CHAPTER |

The class File Format

T HIS chapter describes the Java virtual machine class file format. Each class
file contains the definition of asingle class or interface. Although aclass or interface
need not have an externa representation literally contained in a file (for instance,
because the class is generated by a class loader), we will colloquialy refer to any
valid representation of aclass or interface as being in the c1ass file format.

A class file consists of a stream of 8-hit bytes. All 16-bit, 32-bit, and 64-bit
quantities are constructed by reading in two, four, and eight consecutive 8-bit
bytes, respectively. Multibyte data items are always stored in big-endian order,
where the high bytes come first. In the Java and Java 2 platforms, thisformat is
supported by interfaces java.io.DataInput and java.io.DataOutput and
classessuch as java.io.DataInputStream and java.io.DataOutputStream.

This chapter defines its own set of data types representing class file data:
The types ul, u2, and u4 represent an unsigned one-, two-, or four-byte
guantity, respectively. In the Java and Java 2 platforms, these types may be
read by methods such as readUnsignedByte, readUnsignedShort, and
readInt of theinterface java.io.DataInput.

This chapter presents the c1ass file format using pseudostructures written in aC-
like structure notation. To avoid confusion with the fields of classes and class
instances, etc., the contents of the structures describing the c1ass file format are
referred to asitems. Successive items are stored in the class file sequentially,
without padding or alignment.

Tables, consisting of zero or more variable-sized items, are used in several class
file structures. Although we use C-like array syntax to refer to tableitems, the fact
that tables are streams of varying-sized structures meansthat it is not possible to
trangdlate a table index directly to a byte offset into the table.

Where we refer to a data structure as an array, it consists of zero or more
contiguous fixed-sized items and can be indexed like an array.

93



94

THE CLASSFILE FORMAT

4.1 Notation and Ter minology

Weusethis font for Javavirtua machine instructions and for classfile

structures.

Commentary, designed to clarify the specification, is given asindented text
between horizontal lines:

Commentary provides intuition, motivation, rationale, examples etc.

4.2 TheClassFile Structure

A class file consists of asingle ClassFile structure:

ClassFile {

}

u4 magic;

u2 minor_version;

u2 major_version;

u2 constant_pool_count;

cp_info constant_pool[constant_pool_count-1];
u2 access_flags;

u2 this_class;

u2 super_class;

u2 interfaces_count;

u2 interfaces[interfaces_count];

u2 fields_count;

field_info fields[fields_count];

u2 methods_count;

method_info methods[methods_count];

u2 attributes_count;

attribute_info attributes[attributes_count];

Theitemsin the ClassFi1e structure are asfollows:

magic

Themagi c item supplies the magic number identifying the class
file format; it has the value OxCAFEBABE.



THE CLASSFILE STRUCTURE

minor_version,major_version

Thevaluesof theminor_version andmajor_versionitemsare
the minor and major version numbers of this class file.Together,
amajor and aminor version number determine the version of the
class fileformat. If aclass file has major version number M
and minor version number m, we denote the version of itsclass
fileformat asM.m. Thus, class file format versions may be
ordered lexicographically, for example, 1.5<2.0<2.1.

A Javavirtual machine implementation can support aclass
fileformat of version v if and only if v liesin some contiguous
range Mi.0 < v < Mj.m. Only Sun can specify what range of
versions a Java virtual machine implementation conforming to a
certain release level of the Java platform may support.t

constant_pool_count

The value of the constant_pool_count itemisequal to the
number of entriesin the constant_poo1 table plus one. A
constant_pool index isconsidered valid if it isgreater than zero
and less than constant_pool_count, with the exception for
constants of type Tong and doub1e noted in §4.5.5.

constant_pool[]
The constant_pool isatable of structures (84.5) representing
various string constants, class and interface names, field names,
and other constants that are referred to withinthe ClassFile
structure and its substructures. The format of each constant_pool
table entry isindicated by itsfirst “tag” byte.

The constant_poo1 tableisindexed from 1 to

constant_pool_count—1.

1 The Javavirtual machine implementation of Sun’s JDK release 1.0.2 supports
class file format versions 45.0 through 45.3 inclusive. Sun’s IDK releases
1.1.X can support class file formats of versions in the range 45.0 through
45.65535 inclusive. For k = 2 implementations of version 1.k of the Java 2
platform can support class file formats of versionsin the range 45.0 through
44+k.0 inclusive.



96

THE CLASSFILE FORMAT

access_flags

The value of the access_flags item isamask of flags used to
denote access permissions to and properties of this class or
interface. The interpretation of each flag, when set, isas shownin
Table 4.1.



THE CLASSFILE STRUCTURE

Table4.1 Classaccessand property modifiers

Flag Name Value I nterpretation

ACC_PUBLIC 0x0001 | Declared pub1ic; may be accessed
from outside its package.

ACC_FINAL 0x0010 | Declared final; no subclasses
allowed.

ACC_SUPER 0x0020 | Treat superclass methods specially
when invoked by the invokespecial
instruction.

ACC_INTERFACE | 0x0200 | Isaninterface, not aclass.

ACC_ABSTRACT 0x0400 | Declared abstract; must not be
instantiated.

ACC_SYNTHETIC | 0x1000 | Declared synthetic; Not presentin
the source code.

CC_ANNOTATION [M0x2000 eclared as an annotation type.
CC_ENUM 0x4000 eclared as an enum type.

A class may be marked with the ACC_SYNTHETIC flag to
indicate that it was generated by the compiler and does not appear

in the source code.

The ACC_ENUM bhit isindicates that this class or its
superclass is declared as an enumerated type.

Aninterface is distinguished by its ACC_INTERFACE flag
being set. If its ACC_INTERFACE flag is not set, thisclass file

defines a class, not an interface.

If the ACC_INTERFACE flag of this class fileis s¢t, its
ACC_ABSTRACT flag must aso be set (§2.13.1) and its
ACC_PUBLIC flag may be set. Such aclass file must not have any
of the other flagsin Table 4.1 set.

An annotation type must have its ACC_ANNOTATION flag
set. If the ACC_ANNOTATION flag is set, the
ACC_INTERFACE flag must be set as well.

If the ACC_INTERFACE flag of thisclass fileisnot set, it may
have any of the other flagsin Table 4.1 set, except the

97



THE CLASSFILE FORMAT

ACC_ANNOTATION flag. However, such aclass file cannot
have both its ACC_FINAL and ACC_ABSTRACT flags set (82.8.2).

The setting of the ACC_SUPER flag indicates which of two
alternative semantics for its invokespecial instruction the Java
virtual machine isto express; the ACC_SUPER flag exists for
backward compatibility for code compiled by Sun’s older
compilersfor the Java programming language. All new
implementations of the Java virtual machine should implement
the semantics for invokespecial documented in this specification.
All new compilersto the instruction set of the Java virtual
machine should set the ACC_SUPER flag. Sun’s older compilers
generated ClassFile flags with ACC_SUPER unset. Sun’s older
Java virtual machine implementations ignore the flag if it is set.

All bits of the access_fTags item not assigned in Table 4.1
arereserved for future use. They should be set to zero in
generated class files and should be ignored by Java virtual
machine implementations.

this_class

Thevalue of the this_class item must be avalid index into the
constant_pool table. The constant_pool entry at that index
must be aCONSTANT_Class_info (84.5.1) structure representing
the class or interface defined by this c1ass file.

super_class

For aclass, the value of the super_class item either must be
zero or must beavalid index into the constant_poo1 table. If the
value of the super_class item is nonzero, the constant_pool
entry at that index must be a CONSTANT_Class_info (84.5.1)
structure representing the direct superclass of the class defined by
this class file. Neither the direct superclass nor any of its
superclasses may beafinal class.

If the value of the super_class itemiszero, thenthisclass
file must represent the class Object, the only class or interface
without a direct superclass.

For an interface, the value of the super_class item must
always be avalid index into the constant_poo1 table. The
constant_pool entry at that index must be a
CONSTANT_Class_info structure representing the class Object.



