
Java API for XML Parsing
Specification

Version 1.0 [Public Draft 1]

please send comments to xml-spec-comments@eng.sun.com

Java is a registered trademark of Sun Microsystems, Inc. in the US and other countries.

Copyright (c) 1999 Sun Microsystems All Rights Reserved.

Java Software
A Division of Sun Microsystems, Inc.
901 San AntonioRoad
Palo Alto, California 94303
415 960-1300 fax: 415 969 9131

November 16, 1999

Larry Cable

SUN PROPRIETARY/CONFIDENTIAL: NEED TO KNOW

Java XML PreFCS SpecLicense 10/15/99jap

JavaTM API for XML Parsing Specification (“Specifica-
tion”)
Version: 1.0
Status: Public Draft 1
Release: November 22nd, 1999
Copyright 1999 Sun Microsystems, Inc.
901 San Antonio Road, Palo Alto, California 94303, U.S.A.
All rights reserved.

NOTICE
The Specification is protected by copyright and the information
described therein may be protected by one or more U.S. patents,
foreign patents, or pending applications. Except as provided
under the following license, no part of the Specification may be
reproduced in any form by any means without the prior written
authorization of Sun Microsystems, Inc. (“Sun”) and its licen-
sors, if any. Any use of the Specification and the information
described therein will be governed by the terms and conditions
of this license and the Export Control and General Terms as set
forth in Sun’s website Legal Terms. By viewing, downloading
or otherwise copying the Specification, you agree that you have
read, understood, and will comply with all of the terms and con-
ditions set forth herein.

Subject to the terms and conditions of this license, Sun hereby
grants you a fully-paid, non-exclusive, non-transferable, world-
wide, limited license (without the right to sublicense) under
Sun’s intellectual property rights to review the Specification
internally for the purposes of evaluation only. Other than this
limited license, you acquire no right, title or interest in or to the
Specification or any other Sun intellectual property. The Speci-
fication contains the proprietary and confidential information of
Sun and may only be used in accordance with the license terms
set forth herein. This license will expire ninety (90) days from
the date of Release listed above and will terminate immediately
without notice from Sun if you fail to comply with any provi-
sion of this license. Upon termination, you must cease use of or
destroy the Specification.

TRADEMARKS
No right, title, or interest in or to any trademarks, service marks,
or trade names of Sun or Sun’s licensors is granted hereunder.
Sun, Sun Microsystems, the Sun logo, Java, the Coffee Cup
logo and Duke logo are trademarks or registered trademarks of
Sun Microsystems, Inc. in the U.S. and other countries.

DISCLAIMER OF WARRANTIES
THE SPECIFICATION IS PROVIDED “AS IS” AND IS
EXPERIMENTAL AND MAY CONTAIN DEFECTS OR
DEFICIENCIES WHICH CANNOT OR WILL NOT BE COR-
RECTED BY SUN. SUN MAKES NO REPRESENTATIONS
OR WARRANTIES, EITHER EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO, WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT THAT THE CON-
TENTS OF THE SPECIFICATION ARE SUITABLE FOR
ANY PURPOSE OR THAT ANY PRACTICE OR IMPLE-
MENTATION OF SUCH CONTENTS WILL NOT INFRINGE
ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADE

SECRETS OR OTHER RIGHTS. This document does not rep-
resent any commitment to release or implement any portion of
the Specification in any product.

THE SPECIFICATION COULD INCLUDE TECHNICAL
INACCURACIES OR TYPOGRAPHICAL ERRORS.
CHANGES ARE PERIODICALLY ADDED TO THE INFOR-
MATION THEREIN; THESE CHANGES WILL BE INCOR-
PORATED INTO NEW VERSIONS OF THE
SPECIFICATION, IF ANY. SUN MAY MAKE IMPROVE-
MENTS AND/OR CHANGES TO THE PRODUCT(S) AND/
OR THE PROGRAM(S) DESCRIBED IN THE SPECIFICA-
TION AT ANY TIME. Any use of such changes in the Specifi-
cation will be governed by the then-current license for the
applicable version of the Specification.

LIMITATION OF LIABILITY
TO THE EXTENT NOT PROHIBITED BY LAW, IN NO
EVENT WILL SUN OR ITS LICENSORS BE LIABLE FOR
ANY DAMAGES, INCLUDING WITHOUT LIMITATION,
LOST REVENUE, PROFITS OR DATA, OR FOR SPECIAL,
INDIRECT, CONSEQUENTIAL, INCIDENTAL OR PUNI-
TIVE DAMAGES, HOWEVER CAUSED AND REGARD-
LESS OF THE THEORY OF LIABILITY, ARISING OUT OF
OR RELATED TO ANY FURNISHING, PRACTICING,
MODIFYING OR ANY USE OF THE SPECIFICATION,
EVEN IF SUN AND/OR ITS LICENSORS HAVE BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You will indemnify, hold harmless, and defend Sun and its
licensors from any claims based on your use of the Specification
for any purposes other than those of internal evaluation, and
from any claims that later versions or releases of any Specifica-
tion furnished to you are incompatible with the Specification
provided to you under this license.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure by the U.S. Government is sub-
ject to the restrictions set forth in this license and as provided in
DFARS 227.7202-1(a) and 227.7202-3(a) (1995), DFARS
252.227-7013(c)(1)(ii)(Oct 1988), FAR 12.212(a) (1995), FAR
52.227-19 (June 1987), or FAR 52.227-14(ALT III) (June
1987), as applicable.

REPORT
You may wish to report any ambiguities, inconsistencies or
inaccuracies you may find in connection with your evaluation of
the Specification (“Feedback”). To the extent that you provide
Sun with any Feedback, you hereby: (i) agree that such Feed-
back is provided on a non-proprietary and non-confidential
basis, and (ii) grant Sun a perpetual, non-exclusive, worldwide,
fully paid-up, irrevocable license, with the right to sublicense
through multiple levels of sublicensees, to incorporate, disclose,
and use without limitation the Feedback for any purpose related
to the Specification and future versions, implementations, and
test suites thereof.

Contents

Preface ... v
Who should read this document ..v
Related Documents ...v
Related Copyrights .. vi
Future Directions .. viii

Overview ...1
XML ..1
XML Parser ...2
DOM ...2
SAX ...3
XML Namespaces ...3

SAX ..5
Overview ...5
API Definition(s) ..6

org.xml.sax.AttributeList ..6
org.xml.sax.DTDHandler ..9
org.xml.sax.DocumentHandler ...10
org.xml.sax.EntityResolver ...16
org.xml.sax.ErrorHandler ...17
org.xml.sax.HandlerBase ..20
org.xml.sax.InputSource ...22
org.xml.sax.Locator ..25
org.xml.sax.Parser ...26
org.xml.sax.SAXException ..31
org.xml.sax.SAXParseException ..32

DOM ..35
Overview ...35
API Definition(s) ..35

org.w3c.dom.Attr ..35
org.w3c.dom.CDATASection ...37
org.w3c.dom.CharacterData ...38
org.w3c.dom.Comment ...41
org.w3c.dom.DOMException ...41
org.w3c.dom.DOMImplementation ..43
org.w3c.dom.Document ..43
org.w3c.dom.DocumentFragment ..45
org.w3c.dom.DocumentType ..46
org.w3c.dom.Element ...47
org.w3c.dom.Entity ...50
org.w3c.dom.EntityReference ..51

org.w3c.dom.NamedNodeMap ...52
org.w3c.dom.Node ..54
org.w3c.dom.NodeList ..59
org.w3c.dom.Notation ..60
org.w3c.dom.ProcessingInstruction ..60
org.w3c.dom.Text ...61

Javax.xml.* packages ...63
Overview ...63
Parser API Definition(s) ...63

javax.xml.parsers.FactoryException ...64
javax.xml.parsers.SAXParserFactory ...65
javax.xml.parsers.SAXParser ...67
javax.xml.parsers.DocumentBuilderFactory ..69
javax.xml.parsers.DocumentBuilder ...72

XML & Namespace Conformance ..77
Overview ...77
Document Character Set Encoding(s) ...77
Parser Well Formedness Constraints ..78
Parser Validity Constraints ...78
Parser Namespace Support ...79

non-validating parser conformance ...79
validating parser conformance ..79

XML Namespace Prefix Usage ..79

er
s to
Preface

This is the Java API for XML Parsing1.0 Specification.This document describes the APIs
available in the version 1.0 of this specification.

Details on the conditions under which this document is distributed are described in the
license herein.

Due to the volume of interest in XML, we cannot normally respond individually to review
comments, but we carefully read and consider all reviewer input. Please send comment
xml-spec-comments@eng.sun.com

To stay in touch with the XML project, visit our web site at:

http://java.sun.com/products/xml

Who should read this document

This document is intended for:

n Application Developers wishing to develop portable Javatm Language applications that
use XML APIs.

n Javatm Platform Developers wishing to implement this version of the Standard
Extension.

This document is not a User’s Guide.

Related Documents

This Specification depends upon, and references or subsumes, all or part of several
Preface v

.

their

ial
.

s of
n of
specifications produced by the World Wide Web Consortium and other standards bodies

Related Copyrights

This specification either directly includes or references copyrighted materials from other
sources. In compliance with the terms of those copyright(s), they are reproduced here in
entirety.

SAX

SAX has no copyright associated with it; it is in the public domain. Inclusion of this mater
into this specification is neither intended to, nor does affect in any way the status of SAX

For the purposes of this specification, the definition of compliance, and subsequent claim
compliance, compliant implementations are required to implement (at least) the definitio
SAX described herein.

TABLE P-1 Normative References

XML Specification http://www.w3.org/TR/1998/REC-xml-19980210

DOM Level 1 Specification http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/

DOM Level 1 errata http://www.w3.org/DOM/updates/REC-DOM-Level-1-19981001-
errata.html

XML Namespaces http://www.w3.org/TR/1999/REC-xml-names-19990114

ISO 10646 ISO (International Organization for Standardization).
ISO/IEC 10646-1993 (E). Information technology --
Universal Multiple-Octet Coded Character Set (UCS) --
Part 1: Architecture and Basic Multilingual Plane. [Geneva]:
International Organization for Standardization, 1993
(plus amendments AM 1 through AM 7).

Unicode The Unicode Consortium. The Unicode Standard, Version 2.0.
Reading, Mass.: Addison-Wesley Developers Press, 1996.

TABLE P-2 Non-normative References

HTML 4.0 http://www.w3.org/TR/1998/REC-html40-19980424/

CORBA 2.2 http://www.omg.org/corba/corbaiiop.html
vi Java API for XML Parsing Specification • November 16, 1999

,

ly

ment

he
y,

or

t, or
W3C Copyright

Copyright © 1998 World Wide Web Consortium, (Massachusetts Institute of Technology
Institut National de Recherche en Informatique et en Automatique, Keio University).

All Rights Reserved.

Documents on the W3C site are provided by the copyright holders under the following
license. By obtaining, using and/or copying this document, or the W3C document from
which this statement is linked, you agree that you have read, understood, and will comp
with the following terms and conditions:

Permission to use, copy, and distribute the contents of this document, or the W3C docu
from which this statement is linked, in any medium for any purpose and without fee or
royalty is hereby granted, provided that you include the following on ALL copies of the
document, or portions thereof, that you use:

1.A link or URI to the original W3C document.

2.The pre-existing copyright notice of the original author, if it doesn’t exist, a notice of t
form: "Copyright © World Wide Web Consortium, (Massachusetts Institute of Technolog
Institut National de Recherche en Informatique et en Automatique, Keio University). All
Rights Reserved."

3.If it exists, the STATUS of the W3C document.

When space permits, inclusion of the full text of this NOTICE should be provided. In
addition, credit shall be attributed to the copyright holders for any software, documents,
other items or

products that you create pursuant to the implementation of the contents of this documen
any portion thereof.

No right to create modifications or derivatives is granted pursuant to this license.

THIS DOCUMENT IS PROVIDED "AS IS," AND COPYRIGHT HOLDERS MAKE NO
REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING,

BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE

CONTENTS OF THE DOCUMENT ARE SUITABLE FOR ANY PURPOSE; NOR THAT
THE IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY

THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT,
SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE
vii

icity
to

e

ned

or
DOCUMENT OR THE PERFORMANCE OR IMPLEMENTATION OF THE CONTENTS
THEREOF.

The name and trademarks of copyright holders may NOT be used in advertising or publ
pertaining to this document or its contents without specific, written prior permission. Title
copyright

in this document will at all times remain with copyright holders.

