
ConstantPool.doc Page 155 Thursday, May 13, 2004 11:14 AM
C H A P T E R 5

Loading, Linking,

and Initializing

THE Java virtual machine dynamically loads (§2.17.2), links (§2.17.3), and initial-
izes (§2.17.4) classes and interfaces. Loading is the process of finding the binary rep-
resentation of a class or interface type with a particular name and creating a class or
interface from that binary representation. Linking is the process of taking a class or
interface and combining it into the runtime state of the Java virtual machine so that it
can be executed. Initialization of a class or interface consists of executing the class or
interface initialization method <clinit> (§3.9).

In this chapter, Section 5.1 describes how the Java virtual machine derives sym-
bolic references from the binary representation of a class or interface. Section 5.2
explains how the processes of loading, linking, and initialization are first initiated by
the Java virtual machine. Section 5.3 specifies how binary representations of
classes and interfaces are loaded by class loaders and how classes and interfaces
are created. Linking is described in Section 5.4. Section 5.5 details how classes
and interfaces are initialized. Finally, Section 5.6 introduces the notion of binding
native methods.

5.1 The Runtime Constant Pool

The Java virtual machine maintains a per-type constant pool (§3.5.5), a runtime data
structure that serves many of the purposes of the symbol table of a conventional pro-
gramming language implementation.

The constant_pool table (§4.4) in the binary representation of a class or
interface is used to construct the runtime constant pool upon class or interface cre-
155

LOADING, LINKING, AND INITIALIZING156

ConstantPool.doc Page 156 Thursday, May 13, 2004 11:14 AM
ation (§5.3). All references in the runtime constant pool are initially symbolic.
The symbolic references in the runtime constant pool are derived from structures
in the binary representation of the class or interface as follows:

• A symbolic reference to a class or interface is derived from a
CONSTANT_Class_info structure (§4.4.1) in the binary representation of a
class or interface. Such a reference gives the name of the class or interface in
the form returned by the Class.getName method, that is:

◆ For a nonarray class or an interface, the name is the fully qualified name of
the class or interface.

◆ For an array class of M dimensions, the name begins with M occurrences of
the ASCII “[” character followed by a representation of the element type:

❖ If the element type is a primitive type, it is represented by the corre-
sponding field descriptor (§4.3.2).

❖ Otherwise, if the element type is a reference type, it is represented by
the ASCII “L” character followed by the fully qualified name of the
element type followed by the ASCII “;” character.

• Whenever this chapter refers to the name of a class or interface, it should be
understood to be in the form returned by the Class.getName method.

• A symbolic reference to a field of a class (§2.9) or an interface (§2.13.3.1) is
derived from a CONSTANT_Fieldref_info structure (§4.4.2) in the binary
representation of a class or interface. Such a reference gives the name and
descriptor of the field, as well as a symbolic reference to the class or interface
in which the field is to be found.

• A symbolic reference to a method of a class (§2.10) is derived from a
CONSTANT_Methodref_info structure (§4.4.2) in the binary representation
of a class or interface. Such a reference gives the name and descriptor of the
method, as well as a symbolic reference to the class in which the method is
to be found.

• A symbolic reference to a method of an interface (§2.13) is derived from a
CONSTANT_InterfaceMethodref_info structure (§4.4.2) in the binary
representation of a class or interface. Such a reference gives the name and
descriptor of the interface method, as well as a symbolic reference to the
interface in which the method is to be found.

THE RUNTIME CONSTANT POOL 157

ConstantPool.doc Page 157 Thursday, May 13, 2004 11:14 AM
In addition, certain nonreference runtime values are derived from items found
in the constant_pool table:

• A string literal (§2.3) is derived from a CONSTANT_String_info structure
(§4.4.3) in the binary representation of a class or interface. The
CONSTANT_String_info structure gives the sequence of Unicode characters
constituting the string literal.

• The Java programming language requires that identical string literals (that is,
literals that contain the same sequence of characters) must refer to the same
instance of class String. In addition, if the method String.intern is called
on any string, the result is a reference to the same class instance that would be
returned if that string appeared as a literal. Thus,

("a" + "b" + "c").intern() == "abc"

must have the value true.

• To derive a string literal, the Java virtual machine examines the sequence of
characters given by the CONSTANT_String_info structure.