THE ClassFile STRUCTURE

interfaces_count

The value of the interfaces_count item gives the number of
direct superinterfaces of this class or interface type.

interfaces[]

Each valueinthe interfaces array must be avalid index into
the constant_poo1 table. The constant_poo1 entry at each
value of interfaces[i], where@ <i <interfaces_count,
must be aCONSTANT_Class_info (84.5.1) structure representing
an interface that isadirect superinterface of thisclass or interface
type, in the left-to-right order given in the source for the type.

fields_count
The value of the fields_count item gives the number of
field_info structuresin the fields table. The field_info
(84.6) structures represent all fields, both class variables and
instance variables, declared by this class or interface type.

fields[]

Each valueinthe fields table must bea field_info (84.6)
structure giving a complete description of afield in this class or
interface. The fields table includes only those fields that are
declared by this class or interface. It does not include items
representing fields that are inherited from superclasses or
superinterfaces.

methods_count

The value of the methods_count item gives the number of
method_info structuresin the methods table.

methods[]

Each value in the methods table must be amethod_info (84.7)
structure giving a complete description of amethod in this class
or interface. If the method is not native or abstract, the Java
virtual machine instructions implementing the method are also
supplied.

Themethod_info structures represent all methods declared
by this class or interface type, including instance methods, class
(static) methods, instance initialization methods (83.9), and
any class or interface initialization method (§3.9). The methods

99



100 THE CLASSFILE FORMAT

table does not include items representing methods that are
inherited from superclasses or superinterfaces.

attributes_count

The value of the attributes_count item gives the number of
attributes (84.8) in the attributes table of thisclass.

attributes[]

Each value of theattributes table must be an attribute structure
(84.8).

The only attributes defined by this specification as appearing
inthe attributes table of aClassFile structure arethe
InnerClasses (84.8.5), EnclosingMethod (84.8.6), Synthetic
(84.8.7), SourceFile (84.8.9), Signature, and Deprecated
(84.8.13) attributes.

A Javavirtual machine implementation isrequired to silently
ignore any or all attributesin the attributes table of a
ClassFile structure that it does not recognize. Attributes not
defined in this specification are not alowed to affect the
semantics of the cTass file, but only to provide additional
descriptive information (84.8.1).

‘ 4.3 Thelnternal Form of Names

4.3.1 Fully Qualified Class and I nterface Names

Class and interface names that appear in class file structures are always repre-
sented in a fully qualified form (82.7.5). Such names are always represented as
CONSTANT_Utf8_1info (84.5.7) structures and thus may be drawn, where not fur-
ther constrained, from the entire Unicode character set. Class names and inter-
faces are referenced both from those CONSTANT_NameAndType_info (84.5.6)
structures that have such names as part of their descriptor (84.4) and from all
CONSTANT_Class_info (84.5.1) structures.

For historical reasons the syntax of fully qualified class and interface names that
appear in class file structures differs from the familiar syntax of fully qualified
names documented in 82.7.5. In thisinterna form, the ASCII periods ('.") that
normally separate the identifiers that make up the fully qualified name are
replaced by ASCII forward slashes (' /). The identifiers themselves must be
unqualified names as discussed in section (84.3.2) below. For example, the normal



DESCRIPTORSAND SIGNATURES 101

fully qualified name of class Thread is java.lang.Thread. Intheform used in
descriptorsin the class file format, areference to the name of class Thread is
implemented using a CONSTANT_Utf8_info structure representing the string
"java/lang/Thread".

4.3.2 Unqualified Names

Names of methods, fields and local variables are stored as unqualified names.
Unqualified names must not contain the characters ' . ', ';', '[' or '/"'. Method
names are further constrained so that, with the exception of the special method
names (83.9) <init> and <clinit>, they must not contain the characters '<' or

> .

4.4 Descriptorsand Signatures

A descriptor is a string representing the type of a field or method. Descriptors are
represented in the c1ass file format using modified UTF-8 strings (84.5.7) and thus
may be drawn, where not further constrained, from the entire Unicode character set.

A signature is a string representing the generic type of afield or method, or
generic type information for a class declaration.

441 Grammar Notation

Descriptors and signatures are specified using a grammar. This grammar is a set of
productions that describe how sequences of characters can form syntactically cor-
rect descriptors of various types. Termina symbols of the grammar are shown in
bold fixed-width font. Nonterminal symbols are shown in italic type. The defini-
tion of a nontermina is introduced by the name of the nontermina being defined,
followed by a colon. One or more alternative right-hand sides for the nonterminal
then follow on succeeding lines. For example, the production:

FieldType:
BaseType
ObjectType
ArrayType



102

THE CLASSFILE FORMAT

states that a FieldType may represent either a BaseType, an ObjectType, or an Array-
Type.

A nonterminal symbol on the right-hand side of a production that is followed by an
asterisk (*) represents zero or more possibly different values produced from that
nonterminal, appended without any intervening space. Similarly, anonterminal symbol on
the right-hand side of a production that is followed by an plus sign (+) represents one or
more possibly different values produced from that nonterminal, appended without any
intervening space. The production:

MethodDescriptor:
( ParameterDescriptor* ) ReturnDescriptor

states that a MethodDescriptor represents a left parenthesis, followed by zero or
more ParameterDescriptor values, followed by a right parenthesis, followed by a
ReturnDescriptor.

4.4.2 Field Descriptors

A field descriptor represents the type of a class, instance, or local variable. It is a
series of characters generated by the grammar:
FieldDescriptor:

FieldType
ComponentType:

FieldType
FieldType:

BaseType

ObjectType

ArrayType
BaseType:

B

C
D
E
I



DESCRIPTORS AND SIGNATURES

S
z
ObjectType:
L Classname;
ArrayType:
[ComponentType

The characters of BaseType, the L and ; of ObjectType, and the [ of ArrayType are all
ASCII characters. The Classname represents afully qualified class or interface name. For
historical reasonsit is encoded in internal form (84.2). A type descriptor reprenting an
array typeisvalid only if it represents a type with 255 or fewer dimensions.

Theinterpretation of the field typesis as shown in Table 4.2.

Table4.2 Interpretation of BaseType characters
BaseType Character | Type Interpretation
B byte signed byte
C char Unicode character
D double double-precision floating-point value
F float single-precision floating-point value
I int integer
] Tong long integer
L Classname; reference | aninstance of class <classname>
S short signed short
booTlean true or false
reference | onearray dimension

For example, the descriptor of an instance variable of type int issimply I. The descriptor
of an instance variable of type Object isLjava/1ang/Object;. Note that the internal
form of the fully qualified name for classObject is used. The descriptor of an instance
variable that isamultidimensiona double array,

double d[]1[]1[];

103



104

THE CLASSFILE FORMAT

[CD

4.4.3 Method Descriptors

A method descriptor represents the parameters that the method takes and the value
that it returns:
MethodDescriptor:
( ParameterDescriptor* ) ReturnDescriptor
A parameter descriptor represents a parameter passed to a method:
Parameter Descriptor:
FieldType

A return descriptor represents the type of the value returned from amethod. It is a series
of characters generated by the grammar:

ReturnDescriptor:
FieldType
\oidDescriptor

\oidDescriptor:
v

The character v indicates that the method returns no value (its return typeis void).

A method descriptor isvalid only if it represents method parameters with atotal length of
255 or less, where that length includes the contribution for this in the case of instance or
interface method invocations. The total length is calculated by summing the contributions
of theindividual parameters, where a parameter of type Tong or double contributes two
units to the length and a parameter of any other type contributes one unit.

For example, the method descriptor for the method

Object mymethod(int i, double d, Thread t)

(IDLjava/lang/Thread;)Ljava/lang/Object;

Note that internal forms of the fully qualified names of Thread and Object are
used in the method descriptor.

The method descriptor for mymethod is the same whether mymethod isaclass or an
instance method. Although an instance method is passed this, areference to the current



DESCRIPTORSAND SIGNATURES 105

classinstance, in addition to itsintended parameters, that fact is not reflected in the
method descriptor. (A reference to this is not passed to a class method.) The reference
to this is passed implicitly by the method invocation instructions of the Java virtua
machine used to invoke instance methods.