CORBA

This specification makes no direct reference to or inclusion of CORBA; the W3C DOM
Level 1 specification makes use of CORBA to describe the DOM interfaces in a languag
independent fashion. No OMG copyrighted material is directly contained or referenced
within this document.

Unicode

This specification makes no direct reference to or inclusion of Unicode; the W3C
specification(s) make use of Unicode. No Unicode copyrighted material is directly contai
or referenced within this document.

ISO 10646

This specification makes no direct reference to, or inclusion of ISO10646; the W3C
specification(s) make use of ISO10646. No ISO copyrighted material is directly contained
referenced within this document.

Future Directions

Future revisions of this specification will include DOM Level 2 and SAX 2.0 support.
viii Java API for XML Parsing Specification • November 16, 1999

his

d

ra,

d

e

f the
Acknowledgments
The success of the Java Platform depends on the process used to define and refine it. T
open process permits the development of high quality specifications in internet time and
involves many individuals and corporations.

Many people contributed to this specification, its reference implementation, and the
specification(s) and implementation(s) it references.

Thanks to:

• The W3C DOM Working and Interest Group(s) for their work on the DOM Level 1
specification.

• David Megginson and the many contributors to the XML-DEV mailing lists that define
the SAX 1.0 implementation.

• The following people from Sun Microsystems: Eduardo Pelegri-Lleopart, Mala Chand
Graham Hamilton, Mark Hapner, Rajiv Mordani, Connie Weiss, Nancy Lee, Mark
Reinhold, Josh Bloch, and Bill Shannon.

• The members of the JCP expert group (in particular Takuki Kamiya of Fujitsu Ltd and
Kelvin Lawrence of IBM) and participants who reviewed this document.

A special thank you to David Brownell (ex Sun Microsystems Inc.) who both champione
XML here at Sun and authored much of Project X technology upon which the Reference
Implementation is based, including the parser -- arguably the fastest, most compliant on
around at the time of this writing.

Last, but certainly not least important, thanks to the software developers and members o
general public who have read this specification, used the reference implementation, and
shared their experiences.
ix

x Java API for XML Parsing Specification • November 16, 1999

that

nt:

ML

y
ata.

gs,

d

CHAPTER 1

Overview

1.1 XML
The eXtensible Markup Languageis a meta-language defined by the World Wide Web
Consortium (W3C), derived by them from the ISO Standard General Markup Language,
can be used to describe a broad range of hierarchical markup languages.

The XML “language” is described and defined in the W3C Standard for XML 1.0 docume

http://www.w3.org/TR/1998/REC-xml-19980210

This specification subsumes that standard in its entirety for the purposes of defining the X
language manipulated by the APIs defined herein.

A “Markup Language” is a language that can be used to “mark up”, or annotate, arbitrar
character data to describe the structure of and/or attribute meta-data to that character d
An XML “document” consists of a prolog, an optional DOCTYPE declaration, processing
instruction(s), a root element (with optional attributes) and a hierarchy of sub-elements
(optionally with attributes), entities, and (parsed) character data.

XML uses the ISO 10646 character set and may be encoded using a variety of encodin
including UTF-8 and UTF-16. This specification does not modify the W3C standard with
regard to character set or encoding.

An XML document may be “well-formed” and may also be “valid”.

• A “well formed” XML document conforms to the “well-formed-ness” constraints define
by the XML specification.

• A “valid” XML document is “well formed” and is validated against a Document Type
Definition (DTD) as defined by the “validity” constraints defined by the XML
specification.
 Overview 1

s

and

r

ates
on”
arser
nd/or

g

This specification does not affect the definitions of either “well-formedness” or “validity” a
defined in the W3C specification.

XML is being used for a broad variety of applications including:
• “vertical” markup languages for mathematics, chemistry, and other document-centric

publishing applications
• E-Commerce solutions
• (intra, extra, and inter) enterprise application messaging.

This version of the Standard Extension is intended to introduce basic support for parsing
manipulating XML documents through Java APIs.

1.2 XML Parser
An XML Parser is a software engine1 that is capable of the following:
• Consuming a stream of characters, suitably encoded.
• Tokenizing that character stream into XML syntactic constructs.
• “Parsing” that tokenized stream to determine if it is “well-formed” and “valid.”
• Potentially exposing the parsed document’s structure, and/or its “well-formed-ness” o

“validity” to some “client” of the parser.

This specification does not mandate a particular parser implementation API. It only mand
the existence of a parser, its conformance requirements, and a simple API for “applicati
code. The API enables applications to access a parser implementation, to invoke that p
on an XML document represented as a character stream, and to expose the structure a
“well-formed-ness” and “validity” in an implementation-independent fashion.

1.3 DOM
The Document Object Model (or DOM) is a set of interfaces defined by the DOM Workin
Group of the World Wide Web Consortium describing facilities for a programmatic
representation of a parsed XML (or HTML) document. The DOM Level 1 specification
defines these interfaces using CORBA IDL in a language-independent fashion, but also
includes a Java(tm) Language binding. This specification subsumes both the abstract
semantics described for the DOM Level 1 (Core) interfaces and the associated Java(tm)

Language binding.

This specification does not subsume the HTML extensions defined by the DOM Level 1
specification.
1. For the purposes of this specification, a conforming parser shall either be implemented purely in Java or callable from

Java via the JNI facility.
2 Java API for XML Parsing Specification • November 16, 1999

e

I

es
1.4 SAX
The Simple API for XML (or SAX) is an API in the public domain, developed by many
individuals on the XML-DEV mailing list, that provides an event-driven interface to the
process of parsing an XML document.

An event driven interface provides a mechanism for “callback” notification(s) to
“application” code as the underlying parser recognizes XML syntactic constructions in th
document it is parsing on behalf of the application.

SAX does not have a formal specification document; it is defined by a public domain AP
implementation using the Javatm Programming Language.

This specification formally defines, and thus subsumes, that API as defined by the
implementation for SAX Version 1.0.

1.5 XML Namespaces
The XML Namespaces Specification defines the syntax and semantics for XML structur
required to be distinct from other XML markup. In particular, it defines a mechanism
whereby a set of XML markup (elements, attributes, entities) may have a distinguishing
“namespace” associated with it, and the responsibility of XML parsers in handling and
exposing such namespace information.

This specification subsumes the content of the W3C XML Namespace specification.
Chapter 1 Overview 3

4 Java API for XML Parsing Specification • November 16, 1999

CHAPTER 2

SAX

2.1 Overview
The Simple API to XML (or SAX) is an event-driven XML Parsing API. This version of the
specification describes SAX version 1.0.

InputSource Parser

ErrorHandler

EntityResolver
DTDHandler

DocumentHandler

Locator

AttributeList
 SAX 5

ment

e(s),
The ‘client’ of a SAX Parser provides theParser with an InputSource ,
encapsulating the XML to parse, and minimally also aDocumentHandler . TheParser
consumes the content of theInputSource and delivers parsing ‘events’ to the client’s
DocumentHandler as it encounters XML constructs in the content.

The Parser represents any attribute(s) and their associated value(s) it parses in an ele
occurrence to the client as anAttributeList .

If the client wishes to handle errors encountered by theParser , it provides theParser
with an ErrorHandler . TheParser will notify the ErrorHandler of any errors that
occur. In the absence of a client-suppliedErrorHandler , theParser uses an
implementation-dependent handler.

If the client wishes to receive notifications of any notations or unparsed entities theParser
may encounter during parsing, the client should register aDTDHandler with the Parser .

A Parser registers aLocator with the DocumentHandler to enable the handler to
determine the current end position of theParser in the XML content during
DocumentHandler callbacks.

2.2 API Definition(s)

2.2.1 org.xml.sax.AttributeList

Description

The org.xml.sax.AttributeList interface represents a list of an XML element’s
actual attribute(s) and associated value(s).

When aParser encounters and successfully parses an element with associated attribut
it invokes its currentDocumentHandler .startElement() method. It passes a
reference to anAttributeList encapsulating the current element’s attribute(s) and
associated value(s).

The AttributeList and its content are only valid for the duration of the
DocumentHandler.startElement() invocation. Clients may not retain references to
the AttributeList or its content thereafter.

For a copy of anAttributeList to persist beyond the invocation of
DocumentHandler.startElement() , an application may do one of the following:
6 Java API for XML Parsing Specification • November 16, 1999

t

.

• Test theAttributeList to determine if it implementsjava.lang.Cloneable and
invoke Object.clone() to create a copy.

• Use some other data structure (such asjava.util.Hashtable) and copy the
attribute value association(s) explicitly.

An AttributeList instance only enumerates attribute(s) and associated value(s) tha
were actually specified or defaulted for the current element.#IMPLIED attributes not
actually occurring in the current element are never enumerated in anAttributeList.
(Their absence from theAttributeList should imply their value.)

A Parser implementation may provide the contents of anAttributeList in any
arbitrary order. It is not require to list them in order of declaration (if any) or specification
Chapter 2 SAX 7

Methods

int getLength() return the number of attributes in theAttributeList
or 0

String getName (int i) return the attribute’s name by position in the
AttributeList at indexi , or null if index i where
(0 <= i < getLength()) is out of bounds.

If the attribute name has a namespace prefix in the
document parsed, then the name returned shall include
that prefix to the local part.

String getType (int i) return the attribute’s type by position in the
AttributeList at indexi , or null if index i where
(0 <= i < getLength()) is out of bounds.

The type returned is one of:

• “CDATA”

• “ID”

• “IDREF”

• “IDREFS”

• “NMTONKEN”

• “ENTITY”

• “ENTITIES”

• “NOTATION”

If the Parser has not read a declaration for the attribute, or
if the Parser does not report attribute types, then it must
return the value “CDATA” as required by the XML 1.0
specification (clause 3.3.3, “Attribute-Value
Normalization”).

For an enumerated attribute that is not a notation, the type
shall be “NMTOKEN”.
8 Java API for XML Parsing Specification • November 16, 1999

2.2.2 org.xml.sax.DTDHandler

Description

The org.xml.sax.DTDHandler interface is typically implemented by client code. The
client registers the interface with aParser object via itssetDTDHandler() method to
receive notifications (callbacks) from thatParser when it encounters either notations or
unparsed entities while parsing XML content.

A Parser may report unparsed entity and notation events to theDTDHandler in any
order, regardless of the order in which they occur in the source document.

All DTD notifications shall be delivered to theDTDHandler after the
DocumentHandler.startDocument() method, and before any
DocumentHandler.startElement() methods.

String getValue(int i) return the value by position in theAttributeList at
index i , or null if index i where(0 <= i <
getLength()) is out of bounds.

If the value of the attribute is a list of tokens (IDREFS,
ENTITIES, or NMTOKENS) the tokens will be
concatenated into a singleString result, each token
separated by at least one whitespace character.

String
getType(String name)

return the type of the attribute with the specifiedname
or null if no such attribute is present in the
AttributeList .

The return values are the same as those for the method
getType(int) defined above.

String
getValue(String name)

return the value of the attribute with the specifiedname,
or null , if no such named attribute is present in the
AttributeList .

If the value of the attribute is a list of tokens (IDREFS,
ENTITIES, or NMTOKENS) the tokens will be
concatenated into a singleString result, each token
separated by at least one whitespace character.
Chapter 2 SAX 9

Methods

2.2.3 org.xml.sax.DocumentHandler

Description

The org.xml.sax.DocumentHandler interface is typically implemented by client
code. The client registers it with aParser using its setDocumentHandler() method
to receive notifications (callbacks) from theParser when it encounters XML markup, such
as the (root) elements, processing instructions, whitespace, and content.

void notationDecl(
String name,
String publicId,
String systemId
) throws SAXException

This is a callback to notify the client that the parser has
encountered a notation declaration in the source
document.

The name parameter is the name of the declared
notation.

The publicId parameter is the public identifier
associated with the notation, ornull if none specified.

The systemId parameter is the system identifier
associated with the notation, ornull if none specified.

void
unparsedEntityDecl(
String name,
String publicId,
String systemId,
String notationName
} throws SAXException

This is a callback to notify the client that the parser has
encountered an unparsed entity declaration in the source
document.

The name parameter is the name of the unparsed entity.

The publicId parameter is the public identifier
associated with the unparsed entity, ornull if none is
specified.

The systemId parameter is the system identifier
associated with the unparsed entity.

The notationName parameter is the name of the
associated notation.
10 Java API for XML Parsing Specification • November 16, 1999

This is the primary client interface that a client uses, along with aParser instance, to parse
an XML source.