◆ If the method String.intern has previously been called on an instance of
class String containing a sequence of Unicode characters identical to that
given by the CONSTANT_String_info structure, then the result of string
literal derivation is a reference to that same instance of class String.

◆ Otherwise, a new instance of class String is created containing the
sequence of Unicode characters given by the CONSTANT_String_info
structure; that class instance is the result of string literal derivation. Finally,
the intern method of the new String instance is invoked.

• Runtime constant values are derived from CONSTANT_Integer_info,
CONSTANT_Float_info,CONSTANT_Long_info, orCONSTANT_Double_info
structures (§4.4.4, §4.4.5) in the binary representation of a class or interface.
Note that CONSTANT_Float_info structures represent values in IEEE 754
single format and CONSTANT_Double_info structures represent values in
IEEE 754 double format (§4.4.4, §4.4.5). The runtime constant values derived
from these structures must thus be values that can be represented using IEEE
754 single and double formats, respectively.

The remaining structures in the constant_pool table of the binary represen-
tation of a class or interface, the CONSTANT_NameAndType_info (§4.4.6) and

LOADING, LINKING, AND INITIALIZING158

ConstantPool.doc Page 158 Thursday, May 13, 2004 11:14 AM
CONSTANT_Utf8_info (§4.4.7) structures are only used indirectly when deriving
symbolic references to classes, interfaces, methods, and fields, and when deriving
string literals.

5.2 Virtual Machine Start-up

The Java virtual machine starts up by creating an initial class, which is specified in
an implementation-dependent manner, using the bootstrap class loader (§5.3.1). The
Java virtual machine then links the initial class, initializes it, and invokes its public
class method void main(String[]). The invocation of this method drives all fur-
ther execution. Execution of the Java virtual machine instructions constituting the
main method may cause linking (and consequently creation) of additional classes
and interfaces, as well as invocation of additional methods.

In some implementations of the Java virtual machine the initial class could be
provided as a command line argument, as in JDK releases 1.0 and 1.1. Alterna-
tively, the initial class could be provided by the implementation. In this case the
initial class might set up a class loader that would in turn load an application, as in
the Java 2 SDK, Standard Edition, v1.2. Other choices of the initial class are pos-
sible so long as they are consistent with the specification given in the previous
paragraph.

5.3 Creation and Loading

Creation of a class or interface C denoted by the name N consists of the construc-
tion in the method area of the Java virtual machine (§3.5.4) of an implementation-
specific internal representation of C. Class or interface creation is triggered by
another class or interface D, which references C through its runtime constant pool.
Class or interface creation may also be triggered by D invoking methods in certain
Java class libraries (§3.12) such as reflection.

If C is not an array class, it is created by loading a binary representation of C

(see Chapter 4, “The class File Format”) using a class loader (§2.17.2). Array
classes do not have an external binary representation; they are created by the Java
virtual machine rather than by a class loader.

There are two types of class loaders: user-defined class loaders and the boot-
strap class loader supplied by the Java virtual machine. Every user-defined class

CREATION AND LOADING 159

ConstantPool.doc Page 159 Thursday, May 13, 2004 11:14 AM
loader is an instance of a subclass of the abstract class ClassLoader. Applica-
tions employ class loaders in order to extend the manner in which the Java virtual
machine dynamically loads and thereby creates classes. User-defined class loaders
can be used to create classes that originate from user-defined sources. For exam-
ple, a class could be downloaded across a network, generated on the fly, or
extracted from an encrypted file.

A class loader L may create C by defining it directly or by delegating to
another class loader. If L creates C directly, we say that L defines C or, equiva-
lently, that L is the defining loader of C.

When one class loader delegates to another class loader, the loader that ini-
tiates the loading is not necessarily the same loader that completes the loading and
defines the class. If L creates C, either by defining it directly or by delegation, we
say that L initiates loading of C or, equivalently, that L is an initiating loader of C.

At run time, a class or interface is determined not by its name alone, but by a
pair: its fully qualified name and its defining class loader. Each such class or inter-
face belongs to a single runtime package. The runtime package of a class or inter-
face is determined by the package name and defining class loader of the class or
interface.