444 Signatures

Signatures are used to encode Java programming language type information that is
not part of the Java virtual machine type system, such as generic type and method
declarations and parameterized types. See The Java Language Specification, Third
Edition, for details about such types.

Thiskind of type information is needed to support reflection and
debugging, and by the Java compiler.

In the following, the terminal symbol Identifier isused to denote an identifier
for atype, field, local variable, parameter, method name or type variable, as
generated by the Java compiler. Such an identifier may contain characters that
must not appear in alegal identifier in the Java programming language.

ClassSgnature:
Formal TypeParameter sopt SuperclassS gnature SuperinterfaceS gnature*

A class signature, defined by the production ClassSgnature above, is used to
encode type information about a class declaration. It gives the fully qualified
name of the class, describes any formal type parametersit might have, and listsits
(possibly parameterized) direct superclass and direct superinterfaces, if any.

Formal TypeParameters:
<Formal TypeParameter +>

Formal TypeParameter:
Identifier ClassBound InterfaceBound*



106 THE CLASSFILE FORMAT

A formal type parameter is described by its name, followed by its class and
interface bounds. If the class bound does not specify atype, it istaken to be
Object.

ClassBound:
: FieldTypeSgnatureopt

InterfaceBound:
: FieldTypeSgnature

SuperclassSgnature:
ClassTypeSignature

SuperinterfaceSgnature;
ClassTypeSignature

FieldTypeSgnature:
ClassTypeSignature
ArrayTypeSgnature
TypeVariableSgnature

A field type signature, defined by the production FieldTypeS gnature above,
encodes the (possibly parameterized) type for afield, parameter or local variable.

ClassTypeSignature:
L PackageSpecifier* SmpleClassTypeS gnature ClassTypeS gnatureSuffix* ;

PackageSpecifier:
Identifier / Packagepecifier*

SmpleClassTypeSgnature:
Identifier TypeArgumentsopt

ClassTypeS gnatureSuffix:



DESCRIPTORS AND SIGNATURES

. SmpleClassTypeSgnature

TypeVariableSgnature:
T Identifer ;

TypeArguments:
<TypeArgument+>

TypeArgument:
Wildcardlndicatoropt FieldTypeSgnature

WildcardIndicator:

+

ArrayTypeSgnature:
[TypeSignature

TypeSignature:
[FieldTypeSignature
[BaseType

A class type signature gives complete type information for a class or interface type. The
class type signature must be formulated such that it can be reliably mapped to the binary
name of the classit denotes by erasing any type arguments and converting ‘.’ charactersin

the signatureto ‘$’ characters.

MethodTypeS gnature:

Formal TypeParameter sopt (TypeSignature*) ReturnType ThrowsSgnature*

ReturnType:
TypeSignature

107



108

THE CLASSFILE FORMAT

\oidDescriptor

ThrowsS gnature:
AClassTypeSgnature
ATypeVariableSgnature

A method signature, defined by the production MethodTypeS gnature above,
encodes the (possibly parameterized) types of the method’s formal arguments and
of the exceptionsit has declared in its throws clause, its (possibly parameterized)
return type, and any formal type parameters in the method declaration.

A Java compiler must output generic signature information for any class,
interface, consructor or member whose generic signature would include
references to type variables or parameterized types. If the throws clause of a
method or constructor does not involve type variables, the ThowsS gnature may
be elided from the MethodTypeSignature.

The Java virtual machine does not check the well formedness of the signatures
described in this subsection during loading or linking. Instead, these checks are
deferred until the signatures are used by reflective methods, as specified in the
API of Class and membersof java.lang.reflect. Future versions of the Java
virtual machine may be required to performs some or all of these checks during
loading or linking.

45 The Constant Pool

Java virtual machine instructions do not rely on the runtime layout of classes,
interfaces, class instances, or arrays. Instead, instructions refer to symbolic infor-
mation in the constant_pooT table.

All constant_poo1 table entries have the following general format:

cp_info {

ul tag;

ul infol[];
}

Each item in the constant_poo1 table must begin with a 1-byte tag indicating the
kind of cp_info entry. The contents of the info array vary with the value of tag.
The vaid tags and their values are listed in Table 4.3. Each tag byte must be fol-



THE CONSTANT POOL

lowed by two or more bytes giving information about the specific constant. The for-

mat of the additional information varies with the tag value.

Table4.3 Constant pool tags

Constant Type Value
CONSTANT_CTlass 7
CONSTANT_Fieldref 9
CONSTANT_Methodref 10
CONSTANT_InterfaceMethodref 11
CONSTANT_String 8
CONSTANT_Integer 3
CONSTANT_Float 4
CONSTANT_Long 5
CONSTANT_DoubTe 6
CONSTANT_NameAndType 12
CONSTANT_Utf8 1

451 TheCONSTANT_Class_info Structure

The CONSTANT_Class_info structure is used to represent aclass or an interface:

CONSTANT_Class_info {
ul tag;
u2 name_index;

}
The items of the CONSTANT_Class_info Structure are the following:

tag
The tag item has the value CONSTANT_Class (7).

name_index
The value of the name_index item must be avalid index into the
constant_pool table. The constant_pool entry at that index
must be a CONSTANT_Utf8_1info (84.5.7) structure representing a

109



110 THE CLASSFILE FORMAT

| valid fully qualified class or interface name encoded in internal
form (84.3.1).

Because arrays are objects, the opcodes anewarray and multianewarray can reference
array “classes’ viaCONSTANT_Class_info (84.5.1) structuresin the constant_poo] table.
For such array classes, the name of the classis the descriptor of the array type. For example,
the class name representing atwo-dimensiona int array type

int[][]
is
[T
The class name representing the type array of class Thread
Thread[]
5
[Ljava/lang/Thread;

An array type descriptor isvalid only if it represents 255 or fewer dimensions.

452 TheCONSTANT_Fieldref_info, CONSTANT_Methodref_info,
and CONSTANT_InterfaceMethodref_info Structures

Fields, methods, and interface methods are represented by similar structures:

CONSTANT_Fieldref_info {
ul tag;
u2 class_index;
u2 name_and_type_index;

}

CONSTANT_Methodref_info {
ul tag;
u2 class_index;
u2 name_and_type_index;



THE CONSTANT POOL

CONSTANT_InterfaceMethodref_info {
ul tag;
u2 class_index;
u2 name_and_type_index;

}

Theitems of these structures are as follows:

tag

The tag item of a CONSTANT_Fieldref_info structure hasthe
value CONSTANT_Fieldref (9).

The tag item of aCONSTANT _Methodref_info structure has
the value CONSTANT _Methodref (10).

The tag item of a CONSTANT_InterfaceMethodref_info
structure has the value CONSTANT_InterfaceMethodref (11).

class_index

Thevalue of the cTass_index item must beavalid index into the
constant_pool table. The constant_pool entry at that index
must be aCONSTANT_Class_info (84.5.1) structure representing
aclass or interface type that has the field or method as a member.

The class_index item of a CONSTANT_Methodref_info
structure must be aclasstype, not an interface type. The
class_index item of aCONSTANT_InterfaceMethodref_info
structure must be an interface type. The class_index item of a
CONSTANT_Fieldref_info structure may be either a class type
or an interface type.

name_and_type_index

The value of the name_and_type_index item must be avalid
index into the constant_poo1 table. The constant_pool entry
at that index must be a CONSTANT _NameAndType_info (84.5.6)
structure. This constant_poo1 entry indicates the name and
descriptor of the field or method. In a CONSTANT_Fieldref_info
the indicated descriptor must be a field descriptor (84.4.2).
Otherwise, the indicated descriptor must be a method descriptor
(84.4.3).

If the name of the method of a CONSTANT_Methodref_info
structure beginswitha '<' ('\u@@3c"'), then the name must be

111



112 THE CLASSFILE FORMAT

the special name <init>, representing an instance initialization
| method (83.9). The return type of such a method must be void.

