel I known Subj ect.

* @hrows java. security.AccessContr ol Exception

* if permssion to retrieve Subject is not

* granted to the caller.

*/

public static Subject getSubject();

36 Authorization

Authorization is the verification that a particular thread of execution has permission to
perform a particular task, such as accessing a secure resource. This verification may
require inspecting both the classes involved in the call chain, standard Java security, and
the Subject associated with the current thread, the JAAS extension to the standard modedl.
JAAS authorization is supported by Java 2 version 1.3 and later. The specification
provides an similar means of authorization for version 1.2 for migration purposes.

36.1 JAAS Overview

JAAS authorization is directly supported by the JDK 1.3 AccessContraller, thus
authorization does not require the use of any JAAS class and isretroactively applicable to
classes written prior to JAAS. In general, authorization is done by performing a check
permission call onthe AccessControl | er class.

Fi | ePer m ssion perm =
new Fil ePerm ssion("/tenp/testFile", "read");
AccessControl | er. checkPerm ssion(perm);

Fedaated Manegamant Architedure Soedfication Page 63

Security

36.2

36.3

This permission check verifies whether the current thread is allowed read access to the
specified file. The decision is based on the grant entriesin the palicy file associated with
the VM, the class of objects in the call chain, and the Subject (specifically the Principals
of the Subject) associated with the current thread. The Java and the JAAS security
documentation fully detail how the permission checks are calculated.

Modifications

The security model specified is fully compatible with, and does not require modifications
of, the JAAS authorization mechanism. However, to allow early use of authorization
(before wide availahility of JDK 1.3), this specification provides the following
convenience class for migration of JAAS authorization.

package javax.sXi.security;

i mport java.security. AccessControl Excepti on;
inport java.security. Pernission;

/**AccessControll er provides a tenporary entry point

* for java.security.AccessController.checkPern ssion()
* for Subject based authorization until it is available
* directly in the JDK

*/

public final class AccessController

/**Tenporary inpl ementati on of
* java.security.AccessController.checkPerm ssion()
* for Principal (Subject) based authorization without

* JDK 1. 3.
* @ee java.security. AccessControll er#checkPerm ssi on
*/

public static void checkPerni ssion(Perm ssion perm)
t hrows AccessControl Excepti on

The intent isto easily replace the implementation of this class when the JAAS becomes
widdy available. With the arrival of JDK 1.3, one should be able to change package
names without perturbing source code in any other fashion.

Station Authorization

Stations may perform authorization when aremote operation isrequested of the station.
The permission required to perform the remote operation is of class
j avax. sxi .security. AccessPerni ssi on.

Fedaated Manegamant Architedure Soedfication

Security

package javax.sXxi.security

import java.io.Serializable,
inport java.security. Pernission;

/**This class represents renpte access to a station

* and its contents. In particular, operations invoked
on the Station interface or the Acceptor interface
may require specific AccessPernission
<p>

An AccessPerm ssion object consists of a target name
and an action
<P>The target nanme is the name of the referent class
or the class of the referent object, if applicable to
the operation. A target name of the form
"<package_nane>.*" indicates all the class of the
package. A target nane of the form "<package_nane>. -"
indicates all the class of the package and
subpackages. A target name of "*" indicates al
cl asses.
<pP>
Actions to be granted are as foll ows:
<DL>
<DT><code>" <si gnat ur e>" </ code><DD>0bj ect or
class method invocation. <signature> may be "*"
for all methods, a sinple name for all nethods
of a given name (arguments not included), or a
full Java nethod signature. Constructors are
consi dered cl ass nethods with the name "<ctor>".
The target nanme is application to this action.
<DT><code>"depl oy" </ code><DD>Depl oy or recal
depl oyment groups. Includes inventory and code
base queries. Note that the target name is not
applicable to this action
</ DL>

E R I S T N N R S

*/
public final class AccessPermission
extends Pernmission inplenments Serializable

If a permission check fails during aremote operation request, the station shall throw a
javax.sxi.security. StationSecurityException

package javax.sxi.security

/**StationSecurityException is thrown by a station when
* a front door security fails during a renote operation
* request.

*/

public class StationSecurityException
extends SecurityException

Fedaated Manegamant Architedure Soedfication Page 65

Security

37 Client to Proxy

Up to this point, this chapter has been mainly concerned with the architecture of the
management security model and the interactions with the JAAS. In addition, there are
two other vendor boundary interfaces to address. Thefirst is client to proxy. The entire
interaction that a client has with the proxy, with respect to security, isthrough the
Subject, or security, context. Theclient isresponsible for:

1) providing Subject authenticated againgt the security domain and

2) associating the Subject with the current thread of execution before invoking methods
on the Proxy.

This association is done using the Subj ect . doAs() methods.

38 Referent to Station

38.1

38.2

38.3

66

The actual security mechanisms (encryption, auditing, etc.) invoked when
communicating with a particular referent are aresult of security policy, supplied by the
adminigrator, applied to information supplied by the developer. The former isnot in the
scope of this specification. The latter is part of the referent to station contract. The
information supplied by the devel oper is classified asintrinsic, implicit, and explicit.

Intrinsic

Intring ¢ information includes class names, interface names, method signatures and any
other information intrinsically available from any object. The developer makes no special
effort to provide this information; however, security decisions may be based on this
information, if supported by a station implementation. For example, a station could allow
call auditing to be specified by the administrator on a class-by-class basis. As another
example, auditing of all remote operations on a particular class of objects.

Implicit

Implicit information supplied by the referent to the station includes semantics associated
with certain method patterns by virtue of the JavaBeans component model. Methods can
be categorized as accessors, mutators, and others. Security decisions can be based on this
classification. For example, one possible security policy would allow unauthenticated
access to accessors but require authori zed access to mutators and other methods.

Explicit

Explicit information is supplied by thereferent in the form of modifiers. With respect to
security, the modifiers are grouped into two sets: sensitivity and delegation. The
adminigtrator is not expected to know the details of particular classes or objects. Thus, the
developer specifies the sendtivity of particular operations. The sensitivity is specified as
public, sensitive, or private. Note that the devel oper does not specify what mechanisms
should be used with each of the levels of sensitivity. The mechaniams are specified by the
administrator based on, possibly, a combination of intrinsic, implicit, and explicit

Fedaated Manegamant Architedure Soedfication

Security

39 Delegation

40 Views

40.1

40.2

40.3

information, as supported by the administration capabilities of a particular station
implementation.

The delegation modifier isthe means by which areferent informs the station that it may
need delegation to perform a particular operation. In others, to perform the operation, the
referent will need to authenticate itself asthe client. Delegation is described further in the
following section.

Deegation is the process by which aclient (an entity requesting aremote operation)
grants the server (an entity receiving the remote operation request - referent) permission
to use the client’s Subject. As thisrequires passing the private credentials of the client
Subject to the server, the client must have ahigh level of trust in the server. If a particular
method has specified that it needs delegation, the client Subject will have sufficient
credentia's such that any thread that has access to the Subject may authenticateitself as
the client. In generd, del egation happens automatically. Consider the case where aclient
A invokes a method on aremote object B, which in turn invokes a method on another
object C. If B requires delegation and C requires authentication, then (for security
purposes) the call to C appearsto have come from A. If C does not require authentication,
then B does not necessarily need to require del egation because the private credential's of
the Subject will not be inspected.

Different roles see and need to understand different aspects of security.

Client Developer

The client developer must understand the JAAS authentication framework aswell asthe
extensions of this chapter, principaly the Login Module.

Service Developer

The service devel oper must tag classes and objects with private, confidential, public, and
delegation modifiers aswell as following JavaBeans coding conventions for properties.
Generdly, thisis done with tool assistance, but it is possible to perform the task manually
by creating the modifier tables by hand. In advanced cases, developers may wish to
perform explicit security checks (j avax. sxi . security. AccessControl |l er)or
assume the identity of the station (j avax. sxi . security. Wl | KnownSubj ect).

System Administrator

The system administrator is responsible for providing security policies, both in the sense
of Java security policy files and in the sense of specifying mechanisms. The former is
covered by the security information associated with the JDK, the JAAS, and the specific
permissionsrequired to perform certain tasks. The latter isimplementation specific but
generally consists of some means by which the administrator can control encryption,

Fedaated Manegamant Architedure Soedfication Page 67

Security

68

auditing, and the like based on various attributes, including the security modifiers
assigned by the devel oper to particular methods.

Most of the complexity of security falls on the system administrator. The security model
allows for awide range of granularities. The following isan example of how an
installation could be configured with a very coarse level of granularity to achieve alevel
of smplicity.

1)
2)
3)
4)
5)
6)
7)
8)
9)

Grant al permissionsto therole of administrator.

Grant permission for the roles of user to access get methods labeled as public.
Grant no permission to other roles.

Grant dl permissionsto classes signed by Sun, IBM, and the lead administrator.
Grant no permissionsto other classes.

Encrypt communications with all methods tagged as private or sendtive.

Plain text communications with al method tagged as public.

Audit communications with all methods tagged as private.

Perform client authentication with all methods tagged as private or sensitive.

Fedaated Manegamant Architedure Soedfication

Aspects

Referents have three aspects: transaction, logical thread, and controller. Aspects are
handled by the infrastructure on behalf of thereferent according to aspect policy
specified by the referent. These aspect policies are specified by the aspect modifiers
(SYNCHRONI ZED TRANSACTI ON, SYNCHRONI ZED LOG CAL_THREAD,

SYNCHRONI ZED TRANSACTI ON_CONTROLLER) applied to methods and constructors.

Each aspect seridizes object access based on a particular concept, much in the same way
as Java thread synchronization serializes object access based on language thread. For
example, SYNCHRONI ZED TRANSACTI ON, serializes object access based on transactions
such that the object may only be involved in asingle transaction at atime. With all
aspects, an exclusive lock on the object is acquired when a’synchronized’ method is
invoked. (Each aspect has an independent lock.) The aspects differ however asto when
the lock isreleased. Logical thread based locks are rel eased when the invoked method
returns. Transaction based locks are released when the transaction is committed or
aborted. The basis for lock release is known as the relevancy of the aspect. Aspects a'so
differ intheir responseto afailureto acquire an unavailable lock, as described in the
following sections.

Aspects are only applied to an object when the object is accessed using its Proxy.
Therefore, it is unsafe and forbidden to invoke any method with aspect modifiers except
through the object’s Proxy.

Much as adjunct modifiers are thought of as extensionsto the Java language modifiers,
aspects may be thought of as extensions to the Java thread synchronization primitive.

Fedaated Manegamant Architedure Soedfication Page 69

Transaction Aspect

41 Synchronized/Transactions

The devel oper indicates that a method is synchronized with respect to transactions by
tagging the method with the

j avax. sxi . server. Modi fi ers. SYNCHRONI ZED TRANSACTI ON modifier. The set of
such methods form an exclusion group such that, with respect to these methods, the
object may only be involved with one transaction at atime. The semantics of the
synchronization obey the following state diagram.

throws ConcurrentTransactionException
if not of the involved transaction

—_—

invoke synchronized

> .
instantiate

invoke synchronized
‘ Free Involved

commit/abort

Figure 16. State Diagram of Object Methods Synchronized with Respect to Transactions.

42 Transactions Created on Behalf of an Object

If athread of execution does not have an associated transaction (see

j avax. sxi . common. Cont ext), then the station must initiate a transaction before
invoking a method synchronized with respect to transactions. The station isthen
responsible for committing or aborting the transaction when the method returns. The

Fedaated Manegamant Architedure Soedfication Page 71

Transaction Aspect

transaction shall by aborted if athrowable is thrown and committed otherwise. Stations
may perform the following optimization. If an object is involved with atransaction and a
synchronized/transaction method isinvoked without atransaction, there isno need to
create and abort the transaction before throwing the

j avax. sxi . conmon. Concur r ent Tr ansact i onExcepti on.

43 Deadlock Prevention

72

If the transaction lock is not available, the object is already involved. Then an exception
isthrown. Thus, deadlocks will be broken; however, thrashing may result during
contention for transaction locks. Stations shall attempt to acquire the transaction lock for
a period of time specified by thedvax. sxi . t ransacti on_t ol er ance” system
propertybefore throwing a

j avax. sxi . common. Concur rent Tr ansact i onExcept i on. The default value is
10,000 milliseconds and is specified in milliseconds. Note that

j avax. sxi . common. Concur rent Tr ansact i onExcepti on, is an unchecked
exception.

Fedaated Manegamant Architedure Soedfication

Logical Thread Aspect

44 Synchronized/Logical Thread

The devel oper indicates that a method is synchronized with respect to logical threads by
tagging the method with the

j avax. sxi . server. Modi fi ers. SYNCHRONI ZED LOG CAL_THREAD modifier. The
set of such methods form an exclusion group such that, with respect to these methods, the
object may only be involved with onelogical thread at atime. The semantics of the
synchronization obey the following state diagram.

if not of the involved logical
thread, blocks until object retums
to the free state

B —

invoke synchronized

I~ .
instantiate

invoke synchronized
‘ Free Involved

method return

Figure 17. State Diagram of Object Methods Synchronized with Respect to Logical
Threads.

45 Logical Threads Created on Behalf of an Object

If athread of execution does not have an associated logical thread (see
j avax. sxi . common. Cont ext), then the station must initiate alogical thread before

Fedaated Manegamant Architedure Soedfication Page 73

Logical Thread Aspect

invoking amethod synchronized with respect to logica threads. Stations may perform the
following optimization. If an object isinvolved with alogical thread and a
synchronized/logical thread method isinvoked without alogical thread, thereisno need
to create thelogical thread before throwing the

j avax. sxi . cormon. Curr ent Thr eadExcepti on.

46 Distributed Deadlock

Distributed deadlock isa class of problemsthat are particularly difficult to diagnose and
correct. Because objects in a distributed are more loosdly coupled that in thelocal case,
distributed deadlock isamore difficult situation than local deadlock. In genera, the best
cureis prevention by good coding practices. For example, one should avoid, as much as
possible, holding locks when making out calls. Out calls are method invocations on
objects, which are not encapsulated by the calling object. The calling object generally
does not know what locks the target object will acquire. Therefore, it is not safe for the
calling objects to hold any locks while invoking methods on the target object. A classic
example of an out call iswhen a subject invokes a callback on an observer (Subject
Observer pattern).

Clever use of synchronization and local variables can help release locks when it may
initidly appear impossible. However, sometimesit is smply not possible to release dll
locks before making an out cdl. If the out call is known not to cross a partition (involve a
remote operation), one should judiciously use Java thread synchronization. Only as a last
resort, when the out call involves a remote operation, should locking be performed based
on logical thread. Methods synchronized with respect to logical threads should be rare.

To help avoid distributed deadlock even when logical threads are used judicioudly,
stations can be directed to give up waiting for alock to become availabl e after a given
amount of time. This deadlock tolerance is controlled by the system property

“j avax. sxi .t hread_deadl ock_t ol erance”. The default value is infinite: a thread
will block forever waiting to lock an object.

74 Fedaated Manegamant Architedure Soedfication

Controller Aspect

47 Controllers

Controllersallow various resources to be locked with respect to a contraller for along
period of time: possibly thelife of the controller, which may be persistent. This primitive
forms the basis for control arbitration of managed resources. A controller must register
itself with the controller service, a base service, and maintain the associated lease. The
controller may then explicitly or implicitly reserve managed resources for its exclusive
use. When the lease has been cancelled or expired, the reserved resources are released for
use by other controllers. A controller’slocks may also be released without releasing the
contraller itself. Unlike transaction and logical thread locks, controller locks arelong
lived.

48 Controller Architecture

While contrallers are a common concept for both clients and stations, they are treated
somewhat differently do to scalability requirements. Clients are expected to contain afew
contrallers, with asingle controller being the most common case. Stations may contain
thousands of contrallersin large configurations. Thus, the interface used by clients and
stations are dightly different.

