
THE JAVA VIRTUAL MACHINE INSTRUCTION SET 175
DRAFT
aaload aaload

Operation Load reference from array

Forms aaload = 50 (0x32)

Operand
Stack

…, arrayref, index ⇒
…, value

Description The arrayref must be of type reference and must refer to an array
whose components are of type reference. The index must be of
type int. Both arrayref and index are popped from the operand
stack. The reference value in the component of the array at index
is retrieved and pushed onto the operand stack.

Runtime
Exceptions

If arrayref is null, aaload throws a NullPointerException.

Otherwise, if index is not within the bounds of the array referenced
by arrayref, the aaload instruction throws an ArrayIndex-
OutOfBoundsException.

Format aaload
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET176
DRAFT
aastore aastore

Operation Store into reference array

Forms aastore = 83 (0x53)

Operand
Stack

…, arrayref, index, value ⇒
…

Description The arrayref must be of type reference and must refer to an array
whose components are of type reference. The index must be of
type int and value must be of type reference. The arrayref, index,
and value are popped from the operand stack. The reference value
is stored as the component of the array at index.

At run-time, the type of value must be compatible with the type of
the components of the array referenced by arrayref. Specifically,
assignment of a value of reference type S (source) to an array com-
ponent of reference type T (target) is allowed only if:

• If S is a class type, then:

◆ If T is a class type, then S must be the same class (§2.8.1) as T,
or S must be a subclass of T;

◆ If T is an interface type, S must implement (§2.13) interface T.

• If S is an interface type, then:

◆ If T is a class type, then T must be Object (§2.4.7).

◆ If T is an interface type, then T must be the same interface as S

or a superinterface of S (§2.13.2).

Format aastore
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET 177
DRAFT
aastore (cont.) aastore (cont.)

• If S is an array type, namely, the type SC[], that is, an array of
components of type SC, then:

◆ If T is a class type, then T must be Object (§2.4.7).

◆ If T is an array type TC[], that is, an array of components of
type TC, then one of the following must be true:

❖ TC and SC are the same primitive type (§2.4.1).

❖ TC and SC are reference types (§2.4.6), and type SC is
assignable to TC by these runtime rules.

◆ If T is an interface type, T must be one of the interfaces imple-
mented by arrays (§2.15).

Runtime
Exceptions

If arrayref is null, aastore throws a NullPointerException.

Otherwise, if index is not within the bounds of the array referenced
by arrayref, the aastore instruction throws an ArrayIndexOutOf-

BoundsException.

Otherwise, if arrayref is not null and the actual type of value is not
assignment compatible (§2.6.7) with the actual type of the compo-
nents of the array, aastore throws an ArrayStoreException.
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET178
DRAFT
aconst_null aconst_null

Operation Push null

Forms aconst_null = 1 (0x1)

Operand
Stack

… ⇒
…, null

Description Push the null object reference onto the operand stack.

Notes The Java virtual machine does not mandate a concrete value for
null.

Format aconst_null
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET 179
DRAFT
aload aload

Operation Load reference from local variable

Forms aload = 25 (0x19)

Operand
Stack

… ⇒
…, objectref

Description The index is an unsigned byte that must be an index into the local
variable array of the current frame (§3.6). The local variable at
index must contain a reference. The objectref in the local variable
at index is pushed onto the operand stack.

Notes The aload instruction cannot be used to load a value of type
returnAddress from a local variable onto the operand stack. This
asymmetry with the astore instruction is intentional.

The aload opcode can be used in conjunction with the wide instruc-
tion to access a local variable using a two-byte unsigned index.

Format aload
index
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET180
DRAFT
aload_<n> aload_<n>

Operation Load reference from local variable

Forms aload_0 = 42 (0x2a)
aload_1 = 43 (0x2b)
aload_2 = 44 (0x2c)
aload_3 = 45 (0x2d)

Operand
Stack

… ⇒
…, objectref

Description The <n> must be an index into the local variable array of the current
frame (§3.6). The local variable at <n> must contain a reference.
The objectref in the local variable at index is pushed onto the oper-
and stack.

Notes An aload_<n> instruction cannot be used to load a value of type
returnAddress from a local variable onto the operand stack. This
asymmetry with the corresponding astore_<n> instruction is inten-
tional. Each of the aload_<n> instructions is the same as aload with
an index of <n>, except that the operand <n> is implicit.

Format aload_<n>
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET 181
DRAFT
anewarray anewarray

Operation Create new array of reference

Forms anewarray = 189 (0xbd)

Operand
Stack

…, count ⇒
…, arrayref

Description The count must be of type int. It is popped off the operand stack.
The count represents the number of components of the array to be
created. The unsigned indexbyte1 and indexbyte2 are used to con-
struct an index into the runtime constant pool of the current class
(§3.6), where the value of the index is (indexbyte1 << 8) |
indexbyte2. The runtime constant pool item at that index must be a
symbolic reference to a class, array, or interface type. The named
class, array, or interface type is resolved (§5.4.3.1). A new array
with components of that type, of length count, is allocated from
the garbage-collected heap, and a reference arrayref to this new
array object is pushed onto the operand stack. All components of
the new array are initialized to null, the default value for refer-
ence types (§2.5.1).

Linking
Exceptions

During resolution of the symbolic reference to the class, array, or
interface type, any of the exceptions documented in §5.4.3.1 can be
thrown.

Runtime
Exception

Otherwise, if count is less than zero, the anewarray instruction
throws a NegativeArraySizeException.

Notes The anewarray instruction is used to create a single dimension of
an array of object references or part of a multidimensional array.

Format anewarray
indexbyte1
indexbyte2
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET182
DRAFT
areturn areturn

Operation Return reference from method

Forms areturn = 176 (0xb0)

Operand
Stack

…, objectref ⇒
[empty]

Description The objectref must be of type reference and must refer to an
object of a type that is assignment compatible (§2.6.7) with the
type represented by the return descriptor (§4.3.3) of the current
method. If the current method is a synchronized method, the
monitor acquired or reentered on invocation of the method is
released or exited (respectively) as if by execution of a monitorexit
instruction. If no exception is thrown, objectref is popped from the
operand stack of the current frame (§3.6) and pushed onto the oper-
and stack of the frame of the invoker. Any other values on the oper-
and stack of the current method are discarded.

The interpreter then reinstates the frame of the invoker and returns
control to the invoker.

Runtime
Exceptions

If the current method is a synchronized method and the current
thread is not the owner of the monitor acquired or reentered on
invocation of the method, areturn throws an IllegalMonitor-

StateException. This can happen, for example, if a synchro-

nized method contains a monitorexit instruction, but no
monitorenter instruction, on the object on which the method is syn-
chronized.

Otherwise, if the virtual machine implementation enforces the rules
on structured use of locks described in §8.13 and if the first of those
rules is violated during invocation of the current method, then
areturn throws an IllegalMonitorStateException.

Format areturn
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET 183
DRAFT
arraylength arraylength

Operation Get length of array

Forms arraylength = 190 (0xbe)

Operand
Stack

…, arrayref ⇒
…, length

Description The arrayref must be of type reference and must refer to an array.
It is popped from the operand stack. The length of the array it refer-
ences is determined. That length is pushed onto the operand stack
as an int.

Runtime
Exception

If the arrayref is null, the arraylength instruction throws a
NullPointerException.

Format arraylength
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET184
DRAFT
astore astore

Operation Store reference into local variable

Forms astore = 58 (0x3a)

Operand
Stack

…, objectref ⇒
…

Description The index is an unsigned byte that must be an index into the local
variable array of the current frame (§3.6). The objectref on the top
of the operand stack must be of type returnAddress or of type
reference. It is popped from the operand stack, and the value of
the local variable at index is set to objectref.

Notes The astore instruction is used with an objectref of type return-
Address when implementing the finally clauses of the Java pro-
gramming language (see Section 7.13, “Compiling finally”). The
aload instruction cannot be used to load a value of type return-

Address from a local variable onto the operand stack. This asym-
metry with the astore instruction is intentional.

The astore opcode can be used in conjunction with the wide instruc-
tion to access a local variable using a two-byte unsigned index.

Format astore
index
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET 185
DRAFT
astore_<n> astore_<n>

Operation Store reference into local variable

Forms astore_0 = 75 (0x4b)
astore_1 = 76 (0x4c)
astore_2 = 77 (0x4d)
astore_3 = 78 (0x4e)

Operand
Stack

…, objectref ⇒
…

Description The <n> must be an index into the local variable array of the cur-
rent frame (§3.6). The objectref on the top of the operand stack
must be of type returnAddress or of type reference. It is
popped from the operand stack, and the value of the local variable
at <n> is set to objectref.

Notes An astore_<n> instruction is used with an objectref of type
returnAddress when implementing the finally clauses of the
Java programming language (see Section 7.13, “Compiling
finally”). An aload_<n> instruction cannot be used to load a
value of type returnAddress from a local variable onto the oper-
and stack. This asymmetry with the corresponding astore_<n>
instruction is intentional.

Each of the astore_<n> instructions is the same as astore with an
index of <n>, except that the operand <n> is implicit.

Format astore_<n>
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET186
DRAFT
athrow athrow

Operation Throw exception or error

Forms athrow = 191 (0xbf)

Operand
Stack

…, objectref ⇒
objectref

Description The objectref must be of type reference and must refer to an
object that is an instance of class Throwable or of a subclass of
Throwable. It is popped from the operand stack. The objectref is
then thrown by searching the current method (§3.6) for the first
exception handler that matches the class of objectref, as given by
the algorithm in §3.10.

If an exception handler that matches objectref is found, it contains
the location of the code intended to handle this exception. The pc

register is reset to that location, the operand stack of the current
frame is cleared, objectref is pushed back onto the operand stack,
and execution continues.

If no matching exception handler is found in the current frame, that
frame is popped. If the current frame represents an invocation of a
synchronized method, the monitor acquired or reentered on invo-
cation of the method is released or exited (respectively) as if by
execution of a monitorexit instruction. Finally, the frame of its
invoker is reinstated, if such a frame exists, and the objectref is
rethrown. If no such frame exists, the current thread exits.

Runtime
Exceptions

If objectref is null, athrow throws a NullPointerException

instead of objectref.

Format athrow
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET 187
DRAFT
athrow (cont.) athrow (cont.)

Otherwise, if the method of the current frame is a synchronized

method and the current thread is not the owner of the monitor
acquired or reentered on invocation of the method, athrow throws
an IllegalMonitorStateException instead of the object previ-
ously being thrown. This can happen, for example, if an abruptly
completing synchronized method contains a monitorexit instruc-
tion, but no monitorenter instruction, on the object on which the
method is synchronized.

Otherwise, if the virtual machine implementation enforces the rules
on structured use of locks described in §8.13 and if the first of those
rules is violated during invocation of the current method, then
athrow throws an IllegalMonitorStateException instead of
the object previously being thrown.

Notes The operand stack diagram for the athrow instruction may be mis-
leading: If a handler for this exception is matched in the current
method, the athrow instruction discards all the values on the oper-
and stack, then pushes the thrown object onto the operand stack.
However, if no handler is matched in the current method and the
exception is thrown farther up the method invocation chain, then
the operand stack of the method (if any) that handles the exception
is cleared and objectref is pushed onto that empty operand stack. All
intervening frames from the method that threw the exception up to,
but not including, the method that handles the exception are
discarded.
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET188
DRAFT
baload baload

Operation Load byte or boolean from array

Forms baload = 51 (0x33)

Operand
Stack

…, arrayref, index ⇒
…, value

Description The arrayref must be of type reference and must refer to an array
whose components are of type byte or of type boolean. The index
must be of type int. Both arrayref and index are popped from the
operand stack. If the components of the array are of type byte, the
component of the array at index is retrieved and sign-extended to
an int value. The resulting value is pushed onto the operand stack.

Runtime
Exceptions

If arrayref is null, baload throws a NullPointerException.

Otherwise, if index is not within the bounds of the array referenced
by arrayref, the baload instruction throws an ArrayIndex-
OutOfBoundsException.

Notes The baload instruction is used to load values from both byte and
boolean arrays. In Sun’s implementation of the Java virtual
machine, boolean arrays (arrays of type T_BOOLEAN; see §3.2 and
the description of the newarray instruction in this chapter) are
implemented as arrays of 8-bit values. Other implementations may
implement packed boolean arrays; the baload instruction of such
implementations must be used to access those arrays.

Format baload
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET 189
DRAFT
bastore bastore

Operation Store into byte or boolean array

Forms bastore = 84 (0x54)

Operand
Stack

…, arrayref, index, value ⇒
…

Description The arrayref must be of type reference and must refer to an array
whose components are of type byte or of type boolean. The index
and the value must both be of type int. The arrayref, index, and
value are popped from the operand stack. If the components of the
array are of type byte, the int value is truncated to a byte and
stored as the component of the array indexed by index.

Runtime
Exceptions

If arrayref is null, bastore throws a NullPointerException.

Otherwise, if index is not within the bounds of the array referenced
by arrayref, the bastore instruction throws an ArrayIndexOutOf-

BoundsException.

Notes The bastore instruction is used to store values into both byte and
boolean arrays. In Sun’s implementation of the Java virtual
machine, boolean arrays (arrays of type T_BOOLEAN; see §3.2 and
the description of the newarray instruction in this chapter) are
implemented as arrays of 8-bit values. Other implementations may
implement packed boolean arrays; in such implementations the
bastore instruction must be able to store boolean values into
packed boolean arrays as well as byte values into byte arrays.

Format bastore
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET190
DRAFT
bipush bipush

Operation Push byte

Forms bipush = 16 (0x10)

Operand
Stack

… ⇒
…, value

Description The immediate byte is sign-extended to an int value. That value is
pushed onto the operand stack.

Format bipush
byte
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET 191
DRAFT
caload caload

Operation Load char from array

Forms caload = 52 (0x34)

Operand
Stack

…, arrayref, index ⇒
…, value

Description The arrayref must be of type reference and must refer to an array
whose components are of type char. The index must be of type
int. Both arrayref and index are popped from the operand stack.
The component of the array at index is retrieved and zero-extended
to an int value. That value is pushed onto the operand stack.

Runtime
Exceptions

If arrayref is null, caload throws a NullPointerException.

Otherwise, if index is not within the bounds of the array referenced
by arrayref, the caload instruction throws an ArrayIndexOutOf-

BoundsException.

Format caload
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET192
DRAFT
castore castore

Operation Store into char array

Forms castore = 85 (0x55)

Operand
Stack

…, arrayref, index, value ⇒
…

Description The arrayref must be of type reference and must refer to an array
whose components are of type char. The index and the value must
both be of type int. The arrayref, index, and value are popped
from the operand stack. The int value is truncated to a char and
stored as the component of the array indexed by index.

Runtime
Exceptions

If arrayref is null, castore throws a NullPointerException.

Otherwise, if index is not within the bounds of the array referenced
by arrayref, the castore instruction throws an ArrayIndexOutOf-

BoundsException.

Format castore
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET 193
DRAFT
checkcast checkcast

Operation Check whether object is of given type

Forms checkcast = 192 (0xc0)

Operand
Stack

…, objectref ⇒
…, objectref

Description The objectref must be of type reference. The unsigned indexbyte1
and indexbyte2 are used to construct an index into the runtime con-
stant pool of the current class (§3.6), where the value of the index is
(indexbyte1 << 8) | indexbyte2. The runtime constant pool item at
the index must be a symbolic reference to a class, array, or interface
type. The named class, array, or interface type is resolved
(§5.4.3.1).

If objectref is null or can be cast to the resolved class, array, or
interface type, the operand stack is unchanged; otherwise, the
checkcast instruction throws a ClassCastException.

The following rules are used to determine whether an objectref that
is not null can be cast to the resolved type: if S is the class of the
object referred to by objectref and T is the resolved class, array, or
interface type, checkcast determines whether objectref can be cast to
type T as follows:

• If S is an ordinary (nonarray) class, then:

◆ If T is a class type, then S must be the same class (§2.8.1)
as T, or a subclass of T.

◆ If T is an interface type, then S must implement (§2.13)
interface T.

Format checkcast
indexbyte1
indexbyte2
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET194
DRAFT
checkcast (cont.) checkcast (cont.)

• If S is an interface type, then:

◆ If T is a class type, then T must be Object (§2.4.7).

◆ If T is an interface type, then T must be the same interface as S

or a superinterface of S (§2.13.2).

• If S is a class representing the array type SC[], that is, an array of
components of type SC, then:

◆ If T is a class type, then T must be Object (§2.4.7).

◆ If T is an array type TC[], that is, an array of components of
type TC, then one of the following must be true:

❖ TC and SC are the same primitive type (§2.4.1).

❖ TC and SC are reference types (§2.4.6), and type SC can be
cast to TC by recursive application of these rules.

◆ If T is an interface type, T must be one of the interfaces imple-
mented by arrays (§2.15).

Linking
Exceptions

During resolution of the symbolic reference to the class, array, or
interface type, any of the exceptions documented in Section 5.4.3.1
can be thrown.

Runtime
Exception

Otherwise, if objectref cannot be cast to the resolved class, array, or
interface type, the checkcast instruction throws a ClassCast-
Exception.

Notes The checkcast instruction is very similar to the instanceof instruc-
tion. It differs in its treatment of null, its behavior when its test
fails (checkcast throws an exception, instanceof pushes a result
code), and its effect on the operand stack.
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET 195
DRAFT
d2f d2f

Operation Convert double to float

Forms d2f = 144 (0x90)

Operand
Stack

…, value ⇒
…, result

Description The value on the top of the operand stack must be of type double.
It is popped from the operand stack and undergoes value set con-
version (§3.8.3) resulting in value’. Then value’ is converted to a
float result using IEEE 754 round to nearest mode. The result is
pushed onto the operand stack.

Where an d2f instruction is FP-strict (§3.8.2), the result of the con-
version is always rounded to the nearest representable value in the
float value set (§3.3.2).

Where an d2f instruction is not FP-strict, the result of the conver-
sion may be taken from the float-extended-exponent value set
(§3.3.2); it is not necessarily rounded to the nearest representable
value in the float value set.

A finite value’ too small to be represented as a float is converted
to a zero of the same sign; a finite value’ too large to be represented
as a float is converted to an infinity of the same sign. A double

NaN is converted to a float NaN.

Notes The d2f instruction performs a narrowing primitive conversion
(§2.6.3). It may lose information about the overall magnitude of
value’ and may also lose precision.

Format d2f
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET196
DRAFT
d2i d2i

Operation Convert double to int

Forms d2i = 142 (0x8e)

Operand
Stack

…, value ⇒
…, result

Description The value on the top of the operand stack must be of type double.
It is popped from the operand stack and undergoes value set con-
version (§3.8.3) resulting in value’. Then value’ is converted to an
int. The result is pushed onto the operand stack:

• If the value’ is NaN, the result of the conversion is an int 0.

• Otherwise, if the value’ is not an infinity, it is rounded to an
integer value V, rounding towards zero using IEEE 754 round
towards zero mode. If this integer value V can be represented as
an int, then the result is the int value V.

• Otherwise, either the value’ must be too small (a negative value
of large magnitude or negative infinity), and the result is the
smallest representable value of type int, or the value’ must be
too large (a positive value of large magnitude or positive infinity),
and the result is the largest representable value of type int.

Notes The d2i instruction performs a narrowing primitive conversion
(§2.6.3). It may lose information about the overall magnitude of
value’ and may also lose precision.

Format d2i
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET 197
DRAFT
d2l d2l

Operation Convert double to long

Forms d2l = 143 (0x8f)

Operand
Stack

…, value ⇒
…, result

Description The value on the top of the operand stack must be of type double.
It is popped from the operand stack and undergoes value set con-
version (§3.8.3) resulting in value’. Then value’ is converted to a
long. The result is pushed onto the operand stack:

• If the value’ is NaN, the result of the conversion is a long 0.