Note: Any given instance of aDocumentHandler may only be used with one instance of
a Parser at any time to parse XML content. Using a singleDocumentHandler with
multiple Parser instances parsing simultaneously will result in errors.

Methods

void startDocument()
throws SAXException

The Parser invokes this method exactly once, before
any other in theDocumentHandler (except
setDocumentLocator()) andDTDHandler . This
method notifies the client that the parsing of an XML
document has commenced.

The client may signal a parsing error by throwing an
appropriateSAXException . Exception behavior is
implementation dependent; a particularParser
implementation may choose to either stop or continue
parsing.

void endDocument()
throws SAXException

The Parser invokes this method exactly once, as the
last method invoked for a particular invocation of its
parse() methods. This method notifies the client that
the Parser has encountered the document end.

The Parser shall not invoke this method until it has
either abandoned parsing or reached the end of input.

The client may signal a parsing error by throwing an
appropriateSAXException . Exception behavior is
implementation dependent; a particularParser
implementation may choose to either stop or continue
parsing.
Chapter 2 SAX 11

void
ignorableWhitespace(
char[] ch,
int start,
int length
)throws SAXException

A validating Parser implementation uses this method
to notify the client that it has encountered a contiguous
block of ignorable whitespace characters in the XML
content being parsed. Non-validating parsers may use
this method if they are capable of parsing and using
content models.

A conformingParser implementation may return all
contiguous whitespace character data in either a single
block/notification, or as multiple blocks/notifications. All
of the whitespace characters in any single notification
shall come from the same external entity, so that any
Locator may provide valid information regarding the
location of the whitespace character data.

Thech parameter is an array of characters containing the
character text (fragment) parsed.

Thestart parameter is the index into thech parameter
array at which the whitespace text fragment parsed by
the Parser begins.

The length parameter is the number of whitespace
characters in thech parameter array, parsed by the
Parser , that are the subject of this notification.

It is illegal for the client to access whitespace characters
in the ch parameter array beyond the bounds specified
(start , length). Doing so results in unpredictable
and non-portable behavior.

The client may signal a parsing error by throwing an
appropriateSAXException . Exception behavior is
implementation dependent; a particularParser
implementation may choose to either stop or continue
parsing.
12 Java API for XML Parsing Specification • November 16, 1999

void startElement(
String name,
AttributeList atts
) throws
SAXException

The Parser invokes this method exactly once as it
encounters each new element start tag in the XML input
source (once per element). This method notifies the
client that theParser has encountered a new element
usage.

The name parameter is the actual element name.

If the element name has an explicit namespace prefix
associated with it, thename parameter shall contain that
prefix as part of the name.

The atts parameter is theAttributeList declared
by the element (if any). If no attributes are declared, then
AttributeList.getLength() returns 0.

The client may signal a parsing error by throwing an
appropriateSAXException . Exception behavior is
implementation dependent; a particularParser
implementation may choose to either stop or continue
parsing.

void endElement(
String name
) throws
SAXException

The Parser invokes this method exactly once as it
encounters each closing element end tag in the XML
input source (once per element) to notify the client that it
has encountered the end of an element usage.

The name parameter is the actual element name of the
closing (“end”) tag.

If the element name has an explicit namespace prefix
associated with it, thename parameter shall contain that
prefix as part of the name.

The client may signal a parsing error by throwing an
appropriateSAXException . Exception behavior is
implementation dependent; a particularParser
implementation may choose to either stop or continue
parsing.
Chapter 2 SAX 13

void characters(
char[] ch,
int start,
int length
)throws SAXException

TheParser invokes this method to notify the client that
it has encountered a sequence of character text in the
XML content.

A conformingParser implementation may return all
contiguous character data in either a single block/
notification, or as multiple blocks/notifications. All of the
characters in any single notification shall come from the
same external entity, so that anyLocator may provide
valid information regarding the location of the character
data.

Non-validating parsers can report whitespace using either
this method or theignorableWhitespace()
method. A validating Parser is required to report
whitespace using theignorableWhitespace()
method.

Thech parameter is an array of characters containing the
character text (fragment) parsed.

Thestart parameter is the index into thech parameter
array at which the character text fragment parsed by the
Parser begins.

The length parameter is the number of characters in
the ch parameter array, parsed by theParser , that are
the subject of this notification.

It is illegal for the client to access characters in thech
parameter array beyond the bounds specified (start ,
length). Doing so results in unpredictable and non-
portable behavior.

The client may signal a parsing error by throwing an
appropriateSAXException . Exception behavior is
implementation dependent; a particularParser
implementation may choose to either stop or continue
parsing.
14 Java API for XML Parsing Specification • November 16, 1999

void
processingInstruction(
String target,
String data
)throws SAXException

A Parser invokes this method once for each processing
instruction it encounters while parsing XML content.
Note that processing instructions may appear before or
after the main (root) document element.

A conformingParser implementation shall never
report an initial XML declaration or a text declaration
using this method.

The target parameter is the processing instruction
target.

The data parameter is the data supplied with the
Processing Instruction, or null if none was supplied.

The client may signal a parsing error by throwing an
appropriateSAXException . Exception behavior is
implementation dependent; aParser implementation
may choose to either stop or continue parsing.

void
setDocumentLocator(
Locator l
)

This method provides the implementing client with a
Locator for the Parser .

The Parser invokes this method before invoking any
otherDocumentHandler methods.

The client can use theLocator from any of the
DocumentHandler callback methods above to
determine the end position of any document related
event.

Use of theLocator outside the scope of the
DocumentHandler callback methods above is illegal.

A conformingParser is required to provide a
Locator .
Chapter 2 SAX 15

n
el

t,
2.2.4 org.xml.sax.EntityResolver

Description

The org.xml.sax.EntityResolver interface is typically implemented by client code
to provide customizable handling of entity resolution during XML parsing. Entity resolutio
includes resolution of external DTD subset(s) and all external entities except the top-lev
document entity itself.

An EntityResolver instance may be registered with a particularParser instance using
its setEntityResolver() method.

When a conformingParser encounters an unresolved entity reference in the XML conten
it will invoke its EntityResolver to obtain anInputSource containing the resolved
entity.
16 Java API for XML Parsing Specification • November 16, 1999

Methods

2.2.5 org.xml.sax.ErrorHandler

Description

The org.xml.sax.ErrorHandler interface is typically implemented by client code to
provide customizable error handling support during XML content parsing.

InputSource
resolveEntity(
String publicId,
String systemId
) throws
IOException,
SAXExcption

The Parser invokes this method to resolve an external
entity it has encountered in the XML content it is
currently parsing.

The publicId parameter is the public identifier of the
external entity to be resolved, ornull if none was
supplied.

ThesystemId parameter is the system identifier of the
external entity resolved. If this is a URI, conforming
parsers must fully resolve this URI before invoking this
method.

This method returns anInputSource object referring
to the resolution of the entity, or null to indicate that the
Parser will open a regular URI connection to the
systemId .

The client may signal a parsing error by throwing an
appropriateSAXException . Exception behavior is
implementation dependent; a particularParser
implementation may choose to either stop or continue
parsing.

An IOException that occurs while trying to resolve
an external entity shall be treated as a fatal error to a
validatingParser implementation. Non-validating
parsers may either ignore this exception or signal it to
the invoker of the parser through the
ErrorHandler.error() method.
Chapter 2 SAX 17

An ErrorHandler instance may be registered with aParser using its
setErrorHandler() method.

If an ErrorHandler is registered with aParser , then theParser reports all error(s)
during parsing by invoking this interface instead of throwing the offendingException
from theParser method that initiated the error-generating operation.

A conformingParser implementation is not required to continue to provide useful
information (to continue to parse the content and deliver notifications via the
DocumentHandler until EOF) after an invocation offatalError() .

Methods

void warning(
SAXParseException e
)throws SAXException

TheParser invokes this method to notify the client that
a recoverable condition has occurred during parsing.

The default behavior of this method is to take no action.
(In some circumstances, the warning may be conveyed to
a human user via some error messaging facility.)

The e parameter is the actualSAXParseException
that has occurred.

A conformingParser continues to parse the current
XML content to the end of the document, having
returned from reporting a warning.

An implementation of this method may throw another
SAXException , possibly wrapping this or a new
SAXParseException . The parsing behavior of a
Parser when anotherSAXException is raised is
implementation dependent. A conforming Parser shall
not permit infinite recursion to occur by repeatedly
delivering re-thrownSAXException notifications
through this method.
18 Java API for XML Parsing Specification • November 16, 1999

void fatalError(
SAXParseException e
)

TheParser invokes this method to notify the client that
a fatal error has occurred during parsing. Such an error is
defined in section 1.2 of the W3C XML specification 1.0.

The application shall assume that the XML content being
parsed by theParser is unusable after theParser has
invoked this method and may continue only to collect
any additional error messages generated. After reporting
a fatal error, a conformingParser may continue to
parse the XML content to EOF (if able) or immediately
terminate parsing.

The e parameter is the actualSAXParseException
that has occurred.

An implementation of this method may throw another
SAXException , possibly wrapping this or a new
SAXParseException . The parsing behavior of a
Parser when another suchSAXException is raised
is implementation dependent. A conforming Parser shall
not permit infinite recursion to occur by repeatedly
delivering re-thrownSAXException notifications
through this method.
Chapter 2 SAX 19

id
2.2.6 org.xml.sax.HandlerBase

Description

Theorg.xml.sax.Handlerbase is a convenience class provided by this package to a
a developer creatingDocumentHandler , DTDHandler , ErrorHandler and
EntityResolver implementations for use/registration with aParser , through
subclassing and overriding of the appropriate interface methods.

Using this class isnot required to implement any of the SAX interfaces mentioned here.

void error(
SAXParseException e
)throws SAXException

TheParser invokes this method to notify the client that
a recoverable error has occurred during parsing. Such an
error is defined in section 1.2 of the W3C XML
specification 1.0.

The default behavior of this method is to take no action.
(In some circumstances, the error may be conveyed to a
human user via some error messaging facility.)

The e parameter is the actualSAXParseException
that has occurred.

A conformingParser will continue to parse the current
XML content to the end of the document, having
returned from reporting an error. If theParser is
unable to do so, it shall report a fatal error, although the
XML 1.0 specification does not require it to do so.

An implementation of this method may throw another
SAXException , possibly wrapping this or a new
SAXParseException . The parsing behavior of a
Parser when another suchSAXException is raised
is implementation dependent. A conforming Parser shall
not permit infinite recursion to occur by repeatedly
delivering re-thrownSAXException notifications
through this method.
20 Java API for XML Parsing Specification • November 16, 1999

Methods

InputSource
resolveEntity(
String publicId,
String systemId
)

Seeorg.xml.sax.EntityResolver for details.

The default implementation returnsnull .

void
notationDecl(
String name,
String publicId,
String systemId
)

Seeorg.xml.sax.DTDHandle r for details.

The default implementation is to do nothing.

void
unparsedEntityDecl(
String name,
String publicId,
String systemId,
String notationName
)

Seeorg.xml.sax.DTDHandle r for details.

The default implementation is to do nothing.

void
setDocumentLocator(
Locator l
)

Seeorg.xml.sax.DocumentHandler for details.

The default implementation is to do nothing.

void startDocument() Seeorg.xml.sax.DocumentHandler for details.

The default implementation is to do nothing.

void endDocument() Seeorg.xml.sax.DocumentHandler for details.

The default implementation is to do nothing.

void startElement(
String name,
AttributeList atts
)

Seeorg.xml.sax.DocumentHandler for details.

The default implementation is to do nothing.

void endElement(
String name
)

Seeorg.xml.sax.DocumentHandler for details.

The default implementation is to do nothing.
Chapter 2 SAX 21

e

2.2.7 org.xml.sax.InputSource

Description

The org.xml.sax.InputSource class encapsulates information about an input sourc
of XML content for aParser into a single object representation.

void
characters(
char[] ch,
int start,
int length
)

Seeorg.xml.sax.DocumentHandler for details.

The default implementation is to do nothing.

void
ignorableWhitespace(
char[] ch,
int start,
int length
)

Seeorg.xml.sax.DocumentHandler for details.

The default implementation is to do nothing.

void
processingInstruction(
String target,
String data
)

Seeorg.xml.sax.DocumentHandler for details.

The default implementation is to do nothing.

void warning(
SAXParseException e
)throws SAXException

Seeorg.xml.sax.ErrorHandler for details.

The default implementation is to do nothing.

void error(
SAXParseException e
)throws SAXException

Seeorg.xml.sax.ErrorHandler for details.