48.1 Controllers

A Contraller object represents a single controller, asingle point in a chain of contral.
Generally controllers are dynamics services that determine policy or are management
clients. Controllers areissued by the controller service for the management domain and
may have over any number of generations. Clients contact the controller service directly
to get acontroller. Controller objects running in a sation will have a controller all ocated
exclusively to the object by the containing station.

A given controller moves to its next generation when its owner, client or controller
object, requests that the locks owned by the controller be released, or more precisdly,

Fedaated Manegamant Architedure Soedfication Page 75

Controller Aspect

76

allowed to expire. The changein generation requires communication with the controller
service.

Locks

Locks areissued by a controller againgt a specific generation of the controller. Given a
lock, one can query the lock to seeif it has been released. This query requires
communication with the controller service. A lock isreleased under two conditions.

1) Thelease maintaining the controller expires or is cancelled. In the case of
contrallersissued to clients, thelease if for a specific controller. In the case of
contrallersissued to controller objectsin gations, the leaseis for al controllers
in the station.

2) If thecontroller issuing thelock is till valid, but isno longer of the generation
that issued thelock. Thisallows a controller to effectively release all of itslocks
by changing generations.

State Distribution Between Stations and the Controller Service

Stations maintain alist of controllersthat have been acquired on behalf of controller
objects hosted by the station. The subset of thislist pertaining to persistent controller
objects must also be persistent. The controller service maintainsa copy of thislist so that
other parties may query the validity of alock without having to contact the station
containing the contraller, which may not be available. The station controller list isthe
master and the controller servicelist the slave.

The controller ligt in the controller service is leased by the station. Failure to renew this
lease indicates that the station and controller service may be out of synch. The controller
service provides a synchronization method to resynchronize with a station; however, loss
of synchronization may imply theloss of contrallerslocks. The contraller list state can
change only as follows:

1) A controller is added.
2) A controller isremoved.
3) A controller changes generation.

All of these changes require communication with the controller service in order to
maintain synchronization.

Station Responsibilities

48.4.1 Remote Instantiation

When remotely instantiating a controller object, stations must contact the controller
service serving the management domain to which the station bel ongs and request anew
contraller for the controller object. This controller is passed in context to the controller
object whenever a method synchronized with respect to controllersisinvoked remotely.

Fedaated Manegamant Architedure Soedfication

Controller Aspect

48.4.2 Controller Object Lifetime

When the controller object is garbage collected (transent) or removed (persistent), the
station must also delete the associated controller. If it is unable to do so, state
synchronization has been lost and the station should resynchronize with the controller
service when the service again becomes reachable.

48.4.3 Remote Method Invocation

When invoking a method synchronized with respect to controllers, the station may need
to verify the relevancy of alock. When alock is acquired on behalf of a controller, the
station will need to request and retain alock object from the controller.

48.4.4 Failed Lease Renewal

When the station failsto renew itslease with the controller service, it must start a
prolonged attempt to resynchronize with the controller service. Theretry interval shall be
between 10 seconds and 5 minutes. If the station isnot able to contact. The station shall
assume that locks have been lost and notify controller objects as described in 48.4.6.

48.4.5 Station Restart

Station must persist their lease with the controller service and resume its maintenance
when the station restarts by immediately attempting alease renewal. Regardless of
whether the renewal succeeds or fails, the station should begin state synchronization with
the controller service because any transient controllers would have been lost in the station
but still present in the controller service. If therenewal fails, the station must assume that
locks have been lost and notify controller objects as described in 48.4.6.

48.4.6 Notify Controller Objects of Possible Lock Loss

If the station suspects the possible loss of controller locks, it must notify all controller
objects to given them the opportunity to reestablish any locks that they may hold. All
controller objects that implement the following method shall be notified as soon as
practicabl e after the station detects the possible loss of lock integrity. Note that in many
cases, the controller service will be unreachable it thistime.

private void onControllerFailure() H

After station the station has reestablished state synchronization with the controller
service, it must inform the controller objects of the recovery. Controller objects that
implement the following method signature shall be notified. In addition, the station
should ensure that the controller of the controller object is established in context before
invoking the method.

| private void onControl | er Recovery() H

Fedaated Manegamant Architedure Soedfication Page 77

Controller Aspect

During the period between suspecting loss of lock integrity (lease renewal failure or
remote communication failure with the controller service) and resynchronization with the
contraller service, the station should refuse all remote operations by throwing a

j avax. sxi . servi ces. Servi ceFi nder. Servi ceNot FoundExcepti on.

48.4.7 Persistent Objects

Thelist of controllersthat must be synchronized with the controller service includes
those of persistent controller object which are not activated. For example, on restart, the
station must build a synchronization list of controllers associated with all persistent
contraller objects, none of which are activate at startup.

48.5 Client Responsibilities

Clients mugt directly contact the controller service to acquire a controller and are then
responsible for maintaining the associated |ease. Clients and there controllers are
considered short lived and transent without any mechanism for reregistering a client
controller.

49 Synchronized/Controller

The devel oper indicates that a method is synchronized with respect to controllers by
tagging the method with the

j avax. sxi . server. Modi fi ers. SYNCHRONI ZED CONTROLLER modifier. The set of
such methods form an exclusion group such that, with respect to these methods, the
object may only be owned by only one controller at atime. The semantics of the
synchronization obey the following state diagram.

throws ConcurrentControllerException if
not of the owning controller

—_—

invoke synchronized

instantiate
. invoke synchronized

Free L Owned
) \ J

owning controller lease
cancelled or expired

78 Fedaated Manegamant Architedure Soedfication

Controller Aspect

Figure 18. State Diagram of Object Methods Synchronized with Respect to Contrallers.

50 Controllers Created on Behalf of an Thread

If athread of execution does not have an associated controller (see

j avax. sxi . common. Cont ext), then the station must create a controller before
invoking amethod synchronized with respect to controllers. The station isthen
responsible for canceling the controller lease when the method returns, regardl ess of
whether or not the method threw athrowable. As with transactions, thisis an expensive
operation and clients should create a context (transaction and controller) to be used across
many remote operations. Stations may perform the following optimization. If an object is
owned by a controller and a synchronized/controller method isinvoked without a
contraller, thereisno need to create anew controller before throwing the

j avax. sxi . conmon. Concur rent Control | er Excepti on.

51 Deadlock Prevention

52 Clients as

If the controller lock isnot available, the object is already owned by another controller,
then aj avax. sxi . common. Concurrent Cont rol | er Except i on isthrown. Thus,
deadlock is not a problem. Unlike transactions, however, controller locks are considered
relatively static, thus contention thrashing isnot likdly. For this reason, stations are not
required to attempt a controller lock over a period of time.

Controllers

Clients are always considered to be contrallers. Clients must contact the controller
service and request a controller to identify the client as a controller. It is possible that
some forms of clients may be partitioned into more than one controller. A client
controller must be associated with the current thread before invoking remote operations
using Proxies.

53 Referent Objects as Controllers

Some referent objects should be contrallers, known as controller objects. Consider the
management control path from the source of activity (client, event service, or scheduling
service) through the implementation object of one or more dynamic services to managed
resources. Many of the intermediate object are points of control; they affect some sort of
policy on the control path and are considered to be controller objects. Other objects
simply route the management path or provide access to information: these are not
contrallers. Controllersinclude objects in services such as groupers, which manage a
group of resources as a single consistent unit, and reactorsthat respond to an event by
mani pulating managed resources.

A classindicates that objects of that class are controller objects by using the
j avax. sxi . common. Modi fi er. 1 S_CONTROLLER modifier on the class. The station
ensures that each controller object has an assigned controller and isresponsible for

Fedaated Manegamant Architedure Soedfication Page 79

Controller Aspect

80

maintaining the associated lease. (The associated leaseis actualy the global lease
between the station and the controller.)

Immutable Relationship Between Controller and Object

Each controller object has a single exclusive controller. The controller can only be set
once and is an immutabl e rel ationship with the controller object. During remote
instantiation of a controller object, the station must contact the controller service and
request a controller on behalf of the object. This controller must be set in context before
invoking the constructor of the controller object.

While the rel ationship between a controller and a controller object isimmutable, the
contraller itself is mutable. Releasing controller locks held by the contraller result in
mutation of the controller: a change in generation. Thus, the issue of reference sharing
and interning of controllers becomes important. The implementation must ensure the
following:

1) Within the station containing the controller object, public copies (copies not
under the exclusive control of the implementation) of the associated controller,
asreturned by the controller service, are not permitted.

2) A controller may by passed to other stations, such as during aremote operation;
however, the resulting copy must be made immutable. The
r el easelLocks() operatios must be disabled in such cases, throwing a
j ava. | ang. Unsupport edOper at i onExcepti on.

Controller In Context

Though contraller aspect locking is always based on the incoming controller, the
controller within a controller object method synchronized with respect to controllersis
always the controller of the controller object, not the controller of the calling thread.

Releasing Locks Held by a Controller

A controller object may need to cancel resource reservations, such as when the set of
resources needed to perform a certain operation changes. In such cases, the controller
object releases all locks associated with its controller and reestablishes new locks. To
support this kind of change, controller objects will need to remember reservationsthat it
has granted so that it may reaffirm the reservations, which will have been lost when the
locks were released. In general, controller objects will also need to maintain this
information to support recovery from suspected loss of lock integrity.

Locks arereleased in alazy fashion. After the controller r el easeLocks() method is
invoked, thei sRel event () method of previously issued locks must return false. The
controller aspect locking must proceed in a manner equivalent to the following:

1) Thestation, as previoudy described, ensures that the current thread has an
associated controller.

2) If thereferent object is currently in an owned state, as evidenced by the
existence of alock, the station invokesthei sOmner () method on the lock,

Fedaated Manegamant Architedure Soedfication

Controller Aspect

passing the incoming controller, to determine if the controller owns the current
lock.

a. IfisOmner () returnsfalse, the station must contact the controller
service and determineif the old lock is till relevant. To do so, the
station invokesthei sRel event () method on the lock object. If so, an
Concurrent Control | er Excepti on isthrown, as previousy
described. If not, the associated lock is replaced by anew lock issued
by the incoming controller.

b. If i sOwer () returnstrue, the incoming thread is allowed to access the
referent object.

3) If thereferenceis currently in afree state, the station places the object in an
owned state and associates a new lock object, provided by the incoming
contraller, with the object. The incoming thread isthen allowed to access the
referent object.

In this scenario, remote communications with the controller service happens only when
attempting to establish anew lock: a changein controller ownership of the object. This
communication may fail if the controller serviceis unreachable. In such cases, thelock
should assumeto till be relevant.

54 Control Reservations

Controller locks may be acquired just in time, in the normal course of performing an
operation involving synchronized/controller methods, or they may be reserved.
Reservations are made by invoking reservation operations on an object with the
reserving controller in context. Reservation operations are of the following form.

public void reserve<operation name>(<args>) _
t hrows j avax. sxi.conmmon. Concurrent Control | er Excepti on

The arguments and operation name are optional. |If no operation name is provided, the
reservation is assumed to be made for all operations supported by the object. Otherwise,
the reservation is assumed to be made for a specific operation or set of operations. The
implementations of the reserve operations (reservation methods) are generaly nested
callsto the reserve operations of other object. Note that reservation methods must be
synchronized with respect to controllers.

Controller objects make a best attempt at reserving resources. Network failures,
controller service failures, and other failure scenarios can result in the loss of
reservations. Clients and services should be designed in such away as to tolerate or
recover from such reservation failures.

Fedaated Manegamant Architedure Soedfication Page 81

Persistent Objects

55 Specifying Persistent Objects

An object is persistent if it contains the public constant field Ref er ent Type of type
St ri ng and value Ref er ent Type. PERSISTENT or
Ref er ent Type. PERSISTENT_LOGIC.

public class M/Per inplenents ReferentType
public static final String Referent Type = PERSI STENT,;

Stations that support persistent objects will provide specialized acceptors, when the
referent is persistent, that implement the Per si st ent Accept or interface. Proxiesto
persistent referent objects havear enmove(bool ean force) method that invokesthe
remove method of the Per si st ent Accept or.

package j avax.sxi.conmmon;
i mport java.rm .NoSuchObj ect Excepti on;

public interface PersistentAcceptor extends Station

Fedaated Manegamant Architedure Soedfication Page 83

Persistent Objects

/**Renove a persistent object from durabl e storage.
* This method will fail if any operations are in
* progress on the referent object, unless force is
* true. Subsequent operation attenpts result in an
* NoSuchCbj ect Except i on.

* @orce if true, the persistent referent object
* is renoved even if there are operations in

* progress.

* @hrows NoSuchCbj ect Exception If the referent object has
*/ al ready been renoved.

*
bool ean renove(bool ean force)

t hrows NoSuchhj ect Except i on;
}

If theremoval succeeds and the persistent object implements aremove method, then that
method isinvoked to allow the object to clean up any persistence for which it is
responsible. A failure of the remove method will not cause the remove operation to fail.
However, stations should log the exception to indicate that some resources may not have
been released. Note that unlikef i nal i ze(),renove() isguaranteed to be called when
the persistent object isremoved. The remove method signatureis as follows:

\ private void renmove(); H

56 Kinds of Persistent State

56.1 Existence

The existence state of a persistent object isa durable record that the object element. This
stateis handled by theinfrastructure and isinvisible to the persistent object. When a
persistent object isremotely instantiated (the only permissible means of instantiation for
persistent objects) arecord of its existenceis noted. A persstent dement exists until its
persistent image isremoved and isnot subject to distributed garbage collection.

56.2 Implicit

Theimplicit state isthat portion of a persistent object’s state that is handled by the station
on behalf of the object. Theimplicit state of a persistent object is captured by serializing
the object directly. Thus, the transitive closure of the non-transient fields of a persistent
object comprisesitsimplicit state. The object output stream used for serialization shal be
tagged with thej avax. sxi . server. Per si st enceSt r eaminterface to provide a
means by which an object can discern if it is being serialized for the purpose of
persistence.

56.3 Explicit

Persistent objects can aso explicitly control state internal or external to the object. To do
so, the object must implement the

84 Fedaated Manegamant Architedure Soedfication

Persistent Objects

net.jini.core.transaction.server. TransactionParti ci pant interface. The
persistent object will write explicit state during the prepare or commit operations.

57 Reading State

The state of a persistent object isread when the object is activated and when a transaction
in which the object isinvolved is aborted.

57.1 Activation

A persistent object isactivated as a side effect of reference faulting while attempting a
remote operation on the object as areferent. The object is stored as a serialized byte array
and unseridized when activated. If the persistent object needs to acquire other state when
activated, it must providea r eadObj ect () or readExt er nal () method as provided
for inthe Java serialization specification.

When persistent objects are activated, they assume the latest deployed versions of the
needed classes. Thiswas detailed previously in Class Loading During Activation, page
45,

57.2 Transaction Abort

If apersistent object is involved with atransaction and the transaction is aborted, the
object isimmediately deactivated. Operationsin progress during the abort will continue
with the now stale object. Note that methods synchronized with respect to transactions
will be blocked during the abort operation. If these operations have not timed out by the
time the object isrolled back, they will continue by activating the object with the last
committed state. Thus, the transaction abort reduces to athrow away followed by
activation with thelast committed state.

58 Writing State

The state of a persistent object is written when the object is remotely (using a Proxy)
instantiated and when atransaction in which the object isinvolved is committed.

58.1 Instantiation

The state of the persistent object, when instantiated, is supplied as congtructor arguments.
Additiona state may be acquired by the object in its constructor. The gate, including the
existence of the object, isnot considered durable until the transaction under which the
object was instantiated is committed. Congtructors of persistent objects are always treated
as synchronized with respect to transactions. Thus, if the client does not provide a
transaction, the station will create and commit atransaction bracketing the constructor
invocation. If the constructor throws an exception, the transaction is aborted.

In response to the constructor transaction preparing, the station serializes the persistent
object and prepares to store the resulting byte stream. Any errorsin serialization cause

Fedaated Manegamant Architedure Soedfication Page 85

Persistent Objects

86

the transaction to abort. On commit, the station isresponsible for making the seriadized
state of the object durable.