• Otherwise, if the value’ is not an infinity, it is rounded to an
integer value V, rounding towards zero using IEEE 754 round
towards zero mode. If this integer value V can be represented
as a long, then the result is the long value V.

• Otherwise, either the value’ must be too small (a negative value
of large magnitude or negative infinity), and the result is the
smallest representable value of type long, or the value’ must be
too large (a positive value of large magnitude or positive infinity),
and the result is the largest representable value of type long.

Notes The d2l instruction performs a narrowing primitive conversion
(§2.6.3). It may lose information about the overall magnitude of
value’ and may also lose precision.

Format d2l
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET198
DRAFT
dadd dadd

Operation Add double

Forms dadd = 99 (0x63)

Operand
Stack

…, value1, value2 ⇒
…, result

Description Both value1 and value2 must be of type double. The values are
popped from the operand stack and undergo value set conversion
(§3.8.3), resulting in value1’ and value2’. The double result is
value1’ + value2’. The result is pushed onto the operand stack.

The result of a dadd instruction is governed by the rules of IEEE
arithmetic:

• If either value1’ or value2’ is NaN, the result is NaN.

• The sum of two infinities of opposite sign is NaN.

• The sum of two infinities of the same sign is the infinity of that
sign.

• The sum of an infinity and any finite value is equal to the infinity.

• The sum of two zeroes of opposite sign is positive zero.

• The sum of two zeroes of the same sign is the zero of that sign.

• The sum of a zero and a nonzero finite value is equal to the non-
zero value.

• The sum of two nonzero finite values of the same magnitude and
opposite sign is positive zero.

Format dadd
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET 199
DRAFT
dadd (cont.) dadd (cont.)

• In the remaining cases, where neither operand is an infinity, a
zero, or NaN and the values have the same sign or have different
magnitudes, the sum is computed and rounded to the nearest
representable value using IEEE 754 round to nearest mode. If the
magnitude is too large to represent as a double, we say the oper-
ation overflows; the result is then an infinity of appropriate sign.
If the magnitude is too small to represent as a double, we say the
operation underflows; the result is then a zero of appropriate sign.

The Java virtual machine requires support of gradual underflow as
defined by IEEE 754. Despite the fact that overflow, underflow, or
loss of precision may occur, execution of a dadd instruction never
throws a runtime exception.
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET200
DRAFT
daload daload

Operation Load double from array

Forms daload = 49 (0x31)

Operand
Stack

…, arrayref, index ⇒
…, value

Description The arrayref must be of type reference and must refer to an array
whose components are of type double. The index must be of type
int. Both arrayref and index are popped from the operand stack.
The double value in the component of the array at index is
retrieved and pushed onto the operand stack.

Runtime
Exceptions

If arrayref is null, daload throws a NullPointerException.

Otherwise, if index is not within the bounds of the array referenced
by arrayref, the daload instruction throws an ArrayIndexOutOf-

BoundsException.

Format daload
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET 201
DRAFT
dastore dastore

Operation Store into double array

Forms dastore = 82 (0x52)

Operand
Stack

…, arrayref, index, value ⇒
…

Description The arrayref must be of type reference and must refer to an array
whose components are of type double. The index must be of type
int, and value must be of type double. The arrayref, index, and
value are popped from the operand stack. The double value under-
goes value set conversion (§3.8.3), resulting in value’, which is
stored as the component of the array indexed by index.

Runtime
Exceptions

If arrayref is null, dastore throws a NullPointerException.

Otherwise, if index is not within the bounds of the array referenced
by arrayref, the dastore instruction throws an ArrayIndex-

OutOfBoundsException.

Format dastore
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET202
DRAFT
dcmp<op> dcmp<op>

Operation Compare double

Forms dcmpg = 152 (0x98)
dcmpl = 151 (0x97)

Operand
Stack

…, value1, value2 ⇒
…, result

Description Both value1 and value2 must be of type double. The values are
popped from the operand stack and undergo value set conversion
(§3.8.3), resulting in value1’ and value2’. A floating-point compari-
son is performed:

• If value1’ is greater than value2’, the int value 1 is pushed onto
the operand stack.

• Otherwise, if value1’ is equal to value2’, the int value 0 is
pushed onto the operand stack.

• Otherwise, if value1’ is less than value2’, the int value − 1 is
pushed onto the operand stack.

• Otherwise, at least one of value1’ or value2’ is NaN. The dcmpg
instruction pushes the int value 1 onto the operand stack and
the dcmpl instruction pushes the int value −1 onto the operand
stack.

Floating-point comparison is performed in accordance with IEEE
754. All values other than NaN are ordered, with negative infinity
less than all finite values and positive infinity greater than all finite
values. Positive zero and negative zero are considered equal.

Format dcmp<op>
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET 203
DRAFT
dcmp<op> (cont.) dcmp<op> (cont.)

Notes The dcmpg and dcmpl instructions differ only in their treatment of
a comparison involving NaN. NaN is unordered, so any double

comparison fails if either or both of its operands are NaN. With
both dcmpg and dcmpl available, any double comparison may be
compiled to push the same result onto the operand stack whether
the comparison fails on non-NaN values or fails because it encoun-
tered a NaN. For more information, see Section 7.5, “More Control
Examples.”
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET204
DRAFT
dconst_<d> dconst_<d>

Operation Push double

Forms dconst_0 = 14 (0xe)
dconst_1 = 15 (0xf)

Operand
Stack

… ⇒
…, <d>

Description Push the double constant <d> (0.0 or 1.0) onto the operand stack.

Format dconst_<d>
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET 205
DRAFT
ddiv ddiv

Operation Divide double

Forms ddiv = 111 (0x6f)

Operand
Stack

…, value1, value2 ⇒
…, result

Description Both value1 and value2 must be of type double. The values are
popped from the operand stack and undergo value set conversion
(§3.8.3), resulting in value1’ and value2’. The double result is
value1’ / value2’. The result is pushed onto the operand stack.

The result of a ddiv instruction is governed by the rules of IEEE
arithmetic:

• If either value1’ or value2’ is NaN, the result is NaN.

• If neither value1’ nor value2’ is NaN, the sign of the result is
positive if both values have the same sign, negative if the values
have different signs.

• Division of an infinity by an infinity results in NaN.

• Division of an infinity by a finite value results in a signed infinity,
with the sign-producing rule just given.

• Division of a finite value by an infinity results in a signed zero,
with the sign-producing rule just given.

• Division of a zero by a zero results in NaN; division of zero by any
other finite value results in a signed zero, with the sign-producing
rule just given.

• Division of a nonzero finite value by a zero results in a signed
infinity, with the sign-producing rule just given.

Format ddiv
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET206
DRAFT
ddiv (cont.) ddiv (cont.)

• In the remaining cases, where neither operand is an infinity, a
zero, or NaN, the quotient is computed and rounded to the nearest
double using IEEE 754 round to nearest mode. If the magnitude
is too large to represent as a double, we say the operation over-
flows; the result is then an infinity of appropriate sign. If the
magnitude is too small to represent as a double, we say the oper-
ation underflows; the result is then a zero of appropriate sign.

The Java virtual machine requires support of gradual underflow as
defined by IEEE 754. Despite the fact that overflow, underflow,
division by zero, or loss of precision may occur, execution of a ddiv
instruction never throws a runtime exception.
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET 207
DRAFT
dload dload

Operation Load double from local variable

Forms dload = 24 (0x18)

Operand
Stack

… ⇒
…, value

Description The index is an unsigned byte. Both index and index + 1 must be
indices into the local variable array of the current frame (§3.6). The
local variable at index must contain a double. The value of the
local variable at index is pushed onto the operand stack.

Notes The dload opcode can be used in conjunction with the wide instruc-
tion to access a local variable using a two-byte unsigned index.

Format dload
index
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET208
DRAFT
dload_<n> dload_<n>

Operation Load double from local variable

Forms dload_0 = 38 (0x26)
dload_1 = 39 (0x27)
dload_2 = 40 (0x28)
dload_3 = 41 (0x29)

Operand
Stack

… ⇒
…, value

Description Both <n> and <n> + 1 must be indices into the local variable array
of the current frame (§3.6). The local variable at <n> must contain
a double. The value of the local variable at <n> is pushed onto the
operand stack.

Notes Each of the dload_<n> instructions is the same as dload with an
index of <n>, except that the operand <n> is implicit.

Format dload_<n>
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET 209
DRAFT
dmul dmul

Operation Multiply double

Forms dmul = 107 (0x6b)

Operand
Stack

…, value1, value2 ⇒
…, result

Description Both value1 and value2 must be of type double. The values are
popped from the operand stack and undergo value set conversion
(§3.8.3), resulting in value1’ and value2’. The double result is
value1’ ∗ value2’. The result is pushed onto the operand stack.

The result of a dmul instruction is governed by the rules of IEEE
arithmetic:

• If either value1’ or value2’ is NaN, the result is NaN.

• If neither value1’ nor value2’ is NaN, the sign of the result is
positive if both values have the same sign and negative if the
values have different signs.

• Multiplication of an infinity by a zero results in NaN.

• Multiplication of an infinity by a finite value results in a signed
infinity, with the sign-producing rule just given.

• In the remaining cases, where neither an infinity nor NaN is
involved, the product is computed and rounded to the nearest
representable value using IEEE 754 round to nearest mode. If the
magnitude is too large to represent as a double, we say the oper-
ation overflows; the result is then an infinity of appropriate sign.
If the magnitude is too small to represent as a double, we say the
operation underflows; the result is then a zero of appropriate sign.

Format dmul
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET210
DRAFT
dmul (cont.) dmul (cont.)

The Java virtual machine requires support of gradual underflow as
defined by IEEE 754. Despite the fact that overflow, underflow, or
loss of precision may occur, execution of a dmul instruction never
throws a runtime exception.
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET 211
DRAFT
dneg dneg

Operation Negate double

Forms dneg = 119 (0x77)

Operand
Stack

…, value ⇒
…, result

Description The value must be of type double. It is popped from the operand
stack and undergoes value set conversion (§3.8.3), resulting in
value’. The double result is the arithmetic negation of value’. The
result is pushed onto the operand stack.

For double values, negation is not the same as subtraction from
zero. If x is +0.0, then 0.0−x equals +0.0, but −x equals −0.0.
Unary minus merely inverts the sign of a double.

Special cases of interest:

• If the operand is NaN, the result is NaN (recall that NaN has no
sign).

• If the operand is an infinity, the result is the infinity of opposite
sign.

• If the operand is a zero, the result is the zero of opposite sign.

Format dneg
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET212
DRAFT
drem drem

Operation Remainder double

Forms drem = 115 (0x73)

Operand
Stack

…, value1, value2 ⇒
…, result

Description Both value1 and value2 must be of type double. The values are
popped from the operand stack and undergo value set conversion
(§3.8.3), resulting in value1’ and value2’. The result is calculated
and pushed onto the operand stack as a double.

The result of a drem instruction is not the same as that of the so-
called remainder operation defined by IEEE 754. The IEEE 754
“remainder” operation computes the remainder from a rounding
division, not a truncating division, and so its behavior is not analo-
gous to that of the usual integer remainder operator. Instead, the
Java virtual machine defines drem to behave in a manner analogous
to that of the Java virtual machine integer remainder instructions
(irem and lrem); this may be compared with the C library function
fmod.

The result of a drem instruction is governed by these rules:

• If either value1’ or value2’ is NaN, the result is NaN.

• If neither value1’ nor value2’ is NaN, the sign of the result equals
the sign of the dividend.

• If the dividend is an infinity or the divisor is a zero or both, the
result is NaN.

• If the dividend is finite and the divisor is an infinity, the result
equals the dividend.

Format drem
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET 213
DRAFT
drem (cont.) drem (cont.)

• If the dividend is a zero and the divisor is finite, the result equals
the dividend.

• In the remaining cases, where neither operand is an infinity, a
zero, or NaN, the floating-point remainder result from a dividend
value1’ and a divisor value2’ is defined by the mathematical
relation result = value1’ − (value2’ ∗ q), where q is an integer that
is negative only if value1’ / value2’ is negative, and positive only
if value1’ / value2’ is positive, and whose magnitude is as large
as possible without exceeding the magnitude of the true mathe-
matical quotient of value1’ and value2’.

Despite the fact that division by zero may occur, evaluation of
a drem instruction never throws a runtime exception. Overflow,
underflow, or loss of precision cannot occur.

Notes The IEEE 754 remainder operation may be computed by the library
routine Math.IEEEremainder.
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET214
DRAFT
dreturn dreturn

Operation Return double from method

Forms dreturn = 175 (0xaf)

Operand
Stack

…, value ⇒
[empty]

Description The current method must have return type double. The value must
be of type double. If the current method is a synchronized

method, the monitor acquired or reentered on invocation of the
method is released or exited (respectively) as if by execution of a
monitorexit instruction. If no exception is thrown, value is popped
from the operand stack of the current frame (§3.6) and undergoes
value set conversion (§3.8.3), resulting in value’. The value’ is
pushed onto the operand stack of the frame of the invoker. Any
other values on the operand stack of the current method are dis-
carded.

The interpreter then returns control to the invoker of the method,
reinstating the frame of the invoker.

Runtime
Exceptions

If the current method is a synchronized method and the current
thread is not the owner of the monitor acquired or reentered on
invocation of the method, dreturn throws an IllegalMonitor-

StateException. This can happen, for example, if a synchro-

nized method contains a monitorexit instruction, but no
monitorenter instruction, on the object on which the method is syn-
chronized.

Otherwise, if the virtual machine implementation enforces the rules
on structured use of locks described in §8.13 and if the first of those
rules is violated during invocation of the current method, then
dreturn throws an IllegalMonitorStateException.

Format dreturn
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET 215
DRAFT
dstore dstore

Operation Store double into local variable

Forms dstore = 57 (0x39)

Operand
Stack

…, value ⇒
…

Description The index is an unsigned byte. Both index and index + 1 must be
indices into the local variable array of the current frame (§3.6). The
value on the top of the operand stack must be of type double. It is
popped from the operand stack and undergoes value set conversion
(§3.8.3), resulting in value’. The local variables at index and
index + 1 are set to value’.

Notes The dstore opcode can be used in conjunction with the wide
instruction to access a local variable using a two-byte unsigned
index.

Format dstore
index
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET216
DRAFT
dstore_<n> dstore_<n>

Operation Store double into local variable

Forms dstore_0 = 71 (0x47)
dstore_1 = 72 (0x48)
dstore_2 = 73 (0x49)
dstore_3 = 74 (0x4a)

Operand
Stack

…, value ⇒
…

Description Both <n> and <n> + 1 must be indices into the local variable array
of the current frame (§3.6). The value on the top of the operand
stack must be of type double. It is popped from the operand stack
and undergoes value set conversion (§3.8.3), resulting in value’. The
local variables at <n> and <n> + 1 are set to value’.

Notes Each of the dstore_<n> instructions is the same as dstore with an
index of <n>, except that the operand <n> is implicit.

Format dstore_<n>
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET 217
DRAFT
dsub dsub

Operation Subtract double

Forms dsub = 103 (0x67)

Operand
Stack

…, value1, value2 ⇒
…, result

Description Both value1 and value2 must be of type double. The values are
popped from the operand stack and undergo value set conversion
(§3.8.3), resulting in value1’ and value2’. The double result is
value1’ − value2’. The result is pushed onto the operand stack.

For double subtraction, it is always the case that a−b produces the
same result as a+(−b). However, for the dsub instruction, subtrac-
tion from zero is not the same as negation, because if x is +0.0,
then 0.0−x equals +0.0, but −x equals −0.0.

The Java virtual machine requires support of gradual underflow as
defined by IEEE 754. Despite the fact that overflow, underflow, or
loss of precision may occur, execution of a dsub instruction never
throws a runtime exception.

Format dsub
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET218
DRAFT
dup dup

Operation Duplicate the top operand stack value

Forms dup = 89 (0x59)

Operand
Stack

…, value ⇒
…, value, value

Description Duplicate the top value on the operand stack and push the dupli-
cated value onto the operand stack.

The dup instruction must not be used unless value is a value of a
category 1 computational type (§3.11.1).

Format dup
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET 219
DRAFT
dup_x1 dup_x1

Operation Duplicate the top operand stack value and insert two values down

Forms dup_x1 = 90 (0x5a)

Operand
Stack

…, value2, value1 ⇒
…, value1, value2, value1

Description Duplicate the top value on the operand stack and insert the dupli-
cated value two values down in the operand stack.

The dup_x1 instruction must not be used unless both value1 and
value2 are values of a category 1 computational type (§3.11.1).

Format dup_x1
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET220
DRAFT
dup_x2 dup_x2

Operation Duplicate the top operand stack value and insert two or three values
down

Forms dup_x2 = 91 (0x5b)

Operand
Stack

Form 1:

…, value3, value2, value1 ⇒
…, value1, value3, value2, value1

where value1, value2, and value3 are all values of a category 1
computational type (§3.11.1).

Form 2:

…, value2, value1 ⇒
…, value1, value2, value1

where value1 is a value of a category 1 computational type and
value2 is a value of a category 2 computational type (§3.11.1).

Description Duplicate the top value on the operand stack and insert the dupli-
cated value two or three values down in the operand stack.

Format dup_x2
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET 221
DRAFT
dup2 dup2

Operation Duplicate the top one or two operand stack values

Forms dup2 = 92 (0x5c)

Operand
Stack

Form 1:

…, value2, value1 ⇒
…, value2, value1, value2, value1

where both value1 and value2 are values of a category 1 computa-
tional type (§3.11.1).

Form 2:

…, value ⇒
…, value, value

where value is a value of a category 2 computational type (§3.11.1).

Description Duplicate the top one or two values on the operand stack and push
the duplicated value or values back onto the operand stack in the
original order.

Format dup2
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET222
DRAFT
dup2_x1 dup2_x1

Operation Duplicate the top one or two operand stack values and insert two or
three values down

Forms dup2_x1 = 93 (0x5d)

Operand
Stack

Form 1:

…, value3, value2, value1 ⇒
…, value2, value1, value3, value2, value1

where value1, value2, and value3 are all values of a category 1
computational type (§3.11.1).

Form 2:

…, value2, value1 ⇒
…, value1, value2, value1

where value1 is a value of a category 2 computational type and
value2 is a value of a category 1 computational type (§3.11.1).

Description Duplicate the top one or two values on the operand stack and insert
the duplicated values, in the original order, one value beneath the
original value or values in the operand stack.

Format dup2_x1
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET 223
DRAFT
dup2_x2 dup2_x2

Operation Duplicate the top one or two operand stack values and insert two,
three, or four values down

Forms dup2_x2 = 94 (0x5e)

Operand
Stack

Form 1:

…, value4, value3, value2, value1 ⇒
…, value2, value1, value4, value3, value2, value1

where value1, value2, value3, and value4 are all values of a cate-
gory 1 computational type (§3.11.1).

Form 2:

…, value3, value2, value1 ⇒
…, value1, value3, value2, value1

where value1 is a value of a category 2 computational type and
value2 and value3 are both values of a category 1 computational
type (§3.11.1).

Form 3:

…, value3, value2, value1 ⇒
…, value2, value1, value3, value2, value1

where value1 and value2 are both values of a category 1 computa-
tional type and value3 is a value of a category 2 computational type
(§3.11.1).

Form 4:

…, value2, value1 ⇒
…, value1, value2, value1

where value1 and value2 are both values of a category 2 computa-
tional type (§3.11.1).

Format dup2_x2
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET224
DRAFT
dup2_x2 (cont.) dup2_x2 (cont.)