45.3 The CONSTANT_String_info Structure

The CONSTANT_String_info structure is used to represent constant objects of the
type String:

CONSTANT_String_info {
ul tag;
u2 string_index;

}
Theitems of the CONSTANT_String_info structure are as follows:
tag

The tag item of the CONSTANT_String_info structure has the
value CONSTANT_String (8).

string_index

The value of the string_index item must be avalid index into
the constant_poo1 table. The constant_poo1 entry at that
index must be a CONSTANT_Utf8_info (84.5.7) structure

representing the sequence of characters to which the String
object isto beinitialized.

45.4 The CONSTANT_Integer_info and CONSTANT_Float_info Structures

The CONSTANT_Integer_info and CONSTANT_Float_info structures represent
4-byte numeric (int and float) congtants:

CONSTANT_Integer_info {

ul tag;
u4 bytes;
}
CONSTANT_Float_info {
ul tag;
u4 bytes;
}

The items of these structures are as follows:



THE CONSTANT POOL 113

tag
The tag item of the CONSTANT_Integer_info structure hasthe
value CONSTANT _Integer (3).
The tag item of the CONSTANT_Float_info structure hasthe
value CONSTANT_Float (4).

bytes
The bytes item of the CONSTANT_Integer_info structure
represents the value of the int constant. The bytes of the value
are stored in big-endian (high byte first) order.

The bytes item of the CONSTANT_Float_info structure
represents the value of the f1oat constant in IEEE 754 floating-
point single format (83.3.2). The bytes of the single format
representation are stored in big-endian (high byte first) order.

The value represented by the CONSTANT_Float_info
structure is determined as follows. The bytes of the value are first
converted into an int constant bits. Then:

* If bits isOx71800000, the f1oat value will be positive infinity.
* If bits is@xTT800000, the f1oat value will be negative infinity.

* If bitsisintherange 0x7t800001 through ox7fffffff orinthe
range 0xff800001 through oxffffffff, the float vaue will
be NaN.

* Inall other cases, let s, e, and m be three values that might be
computed from bits:

int s = ((bits >> 31) == 0) ? 1 : -1;
int e = ((bits >> 23) & Oxff);
intm= (e == 0) ?

(bits & Ox7fffff) << 1 :
(bits & Ox7fffff) | Ox800000;

Then the f1oat value equals the result of the mathematical
expression s [n [2¢—150

455 The CONSTANT_Long_info and CONSTANT_Double_info Structures

The CONSTANT_Long_info and CONSTANT_Double_info represent 8-byte
numeric (Tong and doub1e) congtants:



114 THE CLASSFILE FORMAT

CONSTANT_Long_info {
ul tag;
u4 high_bytes;
u4 low_bytes;

}

CONSTANT_Double_info {
ul tag;
u4 high_bytes;
u4 Tow_bytes;

}

All 8-byte constants take up two entriesin the constant_poo1 table of the class file. If a
CONSTANT_Long_1info or CONSTANT_Double_1info structureistheitemin the
constant_poo] table at index n, then the next usable item in the pool islocated at index
n+2. The constant_pool index n+1 must be valid but is considered unusable.?

The items of these structures are as follows:
tag
The tag item of the CONSTANT_Long_1info structure has the
value CONSTANT _Long (5).

The tag item of the CONSTANT _Double_info structure has
the value CONSTANT _DoubTe (6).

high_bytes, Tow_bytes

The unsigned high_bytes and Tow_bytes items of the
CONSTANT_Long_1info structure together represent the value of
the Tong constant ((Tong) high_bytes << 32) + Tow_bytes,
where the bytes of each of high_bytes and Tow_bytes are
stored in big-endian (high byte first) order.

The high_bytes and Tow_bytes items of the
CONSTANT_Double_info structure together represent the double
value in |EEE 754 floating-point double format (83.3.2). The
bytes of each item are stored in big-endian (high byte first) order.

The value represented by the CONSTANT _Double_info
structure is determined as follows. The high_bytes and
Tow_bytes itemsare first converted into the Tong constant bits,

2 In retrospect, making 8-byte constants take two constant pool entrieswas a
poor choice.



THE CONSTANT POOL 115

whichisequal to ((Tong) high_bytes << 32) + Tow_bytes.
Then:

* |f bits iSOx7ff0000000000000L, the doub1e value will be
positive infinity.

* If bits isOxfff0000000000000L, the doub1e value will be
negative infinity.

* If bits isin the range 0x7ff0000000000001L through
Ox7TFFFFFFffffffffL or inthe range 0xfff0000000000001L
through oxffffffFffffffffL, the double value will be NaN.

* Inall other cases, let s, e, and m be three values that might be
computed from bits:

int s = ((hits >> 63) ==0) ? 1 : -1;
int e = (int) ((bits >> 52) & Ox7ffL);
longm = (e == 0) ?
(bits & OxFFFffffffffffL) << 1 :
(bits & OXFFFFFffffffffL) | 0x10000000000000L ;

Then the floating-point value equals the doub1e value of the
mathematical expression s O [2¢—1075

45.6 The CONSTANT_NameAndType_info Structure

The CONSTANT_NameAndType_info sructure is used to represent a field or
method, without indicating which class or interface type it belongs to:

CONSTANT_NameAndType_info {
ul tag;
u2 name_index;
u2 descriptor_index;

3
The items of the CONSTANT _NameAndType_info structure are asfollows:

tag
The tag item of the CONSTANT _NameAndType_1info structure has
the value CONSTANT _NameAndType (12).



116 THE CLASSFILE FORMAT

name_index

The value of the name_index item must be avalid index into the
constant_poo]1 table. The constant_poo1 entry at that index
must be a CONSTANT_Utf8_info (84.5.7) structure representing
either the special method name <init> (83.9) or avalid
unqualified name (84.3.2) denoting afield or method. .

descriptor_index

The value of the descriptor_index item must be avalid index
into the constant_pool table. The constant_pool entry at that
index must be a CONSTANT_Utf8_info (84.5.7) structure
representing avalid field descriptor (84.4.2) or method descriptor
(84.4.3).

45.7 The CONSTANT_Utf8_info Structure

The CONSTANT_Utf8_info structure is used to represent constant string val-
| ues.String content is encoded in modified UTF-8.

Modified UTF-8 strings are encoded so that character sequences that
contain only non-null ASCII characters can be represented using only 1
byte per character, but all Unicode characters can be represented. Al

| charactersin the range '\u0001' to '\u@07F' are represented by asingle
byte:

0] bits 6-0 |

The 7 bits of data in the byte give the value of the character represented. The null
character ('\u0000') and charactersin therange '\u0080"' to '\u@7FF' arerepre-
sented by apair of bytesx andy:

x:[1]1]0] bits10-6 |y:[1][0] bits5-0 |

The bytes represent the character with the value ((x & 0x1f) <<6) + (y & 0x3f).
Charactersin therange '\u0800' to '\uFFFF' arerepresented by 3 bytesx, y, and z:

x:[1[1]1]o]bits15-12]y:[1]0]  bits12-6  |z:[1]0] bits5-0 |

The character with the value ((x & 0xf) <<12) + ((y & 0x3f) <<6) + (z & 0x3f) is
represented by the bytes.



THE CONSTANT POOL 117

Characters with code points above U+FFFF (so-called supplementary
characters) are represented by separately encoding the two surrogate code
units of their UTF-16 representation. Each of the surrogate code unitsis
represented by three bytes. This means, supplementary characters are
represented by six bytes, u, v, w, X, y, and z:

wl1]|1]1]o]1|a]o|1]v:|1]0]1]0bits 20-16)-1w:| 1|0 pits 15-10

x:{1]1]1]o]1]|a]o]a]y:[1]o]2]1] bits9-6 |z:[1]|0] bits5-0 |

The character with the value
0x10000+((v& 0x0f)<<16)+((w& 0x3f)<<10)+(y& 0x0f)<<6)+(z& 0x3f) is
represented by the six bytes.

The bytes of multibyte characters are stored in the class filein big-endian
(high byte first) order.