If the persistent object implements Tr ansact i onParti ci pant , then the station will
invoke the pr epar e(), commit (), andabort () operations after the station has
performed its transaction duties, as previoudly outlined.

Transaction Commits

When atransaction is committed in which the persistent object isinvolved, the object
may be seridized and persisted. The pattern follows that of ingtantiation: serialization
during prepare, object transaction operations invoked after station transaction duties, etc.

If the transaction aborts, the station immediately deactivates the object. Subsequent
communications with the object asareferent (the only valid way of communicating with
the object) resultsin activation of the previousdy committed version.

Dirty Optimization

Stations are only required to persists dirty persistent objects as an optimization that
avoids persisting objects that have not been mutated. The station assumes that mutator
methods modify state and all other methods do not. To be considered a mutator, the
method must follow the JavaBeans setter pattern. If other methods modify state such that
the persistent object needs to be persisted, they must call the

j avax. sxi . common. Per si st ent Cont ext. set Dirty() method. The

Per si st ent Cont ext isavailable as the context for al persstent objects.

package j avax.sxi.conmmon;

/**Speciali zed Contextual for persistent object.
*/
public class Persistent Context extends Context

/**Inforns the station that this object has been
* nut at ed.

* @eturn boolean true if the object was al ready
* o dirty.

*/

public bool ean setDirty();

Optimization for Logic Objects

Logic objects are objects that are not directly responsible for any state. The only
interesting state, in such cases, is the state of existence. Persstent logic objects can
indicate themselves as such as follows.

public class M/d ass inpl ements Referent Type

public static final String ReferentType =
PERSI STENT_ LOGQ C;

Fedaated Manegamant Architedure Soedfication

Persistent Objects

Logic objectswill not have their sate perssted by the station nor does it make sense for
them to implement the Tr ansact i onPar ti ci pant interface, asit will never be called
by the station. Thisis strictly an allowable optimization and not required of either station
implementations or logic objects.

59 Access of Persistent Objects Using Proxies

Aswith al referent objects, persistent object must only be instantiated and accessed
through an appropriate Proxy. Only when the object is accessed by proxy is the sation
able to apply the semantics associated with the aspects and persistence.

60 Concurrent Operations

There may be operationsin progress while atransaction is being prepared, committed, or
aborted. From the time the prepare operation begins until the commit or abort ends, the
station will react as follows to remote operation attempts.

60.1 Operation in Progress on Methods Not Synchronized/Transaction

These methods are assumed not to be involved with sate (logic methods) and are allowed
to continue uninterrupted.

60.2 Operation in Progress on Methods Synchronized/Transaction

These operations are alowed to compl ete before the prepare operation is handled by the
station.

60.3 Operation Initiated on Methods Not Synchronized/Transaction

These methods are assumed not to be involved with gate (logic methods) and are allowed
toinitiate without interruption.

60.4 Operation Initiated with New Transaction on Methods Synchronized/Transaction

Station throws aj avax. sxi . common. Concur r ent Tr ansact i onExcept i on asthe
persistent object is still considered involved with the transaction in progress.

60.5 Operation Initiated with Old Transaction on Methods Synchronized/Transaction

Station throwsannet . j i ni. core.transacti on. UnknownTr ansact i onExcepti on
asthetransaction in progressis considered closed to participants after the prepare
operation has been initiated.

Fedaated Manegamant Architedure Soedfication Page 87

Registered Dynamic Services

Dynamic services must be registered with the lookup service for the management domain
to which they belong. The hosting station handles the registration of the service with the

lookup service as well as maintenance (lease renewal and removal) of the lookup service
entry on behalf of the service.

60.6 Specifying the Service Entry

Each dynamic service has one single proxy registered with the lookup services serving
the management domain to which the service belongs. Unlike static services, the proxy of
adynamic serviceisrequired to be a Proxy in the sense of the dynamic services model.
Thereferent of this Proxy isthe primordial point object of the service; thus, the
primordial point object must be proxied and the Proxy available to the station in the same
package as the point object. Each dynamic service must have asingle primordial point
object that implements the following method.

private net.jini.core.entry.Entry[] getLookupEntries(); H

This method provides alist of entries (possibly empty or null) under which the elements
service beregistered. The set of registration entriesis considered immutable for the life
of the service. When the primordial point object is remotely instantiated, the only
allowable method of instantiation, the station will invoke get LookupEnt ri es() after
the constructor has completed. Thisis coincident with the time that the station beginsto
register the point object, and, therefore, the service itself, with the appropriate |ookup
services. Aslookup services are dynamic in existence and the registration process
asynchronous, there is no guarantee as to when the service will be successfully registered
with any particular lookup service.

In addition to the entries provide by the service's primordial point object, the station will
add an additional Ser vi cel nf o entry, if aSer vi cel nf o entry isnot aready present in
the entry list. The Ser vi cel nf o entry must be popul ated using the package information
associated with the primordid point object according to the following table.

‘ Servicel nfo Property java.lang.Package Property ‘

Fedaated Manegamant Architedure Soedfication Page 89

Registered Dynamics Services

manufacturer I mplementationVendor

model full class name of primordial point object
name toString() of primordia point object
serid Number 0

vendor I mplementationVendor

version ImplementationVersion

If the primordial point object provides the Ser vi cel nf o itsdf, it may provide
specialized values for model, name, serial Number and manufacturer. Other fields should
be taken from the package level information. Note that thisinformation is specified in the
manifest of the JAR file in which the service classes are resources are deployed.

The dynamic service will beregistered with all lookups services for aparticular
management domain. The management domain is determined by the management
domain to which the station hosting the service belongs. Thus, all servicesin agiven
station bel ong to the same management domain asthe station itself. The station also
oversees the maintenance of registrations and re-registrationsin the case of lookup
service or station restarts such that dynamic services are considered ‘good’ Jini
technology citizens as outlined in the Jini technology specification.

60.7 Leases

Stations are responsible for maintaining the registration leases of all hosted dynamic
services, including those that are persistent but not currently active.

60.8 Response to Lease Renewal Failure

Upon failure to renew a registration lease, the station will periodically attempt to
reregister the associated service point object with any available lookup services. The
reregistration strategy is implementation specific.

60.9 Service IDs

In the case of persistent service (services with a persistent primordial point object),
stations shall persist the service ID, issued when the service was first registered with a
lookup service, such that the service will always be registered under the same service ID
across restarts of both the station and the lookup services.

90

Fedaated Manegamant Architedure Soedfication

Internationalization and Localization

61 Overview

Internationalization is the steps taken to make a program easier to localize. Localization
is the process of having a program work in terms of the conventions appropriate to a
particular locale. One of these conventions is the language appropriate for the locale. In
fact, alocalized program needs to have changes other than just language: often there must
be changes in the recognition of time zone, the formatting of dates, currency, and other
similar trandations.

I nternationali zation must be done in a consistent manner throughout a system. To
encourage the use of a single standard of internationalization, amethod for
internationalization and a class for localization are included as part of this specification.
The defined method is an extension to the internationali zation support provided by the
JDK and usesthej ava. util . Local e,j ava. util.Properties,
java.util.ResourceBundl e, andj ava. t ext. MessageFor mat JDK classes, with
which the reader should be familiar.

Internationalization is performed by always referring to user viewable messages
indirectly through resource bundles. Each class can have one or more associated resource
bundles containing lists of key-message pairs, both of which are strings. Thekey isa
simple string and the message is a string suitable for constructing a

j ava. t ext . MessageFor mat object. Thus, the message string can contain substitution
placeholders. A particular message is specified by providing:

1) acontext class (to be used to locate the resource bundle),
2) amessage key (to identify a single message within the resource bundle), and
3) apossibly empty list of objects for substitution into the message.

In adistributed environment, the context class and the classes of parameter objects must
be internally represented as a class name and code base pair, as is done with
java.rm . Marshal | edQbj ect, so that localization resources can be network |oaded
according to RMI network class |oading semantics.

The substitution objects can be strings or more complex objects, such asa
java. util . Dat e object. In thelatter case, the substitution operation, which is done

Fedaated Manegamant Architedure Soedfication Page 91

Internationalization and Localization

during localization, performs format conversion as defined by
j ava. t ext . MessageFor nat .

The localization process uses the context class, combined with a specified locale, to
|ocate the appropriate resource bundle. Once the bundleis|oaded, localization can select
the correct message using the message key. This messageis convertedinto a

j ava. t ext . MessageFor mat object that can provide the fully localized message given
thelist of substitution objects.

62 Internationalization

62.1 LocalizableMessage

L ocalizableM essage encapsul ates the concept of an internationalized message that can be
localized.

package javax.sxi.util;

import java.io.Serializable;
i mport java.util.Locale;

/**Encapsul ation of a |ocalizable nmessage. Localizable
* nmessages should be treated as i mmutable. To this
end, the constructor clones the substitution object
array. Callers should ensure that the individual
obj ects of the array are thenselves imutable. In
addition, it is recoomended that these objects be
of JDK cl asses, such as Nunber and String, which are
i mmut abl e. An exception is the use of java.util.Date,
which is nutable. Such objects should be cloned with
* the array containing the only reference to the cl one.
*/
public final class Localizabl eMessage

i mpl enents Serializable, O oneable

I I

92 Fedaated Manegamant Architedure Soedfication

Internationalization and Localization

/**Create a | ocalizable message object.

* @aram context The class used as a root in order
to load | ocalization resources. |f null, an
I'I'l egal Argunment Exception will be thrown.

@aram key The message key to | ocate an
i ndi vidual message in a properties file. If
null, an |l egal Argunent Exception will be
t hr own.

@ar am parans Paraneter (substitution) objects.
may be null. It is recommended that only
java.* class objects be used to avoid the
need to network | oad other classes in support
of the localization process.

@aram | ocal e The | ocale to be considered as the
originating locale. If null, the default
locale will be used. This locale is used to
create the fall back text for this message.

@eturn The newly created nessage object. The
fall back nessage will have already been
creat ed.

E R I S I R N S R

*

*/
public Local i zabl eMessage(
Cl ass cont ext,
String key,
Serializabl e[] parans,
Local e | ocal e

)

/**Cet the localized text for this message.
* |f the localization fails (for exanple if the

* resources needed to performlocalization are

* currently not avail able on the network) and

* useFall back is set to true, then

* the fall back text is returned. The fall back

* text was formed when the nmessage was created

* using the locale provided to the factory

* create nethod. If localization fails and

* useFall back is set to false, an

* LocalizationError is thrown.

* @aramlocale Locale to be used for |ocalization.
* @aram useFal | back if true, on a localization

* failure, use the fall back text. if false, on
* a localization failure throw an

* Local i zat i onExcepti on.

* @hrovlv? I'I'l egal Argunment Exception if locale is

* nul | .

* @throwabl e LocalizationError if |ocalization

* fails and useFal |l back is false.

*/ @eturn Localized text of the nessage.

*

public String getlLocalizedText (
Local e | ocal e,
bool ean useFal | back

)

Fedaated Manegamant Architedure Soedfication Page 93

Internationalization and Localization

/**Cet the localized text for this nessage using the
* default locale as returned by Local e.getDafult().

* |If the localization fails (for exanple if the

* resources needed to performlocalization are

* currently not avail able on the network) and

* useFall back is set to true, then

* the fall back text is returned. The fall back

* text was formed when the message was created

* using the locale provided to the factory

* create nethod. If l|ocalization fails and

* useFall back is set to fal se, an

* |11 egal Argunment Exception is thrown.

* @aramlocale Locale to be used for |ocalization.
* @aram useFal | back if true, on a localization

* failure, use the fall back text. if false, on
* a localization failure throw an

* Local i zat i onError.

* @hrows |11 egal Argunent Exception if locale is

*

. nul | .

*

@hrows LocalizationError if |ocalization
fails and useFal |l back is false.
@eturn Localized text of the nessage.

*

*/
public String getlLocalizedText(bool ean useFal | back);

94 Fedaated Manegamant Architedure Soedfication

Internationalization and Localization

/**Cet the locale used to create this nmessage. This
* will also be locale that was used to generate the
* fall back text.

* @eturn The | ocale used to create this message.
*/
public Local e get Fal | backLocal e();

/** Private | ocalization method. This nethod nust only
* be called by getLocalizedText(). This as an

i mpl enent ati on del egation nmethod. If the

|l ocalization fails, a LocalizationError is returned.

@aram context The class used as a root in order
to load | ocalization resources. Cuarunteed
to not be null.

@aram key The message key to | ocate an
i ndi vidual message in a properties file.
Guarunteed to not be null.

@ar am parans Paraneter (substitution) objects.
May be null, but guarunteed to not contain null
array entries.

@aram | ocal e Local e used to performlocalization.
Guarunteed to not be null.

@eturn Returns |ocalized text.

@hrows Throws LocalizationError if |ocalization
fails.

F % % X % X 3 X % X % X % X F

*

*/
private static String | ocal i ze(
Cl ass cont ext,
String key,
Serializabl e[] parans,
Local e | ocal e

public static final class LocalizationError
ext ends ConpositeError

A Local i zabl eMessage encapsulates a context class, message key, substitution objects
(possibly none), fall back locale, and afall back text. During the localization process,
described fully in section 63, a properties files containing the texts for a given locale must
be loaded. Resource loading is always relative to a given class: in this case the context
class. Thus, the context, locale, and key are used to load and select a singletext for the
message. Then the parameter objects, if any, are substituted into thetext to arrive at a
localized text for the message. Note that localization may invol ve the network loading of
property files and classes if they are not available locally.

62.2 Providing Resource Files

Theresources for a class of package a. b. ¢ arelocated in the package
a.b.c.resources. Asdescribed by j ava. uti | . Resour ceBundl e, the default
resource file will have a base name identical to the unqualified class name. Resource files
containing messages particular to alocale are named as specified by

java. util.ResourceBundl e. For example, the French resourcefile for the class A

Fedaated Manegamant Architedure Soedfication Page 95

Internationalization and Localization

wouldbe A fr.properties,if itisapropertiesfile, and stored in theresource
directory below A. cl ass. The JDK allows resources to be class files or property files. In
either case, theresult isakey-value pair in which, for the purposes of localization, both
the key (message key) and value (text) must be strings. For simplicity, the examples use
property files with the understanding that equivaent behavior can be had with class files.

63 Localization

Localization of a given message happens first when the message is created, to create the
fall back text, and subsequently whenever theget Local i zedText () isinvoked.

Finding Text

Given aLocal e and class A, aresource bundleislocated using the

java. util.ResourceBundl e class. The search for a particular property or classfile
defining the resource bundle for a given locale is described by the

java. util.ResourceBundl e documentation. If the resource bundleis found and
contains the desired message key, the resulting text is used for localization. If not, the
search continues up the inheritance tree using a breadth first search with preference given
to classes over interfaces at the same depth. No ordering is specified with respect to
interfaces at the same depth. The search will not include classes that arerooted at java
packages. If no message isfound using this search, the fall back text will be used.

Localization Implementation

Localizable messages must use the localization facilities of the local station as provided
by thej avax. sxi . util.Local i zabl eMessage. | ocal i ze() method. This method
delegates to an implementation as described in section 14.

64 Serialization of Messages

96

Messages must be serializable for the purposes of marshaling during remote operations
and for persistence of messages. The serialization shall follow RMI marshaling
semantics: classes shall be annotated with their code bases. An implementation of

Local i zabl eMessage might, for example, encapsul ate the context and substitution
parametersinaj ava. rmi . Mar shal | edCoj ect object. Deseriadization of the context
class and the substitution objects could involve network class loading of the annotated
classes: ahigh risk activity. Asthelocalizable message isintended to be ahighly reliable
class, it must obey the following rules with respect to serialization failures.

Failure to Serialize

If any portion of aLocal i zabl eMessage, except the fall back text, failsto seriaize
thenthelLocal i zabl eMessage must recover and gtill serialize at |east the fall back
text. Localization attempts on the resulting deserialized message shall return the fall back
text.