Description Duplicate the top one or two values on the operand stack and insert
the duplicated values, in the original order, into the operand stack.
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET 225
DRAFT
f2d f2d

Operation Convert float to double

Forms f2d = 141 (0x8d)

Operand
Stack

…, value ⇒
…, result

Description The value on the top of the operand stack must be of type float. It
is popped from the operand stack and undergoes value set conver-
sion (§3.8.3), resulting in value’. Then value’ is converted to a dou-
ble result. This result is pushed onto the operand stack.

Notes Where an f2d instruction is FP-strict (§3.8.2) it performs a widen-
ing primitive conversion (§2.6.2). Because all values of the float
value set (§3.3.2) are exactly representable by values of the double
value set (§3.3.2), such a conversion is exact.

Where an f2d instruction is not FP-strict, the result of the conver-
sion may be taken from the double-extended-exponent value set; it
is not necessarily rounded to the nearest representable value in the
double value set. However, if the operand value is taken from the
float-extended-exponent value set and the target result is con-
strained to the double value set, rounding of value may be required.

Format f2d
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET226
DRAFT
f2i f2i

Operation Convert float to int

Forms f2i = 139 (0x8b)

Operand
Stack

…, value ⇒
…, result

Description The value on the top of the operand stack must be of type float. It
is popped from the operand stack and undergoes value set conver-
sion (§3.8.3), resulting in value’. Then value’ is converted to an int

result. This result is pushed onto the operand stack:

• If the value’ is NaN, the result of the conversion is an int 0.

• Otherwise, if the value’ is not an infinity, it is rounded to an
integer value V, rounding towards zero using IEEE 754 round
towards zero mode. If this integer value V can be represented as
an int, then the result is the int value V.

• Otherwise, either the value’ must be too small (a negative value
of large magnitude or negative infinity), and the result is the
smallest representable value of type int, or the value’ must be
too large (a positive value of large magnitude or positive infinity),
and the result is the largest representable value of type int.

Notes The f2i instruction performs a narrowing primitive conversion
(§2.6.3). It may lose information about the overall magnitude of
value’ and may also lose precision.

Format f2i
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET 227
DRAFT
f2l f2l

Operation Convert float to long

Forms f2l = 140 (0x8c)

Operand
Stack

…, value ⇒
…, result

Description The value on the top of the operand stack must be of type float. It
is popped from the operand stack and undergoes value set conver-
sion (§3.8.3), resulting in value’. Then value’ is converted to a long
result. This result is pushed onto the operand stack:

• If the value’ is NaN, the result of the conversion is a long 0.

• Otherwise, if the value’ is not an infinity, it is rounded to an
integer value V, rounding towards zero using IEEE 754 round
towards zero mode. If this integer value V can be represented
as a long, then the result is the long value V.

• Otherwise, either the value’ must be too small (a negative value
of large magnitude or negative infinity), and the result is the
smallest representable value of type long, or the value’ must be
too large (a positive value of large magnitude or positive infinity),
and the result is the largest representable value of type long.

Notes The f2l instruction performs a narrowing primitive conversion
(§2.6.3). It may lose information about the overall magnitude of
value’ and may also lose precision.

Format f2l
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET228
DRAFT
fadd fadd

Operation Add float

Forms fadd = 98 (0x62)

Operand
Stack

…, value1, value2 ⇒
…, result

Description Both value1 and value2 must be of type float. The values are
popped from the operand stack and undergo value set conversion
(§3.8.3), resulting in value1’ and value2’. The float result is
value1’ + value2’. The result is pushed onto the operand stack.

The result of an fadd instruction is governed by the rules of IEEE
arithmetic:

• If either value1’ or value2’ is NaN, the result is NaN.

• The sum of two infinities of opposite sign is NaN.

• The sum of two infinities of the same sign is the infinity of that
sign.

• The sum of an infinity and any finite value is equal to the infinity.

• The sum of two zeroes of opposite sign is positive zero.

• The sum of two zeroes of the same sign is the zero of that sign.

• The sum of a zero and a nonzero finite value is equal to the non-
zero value.

• The sum of two nonzero finite values of the same magnitude and
opposite sign is positive zero.

Format fadd
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET 229
DRAFT
fadd (cont.) fadd (cont.)

• In the remaining cases, where neither operand is an infinity, a
zero, or NaN and the values have the same sign or have different
magnitudes, the sum is computed and rounded to the nearest
representable value using IEEE 754 round to nearest mode. If the
magnitude is too large to represent as a float, we say the opera-
tion overflows; the result is then an infinity of appropriate sign. If
the magnitude is too small to represent as a float, we say the
operation underflows; the result is then a zero of appropriate sign.

The Java virtual machine requires support of gradual underflow as
defined by IEEE 754. Despite the fact that overflow, underflow, or
loss of precision may occur, execution of an fadd instruction never
throws a runtime exception.
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET230
DRAFT
faload faload

Operation Load float from array

Forms faload = 48 (0x30)

Operand
Stack

…, arrayref, index ⇒
…, value

Description The arrayref must be of type reference and must refer to an array
whose components are of type float. The index must be of type
int. Both arrayref and index are popped from the operand stack.
The float value in the component of the array at index is retrieved
and pushed onto the operand stack.

Runtime
Exceptions

If arrayref is null, faload throws a NullPointerException.

Otherwise, if index is not within the bounds of the array referenced
by arrayref, the faload instruction throws an ArrayIndexOutOf-

BoundsException.

Format faload
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET 231
DRAFT
fastore fastore

Operation Store into float array

Forms fastore = 81 (0x51)

Operand
Stack

…, arrayref, index, value ⇒
…

Description The arrayref must be of type reference and must refer to an array
whose components are of type float. The index must be of type
int, and the value must be of type float. The arrayref, index, and
value are popped from the operand stack. The float value under-
goes value set conversion (§3.8.3), resulting in value’, and value’ is
stored as the component of the array indexed by index.

Runtime
Exceptions

If arrayref is null, fastore throws a NullPointerException.

Otherwise, if index is not within the bounds of the array referenced
by arrayref, the fastore instruction throws an ArrayIndexOutOf-

BoundsException.

Format fastore
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET232
DRAFT
fcmp<op> fcmp<op>

Operation Compare float

Forms fcmpg = 150 (0x96)
fcmpl = 149 (0x95)

Operand
Stack

…, value1, value2 ⇒
…, result

Description Both value1 and value2 must be of type float. The values are
popped from the operand stack and undergo value set conversion
(§3.8.3), resulting in value1’ and value2’. A floating-point compari-
son is performed:

• If value1’ is greater than value2’, the int value 1 is pushed onto
the operand stack.

• Otherwise, if value1’ is equal to value2’, the int value 0 is
pushed onto the operand stack.

• Otherwise, if value1’ is less than value2’, the int value −1 is
pushed onto the operand stack.

• Otherwise, at least one of value1’ or value2’ is NaN. The fcmpg
instruction pushes the int value 1 onto the operand stack and
the fcmpl instruction pushes the int value −1 onto the operand
stack.

Floating-point comparison is performed in accordance with IEEE
754. All values other than NaN are ordered, with negative infinity
less than all finite values and positive infinity greater than all finite
values. Positive zero and negative zero are considered equal.

Format fcmp<op>
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET 233
DRAFT
fcmp<op> (cont.) fcmp<op> (cont.)

Notes The fcmpg and fcmpl instructions differ only in their treatment of a
comparison involving NaN. NaN is unordered, so any float com-
parison fails if either or both of its operands are NaN. With both
fcmpg and fcmpl available, any float comparison may be com-
piled to push the same result onto the operand stack whether the
comparison fails on non-NaN values or fails because it encountered
a NaN. For more information, see Section 7.5, “More Control
Examples.”
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET234
DRAFT
fconst_<f> fconst_<f>

Operation Push float

Forms fconst_0 = 11 (0xb)
fconst_1 = 12 (0xc)
fconst_2 = 13 (0xd)

Operand
Stack

… ⇒
…, <f>

Description Push the float constant <f> (0.0, 1.0, or 2.0) onto the operand
stack.

Format fconst_<f>
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET 235
DRAFT
fdiv fdiv

Operation Divide float

Forms fdiv = 110 (0x6e)

Operand
Stack

…, value1, value2 ⇒
…, result

Description Both value1 and value2 must be of type float. The values are
popped from the operand stack and undergo value set conversion
(§3.8.3), resulting in value1’ and value2’. The float result is
value1’ / value2’. The result is pushed onto the operand stack.

The result of an fdiv instruction is governed by the rules of IEEE
arithmetic:

• If either value1’ or value2’ is NaN, the result is NaN.

• If neither value1’ nor value2’ is NaN, the sign of the result is
positive if both values have the same sign, negative if the values
have different signs.

• Division of an infinity by an infinity results in NaN.

• Division of an infinity by a finite value results in a signed infinity,
with the sign-producing rule just given.

• Division of a finite value by an infinity results in a signed zero,
with the sign-producing rule just given.

• Division of a zero by a zero results in NaN; division of zero by any
other finite value results in a signed zero, with the sign-producing
rule just given.

• Division of a nonzero finite value by a zero results in a signed
infinity, with the sign-producing rule just given.

Format fdiv
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET236
DRAFT
fdiv (cont.) fdiv (cont.)

• In the remaining cases, where neither operand is an infinity, a
zero, or NaN, the quotient is computed and rounded to the nearest
float using IEEE 754 round to nearest mode. If the magnitude is
too large to represent as a float, we say the operation overflows;
the result is then an infinity of appropriate sign. If the magnitude
is too small to represent as a float, we say the operation under-
flows; the result is then a zero of appropriate sign.

The Java virtual machine requires support of gradual underflow as
defined by IEEE 754. Despite the fact that overflow, underflow,
division by zero, or loss of precision may occur, execution of an
fdiv instruction never throws a runtime exception.
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET 237
DRAFT
fload fload

Operation Load float from local variable

Forms fload = 23 (0x17)

Operand
Stack

… ⇒
…, value

Description The index is an unsigned byte that must be an index into the local
variable array of the current frame (§3.6). The local variable at
index must contain a float. The value of the local variable at
index is pushed onto the operand stack.

Notes The fload opcode can be used in conjunction with the wide instruc-
tion to access a local variable using a two-byte unsigned index.

Format fload
index
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET238
DRAFT
fload_<n> fload_<n>

Operation Load float from local variable

Forms fload_0 = 34 (0x22)
fload_1 = 35 (0x23)
fload_2 = 36 (0x24)
fload_3 = 37 (0x25)

Operand
Stack

… ⇒
…, value

Description The <n> must be an index into the local variable array of the cur-
rent frame (§3.6). The local variable at <n> must contain a float.
The value of the local variable at <n> is pushed onto the operand
stack.

Notes Each of the fload_<n> instructions is the same as fload with an
index of <n>, except that the operand <n> is implicit.

Format fload_<n>
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET 239
DRAFT
fmul fmul

Operation Multiply float

Forms fmul = 106 (0x6a)

Operand
Stack

…, value1, value2 ⇒
…, result

Description Both value1 and value2 must be of type float. The values are
popped from the operand stack and undergo value set conversion
(§3.8.3), resulting in value1’ and value2’. The float result is
value1’ ∗ value2’. The result is pushed onto the operand stack.

The result of an fmul instruction is governed by the rules of IEEE
arithmetic:

• If either value1’ or value2’ is NaN, the result is NaN.

• If neither value1’ nor value2’ is NaN, the sign of the result is
positive if both values have the same sign, and negative if the
values have different signs.

• Multiplication of an infinity by a zero results in NaN.

• Multiplication of an infinity by a finite value results in a signed
infinity, with the sign-producing rule just given.

• In the remaining cases, where neither an infinity nor NaN is
involved, the product is computed and rounded to the nearest
representable value using IEEE 754 round to nearest mode. If the
magnitude is too large to represent as a float, we say the opera-
tion overflows; the result is then an infinity of appropriate sign.
If the magnitude is too small to represent as a float, we say the
operation underflows; the result is then a zero of appropriate sign.

Format fmul
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET240
DRAFT
fmul (cont.) fmul (cont.)

The Java virtual machine requires support of gradual underflow as
defined by IEEE 754. Despite the fact that overflow, underflow, or
loss of precision may occur, execution of an fmul instruction never
throws a runtime exception.
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET 241
DRAFT
fneg fneg

Operation Negate float

Forms fneg = 118 (0x76)

Operand
Stack

…, value ⇒
…, result

Description The value must be of type float. It is popped from the operand
stack and undergoes value set conversion (§3.8.3), resulting in
value’. The float result is the arithmetic negation of value’. This
result is pushed onto the operand stack.

For float values, negation is not the same as subtraction from
zero. If x is +0.0, then 0.0−x equals +0.0, but −x equals −0.0.
Unary minus merely inverts the sign of a float.

Special cases of interest:

• If the operand is NaN, the result is NaN (recall that NaN has no
sign).

• If the operand is an infinity, the result is the infinity of opposite
sign.

• If the operand is a zero, the result is the zero of opposite sign.

Format fneg
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET242
DRAFT
frem frem

Operation Remainder float

Forms frem = 114 (0x72)

Operand
Stack

…, value1, value2 ⇒
…, result

Description Both value1 and value2 must be of type float. The values are
popped from the operand stack and undergo value set conversion
(§3.8.3), resulting in value1’ and value2’. The result is calculated
and pushed onto the operand stack as a float.

The result of an frem instruction is not the same as that of the so-
called remainder operation defined by IEEE 754. The IEEE 754
“remainder” operation computes the remainder from a rounding
division, not a truncating division, and so its behavior is not analo-
gous to that of the usual integer remainder operator. Instead, the
Java virtual machine defines frem to behave in a manner analogous
to that of the Java virtual machine integer remainder instructions
(irem and lrem); this may be compared with the C library function
fmod.

The result of an frem instruction is governed by these rules:

• If either value1’ or value2’ is NaN, the result is NaN.

• If neither value1’ nor value2’ is NaN, the sign of the result equals
the sign of the dividend.

• If the dividend is an infinity or the divisor is a zero or both, the
result is NaN.

• If the dividend is finite and the divisor is an infinity, the result
equals the dividend.

Format frem
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET 243
DRAFT
frem (cont.) frem (cont.)

• If the dividend is a zero and the divisor is finite, the result equals
the dividend.

• In the remaining cases, where neither operand is an infinity, a
zero, or NaN, the floating-point remainder result from a dividend
value1’ and a divisor value2’ is defined by the mathematical
relation result = value1’ − (value2’ ∗ q), where q is an integer that
is negative only if value1’ / value2’ is negative and positive only
if value1’ / value2’ is positive, and whose magnitude is as large
as possible without exceeding the magnitude of the true mathe-
matical quotient of value1’ and value2’.

Despite the fact that division by zero may occur, evaluation of an
frem instruction never throws a runtime exception. Overflow,
underflow, or loss of precision cannot occur.

Notes The IEEE 754 remainder operation may be computed by the library
routine Math.IEEEremainder.
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET244
DRAFT
freturn freturn

Operation Return float from method

Forms freturn = 174 (0xae)

Operand
Stack

…, value ⇒
[empty]

Description The current method must have return type float. The value must
be of type float. If the current method is a synchronized

method, the monitor acquired or reentered on invocation of the
method is released or exited (respectively) as if by execution of a
monitorexit instruction. If no exception is thrown, value is popped
from the operand stack of the current frame (§3.6) and undergoes
value set conversion (§3.8.3), resulting in value’. The value’ is
pushed onto the operand stack of the frame of the invoker. Any
other values on the operand stack of the current method are dis-
carded.

The interpreter then returns control to the invoker of the method,
reinstating the frame of the invoker.

Runtime
Exceptions

If the current method is a synchronized method and the current
thread is not the owner of the monitor acquired or reentered on
invocation of the method, freturn throws an IllegalMonitor-

StateException. This can happen, for example, if a synchro-

nized method contains a monitorexit instruction, but no
monitorenter instruction, on the object on which the method is syn-
chronized.

Otherwise, if the virtual machine implementation enforces the rules
on structured use of locks described in §8.13 and if the first of those
rules is violated during invocation of the current method, then
freturn throws an IllegalMonitorStateException.

Format freturn
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET 245
DRAFT
fstore fstore

Operation Store float into local variable

Forms fstore = 56 (0x38)

Operand
Stack

…, value ⇒
…

Description The index is an unsigned byte that must be an index into the local
variable array of the current frame (§3.6). The value on the top of
the operand stack must be of type float. It is popped from the
operand stack and undergoes value set conversion (§3.8.3), result-
ing in value’. The value of the local variable at index is set to value’.

Notes The fstore opcode can be used in conjunction with the wide instruc-
tion to access a local variable using a two-byte unsigned index.

Format fstore
index
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET246
DRAFT
fstore_<n> fstore_<n>

Operation Store float into local variable

Forms fstore_0 = 67 (0x43)
fstore_1 = 68 (0x44)
fstore_2 = 69 (0x45)
fstore_3 = 70 (0x46)

Operand
Stack

…, value ⇒
…

Description The <n> must be an index into the local variable array of the cur-
rent frame (§3.6). The value on the top of the operand stack must
be of type float. It is popped from the operand stack and under-
goes value set conversion (§3.8.3), resulting in value’. The value of
the local variable at <n> is set to value’.

Notes Each of the fstore_<n> is the same as fstore with an index of <n>,
except that the operand <n> is implicit.

Format fstore_<n>
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET 247
DRAFT
fsub fsub

Operation Subtract float

Forms fsub = 102 (0x66)

Operand
Stack

…, value1, value2 ⇒
…, result

Description Both value1 and value2 must be of type float. The values are
popped from the operand stack and undergo value set conversion
(§3.8.3), resulting in value1’ and value2’. The float result is
value1’ − value2’. The result is pushed onto the operand stack.

For float subtraction, it is always the case that a−b produces the
same result as a+(−b). However, for the fsub instruction, subtrac-
tion from zero is not the same as negation, because if x is +0.0,
then 0.0−x equals +0.0, but −x equals −0.0.

The Java virtual machine requires support of gradual underflow as
defined by IEEE 754. Despite the fact that overflow, underflow, or
loss of precision may occur, execution of an fsub instruction never
throws a runtime exception.

Format fsub
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET248
DRAFT
getfield getfield

Operation Fetch field from object

Forms getfield = 180 (0xb4)

Operand
Stack

…, objectref ⇒
…, value

Description The objectref, which must be of type reference, is popped from
the operand stack. The unsigned indexbyte1 and indexbyte2 are
used to construct an index into the runtime constant pool of the
current class (§3.6), where the value of the index is (indexbyte1 <<
8) | indexbyte2. The runtime constant pool item at that index must
be a symbolic reference to a field (§5.1), which gives the name and
descriptor of the field as well as a symbolic reference to the class in
which the field is to be found. The referenced field is resolved
(§5.4.3.2). The value of the referenced field in objectref is fetched
and pushed onto the operand stack.

The class of objectref must not be an array. If the field is protected
(§4.6), and it is a member of a superclass of the current class, and
the field is not declared in the same run-time package (§5.3) as the
current class, then the class of objectref must be either the current
class or a subclass of the current class.

Linking
Exceptions

During resolution of the symbolic reference to the field, any of the
errors pertaining to field resolution documented in Section 5.4.3.2
can be thrown.

Otherwise, if the resolved field is a static field, getfield throws an
IncompatibleClassChangeError.

Format getfield
indexbyte1
indexbyte2
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET 249
DRAFT
getfield (cont.) getfield (cont.)

Runtime
Exception

Otherwise, if objectref is null, the getfield instruction throws a
NullPointerException.