The default implementation is to do nothing.

void fatalError(
SAXParseException e
)throws SAXException

Seeorg.xml.sax.ErrorHandler for details.

The default implementation is to do nothing.
22 Java API for XML Parsing Specification • November 16, 1999

in a
A Parser uses anInputSource to obtain information about XML content, including
how to consume the content. TheParser will first use the character stream (Reader) if it
is available. If not, it uses a bytestream (InputStream). If neither is available, theParser
attempts to resolve and open a connection to the URI specified by the system identifier.

The information provided includes:

• a public identifier

• a system identifier

• a java.io.InputStream (with optional specified encoding) bytestream, and/or a
java.io.Reader character stream.

An InputSource is used in two places:

• as an input parameter toParser.parse() method(s)

• as a return value from theEntityResolver.resolveEntity() method

A Parser may not modify the content of anInputSource .

InputSource instances passed to theParser.parse() method(s) shall be associated
with a properly resolved system identifier so that a Parser may resolve any relative URIs
document. If a system identifier is not provided, parsing errors will result when external
entities specified by relative URIs are parsed. This is due to these relative URIs being
unresolvable.

Methods

InputSource() construct anInputSource.

InputSource(
String systemId
)

construct anInputSource with a specified
systemId .

InputSource(
InputStream s
)

construct anInputSource with the specified
InputStream s .

InputSource(
Reader r
)

construct anInputSource with the specifiedReader
r .

void setPublicId(
String publicId
)

set the public id of theInputSource .

This is optional but strongly encouraged to provide a
public id.
Chapter 2 SAX 23

String getPublicId() return the public id of theInputSource or null .

void setSystemId(
String systemId
)

set the system id of theInputSource .

Applications are required to set a system id in order to
provide a base URI for resolving relative URIs found in
the encapsulated document.

String getSystemId() return the system id of theInputSource or null .

setByteStream(
InputStream is
)

set theInputStream to be associated with the
InputSource .

A Parser ignores this value if a character stream
(Reader) is also associated with thisInputSource .

InputStream
getByteStream()

return the currentInputStream .

void setEncoding(
String encoding
)

set the character encoding for the current
InputStream or system id.

This encoding must conform to the encoding declaration
rules in the XML specification (1.0) section 4.3.3.

A conformingParser ignores this value if a character
stream is also specified for theInputSource .

String getEncoding() get the character encoding for the current
InputStream , or URI, or null if none is specified.

void
setCharacterStream(
Reader cs
)

set the character stream (Reader) for the
InputSource .

If a Reader is set, then a conforming Parser shall use it
to obtain content, ignoring anyInputStream and not
attempting to resolve any system id.

The character stream (Reader) shall not include a byte
order mark.

Reader
getCharacterStream()

return the character stream (Reader) for the
InputSource .
24 Java API for XML Parsing Specification • November 16, 1999

2.2.8 org.xml.sax.Locator

Description

A conforming Parser supplies theorg.xml.sax.Locator interface and registers it
(using itssetDocumentLocator() method) with theDocumentHandler it is
associated with (using theParser.setDocumentHandler() method) before beginning
a parse operation on a particularInputSource .

The Locator instance, supplied by theParser , enables theDocumentHandler to
obtain information about the location of anyDocumentHandler event for the duration of
that event/notification. Applications shall not invoke aLocator outside a
DocumentHandler event/notification method, as these values have undefined and
unpredictable results.
Chapter 2 SAX 25

es
t

er
Methods

2.2.9 org.xml.sax.Parser

Description

Theorg.xml.sax.Parser is an interface implemented by conforming parsers. It enabl
application code to register handlers to receive notification of a variety of XML documen
parsing related events, and to initiate parsing XML content from a character stream
(Reader), bytestream (InputStream) or URI (String) described by an
InputSource .

A conformingParser implementation shall implement a public, no-args constructor. (Oth
constructor signatures are permitted, but not used or required by this specification.)

String getPublicId() return the public identifier for the current
DocumentHandler event, ornull if none is
available.

String getSystemId() return the system identifier for the current
DocumentHandler event, ornull if none is
available.

If the identifier is a URI then theParser shall resolve
it, returning a fully resolved URI.

int getLineNumber() return the line number where the current
DocumentHandler event ends, or -1 if none is
available.

Note that this line number is associated with the line
position of the first character after the text that is the
subject of the current event.

int getColumnNumber() return the column number where the current
DocumentHandler event ends, or -1 if none is
available.

Note that this column number is associated with the
column position of the first character after the text that is
the subject of the current event.
26 Java API for XML Parsing Specification • November 16, 1999

a
on a
A particularParser instance is reusable but not reentrant. An application may reuse a
Parser instance (possibly with a different or the sameInputSource) after a previous
invocation of a parse() method has completed. However, an application may not invoke
parse operation recursively or simultaneously while that instance is already embarked up
parsing operation.
Chapter 2 SAX 27

Methods

void setLocale(
Locale l
)throws SAXException

set theLocale for the Parser to use to report any
errors and/or warnings.

A conformingParser is not required to support
localization of warnings and/or errors. However if a
Parser cannot support a specifiedLocale, it must
raise an appropriateSAXException .

It is an error to change theLocale while in the process
of parsing anInputSource .

void
setEntityResolver(
EntityResolver er
)

set a customEntityResolver for the Parser, or
null.

If no EntityResolver is specified, theParser shall
resolve entities itself.

The EntityResolver may be specified at any time,
including during an ongoing parsing operation. The
results of the set take effect immediately; theParser
will use the new value immediately after returning from
this method.

void setDTDHandler(
DTDHandler dtdh
)

set a customDTDHandler for the Parser or null .

If no DTDHandler is specified, no DTD related events
are generated.

The DTDHandler may be specified at any time,
including during an ongoing parsing operation. The
results of the set take immediate effect; theParser will
use the new value immediately after returning from this
method.
28 Java API for XML Parsing Specification • November 16, 1999

void setErrorHandler(
ErrorHandler eh
)

set a customErrorHandler for the Parser or
null .

If no ErrorHandler is specified, no errors and
warnings are generated, except fatal errors. A fatal error
will result in SAXException being thrown.

The ErrorHandler may be specified at any time,
including during an ongoing parsing operation. The
results of the set take immediate effect; theParser will
use the new value immediately after returning from this
method.
Chapter 2 SAX 29

void parse(
InputSource is
) throws
IOException,
SAXException

direct theParser to parse the XML content described
by the InputSource .

The appropriateDocumentHandler , DTDHandler ,
ErrorHandler , andEntityResolver method(s)
shall be called (in order) as specified.

This method may not be called recursively, or
simultaneously on the same instance.

This method throwsSAXException to indicate that an
error has occurred during parsing that was not handled
by theErrorHandler, if any.

It throws IOException if an IO error condition occurs
on the underlyingInputStream , Reader or other
URI connection.

void parse(
String systemId
) throws
IOException,
SAXException

direct theParser to parse the XML content described
by theURI system identifier .

The appropriateDocumentHandler , DTDHandler ,
ErrorHandler , andEntityResolver method(s)
shall be called (in order) as specified.

This method may not be called recursively, or
simultaneously on the same instance.

This method throwsSAXException to indicate an
error has occurred during parsing that was not handled
by theErrorHandler, if any (or ignored).

It throws IOException if an IO error condition
occurred on the underlying URI connection.
30 Java API for XML Parsing Specification • November 16, 1999

ties
2.2.10 org.xml.sax.SAXException

Description

The org.xml.sax.SAXException class extendsjava.lang.Exception and is
provided to describe basic warning and error information for either aParser or application
code written in conjunction with aParser .

A Parser implementor or application writer may subclass and extend the basic capabili
to provide additional functionality as required.

Any SAXException instances initialized by aParser supporting localization of error
and warning messages shall set any messages in the appropriate (current)Locale as set
upon the originatingParser using itssetLocale() method.

void
setDocumentHandler(
DocumentHandler dh
)

set a customDocumentHandler for the Parser or
null .

If no DocumentHandler is specified, no Document-
related events are generated.

TheDocumentHandler may be specified at any time,
including during an ongoing parsing operation. The
results of the set take immediate effect; theParser will
use the new value immediately after returning from this
method.
Chapter 2 SAX 31

ties
Methods

2.2.11 org.xml.sax.SAXParseException

Description

The org.xml.sax.SAXParseException class extendsSAXException and is
provided to describe basic warning and error information, including error location
information within the content initialized from aLocator , for either aParser or
application code written in conjunction with aParser .

A Parser implementor or application writer may subclass and extend the basic capabili
herein to provide additional functionality as required.

SAXException(
String msg
)

construct a SAXException withmsg String .

SAXException(
Exception e
)

construct aSAXException to encapsulate
Exception e .

SAXException(
Exception e,
String msg
)

construct aSAXException to encapsulate
Exception e , with msg String .

String getMessage() return the messageString associated with this
SAXException or null .

If no message was set on theSAXException , then this
message shall return the message (if any) associated with
an encapsulatedException .

Exception
getException()

return the encapsulatedException associated with this
SAXException or null .
32 Java API for XML Parsing Specification • November 16, 1999

Any SAXParseException instances initialized by aParser supporting localization of
error and warning messages shall set any messages in the appropriate (current)Locale as
set upon the originatingParser via its setLocale() method.
Chapter 2 SAX 33

Methods

SAXParseException(
String msg,
Locator l
)

construct aSAXParseException with msg String
and aLocator l .

Note that this constructor may only be used within the
context of aDocumentHandler event/notification
method because it uses aLocator .

SAXParseException(
String msg,
Locator l,
Exception e
)

construct aSAXParseException with msg
String , a Locator l , and encapsulating an
Exception e.

Note that this constructor may only be used within the
context of aDocumentHandler event/notification
method because it uses aLocator .

SAXParseException(
String msg,
String publicId,
String systemId,
int lineNumber,
int columnNumber,
Exception e
)

construct aSAXParseException , with msg
String , a (String) public identifier (or null), a
(String) system identifier (a fully resolved URI), a line
number (or-1), a column number (or-1), and an
Exception e (or null).

String getPublicId() return the public identifier of the XML content that is the
subject of the exception.

seeLocator for details.

String getSystemId() return the system identifier of the XML content that is
the subject of the exception.

seeLocator for details.

int getLineNumber() return the line number within the content that is the
subject of the exception, or-1 if none is available.

SeeLocator definition for details.

int getColumnNumber() return the column number within the content that is the
subject of the exception or-1 if none is available.

SeeLocator for details.
34 Java API for XML Parsing Specification • November 16, 1999

g a

3C

ter

des
CHAPTER 3

DOM

3.1 Overview
The Document Object Model is a World Wide Web Consortium standard for representin
parsed XML “document” as a logical tree structure and exposing that structure
programmatically.

This specification subsumes the semantics for Core DOM level 1 as described in the W
specification and the Java language binding in Appendix D therein.

This specification does not specify DOM (HTML) Level 1 support; that is deferred to a la
version of this specification.

Note that the W3C specifications do not provide a complete API. This specification provi
additional API in Chapter 4.

3.2 API Definition(s)

3.2.1 org.w3c.dom.Attr

Description

The org.w3c.dom.Attr interface extendsorg.w3c.dom.Node .
 DOM 35

he
a

ther
d
ll

hen

as

f

the
child
It is used to represent an attribute name/value associated with anElement . The allowable
values for an attribute are typically defined in a DTD.

Attr objects inherit theNode interface, but because they are not actually child nodes of t
element they describe, the DOM does not consider them part of the document tree. As
result, theNode attributes parentNode, previousSibling, and nextSibling have anull value
for Attr objects. The DOM takes the view that attributes are properties of elements ra
than having an identify separate from the elements they are associated with. This shoul
make it more efficient to implement features such as default attributes associated with a
elements of a given type.

Attr nodes may not be immediate children of aDocumentFragment . However, they can
be associated withElement nodes contained within aDocumentFragment . In short,
users and implementors of the DOM need to be aware thatAttr nodes have some things in
common with other objects inheriting theNode interface, but they also are quite distinct.

The attribute’s effective value is determined as follows:

• If this attribute has been explicitly assigned any value, that value is the attribute’s
effective value.

• If there is a declaration for this attribute and that declaration includes a default value, t
that default value is the attribute’s effective value.

• Otherwise, the attribute does not exist on this element in the structure model until it h
been explicitly added.

Note that the nodeValue attribute on theAttr instance can also retrieve the string version o
the attribute’s value(s).