Fedaated Manegamant Architedure Soedfication

Internationalization and Localization

64.2 Failure to Serialize
If any portion of aLocal i zabl eMessage, except the fall back text, failsto seriaize
thenthelLocal i zabl eMessage must recover and gtill serialize at |east the fall back
text. Localization attempts on the resulting deserialized message shall return the fall back

text.

64.3 Low Risk Substitution Objects
To reduce network resource loading and, therefore, increase therdiability of localizing
messages, it is strongly encourage to use only substitution objects of classesin the java.
packages, such asj ava. | ang. Stri ng andj ava. uti |l . Date.

64.4 Messages as Public Interfaces
Messages issued by a service are part of the public interface of that service. As such, all
of the localization resources needed to |ocalize the messages must be include in the
dynamic ("-dI") JAR of the deployment group for the service.

Fedaated Manegamant Architedure Soedfication Page 97

Composite Exceptions and Errors

Much like internationalization, exception and error handling benefits from
standardization and so are included in this specification as strong recommendations for
dynamic service developers. In Java, error conditions are uniformly indicated by
throwing throwabl es, which includes exceptions and errors of various sorts. Checked
throwabl es are those that must be declared. Unchecked throwabl es are those that need not
be declared.

Two distinct problems are being addressed by the proposed throwable extensions: nested
throwables and internationalized throwables. At points of abstraction in an object
oriented design, often indicated by interfaces, one wishesto decouple the implementation
from the abstraction. Abstract throwables, particularly exceptions, must be defined in
addition to the interface in order to achieve sufficient decoupling. Indeed the JDK has
several examples of this pattern, including
java.lang.reflection.InvocationTarget Excepti on and

java. rmi . Renot eExcept i on. These abstract exceptions each have encapsulated target
exceptions. In this specification, the mechanism is unified by providing a standard
method of nesting one or more throwabl es within another throwable.

The messages of the JDK throwables are not internationalized and, therefore, not suitable
for user viewing. It is essentia that sophisticated users are able to view throwable
messages to diagnose the cause of the failure.

The base classes defined to handle these problems are

j avax. sxi . util. ConpositeExceptionandjavax.sxi.util.ConpositeError.
All throwables that could possibly be viewed by the user or considered abstract, in the
sense that they can be thrown in response to another exception, should speciaize either
javax.sxi.util.ConpositeExceptionorjavax.sxi.util.ConpositeError.

65 Nested Throwables

An abstract throwable is one that isthrown in response to another thrown throwable. For
example, consider avirtual volume component with amethod si zeVol une(| ong

si ze) to changethe size of avirtual volume. The operation could fail for any number
of reasons and many of those reasons would be specific to a particular implementation of
the component. Therefore, it would be appropriate to have the method throw an abstract
Resi zeFai | edExcepti on in responseto an error condition during the operation

Fedaated Manegamant Architedure Soedfication Page 99

Composite Exceptions and Errors

attempt. If theimplementation caught an | OExcept i on, for example, during the
execution of thesi zeVol ume() method, it should create aResi zeFai | edExcepti on
with thel OExcept i on asanested child exception. The method can throw the

Resi zeFai | edExcept i on without losing the information contained in the

| OExcept i on. Thisisthe basic nesting pattern.

The nesting of throwables is not necessarily linear. Particularly when alternate strategies
and retries are involved in attempting to complete an operation, there can be more than
one nested child throwable. Thus, aj avax. sxi . uti | . Conposi t eException or

j avax. sxi.util. ConpositeError canactualy represent atree of throwables
containing information pertinent to the failure of the attempted operation.

j avax. sxi . util. ConpositeExcepti on andjavax. sxi.util.ConpositeError
support multiple nested child throwables. One can navigate from the parent throwable to
child throwables, but not from child to parent. All throwables are considered immutable
objects; therefore, theligt of child throwables is established during the instantiation of the
parent and cannot be changed.

66 Internationalization and Localization of Throwables

Many exceptions are ultimately destined for informing the user, even if smply because
the application has no other idea what to do with them. Exceptions usually carry message
information for user viewing, whether in a graphica alert box or on the command line.

j avax. sxi . util. ConpositeExcepti on andjavax. sxi.util.ConpositeError
requireaj avax. sxi . util.Local i zabl eMessage object, or the arguments needed to
construct aLocal i zabl eMessage object, as arguments to all constructors. The
localizable message may also be retrieved using the get Message() method.

67 Stack Traces and Throwable Serialization

100

When athrowableis seridized, such aswhen thrown during aremote operation, the stack
traceislost, as stack information is considered transent by the JDK. This behavior
resultsin theloss of valuable diagnostic information. To compensate for this
shortcoming, j avax. sxi . util . Conposi t eExcepti on and

javax. sxi.util.ConmpositeError, whenfirst serialized, buildtext versions of
the stack traces associated with each nested throwable. Stack traceinformation is
maintained and can be retrieved. Because not al throwables subclass

javax.sxi.util. ConpositeExceptionorjavax.sxi.util.ConpositeError,
the root throwable must be responsible for the stack traces of all its descendents, not just
for itsimmediate children.

For remote method calls, the logical stack trace for an exception spans VMs. To assist in
exception diagnosis, Proxy implementations shall append stack trace information for the
local VM when an exception thrown by aremote method is being rethrown in the local
VM.

Fedaated Manegamant Architedure Soedfication

Composite Exceptions and Errors

68 Rules for Handling Throwables

1) Never discard onethrowable and throw another throwable. The original
throwabl e can contain valuabl e information needed to diagnose the problem.

2) Never concatenate messages as away of nesting throwables. This primitive
nesting is not consistent, cannot be reliably traversed, and cannot be localized.

3) Provide as much context information, in the form of localizable messages, as
reasonable. Throwing a file permission exception without including the file
name, for example, doeslittleto help the user diagnose the problem.

69 Composite Throwable Interface

CompositeException and CompositeError both implement the CompositeThrowable
interface. This interface provides operations for getting messages and nested exceptions.

package javax.sxi.util;

/**Common abstraction for ConpositeException and
* ConpositeError.

*/

public interface ConpositeThrowabl e

/**Returns a | ocalized description of this
* Conposi teThrowabl e using the default |ocale.
* @eturn Returns the |ocalized nessage.
*/

String get Local i zedMessage() ;

/**Returns a | ocalized description of this
* Conposi teThrowabl e using the given | ocal e.
* @aramlocale in which to performthe | ocalization.
* An 111 egal Argurment Exception is thrown if locale
* is null.
* @eturn Returns the |ocalized nessage.
* @hrows |11 egal Argunent Exception if locale is null.
*/

String get Local i zedMessage(Locale locale);

/**Returns the array of (causal) nested exceptions
* included in
* the ConpositeThrowabl e.
* @eturn the array containing the causal
* nested exceptions.
*/
Throwabl e[] get Nest edExceptions();

Fedaated Manegamant Architedure Soedfication Page 101

Composite Exceptions and Errors

70 Composite Exception Class

102

package javax.sxi.util;

/**C ass for conposite exceptions.

* This class exists to create a uni form method for

handl i ng of exceptions that are due to (rultiple)
causes, and to allow for the uniformlocalization of

t he messages associated with those exceptions.

<p>

Each conposite exception contains a Localizabl eMessage
obj ect which encapsul ates the | ocalizable exception
nmessage.

<p>

Addi tional |y, each conposite exception may contain
references to a nunber of "nested" Throwabl e’ s, which
are treated as being the cause of this exception. To
correctly use this, the causing Throwable's shoul d be
caught (based on tries and retries) and accunul at ed,
and then included as nested exceptions in a new
excepti on extended ConpositeException.

I T R

*/
public class ConpositeExcepti on extends
Exception inplements ConpositeThrowabl e

/**Construct ConpositeException with provi ded nessage
* and nested exception.
* @aram nessage Informative failure nmessage.
* @ar am nest edExcepti ons Throwabl es which are a

* cause of this exception. May be null. Null
* entries in the array are ignored.
*/

public Conposi t eExcept i on(
Local i zabl eMessage nessage,
Throwabl e[] nestedExcepti ons

)

/**Construct ConpositeException using using its own

* class for the Localizabl eMessage context.

* @aramkey ldentifies nessage within the resource

* bundl e.

* @aram parans Localization substitution paraneters.

* @ar am nest edExcepti ons Throwabl es which are a

* cause of this exception. May be null. Null

* entries in the array are ignored.

* @hrows |11 egal Argument Exception if nessageKey is
null or if nessageParans array contains nulls.

*

*/

public Conposi t eExcept i on(
String nmessagekey,
Serializabl e[] nmessagePar ans,
Thr owabl e[] nestedExcepti ons

)

/**Returns a | ocalized description of this

* Conposi teException using the default |ocale.
* @eturn Returns the |ocalized nessage.

*/

public String get Local i zedMessage() ;

Fedaated Manegamant Architedure Soedfication

Composite Exceptions and Errors

/**Returns a |ocalized description of this
* Conposi teException, using the given | ocal e.

* @aramlocale in which to performthe | ocalization.
* An 111 egal Argurment Exception is thrown if locale
* is null.

* @eturn Returns the |ocalized nessage.

* @hrows |11 egal Argunent Exception if locale is null.
public String get Local i zedMessage(

Local e | ocal e

/**Returns the array of (causal) nested exceptions
* included in the ConpositeException.

* @eturn the array containing the causal

* nested exceptions.

*/

public Throwabl e[] get NestedExceptions();

71 Composite Error Class

package javax.sxi.util;

/**C ass for conposite errors.
* This class exists to create a uni form net hod for

handl i ng of exceptions that are due to (rultiple)
causes, and to allow for the uniformlocalization of
t he messages associated with those exceptions.

<p>

Each conposite error contains a Localizabl eMessage
obj ect which encapsul ates the | ocalizable exception
nessage.

<p>

Addi tional ly, each conposite error may contain
references to a nunber of "nested" Throwabl e’ s, which
are treated as being the cause of this error. To
correctly use this, the causing Throwable's shoul d be
caught (based on tries and retries) and accunul at ed,
and then included as nested exceptions in a new
excepti on ext ended ConpositeError.

E I S A

*

*/
public class ConpositeError extends Error
i mpl enents Conposit eThr owabl e

/**Construct ConpositeError with provided nessage
* and nested exception.

* @aram nessage I nformative failure nmessage.

* @ar am nest edExcepti ons Throwabl es which are a
* cause of this exception. May be null. Null
* entries in the array are ignored.

*

public Conposi t eError (
Local i zabl eMessage nessage,
Throwabl e[] nestedExcepti ons

)

Fedaated Manegamant Architedure Soedfication Page 103

Composite Exceptions and Errors

/**Construct ConpositeError using using its own class
* for the Localizabl eMessage context.
* @aramkey ldentifies nessage within the resource

* bundl e.

* @aram parans Localization substitution paraneters.
* @ar am nest edExcepti ons Throwabl es which are a

* cause of this exception. May be null. Null

* entries in the array are ignored.

* @hrows |1 egal Argument Exception if nessageKey is
*/ null or if nessageParans array contains nulls.
*

public Conposi t eError (
String nmessagekey,
Serializabl e[] nmessagePar ans,
Throwabl e[] nestedExcepti ons

)

/**Returns a |ocalized description of this
* ConpositeError using the default |ocale.
* @eturn Returns the |ocalized nessage.
*/
public String get Local i zedMessage() ;

/**Returns a |ocalized description of this
* ConpositeError using the given |ocale.

* @aramlocale in which to performthe | ocalization.

* An 111 egal Argurment Exception is thrown if locale

* is null.

* @eturn Returns the |ocalized nessage.

* @hrows |11 egal Argunent Exception if locale is null.
*/

public String get Local i zedMessage(Locale locale);

/**Returns the array of (causal) nested exceptions
* included in the ConpositeError.

* @eturn the array containing the causal

* nested exceptions.

*/

public Throwabl e[] get NestedExceptions();

72 Exception Debugging

104

To facilitate the debugging of exceptions, this specification defines an abstract static
method, j avax.sxi.util.Debug. debugExcepti on(), which can be called when
an exception is caught. The specific behavior of this method isleft up to the
implementation provider, but the method should usually store the exception somewhere
external to the VM such that it can be retrieved and analyzed by a devel oper at alater
occasion. Debug. debugExcept i on() must never throw athrowable under any
condition, return reasonably quickly, and not in any way impair the further functioning of
a station.

The information passed to debugExcept i on() isintended for debugging use only.

For example, an implementation of Debug. debugExcept i on() might seriaize
exceptions and stack trace information into afile for later retrieval and viewing by a
developer.

Fedaated Manegamant Architedure Soedfication

Composite Exceptions and Errors

package javax.sxi.util;
public final class Debug
/**Does something to facilitate debuggi ng of an

* exception.
* @aramclue String giving a clue as to what

* happened.

* @ar am excepti on Exception that happened.
*/

public static void debugExcept i on(

String clue,
Thr owabl e exception

Fedaated Manegamant Architedure Soedfication Page 105

Section 3: Static (Base) Services

Base services are a guaranteed part of the environment in a management domain. The
base services include transaction, contraller, logging, events, and scheduling. They are
available for use by the clients and services bel onging to a management domain and do
not depend on the dynamic services model. In other words, the services are standalone
and good Jini technology citizens in their own right. There must only be one of each type
of service available in each management domain. If a given service featuresreplication
for the purposes of high availahility, thereplication isnot visible to the service client and
the service appearslogically as a single service. In particular, the serviceregisters a
single service proxy in the lookup services for the domain.

Services must be registered with a populated Ser vi cel nf o entry. Services must register
their proxies with all lookup services that belong to #reahagenent domai n

name>" group. To do so, services must continually listen for the arrival of lookup
services belonging to the management domain. Within a lookup service, the individual
service types are distinguished by interface.

Fedaated Manegamant Architedure Soedfication Page 107

Static Services Model

Whileit is permissible to directly contact alookup service and retrieve a proxy for a
particular management service, stations are required to provide local convenience access
to the base services using the abstract classj avax. sxi . ser vi ces. Ser vi ceFi nder,
asfollows.

*

E I .

*

*/
public final abstract class ServiceFi nder

package j avax. sxi.server;

i mport javax.sxi.util.ConpositeException

i mport javax.sxi.services.controller.Controll erService;
i mport | avax. sxi.services.|og.LogService

i mport | avax. sxi.services. event. Event Servi ce

i mport javax. sxi.services. schedul i ng. Schedul i ngService
import net.jini.core.transaction.server.*;

/**Conveni ence access to static (base) services.

| npl erent ati ons may cache service proxies that
have been retrieved. |nplenentati ons may al so
place limts on how long they will wait for

a | ookup service to respond before failing

Before providing a service proxy, the inplenentation
nmust verify that the service is reachable using
the proxy. If not and the proxy was froma cache
the cache nmust be invalidated and the service
proxy refetched froma | ookup service. |If not and
the service was not cached, the nethod nust throw
a Servi ceNot FoundExcepti on

public static Transacti onManager
get Tr ansact i onSer vi ce()
t hrows Servi ceNot FoundExcepti on

public static ControllerService
get Control | er Service()
t hrows Servi ceNot FoundExcepti on

Fedaated Manegamant Architedure Soedfication Page 109

Static Services Model

public static LogService
get LogSer vi ce()
t hrows Servi ceNot FoundExcepti on;

public static EventService
get Event Ser vi ce()
t hrows Servi ceNot FoundExcepti on;

public static Schedul i ngService
get Schedul i ngServi ce()
t hrows Servi ceNot FoundExcepti on;

public static Transacti onManager
get Transacti onServi ce(String donmain)
t hrows Servi ceNot FoundExcepti on;

public static ControllerService
getControl |l erService(String donmain)
t hrows Servi ceNot FoundExcepti on;

public static LogService
get LogServi ce(String domain)
t hrows Servi ceNot FoundExcepti on;

public static EventService
get Event Servi ce(String domain)
t hrows Servi ceNot FoundExcepti on;

public static Schedul i ngService
get Schedul i ngService(String domain)
t hrows Servi ceNot FoundExcepti on;

public static final class ServiceNot FoundException
ext ends ConpositeException

Ser vi ceFi nder isan interface class that uses implementation del egation; however, only

the methods taking a management domain name are del egated directly to the

implementation. The methods that do not take a management domain name are del egated

to the previous methods while using thevax. sxi . domai n” system property to

supply the management domain domain. This property is dynamic and must be refetched
each time get <nane>Ser vi ce() method is called.