Notes The getfield instruction cannot be used to access the length field of
an array. The arraylength instruction is used instead.
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET250
DRAFT
getstatic getstatic

Operation Get static field from class

Forms getstatic = 178 (0xb2)

Operand
Stack

…, ⇒
…, value

Description The unsigned indexbyte1 and indexbyte2 are used to construct an
index into the runtime constant pool of the current class (§3.6),
where the value of the index is (indexbyte1 << 8) | indexbyte2. The
runtime constant pool item at that index must be a symbolic refer-
ence to a field (§5.1), which gives the name and descriptor of the
field as well as a symbolic reference to the class or interface in
which the field is to be found. The referenced field is resolved
(§5.4.3.2).

On successful resolution of the field, the class or interface that
declared the resolved field is initialized (§5.5) if that class or inter-
face has not already been initialized.

The value of the class or interface field is fetched and pushed onto
the operand stack.

Linking
Exceptions

During resolution of the symbolic reference to the class or interface
field, any of the exceptions pertaining to field resolution docu-
mented in Section 5.4.3.2 can be thrown.

Otherwise, if the resolved field is not a static (class) field or an
interface field, getstatic throws an IncompatibleClassChange-

Error.

Format getstatic
indexbyte1
indexbyte2
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET 251
DRAFT
getstatic (cont.) getstatic (cont.)

Runtime
Exception

Otherwise, if execution of this getstatic instruction causes initial-
ization of the referenced class or interface, getstatic may throw an
Error as detailed in Section 2.17.5.
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET252
DRAFT
goto goto

Operation Branch always

Forms goto = 167 (0xa7)

Operand
Stack

No change

Description The unsigned bytes branchbyte1 and branchbyte2 are used to
construct a signed 16-bit branchoffset, where branchoffset is
(branchbyte1 << 8) | branchbyte2. Execution proceeds at that offset
from the address of the opcode of this goto instruction. The target
address must be that of an opcode of an instruction within the
method that contains this goto instruction.

Format goto
branchbyte1
branchbyte2
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET 253
DRAFT
goto_w goto_w

Operation Branch always (wide index)

Forms goto_w = 200 (0xc8)

Operand
Stack

No change

Description The unsigned bytes branchbyte1, branchbyte2, branchbyte3, and
branchbyte4 are used to construct a signed 32-bit branchoffset,
where branchoffset is (branchbyte1 << 24) | (branchbyte2 << 16) |
(branchbyte3 << 8) | branchbyte4. Execution proceeds at that offset
from the address of the opcode of this goto_w instruction. The tar-
get address must be that of an opcode of an instruction within the
method that contains this goto_w instruction.

Notes Although the goto_w instruction takes a 4-byte branch offset, other
factors limit the size of a method to 65535 bytes (§4.10). This limit
may be raised in a future release of the Java virtual machine.

Format goto_w
branchbyte1
branchbyte2
branchbyte3
branchbyte4
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET254
DRAFT
i2b i2b

Operation Convert int to byte

Forms i2b = 145 (0x91)

Operand
Stack

…, value ⇒
…, result

Description The value on the top of the operand stack must be of type int. It is
popped from the operand stack, truncated to a byte, then sign-
extended to an int result. That result is pushed onto the operand
stack.

Notes The i2b instruction performs a narrowing primitive conversion
(§2.6.3). It may lose information about the overall magnitude of
value. The result may also not have the same sign as value.

Format i2b
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET 255
DRAFT
i2c i2c

Operation Convert int to char

Forms i2c = 146 (0x92)

Operand
Stack

…, value ⇒
…, result

Description The value on the top of the operand stack must be of type int. It is
popped from the operand stack, truncated to char, then zero-
extended to an int result. That result is pushed onto the operand
stack.

Notes The i2c instruction performs a narrowing primitive conversion
(§2.6.3). It may lose information about the overall magnitude of
value. The result (which is always positive) may also not have the
same sign as value.

Format i2c
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET256
DRAFT
i2d i2d

Operation Convert int to double

Forms i2d = 135 (0x87)

Operand
Stack

…, value ⇒
…, result

Description The value on the top of the operand stack must be of type int. It is
popped from the operand stack and converted to a double result.
The result is pushed onto the operand stack.

Notes The i2d instruction performs a widening primitive conversion
(§2.6.2). Because all values of type int are exactly representable
by type double, the conversion is exact.

Format i2d
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET 257
DRAFT
i2f i2f

Operation Convert int to float

Forms i2f = 134 (0x86)

Operand
Stack

…, value ⇒
…, result

Description The value on the top of the operand stack must be of type int. It is
popped from the operand stack and converted to the float result
using IEEE 754 round to nearest mode. The result is pushed onto
the operand stack.

Notes The i2f instruction performs a widening primitive conversion
(§2.6.2), but may result in a loss of precision because values of type
float have only 24 significand bits.

Format i2f
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET258
DRAFT
i2l i2l

Operation Convert int to long

Forms i2l = 133 (0x85)

Operand
Stack

…, value ⇒
…, result

Description The value on the top of the operand stack must be of type int. It is
popped from the operand stack and sign-extended to a long result.
That result is pushed onto the operand stack.

Notes The i2l instruction performs a widening primitive conversion
(§2.6.2). Because all values of type int are exactly representable
by type long, the conversion is exact.

Format i2l
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET 259
DRAFT
i2s i2s

Operation Convert int to short

Forms i2s = 147 (0x93)

Operand
Stack

…, value ⇒
…, result

Description The value on the top of the operand stack must be of type int. It is
popped from the operand stack, truncated to a short, then sign-
extended to an int result. That result is pushed onto the operand
stack.

Notes The i2s instruction performs a narrowing primitive conversion
(§2.6.3). It may lose information about the overall magnitude of
value. The result may also not have the same sign as value.

Format i2s
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET260
DRAFT
iadd iadd

Operation Add int

Forms iadd = 96 (0x60)

Operand
Stack

…, value1, value2 ⇒
…, result

Description Both value1 and value2 must be of type int. The values are popped
from the operand stack. The int result is value1 + value2. The
result is pushed onto the operand stack.

The result is the 32 low-order bits of the true mathematical result in
a sufficiently wide two’s-complement format, represented as a
value of type int. If overflow occurs, then the sign of the result
may not be the same as the sign of the mathematical sum of the two
values.

Despite the fact that overflow may occur, execution of an iadd
instruction never throws a runtime exception.

Format iadd
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET 261
DRAFT
iaload iaload

Operation Load int from array

Forms iaload = 46 (0x2e)

Operand
Stack

…, arrayref, index ⇒
…, value

Description The arrayref must be of type reference and must refer to an array
whose components are of type int. The index must be of type int.
Both arrayref and index are popped from the operand stack. The
int value in the component of the array at index is retrieved and
pushed onto the operand stack.

Runtime
Exceptions

If arrayref is null, iaload throws a NullPointerException.

Otherwise, if index is not within the bounds of the array referenced
by arrayref, the iaload instruction throws an ArrayIndexOutOf-

BoundsException.

Format iaload
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET262
DRAFT
iand iand

Operation Boolean AND int

Forms iand = 126 (0x7e)

Operand
Stack

…, value1, value2 ⇒
…, result

Description Both value1 and value2 must be of type int. They are popped from
the operand stack. An int result is calculated by taking the bitwise
AND (conjunction) of value1 and value2. The result is pushed onto
the operand stack.

Format iand
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET 263
DRAFT
iastore iastore

Operation Store into int array

Forms iastore = 79 (0x4f)

Operand
Stack

…, arrayref, index, value ⇒
…

Description The arrayref must be of type reference and must refer to an array
whose components are of type int. Both index and value must be
of type int. The arrayref, index, and value are popped from the
operand stack. The int value is stored as the component of the
array indexed by index.

Runtime
Exceptions

If arrayref is null, iastore throws a NullPointerException.

Otherwise, if index is not within the bounds of the array referenced
by arrayref, the iastore instruction throws an ArrayIndexOutOf-

BoundsException.

Format iastore
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET264
DRAFT
iconst_<i> iconst_<i>

Operation Push int constant

Forms iconst_m1 = 2 (0x2)
iconst_0 = 3 (0x3)
iconst_1 = 4 (0x4)
iconst_2 = 5 (0x5)
iconst_3 = 6 (0x6)
iconst_4 = 7 (0x7)
iconst_5 = 8 (0x8)

Operand
Stack

… ⇒
…, <i>

Description Push the int constant <i> (−1, 0, 1, 2, 3, 4 or 5) onto the operand
stack.

Notes Each of this family of instructions is equivalent to bipush <i> for
the respective value of <i>, except that the operand <i> is implicit.

Format iconst_<i>
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET 265
DRAFT
idiv idiv

Operation Divide int

Forms idiv = 108 (0x6c)

Operand
Stack

…, value1, value2 ⇒
…, result

Description Both value1 and value2 must be of type int. The values are popped
from the operand stack. The int result is the value of the Java pro-
gramming language expression value1 / value2. The result is
pushed onto the operand stack.

An int division rounds towards 0; that is, the quotient produced for
int values in n/d is an int value q whose magnitude is as large as
possible while satisfying . Moreover, q is positive
when and n and d have the same sign, but q is negative
when and n and d have opposite signs.

There is one special case that does not satisfy this rule: if the divi-
dend is the negative integer of largest possible magnitude for the
int type, and the divisor is −1, then overflow occurs, and the result
is equal to the dividend. Despite the overflow, no exception is
thrown in this case.

Runtime
Exception

If the value of the divisor in an int division is 0, idiv throws an
ArithmeticException.

Format idiv

d q⋅ n≤
n d≥
n d≥
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET266
DRAFT
if_acmp<cond> if_acmp<cond>

Operation Branch if reference comparison succeeds

Forms if_acmpeq = 165 (0xa5)
if_acmpne = 166 (0xa6)

Operand
Stack

…, value1, value2 ⇒
…

Description Both value1 and value2 must be of type reference. They are both
popped from the operand stack and compared. The results of the
comparison are as follows:

• eq succeeds if and only if value1 = value2

• ne succeeds if and only if value1 ≠ value2

If the comparison succeeds, the unsigned branchbyte1 and
branchbyte2 are used to construct a signed 16-bit offset, where the
offset is calculated to be (branchbyte1 << 8) | branchbyte2. Execu-
tion then proceeds at that offset from the address of the opcode of
this if_acmp<cond> instruction. The target address must be that of
an opcode of an instruction within the method that contains this
if_acmp<cond> instruction.

Otherwise, if the comparison fails, execution proceeds at the
address of the instruction following this if_acmp<cond> instruc-
tion.

Format if_acmp<cond>
branchbyte1
branchbyte2
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET 267
DRAFT
if_icmp<cond> if_icmp<cond>

Operation Branch if int comparison succeeds

Forms if_icmpeq = 159 (0x9f)
if_icmpne = 160 (0xa0)
if_icmplt = 161 (0xa1)
if_icmpge = 162 (0xa2)
if_icmpgt = 163 (0xa3)
if_icmple = 164 (0xa4)

Operand
Stack

…, value1, value2 ⇒
…

Description Both value1 and value2 must be of type int. They are both popped
from the operand stack and compared. All comparisons are signed.
The results of the comparison are as follows:

• eq succeeds if and only if value1 = value2

• ne succeeds if and only if value1 ≠ value2

• lt succeeds if and only if value1 < value2

• le succeeds if and only if value1 ≤ value2

• gt succeeds if and only if value1 > value2

• ge succeeds if and only if value1 ≥ value2

Format if_icmp<cond>
branchbyte1
branchbyte2
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET268
DRAFT
if_icmp<cond> (cont.) if_icmp<cond> (cont.)

If the comparison succeeds, the unsigned branchbyte1 and
branchbyte2 are used to construct a signed 16-bit offset, where the
offset is calculated to be (branchbyte1 << 8) | branchbyte2. Execu-
tion then proceeds at that offset from the address of the opcode of
this if_icmp<cond> instruction. The target address must be that of
an opcode of an instruction within the method that contains this
if_icmp<cond> instruction.

Otherwise, execution proceeds at the address of the instruction fol-
lowing this if_icmp<cond> instruction.
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET 269
DRAFT
if<cond> if<cond>

Operation Branch if int comparison with zero succeeds

Forms ifeq = 153 (0x99)
ifne = 154 (0x9a)
iflt = 155 (0x9b)
ifge = 156 (0x9c)
ifgt = 157 (0x9d)
ifle = 158 (0x9e)

Operand
Stack

…, value ⇒
…

Description The value must be of type int. It is popped from the operand stack
and compared against zero. All comparisons are signed. The results
of the comparisons are as follows:

• eq succeeds if and only if value = 0

• ne succeeds if and only if value ≠ 0

• lt succeeds if and only if value < 0

• le succeeds if and only if value ≤ 0

• gt succeeds if and only if value > 0

• ge succeeds if and only if value ≥ 0

Format if<cond>
branchbyte1
branchbyte2
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET270
DRAFT
if<cond> (cont.) if<cond> (cont.)

If the comparison succeeds, the unsigned branchbyte1 and
branchbyte2 are used to construct a signed 16-bit offset, where the
offset is calculated to be (branchbyte1 << 8) | branchbyte2. Execu-
tion then proceeds at that offset from the address of the opcode of
this if<cond> instruction. The target address must be that of an
opcode of an instruction within the method that contains this
if<cond> instruction.

Otherwise, execution proceeds at the address of the instruction fol-
lowing this if<cond> instruction.
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET 271
DRAFT
ifnonnull ifnonnull

Operation Branch if reference not null

Forms ifnonnull = 199 (0xc7)

Operand
Stack

…, value ⇒
…

Description The value must be of type reference. It is popped from the oper-
and stack. If value is not null, the unsigned branchbyte1 and
branchbyte2 are used to construct a signed 16-bit offset, where the
offset is calculated to be (branchbyte1 << 8) | branchbyte2. Execu-
tion then proceeds at that offset from the address of the opcode of
this ifnonnull instruction. The target address must be that of an
opcode of an instruction within the method that contains this ifnon-
null instruction.

Otherwise, execution proceeds at the address of the instruction fol-
lowing this ifnonnull instruction.

Format ifnonnull
branchbyte1
branchbyte2
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET272
DRAFT
ifnull ifnull

Operation Branch if reference is null

Forms ifnull = 198 (0xc6)

Operand
Stack

…, value ⇒
…

Description The value must of type reference. It is popped from the operand
stack. If value is null, the unsigned branchbyte1 and branchbyte2
are used to construct a signed 16-bit offset, where the offset is cal-
culated to be (branchbyte1 << 8) | branchbyte2. Execution then pro-
ceeds at that offset from the address of the opcode of this ifnull
instruction. The target address must be that of an opcode of an
instruction within the method that contains this ifnull instruction.

Otherwise, execution proceeds at the address of the instruction fol-
lowing this ifnull instruction.

Format ifnull
branchbyte1
branchbyte2
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET 273
DRAFT
iinc iinc

Operation Increment local variable by constant

Forms iinc = 132 (0x84)

Operand
Stack

No change

Description The index is an unsigned byte that must be an index into the local
variable array of the current frame (§3.6). The const is an immedi-
ate signed byte. The local variable at index must contain an int.
The value const is first sign-extended to an int, and then the local
variable at index is incremented by that amount.

Notes The iinc opcode can be used in conjunction with the wide instruc-
tion to access a local variable using a two-byte unsigned index and
to increment it by a two-byte immediate value.

Format iinc
index
const
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET274
DRAFT
iload iload

Operation Load int from local variable

Forms iload = 21 (0x15)

Operand
Stack

… ⇒
…, value

Description The index is an unsigned byte that must be an index into the local
variable array of the current frame (§3.6). The local variable at
index must contain an int. The value of the local variable at index
is pushed onto the operand stack.

Notes The iload opcode can be used in conjunction with the wide instruc-
tion to access a local variable using a two-byte unsigned index.

Format iload
index
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET 275
DRAFT
iload_<n> iload_<n>

Operation Load int from local variable

Forms iload_0 = 26 (0x1a)
iload_1 = 27 (0x1b)
iload_2 = 28 (0x1c)
iload_3 = 29 (0x1d)

Operand
Stack

… ⇒
…, value

Description The <n> must be an index into the local variable array of the cur-
rent frame (§3.6). The local variable at <n> must contain an int.
The value of the local variable at <n> is pushed onto the operand
stack.

Notes Each of the iload_<n> instructions is the same as iload with an
index of <n>, except that the operand <n> is implicit.

Format iload_<n>
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET276
DRAFT
imul imul

Operation Multiply int

Forms imul = 104 (0x68)

Operand
Stack

…, value1, value2 ⇒
…, result

Description Both value1 and value2 must be of type int. The values are popped
from the operand stack. The int result is value1 ∗ value2. The
result is pushed onto the operand stack.

The result is the 32 low-order bits of the true mathematical result in
a sufficiently wide two’s-complement format, represented as a
value of type int. If overflow occurs, then the sign of the result
may not be the same as the sign of the mathematical sum of the two
values.

Despite the fact that overflow may occur, execution of an imul
instruction never throws a runtime exception.

Format imul
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET 277
DRAFT
ineg ineg

Operation Negate int

Forms ineg = 116 (0x74)

Operand
Stack

…, value ⇒
…, result

Description The value must be of type int. It is popped from the operand stack.
The int result is the arithmetic negation of value, −value. The
result is pushed onto the operand stack.

For int values, negation is the same as subtraction from zero.
Because the Java virtual machine uses two’s-complement represen-
tation for integers and the range of two’s-complement values is not
symmetric, the negation of the maximum negative int results in
that same maximum negative number. Despite the fact that over-
flow has occurred, no exception is thrown.

For all int values x, −x equals (∼ x) + 1.

Format ineg
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET278
DRAFT
instanceof instanceof

Operation Determine if object is of given type

Forms instanceof = 193 (0xc1)

Operand
Stack

…, objectref ⇒
…, result

Description The objectref, which must be of type reference, is popped from
the operand stack. The unsigned indexbyte1 and indexbyte2 are
used to construct an index into the runtime constant pool of the cur-
rent class (§3.6), where the value of the index is (indexbyte1 << 8) |
indexbyte2. The runtime constant pool item at the index must be a
symbolic reference to a class, array, or interface type. The named
class, array, or interface type is resolved (§5.4.3.1).

If objectref is not null and is an instance of the resolved class or
array or implements the resolved interface, the instanceof instruc-
tion pushes an int result of 1 as an int on the operand stack. Other-
wise, it pushes an int result of 0.

The following rules are used to determine whether an objectref that
is not null is an instance of the resolved type: If S is the class of
the object referred to by objectref and T is the resolved class, array,
or interface type, instanceof determines whether objectref is an
instance of T as follows:

• If S is an ordinary (nonarray) class, then:

◆ If T is a class type, then S must be the same class (§2.8.1) as
T or a subclass of T.

◆ If T is an interface type, then S must implement (§2.13) inter-
face T.

Format instanceof
indexbyte1
indexbyte2
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET 279
DRAFT
instanceof (cont.) instanceof (cont.)

• If S is an interface type, then:

◆ If T is a class type, then T must be Object (§2.4.7).

◆ If T is an interface type, then T must be the same interface as
S, or a superinterface of S (§2.13.2).

• If S is a class representing the array type SC[], that is, an array
of components of type SC, then:

◆ If T is a class type, then T must be Object (§2.4.7).

◆ If T is an array type TC[], that is, an array of components of
type TC, then one of the following must be true:

❖ TC and SC are the same primitive type (§2.4.1).

❖ TC and SC are reference types (§2.4.6), and type SC can be
cast to TC by these runtime rules.

◆ If T is an interface type, T must be one of the interfaces imple-
mented by arrays (§2.15).

Linking
Exceptions

During resolution of symbolic reference to the class, array, or inter-
face type, any of the exceptions documented in Section 5.4.3.1 can
be thrown.