In XML, where the value of an attribute can contain entity references, the child nodes of
Attr node provide a representation in which entity references are not expanded. These
nodes may be eitherText or EntityReference nodes. Because the attribute type may
be unknown, there are no tokenized attribute values.
36 Java API for XML Parsing Specification • November 16, 1999

wise
ing
is

.
ns.
Methods

3.2.2 org.w3c.dom.CDATASection

Description

Theorg.w3c.dom.CDATASection is an interface that extendsorg.w3c.dom.Text.

CDATA sections are used to escape blocks of text containing characters that would other
be regarded as markup. The only delimiter recognized in a CDATA section is the "]]>" str
that ends the CDATA section. CDATA sections cannot be nested. Their primary purpose
including material such as XML fragments, without needing to escape all the delimiters.

The data attribute of theText node holds the text that is contained by the CDATA section
Note that this may contain characters that need to be escaped outside of CDATA sectio
Depending on the character encoding ("charset") chosen for serialization, it may be
impossible to write out some characters as part of a CDATA section.

String getName() return the value of thename property

boolean getSpecified() return the value of thespecified property

This is true if this attribute was explicitly given a value
in the original document; otherwise, it is false. Note that
the implementation is in charge of this attribute, not the
user. If the user changes the value of the attribute (even if
it ends up having the same value as the default value)
then the specified flag is automatically flipped to true. To
re-specify the attribute as the default value from the
DTD, the user must delete the attribute. The
implementation will then make a new attribute available
with specified set to false and the default value (if
one exists).

void setValue(
String value
)

set the value of thevalue property.

This creates aText node containing unparsed content.

String getValue() return the value of thevalue property.

Character and entity references are resolved.
Chapter 3 DOM 37

this
o

The CDATASection interface inherits theCharacterData interface through theText
interface.

Note that adjacentCDATASection n odes are not merged by use of the
Element.normalize() method.

Methods

This interface does not define any additional methods or constants.

3.2.3 org.w3c.dom.CharacterData

Description

The org.w3c.dom.CharacterData interface extends frmorg.w3c.dom.Node
with a set of attributes and methods for accessing character data in the DOM. For clarity,
set is defined here rather than on each object that uses these attributes and methods. N
DOM objects correspond directly toCharacterData , althoughText and others do
inherit the interface from it. All offsets in this interface start from 0.
38 Java API for XML Parsing Specification • November 16, 1999

Methods

void setData(
String data
) throws
DOMException

set the value of thedata property.

This method may raise theDOMException
NO_MODIFICATION_ALLOWED_ERRif the target
Node is read only.

String getData()
throws DOMException

returns the value of thedata property.

This method may raise theDOMException
DOMSTRING_SIZE_ERRwhen the length of the data to
be returned exceeds the platform’s capability to represent
it as aString .

int getLength() returns the value of thelength property.

String substringData(
int offset,
int count
) throws DOMException;

return a substring of the data property from the index
offset within the property forcount characters.

If offset+count > length thencount is
adjusted to count =length-offset

This method may raise the following
DOMException (s):

• INDEX_SIZE_ERR if the specifiedoffset is
negative, or greater than the number of
characters in the data.

• INDEX_SIZE_ERR if the count is negative.

• DOMSTRING_SIZE_ERRif the substring
requested is larger than the maximum size of a
String .

void appendData(
String arg
) throws DOMException

append the specifiedString arg to the end of the
currentdata property value.

This method may raise theDOMException
NO_MODIFICATION_ALLOWED_ERRif the target
Node is read only.
Chapter 3 DOM 39

void insertData(
int offset,
String arg
) throws DOMException

insert the specifiedString arg at the specified
offset .

This method may raise the following
DOMException (s):

• INDEX_SIZE_ERR if the offset is either
negative or exceeds the number of characters
in the data

• NO_MODIFICATION_ALLOWED_ERRif the
target node is read only.

void deleteData(
int offset,
int count
) throws DOMException

deletecount characters atoffset in the data.

If offset+count > length thencount is
adjusted tocount = length-offset .

This method may raise the following
DOMException (s):

• INDEX_SIZE_ERR if the specifiedoffset is
negative or greater than the number of
characters in the data.

• INDEX_SIZE_ERR if the count is negative.

void replaceData(
int offset,
int count,
String arg
) throws DOMException

replace the (sub)string of lengthcount , in data at
offset with arg .

If offset+count > length thencount is
adjusted tocount = length-offset .

This method may raise the following
DOMException (s):

• INDEX_SIZE_ERR if the specifiedoffset is
negative or greater than the number of
characters in the data.

• INDEX_SIZE_ERR if the count is negative.

• NO_MODIFICATION_ALLOWED_ERRif the
target node is read only.
40 Java API for XML Parsing Specification • November 16, 1999

<!--’

ause
r

3.2.4 org.w3c.dom.Comment

Description

The org.w3c.dom.Comment is an interface that extends
org.w3c.dom.CharacaterData .

This represents the content of a comment, i.e., all the characters between the starting ’
and ending ’-->’. Note that this is the definition of a comment in XML, and, in practice,
HTML, although some HTML tools may implement the full SGML comment structure.

Methods

This interface does not define any additional methods or constants.

3.2.5 org.w3c.dom.DOMException

Description

The org.w3c.dom.DOMException is a class that extends
java.lang.RuntimeException .

DOM operations only raise exceptions in "exceptional" circumstances, i.e., when an
operation is impossible to perform, either for logical reasons, because data is lost, or bec
the implementation has become unstable. In general, DOM methods return specific erro
values in ordinary processing situation, such as out-of-bound errors when usingNodeList .

Implementations may raise exceptions under other circumstances. For example,
implementations may raise an implementation-dependent exception if anull argument is
passed.
Chapter 3 DOM 41

Constants

Methods

Fields

short
INDEX_SIZE_ERR

exception code if an index is negative or exceeds
bounds.

short DOMSTRING_SIZE_ERR exception code if target range of text cannot be
represented as aString .

short
HIERARCHY_REQUEST_ERR

exception code if targetNode insert is attempted at
an illegal location in aDocument hierarchy.

short
WRONG_DOCUMENT_ERR

exception code if targetNode is used in the context
of a Document other than the one that created it.

short
INVALID_CHARACTER_ERR

exception code if an invalid character is specified.

short
NO_DATA_ALLOW_ERR

exception code if data is specified for a targetNode
for which no data is allowed.

short
NO_MODIFICATION_ALLOWED_ERR

exception code if an attempt is made to modify a
targetNode that does not permit modifications (read
only).

short
NOT_FOUND_ERR

exception code if an attempt was made to reference a
Node in a context where it does not exist.

short
NOT_SUPPORTED_ERR

exception code if the implementation does not
support the type of object or operation requested.

short
INSUE_ATTRIBUTE_ERR

exception code if an attempt is made to add an
attribute that is already in use elsewhere in context.

DOMException(
short code,
String msg
)

construct aDOMException with the specified
exceptioncode and amsg String (optionallynull).

short code one of the exception codes above.
42 Java API for XML Parsing Specification • November 16, 1999

bject

to
3.2.6 org.w3c.dom.DOMImplementation

Description

The org.w3c.dom.DOMImplementation interface provides a number of methods for
performing operations that are independent of any particular instance of the document o
model.

Methods

3.2.7 org.w3c.dom.Document

Description

The org.w3c.dom.Document is an interface that extendsorg.w3c.dom.Node .

A Document represents an entire instance of an XML document. Conceptually, it is the
“root” of a particular document “tree”.

SinceElement (s), Node(s), Comment(s), Text , andProcessingInstruction (s)
cannot exist outside the context of a Document, this interface provides factory methods
create these.

boolean hasFeature(
String feature,
String version
)

return true if the underlying implementation supports
the requestedfeature at the specifiedversion ,
otherwisefalse .

Valid feature names are:

• “XML”

• “HTML”

Valid version is: “1.0 ”

In this version of the specification, only the “XML” feature is
supported.
Chapter 3 DOM 43

Methods

DocumentType
getDocumentType()

return theDocumentType of this Document , or
null .

DOMImplementation
getDOMImplementation()

return theDOMImplementation for this
Document .

Element
getDocumentElement()

return the “root” element of thisDocument .

Element createElement(
String elementName
) throws DOMException

create anElement with the specified name.

Note that no DTD validation occurs for the
elementName .

This method may raise aDOMexception of type
INVALID_CHAR_ERRif the specified name
contains an invalid character.

DocumentFragment
createDocumentFragment()

create an emptyDocumentFragment .

Text createTextNode(
String data
)

create aText Nod e containing the specified
String .

Comment createComment(
String data
)

create aComment with the specifiedString .

CDATASection
createCDATASection(
String data
) throws DOMException

create aCDATASection containing the specified
String .

This method may raise aDOMException with type
NOT_SUPPORTED_ERRif the document is not an
XML document.
44 Java API for XML Parsing Specification • November 16, 1999

3.2.8 org.w3c.dom.DocumentFragment

Description

The org.w3c.dom.DocumentFragment interface extends theorg.w3c.dom.Node
interface.

DocumentFragment is a "lightweight" or "minimal"Document object used to extract a
portion of a document’s tree or to create a new fragment of a document. Imagine
implementing a user command like cut or rearranging a document by moving fragments

ProcessingInstruction
createProcessingInstruction
(
String target,
String data
) throws DOMExcepton

create aProcessingInstruction with the
specifiedtarget anddata .

This method may raise the following
DOMException(s):

• INVALID_CHAR_ERRif the target
contains an invalid character

• NOT_SUPPORTED_ERRif the document is
not an XML document

Attr createAtrribute(
String name
) throws DOMException

create anAttr with the specifiedname.

This method may raise aDOMException with type
INVALID_CHAR_ERRif the specified name
contains an invalid character.

EntityReference
createEntityReference(
String name
) throws DOMException

create anEntityReference with the specified
name.

This method may raise the following
DOMException(s):

• INVALID_CHAR_ERRif the name
contains an invalid character

• NOT_SUPPORTED_ERRif the document is
not an XML document

NodeList
getElementsByTagName(
String tagname
)

return aNodeList (possibly empty) matching the
specifiedtagName in document traversal order.
Chapter 3 DOM 45

tural

is

ps

ey
ave

L

e

around. It is desirable to have an object which can hold such fragments and it is quite na
to use a Node for this purpose. While it aDocument object could fulfil this role, it can
potentially be a heavyweight object, depending on the underlying implementation. What
needed is a lightweight object.DocumentFragment is such an object.

Various operations, such as inserting nodes as children of anotherNode, may take
DocumentFragment objects as arguments. This results in all the child nodes of the
DocumentFragment being moved to the child list of this node.

The children of aDocumentFragment node are zero or more nodes representing the to
of any sub-trees defining the structure of the document.

DocumentFragment nodes do not need to be well-formed XML documents, although th
do need to follow the rules imposed upon well-formed XML parsed entities, which can h
multiple top nodes. For example, aDocumentFragment might have only one child and
that child node could be aText node. Such a structure model represents neither an HTM
document nor a well-formed XML document.

When aDocumentFragment is inserted into aDocument (or any otherNode that may
take children), thechildren of the DocumentFragment are inserted into theNode, not
the DocumentFragment itself. TheDocumentFragment is useful when the user
wishes to create nodes that are siblings; theDocumentFragment acts as the parent of
these nodes so that the user can use the standard methods from theNode interface, such as
insertBefore () andappendChild() .

Methods

This interface does not define any additional methods.

3.2.9 org.w3c.dom.DocumentType

Description

The org.w3c.dom.DocumentType is an interface.

EachDocument has a doctype attribute whose value is eithernull or a DocumentType
object. TheDocumentType interface in the DOM Level 1 Core provides an interface to th
list of entities that are defined for the document.
46 Java API for XML Parsing Specification • November 16, 1999

Methods

3.2.10 org.w3c.dom.Element

Description

The org.w3c.dom.Element is an interface that extendsorg.w3c.dom.Node .

An Element represents an XML element construct in aDocument .

An Element may have attributes associated with it. Because theElement interface
inherits fromNode, the genericNode interface methodgetAttributes() may be used
to retrieve the set of all attributes for an element. TheElement interface has methods to
retrieve either anAttr object or value by name. In XML, where an attribute value may
contain entity references, anAttr object should be retrieved to examine the possibly
complex subtree representing the attribute value.

String getName() return the name of the document’s DTD.

NameNodeMap
getEntities()

return aNamedNodeMapthat enumerates the internal
and external entities declared in the document’s DTD.

Any duplicates are discarded.