110 Fedaated Manegamant Architedure Soedfication

Transaction Service

The wdl-known transaction service is a Jini technology transaction manager serving a
particular management domain.

73 No Transaction Service

If no transaction service is present, transaction activity cannot be initiated, but previousy
completed transactions are not affected. Sources of activity, principaly clients, the event
service, and the scheduler service, will need to wait until atransaction service is available
before initiating activity. Failureto do so resultsin thrown exceptions when an attempt is
made to create anew transaction, directly or indirectly.

74 Failed Transaction Service

Transactions are not considered long-lived and will be lost if the transaction service fails
whileatransaction isin progress. A transaction in progress when the transaction manager
failswill generally fail when the transaction initiator aborts or commits the transaction.
Asthe transaction initiator does not have knowledge of all the transaction participants,
participants should consider verifying that the transaction in which they are participating
isstill valid if areasonable length of time, such as five minutes, has passed without a
commit or abort. If the transaction isno longer valid, participants should behave as if the
transaction had been aborted. Asany exceptions encountered during the abort will not be
thrown to the transaction initiator, as would normally be the case, the exceptions should
usually be logged and possibly result in a notification event.

75 Recovered Transaction Service

A transaction manager is not required to recover any state, other than its service ID, when
restarted after failure asall transactionsin progress are assumed to have been lost.

Fedaated Manegamant Architedure Soedfication Page 111

Controller Service

The controller serviceisresponsible for issuing controllersto both clients and stations
acting on behalf of controller objects. It maintains a centralized view of all the contrallers
in the system; however, thisview is considered dave, not master, state. The master state
is maintained internally by the clients and stations. Leases are in place such that when is
lease failsto renew, it isan indication that state synchronization may have been lost and
the state of the controller service should be rebuilt. The state rebuilding is done by
stationsinforming the controller service about the controllers for which the station is
responsible. Client controllers may be lost when the controller service fails or becomes
unreachable. Thus, clients may have to restarted if the controller servicefails.

Objects never need to contact the controller service or invoke methods on a controller or
lock object directly. These duties are handle by the station on behalf of controller objects.
Controller objects may cancel locks held by a controller by calling

j avax. sxi . conmon. Cont ext . rel easeLocks().

76 Controller and Controller Generations

In the course of remotely invoking methods synchronized with respect to contrallers,
object level locks may be acquire and assigned to the calling controller based on the
semantics of the controller aspect. These locks belong forever to a specific controller and
generation. A single controller can undergo a change in generation after which it isthe
same controller, but of a different generation. To effectively release locks held by a
contraller (Control | er. rel easeLocks()), thegeneration is changed, a matter of
internal bookkeeping. Asthe previous generation of controller no longer exists,
previoudly issued lock become irrelevant, effectively releasing them to be acquired by
another controller.

77 Controller Service Interface

Fedaated Manegamant Architedure Soedfication Page 113

Lookup Service

package javax.sxi.services.controller;

import java.io.Serializable;

i mport java.rm . Marshal |l edCbj ect;

i mport java.rm . Renot eExcepti on;

i mport javax.sxi.util.ConpositeException;
i mport net.jini.core.Lease;

i mport net.jini.core.lookup. Servicel D,

/**Interface to the controller service. Only station
* inplementations and clients should contact the
* controller service directly. Even then, clients
* should only invoke the newClientController()
* operation.

public interface ControllerService

Qperations for clients. These are the only
operations that may be invoked by a client.

~———
~—— —

~

E I

*Create a new controller that will live in a
client. The duration of the returned Lease,
enbedded in the returned dientController, shall
be between 1 mnute and 5 mnutes. Lease
termnation will release all |ocks belonging to
the client controller.

@eturn ClientController containingg a controller
and a lease of 1 to 5 mnute duration to be
be maintained by the station. Cancellation or
expiration of the | ease may result in the
control l er service releasing the resources,

i ncluding controller |ocks, assigned to this
client

@ hrows Renot eException Error communicating with
the controller service.

/

ClientController newdientController(
| ong | easeDuration

t hr ows Renot eExcepti on;

Operations for stations. These are the only
operations that may be invoked by a station.

~———
~—— —

114 Fedaated Manegamant Architedure Soedfication

Controller Service

/**Synchroni ze a station's state (list of controllers)
* with the controller service. The station state is
consi dered the master and overrides any state the
service has for that particular station. Stations
are uniquely identified by their service |Ds,

whi ch are issued when the station registers with a

| ookup service. Stations MJIST call this method

before any controllers are created in the station
even if the station does not currently have any
control lers. Regardless of the requested | ease
duration, the returned | ease shall have a duration
between 5 minutes and 30 minutes. Shorter |ease
durations nmean | ocks are rel eased sooner when the

control l er holding the | ocks becones unreachabl e.

The controller service will need to block certain

operations while synchronizing to ensure proper

state mrroring.

@aramcontrollers list of controllers issued to
the station. Must not be null or contain null
entries.

@Jarbam stI ?t ionlD Station identifier. Mist not

e null.

@aram | easeDuration A suggested | ease durati on.

@eturn Alease of 5 to 30 mnute duration to be
be maintained by the station. Cancellation or
expiration of the |ease may result in the
control l er service the rel easing resources,

i ncluding controller |ocks, assigned to the
controllers of this station.

@hrows |11 egal Argunent Exception If controllers
is null or contains a null elenment, or if
if stationlDis null.

@ hrows Renot eException Unable to conmunicate with
the controller service.

E I I S T I R N S I I I

*

*/
Lease synchroni zeWthSt ati on(
Control ler[] controllers,
Servi cel D stationl D,
| ong | easeDuration
t hr ows Renot eExcepti on;
/**Create a new controller that will live in the

* station identified by the provided service ID.
@aram servicel D Station identifier of the station
reguesting a new controller. Mist not be null.
@ hrows UnknownSt ati onException The service ID
is not known by the service.
@hrows |11 egal Argment Exception stationlD was nul |.
@ hrows Renot eException Unable to conmunicate with
} the controller service.

Controller newControl |l er(ServicelD stationlD)
t hr ows Renot eExcepti on,
UnknownSt at i onExcepti on;

E I N

Fedaated Manegamant Architedure Soedfication Page 115

Lookup Service

116

Cal | back operations for controllers and

ocks. Only controllers and | ocks are all owed

o invoke these cal | back nmethods and then only on
he controller service that issued the controller
r

|
t
t
or |ock.

~— e~~~
~— o~~~

/**Del ete an existing controller.
* @aram handBack Handback enbedded in a controller

* i ssued by this service.
* @hrows UnknownControl | er Exception the hand back
* does not correspond to controller known by this
* servi ce.
* @hrows Renot eException Unable to comunicate with
* the controller service.
*/
voi d del eteControl | er(
Mar shal | edObj ect handBack
t hr ows Renot eExcepti on,

UnknownCont rol | er Except i on;

/**Rel ease the locks held by this controller. This
* net hod changes the generation of this controller.

Locks hel d by the previous generation are no

| onger valid. This nethod returns a new hand back

representing the new generation of the controller.

@ar am handBack Handback enbedded in a controller
i ssued by this service.

@eturn New handBack object for the controller.

@ hrows UnknownControl | er Exception the hand back
does not correspond to controller known by this
servi ce.

@ hrows Renot eException Unable to conmunicate with
the controller service.

L B T R

*

*/
Mar shal | edCbj ect rel easeLocks(
Mar shal | edbj ect handBack

t hr ows Renot eExcepti on,
UnknownCont rol | er Excepti on;

/**Returns true if the lock IDis still relevant,
* false otherwise. A lock ID becones irrel evant

* if the issuing controller was cancell ed
* or if the issuing controller released
* its | ocks.
* @aram handBack The owner field of the |ock
* bei ng verified.
* @hrows Renot eException Unable to comunicate with
*/ the controller service.
*
bool ean i sRel evant (

Mar shal | edoj ect handBack

t hr ows Renot eExcepti on,
UnknownCont rol | er Excepti on;

Fedaated Manegamant Architedure Soedfication

Controller Service

/**Interface representing objects returned froma
* controller registration.

*/

public final static class ClientController

/**Should only be called by the controller

* service.

* @hrows |11 egal Argunent Exception |If either
* argunent is null.

*/

public ClientController(
Controller controller,
Lease | ease

/**Return the | ease that a client nust

* maintain to sustain the controller |ocks
* held by the client.

*/

Lease get Lease();

/**Return the controller itself.
*/

Controller getController();
H

public final static class UnknownControll er Exception
ext ends ConpositeException

{

}

public final static class UnknownSt ati onExcepti on
ext ends ConpositeException

78 Controller Interface

Fedaated Manegamant Architedure Soedfication Page 117

Lookup Service

118

package javax.sxi.services.controller;

import java.io.Serializable;
i mport java.rm . Marshal |l edCbj ect;
i mport java.rm . Renot eExcepti on;

/**Interface representing objects returned froma
* controller registration.

*/

public final static class Controller

/**(Opaque closure object that uniquely
* jidentifies the controller/generation
* pair to the controller service.

*/

private Marshal | edObj ect handBack;

/**Renote reference back to the controller service.
*/
final ControllerService service;

/**Called only by a controller service.

* @aramservice A renote reference (RM Stub,
proxy, ...) back to the controller service
Issuing this controller. service nust be
useabl e across restarts of the controller
service and novenent of the service fromone
host to another.

@ar am handBack Cl osure object that uniquely
identifies this controller inits first
generation.

I

*

*/
public Control ler(
Control | er Servi ce service,
Mar shal | edoj ect handBack

)

/**Return a proxy to the controller service that

* owns this controller.

*/

public ControllerService get Control | er Service();

/**Cancel a controller as irrelevant. The
* controller will no |onger issue |ocks

* and all |ocks issued by the controller
* becomne rel eased.

*/

public void del et e()

t hr ows Renot eExcepti on;

/**Invalidate all previously issued | ocks.
* This effectively releases |ocks held by this
* controller by increnmenting the generation of
* the controller.
*/
public void rel easelLocks()
t hr ows Renot eExcepti on;

Fedaated Manegamant Architedure Soedfication

Controller Service

/**1ssue a new | ock
*/
public Lock newLock() ;

/**Abstract type representing a | ock. Locks
* may be conpared for equality or used as keys
* in hash tables and the |ike.
*/
public final static class Lock extends Serializable

final Marshal | edObj ect owner;
final ControllerService service

/**COnly called by Controller
*/

Lock(
Mar shal | edCbj ect owner,
Control |l erService service

)

/**Return true if this lock was issued by the
* given controller/generation. This is true
* i ff the owner field of this lock is equa
* to the handBack field of the controller

*/
public bool ean i sOnner (
Controller controller
/**Returns true if the lock is still valid. If

* a renote exception is thrown, it is unknown

* whether the lock is valid or not. On a renpote

* exception, the lock should usually be considered
* relevant if it was ever known to have been

* rel evant.

* @hrows Renot eExcepti on Communi cation error

*/ with the controller service

*

public bool ean i sRel evant ()

t hr ows Renot eExcepti on;

79 No Controller Service

If no controller serviceis present, any attempt to initiate an operation on a component
method synchronized with respect to the controller aspect will fail with an exception.
Attempting to start, or restart, a station may fail or block depending on the
implementation of the station, until the controller service for the management domain is
again operational.

80 Failed Controller Service

Unliketransactions, controllers are considered long-lived and are bound to the service
with which they areregistered. Thefailure of a particular controller service affects those

Fedaated Manegamant Architedure Soedfication Page 119

Lookup Service

componentsthat are locked, for the purposes of controller concurrency contral, by a
contraller registered with the failed service. Operations on these components will not be
able to proceed until the failed controller service has recovered.

81 Controller Service Recovery

A controller need only persist its servicel D. Additional persistence capabilities are
considered optimizations to reduce the network flooding while stations resynchronize
with arestarted controller service. In order to station sufficient time to resynchronize, a
restarted controller service should not respond to any requests other than
resynchronization for a period of time greater than the longest issued |ease duration.

82 Breaking Controller Service Locks

120

There may be conditions under which it becomes necessary to break controller service
locks and controller service implementations may provide administrative interfaces to do
so; however, this specification does not standardize administrative interfaces of any kind.

Fedaated Manegamant Architedure Soedfication

Log Service

Whether or not an object is acting autonomously (on its own accord or thread), it may
wish to log certain decisionsthat have been made, operations that have been requested, or
any other information deemed interesting by the object. Log messages can be very
important for auditing, and certain guarantees must be given that alog messageis posted
and will not be lost. It isaso important that the information contained in alog messageis
internationalized so that the message can be viewed by any particular locale.

It isimportant to note that the log service proxy performs some important client side
processing of arguments. Specifically, the log service proxy decorates log messages with
atimes stamp, and other information, before passing the information to the remote log
service. Communication between the log service proxy and thelog serviceis private to
the implementation.

83 Log Service Interfaces

83.1 Log Messages

Log messages contain alocalizable message, a category, and possibly a throwable, if the
log message isin response to an error condition manifest as athrowable. The category is
adot (".") delimited string that must begin with one of the major categories enumerated
in the LogM essage class.

Fedaated Manegamant Architedure Soedfication Page 121

Log Service

122

package javax.sxi.services.|og;

i mport javax.sxi.util.Localizabl eMessage;
i mport java.io.Serializable;

/**A | og message. Log nessages are i mutabl e. Thus,

* nutabl e obj ects, such as Date objects, are cloned

* at the LogMessage interface to preserve immutability
* of the LogMessage. Throwabl e are not cloned under

*/ the assunption that all throwables are inmutable.

*

public final class LogMessage inplenents Serializable

/lconstants for nmjor categories

static public final String AUDIT = "audit";
static public final String DEBUG = "debug";
static public final String WARNING = "warning";
static public final String |INFO = "info";
static public final String ERROR = "error";
static public final String TRACE = "trace";
/**Construct a | og message object. The constructor
* adds the time stanp.

* @hrows |11 egal Argunment Exception |f nmessage or
* category is null.

*/

publ i c LogMessage(
Local i zabl eMessage nessage,
String category,
Thr owabl e excepti onChj ect

)

/**Returns the localizable nmessage for this
* | og nmessage.

*/

Local i zabl eMessage get Message();

/**Returns category of |og nessage, a dot delimted
* string beginning with one of the major

* categories.

*/

String get Cat egory();

/**Return the throwabl e object, if one exists
*/

Thr owabl e get Throwabl e();

Fedaated Manegamant Architedure Soedfication

Log Service

/**Return posting date and tine in UTC
*/
Dat e get Ti meSt anmp() ;

/**Special exception indicating that the throwable
* failed to serialize when this | og nessage was
* posted.
*/
public static final class
Serial i zati onFai |l ureExcepti on extends Excepti on

83.2 The Log Service Interface

Log service implementations must implement the
j avax. sxi . servi ces. | og. LogSer vi ce interface. Theinterface includes one method

for posting log messages and another for retrieving |og messages based on search criteria.

package javax.sxi.services.|og;
i mport java.rm . Renot eExcepti on;
public interface LogService

/**Log a message. This nmethod shall not, under

* any condition, throw an t hrowable. The |og

* service proxy is responsible for dealing with
* all error conditions.

*/

voi d | og(LogMessage nessage);

/**Perform an synchronous search for |og records
* matching the provided criteria, which nust not be

* null. The search can be cancelled by canceling or
* not maintaining the Search | ease.

* @aram predi cate Predicate to determne interesting
* | og nmessages to be matched.

* @aram bat chSi ze target size of a batch of

* del ivered

* | og nmessages to the iterator.