Notes The instanceof instruction is very similar to the checkcast instruc-
tion. It differs in its treatment of null, its behavior when its test
fails (checkcast throws an exception, instanceof pushes a result
code), and its effect on the operand stack.
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET280
DRAFT
invokedynamic invokedynamic

Operation Invoke instance method; resolve and dispatch based on class

Forms invokedynamic = 186 (0xba)

Operand
Stack

…, objectref, [arg1, [arg2 …]] ⇒
…

Description The unsigned indexbyte1 and indexbyte2 are used to construct an
index into the runtime constant pool of the current class (§3.6),
where the value of the index is (indexbyte1 << 8) | indexbyte2.
The runtime constant pool item at that index must be a
CONSTANT_NameAndType_info (§4.4.6), which gives the
name and descriptor (§4.3.3) of a method. The referenced method
name must not name an instance initialization method (§3.9) or
class or interface initialization method (§3.9).

The objectref must be followed on the operand stack by nargs argu-
ment values of reference type, where the number and order of the
values must be consistent with the referenced descriptor.

Let C be the class of objectref. The actual method to be invoked is
selected by the following lookup procedure:

• If C contains a declaration for an instance method M with the same
name and descriptor as the referenced method, then M is the
method to be invoked, and the lookup procedure terminates.

Format invokedynamic
indexbyte1
indexbyte2
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET 281
DRAFT
invokedynamic (cont.) invokedynamic(cont.)

• Otherwise, if C has a superclass, this same lookup procedure is
performed recursively using the direct superclass of C ; the
method to be invoked is the result of the recursive invocation of
this lookup procedure.

• Otherwise, if no method matching the referenced name and
descriptor is selected, invokedynamic invokes the method named
handleMethodInvocationError with descriptor ([Ljava/
lang/Object;)Ljava/lang/Object; on objectref, with an
argument that is an object array whose zeroth element is the name
of the referenced method, whose first element is the descriptor of
the resolved method, whose second element is an instance of the
class NoSuchMethodError and whose subsequent elements are
the original arguments. Then result of the call to handleMethod-

InvocationError is pushed onto the operand stack of the
invoker.

If the selected method is abstract, invokedynamic invokes the
method named handleMethodInvocationError with descriptor
([Ljava/lang/Object;)Ljava/lang/Object; on objectref,
with an argument that is an object array whose zeroth element is the
name of the referenced method, whose first element is the descrip-
tor of the resolved method, whose second element is an instance of
the class AbstractMethodError and whose subsequent elements
are the original arguments. Then result of the call to han-

dleMethodInvocationError is pushed onto the operand stack of
the invoker.
Otherwise, if the selected method is not accessible (§5.4.4) to the
current class, invokedynamic invokes the method named han-

dleMethodInvocationError with descriptor ([Ljava/lang/

Object;)Ljava/lang/Object; on objectref, with an argument
that is an object array whose zeroth element is the name of the ref-
erenced method, whose first element is the descriptor of the refer-
enced method, whose second element is an instance of the class
IllegalAccessError and whose subsequent elements are the
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET282
DRAFT
original arguments. Then result of the call to handleMethodInvo-

cationError is pushed onto the operand stack of the invoker.

Otherwise, if the selected method is protected (§4.6), and it is a
member of a superclass of the current class, and the method is not
declared in the same run-time package (§5.3) as the current class,
and the class of objectref is not the current class or a subclass of the
current class, then invokedynamic invokes the method named han-

dleMethodInvocationError with descriptor ([Ljava/lang/

Object;)Ljava/lang/Object; on objectref, with an argument
that is an object arraywhose zeroth element is the name of the refer-
enced method, whose first element is the descriptor of the refer-
enced method, whose second element is an instance of the class
IllegalAccessError and whose subsequent elements are the
original arguments. Then result of the call to handleMethodInvo-

cationError is pushed onto the operand stack of the invoker.

Otherwise, each actual argument is cast to the corresponding argu-
ment type given in the descriptor of the resolved method. If any
such cast fails, invokedynamic invokes the method named han-

dleMethodInvocationError with descriptor ([Ljava/lang/

Object;)Ljava/lang/Object; on objectref, with an argument
that is an object arraywhose zeroth element is the name of the refer-
enced method, whose first element is the descriptor of the resolved
method, whose second element is an instance of the class Class-

CastException and whose subsequent elements are the original
argument. Then result of the call to handleMethodInvocation-

Error is pushed onto the operand stack of the invoker.

Otherwise, if the method is synchronized, the monitor associ-
ated with objectref is acquired or reentered.

If the method is not native, the nargs argument values and object-
ref are popped from the operand stack. A new frame is created on
the Java virtual machine stack for the method being invoked. The
objectref and the argument values are consecutively made the val-
ues of local variables of the new frame, with objectref in local vari-
able 0, arg1 in local variable 1, and so on. The new frame is then
made current, and the Java virtual machine pc is set to the opcode
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET 283
DRAFT
of the first instruction of the method to be invoked. Execution con-
tinues with the first instruction of the method.

If the method is native and the platform-dependent code that
implements it has not yet been bound (§5.6) into the Java virtual
machine, that is done.

If the code that implements the method cannot be bound, invokedy-
namic invokes the method named handleMethodInvocationEr-

ror with descriptor ([Ljava/lang/Object;)Ljava/lang/

Object; on objectref, with an argument that is an object array-
whose zeroth element is the name of the referenced method, whose
first element is the descriptor of the resolved method, whose second
element is an instance of the class UnsatisfiedLinkError and
whose subsequent elements are the original arguments. Then result
of the call to handleMethodInvocationError is pushed onto the
operand stack of the invoker.

Otherwise, the nargs argument values and objectref are popped
from the operand stack and are passed as parameters to the code
that implements the method. The parameters are passed and the
code is invoked in an implementation-dependent manner. When the
platform-dependent code returns, the following take place:

• If the native method is synchronized, the monitor associated
with objectref is released or exited as if by execution of a moni-
torexit instruction.

• If the native method returns a value, the return value of the
platform-dependent code is converted in an implementation-
dependent way to the return type of the native method and
pushed onto the operand stack.

Runtime
Exceptions

Otherwise, if objectref is null, the invokedynamic instruction
throws a NullPointerException.

If the call is delegated to handleMethodInvocationError

and that call results in an exception, then the invokedynamic
instruction throws the exception that was passed as the second ele-
ment of the array passed as an actual argument to handleMethod-

InvocationError.
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET284
DRAFT
Notes The nargs argument values and objectref are one-to-one with the

first nargs + 1 local variables.
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET 285
DRAFT
invokeinterface invokeinterface

Operation Invoke interface method

Forms invokeinterface = 185 (0xb9)

Operand
Stack

…, objectref, [arg1, [arg2 …]] ⇒
…

Description The unsigned indexbyte1 and indexbyte2 are used to construct an
index into the runtime constant pool of the current class (§3.6),
where the value of the index is (indexbyte1 << 8) | indexbyte2.
The runtime constant pool item at that index must be a symbolic
reference to an interface method (§5.1), which gives the name and
descriptor (§4.3.3) of the interface method as well as a symbolic
reference to the interface in which the interface method is to be
found. The named interface method is resolved (§5.4.3.4). The
interface method must not be an instance initialization method
(§3.9) or the class or interface initialization method (§3.9).

The count operand is an unsigned byte that must not be zero. The
objectref must be of type reference and must be followed on the
operand stack by nargs argument values, where the number, type,
and order of the values must be consistent with the descriptor of the
resolved interface method. The value of the fourth operand byte
must always be zero.

Let C be the class of objectref. The actual method to be invoked is
selected by the following lookup procedure:

Format invokeinterface
indexbyte1
indexbyte2

count
0

DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET286
DRAFT
invokeinterface (cont.) invokeinterface (cont.)

• If C contains a declaration for an instance method with the same
name and descriptor as the resolved method, then this is the
method to be invoked, and the lookup procedure terminates.

• Otherwise, if C has a superclass, this same lookup procedure is
performed recursively using the direct superclass of C; the method
to be invoked is the result of the recursive invocation of this
lookup procedure.

• Otherwise, an AbstractMethodError is raised.

If the method is synchronized, the monitor associated with object-
ref is acquired or reentered.

If the method is not native, the nargs argument values and object-
ref are popped from the operand stack. A new frame is created on
the Java virtual machine stack for the method being invoked. The
objectref and the argument values are consecutively made the val-
ues of local variables of the new frame, with objectref in local vari-
able 0, arg1 in local variable 1 (or, if arg1 is of type long or
double, in local variables 1 and 2), and so on. Any argument value
that is of a floating-point type undergoes value set conversion
(§3.8.3) prior to being stored in a local variable. The new frame is
then made current, and the Java virtual machine pc is set to the
opcode of the first instruction of the method to be invoked. Execu-
tion continues with the first instruction of the method.

If the method is native and the platform-dependent code that
implements it has not yet been bound (§5.6) into the Java virtual
machine, that is done. The nargs argument values and objectref are
popped from the operand stack and are passed as parameters to the
code that implements the method. Any argument value that is of a
floating-point type undergoes value set conversion (§3.8.3) prior to
being passed as a parameter. The parameters are passed and the
code is invoked in an implementation-dependent manner. When the
platform-dependent code returns:
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET 287
DRAFT
invokeinterface (cont.) invokeinterface (cont.)

• If the native method is synchronized, the monitor associated
with objectref is released or exited as if by execution of a monitor-
exit instruction.

• If the native method returns a value, the return value of the
platform-dependent code is converted in an implementation-
dependent way to the return type of the native method and
pushed onto the operand stack.

Linking
Exceptions

During resolution of the symbolic reference to the interface
method, any of the exceptions documented in §5.4.3.4 can be
thrown.

Runtime
Exceptions

Otherwise, if objectref is null, the invokeinterface instruction
throws a NullPointerException.

Otherwise, if the class of objectref does not implement the resolved
interface, invokeinterface throws an IncompatibleClassChange-

Error.

Otherwise, if no method matching the resolved name and descrip-
tor is selected, invokeinterface throws an AbstractMethodError.

Otherwise, if the selected method is not public, invokeinterface
throws an IllegalAccessError.

Otherwise, if the selected method is abstract, invokeinterface
throws an AbstractMethodError.

Otherwise, if the selected method is native and the code that
implements the method cannot be bound, invokeinterface throws an
UnsatisfiedLinkError.
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET288
DRAFT
invokeinterface (cont.) invokeinterface (cont.)

Notes The count operand of the invokeinterface instruction records a mea-
sure of the number of argument values, where an argument value of
type long or type double contributes two units to the count value
and an argument of any other type contributes one unit. This infor-
mation can also be derived from the descriptor of the selected
method. The redundancy is historical.

The fourth operand byte exists to reserve space for an additional
operand used in certain of Sun’s implementations, which replace
the invokeinterface instruction by a specialized pseudo-instruction
at run time. It must be retained for backwards compatibility.

The nargs argument values and objectref are not one-to-one with
the first nargs + 1 local variables. Argument values of types long

and double must be stored in two consecutive local variables, thus
more than nargs local variables may be required to pass nargs argu-
ment values to the invoked method.
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET 289
DRAFT
invokespecial invokespecial

Operation Invoke instance method; special handling for superclass, private,
and instance initialization method invocations

Forms invokespecial = 183 (0xb7)

Operand
Stack

…, objectref, [arg1, [arg2 …]] ⇒
…

Description The unsigned indexbyte1 and indexbyte2 are used to construct an
index into the runtime constant pool of the current class (§3.6),
where the value of the index is (indexbyte1 << 8) | indexbyte2.
The runtime constant pool item at that index must be a symbolic
reference to a method (§5.1), which gives the name and descriptor
(§4.3.3) of the method as well as a symbolic reference to the class
in which the method is to be found. The named method is resolved
(§5.4.3.3). Finally, if the resolved method is protected (§4.6), and
it is a member of a superclass of the current class, and the method is
not declared in the same run-time package (§5.3) as the current
class, then the class of objectref must be either the current class or a
subclass of the current class.

Next, the resolved method is selected for invocation unless all of
the following conditions are true:

• The ACC_SUPER flag (see Table 4.1, “Class access and property
modifiers”) is set for the current class.

• The class of the resolved method is a superclass of the current
class

Format invokespecial
indexbyte1
indexbyte2
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET290
DRAFT
• The resolved method is not an instance initialization method

(§3.9).

If the above conditions are true, the actual method to be
invoked is selected by the following lookup procedure. Let C be the
direct superclass of the current class:

If C contains a declaration for an instance method with the
same name and descriptor as the resolved method, then this method
will be invoked. The lookup procedure terminates.

Otherwise, if C has a superclass, this same lookup procedure is
performed recursively using the direct superclass of C. The method
to be invoked is the result of the recursive invocation of this lookup
procedure.

Otherwise, an AbstractMethodError is raised.
The objectref must be of type reference and must be followed on
the operand stack by nargs argument values, where the number,
type, and order of the values must be consistent with the descriptor
of the selected instance method.

If the method is synchronized, the monitor associated with
objectref is acquired or reentered.

If the method is not native, the nargs argument values and object-
ref are popped from the operand stack. A new frame is created on
the Java virtual machine stack for the method being invoked. The
objectref and the argument values are consecutively made the val-
ues of local variables of the new frame, with objectref in local vari-
able 0, arg1 in local variable 1 (or, if arg1 is of type long or
double, in local variables 1 and 2), and so on. Any argument value
that is of a floating-point type undergoes value set conversion
(§3.8.3) prior to being stored in a local variable. The new frame is
then made current, and the Java virtual machine pc is set to the
opcode of the first instruction of the method to be invoked. Execu-
tion continues with the first instruction of the method.
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET 291
DRAFT
invokespecial (cont.) invokespecial (cont.)

If the method is native and the platform-dependent code that
implements it has not yet been bound (§5.6) into the Java virtual
machine, that is done. The nargs argument values and objectref are
popped from the operand stack and are passed as parameters to the
code that implements the method. Any argument value that is of a
floating-point type undergoes value set conversion (§3.8.3) prior to
being passed as a parameter. The parameters are passed and the
code is invoked in an implementation-dependent manner. When the
platform-dependent code returns, the following take place:

• If the native method is synchronized, the monitor associated
with objectref is released or exited as if by execution of a monitor-
exit instruction.

• If the native method returns a value, the return value of the
platform-dependent code is converted in an implementation-
dependent way to the return type of the native method and
pushed onto the operand stack.

Linking
Exceptions

During resolution of the symbolic reference to the method, any of
the exceptions pertaining to method resolution documented in Sec-
tion 5.4.3.3 can be thrown.

Otherwise, if the resolved method is an instance initialization
method, and the class in which it is declared is not the class sym-
bolically referenced by the instruction, a NoSuchMethodError is
thrown.

Otherwise, if the resolved method is a class (static) method, the
invokespecial instruction throws an IncompatibleClassChange-

Error.

Otherwise, if no method matching the resolved name and descrip-
tor is selected, invokespecial throws an AbstractMethodError.

Otherwise, if the selected method is abstract, invokespecial
throws an AbstractMethodError.
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET292
DRAFT
invokespecial (cont.) invokespecial (cont.)

Runtime
Exceptions

Otherwise, if objectref is null, the invokespecial instruction throws
a NullPointerException.

Otherwise, if the selected method is native and the code that
implements the method cannot be bound, invokespecial throws an
UnsatisfiedLinkError.

Notes The difference between the invokespecial and the invokevirtual
instructions is that invokevirtual invokes a method based on the
class of the object. The invokespecial instruction is used to invoke
instance initialization methods (§3.9) as well as private methods
and methods of a superclass of the current class.

The invokespecial instruction was named invokenonvirtual prior to
Sun’s JDK release 1.0.2.

The nargs argument values and objectref are not one-to-one with
the first nargs + 1 local variables. Argument values of types long

and double must be stored in two consecutive local variables, thus
more than nargs local variables may be required to pass nargs argu-
ment values to the invoked method.
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET 293
DRAFT
invokestatic invokestatic

Operation Invoke a class (static) method

Forms invokestatic = 184 (0xb8)

Operand
Stack

…, [arg1, [arg2 …]] ⇒
…

Description The unsigned indexbyte1 and indexbyte2 are used to construct an
index into the runtime constant pool of the current class (§3.6),
where the value of the index is (indexbyte1 << 8) | indexbyte2.
The runtime constant pool item at that index must be a symbolic
reference to a method (§5.1), which gives the name and descriptor
(§4.3.3) of the method as well as a symbolic reference to the class
in which the method is to be found. The named method is resolved
(§5.4.3.3). The method must not be the class or interface initializa-
tion method (§3.9). It must be static, and therefore cannot be
abstract.

On successful resolution of the method, the class that declared the
resolved method is initialized (§5.5) if that class has not already
been initialized.

The operand stack must contain nargs argument values, where the
number, type, and order of the values must be consistent with the
descriptor of the resolved method.

If the method is synchronized, the monitor associated with the
resolved class is acquired or reentered.

Format invokestatic
indexbyte1
indexbyte2
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET294
DRAFT
invokestatic (cont.) invokestatic (cont.)

If the method is not native, the nargs argument values are popped
from the operand stack. A new frame is created on the Java virtual
machine stack for the method being invoked. The nargs argument
values are consecutively made the values of local variables of the
new frame, with arg1 in local variable 0 (or, if arg1 is of type long
or double, in local variables 0 and 1) and so on. Any argument
value that is of a floating-point type undergoes value set conversion
(§3.8.3) prior to being stored in a local variable. The new frame is
then made current, and the Java virtual machine pc is set to the
opcode of the first instruction of the method to be invoked. Execu-
tion continues with the first instruction of the method.

If the method is native and the platform-dependent code that
implements it has not yet been bound (§5.6) into the Java virtual
machine, that is done. The nargs argument values are popped from
the operand stack and are passed as parameters to the code that
implements the method. Any argument value that is of a floating-
point type undergoes value set conversion (§3.8.3) prior to being
passed as a parameter. The parameters are passed and the code is
invoked in an implementation-dependent manner. When the plat-
form-dependent code returns, the following take place:

• If the native method is synchronized, the monitor associated
with the resolved class is released or exited as if by execution of
a monitorexit instruction.

• If the native method returns a value, the return value of the
platform-dependent code is converted in an implementation-
dependent way to the return type of the native method and
pushed onto the operand stack.

Linking
Exceptions

During resolution of the symbolic reference to the method, any of
the exceptions pertaining to method resolution documented in Sec-
tion 5.4.3.3 can be thrown.
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET 295
DRAFT
invokestatic (cont.) invokestatic (cont.)

Otherwise, if the resolved method is an instance method, the
invokestatic instruction throws an IncompatibleClassChange-

Error.

Runtime
Exceptions

Otherwise, if execution of this invokestatic instruction causes ini-
tialization of the referenced class, invokestatic may throw an Error

as detailed in Section 2.17.5.

Otherwise, if the resolved method is native and the code that
implements the method cannot be bound, invokestatic throws an
UnsatisfiedLinkError.

Notes The nargs argument values are not one-to-one with the first nargs
local variables. Argument values of types long and double must
be stored in two consecutive local variables, thus more than nargs
local variables may be required to pass nargs argument values to
the invoked method.
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET296
DRAFT
invokevirtual invokevirtual

Operation Invoke instance method; dispatch based on class

Forms invokevirtual = 182 (0xb6)

Operand
Stack

…, objectref, [arg1, [arg2 …]] ⇒
…

Description The unsigned indexbyte1 and indexbyte2 are used to construct an
index into the runtime constant pool of the current class (§3.6),
where the value of the index is (indexbyte1 << 8) | indexbyte2.
The runtime constant pool item at that index must be a symbolic
reference to a method (§5.1), which gives the name and descriptor
(§4.3.3) of the method as well as a symbolic reference to the class
in which the method is to be found. The named method is resolved
(§5.4.3.3). The method must not be an instance initialization
method (§3.9) or the class or interface initialization method (§3.9).
Finally, if the resolved method is protected (§4.6), and it is a
member of a superclass of the current class, and the method is not
declared in the same run-time package (§5.3) as the current class,
then the class of objectref must be either the current class or a sub-
class of the current class.