There are two differences between this format and the “standard” UTF-8
format. First, the null character (char)0 is encoded using the 2-byte
format rather than the 1-byte format, so that modified UTF-8 strings never
have embedded nulls. Second, only the 1-byte, 2-byte, and 3-byte formats
of standard UTF-8 are used. The JavaVM does not recognize the four-byte
format of standard UTF-8; it uses its own two-times-three-byte format
instead.

For more information regarding the standard UTF-8 format, see section 3.9
Unicode Encoding Forms of The Unicode Standard, Version 4.0.

The CONSTANT_Utf8_1info structureis

CONSTANT_Utf8_info {
ul tag;
u2 length;
ul bytes[length];
3

Theitems of the CONSTANT_Utf8_1info structure are the following:



118 THE CLASSFILE FORMAT

tag
The tag item of the CONSTANT_Utf8_1info structure has the
value CONSTANT_Utf8 (1).

Tength
The value of the Tength item gives the number of bytesin the
bytes array (not the length of the resulting string). The stringsin
the CONSTANT_Utf8_info structure are not null-terminated.

bytes[]
The bytes array contains the bytes of the string. No byte may
have the value (byte)0 or liein the range (byte) 0xf0-
(byte)0xff.

4.6 Fields

Each field is described by a field_info structure. No two fieldsin one class file
may have the same name and descriptor (84.4.2). The format of this structureis

field_info {
u2 access_fTlags;
u2 name_index;
u2 descriptor_index;
u2 attributes_count;
attribute_info attributes[attributes_count];

}
Theitems of the field_info structure are asfollows:

access_flags
The value of the access_f1ags item isamask of flags used to
denote access permission to and properties of thisfield. The
| interpretation of each flag, when set, is as shown in Table 4.4.



FIELDS

Table4.4 Field accessand property flags

Flag Name Value Interpretation

ACC_PUBLIC 0x0001 | Declared pub1ic; may beaccessed from
outside its package.

ACC_PRIVATE 0x0002 | Declared private; usable only within
the defining class.

ACC_PROTECTED | 0x0004 | Declared protected; may be accessed
within subclasses.

ACC_STATIC 0x0008 | Declared static.

ACC_FINAL 0x0010 | Declared final; no further assignment
after initialization.

ACC_VOLATILE 0x0040 | Declared volatile; cannot be cached.

ACC_TRANSIENT | 0x0080 | Declared transient; notwrittenor read
by a persistent object manager.

ACC_SYNTHETIC | 0x1000 | Declared synthetic; Not present inthe
source code.

04000

The ACC_ENUM bhit isindicates that thisfield is being used
to hold an element of an enumerated type.

A field may be marked with the ACC_SYNTHETIC flag to
indicate that it was generated by the compiler and does not appear

in the source code.

Fields of classes may set any of the flagsin Table 4.4.
However, a specific field of a class may have at most one of its
ACC_PRIVATE, ACC_PROTECTED, and ACC_PUBLIC flags set
(82.7.4) and must not have both its ACC_FINAL and
ACC_VOLATILE flags set (82.9.1).

All fields of interfaces must have their ACC_PUBLIC,
ACC_STATIC, and ACC_FINAL flags set; they may have their
ACC_SYNTHETIC flag set and must not have any of the other flags
in Table 4.4 set (82.13.3.1).

All bits of the access_fTlags item not assigned in Table 4.4
are reserved for future use. They should be set to zero in
generated class files and should be ignored by Java virtual
machine implementations.

119



120 THE CLASSFILE FORMAT

name_index

The value of the name_index item must be avalid index into the
constant_poo]1 table. The constant_poo1 entry at that index
must be a CONSTANT_Utf8_info (84.5.7) structure which must

| represent a valid unqualified name (84.3.2) denoting afield.

descriptor_index

The value of the descriptor_index item must be avalid index
into the constant_poo1 table. The constant_pool entry at that
index must be a CONSTANT_Utf8_info (84.5.7) structure that
must represent avalid field descriptor (84.4.2).

attributes_count

The value of the attributes_count item indicates the number
of additional attributes (84.8) of thisfield.

attributes[]

Each value of the attributes table must be an attribute structure
(84.8). A field can have any number of attributes associated with it.

The attributes defined by this specification as appearing in the
attributes table of a field_info structure are the ConstantValue

| (84.8.2), Synthetic (84.8.7), Signature (84.8.8) and Deprecated
(84.8.13) attributes.

A Javavirtual machine implementation must recognize and
correctly read ConstantValue (84.8.2) attributes found in the
attributes table of a field_info structure. If aJavavirtual
machine recognizes class files whose major version is 49.0 or above, it
must recognize and correctly read Signature (84.8.8) attributes
found inthe attributes table of a field_info structure. A
Javavirtual machineimplementation isrequired to silently ignore
any or all other attributesinthe attributes table that it does not
recognize. Attributes not defined in this specification are not
alowed to affect the semantics of the c1ass file, but only to
provide additional descriptive information (84.8.1).



METHODS 121
4.7 Methods

Each method, including each instance initialization method (83.9) and the class or
interface initialization method (83.9), is described by amethod_info structure. No
two methods in one class file may have the same name and descriptor (84.4.3).

The structure has the following format:

method_info {
u2 access_flags;
u2 name_index;
u2 descriptor_index;
u2 attributes_count;
attribute_info attributes[attributes_count];

}

The items of themethod_info structure are as follows:



122 THE CLASSFILE FORMAT

access_flags

The value of the access_flags item isamask of flags used to
denote access permission to and properties of this method. The
interpretation of each flag, when set, is as shown in Table 4.5.

Table4.5 Method accessand property flags

Flag Name Value I nterpretation

ACC_PUBLIC 0x0001 | Declared pub1ic; may be accessed
from outside its package.

ACC_PRIVATE 0x0002 | Declared private; accessible only
within the defining class.

ACC_PROTECTED 0x0004 | Declared protected; may be
accessed within subclasses.

ACC_STATIC 0x0008 | Declared static.

| ACC_FINAL 0x0010 | Declared final; must not be over-

ridden.

ACC_SYNCHRONIZED | 0x0020 | Declared synchronized; invocation
iswrapped in amonitor lock.

| ACC_BRIDGE 0x0040
| ACC_VARARGS 0x0080

ACC_NATIVE 0x0100 | Declared native; implementedin a
language other than Java.

ACC_ABSTRACT 0x0400 | Declared abstract; noimplementa
tion is provided.

ACC_STRICT 0x0800 | Declared strictfp; floating-point
mode is FP-strict

ACC_SYNTHETIC 0x1000 | Declared synthetic; Not presentin
the source code.

The ACC_VARARGS flag indicates that this method takes a
variable number of arguments at the source code level. A method
declared to take a variable number of arguments must be
compiled with the ACC_VARARGS flag set to 1. All other
methods must be compiled with the ACC_VARARGS flag set to




METHODS 123

0. The ACC_BRIDGE method is used to indicate a bridge method
generated by the compiler.

A method may be marked with the ACC_SYNTHETIC flag
toindicate that it was generated by the compiler and does not
appear in the source code.

Methods of classes may set any of the flagsin Table 4.5.
However, a specific method of a class may have at most one of its
ACC_PRIVATE, ACC_PROTECTED, and ACC_PUBLIC flags set
(82.7.4). If such amethod hasits ACC_ABSTRACT flag set it must
not have any of its ACC_FINAL, ACC_NATIVE, ACC_PRIVATE,
ACC_STATIC, ACC_STRICT, or ACC_SYNCHRONIZED flags set
(82.13.3.2).

All interface methods must have their ACC_ABSTRACT and
ACC_PUBLIC flags set; they may have their ACC_VARARGS,
ACC_BRIDGE and ACC_SYNTHETIC flags set and must not have
any of the other flagsin Table 4.5 set (82.13.3.2).

A specific instance initialization method (83.9) may have at
most one of itsACC_PRIVATE, ACC_PROTECTED, and ACC_PUBLIC
flags set and may also have its ACC_STRICT, ACC_VARARGS, and
ACC_SYNTHETIC flags set, but must not have any of the other flags
in Table 4.5 set.