* @aram | easeVal ue |l eas duration in mlliseconds.
*l@et urn Search used to enunerate the result set.
*

Search sear ch(

Predi cate predicate,
i nt batchSi ze,
| ong | easeVal ue

t hr ows Renot eExcepti on;

Fedaated Manegamant Architedure Soedfication Page 123

Log Service

83.3 Retrieving Log Messages

83.3.1 Predicates
Log messages are logically retrieved, for enumeration or removal, by invoking the
LogServi ce. sear ch() method. The most significant argument isthe predicate object.
The predicate, which is passed to thelog service by value, selects which log messages are
returned as part of the search.

package javax.sxi.services.|og
import java.io.Serializable

/**Unary predicate used to select |og nessages during
* a query operation.
*/

public interface Predicate extends Serializable

/**Execute the predicate. |ff true, the | og nessage
* is selected for the search
* @aram nessage Log nessage to evaluate. May not
* be nulI.
*/

bool ean execute(LogMessage nessage);

Since the predicate object is passed by value, the log service will need to network load
the class of the predicate object according to RMI semantics. Some clients may not be
able to provide a predicate class through a class server to support such an operation.
These clients, and others, can usethe well known

javax. sxi.util.LogSearchCriteri a classto create predicate objects that support a
fixed selection criteria. Becausethe LogSear chCri t eri a issupplied as part of the
infragtructure, it does not need to be loaded over the network.

124 Fedaated Manegamant Architedure Soedfication

Log Service

package javax.sxi.services.|og;
i mport javax. sxi.services.!| og.LogService;

/**Conveni ence | og searching predicate that searches
* based on posting date, category, and nessage.
*/
public final class LogSearchCriteria
i mpl enents Predicate

/**Construct a search criteria object.
* Dates are conpared directly with the posting Date
of the | og nmessages without |ocalizing.
@ar am begi nDat e Begi hni ng date, inclusive, or no
begi nning date, if null.
@ar am endDat e Endi ng date, inclusive, or no ending
date, if null.
@aram category Dot-delimted category (i.e.,
"“error.severe.disk_failure"). Mst significant
word nust be one of predefined constants
i n LogMessage.
@ar am searchLocal e Local e i n which nessage are
| ocal i zed before conparison to nessagePattern.
A nul |l value indicates conparison between the
messagePattern and each log message’s
* fall backMessage.
* This approach is faster, but the messagePattern
must be supplied in the posting locale of the
;nessages or it must be in a locale independent
orm.
@param messagePattern Localized pattern to search
for. For example, "disk" would match any log
message whose localized message contains "disk".

I R N

\3(-3(-3(-3(-3(-3(-3(-

public LogSearchCriteria(
Date beginDate,
Date endDate,
String category,
Locale searchLocale,
String messagePattern

83.3.2 Searches

A search operation on alog service return ajavax.sxi.services.log.Search

object, which isakind of iterator. The log service must maintain the results of a
particular search, which consumes significant resources. These resources arereserved by
the search using the lease returned as part of the search result. If thisleaseis cancelled or
expires, thelog service may discard resources associated with search and any further
attempts to access the Search object may throw athrowable.

Fedaated Manegamant Architedure Soedfication Page 125

Log Service

package javax.sxi.services.|og;

i mport java.rm . Renot eExcepti on;
import java.util.lterator,
inport net.jini.core.lease. Lease;

/**Specialized | eased that al so supports polling to

* retrieve | og nmessages and renove them Search does
* not support the Iterator.renmove() operation.

*/

public interface Search extends |terator

/**Return the | ease used to nmamintain the
* resources associated with this search.
*/

Lease get Lease();

/**Returns an array (batch) of messages. The target
* size of the batch was specified when initiated
t he search.
@eturn Array of | og nessages (LogMessage[])
@ hr ows NoSuchEl ement Excepti on no nore
nmessages availabl e that match the search
predi cate or a renote exception during
comuni cation with the | og service.

E I I I I

*/
oj ect next ();

/**Strongly typed version of next().
*/

LogMessage|] +next MessageBat ch()
t hr ows Renot eExcepti on;

/**Renmove all nessages matching this search. If the
* search has been enunerated, fully or partially,
* it is guaranteed that only the nessages t hat
* were enunmerated will be renpved.

*/
voi d removeAl | ()
t hr ows Renot eExcepti on;

83.4 Removing Log Messages

Log messages can beremoved by invoking ther enoveAl | () operation on avalid
Sear ch object. If next () or next MessageBat ch() hasnever been called on the
Sear ch object, al log messages matching the search criteria, at some point in time after
the search was initiated, shall be removed. Otherwise, only the specific messages which
have been enumerated shall be removed.

126 Fedaated Manegamant Architedure Soedfication

Log Service

84 Posting Failure Scenarios

84.1 Posting Reliability

The LogSer vi ce. post () method must not, under any circumstances, throw an
exception to the posting client. The log service proxy must handle any failure conditions
to the best of its ability. In some failure scenarios, this may imply that log messages are
not posted.

84.2 Log Service Unavailable

If thelog service is unavailable at the time of posting, thelog service proxy may drop the
log message. More capablelog services may provide proxies that queue postings until
such time asthe log service again becomes reachable; however, thisisnot required. Log
service unavailability means that the proxy was unable to post the log message to the log
service for areason other than amarshaling failure.

84.3 Marshaling Failure

A log message consigts of alocalizable message, optiona throwable, category (String),
and time stamp (Date). The localizable message, category, and time stamp are guaranteed
to always seridize. Thus, if one can guarantee that the throwable, if present, will
seriaize, one can guarantee that the log message as awhole will serialize, avoiding
marshaling errors when posting. To thisend, the LogMessage seriaization method must
recover from a serialization error of the throwable object by replacing it with a
LogMessage. Seri al i zati onFai | ur eExcepti on.

84.4 Log Service Failure While Writing

If thelog service terminates while in the process of writing alog message to its persistent
store (file, database, ...), it shall not corrupt any log messages dready written nor the
durable log as awhole. Only the log message being posted at the time of the termination
isalowed to be lost.

Fedaated Manegamant Architedure Soedfication Page 127

Event Service

85 Use of the

An event serviceisacoallection of topicsto which event sources may post events and
from which event subscribers may receive events. Each topic accepts events from event
sources and forward them to event subscribers that have indicated an interest in the topic
by subscribing to the topic. Each management domain has a single (possibly replicated)
centralized event service for the domain. This well-known event serviceisregistered with
the lookup services for aparticular management domain and implements the

j avax. sxi . servi ces. event. Event Ser vi ce interface.

The topics of the event service are organized into a hierarchy such that each topic hasa
single parent topic and all topics ultimately descend from the root topic of the service.
Each topic has an associated unordered list of observing listenersthat have subscribed to
the topic.

Each topic, in addition to its unordered event subscribers, may have an optional chain of
responsibility. The chain of responsibility (Chain of Responsibility pattern) supportsan
ordered list of subscribers to support cases in which at most one subscriber should
respond to a particular event.

Jini Technology Event Mechanism

Events are based on the Jini event specification, which provides the basic mechanismsfor
distributed event systems of many types. This specification specializes Jini eventsfor the
specific purpose of supporting atransent publish/subscribe event service. By adhering to
the Jini specification, genera purpose adapters, such as mailboxes and store/forward
delegates, that are devel oped for Jini technology can be used with the event service
specified herein.

Eventsall haveaevent ID of j avax. sxi . servi ces. event. Event. | D. Theevents
are further discriminated by the topic (*." delimited strings), available as a topic property,
to which the event was posted.

Event services must provide the minimal Jini specification guarantees with respect to

event sequence numbers. Details are available in the Jini event specification. In summary,
each event posted to the event service must be assigned a unique and increasing sequence
number. The conditions under which this guarantee holds, such as a minimum reboot

time, are implementation dependent.

Fedaated Manegamant Architedure Soedfication Page 129

Event Service

86 The Event Object

86.1 Inherited Event Properties

The event object inheritsthe following event object properties from
net.jini.core.event.Renot eEvent.

86.1.1 EventID
Theevent ID isalways set toj avax. sxi . servi ces. event. Event. | D.

86.1.2 Handback

The handback isa closure object that isprovided by a listener and passed back to the
listener as part of the event object delivered to that particular listener.

86.1.3 Sequence Number

A number such that each posted event is assigned a unique number that increases
monotonicaly in the order that events are posted to the event service in accordance with
the Jini event specification. The sequence number are only guaranteed to be increasing,
not necessarily increasing by increments of one.

86.1.4 Source

The event sourceisof typej ava. | ang.(bj ect . Topicsto which an event is posted may
further constrain the type of the source property as part of the contract between event
sources and listeners coupled through the topic. For example, the topic x.y.z may imply
that the source is of type Proxy. Verification that the event source is of an acceptable type
isnot performed by the event service. In the presence of poorly behaved event sources,
listeners may receive events with invalid event sources. Note also that if atopic x.y.z
specifies a source type of T, then all specialized topics of x.y.z (such asx.y.z.1) must
specify a source Ts such that Ts specializes (implements or extends, directly or

indirectly) T.

86.2 Declared Event Properties
In addition to the inherited properties, events add the following declared properties.

86.2.1 Topic
The topic property is a ‘." delimitest r i ng specifying the topic to which the event was
posted. Note that this is not necessarily the topic from which the event was delivered to a
given listener. Thus, a listener registered for topic x may receive events with topics such
as x.y, x.y.z, and the like.

130 Fedaated Manegamant Architedure Soedfication

Event Service

86.2.2 Base Event Object

An event object classisany class that, directly or indirectly, extends
j avax. sxi . event s. Event. Event classes must be immutable, safely seriaizable, and

conform to JavaBeans coding conventionsin terms of exposing properties as standard
getter methods.

package javax.sxi.services. event;

i mport net.jini.core.event.RenoteEvent
i mport java.rm . Marshal | edCbj ect;

/** Abstract event class. Subcl asses nust override

* to add a type safe constructor for the events source.

Each event class inplies a type for the source:

* Proxy, String, URL, ... Al subclass nust al so ensure that
*/ clone(...) operates correctly.

*
public abstract class Event extends RenoteEvent

*

public static final |ong
ID = -2479143000061671589L;

/**Topic to which this event was posted.

* This may not be the topic fromwhich the event
* is delivered.

*/

private final String t opi c;

/**Create an event object w th popul ated source
* and topic fields. The sequence nunber is

* undefined and the event IDw Il be set to

* Event.ID.

*/

protected Event((bject source, String topic);

/**Topic to which this event was posted.

* This may not be the topic fromwhich the event
* is delivered.

*/

public String get Topi c();

/**C one this event and add a handback field. Used
* only by the event service to create an event for
* each subscription during delivery.

*/
public Event cl one(Marshal | edObj ect handback);

}

86.3 Root Event Object

Fedaated Manegamant Architedure Soedfication Page 131

Event Service

package javax.sxi.services. event

/**The root event is the type of event issued by

*

E I I

*

*/

by the root topic. CGenerally, root events are passed
froma source event service to another |istener
event service, of different nanagenent donains

In addition to the contai ned event, the root event
carries a flag indicating whether the event was

al ready handl ed by a responsible listener. In such
cases, the event nust not be passed to additiona
responsi ble |isteners.

public final class RootEvent inplenments Event

/**True if the contai ned event has been handl ed by a
* responsi bl e |istener
*/

private final boolean handl ed;

/** Event wrapped by this root event.
*/
private final Event cont ai nedEvent ;

/**Create a root event object containing a
* contai ned event, which may or nay not have been
* handl ed. The source is set to the name of the
* managenment domain containing the event service
* providing the event. The topic is the root topic
* (enpty String) EventService. ROOT_TOPI C
*/

protected RootEvent(Event event, bool ean handl ed);

/**Cet the contained event
*/
Event get Cont ai nedEvent () ;

/**Return if this event has been handled by a
* responsible |istener.
*/

public bool ean i sHandl ed() ;

/**C one this event and add a handback field. Used
* only by the event service to create an event for
* each subscription during delivery.

*/
public Event cl one(Marshal | edObj ect handback);

87 EventService Interface

132

Fedaated Manegamant Architedure Soedfication

Event Service

package javax.sxi.services. event;

import net.jini.core.event.RenoteEventListener;
i mport java.rm . Marshal | edCbj ect;
i mport java.rm . Renot eExcepti on;

public interface Event Service
i mpl enent s Renot eEvent Li st ener

/** Topic path for root topics
*/
String ROOT_TCPIC = ("");

/** Post an event to a topic.

*/

voi d post(Event event)
t hr ows Renot eExcepti on;

/** Register as a subscriber of this event service.
* Al events posted to the service will be sent to
* the subscriber, regardless of the posting topic,
* after they have been fully processed by the |ocal
* event service. In particular, the service nust
* determ ne whether the event will be handl ed
* Jocally by a responsible listener. Only a single
* |istening event service may subscribe to a source
* event service. The event sent to the listening
* service is of type RootEvent.
*/
Lease subscri beToEvent Ser vi ce(

Event Servi ce subscri ber,

| ong | easelLength

t hr ows Renot eException, TooManyLi st ener sExcepti on;

/** Subscribe as a observing listener to a topic.
* Al events posted to the topic, or a subtopic,
* wll be sent to the subscriber.

*/
Lease subscri beQoserver (
String topic,
Renot eEvent Li st ener subscri ber,
Mar shal | edbj ect handback,
| ong | easelLength

t hr ows Renot eExcepti on;

Fedaated Manegamant Architedure Soedfication Page 133

Event Service

88 Topics

134

/** Register as a responsible listener.
* @aramindex Listener in front of which the new

* | istener nmust be inserted. If null, the new

* listener is added as the first in the list for
* the given topic.

*/

Lease subscri beResponsi bl eBef or e(

Responsi bl eLi st ener I nfo i ndex,
Renot eEvent Li st ener subscri ber,
String description,

Mar shal | edbj ect handback,

| ong | easelLength

t hr ows Renot eException, UnknownLi st ener Excepti on;

/** Register as a responsible |istener.
* @aramindex Listener after which the new

* | istener nmust be inserted. If null, the new
* listener is added as the last in the list for
* the given topic.

*/

Lease subscri beResponsi bl eAft er (

Responsi bl eLi st ener I nfo i ndex,
Renot eEvent Li st ener subscri ber,
String description,

Mar shal | edbj ect handback,

| ong | easelLength

t hr ows Renot eException, UnknownLi st ener Excepti on;
/** Return a list of responsible listeners for a

* given topic.
*/

Responsi bl eLi stenerInfo[] |istResponsibleLi steners(
String topic
t hr ows Renot eExcepti on;
public static final class Responsiblelistenerlnfo

public final String descri pti on;
public final Marshall edChject cookie;

Thetopic spaceisatree of individual topics. Each topic isuniquely identified by
appending the name of the topic to the name of its parent topic, usinga’.’ (period) asa
delimiter, to aform atopic path. Theroot topic is special. It is denoted by the empty
string and the topic path for a child of the root topic is ssmple the topic name without
prependinga’.’.

Each topic implies a specific class of event that it will accept and deliver. Thereisno
runtime maintenance or checking of this mapping, but israther part of the contract

Fedaated Manegamant Architedure Soedfication

Event Service

between event sources and listeners. The topic operates as an ignorant decoupling
between the source and listener without enforcing any aspects of such a contract. Thus, it
is possible that listenersreceive an event object of an unexpected class. Listeners should
be written defensively to ignore such occurrences.

89 Chain of Responsibility

The event service features an implementation of the Chain of Responsibility pattern to
support events that warrant at most one response, such as a corrective action, to the event.
In addition to the unordered list of listeners, observing listeners, associated with atopic,
each topic dso hasan ordered list of responsible listeners. Thetopic will ddiver a given
event to responsible subscribers synchronously in their order of registration. Delivery to
responsible subscribers may be done before, after, or concurrently with delivery to
observer subscribers. Events are first delivered to the most specialized chain of
responsibility and then, if not consumed by aresponsible listener, to the chain of
responsibility of the next more general topic.

A responsible subscriber is considered to have handled an event if it returns from its post
operation without throwing an exception, checked or unchecked. If the exception is of
class Event Not Handl edExcept i on, an unchecked exception, then the event service
must simply continue with the remaining responsible subscribers. Otherwise, the event
service may choose to log the exception as an indication of a faulty listener.