Let C be the class of objectref. The actual method to be invoked is
selected by the following lookup procedure:

• If C contains a declaration for an instance method M with the same
name and descriptor as the resolved method, and M overrides the
resolved method, then M is the method to be invoked, and the
lookup procedure terminates.

Format invokevirtual
indexbyte1
indexbyte2
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET 297
DRAFT
invokevirtual (cont.) invokevirtual (cont.)

• Otherwise, if C has a superclass, this same lookup procedure is
performed recursively using the direct superclass of C ; the
method to be invoked is the result of the recursive invocation of
this lookup procedure.

• Otherwise, an AbstractMethodError is raised.

The objectref must be followed on the operand stack by nargs argu-
ment values, where the number, type, and order of the values must
be consistent with the descriptor of the selected instance method.

If the method is synchronized, the monitor associated with
objectref is acquired or reentered.

If the method is not native, the nargs argument values and object-
ref are popped from the operand stack. A new frame is created on
the Java virtual machine stack for the method being invoked. The
objectref and the argument values are consecutively made the val-
ues of local variables of the new frame, with objectref in local vari-
able 0, arg1 in local variable 1 (or, if arg1 is of type long or
double, in local variables 1 and 2), and so on. Any argument value
that is of a floating-point type undergoes value set conversion
(§3.8.3) prior to being stored in a local variable. The new frame is
then made current, and the Java virtual machine pc is set to the
opcode of the first instruction of the method to be invoked. Execu-
tion continues with the first instruction of the method.

If the method is native and the platform-dependent code that
implements it has not yet been bound (§5.6) into the Java virtual
machine, that is done. The nargs argument values and objectref are
popped from the operand stack and are passed as parameters to the
code that implements the method. Any argument value that is of a
floating-point type undergoes value set conversion (§3.8.3) prior to
being passed as a parameter. The parameters are passed and the
code is invoked in an implementation-dependent manner. When the
platform-dependent code returns, the following take place:
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET298
DRAFT
invokevirtual (cont.) invokevirtual (cont.)

• If the native method is synchronized, the monitor associated
with objectref is released or exited as if by execution of a monitor-
exit instruction.

• If the native method returns a value, the return value of the
platform-dependent code is converted in an implementation-
dependent way to the return type of the native method and
pushed onto the operand stack.

Linking
Exceptions

During resolution of the symbolic reference to the method, any of
the exceptions pertaining to method resolution documented in Sec-
tion 5.4.3.3 can be thrown.

Otherwise, if the resolved method is a class (static) method, the
invokevirtual instruction throws an IncompatibleClassChange-

Error.

Runtime
Exceptions

Otherwise, if objectref is null, the invokevirtual instruction throws
a NullPointerException.

Otherwise, if no method matching the resolved name and descrip-
tor is selected, invokevirtual throws an AbstractMethodError.
Otherwise, if the selected method is abstract, invokevirtual
throws an AbstractMethodError.

Otherwise, if the selected method is native and the code that
implements the method cannot be bound, invokevirtual throws an
UnsatisfiedLinkError.

Notes The nargs argument values and objectref are not one-to-one with
the first nargs + 1 local variables. Argument values of types long

and double must be stored in two consecutive local variables, thus
more than nargs local variables may be required to pass nargs argu-
ment values to the invoked method.
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET 299
DRAFT
ior ior

Operation Boolean OR int

Forms ior = 128 (0x80)

Operand
Stack

…, value1, value2 ⇒
…, result

Description Both value1 and value2 must be of type int. They are popped from
the operand stack. An int result is calculated by taking the bitwise
inclusive OR of value1 and value2. The result is pushed onto the
operand stack.

Format ior
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET300
DRAFT
irem irem

Operation Remainder int

Forms irem = 112 (0x70)

Operand
Stack

…, value1, value2 ⇒
…, result

Description Both value1 and value2 must be of type int. The values are popped
from the operand stack. The int result is value1 − (value1 /
value2) ∗ value2. The result is pushed onto the operand stack.

The result of the irem instruction is such that (a/b)*b + (a%b) is
equal to a. This identity holds even in the special case in which the
dividend is the negative int of largest possible magnitude for its
type and the divisor is −1 (the remainder is 0). It follows from this
rule that the result of the remainder operation can be negative only
if the dividend is negative and can be positive only if the dividend is
positive. Moreover, the magnitude of the result is always less than
the magnitude of the divisor.

Runtime
Exception

If the value of the divisor for an int remainder operator is 0, irem
throws an ArithmeticException.

Format irem
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET 301
DRAFT
ireturn ireturn

Operation Return int from method

Forms ireturn = 172 (0xac)

Operand
Stack

…, value ⇒
[empty]

Description The current method must have return type boolean, byte, short,
char, or int. The value must be of type int. If the current method
is a synchronized method, the monitor acquired or reentered on
invocation of the method is released or exited (respectively) as if by
execution of a monitorexit instruction. If no exception is thrown,
value is popped from the operand stack of the current frame (§3.6)
and pushed onto the operand stack of the frame of the invoker. Any
other values on the operand stack of the current method are dis-
carded.

The interpreter then returns control to the invoker of the method,
reinstating the frame of the invoker.

Runtime
Exceptions

If the current method is a synchronized method and the current
thread is not the owner of the monitor acquired or reentered on
invocation of the method, ireturn throws an IllegalMonitor-

StateException. This can happen, for example, if a synchro-

nized method contains a monitorexit instruction, but no
monitorenter instruction, on the object on which the method is syn-
chronized.

Otherwise, if the virtual machine implementation enforces the rules
on structured use of locks described in Section 8.13 and if the first
of those rules is violated during invocation of the current method,
then ireturn throws an IllegalMonitorStateException.

Format ireturn
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET302
DRAFT
ishl ishl

Operation Shift left int

Forms ishl = 120 (0x78)

Operand
Stack

…, value1, value2 ⇒
…, result

Description Both value1 and value2 must be of type int. The values are popped
from the operand stack. An int result is calculated by shifting
value1 left by s bit positions, where s is the value of the low 5 bits
of value2. The result is pushed onto the operand stack.

Notes This is equivalent (even if overflow occurs) to multiplication by 2
to the power s. The shift distance actually used is always in the
range 0 to 31, inclusive, as if value2 were subjected to a bitwise
logical AND with the mask value 0x1f.

Format ishl
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET 303
DRAFT
ishr ishr

Operation Arithmetic shift right int

Forms ishr = 122 (0x7a)

Operand
Stack

…, value1, value2 ⇒
…, result

Description Both value1 and value2 must be of type int. The values are popped
from the operand stack. An int result is calculated by shifting
value1 right by s bit positions, with sign extension, where s is the
value of the low 5 bits of value2. The result is pushed onto the
operand stack.

Notes The resulting value is , where s is value2 & 0x1f. For
nonnegative value1, this is equivalent to truncating int division by
2 to the power s. The shift distance actually used is always in the
range 0 to 31, inclusive, as if value2 were subjected to a bitwise
logical AND with the mask value 0x1f.

Format ishr

value1 2s⁄
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET304
DRAFT
istore istore

Operation Store int into local variable

Forms istore = 54 (0x36)

Operand
Stack

…, value ⇒
…

Description The index is an unsigned byte that must be an index into the local
variable array of the current frame (§3.6). The value on the top of
the operand stack must be of type int. It is popped from the oper-
and stack, and the value of the local variable at index is set to value.

Notes The istore opcode can be used in conjunction with the wide instruc-
tion to access a local variable using a two-byte unsigned index.

Format istore
index
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET 305
DRAFT
istore_<n> istore_<n>

Operation Store int into local variable

Forms istore_0 = 59 (0x3b)
istore_1 = 60 (0x3c)
istore_2 = 61 (0x3d)
istore_3 = 62 (0x3e)

Operand
Stack

…, value ⇒
…

Description The <n> must be an index into the local variable array of the cur-
rent frame (§3.6). The value on the top of the operand stack must
be of type int. It is popped from the operand stack, and the value
of the local variable at <n> is set to value.

Notes Each of the istore_<n> instructions is the same as istore with an
index of <n>, except that the operand <n> is implicit.

Format istore_<n>
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET306
DRAFT
isub isub

Operation Subtract int

Forms isub = 100 (0x64)

Operand
Stack

…, value1, value2 ⇒
…, result

Description Both value1 and value2 must be of type int. The values are popped
from the operand stack. The int result is value1 − value2. The
result is pushed onto the operand stack.

For int subtraction, a − b produces the same result as a + (−b). For
int values, subtraction from zero is the same as negation.

The result is the 32 low-order bits of the true mathematical result in
a sufficiently wide two’s-complement format, represented as a
value of type int. If overflow occurs, then the sign of the result
may not be the same as the sign of the mathematical difference of
the two values.

Despite the fact that overflow may occur, execution of an isub
instruction never throws a runtime exception.

Format isub
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET 307
DRAFT
iushr iushr

Operation Logical shift right int

Forms iushr = 124 (0x7c)

Operand
Stack

…, value1, value2 ⇒
…, result

Description Both value1 and value2 must be of type int. The values are popped
from the operand stack. An int result is calculated by shifting
value1 right by s bit positions, with zero extension, where s is the
value of the low 5 bits of value2. The result is pushed onto the
operand stack.

Notes If value1 is positive and s is value2 & 0x1f, the result is the same as
that of value1 >> s; if value1 is negative, the result is equal to the
value of the expression (value1 >> s) + (2 << ∼ s). The addition of
the (2 << ∼ s) term cancels out the propagated sign bit. The shift
distance actually used is always in the range 0 to 31, inclusive.

Format iushr
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET308
DRAFT
ixor ixor

Operation Boolean XOR int

Forms ixor = 130 (0x82)

Operand
Stack

…, value1, value2 ⇒
…, result

Description Both value1 and value2 must be of type int. They are popped from
the operand stack. An int result is calculated by taking the bitwise
exclusive OR of value1 and value2. The result is pushed onto the
operand stack.

Format ixor
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET 309
DRAFT
jsr jsr

Operation Jump subroutine

Forms jsr = 168 (0xa8)

Operand
Stack

… ⇒
…, address

Description The address of the opcode of the instruction immediately following
this jsr instruction is pushed onto the operand stack as a value of
type returnAddress. The unsigned branchbyte1 and branchbyte2
are used to construct a signed 16-bit offset, where the offset is
(branchbyte1 << 8) | branchbyte2. Execution proceeds at that offset
from the address of this jsr instruction. The target address must be
that of an opcode of an instruction within the method that contains
this jsr instruction.

Notes The jsr instruction is used with the ret instruction in the implemen-
tation of the finally clauses of the Java programming language
(see Section 7.13, “Compiling finally”). Note that jsr pushes the
address onto the operand stack and ret gets it out of a local variable.
This asymmetry is intentional.

Format jsr
branchbyte1
branchbyte2
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET310
DRAFT
jsr_w jsr_w

Operation Jump subroutine (wide index)

Forms jsr_w = 201 (0xc9)

Operand
Stack

… ⇒
…, address

Description The address of the opcode of the instruction immediately following
this jsr_w instruction is pushed onto the operand stack as a value of
type returnAddress. The unsigned branchbyte1, branchbyte2,
branchbyte3, and branchbyte4 are used to construct a signed 32-bit
offset, where the offset is (branchbyte1 << 24) | (branchbyte2 <<
16) | (branchbyte3 << 8) | branchbyte4. Execution proceeds at that
offset from the address of this jsr_w instruction. The target address
must be that of an opcode of an instruction within the method that
contains this jsr_w instruction.

Notes The jsr_w instruction is used with the ret instruction in the imple-
mentation of the finally clauses of the Java programming lan-
guage (see Section 7.13, “Compiling finally”). Note that jsr_w
pushes the address onto the operand stack and ret gets it out of a
local variable. This asymmetry is intentional.

Although the jsr_w instruction takes a 4-byte branch offset, other
factors limit the size of a method to 65535 bytes (§4.10). This limit
may be raised in a future release of the Java virtual machine.

Format jsr_w
branchbyte1
branchbyte2
branchbyte3
branchbyte4
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET 311
DRAFT
l2d l2d

Operation Convert long to double

Forms l2d = 138 (0x8a)

Operand
Stack

…, value ⇒
…, result

Description The value on the top of the operand stack must be of type long. It
is popped from the operand stack and converted to a double result
using IEEE 754 round to nearest mode. The result is pushed onto
the operand stack.

Notes The l2d instruction performs a widening primitive conversion
(§2.6.2) that may lose precision because values of type double

have only 53 significand bits.

Format l2d
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET312
DRAFT
l2f l2f

Operation Convert long to float

Forms l2f = 137 (0x89)

Operand
Stack

…, value ⇒
…, result

Description The value on the top of the operand stack must be of type long. It
is popped from the operand stack and converted to a float result
using IEEE 754 round to nearest mode. The result is pushed onto
the operand stack.

Notes The l2f instruction performs a widening primitive conversion
(§2.6.2) that may lose precision because values of type float have
only 24 significand bits.

Format l2f
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET 313
DRAFT
l2i l2i

Operation Convert long to int

Forms l2i = 136 (0x88)

Operand
Stack

…, value ⇒
…, result

Description The value on the top of the operand stack must be of type long. It
is popped from the operand stack and converted to an int result by
taking the low-order 32 bits of the long value and discarding the
high-order 32 bits. The result is pushed onto the operand stack.

Notes The l2i instruction performs a narrowing primitive conversion
(§2.6.3). It may lose information about the overall magnitude of
value. The result may also not have the same sign as value.

Format l2i
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET314
DRAFT
ladd ladd

Operation Add long

Forms ladd = 97 (0x61)

Operand
Stack

…, value1, value2 ⇒
…, result

Description Both value1 and value2 must be of type long. The values are
popped from the operand stack. The long result is value1 + value2.
The result is pushed onto the operand stack.

The result is the 64 low-order bits of the true mathematical result in
a sufficiently wide two’s-complement format, represented as a
value of type long. If overflow occurs, the sign of the result may
not be the same as the sign of the mathematical sum of the two val-
ues.

Despite the fact that overflow may occur, execution of an ladd
instruction never throws a runtime exception.

Format ladd
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET 315
DRAFT
laload laload

Operation Load long from array

Forms laload = 47 (0x2f)

Operand
Stack

…, arrayref, index ⇒
…, value

Description The arrayref must be of type reference and must refer to an array
whose components are of type long. The index must be of type
int. Both arrayref and index are popped from the operand stack.
The long value in the component of the array at index is retrieved
and pushed onto the operand stack.

Runtime
Exceptions

If arrayref is null, laload throws a NullPointerException.

Otherwise, if index is not within the bounds of the array referenced
by arrayref, the laload instruction throws an ArrayIndexOutOf-

BoundsException.

Format laload
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET316
DRAFT
land land

Operation Boolean AND long

Forms land = 127 (0x7f)

Operand
Stack

…, value1, value2 ⇒
…, result

Description Both value1 and value2 must be of type long. They are popped
from the operand stack. A long result is calculated by taking the
bitwise AND of value1 and value2. The result is pushed onto the
operand stack.

Format land
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET 317
DRAFT
lastore lastore

Operation Store into long array

Forms lastore = 80 (0x50)

Operand
Stack

…, arrayref, index, value ⇒
…

Description The arrayref must be of type reference and must refer to an array
whose components are of type long. The index must be of type
int, and value must be of type long. The arrayref, index, and
value are popped from the operand stack. The long value is stored
as the component of the array indexed by index.

Runtime
Exceptions

If arrayref is null, lastore throws a NullPointerException.

Otherwise, if index is not within the bounds of the array referenced
by arrayref, the lastore instruction throws an ArrayIndexOutOf-

BoundsException.

Format lastore
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET318
DRAFT
lcmp lcmp

Operation Compare long

Forms lcmp = 148 (0x94)

Operand
Stack

…, value1, value2 ⇒
…, result

Description Both value1 and value2 must be of type long. They are both
popped from the operand stack, and a signed integer comparison is
performed. If value1 is greater than value2, the int value 1 is
pushed onto the operand stack. If value1 is equal to value2, the int
value 0 is pushed onto the operand stack. If value1 is less than
value2, the int value –1 is pushed onto the operand stack.

Format lcmp
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET 319
DRAFT
lconst_<l> lconst_<l>

Operation Push long constant

Forms lconst_0 = 9 (0x9)
lconst_1 = 10 (0xa)

Operand
Stack

… ⇒
…, <l>

Description Push the long constant <l> (0 or 1) onto the operand stack.

Format lconst_<l>
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET320
DRAFT
ldc ldc

Operation Push item from runtime constant pool

Forms ldc = 18 (0x12)

Operand
Stack

… ⇒
…, value

Description The index is an unsigned byte that must be a valid index into the
runtime constant pool of the current class (§3.6). The runtime con-
stant pool entry at index either must be a runtime constant of type
int or float, or must be a symbolic reference to a class (§5.4.3.1)
or a string literal (§5.1).

If the runtime constant pool entry is a runtime constant of type int
or float, the numeric value of that runtime constant is pushed onto
the operand stack as an int or float, respectively.

Otherwise, if the runtime constant pool entry is a reference to an
instance of class String representing a string literal (§5.1), then a
reference to that instance, value, is pushed onto the operand
stack.

Otherwise, the runtime constant pool entry must be a symbolic ref-
erence to a class (§4.4.1). The named class is resolved (§5.4.3.1)
and a reference to the Class object representing that class, value,
is pushed onto the operand stack.

Linking
Exceptions

During resolution of the symbolic reference to the class, any of the
exceptions pertaining to class resolution documented in Section
5.4.3.1 can be thrown.

Format ldc
index
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET 321
DRAFT
Notes The ldc instruction can only be used to push a value of type float

taken from the float value set (§3.3.2) because a constant of type
float in the constant pool (§4.4.4) must be taken from the float
value set.
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET322
DRAFT
ldc_w ldc_w

Operation Push item from runtime constant pool (wide index)

Forms ldc_w = 19 (0x13)

Operand
Stack

… ⇒
…, value

Description The unsigned indexbyte1 and indexbyte2 are assembled into an
unsigned 16-bit index into the runtime constant pool of the current
class (§3.6), where the value of the index is calculated as
(indexbyte1 << 8) | indexbyte2. The index must be a valid index
into the runtime constant pool of the current class. The runtime
constant pool entry at the index either must be a runtime constant
of type int or float, or must be a symbolic reference to a class
(§5.4.3.1) or a string literal (§5.1).

If the runtime constant pool entry is a runtime constant of type int
or float, the numeric value of that runtime constant is pushed onto
the operand stack as an int or float, respectively.

Otherwise, if the runtime constant pool entry is a reference to an
instance of class String representing a string literal (§5.1), then a
reference to that instance, value, is pushed onto the operand
stack.

Otherwise, the runtime constant pool entry must be a symbolic ref-
erence to a class (§4.4.1). The named class is resolved (§5.4.3.1)
and a reference to the Class object representing that class, value,
is pushed onto the operand stack.

Format ldc_w
indexbyte1
indexbyte2
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET 323
DRAFT
Linking
Exceptions

During resolution of the symbolic reference to the class, any of the
exceptions pertaining to class resolution documented in Section
5.4.3.1 can be thrown.

Notes The ldc_w instruction is identical to the ldc instruction except for
its wider runtime constant pool index.