NameNodeMap
getNotations()

return a NamedNodeMap that enumerates the notations
declared in the document’s DTD.

Any duplicates are discarded.
Chapter 3 DOM 47

Methods

String getTagName() return the name of the element. For XML documents,
case is preserved.

void setAttribute(
String name,
String value) throws
DOMException

add a new attribute.

If an attribute with that name is already present in the
element, its value is changed to that of the value
parameter.

The value is a simple string; it is not parsed as it is being
set. Any markup (such as syntax to be recognized as an
entity reference) is treated as literal text, and needs to be
appropriately escaped by the implementation when it is
written.

To assign an attribute value that contains entity
references, the user must create anAttr node plus any
Text andEntityReference nodes, build the
appropriate subtree, and usesetAttributeNode to
assign it as the value of an attribute.

This method may raise the following DOMException(s);

• INVALID_CHARACTER_ERRif the specified
name contains an invalid character.

• NO_MODIFICATION_ALLOWED_ERRif
Element is read only.

String getAttribute(
String name
)

Return the value of the named attribute, ornull if the
attribute is not specified and has no default value
predefined.
48 Java API for XML Parsing Specification • November 16, 1999

Attr setAttributeNode(
Attr newAttr
) throws DOMException

add a new attribute.

If an attribute with the same name already exists, its
value is replaced with the new one.

This returns the previous attribute value (if any) or
null .

This method may raise the following DOMException(s):

• WRONG_DOCUMENT_ERRif the new attribute
was created from a differentDocument than
the one that created theElement .

• NO_MODIFICATION_ALLOWED_ERRif
Element is read only.

• INUSE_ATTRIBUTE_ERRif the specified
attribute is already an attribute of another
Element . An attribute shall be cloned
explicitly to be re-used in otherElement (s).

Attr getAttributeNode(
string name
)

return the specified attribute, ornull if no such attribute
exists.
Chapter 3 DOM 49

that
een

re
3.2.11 org.w3c.dom.Entity

Description

The org.w3c.dom.Entity interface extendsorg.w3c.dom.Node .

This interface represents an entity, either parsed or unparsed, in an XML document. Note
this models the entity itself, not the entity declaration. Entity declaration modeling has b
left for a later level of the DOM specification.

The nodeName attribute inherited fromNode contains the name of the entity.

An XML processor may choose to expand entities completely before passing the structu
model to the DOM; in this case there will be noEntityReference nodes in the
document tree.

Attr
removeAttributeNode(
Attr oldAttr
) throws DOMException

remove the specified attribute.

This method may raise the following DOMException(s):

• NOT_FOUND_ERRif the specified attribute is
not a member of theElement.

• NO_MODIFICATION_ALLOWED_ERRif
Element is read only.

NodeList
getElementsByName(
String name
)

return aNodeList of all descendant elements with a
given tag name, in the order in which they would be
encountered in a preorder traversal of theElement tree.

The string “* ” matches all names.

void normalize() transform allText nodes in the full depth of the subtree
underneath thisElement into a "normal" form where
only markup (e.g., tags, comments, processing
instructions, CDATA sections, and entity references)
separatesText nodes. (There are no adjacentText
nodes.)

This method can be used to ensure that the DOM view of
a document is the same as if it were saved and re-loaded,
and is useful when using operations such as XPointer
lookups that depend on a particular document tree
structure.
50 Java API for XML Parsing Specification • November 16, 1999

me
le.

s

st

ce.

e

XML does not mandate that a non-validating XML processor read and process entity
declarations made in the external subset or declared in external parameter entities. This
means that parsed entities declared in the external subset need not be expanded by so
classes of applications, and that the replacement value of the entity may not be availab

When the replacement value is available, the correspondingEntity node’s child list
represents the structure of that replacement text. Otherwise, the child list is empty.

The resolution of the children of theEntity (the replacement value) may be evaluated
lazily; actions by the user (such as calling the childNodes method on theEntity Node) are
assumed to trigger the evaluation.

The DOM Level 1 does not support editingEntity nodes. If a user wants to make change
to the contents of anEntity , every relatedEntityReference node has to be replaced in
the structure model by a clone of theEntity ’s contents, and then the desired changes mu
be made to each of those clones instead. All the descendants of anEntity node are read
only.

An Entity node does not have any parent.

Methods

3.2.12 org.w3c.dom.EntityReference

Description

The org.w3c.dom.EntityReference interface extendsorg.w3c.dom.Node .

EntityReference objects may be inserted into the structure model when an entity
reference is in the source document, or when the user wishes to insert an entity referen

Note that character references and references to predefined entities are considered to b
expanded by the XML processor so that characters are represented by their Unicode
equivalent rather than by an entity reference.

String getPublicId() return the public identifier (if any specified) ornull .

String getSystemId() return the system identifier (if any specified) ornull .

String
getNotationName()

return the notation for the Entity, this isnull for parsed
entities.
Chapter 3 DOM 51

.

ect
to
The XML processor may completely expand references to entities while building the
structure model, instead of providingEntityReference objects. If it does provide such
objects, then for a givenEntityReference node, there may be noEntity node
representing the referenced entity. If such anEntity exists, then the child list of the
EntityReference node is the same as that of theEntity node. As with theEntity
node, all descendants of theEntityReference are read only.

The resolution of the children of theEntityReference (the replacement value of the
referencedEntity) may be evaluated lazily; actions by the user (such as calling the
childNodes method on theEntityReference node) are assumed to trigger the evaluation

Methods

This interface defines no additional methods.

3.2.13 org.w3c.dom.NamedNodeMap

Description

The org.w3c.dom.NamedNodeMap interface is used to represent collections of nodes
that can be accessed by name. Note thatNamedNodeMapdoes not inherit fromNodeList ;
NamedNodeMapsare not maintained in any particular order. Objects contained in an obj
implementingNamedNodeMapmay also be accessed by an ordinal index. This is simply
allow convenient enumeration of the contents of aNamedNodeMap, and does not imply that
the DOM specifies an order to theseNodes.
52 Java API for XML Parsing Specification • November 16, 1999

Methods

Node getNamedItem(
String name
)

return theNode with the specified name, or null if not
present in theNamedNodeMap.

Node setNamedItem(
Node arg
) throws DOMException

add aNode to theNamedNodeMapwith the specified
name.

This returns the preexistingNode (if any) this the new
Node replaces, ornull .

This method may raise the following DOMException(s):

• WRONG_DOCUMENT_ERRif the new attribute
was created from a differentDocument than
the one that created theElement .

• NO_MODIFICATION_ALLOWED_ERRif
NamedNodeMap is read only.

• INUSE_ATTRIBUTE_ERRif the specified
attribute is already an attribute of another
Element . An attribute shall be cloned
explicitly in order to be re-used in other
Elements .

• HIERARCHY_REQUEST_ERRwhen an
attempt is made to add anElement node to a
NamedNodeMapassociated with anAttr list.

Node removeNamedItem(
String name
) throws DOMException

remove theNode with the specified name. If the
removedNode is anAttr with a default value, it is
immediately replaced.

This returns theNode removed.

This method may raise the DOMException
NOT_FOUND_ERRif there is noNode with the name in
the map.

Node item(int index) return theNode at the specified index, ornull if out of
bounds.

int getLength() return the value of the length property; the number of
Node items in the map.
Chapter 3 DOM 53

s

ve
3.2.14 org.w3c.dom.Node

Description

The org.w3c.dom.Node interface is the primary datatype for the entire Document
Object Model. It represents a single node in the document tree. While all objects
implementing theNode interface expose methods for dealing with children, not all object
implementing theNode interface may have children. For example,Text nodes may not
have children; adding children to such nodes raises a DOMException.

The attributesnodeName, nodeValue andattributes are included as a mechanism to
access node information without casting down to the specific derived interface. In cases
where there is no obvious mapping of these attributes for a specific nodeType (e.g.,
nodeValue for anElement or attributes for aComment), this returnsnull . Note that the
specialized interfaces may contain additional and more convenient mechanisms to retrie
and set the relevant information.

The values of nodeName, nodeValue, and attributes vary according to the node type:

Node Type nodeName nodeValue attributes

Element tagName null NamedNodeMap

Attr name of Attr attribute value null

Text #text text content null

CDATASection #cdata-section CDATA content null

EntityReference entity name null null

Entity entity name null null

ProcessingInstruction target content null

Comment #comment comment null

Document #document null null

DocumentType doc type name null null

DocumentFragment #document-
fragment

null null

Notation notation name null null
54 Java API for XML Parsing Specification • November 16, 1999

Constants

short ELEMENT_NODE node type forElement

short ATTRIBUTE_NODE node type forAttr

short TEXT_NODE node type forText

short CDATA_SECTION_NODE node type forCDATASection

short ENTITY_REFERENCE_NODE node type forEntityReference

short ENTITY_NODE node type forEntity

short
PROCESSING_INSTRUCTION_NODE

node type forProcessingInstruction

short COMMENT_NODE node type forComment

short DOCUMENT_NODE node type forDocument

short DOCUMENT_TYPE_NODE node type forDocumentType

short
DOCUMENT_FRAGMENT_NODE

node type forDocumentFragment

short NOTATION_NODE node type forNotation
Chapter 3 DOM 55

Methods

String getNodeName() return the name of theNode.

This value isNode (sub)interface-dependent.

void
setNodeValue(
String nodeValue
) throws DOMException

set theNode value.

The value isNode (sub)interface-dependent.

This method may raise a DOMException
NO_MODIFICATION_ALLOWED_ERRwhen theNode
is read only.

String getNodeValue() return the value of theNode.

short getNodeType() return theNode type (see constants above).

Node getNodeParent() return the parentNode of this Node, or null .

NodeList
getChildNodes()

return aNodeList (possibly empty) of the immediate
child Node(s) of thisNode.

Node getFirstChild() get the first child of thisNode, or null .

Node getLastChild() get the last child of thisNode, or null .

Node
getPreviousSibling()

return the previous sibling of thisNode, or null .

Node getNextSibling() return the next sibling of thisNode, or null .

NamedNodeMap
getAttributes()

return aNamedNodeMapof the attributes for this
Node.

Document
getOwnerDocument()

return theDocument this Node belongs to/was created
by.
56 Java API for XML Parsing Specification • November 16, 1999

Node
insertBefore(
Node newChild,
Node refChild
) throws DOMException

insert the nodenewChild before the existing child
noderefChild . If refChild is null , insert
newChild at the end of the list of children.

If newChild is a DocumentFragment object, all of
its children are inserted, in the same order, before
refChild . If the newChild is already in the tree, it is
first removed.

This returns theNode being inserted.

This method may raise the following
DOMException (s):

• WRONG_DOCUMENT_ERRif the newChild
was created from a differentDocument than
the one that created theNode.

• NO_MODIFICATION_ALLOWED_ERRif
Node is read only.

• NOT_FOUND_ERRif the refChild is not a
child of this Node.

• HIERARCHY_REQUEST_ERRif the Node is
of a type that does not allow children of the
type of thenewChild , or theNode is an
ancestor of this one.
Chapter 3 DOM 57

Node
replaceChild(
Node newChild,
Node oldChild
) throws DOMException

replace theoldChild with the newChild .

This returns theNode being replaced.

This method may raise the following
DOMException (s):

• WRONG_DOCUMENT_ERRif the newChild
was created from a differentDocument than
the one that created theNode.

• NO_MODIFICATION_ALLOWED_ERRif
Node is read only.

• NOT_FOUND_ERRif the refChild is not a
child of this Node.

• HIERARCHY_REQUEST_ERRif the Node is
of a type that does not allow children of the
type of thenewChild , or theNode is an
ancestor of this one.

Node removeChild(
Node oldChild
) throws DOMException

remove the child specified.

This returns the child being removed.

This method may raise the following
DOMException (s):

• NO_MODIFICATION_ALLOWED_ERRif
Node is read only.

• NOT_FOUND_ERRif the refChild is not a
child of this Node.
58 Java API for XML Parsing Specification • November 16, 1999

n

3.2.15 org.w3c.dom.NodeList

Description

The org.w3c.dom.NodeList interface provides an abstraction of an ordered collectio
of Node(s), without defining or constraining the implementation.

Node appendChild(
Node newChild
) throws DOMException

append the child specified to the end of the list of
children. If the child specified is already in the list of
children, it is first deleted, then appended.

This returns the child appended.

This method may raise aDOMException (s):

• WRONG_DOCUMENT_ERRif the newChild
was created from a differentDocument than
the one that created theNode.