90 Subscribing

Listeners subscribe as observing or responsible listenersto a particular topic. In either
case, alLease isreturned that must be maintained.

90.1 Observing Listeners

Observing listeners are an unordered set of listeners for a particular topic. Ligenersfor a
topic will also receive events from all descendent topics. Thereisno order of ddivery
implied with respect to listeners of atopic versus listeners of a subtopic.

90.2 Responsible Listeners

Responsible listeners are ordered both within atopic and between child and parent topics.
Given an event posting to a particular topic T, the ordered set of responsible listenersis
formed by taking the responsible listeners of T and appending the responsible listeners of
the parent of T and so on recursively. Thus, events are delivered first to the responsible
listeners of the most specific topic.

Because responsible listeners are ordered, the subscription methods include variants to
control where aresponsble listener is placed within the list of responsiblelisteners.

Fedaated Manegamant Architedure Soedfication Page 135

Event Service

136

90.3

90.4

Event Service as Listeners

When one event service subscribes as alistener to another event service, special listener
semantics apply in order to ensure that only one responsible listener handles a particular
event, even across event services. Thefirst of these isthat an event service supports only
asinglelistener to the service itsalf. Secondly, the event must by fully processed in the
source event service, with respect to responsible listeners, before passing it to the
listening event service. This allows the source event service to inform the listening event
service as to whether the event must be propagated to additional responsible listeners.

The event object passed from a source event service to alistening event serviceis of type
Root Event . These objects contain an the posted event as well as a handled flag. An
event service receiving a handled event must not passit on to any responsible listeners
under its control. In addition, it must make surethe handled flag is set if it passesthe
event to another listening event service.

Listeners as Good Citizens

Events delivered to listeners are done so in threads granted to the listener by the event
service. Listeners must only perform simple, low risk operations in the event delivery
thread and decouple more complex tasks to athread owned by the subscriber. The event
service can detect ahung or unresponsive lisener and cease to deliver eventsto the
listener in order to conserve resources within the event service. A subscription may be
cancelled autonomoudly by the event service only in response to the following
conditions.

1) Thelistener failsto return the event delivery thread within a reasonabl e time limit,
not shorter than 15 seconds, as perceived by the event service.

2) TheLease associated with the subscription is not renewed.
The events service must cancel a subscription in response to the following conditions.

1) Event deliveryresultsinaj ava. r m . Renot eExcept i on thatisnot a
java. rm . Unexpcet edExcept i on. Thiswould indicate a communication error or
that the listener has otherwise become unreachable.

2) Event ddivery throwsa
j ava. sxi . services. event . Renoveli st ener Excepti on.

3) ThelLease associated with the subscription is cancelled.

Listeners should only throw
j ava. sxi . servi ces. event . Event Not Handl edExcepti on,

j ava. sxi . servi ces. event . Renoveli st ener Excepti on, and
net.jini.core.event.UnknownEvent Excepti on.

A ligtener can cancel its own subscription explicitly by canceling the associated Lease.
Regardless of how the subscription is terminated, the event service must ensure that any
attempt to renew or otherwise access the associated Lease associated with aterminated
subscription resultsin an UnknownLeaseExcept i on.

Fedaated Manegamant Architedure Soedfication

Event Service

90.5 Leases
Leases are used to reserve the resources associated with a subscription. Either the listener
(or another party, which has accessto the Lease) or the event service, may nullify the
Lease. Leaseswill al'so belost if an event service crashes and isrestarted. The inability
to maintain aLease, indicated by an
net.jini.core. | ease. UnknownlLeaseExcepti on thrown during renewal, indicates
that the subscription isno longer intact, for whatever reason. In response, the listener can
choose to heal the situation by subscribing again and do any work that may be required
given the expected loss of events.

91 Event Ordering

For the purposes of event ordering, one can consider observing listeners and responsible
listeners independently as thereis no ordering specified between the two groups.
Ordering is specified with respect to event postings and subscriptions. An event posting
E; is said to be after an event posting E; if and only if the posting of E; returns before the
posting of E; isinitiated.

Each subscription to atopic resultsin asingle, unique subscription. If alistener
subscribes to N topics (or onetopic N times), theresult isN subscriptions. Ordering is
specified with respect to a subscription, not alistener. Subscriptions may be unordered
(observing listeners) or ordered (responsible listeners). Subscriptions aso have
relationships based on the hierarchical relationships of their associated topics. A
subscription S; is superior to asubscription S; if and only if the topic associated with S;
isthe parent of the topic associated with S,.

One saysthat an event E; is delivered before E, to asubscription if and only if the
delivery method of the associated listener returns from delivering E; before the method is
invoked to deliver E,: non-overlapping deliveries.

One says that an event isdelivered to a subscription S; before a subscription S, if and
only if the delivery associated with S; returns before the delivery associated with S;is
invoked: non-overlapping deliveries.

91.1 Observing Listeners
The following subscriptions are with respect to observing listeners.

1) For agiven event posting, there isno specified order in which the event is
delivered to observing listener subscriptions.

2) If E;isposted after E;, then E; must be delivered after E;, with respect to any
one observing listener subscription. The effect is asif each subscription had an
associated queue to which events were posted synchronously and ddlivered
asynchronously.

91.2 Responsible Listeners
The following subscriptions are with respect to responsible listeners.

Fedaated Manegamant Architedure Soedfication Page 137

Event Service

1) For agiven event posting, if asubscription S; isbefore S,, both of the same
topic, then the event must be delivered to thelistener of S; before being
delivered to the listener of S,.

2) For agiven event posting, if asubscription S;is superior to asubscription S,
then the event must be delivered to the listener of S; before being delivered to
thelistener of S,.

3) |If E;isposted after E;, then E; must be delivered after E;, with respect to any
one responsible listener subscription with the exception that this ordering isno
longer pertinent if E; will never be delivered to the responsible listener
(presumably because is was handled).

91.3 Event Service Listeners
1) Anevent service may have at most one event service listener.

2) For agiven event, the event must have been delivered to all of the pertinent
responsible listeners or have been handled before delivering the event to the
event service listener.

3) If E;isposted after E;, then E; must be ddlivered to the event service listener
after E;.

91.4 Sequence Numbers

1) If E;isposted after E;, then E, must be assigned a sequence number that is
greater than the sequence number assigned to E;.

92 Transactions

Listener subscription and event dispatching ignore any transaction context that may exist.
If alistener registersinterest in atopic within the context of a transaction and the
transaction aborts, the listener will not be removed. If an even source delivers an event to
atopic, which forwardsthe events asynchronously to interested listeners, the listeners
will not receive the event in the transaction context in which it was sent.

93 Event Service Persistence

An event service perssts only its service ID. The event service is otherwise stateless and
must not persist subscriptions and associated information. When an event serviceis
shutdown and restarted, al subscription information islost. The subscriptions are rebuilt
over time as listenersrespond to failed Leases by re-subscribing and performing any
actions associated with the possible loss of events while the event service was
inoperative.

138 Fedaated Manegamant Architedure Soedfication

Event Service

94 Management Facades

A management facade, a group of objects acting on behalf of a managed resource,
directly handles events on behalf of its resource. This includes subscribing, generating
events, translating, filtering, correlating, and posting events from its resource.

94.1 Event Listening

The management facade subscribes for events that are relevant to its resource, and using
an appropriate message and its associated protocol, notifies the resource of the event.

94.2 Event Generation

The management facade should generate events and post them to the event service on
behalf of its resource when the relevant conditions occur, but for which the resource itself
does not generate notifications. For example, the management facade can generate events
to indicate:

1) Loss of contact, or restored contact with the resource.

2) Unexpected or incorrect behavior by the resource.

3) Incorrect behavior by other objects interacting with the management fagade.
4) Inconsistent internal states inside the management facade itself.

5) Important incidents or changes of state in the managed resource that the management
facade detects by polling, rather than by notifications from the resource.

94.3 Event Translation and Posting

The management facade is responsible for receiving ragiifits from its resource,
translating them into management events and posting the event to the appropriate event
service.

94.4 Event Filtering

The management fagcade can choose not to post a notification from its resource to the
event service, if the notification is not relevant to other objects in the system. For

example, if the notification indicates a condition that can be handled completely by the
management facade itself, without intervention by the network operator or by other
components, the management facade may choose not to post that notification to the event
service.

94.5 Event Correlation

The management facade should correlate event notifications from its resource whenever
possible and consolidate multiple related events into a single post to the event service.

Fedaated Manegamant Architedure Soedfication Page 139

Scheduling Service

The scheduling service all ows autonomous tasks to be scheduled for performance at some
future time or times. Scheduled tasks are persistent and do not have to be rescheduled if
the scheduler server terminates and isrestarted. The scheduling serviceis used to
schedule large-scale activities, not for small-scale activities or transient tasks, asthe
scheduling and natification overhead (remote communication, security, transactions,
leases, etc.) is substantial. For scheduling small, rapid, or transent tasks, alocal facility is
recommended.

95 SchedulingService Interface

Scheduling services proxies must implement the

j avax. sxi . servi ces. schedul i ng. Schedul i ngSer vi ce interface.
Implementations must persist scheduled tasksto allow continued performance of tasksin
case of scheduling service failure and recovery. Scheduled tasks should be performed as
close as reasonabl e to the scheduled time, but timeliness guarantees are not required.

Tasks are scheduled using theschedul eTask() method, which returnsaTi cket object
representing the scheduling. If asingle task is scheduled multiple times with the
scheduling service (i.e., the schedul eTask() method is called more than once with the
same task), a different Ti cket isreturned for each schedule. A scheduling service does
not attempt to detect or disallow the duplicate scheduling of atask.

Scheduled tasks are cancelled with thecancel () method of the Ti cket object.
Alternately, atask may throw a net.jini.core.event.UnknownEvent Except i on exception
from withinitsnoti f y() method. When al scheduled performances of atask are
completed, the task is automatically cancelled.

Fedaated Manegamant Architedure Soedfication Page 141

Scheduling Service

package javax. sxi.services. scheduling;

import java.io.Serializable;

i mport java.rm . Marshal |l edCbj ect;
i mport java.rm . Renot eExcepti on;
i mport java.util.Date;

i mport javax.sxi.util.Localizabl eMessage;

i mport net.jini.core.event. RenoteEvent;
i mport net.jini.core.event.RenoteEventListener;

public interface SchedulingService
/1 Constants for |atePerformancesAl | owed paraneter

/**No | ate performances are all owed.
* Late performances will be skipped.
*/
public static final int NONE = O;

/**Only one | ate performance is all owed.

* Duplicate |ate performances will be skipped.
*/

public static final int ONE = 1;

/**All late performances are al |l owed.
* Al schedul ed performances will occur.
*/
public static final int ALL = | nt eger. MAX_VALUE;

/**Schedul e task to be perforned according to
* schedul e.

* @aramtask Task to be perfornmed.

* (@aram description Description describing this

* task. May be used in adninistrative interfaces
* to the scheduling service.

* @aram schedul e Schedul e of task performances.

* @aram | atePerfor mancesPol i cy Number of

* per formances that should be initiated when

* performance tines have been missed. NONE, ONE,
* or ALL are the only all owabl e val ues.

* @aram handback Cl osure handback object to be

* palslsed back to the Task when perforned. May be
* nul | .

* @eturn Returns Ticket object for canceling the

* t ask.

* @hrows |11 egal Argunent Exception |If an argunent

* except handback is null or if

* | at ePer formancesPol icy is not one of NONE, ONE,
* or ALL.

*/

Ti cket schedul eTask(
Renot eEvent Li st ener t ask,
Local i zabl eMessage descri ption,
Schedul e schedul e,
i nt | atePerformancesPol i cy,
Mar shal | edoj ect handback

t hr ows Renot eExcepti on;

142 Fedaated Manegamant Architedure Soedfication

Scheduling Service

/**Cancel a schedul ed task. Only called by
* the Ticket.cancel () method.

* @aram cooki e The cookie of a Ticket issued by this
* schedul i ng servi ce.
* @hrows |11 egall Argunment Exception The cookie is
* null or was not issued by this service, the task
* was al ready cancelled, or the cookie is
*/ otherwi se invalid.
*
voi d cancel (Marshal | edObj ect cookie)

t hr ows Renot eExcepti on;

/**Return froma scheduling operation so that a
* schedul ed task nay be cancel |l ed.
*/

public static final class Ticket
i mpl enents Serializable

private final MarshalledObject cookie;

/**Construct a Ticket. May only be called by a
* schedul i ng service.
*/
public Ti cket (
Schedul i ngServi ce servi ce,
Mar shal | edObj ect cooki e

)

/**Cancel a previously schedul ed task. |nvokes
* the cancel nmethod of the service with the
* provi ded cooki e.

*/

public void cancel ()

t hr ows Renot eExcepti on;

}

/**The schedul e interface. Encapsul ates a

* schedul e.

*/

public interface Schedul e extends Serializable

/**Return the next schedul ed performance after the
* specified tine.

* @aram date Date beyond which to search for
* t he next perfornance.

* @eturn Return Date at which the next

* performance is scheduled to occur or null
* if no nore performances are schedul ed.

* @hrows |11egal Argument Exception If date is
* nul | .

*/
Dat e get Next Performance(Date date);

Fedaated Manegamant Architedure Soedfication

Page 143

Scheduling Service

96 Ticket

A Ti cket isevidence of the scheduling of atask. Ti cket objects are created exclusively
by the Schedul i ngSer vi ce. schedul eTask() method. Future scheduled
performances of a task may be cancelled using the cancel () operation on Ti cket . Note
that the cancel operation prevents further execution of the task under a particular
schedule. It does not abort a currently executing task. In general, it is considered unsafe
to interrupt executing tasks and no means are provided for doing so.

97 Tasks

Tasksmust implement the net . ji ni. core. event . Renot eEvent Li st ener interface
and be serializable. The Renot eEvent Li st ener .not i f y() method provides the point
of initiation for atask. The event object shall be of

typenet . jini. core. event. Renot eEvent and contain the hand back object, if any,
provide when the task was scheduled. The event source shall be a String of the form:
"Management Scheduling Service'. The event sequence number shall increase with each
task initiated by the service, but isnot required to increment by one. If atask is
reinitiated, because of failure of the task or the scheduling service, the event shall retain
itsorigina number. The event ID isnot used and shall be set to OL.

Tasks must be serializable to allow the scheduling service to persist the schedul ed task.
Implementations of the scheduling service must hold ahard reference to the task to
ensurethat it is not garbage collected before all scheduled performances are compl eted.

98 Schedules

The Schedul e interface has three standard implementations. Dat eSchedul e,
Repeat edDat eSchedul e, and Dur at i onSchedul e. Other cusom implementations are
allowable. Implementations must be safely seridizable.

package j avax. sxi.services. schedul e;

i mport java.util.Date;

public final class DateSchedul e inplements Schedul e
/**Construct a Schedule which will performa task at

* the specified date.
* @ar am per formanceDates Dates on which the task

* shoul d be perfornmed.

* @hrows |11 egal Argument Exception If array is null
* or enpty.

*/

public Schedul e(Date[] performanceDates);

144 Fedaated Manegamant Architedure Soedfication

Scheduling Service

package j avax. sxi.services. schedul e;
i mport java.util.Date;
public final class DurationSchedul e i nplenents Schedul e

/**Construct a Schedule that will performa task on
even intervals betwen a start and end date.
@aram startDate Date first performance is
schedul ed.
@aram endDate Date after which no performances are
to be schedul ed.
@aramintervalMIlis Interval (in mlliseconds)
bet ween perfornmances of the task.
@hrows |11 egal Argurment Exception |f dates are null
or if intervalMIlis is negative.