The Java virtual machine uses one of three procedures to create class or inter-
face C denoted by N:

• If N denotes a nonarray class or an interface, one of the two following methods
is used to load and thereby create C :

◆ If D was defined by the bootstrap class loader, then the bootstrap class loader
initiates loading of C (§5.3.1).

◆ If D was defined by a user-defined class loader, then that same user-defined
class loader initiates loading of C (§5.3.2).

• Otherwise N denotes an array class. An array class is created directly by the
Java virtual machine (§5.3.3), not by a class loader. However, the defining class
loader of D is used in the process of creating array class C.

We will sometimes represent a class or interface using the notation <N, Ld >,
where N denotes the name of the class or interface and Ld denotes the defining
loader of the class or interface. We will also represent a class or interface using the
notation NLi, where N denotes the name of the class or interface and Li denotes an
initiating loader of the class or interface.

LOADING, LINKING, AND INITIALIZING160

ConstantPool.doc Page 160 Thursday, May 13, 2004 11:14 AM
5.3.1 Loading Using the Bootstrap Class Loader

The following steps are used to load and thereby create the nonarray class or inter-
face C denoted by N using the bootstrap class loader.

First, the Java virtual machine determines whether the bootstrap class loader
has already been recorded as an initiating loader of a class or interface denoted by
N. If so, this class or interface is C, and no class creation is necessary.

Otherwise, the Java virtual machine performs one of the following two opera-
tions in order to load C:

1. The Java virtual machine searches for a purported representation of C in a plat-
form-dependent manner. Note that there is no guarantee that a purported rep-
resentation found is valid or is a representation of C.

Typically, a class or interface will be represented using a file in a hierarchi-
cal file system. The name of the class or interface will usually be encoded in
the pathname of the file.

This phase of loading must detect the following error:

• If no purported representation of C is found, loading throws an instance of
NoClassDefFoundError or an instance of one of its subclasses.

Then the Java virtual machine attempts to derive a class denoted by N using the
bootstrap class loader from the purported representation using the algorithm
found in Section 5.3.5. That class is C.

2. The bootstrap class loader can delegate the loading of C to some user-defined
class loader L by passing N to an invocation of a loadClass method on L. The
result of the invocation is C. The Java virtual machine then records that the
bootstrap loader is an initiating loader of C (§5.3.4).

5.3.2 Loading Using a User-defined Class Loader

The following steps are used to load and thereby create the nonarray class or inter-
face C denoted by N using a user-defined class loader L.

First, the Java virtual machine determines whether L has already been
recorded as an initiating loader of a class or interface denoted by N. If so, this
class or interface is C, and no class creation is necessary.

Otherwise the Java virtual machine invokes loadClass(N) on L.1 The value
returned by the invocation is the created class or interface C. The Java virtual
machine then records that L is an initiating loader of C (§5.3.4). The remainder of
this section describes this process in more detail.

CREATION AND LOADING 161

ConstantPool.doc Page 161 Thursday, May 13, 2004 11:14 AM
When the loadClass method of the class loader L is invoked with the name N

of a class or interface C to be loaded, L must perform one of the following two
operations in order to load C :

1. The class loader L can create an array of bytes representing C as the bytes of a
ClassFile structure (§4.1); it then must invoke the method defineClass of
class ClassLoader. Invoking defineClass causes the Java virtual machine to
derive a class or interface denoted by N using L from the array of bytes using
the algorithm found in Section 5.3.5.

2. The class loader L can delegate the loading of C to some other class loader L’.
This is accomplished by passing the argument N directly or indirectly to an
invocation of a method on L’ (typically the loadClass method). The result of
the invocation is C.

5.3.3 Creating Array Classes

The following steps are used to create the array class C denoted by N using class
loader L. Class loader L may be either the bootstrap class loader or a user-defined
class loader.

If L has already been recorded as an initiating loader of an array class with the
same component type as N, that class is C, and no array class creation is necessary.
Otherwise, the following steps are performed to create C:

1. If the component type is a reference type, the algorithm of this section (§5.3)
is applied recursively using class loader L in order to load and thereby create
the component type of C.