Class and interface initialization methods (83.9) are called
implicitly by the Java virtual machine; the value of their
access_flags itemisignored except for the settings of the
ACC_STRICT flag.

All bits of the access_fTags item not assigned in Table 4.5
are reserved for future use. They should be set to zero in
generated class files and should be ignored by Java virtual
machine implementations.

name_index

The value of the name_index item must be avalid index into the
constant_poo]l table. The constant_pool entry at that index
must be a CONSTANT_Utf8_1info (84.5.7) structure representing
either one of the specia method names (83.9), <init> or
<cTlinit>, or avalid unqualified name (84.3.2) denoting a
method.



124 THE CLASSFILE FORMAT

descriptor_index

The value of the descriptor_index item must be avalid index
into the constant_pool table. The constant_pool entry at that
index must be a CONSTANT_Utf8_info (84.5.7) structure
representing a valid method descriptor (84.4.3).

attributes_count

The value of the attributes_count item indicates the number
of additional attributes (84.8) of this method.

attributes[]

Each value of theattributes table must be an attribute structure
(84.8). A method can have any number of optional attributes
associated with it.

The only attributes defined by this specification as appearing
inthe attributes table of amethod_info structure are the
Code (84.8.3), Exceptions (84.8.4), Synthetic (84.8.7),
Signature (84.8.8) and Deprecated (84.8.13) attributes.

A Javavirtual machine implementation must recognize and
correctly read Code (84.8.3) and Exceptions (84.8.4) attributes
found in the attributes table of amethod_info structure. If a
Javavirtual machine recognizes classfileswhose magjor versionis
49.0 or above, it must recognize and correctly read Signature
(84.8.8) attributes found in the attributes table of a
method_info structure. A Javavirtual machine implementation
isrequired to silently ignore any or all other attributesin the
attributes table of amethod_1info structure that it does not
recognize. Attributes not defined in this specification are not
allowed to affect the semantics of the c1ass file, but only to
provide additional descriptive information (84.8.1).

4.8 Attributes

Attributes are used in the ClassFile (84.2), field_info (84.6), method_info
| (84.7), Code_attribute (84.8.3) structures of the class file format. All attributes
have the following genera format:



ATTRIBUTES 125

attribute_info {
u2 attribute_name_index;
u4 attribute_length;
ul info[attribute_Tlength];
3

For all attributes, the attribute_name_index must be avalid unsigned 16-bit
index into the constant pool of the class. The constant_pool entry at
attribute_name_index must be a CONSTANT_Utf8_info (84.5.7) structure
representing the name of the attribute. The value of the attribute_Tlength item
indicates the length of the subsequent information in bytes. The length does not
include theinitial six bytesthat contain the attribute_name_index and
attribute_length items.

Certain attributes are predefined as part of the class file specification. The
predefined attributes are the SourceFile (84.8.9), ConstantValue (84.8.2),
Code (84.8.3), Exceptions (84.8.4), InnerClasses (84.8.5), EnclosingMethod
(84.8.6), Synthetic (84.8.7), Signature (84.8.8), LineNumberTable (84.8.10),
LocalVariableTable andDeprecated (84.8.13) attributes. Within the context
of their usein this specification, that is, inthe attributes tablesof the class file
structures in which they appear, the names of these predefined attributes are
reserved.

Of the predefined attributes, the Code, ConstantValue and Exceptions
attributes must be recognized and correctly read by a class file reader for correct
interpretation of the class file by a Javavirtua machine implementation. The
Signature attribute must be recognized and correctly interpreted by any Java
virtual machine implementation that recognizes class files whose major versionis
49.0 or above. The InnerClasses, EnclosingMethod and Synthetic
attributes must be recognized and correctly read by a class file reader in order to
properly implement the Java and Java 2 platform classlibraries (83.12). Use of the
remaining predefined attributesis optional; a class file reader may use the
information they contain, or otherwise must silently ignore those attributes.

4.8.1 Defining and Naming New Attributes

Compilers are permitted to define and emit c1ass files containing new attributesin
the attributes tables of class file structures. Java virtual machine implementa
tions are permitted to recognize and use new attributes found in the attributes
tables of cTass file structures. However, any attribute not defined as part of this Java
virtual machine specification must not affect the semantics of class or interface



126

THE CLASSFILE FORMAT

types. Java virtual machine implementations are required to silently ignore
attributes they do not recognize.

For instance, defining anew attribute to support vendor-specific debugging is permitted.
Because Java virtual machine implementations are required to ignore attributes they do
not recognize, class filesintended for that particular Java virtual machine
implementation will be usable by other implementations even if those implementations
cannot make use of the additional debugging information that the c1ass files contain.

Java virtual machine implementations are specifically prohibited from throwing an
exception or otherwise refusing to use class files simply because of the presence of some
new attribute. Of course, tools operating on class files may not run correctly if given
class filesthat do not contain all the attributes they require.

Two attributes that are intended to be distinct, but that happen to use the same attribute
name and are of the same length, will conflict on implementations that recognize either
attribute. Attributes defined other than by Sun must have names chosen according to the
package naming convention defined by The Java Language Specification. For instance, a
new attribute defined by Netscape might have the name ""com.Netscape. new-
attribute".3

Sun may define additional attributes in future versions of this class file specification.

4.8.2 TheConstantValue Attribute

The ConstantValue attribute is a fixed-length attribute used in the attributes
table of the field_info (84.6) structures. A ConstantValue attribute represents
the value of a constant field. There can be no more than one ConstantValue
attribute in the attributes table of a given field_info dructure. If the field is
static (that is, the ACC_STATIC bit (Table 4.4) in the f1ags item of the field_info
structure is set) then the constant field represented by the field_info Structureis
assigned the value referenced by its ConstantValue attribute as part of the initial-
ization of the class or interface declaring the constant field (82.17.4). This occurs
immediately prior to the invocation of the class or interface initialization method
(83.9) of that class or interface.

If afield_info structure representing anon-static field hasaConstantvalue

attribute, then that attribute must silently be ignored. Every Java virtual machine
implementation must recognize ConstantValue éttributes.

3 Thefirst edition of The Java Language Specification required that "com" bein
uppercase in this example. The second edition reversed that convention and
uses lowercase.



ATTRIBUTES

The ConstantValue attribute has the following format:

ConstantValue_attribute {
u2 attribute_name_index;
u4 attribute_length;
u2 constantvalue_index;

}
Theitems of the ConstantValue_attribute structure are asfollows:

attribute_name_index
Thevalue of the attribute_name_index item must be avalid
index into the constant_poo1 table. The constant_pool entry
at that index must be a CONSTANT_Utf8_info (84.5.7) structure
representing the string "ConstantValue".

attribute_length

Thevalue of theattribute_length item of a
ConstantValue_attribute structure must be 2.

constantvalue_index

The value of the constantvalue_index item must be avalid
index into the constant_poo1 table. The constant_pool entry

at that index givesthe constant value represented by this attribute.

The constant_poo1l entry must be of atype appropriate to the
field, as shown by Table 4.6.

127



128

THE CLASSFILE FORMAT

Table4.6 Constant value attribute types

Field Type Entry Type

Tong CONSTANT_Long
float CONSTANT_Float
double CONSTANT _Double
int, short, char, byte, boolean | CONSTANT_Integer
String CONSTANT_String

4.8.3 TheCode Attribute

The Code attribute is a variable-length attribute used in the attributes table of
method_info structures. A Code attribute contains the Java virtua machine
instructions and auxiliary information for a single method, instance initialization
method (83.9), or class or interface initiaization method (83.9). Every Java virtual
machine implementation must recognize Code attributes. If the method is either
native or abstract, itsmethod_info structure must not have a Code attribute.
Otherwise, itsmethod_info structure must have exactly one Code attribute.