• NO_MODIFICATION_ALLOWED_ERRif
Node is read only.

• HIERARCHY_REQUEST_ERRif the Node is
of a type that does not allow children of the
type of thenewChild , or theNode is an
ancestor of this one.

boolean
hasChildNodes()

return true if the Node has any children, otherwise
false .

Node cloneNode(
boolean deep
)

return a duplicate of thisNode. The duplicate has a
null parentNode.

Cloning anElement copies all attributes and their
values, including those generated by the XML processor
to represent defaulted attributes, but this method does not
copy any text it contains unless it is a deep clone,
because the text is contained in a childText node.
Cloning any other type of node simply returns a copy of
this node.

If specifieddeep is true , then the (sub)tree is also
duplicated. If it is false, then only theNode itself is
duplicated.
Chapter 3 DOM 59

he
s

he
Methods

3.2.16 org.w3c.dom.Notation

Description

The org.w3c.dom.Notation interface represents a notation as declared in a DTD. A
notation either declares, by name, the format of an unparsed entity (see section 4.7 of t
XML 1.0 specification), or is used for formal declaration of Processing Instruction target
(see section 2.6 of the XML 1.0 specification). The nodeName attribute inherited fromNode
is set to the declared name of the notation.

Methods

3.2.17 org.w3c.dom.ProcessingInstruction

Description

The org.w3c.dom.ProcessingInstruction interface represents a "processing
instruction" used in XML as a way to keep processor-specific information in the text of t
document.

int getLength() return the number of items in the list.

Node item(index i) return the Node at the specifiedindex , or null if the
specified index is out of bounds.

String getPublicId() return the value of the public identifier ornull .

String getSystemId() return the value of the system identifier ornull .
60 Java API for XML Parsing Specification • November 16, 1999

ed

ally

ture,
Methods

3.2.18 org.w3c.dom.Text

Description

The org.w3c.dom.Text interface extends org.w3c.dom.CharacterData .

The Text interface represents the textual content (termed character data in XML) of an
Element or Attr . If there is no markup inside an element’s content, the text is contain
in a single object implementing the Text interface that is the only child of the element. If
there is markup, it is parsed into a list of elements andText nodes that form the list of
children of the element.

When a document is first made available via the DOM, there is only oneText node for each
block of text. Users may create adjacentText nodes that represent the contents of a given
element without any intervening markup, but should be aware that there is no way to
represent the separations between these nodes in XML or HTML, so they will not gener
persist between DOM editing sessions. Thenormalize() method onElement merges
any such adjacentText objects into a single node for each block of text; this is
recommended before employing operations that depend on a particular document struc
such as navigation with XPointers.

String getTarget() return the target of the PI.

String getData() return the data associated with the PI target, ornull .

void setData(
String data
)

set the data associated with the target PI.

This method may raise aDOMexception with type
NO_MODIFICATION_ALLOWED_ERRif the Node is
read only.
Chapter 3 DOM 61

Methods

Text splitText(
int offset
) throws DOMException

break thisText node into twoText nodes at the
specified offset, keeping both in the tree as siblings. This
node then only contains all the content up to the offset
point. A newText node, inserted as the next sibling of
this node, contains all the content at and after
the offset point.

This returns the newly createdText Node .

This method may raise the following
DOMException (s):

• INDEX_SIZE_ERR if the offset specified is
either negative or greater than the number of
characters in the data.

• NO_MODIFICATION_ALLOWED_ERRif the
Node is read only.
62 Java API for XML Parsing Specification • November 16, 1999

a
se

to
CHAPTER 4

Javax.xml.* packages

4.1 Overview
Although both SAX and DOM provide broad functionality, they are not complete. This is
significant issue, affecting the ability to author a truly portable application using only the
APIs. Also, it is desirable to allow the underlying implementation of the parser mechanism
be pluggable.

This specification extends the SAX and DOM APIs to provide a completely portable a
functional API.

4.2 Parser API Definition(s)
The Parser Factory APIs provide a parser implementation-independent programming
interface to enable application(s) to parse XML content.
 Javax.xml.* packages 63

and
4.2.1 javax.xml.parsers.FactoryException

Description

The javax.xml.parsers.FactoryExceptio n is a public class that extends
java.lang.RuntimeException . Instances are typically thrown by the parser and
DOM factory implementations’ subclasses to signal and encapsulate a variety of checked
runtime exceptions that may occur while manipulating artifacts from a plugged
implementation.

Constructors

Methods

FactoryException(
String s
)

create a newFactoryException with the String
specified as an error message.

FactoryException(
Exception e
)

create a newFactoryException with the Exception
specified as the (encapsulated) causal exception.

FactoryException(
Exception e,
String s
)

create a newFactoryException with the Exception
specified as the (encapsulated) causal exception and the
String specified as an error message.

String
getMessage()

return the message (if any) associated with this exception.

If no message was specified and anException is
encapsulated, this has the effect of invoking
getMessage() on the encapsulatedException .

Exception
getException()

return the actual exception (if any) that caused this exception
to be raised.
64 Java API for XML Parsing Specification • November 16, 1999

using
4.2.2 javax.xml.parsers.SAXParserFactory

Description

A particular SAXParser implementation is “plugged” into the platform via
SAXParserFactory in one of two ways

• as a platform default.

• through external specification by a system property named
“ javax.xml.parsers.SAXParserFactory ”, obtained using
java.lang.System.getProperty() .

This property (or platform default) names a class that is a concrete subclass of
javax.xml.parsers.SAXParserFactory . This subclass shall implement a public
no-args constructor used by the base abstract class to create an instance of the factory
the newInstance() method defined below.

The platform default is only used if no external implementation is available.

Once an application has obtained a reference to aSAXParserFactory , it can use this to
configure and obtain parser instances.
Chapter 4 Javax.xml.* packages 65

Static Methods

Methods

SAXParserFactory
newInstance()

obtain a new instance of aSAXParserFactory.

Use the class named in the system property
“ javax.xml.parsers.SAXParserFactory ”,
or the platform default if none is defined.

This method throws
javax.xml.parsers.FactoryException if the
implementation is not available or cannot be instantiated.

void setNamespaceAware(
boolean awareness
)

specify if the parsers used by this
SAXParserFactory are required to provide
XML namespace support or not.

This method throws
IllegalArgumentException if the
underlying implementation cannot provide the
namespace conformance capability requested

void setLocale(
Locale l
)

set theSAXParserFactory Locale .

The Locale may be used by the parser(s)
implementing thisSAXParserFactory in order
to report any errors in aLocale -specific fashion.

If a particular implementation cannot support the
Locale specified, it may ignore this property.

void setValidating(
boolean validating
)

specify if the parsers used by this
SAXParserFactory are required to validate the
XML they parse.

This method throws
IllegalArgumentException if the
underlying implementation cannot provide the
validation capability requested.
66 Java API for XML Parsing Specification • November 16, 1999

me
Abstract Methods

These methods are implemented by concrete subclasses of this abstract base class.

4.2.3 javax.xml.parsers.SAXParser

Description

The javax.xml.parsers.SAXParser is a public class. It defines a convenience API
that wraps anorg.xml.sax.Parser that enables an application to parse XML content
using, or to obtain, the actual parser instance wrapped.

This class implements a protected no-args constructor. Implementations are required to
subclass this class in to provide their own implementation, returning instances of the sa
from theSAXParserFactory.newSAXParser() method.

boolean isNamespaceAware() indicate if theSAXParserFactory is currently
supporting XML Namespaces or not.

boolean isValidating() indicate if theSAXParserFactory is using a
validating XML parser or not.

Locale getLocale() return the currentLocale of the
SAXParserFactory.

boolean
checkValidating(boolean b)

check that the underlying implementation can
support the validation capability specified.

boolean
checkNamespaceAwareness(
boolean b
)

check that the underlying implementation can
support the namespace conformance capability
specified.

SAXParser
newSAXParser() throws
SAXException

create a new instance ofSAXParser using the
currently configured factory parameters.

throws SAXException if the initialization of the
underlying Parser fails.

org.xml.sax.Parser
newParser

create a new instance of Parser using the currently
configured factory parameters
Chapter 4 Javax.xml.* packages 67

Methods

void parse(
InputStream is,
HandlerBase hb
) throws
SAXException,
IOException

parse the content of thejava.io.InputStream
instance as XML using the parser instance with the
specifiedorg.xml.sax.HandlerBase providing
the implementations ofDocumentHandler,
ErrorHandler, EntityResolver , and
DTDHandler .

If any IO errors occur, anIOException shall be
thrown.

An IllegalArgumentException is thrown if the
InputStream is null .

void parse(
String uri,
HandlerBase hb
) throws
SAXException,
IOException

parse the content of the specified URI as XML using the
parser instance with the specified
org.xml.sax.HandlerBase providing the
implementations of;DocumentHandler,
ErrorHandler, EntityResolver , and
DTDHandler .

If any IO errors occur, anIOException shall be
thrown.

An IllegalArgumentException is thrown if the
URL is null .

void parse(
File f,
HandlerBase hb) throws
SAXException,
IOException

parse the content of thejava.io.InputStream
instance as XML using the parser instance with the
specifiedorg.xml.sax.HandlerBase providing
the implementations ofDocumentHandler,
ErrorHandler, EntityResolver , and
DTDHandler .

If any IO errors occur, anIOException shall be
thrown.

An IllegalArgumentException is thrown if the
File is null .
68 Java API for XML Parsing Specification • November 16, 1999

o

4.2.4 javax.xml.parsers.DocumentBuilderFactory

Description

The javax.xml.parsers.DocumentBuilderFactory is an abstract public class. It
provides a factory API that enables an application to obtain a
javax.xml.parsers.DocumentBuilder object.

A particular Document Builder implementation is “plugged” into the platform in one of tw
ways:

• as a platform default.

• through external specification by a system property named
“ javax.xml.parsers.DocumentBuilderFactory ” and obtained using
java.lang.System.getProperty().

void parse(
InputSource is,
HandlerBase hb
) throws
SAXException,
IOException

parse the content of the
org.xml.sax.InputSource instance as XML
using the parser instance with the specified
org.xml.sax.HandlerBase providing the
implementations ofDocumentHandler,
ErrorHandler, EntityResolver , and
DTDHandler .

If any IO errors occur, anIOException shall be
thrown.

An IllegalArgumentException is thrown if the
InputStream is null .

org.xml.sax.Parser
parser()

return the actualParser object wrapped by this
instance.

boolean
isNamespaceAware()

return if theSAXParser is supporting XML
Namespaces or not.

boolean isValidating() return if theSAXParser is using a validating XML
parser or not.

Locale getLocale() return the currentLocale of the SAXParser.
Chapter 4 Javax.xml.* packages 69

y

This property (or platform default) names a subclass of
javax.xml.parsers.DocumentBuilderFactory . This subclass shall implement a
public no-args constructor used by this class to instantiate a factory using the
newInstance() method defined below.

The platform default is only used if no external implementation is available.

Static Methods

DocumentBuilderFactory
newInstance()

obtain a new instance of aDocumentBuilderFactory.

Use the class named in the system property
“ javax.xml.parsers.DocumentBuilderFactory ”
or the platform default if none is defined.

This method throwsjavax.xml.FactoryException if the
implementation is not available or cannot be instantiated for an
reason.
70 Java API for XML Parsing Specification • November 16, 1999

Methods

void setNamespaceAware(
boolean awareness
)

specify if the parser(s) used by this
DocumentBuilderFactory shall be required
to provide XML namespace support.

If the value specified cannot be supported by the
implementation, this method shall throw an
IllegalArgumentException .

void setLocale(
Locale l
)

set theDocumentBuilderFactory Locale .

The parser(s) implementing this
DocumentBuilderFactory may use the
Locale to report any errors in a Locale-specific
fashion.

If the value specified cannot be supported by the
implementation, it may be silently ignored.

void setValidating(
boolean validating
)

specify if the parser(s) used by this
DocumentBuilderFactory shall be required
to validate the XML they parse.

If the value specified cannot be supported by the
implementation, an
IllegalArgumentException shall be
thrown.

boolean isNamespaceAware() indicate if theDocumentBuilderFactory is
currently supporting XML Namespaces or not.

boolean isValidating() indicate if theDocumentBuilderFactory is
using a validating XML parser or not.

Locale getLocale() return the currentLocale of the
DocumentBuilderFactory.
Chapter 4 Javax.xml.* packages 71

s.

t

ot
o

Abstract Methods

The methods above are implemented by concrete subclasses of this abstract base clas

4.2.5 javax.xml.parsers.DocumentBuilder

Description

The javax.xml.parsers.DocumentBuilder is an abstract public class. It provides a
convenience API that enables an application to parse XML into, and obtain,
org.w3c.dom.Document instances.