2. The Java virtual machine creates a new array class with the indicated compo-
nent type and number of dimensions. If the component type is a reference type,
C is marked as having been defined by the defining class loader of the compo-
nent type. Otherwise, C is marked as having been defined by the bootstrap class
loader. In any case, the Java virtual machine then records that L is an initiating
loader for C (§5.3.4). If the component type is a reference type, the accessibil-

1 Since JDK release 1.1 the Java virtual machine invokes the loadClass method of a class loader in
order to cause it to load a class or interface. The argument to loadClass is the name of the class
or interface to be loaded. There is also a two-argument version of the loadClass method. The sec-
ond argument is a boolean that indicates whether the class or interface is to be linked or not. Only
the two-argument version was supplied in JDK release 1.0.2, and the Java virtual machine relied
on it to link the loaded class or interface. From JDK release 1.1 onward, the Java virtual machine
links the class or interface directly, without relying on the class loader.

LOADING, LINKING, AND INITIALIZING162

ConstantPool.doc Page 162 Thursday, May 13, 2004 11:14 AM
ity of the array class is determined by the accessibility of its component type.
Otherwise, the accessibility of the array class is public.

5.3.4 Loading Constraints

Ensuring type safe linkage in the presence of class loaders requires special care. It is
possible that when two different class loaders initiate loading of a class or interface
denoted by N, the name N may denote a different class or interface in each loader.

When a class or interface C = <N1, L1> makes a symbolic reference to a field
or method of another class or interface D = <N2, L2 >, the symbolic reference
includes a descriptor specifying the type of the field, or the return and argument
types of the method. It is essential that any type name N mentioned in the field or
method descriptor denote the same class or interface when loaded by L1 and when
loaded by L2.

To ensure this, the Java virtual machine imposes loading constraints of the
form N L1 = N L2 during preparation (§5.4.2) and resolution (§5.4.3). To enforce
these constraints, the Java virtual machine will, at certain prescribed times (see
§5.3.1, §5.3.2, §5.3.3, and §5.3.5), record that a particular loader is an initiating
loader of a particular class. After recording that a loader is an initiating loader of a
class, the Java virtual machine must immediately check to see if any loading con-
straints are violated. If so, the record is retracted, the Java virtual machine throws
a LinkageError, and the loading operation that caused the recording to take
place fails.

Similarly, after imposing a loading constraint (see §5.4.2, §5.4.3.2, §5.4.3.3,
and §5.4.3.4), the Java virtual machine must immediately check to see if any load-
ing constraints are violated. If so, the newly imposed loading constraint is
retracted, the Java virtual machine throws a LinkageError, and the operation that
caused the constraint to be imposed (either resolution or preparation, as the case
may be) fails.

The situations described here are the only times at which the Java virtual
machine checks whether any loading constraints have been violated. A loading
constraint is violated if, and only if, all the following four conditions hold:

• There exists a loader L such that L has been recorded by the Java virtual
machine as an initiating loader of a class C named N.

• There exists a loader L’ such that L’ has been recorded by the Java virtual
machine as an initiating loader of a class C ’ named N.

CREATION AND LOADING 163

ConstantPool.doc Page 163 Thursday, May 13, 2004 11:14 AM
• The equivalence relation defined by the (transitive closure of the) set of
imposed constraints implies N L = N L’.

• C ≠ C ’.

A full discussion of class loaders and type safety is beyond the scope of this
specification. For a more comprehensive discussion, readers are referred to
Dynamic Class Loading in the Java Virtual Machine by Sheng Liang and Gilad
Bracha (Proceedings of the 1998 ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages and Applications).

5.3.5 Deriving a Class from a class File Representation

The following steps are used to derive the nonarray class or interface C denoted by N

using loader L from a purported representation in class file format.

1. First, the Java virtual machine determines whether it has already recorded that
L is an initiating loader of a class or interface denoted by N. If so, this creation
attempt is invalid and loading throws a LinkageError.

2. Otherwise, the Java virtual machine attempts to parse the purported represen-
tation. However, the purported representation may not in fact be a valid repre-
sentation of C.

This phase of loading must detect the following errors:

• If the purported representation is not in class file format (§4.1, pass 1 of
§4.9.1), loading throws an instance of ClassFormatError.

• Otherwise, if the purported representation is not of a supported major or
minor version (§4.1), loading throws an instance of UnsupportedClass-
VersionError.2

• Otherwise, if the purported representation does not actually represent a class
named N, loading throws an instance of NoClassDefFoundError or an
instance of one of its subclasses.