E R . T
~

public Dur at i onSchedul e (
Dat e startDate,
Dat e endDat e,
long intervalMIlis

package j avax. sxi.services. schedul e;

i mport java.util.Date;
i mport java.util.Cal endar;

public final class RepeatedDateSchedul e
i mpl enents Schedul e

/**Conveni ence constant to indicate every nonth,

* day, or hour as an argunent to the constructor.
*/

public final static int[] EVERY ={ 0 };

Fedaated Manegamant Architedure Soedfication Page 145

Scheduling Service

*

/**Constructs a Schedul e which will

E I S R N N N I R . . . I
~

public

repeatedly perform

a task according to a cal endar. Paraneters are

simlar to UNI X crontab scheduling. Day and nonth

constants are found in the Calendar class. EVERY

may be used to indicate every nonth, day, hour,

etc.

@aram startDate Date before which no perfornances
are to be schedul ed.

@aram endDate Date after which no performances are
to be schedul ed.

@ar am nont hs Mont hs during which task shoul d be
run (i.e., Cal endar. OCTOBER).

@ar am daysOf Mont h Days of the nonth performances
are schedul ed. May be null or enpty if
daysOF Week is specifi ed.

@ar am daysOf Week Days of the week performances are

schedul ed (i.e., Calendar.FRI DAY). My be
null or enpty if daysOfMonth are specified.

@ar am hours Hours (0-23) at which performances are

schedul ed.

@aram mnutes Mnutes (0-59) at which perfornmances
are schedul ed.

@aram timeZone The tine zone in which perfornmances
are bei ng schedul ed.

@hrows 111egal Argunment Exception |If daysOfMonth
and daysOf Wek are both null or enpty arrays, or
i f months, hours, or nminutes are null or enpty
arrays, or if any array val ues are out of
bounds.

Repeat edDat eSchedul e (
Dat e startTine,
Dat e endTi ne,

int[] nonths,

i] daysOf Mont h,

] daysOf Week,

] hours,

] mnutes,

Zone ti neZone

99 Task Performance

When the scheduled time for atask arrives, thetask is performed by calling the
Renot eEvent Li st ener .not i f y() method. A task may indicate that no future
scheduled performances shall be performed by throwing a
net.jini.core.event.UnknownEvent Excepti on.

99.1 Thread

Threads are granted from the scheduling service to the task. Implementations of the
scheduling service may limit the number of threads available or otherwise limit the
resource consumption of the scheduling service.

146

Fedaated Manegamant Architedure Soedfication

Scheduling Service

100 Scheduling Conflicts

The Schedul i ngSer vi ce will not initiate concurrent performances of a scheduled task.
Thus, it is possible that one or more scheduled performance times may pass while the
service iswaiting for the current performance to complete. When atask completes, if
scheduled performances have been missed, the scheduling service determines how many
(if any) of the missed performances will be performed. Thisis determined by the val ue of
thel at ePer f or mancesPol i cy parameter of theschedul eTask() method.
Acceptable values are Schedul i ngSer vi ce. NONE, Schedul i ngSer vi ce. ONE, and
Schedul i ngSer vi ce. ALL.

Concurrent performances of a single task can be achieved by scheduling atask with
multiple schedules (i.e, calling schedul eTask() multipletimes).

101 Protection from Task Exceptions

The scheduling service must protect itself from throwables thrown from task execution.
These exceptions shall be caught and logged to the log service, but not propagated
further.

102 Scheduling Service Failure

If a scheduling service failsand isrecovered, it must not lose scheduled tasks. Thus,
Schedul i ngSer vi ce implementations are responsible for persisting scheduled tasks.
Remote tasksin progress when the service fails will continueto run except that they will
be unable to renew their leases. If detected, the tasks should consider thisan indication to
abort. When the scheduling service recovers, the running tasks will be considered
incomplete and will be restarted.

It is possible, depending on the timing of atask and the failure of the service, that atask
is executed more than once.

It isaso possible that copies of atask can be executed concurrently. For example, if a
task is running when the service fails, but the task doesn't notice (failure to renew the
lease) the failure until some time after the service hasrecovered. The service, on
recovery, will attempt to restart the task, which could result in two copies of the task
running concurrently. Tasks, which are not idempotent, may protect themselves against
multiple execution runs usng means specific to the task. None-the-less, the scheduling
service should minimize the possibility by, on recovery, waiting T seconds, where T is
twice the longest outstanding task |ease duration, before restarting tasks. This delay
allows orphan tasks a reasonabl e chance to detect the failure of the service and react
accordingly. To be reasonable, the |ease duration should be at |east 60 seconds and as
high as 300 seconds.

Fedaated Manegamant Architedure Soedfication Page 147

Glossary

A

access control
acceptor stubs
appliance

auditing

authentication

client

Common Information M odel
(CIM)

Common Information M odel
Schema

confidentiality

Fedaated Manegamant Architedure Soedfication

The security control of a particular thread of execution to a protected
resource.

Remote references to corresponding acceptors. The acceptor stub/acceptor
pair formsthe RMI based outer interfaces to areferent object.

A managed resource with an embedded station capable of hosting dynamic
services.

The durable recording of the performance of certain operations, such as
authentication success or failure, for the purposes of respective analysis, often
in response to a suspected security breach.

A classification of security constraint that verifies that the operation is
executed on behalf of a certain Principal.

A client isan external source of activity: externa in the sense of being
outside of the specified system whether it be a federation of station or a
middletier. Theterm "client" is sensitive the context in which it being used.
For example, consider two-object communicating peer-to-peer. In the context
of a single communication, the object initiating the communication (source of
activity) isthe client whilethe other isthe server. In the context of another
communication, the roles may be reversed. Thus, one cannot label a particular
entity asaclient (or server) with specifying the context in which the labeling
applies, such asaparticular communication.

A specification that is a description of an object model and of alanguagein
which to describe the classes and the instances of objects of that model.

A set of standardized default objects and associations for representing
computing systems.

The protection, or desire for protection, of information asto be
incomprehensible by unauthorized parties.

Page 149

Glossary

F

Federation of Stations

implementation delegation

Interdomain feder ation
integrity

Intrinsic class servers

JAAS

L
logic method

M

management facade (MF)
management server

management server federation

O

observer subscribers

150

The set of authenticated JVMs, usually stationsthat are considered
completely secure.

A technique used to abstract static methods when separating implementation
from specification. Object methods may be abstracted for this purpose using
interfaces. However, constructors and class methods require some form of
implementation delegation.

A union of shared and private management servers within asingle domain.

The protection, or desire for protection, of information as to be unaterable,
without detection, by unauthorized parties.

Small HTTP class servers, which are embedded in clients or stations, for the
purpose of support RMI network class loading.

Java Authentication and Authorization Service

A method that is not directly responsible for state - stateless.

A dynamic service that provides access to a managed resource.
A station capable of supporting dynamic services.

The union of shared and private management servers with asingle
management domain. The domain maps to the Jini technology group with
which the servers are registered. From a practica standpoint, afederation
must generally be contained within a Local Area Network (LAN). Thus,
members of the federation are not expected to be separated by unreliable
networks or such constructs as firewalls.

Topic subscribers that are not "responsible subscribers'. Observer subscribers
may receive event notification but cannot consume an event.

Fedaated Manegamant Architedure Soedfication

Glossary

P
Principal

private management servers

proxy
Proxy binding

R

referents
replication group
responsible subscriber

Roles

S

security domain
Security service
shar ed management server

station

station proxy
subject

sub topics

A JAAS and Java concept that can be thought of as one possible name for a
subject.

A class of management server that is embedded in storage appliances.
A remotereference to areferent. The referent can be an object or class.

The process of associating a Proxy with its acceptor, whether initially or for
refreshing.

The object or classto which a particular Proxy refers.

A group of stations that are considered to be asingle logical entity but
replicated for the purposes of redundancy. The members of areplication
group, therefore, must be interchangeable.

A subscriber that can consume (handl€) and event and prevent propagation of
the event to other responsible subscribers.

A standard class of Principal in the security model.

A realm of trust against which Subjects are authorized and Roles defined.
A server that performs secure authentication and user/role management.

The server (or replicated set of servers) that belongs to and represents an
entire management domain.

A VM enabled to support dynamic services. Stations are themselves Jini
technology services.

A proxy, in the Jini technology sense, that refersto a station.

A JAAS concept that represents the source of an operation request, such that
aperson or service.

Topics that speciaize, either directly or indirectly, a base topic.

Fedaated Manegamant Architedure Soedfication Page 151

Index

controller service recovery - 122
description 109

event service - 131

failed controller service - 121

failed transaction service - 113

log service - 123

no controller service - 121

no transaction service - 113
recovered transaction service - 113

:concurrent operations in progress on methods not
synchronized/transaction - 89

A scheduling service - 143
transaction service - 113
acceptors boundary conidions - 1
Dynamic service modelus&9 neutrality - 1
adjunct modifiers
class modifiers 37
method 38 C
modifier precendence39

object -37
adjunct modifiers, accessing9
adjunct modifiers, Dynamic service model permissil3@ -
adjunct modifiers, dynamic services model extensi@7s -
analysis model

class method invocations
referent class33
class modifiers, exampled7
class's class, returning class name, dynamic services model

description - 11 cliér?tg

high level requirements - 8 obtaining a proxv obiectl:?

three tiered management application - 5 9 & proxy obj
constructors

aspect requirements
controllers - 9
logical thread - 9
transaction - 9

remotely exposed, dynamic services modé -
context information, content - 14
contextual information
thread of execution - 19
controller identifiers, dynamic services mod&9-
controller service interface example, base services - 116,
B 119
controller service, base services - 115

base services
architecture 111
controller service - 115
controller service interface example - 116, 119

Fedaated Manegamant Architedure Soedfication Page 153

deligation, security 69
dynamic service model
accessing adjunct modifier89
findable
leases - 92
Dynamic service model
service IDs - 92
dynamic services
findable, description - 91
specifying a findable - 91
Dynamic services element
remote object instantiation - 13
dynamic services model
acceptors, use29
adjunct modifiers 37
clonable proxy classe<l3
content of context information - 14
content, contextual informatioril9
controller identifiers 19
high availability - 13
logical thread identifiers1:9
permissible modifiers39
proxy class, wrapper constructef2:
proxy interface 41
proxy overview 31
remotely exposed constructoré2-
remotely exposed method42
returning class's class namts-
returning objects class namé3:
RMI semantics, equalsi2
RMI semantics, hashCodd2
serializable proxy clas3

stations, Jini technology service fd2l:

dynamic services model
remote class method invocation -
dynamic services model ,element
proxy rebinding, use31

E

event service
chain of responsibility - 137
event object, description - 133
management facades
event correlation - 141
event filtering - 141
event generation - 141
event listenting - 141

154

event translation and posting - 141
use - 141
transactions - 140
event service persistence - 140
event service, base services - 131
exceptions
debugging 106
debugging examplel06

F

failed transaction service, base services - 113

federated management architecture
persistent objects - 85

Federated management architecture extension to JAAS
secure subject - 62
security service - 57
well-known authenticated subject - 64

Federated management architecture extension, JAAS,
security - 57

Federated management architecture JVMs definition,
security - 54

federation definition, security - 53

H

high availability, dynamic services model - 13

identifiers

controller - 19

logical threads - 19

transaction - 19
implementation delegation - 14
instantiation diagram, referent obje&-
interface

scheduling service - 143

ticket, scheduling service - 146
internationalization

description 93

providing resource files97

specifying message®7
Internationalization

overview 93

Fedaated Manegamant Architedure Soedfication

J P

JAAS persistence, event service - 140
compliant login module - 59 persistent object

JAAS authentication overview, security - 57 reading state

JAAS authentication, Federated management architecture transaction abort - 87
extension - 57 writing state

javabeans instantiation - 87
conventions - 45 transaction commits - 88

persistent objects
existence state - 86
L explicit state - 87
implicit state - 86
reading state - 87
activation - 87
writing state
dirty optimization - 88
persistent state
existence - 86

leases, dynamic service model, findable - 92
localization
description 93
finding a message98
log service, base services - 123
logical thread

aspect requirements - 9 Fép::gﬁ gz;
login module, JAAS - 59 kinF()JIs of - 86

lookup requirements, management services elements - 10 persistent, objects description - 85

programming interface

constructors - 14
M object methods - 14
static methods - 14

management facade programming interface defined - 14
event service, use - 141 protection from task exceptions, scheduling service - 149
management services aspects, description - 9 proxie, description - 17
management services elements proxy
RMI remote communications extended - 12 as a Jini technology servicé8
management services model binding during instantiation30
description - 12 binding during wrapping30
management stations model - 12 binding, associated dynamic services mo@él -
method modifiers, example38 class interface, descriptiodl
methods proxy to referent overview3l
remotely exposed, dynamic services modée - rebinding -31
model rebinding diagram 36
analysis - 3 use of referents18

wrapping a reference objec35

@)
R

object class, returning class name, dynamic services model

-43 reading state, persistent objects - 87
object model security recovered transaction service, base services - 113

subject definition - 50 referent

terms and definitions - 49 writing state
object modifiers, example37 logic referent optimization - 89
objects in stations, othefl7 referent class

Fedaated Manegamant Architedure Soedfication Page 155

class method invocatior83
referent object
Dynamic service model communicatioh8:
instantiation diagram -
remote operationsl7
specifying type 29
wrapping with a proxy -
referent objects
proxies
obtaining a proxy objectl7
referents
referent communicationl8
referents object
proxies 17
remote class method invocation,Dynamic services model -
13
remote communications extended, management services
elements - 12
remote object instantiation,Dynamic services element - 13
remote referent objects, other objects in statidrs -
remote referents
classes - 17
objects - 17
requirements, high level - 8
resource tiere
three tiered management application - 7
responsibility, chain of, event service - 137
role definition, security - 52

S

schedule interface, scheduling service - 146
scheduling conflicts, scheduling service - 149
scheduling service
protection from task exceptions - 149
schedule interface - 146
scheduling conflicts - 149
service failure - 149
task performance - 148
tasks interface - 146
threads - 148
ticket interface - 146
scheduling service interface - 143
scheduling service, base services - 143
secure subject, Federated management architecture
extension to JAAS - 62
security - 47
authorization - 65
Federated management architecture modifications - 66
JAAS overview - 65
boundaries - 49

156

client to proxy - 68
deligation 69
Federated management architecture extension to JAAS
description - 57
Federated management architecture JVMs definition - 54
federation definition - 53
JAAS authentication overview - 57
principal definition - 50
principals, relationship - 53
referent to station - 68
explicit - 68
implicit - 68
intrinsic - 68
role definition - 52
role views
client developer - 69
federated management architecture - 69
system administrator - 70
scope
client to proxy - 49
client/station to the JAAS - 49
JAAS to the security services - 49
referent object elements to station - 49
scope of the specification - 49
security policy - 51
security services - 54
security topology example - 55
stations versus JVMs definition - 50
third party architecture - 48
topology, certificates description - 56
security service, JAAS security service, Federated
management architecture extension - 57
security services, security - 54
service failure, scheduling service - 149
service IDs, Dynamic service model findable - 92
services
no transaction service - 113
services, base
architecture 111
controller - 115
description 109
event service - 131
log service - 123
transaction service - 113
station
concurent methods initiated on methods not
synchronized/transaction - 90
concurent operations in progress on methods
synchronized/transaction - 90
concurrent methods initiated with new transactions on
methods - 90

Fedaated Manegamant Architedure Soedfication

concurrent methods initiated with old transactions on
methods - 90
hosting dynammic srvices modedl:
interface, method signaturel:
interface, registration22
lookup -22
stations management, distributed - 12
storage management applications
analysis model - 3

T

task exceptions, protection from, scheduling service - 149
task performance, scheduling service - 148
third party architecture, security - 48
threads, scheduling service - 148
three management application, three tiered - 5
three tiered management application - 5
client - 5
management logic - 6

Fedaated Manegamant Architedure Soedfication

resource tier - 7
throwable
internationalization 102
localization 102
rules for handling 103
serialization 102
stack traces102
throwables, nestedlO1l
ticket interface, scheduling service - 146
transaction service
description - 113
failed - 113
none - 113
recovered - 113
transaction, aspect requirements - 9
transactions, event service - 140

\Y,

virtual volume, change size of, exampl1

Page 157