The ldc_w instruction can only be used to push a value of type
float taken from the float value set (§3.3.2) because a constant of
type float in the constant pool (§4.4.4) must be taken from the
float value set.
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET324
DRAFT
ldc2_w ldc2_w

Operation Push long or double from runtime constant pool (wide index)

Forms ldc2_w = 20 (0x14)

Operand
Stack

… ⇒
…, value

Description The unsigned indexbyte1 and indexbyte2 are assembled into an
unsigned 16-bit index into the runtime constant pool of the current
class (§3.6), where the value of the index is calculated as
(indexbyte1 << 8) | indexbyte2. The index must be a valid index
into the runtime constant pool of the current class. The runtime
constant pool entry at the index must be a runtime constant of type
long or double (§5.1). The numeric value of that runtime constant
is pushed onto the operand stack as a long or double, respectively.

Notes Only a wide-index version of the ldc2_w instruction exists; there is
no ldc2 instruction that pushes a long or double with a single-byte
index.

The ldc2_w instruction can only be used to push a value of type
double taken from the double value set (§3.3.2) because a constant
of type double in the constant pool (§4.4.5) must be taken from the
double value set.

Format ldc2_w
indexbyte1
indexbyte2
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET 325
DRAFT
ldiv ldiv

Operation Divide long

Forms ldiv = 109 (0x6d)

Operand
Stack

…, value1, value2 ⇒
…, result

Description Both value1 and value2 must be of type long. The values are
popped from the operand stack. The long result is the value of the
Java programming language expression value1 / value2. The result
is pushed onto the operand stack.

A long division rounds towards 0; that is, the quotient produced for
long values in n / d is a long value q whose magnitude is as large
as possible while satisfying . Moreover, q is positive
when and n and d have the same sign, but q is negative
when and n and d have opposite signs.

There is one special case that does not satisfy this rule: if the divi-
dend is the negative integer of largest possible magnitude for the
long type and the divisor is −1, then overflow occurs and the result
is equal to the dividend; despite the overflow, no exception is
thrown in this case.

Runtime
Exception

If the value of the divisor in a long division is 0, ldiv throws an
ArithmeticException.

Format ldiv

d q⋅ n≤
n d≥
n d≥
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET326
DRAFT
lload lload

Operation Load long from local variable

Forms lload = 22 (0x16)

Operand
Stack

… ⇒
…, value

Description The index is an unsigned byte. Both index and index + 1 must be
indices into the local variable array of the current frame (§3.6). The
local variable at index must contain a long. The value of the local
variable at index is pushed onto the operand stack.

Notes The lload opcode can be used in conjunction with the wide instruc-
tion to access a local variable using a two-byte unsigned index.

Format lload
index
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET 327
DRAFT
lload_<n> lload_<n>

Operation Load long from local variable

Forms lload_0 = 30 (0x1e)
lload_1 = 31 (0x1f)
lload_2 = 32 (0x20)
lload_3 = 33 (0x21)

Operand
Stack

… ⇒
…, value

Description Both <n> and <n> + 1 must be indices into the local variable array
of the current frame (§3.6). The local variable at <n> must contain
a long. The value of the local variable at <n> is pushed onto the
operand stack.

Notes Each of the lload_<n> instructions is the same as lload with an
index of <n>, except that the operand <n> is implicit.

Format lload_<n>
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET328
DRAFT
lmul lmul

Operation Multiply long

Forms lmul = 105 (0x69)

Operand
Stack

…, value1, value2 ⇒
…, result

Description Both value1 and value2 must be of type long. The values are
popped from the operand stack. The long result is value1 ∗ value2.
The result is pushed onto the operand stack.

The result is the 64 low-order bits of the true mathematical result in
a sufficiently wide two’s-complement format, represented as a
value of type long. If overflow occurs, the sign of the result may
not be the same as the sign of the mathematical sum of the two val-
ues.

Despite the fact that overflow may occur, execution of an lmul
instruction never throws a runtime exception.

Format lmul
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET 329
DRAFT
lneg lneg

Operation Negate long

Forms lneg = 117 (0x75)

Operand
Stack

…, value ⇒
…, result

Description The value must be of type long. It is popped from the operand
stack. The long result is the arithmetic negation of value, −value.
The result is pushed onto the operand stack.

For long values, negation is the same as subtraction from zero.
Because the Java virtual machine uses two’s-complement represen-
tation for integers and the range of two’s-complement values is not
symmetric, the negation of the maximum negative long results in
that same maximum negative number. Despite the fact that over-
flow has occurred, no exception is thrown.

For all long values x, −x equals (∼ x) + 1.

Format lneg
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET330
DRAFT
lookupswitch lookupswitch

Operation Access jump table by key match and jump

Forms lookupswitch = 171 (0xab)

Operand
Stack

…, key ⇒
…

Description A lookupswitch is a variable-length instruction. Immediately after
the lookupswitch opcode, between zero and three null bytes (zeroed
bytes, not the null object) are inserted as padding. The number of
null bytes is chosen so that the defaultbyte1 begins at an address
that is a multiple of four bytes from the start of the current method
(the opcode of its first instruction). Immediately after the padding
follow a series of signed 32-bit values: default, npairs, and then
npairs pairs of signed 32-bit values. The npairs must be greater
than or equal to 0. Each of the npairs pairs consists of an int match
and a signed 32-bit offset. Each of these signed 32-bit values is con-
structed from four unsigned bytes as (byte1 << 24) | (byte2 << 16) |
(byte3 << 8) | byte4.

Format lookupswitch
<0-3 byte pad>

defaultbyte1
defaultbyte2
defaultbyte3
defaultbyte4

npairs1
npairs2
npairs3
npairs4

match-offset pairs…
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET 331
DRAFT
lookupswitch (cont.) lookupswitch (cont.)

The table match-offset pairs of the lookupswitch instruction must be
sorted in increasing numerical order by match.

The key must be of type int and is popped from the operand stack.
The key is compared against the match values. If it is equal to one
of them, then a target address is calculated by adding the corre-
sponding offset to the address of the opcode of this lookupswitch
instruction. If the key does not match any of the match values, the
target address is calculated by adding default to the address of the
opcode of this lookupswitch instruction. Execution then continues
at the target address.

The target address that can be calculated from the offset of each
match-offset pair, as well as the one calculated from default, must
be the address of an opcode of an instruction within the method that
contains this lookupswitch instruction.

Notes The alignment required of the 4-byte operands of the lookupswitch
instruction guarantees 4-byte alignment of those operands if and
only if the method that contains the lookupswitch is positioned on a
4-byte boundary.

The match-offset pairs are sorted to support lookup routines that are
quicker than linear search.
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET332
DRAFT
lor lor

Operation Boolean OR long

Forms lor = 129 (0x81)

Operand
Stack

…, value1, value2 ⇒
…, result

Description Both value1 and value2 must be of type long. They are popped
from the operand stack. A long result is calculated by taking the
bitwise inclusive OR of value1 and value2. The result is pushed
onto the operand stack.

Format lor
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET 333
DRAFT
lrem lrem

Operation Remainder long

Forms lrem = 113 (0x71)

Operand
Stack

…, value1, value2 ⇒
…, result

Description Both value1 and value2 must be of type long. The values are
popped from the operand stack. The long result is value1 −
(value1 / value2) ∗ value2. The result is pushed onto the operand
stack.

The result of the lrem instruction is such that (a/b)∗ b + (a%b) is
equal to a. This identity holds even in the special case in which the
dividend is the negative long of largest possible magnitude for its
type and the divisor is −1 (the remainder is 0). It follows from this
rule that the result of the remainder operation can be negative only
if the dividend is negative and can be positive only if the dividend is
positive; moreover, the magnitude of the result is always less than
the magnitude of the divisor.

Runtime
Exception

If the value of the divisor for a long remainder operator is 0, lrem
throws an ArithmeticException.

Format lrem
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET334
DRAFT
lreturn lreturn

Operation Return long from method

Forms lreturn = 173 (0xad)

Operand
Stack

…, value ⇒
[empty]

Description The current method must have return type long. The value must
be of type long. If the current method is a synchronized

method, the monitor acquired or reentered on invocation of the
method is released or exited (respectively) as if by execution of a
monitorexit instruction. If no exception is thrown, value is popped
from the operand stack of the current frame (§3.6) and pushed
onto the operand stack of the frame of the invoker. Any other val-
ues on the operand stack of the current method are discarded.

The interpreter then returns control to the invoker of the method,
reinstating the frame of the invoker.

Runtime
Exceptions

If the current method is a synchronized method and the current
thread is not the owner of the monitor acquired or reentered on
invocation of the method, lreturn throws an IllegalMonitor-

StateException. This can happen, for example, if a synchro-

nized method contains a monitorexit instruction, but no
monitorenter instruction, on the object on which the method is syn-
chronized.

Otherwise, if the virtual machine implementation enforces the rules
on structured use of locks described in Section 8.13 and if the first
of those rules is violated during invocation of the current method,
then lreturn throws an IllegalMonitorStateException.

Format lreturn
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET 335
DRAFT
lshl lshl

Operation Shift left long

Forms lshl = 121 (0x79)

Operand
Stack

…, value1, value2 ⇒
…, result

Description The value1 must be of type long, and value2 must be of type int.
The values are popped from the operand stack. A long result is cal-
culated by shifting value1 left by s bit positions, where s is the low
6 bits of value2. The result is pushed onto the operand stack.

Notes This is equivalent (even if overflow occurs) to multiplication by 2
to the power s. The shift distance actually used is therefore always
in the range 0 to 63, inclusive, as if value2 were subjected to a bit-
wise logical AND with the mask value 0x3f.

Format lshl
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET336
DRAFT
lshr lshr

Operation Arithmetic shift right long

Forms lshr = 123 (0x7b)

Operand
Stack

…, value1, value2 ⇒
…, result

Description The value1 must be of type long, and value2 must be of type int.
The values are popped from the operand stack. A long result is cal-
culated by shifting value1 right by s bit positions, with sign exten-
sion, where s is the value of the low 6 bits of value2. The result is
pushed onto the operand stack.

Notes The resulting value is , where s is value2 & 0x3f. For
nonnegative value1, this is equivalent to truncating long division
by 2 to the power s. The shift distance actually used is therefore
always in the range 0 to 63, inclusive, as if value2 were subjected to
a bitwise logical AND with the mask value 0x3f.

Format lshr

value1 2s⁄
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET 337
DRAFT
lstore lstore

Operation Store long into local variable

Forms lstore = 55 (0x37)

Operand
Stack

…, value ⇒
…

Description The index is an unsigned byte. Both index and index + 1 must be
indices into the local variable array of the current frame (§3.6). The
value on the top of the operand stack must be of type long. It is
popped from the operand stack, and the local variables at index and
index + 1 are set to value.

Notes The lstore opcode can be used in conjunction with the wide instruc-
tion to access a local variable using a two-byte unsigned index.

Format lstore
index
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET338
DRAFT
lstore_<n> lstore_<n>

Operation Store long into local variable

Forms lstore_0 = 63 (0x3f)
lstore_1 = 64 (0x40)
lstore_2 = 65 (0x41)
lstore_3 = 66 (0x42)

Operand
Stack

…, value ⇒
…

Description Both <n> and <n> + 1 must be indices into the local variable array
of the current frame (§3.6). The value on the top of the operand
stack must be of type long. It is popped from the operand stack,
and the local variables at <n> and <n> + 1 are set to value.

Notes Each of the lstore_<n> instructions is the same as lstore with an
index of <n>, except that the operand <n> is implicit.

Format lstore_<n>
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET 339
DRAFT
lsub lsub

Operation Subtract long

Forms lsub = 101 (0x65)

Operand
Stack

…, value1, value2 ⇒
…, result

Description Both value1 and value2 must be of type long. The values are
popped from the operand stack. The long result is value1 − value2.
The result is pushed onto the operand stack.

For long subtraction, a−b produces the same result as a+(−b). For
long values, subtraction from zero is the same as negation.

The result is the 64 low-order bits of the true mathematical result in
a sufficiently wide two’s-complement format, represented as a
value of type long. If overflow occurs, then the sign of the result
may not be the same as the sign of the mathematical sum of the two
values.

Despite the fact that overflow may occur, execution of an lsub
instruction never throws a runtime exception.

Format lsub
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET340
DRAFT
lushr lushr

Operation Logical shift right long

Forms lushr = 125 (0x7d)

Operand
Stack

…, value1, value2 ⇒
…, result

Description The value1 must be of type long, and value2 must be of type int.
The values are popped from the operand stack. A long result is cal-
culated by shifting value1 right logically (with zero extension) by
the amount indicated by the low 6 bits of value2. The result is
pushed onto the operand stack.

Notes If value1 is positive and s is value2 & 0x3f, the result is the same as
that of value1 >> s; if value1 is negative, the result is equal to the
value of the expression (value1 >> s) + (2L << ∼ s). The addition
of the (2L << ∼ s) term cancels out the propagated sign bit. The
shift distance actually used is always in the range 0 to 63, inclusive.

Format lushr
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET 341
DRAFT
lxor lxor

Operation Boolean XOR long

Forms lxor = 131 (0x83)

Operand
Stack

…, value1, value2 ⇒
…, result

Description Both value1 and value2 must be of type long. They are popped
from the operand stack. A long result is calculated by taking the
bitwise exclusive OR of value1 and value2. The result is pushed
onto the operand stack.

Format lxor
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET342
DRAFT
monitorenter monitorenter

Operation Enter monitor for object

Forms monitorenter = 194 (0xc2)

Operand
Stack

…, objectref ⇒
…

Description The objectref must be of type reference.

Each object has a monitor associated with it. The thread that exe-
cutes monitorenter gains ownership of the monitor associated with
objectref. If another thread already owns the monitor associated
with objectref, the current thread waits until the object is unlocked,
then tries again to gain ownership. If the current thread already
owns the monitor associated with objectref, it increments a counter
in the monitor indicating the number of times this thread has
entered the monitor. If the monitor associated with objectref is not
owned by any thread, the current thread becomes the owner of the
monitor, setting the entry count of this monitor to 1.

Runtime
Exception

If objectref isnull, monitorenter throws aNullPointerException.

Notes For detailed information about threads and monitors in the Java vir-
tual machine, see Chapter 8, “Threads and Locks.”

Format monitorenter
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET 343
DRAFT
monitorenter (cont.) monitorenter (cont.)

A monitorenter instruction may be used with one or more monitor-
exit instructions to implement a synchronized statement in the Java
programming language. The monitorenter and monitorexit instruc-
tions are not used in the implementation of synchronized meth-
ods, although they can be used to provide equivalent locking
semantics; however, monitor entry on invocation of a synchro-

nized method is handled implicitly by the Java virtual machine’s
method invocation instructions. See Section 7.14 for more informa-
tion on the use of the monitorenter and monitorexit instructions.

The association of a monitor with an object may be managed in
various ways that are beyond the scope of this specification. For
instance, the monitor may be allocated and deallocated at the same
time as the object. Alternatively, it may be dynamically allocated at
the time when a thread attempts to gain exclusive access to the
object and freed at some later time when no thread remains in the
monitor for the object.

The synchronization constructs of the Java programming language
require support for operations on monitors besides entry and exit.
These include waiting on a monitor (Object.wait) and notifying
other threads waiting on a monitor (Object.notifyAll and
Object.notify). These operations are supported in the standard
package java.lang supplied with the Java virtual machine. No
explicit support for these operations appears in the instruction set of
the Java virtual machine.
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET344
DRAFT
monitorexit monitorexit

Operation Exit monitor for object

Forms monitorexit = 195 (0xc3)

Operand
Stack

…, objectref ⇒
…

Description The objectref must be of type reference.

The current thread should be the owner of the monitor associated
with the instance referenced by objectref. The thread decrements
the counter indicating the number of times it has entered this moni-
tor. If as a result the value of the counter becomes zero, the current
thread releases the monitor. If the monitor associated with objectref
becomes free, other threads that are waiting to acquire that monitor
are allowed to attempt to do so.

Runtime
Exceptions

If objectref is null, monitorexit throws a NullPointerException.

Otherwise, if the current thread is not the owner of the monitor,
monitorexit throws an IllegalMonitorStateException.

Otherwise, if the virtual machine implementation enforces the rules
on structured use of locks described in Section 8.13 and if the sec-
ond of those rules is violated by the execution of this monitorexit
instruction, then monitorexit throws an IllegalMonitorState-

Exception.

Notes For detailed information about threads and monitors in the Java vir-
tual machine, see Chapter 8, “Threads and Locks.”

Format monitorexit
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET 345
DRAFT
monitorexit (cont.) monitorexit (cont.)

One or more monitorexit instructions may be used with a moni-
torenter instruction to implement a synchronized statement in the
Java programming language. The monitorenter and monitorexit
instructions are not used in the implementation of synchronized
methods, although they can be used to provide equivalent locking
semantics.

The Java virtual machine supports exceptions thrown within syn-

chronized methods and synchronized statements differently.
Monitor exit on normal synchronized method completion is han-
dled by the Java virtual machine’s return instructions. Monitor exit
on abrupt synchronized method completion is handled implicitly
by the Java virtual machine’s athrow instruction. When an excep-
tion is thrown from within a synchronized statement, exit from
the monitor entered prior to the execution of the synchronized

statement is achieved using the Java virtual machine’s exception
handling mechanism. See Section 7.14 for more information on the
use of the monitorenter and monitorexit instructions.
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET346
DRAFT
multianewarray multianewarray

Operation Create new multidimensional array

Forms multianewarray = 197 (0xc5)

Operand
Stack

…, count1, [count2, …] ⇒
…, arrayref

Description The dimensions operand is an unsigned byte that must be greater
than or equal to 1. It represents the number of dimensions of the
array to be created. The operand stack must contain dimensions
values. Each such value represents the number of components in a
dimension of the array to be created, must be of type int, and must
be nonnegative. The count1 is the desired length in the first dimen-
sion, count2 in the second, etc.

All of the count values are popped off the operand stack. The
unsigned indexbyte1 and indexbyte2 are used to construct an index
into the runtime constant pool of the current class (§3.6), where the
value of the index is (indexbyte1 << 8) | indexbyte2. The runtime
constant pool item at the index must be a symbolic reference to a
class, array, or interface type. The named class, array, or interface
type is resolved (§5.4.3.1). The resulting entry must be an array
class type of dimensionality greater than or equal to dimensions.

Format multianewarray
indexbyte1
indexbyte2
dimensions
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET 347
DRAFT
multianewarray (cont.) multianewarray (cont.)

A new multidimensional array of the array type is allocated from
the garbage-collected heap. If any count value is zero, no subse-
quent dimensions are allocated. The components of the array in the
first dimension are initialized to subarrays of the type of the second
dimension, and so on. The components of the last allocated dimen-
sion of the array are initialized to the default initial value for the
type of the components (§2.5.1). A reference arrayref to the new
array is pushed onto the operand stack.

Linking
Exceptions

During resolution of the symbolic reference to the class, array, or
interface type, any of the exceptions documented in Section 5.4.3.1
can be thrown.

Otherwise, if the current class does not have permission to access
the element type of the resolved array class, multianewarray
throws an IllegalAccessError.

Runtime
Exception

Otherwise, if any of the dimensions values on the operand stack are
less than zero, the multianewarray instruction throws a Negative-
ArraySizeException.

Notes It may be more efficient to use newarray or anewarray when creat-
ing an array of a single dimension.

The array class referenced via the runtime constant pool may have
more dimensions than the dimensions operand of the multianew-
array instruction. In that case, only the first dimensions of the
dimensions of the array are created.
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET348
DRAFT
new new

Operation Create new object

Forms new = 187 (0xbb)

Operand
Stack

… ⇒
…, objectref

Description The unsigned indexbyte1 and indexbyte2 are used to construct an
index into the runtime constant pool of the current class (§3.6),
where the value of the index is (indexbyte1 << 8) | indexbyte2. The
runtime constant pool item at the index must be a symbolic refer-
ence to a class or interface type. The named class or interface type
is resolved (§5.4.3.1) and should result in a class type . Memory for
a new instance of that class is allocated from the garbage-collected
heap, and the instance variables of the new object are initialized to
their default initial values (§2.5.1). The objectref, a reference to
the instance, is pushed onto the operand stack.