3. If C has a direct superclass, the symbolic reference from C to its direct super-
class is resolved using the algorithm of Section 5.4.3.1. Note that if C is an

2 UnsupportedClassVersionError was introduced in the Java 2 platform, Standard Edition, v1.2.
In earlier versions of the platform an instance of NoClassDefFoundError or ClassFormatError
was thrown in case of an unsupported version depending on whether the class was being loaded by
the system class loader or a user-defined class loader.

LOADING, LINKING, AND INITIALIZING164

ConstantPool.doc Page 164 Thursday, May 13, 2004 11:14 AM
interface it must have Object as its direct superclass, which must already have
been loaded. Only Object has no direct superclass.

Any exceptions that can be thrown due to class or interface resolution can
be thrown as a result of this phase of loading. In addition, this phase of loading
must detect the following errors:

• If the class or interface named as the direct superclass of C is in fact an inter-
face, loading throws an IncompatibleClassChangeError.

• Otherwise, if any of the superclasses of C is C itself, loading throws a Class-
CircularityError.

4. If C has any direct superinterfaces, the symbolic references from C to its direct
superinterfaces are resolved using the algorithm of Section 5.4.3.1.

Any exceptions that can be thrown due to class or interface resolution can
be thrown as a result of this phase of loading. In addition, this phase of loading
must detect the following errors:

• If any of the classes or interfaces named as direct superinterfaces of C is not
in fact an interface, loading throws an IncompatibleClassChangeError.

• Otherwise, if any of the superinterfaces of C is C itself, loading throws a
ClassCircularityError.

5. The Java virtual machine marks C as having L as its defining class loader and
records that L is an initiating loader of C (§5.3.4).

5.4 Linking

Linking a class or interface (§2.17.3) involves verifying and preparing that class or
interface, its direct superclass, its direct superinterfaces, and its element type (if it is
an array type), if necessary. Resolution of symbolic references in the class or inter-
face is an optional part of linking.

5.4.1 Verification

The representation of a class or interface is verified (§4.9) to ensure that its binary
representation is structurally valid (passes 2 and 3 of §4.9.1). Verification may
cause additional classes and interfaces to be loaded (§5.3) but need not cause them
to be prepared or verified.

LINKING 165

ConstantPool.doc Page 165 Thursday, May 13, 2004 11:14 AM
Verification must detect the following error:

• If the representation of the class or interface does not satisfy the static or
structural constraints listed in Section 4.8, “Constraints on Java Virtual
Machine Code,” verification throws a VerifyError.

A class or interface must be successfully verified before it is initialized. Any
attempt to initialize a class or interface that has not been successfully verified
must be preceded by verification. Repeated verification of a class or interface that
the Java virtual machine has previously unsuccessfully attempted to verify always
fails with the same error that was thrown as a result of the initial verification
attempt.

5.4.2 Preparation

Preparation involves creating the static fields for the class or interface and initializ-
ing those fields to their standard default values (§2.5.1). Preparation should not be
confused with the execution of static initializers (§2.11); unlike execution of static
initializers, preparation does not require the execution of any Java virtual machine
code.

During preparation of a class or interface C, the Java virtual machine also
imposes loading constraints (§5.3.4). Let L1 be the defining loader of C. For each
method m declared in C that overrides a method declared in a superclass or super-
interface <D, L2 >, the Java virtual machine imposes the following loading con-
straints: Let T0 be the name of the type returned by m, and let T1, ..., Tn be the
names of the argument types of m. Then Ti L1 = Ti L2 for i = 0 to n (§5.3.4).

Furthermore, if C implements a method m declared in a superinterface <I, L3 >
of C, but C does not itself declare the method m, then let <D, L2 >, be the super-
class of C that declares the implementation of method m inherited by C. The Java
virtual machine imposes the following constraints:

Let T0 be the name of the type returned by m, and let T1, ..., Tn be the names
of the argument types of m. Then Ti L2 = Ti L3 for i = 0 to n (§5.3.4).

Preparation may occur at any time following creation but must be completed
prior to initialization.

LOADING, LINKING, AND INITIALIZING166

ConstantPool.doc Page 166 Thursday, May 13, 2004 11:14 AM
5.4.3 Resolution

The process of dynamically determining concrete values from symbolic references
in the runtime constant pool is known as resolution.