The Code attribute has the following format:

Code_attribute {
u2 attribute_name_index;
u4 attribute_Tlength;
u2 max_stack;
u2 max_locals;
u4 code_Tlength;
ul code[code_length];
u2 exception_table_length;
{ u2 start_pc;
u2 end_pc;
u2 handler_pc;
u2 catch_type;
} exception_table[exception_table_length];
u2 attributes_count;
attribute_info attributes[attributes_count];

}
Theitems of the Code_attribute structure are asfollows:



ATTRIBUTES 129

attribute_name_index
Thevalue of the attribute_name_index item must be avalid
index into the constant_pool table. The constant_pool entry
at that index must be a CONSTANT_Utf8_info (84.5.7) structure
representing the string "Code".

attribute_length
Thevalue of theattribute_length item indicates the length of
the attribute, excluding the initial six bytes.

max_stack
The value of the max_stack item gives the maximum depth
(83.6.2) of the operand stack of this method at any point during
execution of the method.

max_Tlocals

The value of themax_Tocals item gives the number of local
variablesin the local variable array allocated upon invocation of
this method, including the local variables used to pass parameters
to the method on its invocation.

The greatest local variable index for avalue of type Tong or
doubleismax_Tlocals—2. Thegreatest local variable index for a
value of any other typeismax_locals—1.

code_Tength
The value of the code_1ength item gives the number of bytesin
the code array for this method. The value of code_1ength must
be greater than zero; the code array must not be empty.

code[]
The code array givesthe actual bytes of Javavirtual machine
code that implement the method.

When the code array is read into memory on a byte-
addressable machineg, if the first byte of the array isaligned on a
4-byte boundary, the tableswitch and lookupswitch 32-bit offsets
will be 4-byte aligned. (Refer to the descriptions of those
instructions for more information on the consequences of code
array alignment.)

The detailed constraints on the contents of the code array are
extensive and are given in a separate section (84.10).



130 THE CLASSFILE FORMAT

exception_table_length

The value of the exception_table_length item givesthe
number of entriesin the exception_tabTe table.

exception_tablel[]

Each entry in the exception_table array describes one
exception handler in the code array. The order of the handlersin
the exception_table array issignificant. See Section 3.10 for
more details.
Each exception_tabTle entry contains the following four
items:
start_pc, end_pc
The values of the two items start_pc and end_pc indicate
the rangesin the code array at which the exception handler is
active. Thevalue of start_pc must be avalid index into the
code array of the opcode of an instruction. The value of
end_pc either must be avalid index into the code array of the
opcode of an instruction or must be equal to code_length,
the length of the code array. The value of start_pc must be
less than the value of end_pc.
The start_pc isinclusive and end_pc is exclusive; that
is, the exception handler must be active while the program
counter iswithin theinterval [start_pc, end_pc).*

handler_pc
The value of the hand1er_pc item indicates the start of the
exception handler. The value of the item must be avalid
index into the code array and must be the index of the opcode
of an instruction.

catch_type
If the value of the catch_type item is nonzero, it must be a
valid index into the constant_pool table. The
constant_pool entry at that index must be a
CONSTANT_Class_info (84.5.1) structure representing a

4 Thefact that end_pc is exclusive is a historical mistake in the design of the
Javavirtual machines.



ATTRIBUTES

class of exceptions that this exception handler is designated
to catch. The exception handler will be called only if the
thrown exception is an instance of the given class or one of its
subclasses.

If the value of the catch_type itemis zero, this
exception handler is called for all exceptions. Thisis used to
implement finally (see Section 7.13, “Compiling
finally”).

attributes_count

The value of the attributes_count item indicates the number
of attributes of the Code attribute.

attributes[]

Each value of theattributes table must be an attribute structure
(84.8). A Code attribute can have any number of optional
attributes associated with it.

Currently, the LineNumberTable (84.8.10) and
LocalVvariableTable (84.8.11),attributes which contain
debugging information,

are defined and used with the Code attribute.

A Javavirtual machine implementation is permitted to
silently ignore any or al attributesin the attributes table of a
Code attribute. Attributes not defined in this specification are not
allowed to affect the semantics of the cl1ass file, but only to
provide additional descriptive information (84.8.1).

4.8.4 TheExceptions Attribute

The Exceptions datribute is a variable-length attribute used in the attributes
table of amethod_info (84.7) structure. The Exceptions attribute indicateswhich
checked exceptions a method may throw. There may be a most one Exceptions
attribute in each method_info structure.

The Exceptions attribute has the following format:

131



132 THE CLASSFILE FORMAT

Exceptions_attribute {
u2 attribute_name_index;
u4 attribute_length;
u2 number_of_exceptions;
u2 exception_index_table[number_of_exceptions];

3
Theitems of the Exceptions_attribute structure are asfollows:

attribute_name_index
The value of the attribute_name_index item must be avalid
index into the constant_poo1 table. The constant_pool entry
at that index must be the CONSTANT_Utf8_info (84.5.7)
structure representing the string "Exceptions.

attribute_length
Thevalue of the attribute_Tlength item indicates the attribute
length, excluding the initial six bytes.
number_of_exceptions
The value of the number_of_exceptions item indicates the
number of entriesin the exception_index_table.
exception_index_table[]

Each value in the exception_index_table array must be a
valid index into the constant_poo1 table. The constant_pool
entry referenced by each table item must be a
CONSTANT_Class_info (84.5.1) structure representing a class
type that this method is declared to throw.

A method should throw an exception only if at least one of the following three criteriais
met:

» The exception is an instance of RuntimeException or one of its subclasses.
» The exception is an instance of Error or one of its subclasses.

* The exception is an instance of one of the exception classes specified in the
exception_index_tabTe just described, or one of their subclasses.

These requirements are not enforced in the Java virtual machine; they are
enforced only at compile time.



ATTRIBUTES

485 ThelInnerClasses Attribute

The InnerClasses attribute® is avariable-length attribute in the attributes table
of theClassFile (84.2) structure. If the constant pool of aclass or interface C con-
tains a CONSTANT_Class_info entry which represents a class or interface that is
not a member of a package, then C's ClassFile structure must have exactly one
InnerClasses dtributeinitsattributes table.

The InnerClasses attribute has the following format:

InnerClasses_attribute {

u2 attribute_name_index;

u4 attribute_length;

u2 number_of_classes;

{ u2 inner_class_info_index;
u2 outer_class_info_index;
u2 inner_name_index;
u2 inner_class_access_flags;

} classes[number_of_classes];

}

Theitemsof the InnerClasses_attribute Structure are asfollows:

attribute_name_index

Thevalue of the attribute_name_index item must be avalid
index into the constant_poo1 table. The constant_pool entry
at that index must be a CONSTANT_Utf8_info (84.5.7) structure
representing the string "InnerClasses".

attribute_Tlength
Thevalue of theattribute_Tlength item indicates the length of
the attribute, excluding the initial six bytes.
number_of_classes

The value of the number_of_classes item indicates the number
of entriesin the classes array.

5 TheInnerClasses attribute wasintroduced in JDK release 1.1 to support
nested classes and interfaces.

133



THE CLASSFILE FORMAT

classes[]

Every CONSTANT_Class_info entry inthe constant_poo1 table
which represents a class or interface C that is not a package
member must have exactly one corresponding entry in the
classes array.

If aclass has membersthat are classes or interfaces, its
constant_poo]l table (and henceits InnerClasses attribute)
must refer to each such member, even if that member is not
otherwise mentioned by the class. These rulesimply that a nested
class or interface member will have InnerClasses information
for each enclosing class and for each immediate member.

Each classes array entry contains the following four items:

inner_class_info_index

Thevalue of the inner_class_info_index item must be
zero or avalid index into the constant_poo1 table. The
constant_pooTl entry at that index must be a
CONSTANT_Class_info (84.5.1) structure representing C.
Theremaining itemsin the classes array entry give
information about C.

outer_class_info_index

If C is not amember, the value of the
outer_class_info_index item must be zero. Otherwise,
the value of the outer_class_info_index item must be a
valid index into the constant_poo1 table, and the entry at
that index must be a CONSTANT_Class_info (84.5.1)
structure representing the class or interface of whichCisa
member.

inner_name_index
If C isanonymous, the value of the inner_name_index
item must be zero. Otherwise, the value of the
inner_name_index item must be avalid index into the
constant_poo1 table, and the entry at that index must be a
CONSTANT_Utf8_info (84.5.7) structure that represents the
original simple name of C, as given in the source code from
which this class file was compiled.