On successful resolution of the class, it is initialized (§5.5) if it has
not already been initialized.

Linking
Exceptions

During resolution of the symbolic reference to the class, array, or
interface type, any of the exceptions documented in Section 5.4.3.1
can be thrown.

Otherwise, if the symbolic reference to the class, array, or inter-
face type resolves to an interface or is an abstract class, new
throws an InstantiationError.

Format new
indexbyte1
indexbyte2
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET 349
DRAFT
new (cont.) new (cont.)

Runtime
Exception

Otherwise, if execution of this new instruction causes initialization
of the referenced class, new may throw an Error as detailed in
Section 2.17.5.

Note The new instruction does not completely create a new instance;
instance creation is not completed until an instance initialization
method has been invoked on the uninitialized instance.
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET350
DRAFT
newarray newarray

Operation Create new arrayhandler

Forms newarray = 188 (0xbc)

Operand
Stack

…, count ⇒
…, arrayref

Description The count must be of type int. It is popped off the operand stack.
The count represents the number of elements in the array to be cre-
ated.

The atype is a code that indicates the type of array to create. It must
take one of the following values:

A new array whose components are of type atype and of length
count is allocated from the garbage-collected heap. A reference

arrayref to this new array object is pushed into the operand stack.
Each of the elements of the new array is initialized to the default
initial value for the type of the array (§2.5.1).

Format newarray
atype

Array Type atype

T_BOOLEAN 4

T_CHAR 5

T_FLOAT 6

T_DOUBLE 7

T_BYTE 8

T_SHORT 9

T_INT 10

T_LONG 11
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET 351
DRAFT
newarray (cont.) newarray (cont.)

Runtime
Exception

If count is less than zero, newarray throws a NegativeArray-
SizeException.

Notes In Sun’s implementation of the Java virtual machine, arrays of type
boolean (atype is T_BOOLEAN) are stored as arrays of 8-bit values
and are manipulated using the baload and bastore instructions,
instructions that also access arrays of type byte. Other implemen-
tations may implement packed boolean arrays; the baload and
bastore instructions must still be used to access those arrays.
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET352
DRAFT
nop nop

Operation Do nothing

Forms nop = 0 (0x0)

Operand
Stack

No change

Description Do nothing.

Format nop
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET 353
DRAFT
pop pop

Operation Pop the top operand stack value

Forms pop = 87 (0x57)

Operand
Stack

…, value ⇒
…

Description Pop the top value from the operand stack.

The pop instruction must not be used unless value is a value of a
category 1 computational type (§3.11.1).

Format pop
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET354
DRAFT
pop2 pop2

Operation Pop the top one or two operand stack values

Forms pop2 = 88 (0x58)

Operand
Stack

Form 1:

…, value2, value1 ⇒
…

where each of value1 and value2 is a value of a category 1 compu-
tational type (§3.11.1).

Form 2:

…, value ⇒
…

where value is a value of a category 2 computational type (§3.11.1).

Description Pop the top one or two values from the operand stack.

Format pop2
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET 355
DRAFT
putfield putfield

Operation Set field in object

Forms putfield = 181 (0xb5)

Operand
Stack

…, objectref, value ⇒
…

Description The unsigned indexbyte1 and indexbyte2 are used to construct an
index into the runtime constant pool of the current class (§3.6),
where the value of the index is (indexbyte1 << 8) | indexbyte2. The
runtime constant pool item at that index must be a symbolic refer-
ence to a field (§5.1), which gives the name and descriptor of the
field as well as a symbolic reference to the class in which the field
is to be found. The class of objectref must not be an array. If the
field is protected (§4.6), and it is a member of a superclass of the
current class, and the field is not declared in the same run-time
package (§5.3) as the current class, then the class of objectref must
be either the current class or a subclass of the current class.

The referenced field is resolved (§5.4.3.2). The type of a value
stored by a putfield instruction must be compatible with the
descriptor of the referenced field (§4.3.2). If the field descriptor
type is boolean, byte, char, short, or int, then the value must be
an int. If the field descriptor type is float, long, or double, then
the value must be a float, long, or double, respectively. If the
field descriptor type is a reference type, then the value must be of a
type that is assignment compatible (§2.6.7) with the field descriptor
type. If the field is final, it should be declared in the current class,
and the instruction should occur in an instance initialization
method (<init>) method of the current class. Otherwise, an Ille-

galAccessError is thrown.

Format putfield
indexbyte1
indexbyte2
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET356
DRAFT
putfield (cont.) putfield (cont.)

The value and objectref are popped from the operand stack. The
objectref must be of type reference. The value undergoes value
set conversion (§3.8.3), resulting in value’, and the referenced field
in objectref is set to value’.

Linking
Exceptions

During resolution of the symbolic reference to the field, any of the
exceptions pertaining to field resolution documented in Section
5.4.3.2 can be thrown.

Otherwise, if the resolved field is a static field, putfield throws an
IncompatibleClassChangeError.

Otherwise, if the field is final, it should be declared in the current
class, and the instruction should occur in an instance initialization
method (<init>) method of the current class. Otherwise, an Ille-

galAccessError is thrown.

Runtime
Exception

Otherwise, if objectref is null, the putfield instruction throws a
NullPointerException.
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET 357
DRAFT
putstatic putstatic

Operation Set static field in class

Forms putstatic = 179 (0xb3)

Operand
Stack

…, value ⇒
…

Description The unsigned indexbyte1 and indexbyte2 are used to construct an
index into the runtime constant pool of the current class (§3.6),
where the value of the index is (indexbyte1 << 8) | indexbyte2. The
runtime constant pool item at that index must be a symbolic refer-
ence to a field (§5.1), which gives the name and descriptor of the
field as well as a symbolic reference to the class or interface in
which the field is to be found. The referenced field is resolved
(§5.4.3.2).

On successful resolution of the field the class or interface that
declared the resolved field is initialized (§5.5) if that class or inter-
face has not already been initialized.

The type of a value stored by a putstatic instruction must be com-
patible with the descriptor of the referenced field (§4.3.2). If the
field descriptor type is boolean, byte, char, short, or int, then
the value must be an int. If the field descriptor type is float,
long, or double, then the value must be a float, long, or double,
respectively. If the field descriptor type is a reference type, then the
value must be of a type that is assignment compatible (§2.6.7) with
the field descriptor type. If the field is final, it should be declared
in the current class, and the instruction should occur in the
<clinit> method of the current class. Otherwise, an IllegalAc-

cessError is thrown.

Format putstatic
indexbyte1
indexbyte2
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET358
DRAFT
putstatic (cont.) putstatic (cont.)

The value is popped from the operand stack and undergoes value
set conversion (§3.8.3), resulting in value’. The class field is set to
value’.

Linking
Exceptions

During resolution of the symbolic reference to the class or interface
field, any of the exceptions pertaining to field resolution docu-
mented in Section 5.4.3.2 can be thrown.

Otherwise, if the resolved field is not a static (class) field or
an interface field, putstatic throws an IncompatibleClass-

ChangeError.

Otherwise, if the field is final, it should be declared in the current
class, and the instruction should occur in the <clinit> method of
the current class. Otherwise, an IllegalAccessError is thrown.

Runtime
Exception

Otherwise, if execution of this putstatic instruction causes initial-
ization of the referenced class or interface, putstatic may throw an
Error as detailed in Section 2.17.5.

Notes A putstatic instruction may be used only to set the value of an
interface field on the initialization of that field. Interface fields may
be assigned to only once, on execution of an interface variable ini-
tialization expression when the interface is initialized (§2.17.4).
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET 359
DRAFT
ret ret

Operation Return from subroutine

Forms ret = 169 (0xa9)

Operand
Stack

No change

Description The index is an unsigned byte between 0 and 255, inclusive. The
local variable at index in the current frame (§3.6) must contain a
value of type returnAddress. The contents of the local variable
are written into the Java virtual machine’s pc register, and execu-
tion continues there.

Notes The ret instruction is used with jsr or jsr_w instructions in the
implementation of the finally clauses of the Java programming
language (see Section 7.13, “Compiling finally”). Note that jsr
pushes the address onto the operand stack and ret gets it out of a
local variable. This asymmetry is intentional.

The ret instruction should not be confused with the return instruc-
tion. A return instruction returns control from a method to its
invoker, without passing any value back to the invoker.

The ret opcode can be used in conjunction with the wide instruction
to access a local variable using a two-byte unsigned index.

Format ret
index
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET360
DRAFT
return return

Operation Return void from method

Forms return = 177 (0xb1)

Operand
Stack

… ⇒
[empty]

Description The current method must have return type void. If the current
method is a synchronized method, the monitor acquired or reen-
tered on invocation of the method is released or exited (respec-
tively) as if by execution of a monitorexit instruction. If no
exception is thrown, any values on the operand stack of the current
frame (§3.6) are discarded.

The interpreter then returns control to the invoker of the method,
reinstating the frame of the invoker.

Runtime
Exceptions

If the current method is a synchronized method and the current
thread is not the owner of the monitor acquired or reentered on
invocation of the method, return throws an IllegalMonitor-

StateException. This can happen, for example, if a synchro-

nized method contains a monitorexit instruction, but no
monitorenter instruction, on the object on which the method is syn-
chronized.

Otherwise, if the virtual machine implementation enforces the rules
on structured use of locks described in Section 8.13 and if the first
of those rules is violated during invocation of the current method,
then return throws an IllegalMonitorStateException.

Format return
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET 361
DRAFT
saload saload

Operation Load short from array

Forms saload = 53 (0x35)

Operand
Stack

…, arrayref, index ⇒
…, value

Description The arrayref must be of type reference and must refer to an array
whose components are of type short. The index must be of type
int. Both arrayref and index are popped from the operand stack.
The component of the array at index is retrieved and sign-extended
to an int value. That value is pushed onto the operand stack.

Runtime
Exceptions

If arrayref is null, saload throws a NullPointerException.

Otherwise, if index is not within the bounds of the array referenced
by arrayref, the saload instruction throws an ArrayIndexOutOf-
BoundsException.

Format saload
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

sastore sastore

Operation Store into short array

Forms sastore = 86 (0x56)

Operand
Stack

…, array, index, value ⇒
…

Description The arrayref must be of type reference and must refer to an array
whose components are of type short. Both index and value must
be of type int. The arrayref, index, and value are popped from the
operand stack. The int value is truncated to a short and stored as
the component of the array indexed by index.

Runtime
Exceptions

If arrayref is null, sastore throws a NullPointerException.

Otherwise, if index is not within the bounds of the array referenced
by arrayref, the sastore instruction throws an ArrayIndexOutOf-
BoundsException.

Format sastore

THE JAVA VIRTUAL MACHINE INSTRUCTION SET 363
DRAFT
sipush sipush

Operation Push short

Forms sipush = 17 (0x11)

Operand
Stack

… ⇒
…, value

Description The immediate unsigned byte1 and byte2 values are assembled into
an intermediate short where the value of the short is (byte1 << 8) |
byte2. The intermediate value is then sign-extended to an int

value. That value is pushed onto the operand stack.

Format sipush
byte1
byte2
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET364
DRAFT
swap swap

Operation Swap the top two operand stack values

Forms swap = 95 (0x5f)

Operand
Stack

…, value2, value1 ⇒
…, value1, value2

Description Swap the top two values on the operand stack.

The swap instruction must not be used unless value1 and value2 are
both values of a category 1 computational type (§3.11.1).

Notes The Java virtual machine does not provide an instruction imple-
menting a swap on operands of category 2 computational types.

Format swap
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET 365
DRAFT
tableswitch tableswitch

Operation Access jump table by index and jump

Forms tableswitch = 170 (0xaa)

Operand
Stack

…, index ⇒
…

Description A tableswitch is a variable-length instruction. Immediately after the
tableswitch opcode, between 0 and 3 null bytes (zeroed bytes, not
the null object) are inserted as padding. The number of null bytes is
chosen so that the following byte begins at an address that is a mul-
tiple of 4 bytes from the start of the current method (the opcode of
its first instruction). Immediately after the padding follow bytes
constituting three signed 32-bit values: default, low, and high.
Immediately following those bytes are bytes constituting a series of
high − low + 1 signed 32-bit offsets. The value low must be less
than or equal to high. The high − low + 1 signed 32-bit offsets are

Format tableswitch
<0-3 byte pad>

defaultbyte1
defaultbyte2
defaultbyte3
defaultbyte4

lowbyte1
lowbyte2
lowbyte3
lowbyte4
highbyte1
highbyte2
highbyte3
highbyte4

jump offsets…
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET366
DRAFT
treated as a 0-based jump table. Each of these signed 32-bit values
is constructed as (byte1 << 24) | (byte2 << 16) | (byte3 << 8) | byte4.
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET 367
DRAFT
tableswitch (cont.) tableswitch (cont.)

The index must be of type int and is popped from the operand
stack. If index is less than low or index is greater than high, then a
target address is calculated by adding default to the address of the
opcode of this tableswitch instruction. Otherwise, the offset at posi-
tion index − low of the jump table is extracted. The target address is
calculated by adding that offset to the address of the opcode of this
tableswitch instruction. Execution then continues at the target
address.

The target address that can be calculated from each jump table off-
set, as well as the one that can be calculated from default, must be
the address of an opcode of an instruction within the method that
contains this tableswitch instruction.

Notes The alignment required of the 4-byte operands of the tableswitch
instruction guarantees 4-byte alignment of those operands if and
only if the method that contains the tableswitch starts on a 4-byte
boundary.
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET368
DRAFT
wide wide

Operation Extend local variable index by additional bytes

where <opcode> is one of iload, fload, aload, lload, dload, istore,
fstore, astore, lstore, dstore, or ret

Forms wide = 196 (0xc4)

Operand
Stack

Same as modified instruction

Description The wide instruction modifies the behavior of another instruction. It
takes one of two formats, depending on the instruction being modi-
fied. The first form of the wide instruction modifies one of the
instructions iload, fload, aload, lload, dload, istore, fstore, astore,
lstore, dstore, or ret. The second form applies only to the iinc
instruction.

In either case, the wide opcode itself is followed in the compiled
code by the opcode of the instruction wide modifies. In either form,
two unsigned bytes indexbyte1 and indexbyte2 follow the modified
opcode and are assembled into a 16-bit unsigned index to a local
variable in the current frame (§3.6), where the value of the index is

Format 1: wide
<opcode>

indexbyte1
indexbyte2

Format 2: wide
iinc

indexbyte1
indexbyte2
constbyte1
constbyte2
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET 369
DRAFT
wide (cont.) wide (cont.)

(indexbyte1 << 8) | indexbyte2. The calculated index must be an
index into the local variable array of the current frame. Where the
wide instruction modifies an lload, dload, lstore, or dstore instruc-
tion, the index following the calculated index (index + 1) must also
be an index into the local variable array. In the second form, two
immediate unsigned bytes constbyte1 and constbyte2 follow
indexbyte1 and indexbyte2 in the code stream. Those bytes are also
assembled into a signed 16-bit constant, where the constant is
(constbyte1 << 8) | constbyte2.

The widened bytecode operates as normal, except for the use of the
wider index and, in the case of the second form, the larger incre-
ment range.

Notes Although we say that wide “modifies the behavior of another
instruction,” the wide instruction effectively treats the bytes consti-
tuting the modified instruction as operands, denaturing the embed-
ded instruction in the process. In the case of a modified iinc
instruction, one of the logical operands of the iinc is not even at the
normal offset from the opcode. The embedded instruction must
never be executed directly; its opcode must never be the target of
any control transfer instruction.
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET370
DRAFT
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

	aaload
	aastore
	aconst_null
	aload
	index
	aload_<n>
	anewarray
	indexbyte1
	indexbyte2
	areturn
	arraylength
	astore
	index
	astore_<n>
	athrow
	baload
	bastore
	bipush
	byte
	caload
	castore
	checkcast
	indexbyte1
	indexbyte2
	d2f
	d2i
	d2l
	dadd
	daload
	dastore
	dcmp<op>
	• If value1’ is greater than value2’, the int value 1 is pushed onto the operand stack.

	dconst_<d>
	ddiv
	dload
	index
	dload_<n>
	dmul
	dneg
	drem
	dreturn
	dstore
	index
	dstore_<n>
	dsub
	dup
	dup_x1
	dup_x2
	dup2
	dup2_x1
	dup2_x2
	f�2d
	f�2i
	f�2l
	fadd
	faload
	fastore
	fcmp<op>
	• If value1’ is greater than value2’, the int value 1 is pushed onto the operand stack.

	fconst_<f�>
	fdiv
	fload
	index
	f�load_<n>
	f�mul
	f�neg
	f�rem
	freturn
	fstore
	index
	fstore_<n>
	fsub
	getfield
	indexbyte1
	indexbyte2
	getstatic
	indexbyte1
	indexbyte2
	goto
	branchbyte1
	branchbyte2
	goto_w
	branchbyte1
	branchbyte2
	branchbyte3
	branchbyte4
	i2b
	i2c
	i2d
	i2f
	i2l
	i2s
	iadd
	iaload
	iand
	iastore
	iconst_<i>
	idiv
	if_acmp<cond>
	branchbyte1
	branchbyte2
	if_icmp<cond>
	branchbyte1
	branchbyte2
	if<cond>
	branchbyte1
	branchbyte2
	ifnonnull
	branchbyte1
	branchbyte2
	ifnull
	branchbyte1
	branchbyte2
	iinc
	index
	const
	iload
	index
	iload_<n>
	imul
	ineg
	instanceof
	indexbyte1
	indexbyte2
	invokedynamic
	indexbyte1
	indexbyte2
	• If the native method is synchronized, the monitor associated with �object��ref is released or e...

	invokeinterface
	indexbyte1
	indexbyte2
	count
	0
	invokespecial
	indexbyte1
	indexbyte2
	invokestatic
	indexbyte1
	indexbyte2
	invokevirtual
	indexbyte1
	indexbyte2
	ior
	irem
	ireturn
	ishl
	ishr
	istore
	index
	istore_<n>
	isub
	iushr
	ixor
	jsr
	branchbyte1
	branchbyte2
	jsr_w
	branchbyte1
	branchbyte2
	branchbyte3
	branchbyte4
	l2d
	l2f
	l2i
	ladd
	laload
	land
	lastore
	lcmp
	lconst_<l>
	ldc
	index
	ldc_w
	indexbyte1
	indexbyte2
	ldc2_w
	indexbyte1
	indexbyte2
	ldiv
	lload
	index
	lload_<n>
	lmul
	lneg
	lookupswitch
	<0-3 byte pad>
	defaultbyte1
	defaultbyte2
	defaultbyte3
	defaultbyte4
	npairs1
	npairs2
	npairs3
	npairs4
	match-offset pairsº
	lor
	lrem
	lreturn
	lshl
	lshr
	lstore
	index
	lstore_<n>
	lsub
	lushr
	lxor
	monitorenter
	monitorexit
	multianewarray
	indexbyte1
	indexbyte2
	dimensions
	new
	indexbyte1
	indexbyte2
	newarray
	atype
	nop
	pop
	pop2
	putfield
	indexbyte1
	indexbyte2
	putstatic
	indexbyte1
	indexbyte2
	ret
	index
	return
	saload
	sastore
	sipush
	byte1
	byte2
	swap
	tableswitch
	<0-3 byte pad>
	defaultbyte1
	defaultbyte2
	defaultbyte3
	defaultbyte4
	lowbyte1
	lowbyte2
	lowbyte3
	lowbyte4
	highbyte1
	highbyte2
	highbyte3
	highbyte4
	jump offsetsº
	wide
	<opcode>
	indexbyte1
	indexbyte2
	wide
	iinc
	indexbyte1
	indexbyte2
	constbyte1
	constbyte2