Resolution can be attempted on a symbolic reference that has already been
resolved. An attempt to resolve a symbolic reference that has already successfully
been resolved always succeeds trivially and always results in the same entity pro-
duced by the initial resolution of that reference.

Subsequent attempts to resolve a symbolic reference that the Java virtual
machine has previously unsuccessfully attempted to resolve always fails with the
same error that was thrown as a result of the initial resolution attempt.

Certain Java virtual machine instructions require specific linking checks when
resolving symbolic references. For instance, in order for a getfield instruction to
successfully resolve the symbolic reference to the field on which it operates it
must complete the field resolution steps given in Section 5.4.3.2. In addition, it
must also check that the field is not static. If it is a static field, a linking
exception must be thrown.

Linking exceptions generated by checks that are specific to the execution of a
particular Java virtual machine instruction are given in the description of that
instruction and are not covered in this general discussion of resolution. Note that
such exceptions, although described as part of the execution of Java virtual
machine instructions rather than resolution, are still properly considered failure of
resolution.

The Java virtual machine instructions anewarray, checkcast, getfield, getstatic,
instanceof, invokeinterface, invokespecial, invokestatic, invokevirtual, multi-
anewarray, new, putfield, and putstatic make symbolic references to the runtime
constant pool. Execution of any of these instructions requires resolution of its
symbolic reference.

The following sections describe the process of resolving a symbolic reference
in the runtime constant pool (§5.1) of a class or interface D. Details of resolution
differ with the kind of symbolic reference to be resolved.

5.4.3.1 Class and Interface Resolution

To resolve an unresolved symbolic reference from D to a class or interface C

denoted by N, the following steps are performed:

1. The defining class loader of D is used to create a class or interface denoted by
N. This class or interface is C. Any exception that can be thrown as a result of

LINKING 167

ConstantPool.doc Page 167 Thursday, May 13, 2004 11:14 AM
failure of class or interface creation can thus be thrown as a result of failure of
class and interface resolution. The details of the process are given in Section
5.3.

2. If C is an array class and its element type is a reference type, then the symbolic
reference to the class or interface representing the element type is resolved by
invoking the algorithm in Section 5.4.3.1 recursively.

3. Finally, access permissions to C are checked:

• If C is not accessible (§5.4.4) to D, class or interface resolution throws an
IllegalAccessError.

This condition can occur, for example, if C is a class that was originally declared
to be public but was changed to be non-public after D was compiled.

If steps 1 and 2 succeed but step 3 fails, C is still valid and usable. Nevertheless, res-
olution fails, and D is prohibited from accessing C.

5.4.3.2 Field Resolution

To resolve an unresolved symbolic reference from D to a field in a class or interface
C, the symbolic reference to C given by the field reference must first be resolved
(§5.4.3.1). Therefore, any exception that can be thrown as a result of failure of reso-
lution of a class or interface reference can be thrown as a result of failure of field res-
olution. If the reference to C can be successfully resolved, an exception relating to
the failure of resolution of the field reference itself can be thrown.

When resolving a field reference, field resolution first attempts to look up the
referenced field in C and its superclasses:

1. If C declares a field with the name and descriptor specified by the field refer-
ence, field lookup succeeds. The declared field is the result of the field lookup.

2. Otherwise, field lookup is applied recursively to the direct superinterfaces of
the specified class or interface C.

3. Otherwise, if C has a superclass S, field lookup is applied recursively to S.

4. Otherwise, field lookup fails.

If field lookup fails, field resolution throws a NoSuchFieldError. Otherwise,
if field lookup succeeds but the referenced field is not accessible (§5.4.4) to D,
field resolution throws an IllegalAccessError.

LOADING, LINKING, AND INITIALIZING168

ConstantPool.doc Page 168 Thursday, May 13, 2004 11:14 AM
Otherwise, let <E, L1> be the class or interface in which the referenced field is
actually declared and let L2 be the defining loader of D. Let T be the name of the
type of the referenced field. The Java virtual machine must impose the loading
constraint that T L1 = T L2 (§5.3.4).

5.4.3.3 Method Resolution

To resolve an unresolved symbolic reference from D to a method in a class C, the
symbolic reference to C given by the method reference is first resolved (§5.4.3.1).
Therefore, any exceptions that can be thrown due to resolution of a class reference
can be thrown as a result of method resolution. If the reference to C can be success-
fully resolved, exceptions relating to the resolution of the method reference itself
can be thrown.