A DocumentBuilder instance is obtained from aDocumentBuilderFactory by
invoking its newDocumentBuilder() method.

Implementations extend this base class to provide the parser- and document-dependen
implementation(s).

Note that theDocumentBuilder reuses several classes from the SAX API. This does n
require that the implementor of the underlying DOM implementation use a SAX parser t
parse XML content into aDocument . It merely requires that the implementation
communicate with the application using these existing APIs.

boolean
checkValidating(boolean b)

check that the underlying implementation can
support the validation capability specified.

boolean
checkNamespaceAwareness(
boolean b
)

check that the underlying implementation can
support the namespace conformance capability
specified.

boolean
checkLocale(Locale l)

check that the underlying implementation can
support theLocale specified.

DocumentBuilder
newDocumentBuilder()

obtain a new instance ofDocumentBuilder
from the underlying implementation.
72 Java API for XML Parsing Specification • November 16, 1999

Methods

void
setEntityResolver(
org.xml.SAX.EntityResolver er
)

specify theEntityResolver to be used by this
DocumentBuilder .

Setting theEntityResolver to null will
cause the underlying implementation to use its own
default implementation and behavior.

Changing this value during parsing does not affect
the current operation.

void
setErrorHandler(
org.xml.SAX.ErrorHandler eh
)

specify theErrorHandler to be used by this
DocumentBuilder .

Setting theErrorHandler to null will cause
the underlying implementation to use its own
default implementation and behavior.

Changing this value during parsing does not affect
the current operation.

org.w3c.dom.Document
parse(
InputStream is
) throws
SAXException,
IOException

parse the content of the
java.io.InputStream instance as XML
using the associated parser instance and return a
newDocument containing a representation of the
content parsed.

If any parse errors or warnings occur, a
SAXException shall be thrown.

If any IO errors occur, anIOException shall be
thrown.

An IllegalArgumentException shall be
thrown if the InputStream is null .
Chapter 4 Javax.xml.* packages 73

org.w3c.dom.Document
parse(
String uri
) throws
SAXException,
IOException

parse the content at the URI specified as XML,
using the associated parser instance, and return a
newDocument containing a representation of the
content parsed.

If any parse errors or warnings occur, then a
SAXException shall be thrown.

If any IO errors occur, then anIOException
shall be thrown.

An IllegalArgumentException shall be
thrown if theURL is null .

org.w3c.dom.Document
parse(
File f
) throws
SAXException,
IOException

parse the content of theFile specified as XML,
using the associated parser instance, and return a
newDocument containing a representation of the
content parsed therein.

If any parse errors or warnings occur, a
SAXException shall be thrown.

If any IO errors occur, anIOException shall be
thrown.

An IllegalArgumentException shall be
thrown if theFile is null .

org.w3c.dom.Document
parse(
InputSource is
) throws
SAXException,
IOException

parse the content of the
org.xml.sax.InputSource instance as
XML using a distinct parser instance and return a
Document representing the XML structure
parsed.

If any parse errors or warnings occur, a
SAXException shall be thrown.

If any IO errors occur, anIOException shall be
thrown.

An IllegalArgumentException shall be
thrown if the InputSource is null .
74 Java API for XML Parsing Specification • November 16, 1999

ass.
Abstract Methods

These methods above are implemented by concrete subclasses of this abstract base cl

boolean isNamespaceAware() return if theDocumentBuilder is currently
supporting XML Namespaces or not.

boolean isValidating() return if theDocumentBuilder is using a
validating XML parser or not.

Locale getLocale() return theLocale of the DocumentBuilder.

org.w3c.dom.Document
parseDocument(
InputSource is
) throws
SAXException,
IOException

parse the content of the
org.xml.sax.InputSource instance as
XML using a distinct parser instance and return a
Document representing the XML structure
parsed.

If any parse errors or warnings occur, a
SAXException shall be thrown.

If any IO errors occur, anIOException shall be
thrown.

An IllegalArgumentException shall be
thrown if the InputSource is null .

org.w3c.dom.Docunent
newDocument()

create a newDocument instance.
Chapter 4 Javax.xml.* packages 75

76 Java API for XML Parsing Specification • November 16, 1999

aces

ese

cter
ngs.
e

CHAPTER 5

XML & Namespace Conformance

5.1 Overview
This chapter describes the parser implementation well-formedness, validity, and namesp
conformance requirements.

Parser implementations that are accessed via the APIs defined here shall implement th
constraints (without exception) to provide a predictable environment for application
development and deployment.

5.2 Document Character Set Encoding(s)
XML documents (both markup and content) are represented using the UNICODE chara
set. A character set may be physically encoded using one or more character set encodi
An XML document’s encoding is typically announced in the prolog of the document in th
XML declaration PI:<?XML version=1.0 encoding=” <enc> ” ?>

The XML specification defines the following encoding values:

• “UTF-8”

• “UTF-16”

• “ISO-10646-UCS-2”

• “ISO-10646-UCS-4”

• “ISO-8859-1”, ISO-8859-2”, “ISO-8859-3”, , “ISO-8859-4”,
“ISO-8859-5”, “ISO-8859-6”, “ISO-8859-7”, “ISO-8859-8”,
“ISO-8859-9”
 XML & Namespace Conformance 77

nd
ose

ay

a

..

ned

ing
• “ISO-2022-JP”

• “Shift_JIS”

• “EUC-JP”

• “ASCII” (Note that ASCII encoded documents do not require an explicit encoding
declaration in the XML declaration PI.)

Parser implementations are required to support the following encodings; ASCII, UTF-8 a
UTF-16. Furthermore, parsers may optionally support additional encodings (including th
defined above).

It is an error for a document to declare a particular encoding and actually use another.

Parser implementations are required to support the facility whereby an external entity m
declare its own encoding distinct from that of the referencing entity or document.

5.3 Parser Well Formedness Constraints
The W3C XML Specification (version 1.0) defines a “well formed” XML document to be
textual object that:

• Taken as a whole, matches thedocumentproduction defined therein.

• Meets all the well-formedness constraints defined therein.

• References, either directly or indirectly, only parsed entities that are also well-formed

Validating and non-validating parser implementations conforming to this standard
specification are required to report any violations of the well-formedness constraints defi
by the XML 1.0 specification.

5.4 Parser Validity Constraints
In addition to checking XML documents for well-formedness (as defined above), a validat
parser implementation is also required to check an XML document for conformance to:

• the document’s associated DTD (if any)

• the XML validity constraints defined in the XML 1.0 Specification document.
78 Java API for XML Parsing Specification • November 16, 1999

ingle

e

ity

eck
ce
no

rsing

hat
r, any
5.5 Parser Namespace Support
XML namespaces are designed to be used to differentiate instances of markup within a s
document.

Parser implementations may optionally1 provide support to parse documents that utilize the
W3C XML Namespaces Technical Recommendation. Conforming documents replace th
XML syntactic production forNamewith QName. XML elements and attributes may be
comprised from a (possibly defaulted, and thus implicit) “namespace prefix,” associated with
a unique “namespace URI” defined by a “namespace declaration,” and a “local part”
separated by a single “:” character (when the namespace is other than the default). Ent
names, processing instruction targets, and notation names shall not contain any “:”
characters.

5.5.1 non-validating parser conformance

A non-validating parser that implements namespace support as defined is required to ch
for, and report as an error, any syntactic violation(s) defined by the W3C XML Namespa
Specification. Parser implementations are required to detect namespace usage that has
matching prior namespace declaration, either within the body of the document entity or
within the internal subset of a document’s DTD. Parser implementations encountering
namespace usage without a prior matching namespace declaration shall result in an pa
error.

5.5.2 validating parser conformance

In addition to meeting the requirements for a non-validating parser, a validating parser t
implements namespace support as defined is required to check for, and report as an erro
namespace used but not declared within a document, or its internal or external DTD
(sub)set(s).

5.6 XML Namespace Prefix Usage
This standard extension reserves the XML namespace prefixes beginning withjava and
javax (case insensitive) for future usage by the Java(tm) Platform.

1. This may become mandatory in a future version of this API specification
Chapter 5 XML & Namespace Conformance 79

80 Java API for XML Parsing Specification • November 16, 1999

	Java API for XML Parsing Specification
	Version 1.0 [Public Draft 1]
	please send comments to xml-spec-comments@eng.sun.com
	Java is a registered trademark of Sun Microsystems, Inc. in the US and other countries.
	Copyright (c) 1999 Sun Microsystems All Rights Reserved.

	Contents
	Preface v
	Overview 1
	SAX 5
	DOM 35
	Javax.xml.* packages 63
	XML & Namespace Conformance 77
	Preface

	Who should read this document
	Related Documents
	TABLE�P�1 Normative References
	TABLE�P�2 Non-normative References

	Related Copyrights
	SAX
	W3C Copyright
	CORBA
	Unicode
	ISO 10646

	Future Directions

	Acknowledgments
	1
	Overview

	1.1 XML
	1.2 XML Parser
	1.3 DOM
	1.4 SAX
	1.5 XML Namespaces
	2
	SAX

	2.1 Overview
	2.2 API Definition(s)
	2.2.1 org.xml.sax.AttributeList
	Description

	2.2.2 org.xml.sax.DTDHandler
	Description
	Methods

	2.2.3 org.xml.sax.DocumentHandler
	Description
	Methods

	2.2.4 org.xml.sax.EntityResolver
	Description
	Methods

	2.2.5 org.xml.sax.ErrorHandler
	Description
	Methods

	2.2.6 org.xml.sax.HandlerBase
	Description
	Methods

	2.2.7 org.xml.sax.InputSource
	Description
	Methods

	2.2.8 org.xml.sax.Locator
	Description
	Methods

	2.2.9 org.xml.sax.Parser
	Description
	Methods

	2.2.10 org.xml.sax.SAXException
	Description
	Methods

	2.2.11 org.xml.sax.SAXParseException
	Description
	Methods
	3
	DOM

	3.1 Overview
	3.2 API Definition(s)
	3.2.1 org.w3c.dom.Attr
	Description
	Methods

	3.2.2 org.w3c.dom.CDATASection
	Description
	Methods

	3.2.3 org.w3c.dom.CharacterData
	Description
	Methods

	3.2.4 org.w3c.dom.Comment
	Description
	Methods

	3.2.5 org.w3c.dom.DOMException
	Description
	Constants
	Methods
	Fields

	3.2.6 org.w3c.dom.DOMImplementation
	Description
	Methods

	3.2.7 org.w3c.dom.Document
	Description
	Methods

	3.2.8 org.w3c.dom.DocumentFragment
	Description
	Methods

	3.2.9 org.w3c.dom.DocumentType
	Description
	Methods

	3.2.10 org.w3c.dom.Element
	Description
	Methods

	3.2.11 org.w3c.dom.Entity
	Description
	Methods

	3.2.12 org.w3c.dom.EntityReference
	Description
	Methods

	3.2.13 org.w3c.dom.NamedNodeMap
	Description
	Methods

	3.2.14 org.w3c.dom.Node
	Description
	Constants
	Methods

	3.2.15 org.w3c.dom.NodeList
	Description
	Methods

	3.2.16 org.w3c.dom.Notation
	Description
	Methods

	3.2.17 org.w3c.dom.ProcessingInstruction
	Description
	Methods

	3.2.18 org.w3c.dom.Text
	Description
	Methods
	4
	Javax.xml.* packages

	4.1 Overview
	4.2 Parser API Definition(s)
	4.2.1 javax.xml.parsers.FactoryException
	Description
	Constructors
	Methods

	4.2.2 javax.xml.parsers.SAXParserFactory
	Description
	Static Methods
	Methods
	Abstract Methods

	4.2.3 javax.xml.parsers.SAXParser
	Description

	4.2.4 javax.xml.parsers.DocumentBuilderFactory
	Description
	Static Methods
	Methods
	Abstract Methods

	4.2.5 javax.xml.parsers.DocumentBuilder
	Description
	Methods
	Abstract Methods
	5
	XML & Namespace Conformance

	5.1 Overview
	5.2 Document Character Set Encoding(s)
	5.3 Parser Well Formedness Constraints
	5.4 Parser Validity Constraints
	5.5 Parser Namespace Support
	5.5.1 non-validating parser conformance
	5.5.2 validating parser conformance

	5.6 XML Namespace Prefix Usage