When resolving a method reference:

1. Method resolution checks whether C is a class or an interface.

• If C is an interface, method resolution throws an IncompatibleClass-

ChangeError.

2. Method resolution attempts to look up the referenced method in C and its
superclasses:

• If C declares a method with the name and descriptor specified by the method
reference, method lookup succeeds.

• Otherwise, if C has a superclass, step 2 of method lookup is recursively
invoked on the direct superclass of C.

3. Otherwise, method lookup attempts to locate the referenced method in any of
the superinterfaces of the specified class C.

• If any superinterface of C declares a method with the name and descriptor
specified by the method reference, method lookup succeeds.

• Otherwise, method lookup fails.

If method lookup fails, method resolution throws a NoSuchMethodError. If
method lookup succeeds and the method is abstract, but C is not abstract,
method resolution throws an AbstractMethodError. Otherwise, if the refer-
enced method is not accessible (§5.4.4) to D, method resolution throws an
IllegalAccessError.

LINKING 169

ConstantPool.doc Page 169 Thursday, May 13, 2004 11:14 AM
Otherwise, let <E, L1> be the class or interface in which the referenced
method is actually declared and let L2 be the defining loader of D. Let T0 be the
name of the type returned by the referenced method, and let T1, ..., Tn be the
names of the argument types of the referenced method. The Java virtual machine
must impose the loading constraints Ti L1 = Ti L2 for i = 0 to n (§5.3.4).

5.4.3.4 Interface Method Resolution

To resolve an unresolved symbolic reference from D to an interface method in an
interface C, the symbolic reference to C given by the interface method reference is
first resolved (§5.4.3.1). Therefore, any exceptions that can be thrown as a result of
failure of resolution of an interface reference can be thrown as a result of failure of
interface method resolution. If the reference to C can be successfully resolved,
exceptions relating to the resolution of the interface method reference itself can be
thrown.

When resolving an interface method reference:

• If C is not an interface, interface method resolution throws an Incompatible-

ClassChangeError.

• Otherwise, if the referenced method does not have the same name and descrip-
tor as a method in C or in one of the superinterfaces of C, or in class Object,
interface method resolution throws a NoSuchMethodError.

Otherwise, let <E, L1> be the class or interface in which the referenced inter-
face method is actually declared and let L2 be the defining loader of D. Let T0 be
the name of the type returned by the referenced method, and let T1, ..., Tn be the
names of the argument types of the referenced method. The Java virtual machine
must impose the loading constraints Ti L1 = Ti L2 for i = 0 to n (§5.3.4).

5.4.4 Access Control

A class or interface C is accessible to a class or interface D if and only if either of the
following conditions are true:

• C is public.

• C and D are members of the same runtime package (§5.3).

LOADING, LINKING, AND INITIALIZING170

ConstantPool.doc Page 170 Thursday, May 13, 2004 11:14 AM
A field or method R is accessible to a class or interface D if and only if any of the
following conditions is true:

• R is public.

• R is protected and is declared in a class C, and D is either a subclass of C

or C itself. Furthermore, if R is not static, then the symbolic reference to R

must contain a symbolic reference to a class T, such that T is either a subclass
of D, a superclass of D or D itself.

• R is either protected or package private (that is, neither public nor
protected nor private), and is declared by a class in the same runtime
package as D.

• R is private and is declared in D.

This discussion of access control omits a related restriction on the target of a

protected field access or method invocation (the target must be of class D

or a subtype of D). That requirement is checked as part of the verification
process (§5.4.1); it is not part of link-time access control.

5.5 Initialization

Initialization of a class or interface consists of invoking its static initializers
(§2.11) and the initializers for static fields (§2.9.2) declared in the class. This pro-
cess is described in more detail in §2.17.4 and §2.17.5.

A class or interface may be initialized only as a result of:

• The execution of any one of the Java virtual machine instructions new,
getstatic, putstatic, or invokestatic that references the class or interface. Each
of these instructions corresponds to one of the conditions in §2.17.4. All of the
previously listed instructions reference a class directly or indirectly through
either a field reference or a method reference. Upon execution of a new
instruction, the referenced class or interface is initialized if it has not been
initialized already. Upon execution of a getstatic, putstatic, or invokestatic
instruction, the class or interface that declared the resolved field or method is
initialized if it has not been initialized already.

• Invocation of certain reflective methods in the class library (§3.12), for
example, in class Class or in package java.lang.reflect.

BINDING NATIVE METHOD IMPLEMENTATIONS 171

ConstantPool.doc Page 171 Thursday, May 13, 2004 11:14 AM
• The initialization of one of its subclasses.

• Its designation as the initial class at Java virtual machine start-up (§5.2).

Prior to initialization a class or interface must be linked, that is, verified, prepared,
and optionally resolved.

5.6 Binding Native Method Implementations

Binding is the process by which a function written in a language other than the Java
programming language and implementing a native method is integrated into the
Java virtual machine so that it can be executed. Although this process is traditionally
referred to as linking, the term binding is used in the specification to avoid confusion
with linking of classes or interfaces by the Java virtual machine.

LOADING, LINKING, AND INITIALIZING172

ConstantPool.doc Page 172 Thursday, May 13, 2004 11:14 AM

	chapter �5
	Loading, Linking, and Initializing
	5.1 The Runtime Constant Pool
	• A symbolic reference to a class or interface is derived from a CONSTANT_Class_info structure (§...
	• A string literal (§2.3) is derived from a CONSTANT_String_info structure (§4.4.3) in the binary...
	("a" + "b" + "c").intern() == "abc"

	5.2 Virtual Machine Start-up
	5.3 Creation and Loading
	• If N denotes a nonarray class or an interface, one of the two following methods is used to load...
	5.3.1 Loading Using the Bootstrap Class Loader
	1. The Java virtual machine searches for a purported representation of C in a platform-dependent ...
	2. The bootstrap class loader can delegate the loading of C to some user-defined class loader L�b...

	5.3.2 Loading Using a User-defined Class Loader
	1. The class loader L can create an array of bytes representing C as the bytes of a ClassFile str...
	2. The class loader L can delegate the loading of C to some other class loader L’. This is accomp...

	5.3.3 Creating Array Classes
	1. If the component type is a reference type, the algorithm of this section (§5.3) is applied rec...
	2. The Java virtual machine creates a new array class with the indicated component type and numbe...

	5.3.4 Loading Constraints
	• There exists a loader L such that L has been recorded by the Java virtual machine as an initiat...

	5.3.5 Deriving a Class from a class File Representation
	1. First, the Java virtual machine determines whether it has already recorded that L is an initia...
	2. Otherwise, the Java virtual machine attempts to parse the purported representation. However, t...
	3. If C has a direct superclass, the symbolic reference from C to its direct superclass is resolv...
	4. If C has any direct superinterfaces, the symbolic references from C to its direct superinterfa...
	5. The Java virtual machine marks C as having L as its defining class loader and records that L i...

	5.4 Linking
	5.4.1 Verification
	• If the representation of the class or interface does not satisfy the static or structural const...

	5.4.2 Preparation
	5.4.3 Resolution
	5.4.3.1 Class and Interface Resolution
	1. The defining class loader of D is used to create a class or interface denoted by N. This class...
	2. If C is an array class and its element type is a reference type, then the symbolic reference t...
	3. Finally, access permissions to C are checked:
	This condition can occur, for example, if C is a class that was originally declared to be public ...

	5.4.3.2 Field Resolution
	1. If C declares a field with the name and descriptor specified by the field reference, field loo...
	2. Otherwise, field lookup is applied recursively to the direct superinterfaces of the specified ...
	3. Otherwise, if C has a superclass S, field lookup is applied recursively to S.
	4. Otherwise, field lookup fails.

	5.4.3.3 Method Resolution
	1. Method resolution checks whether C is a class or an interface.
	2. Method resolution attempts to look up the referenced method in C and its superclasses:
	3. Otherwise, method lookup attempts to locate the referenced method in any of the superinterface...

	5.4.3.4 Interface Method Resolution
	• If C is not an interface, interface method resolution throws an IncompatibleClassChangeError.

	5.4.4 Access Control
	• C is public.
	• R is public.

	5.5 Initialization
	• The execution of any one of the Java virtual machine instructions new, getstatic, putstatic, or...

	5.6 Binding Native Method Implementations