ATTRIBUTES

inner_class_access_flags

Thevalue of theinner_class_access_flags itemisa
mask of flags used to denote access permissions to and
properties of class or interface C as declared in the source
code from which this c1ass file was compiled. It is used by
compilers to recover the original information when source
code isnot available. The flags are shown in Table 4.7.

Table4.7 Nested class access and property flags

ACC_ANNOTATION [B0x2000

ACC_ENOM 0x4000

Flag Name Value Meaning

ACC_PUBLIC 0x0001 | Marked or implicitly pubTicin
source.

ACC_PRIVATE 0x0002 | Marked private in source.

ACC_PROTECTED | 0x0004 | Marked protected in source.

ACC_STATIC 0x0008 | Marked or implicitly staticin
source.

ACC_FINAL 0x0010 | Marked final in source.

ACC_INTERFACE | 0x0200 | Wasan interface in source.

ACC_ABSTRACT 0x0400 | Marked or implicitly abstract in
source.

ACC_SYNTHETIC | 0x1000 | Declared synthetic; Not present
in the source code.

Declared as an annotation type.

All bits of the inner_class_access_flags item not
assigned in Table 4.7 are reserved for future use. They should be
set to zero in generated c1ass filesand should be ignored by Java

virtual machine implementations.

The Java virtual machine does not currently check the consistency of the InnerClasses
attribute with any class file actually representing a class or interface referenced by the

atribute.

135



136

THE CLASSFILE FORMAT

4.8.6 The EnclosingMethod Attribute

The EnclosingMethod attribute is an optiona fixed-length attribute in the
attributes table of the ClassFile (84.2) structure. A class must have an
EnclosingMethod attribute if and only if it is a local class or an anonymous
class. A class may have no more than one EnclosingMethod attribute.

The EnclosingMethod attribute has the following format:

EnclosingMethod_attribute {
u2 attribute_name_index;
u4 attribute_length;
u2 class_index
u2 method_index;
3
Theitems of the EnclosingMethod_attribute Structure are asfollows:

attribute_name_index
The value of the attribute_name_index item must be avalid
index into the constant_poo1 table. The constant_pool entry
at that index must be a CONSTANT_Utf8_info (84.5.7) structure
representing the string "EnclosingMethod".

attribute_length
Thevalue of the attribute_length itemisfour.

class_index
Thevalue of the class_index item must beavalid index into the
constant_pool table. The constant_pool entry at that index
must be aCONSTANT_Class_info (84.5.1) structure representing
the innermost class that encloses the declaration of the current
class.

method_index
If the current class is not immediately enclosed by a method or
constructor, then the value of the method_1index item must be
zero. Otherwise, the value of the method_index item must be a
valid index into the constant_pooT table. The constant_pool
entry at that index must be a CONSTANT_NameAndType_info
(84.5.6) structure representing athe name and type of amethod in



ATTRIBUTES

the class referenced by the class index attribute above. It isthe
responsibility of the Java compiler to ensure that the method
identified viathe method_index isindeed the closest lexically
enclosing method of the class that contains this
EnclosingMethod attribute.

4.8.7 TheSynthetic Attribute

The Synthetic atribute® is a fixed-length attribute in the attributes table of
ClassFile (84.2), field_info (84.6), and method_info (84.7) structures. A
class member that does not appear in the source code must be marked using a Syn-
thetic attribute, or ese it must have its ACC_SYNTHETIC bit set. The only
exceptions to this requirement are for default constructors and the class initiaiza-
tion method.

The Synthetii c attribute has the following format:

Synthetic_attribute {
u2 attribute_name_index;
u4 attribute_Tlength;

}

Theitemsof the Synthetic_attribute structure are asfollows:

attribute_name_index
Thevalue of the attribute_name_index item must be avalid
index into the constant_poo1 table. The constant_pool entry
at that index must be a CONSTANT_Utf8_1info (84.5.7) structure
representing the string "Synthetic".

attribute_length
Thevalue of the attribute_length itemis zero.

6 The Synthetic attribute was introduced in JDK release 1.1 to support nested
classes and interfaces.

137



138

THE CLASSFILE FORMAT

4.8.8 TheS-ignature Attribute

The Signature atribute is an optiona fixed-length attribute in the attributes
table of the ClassFile (84.2), field_info(84.6) and method_info (84.7) struc-
tures.

The Signature attribute has the following format:

Signature_attribute {
u2 attribute_name_index;
u4 attribute_length;
u2 signature_index;

}
Theitemsof the Signature_attribute structure are asfollows:

attribute_name_index
The value of the attribute_name_index item must be avalid
index into the constant_poo1 table. The constant_pool entry
at that index must be a CONSTANT_Utf8_info(84.5.7) structure
representing the string "Signature".

attribute_length

Thevalue of the attribute_Tlength item of a
Signature_attribute structure must be 2.

signature_index
The value of the signature_index item must be avalid index
into the constant_poo1 table. The constant pool entry at that
index must be a CONSTANT_Utf8_info (84.5.7) structure
representing either a class signature, if this signature attribute is
an attribute of aClassFile structure, a method type signature, if
this signature is an attribuute of amethod_info structure, or a
field type signature otherwise.

4.89 TheSourceFile Attribute

The SourceFile attribute is an optional fixed-length attribute in the attributes
table of the ClassFile (84.2) structure. There can be no more than one
SourceFiTe atributeinthe attributes table of agiven ClassFile structure.

The SourceFiTe attribute has the following format:



ATTRIBUTES 139

SourceFile_attribute {
u2 attribute_name_index;
u4 attribute_length;
u2 sourcefile_index;

}
Theitems of the SourceFile_attribute structure are as follows;

attribute_name_index

The value of the attribute_name_1index item must be avalid
index into the constant_poo1 table. The constant_pool entry
at that index must be a CONSTANT_Utf8_info (84.5.7) structure
representing the string "SourceFile".

attribute_length

Thevalue of theattribute_length item of a
SourceFile_attribute structure must be 2.

sourcefile_index

The value of the sourcefile_index item must be avalid index
into the constant_poo1 table. The constant pool entry at that
index must be a CONSTANT_Utf8_info (84.5.7) structure
representing a string.

Thestring referenced by the sourcefile_index itemwill be
interpreted as indicating the name of the source file from which
this class file was compiled. It will not be interpreted as
indicating the name of adirectory containing the file or an
absolute path name for the file; such platform-specific additional
information must be supplied by the runtime interpreter or
development tool at the time the file name is actually used.

4.8.10 The SourceDebugExtension Attribute

The SourceDebugExtension atributeisan optiond attribute in the attributes table
of the ClassFile (84.2) structure. There can be no more than one SourceDe-
bugExtension attribute in the attributes table of agiven ClassF1ile structure.

The SourceDebugExtens1ion atribute has the following format:



140

THE CLASSFILE FORMAT

SourceDebugExtension_attribute {
u2 attribute_name_index;
u4 attribute_length;
ul debug_extension[attribute_length];

Theitems of the SourceDebugExtension_attribute structure are asfollows:

attribute_name_index
The value of the attribute_name_index item must be avalid
index into the constant_pool table. The constant_pool entry at
that index must be a CONSTANT_Utf8_1info (84.5.7) structure
representing the string "SourceDebugExtension™.

attribute_length
Thevalue of the attribute_length item indicates the length of
the attribute, excluding theinitial six bytes. The value of the
attribute_length item isthusthe number of bytesin the
debug_extension[] item.

debug_extension[]
The debug_extension array holds a string, which must be in
UTF-8 format. There is no terminating zero byte. The string in the
debug_extension item will beinterpreted as extended
debugging information. The content of this string has no semantic
effect on the Java Virtual Machine.

4811 TheLineNumberTable Attribute

The LineNumberTable attribute is an optional variable-length attribute in the
attributes table of a Code (84.8.3) attribute. It may be used by debuggers to
determine which part of the Java virtual machine code array corresponds to a given
line number in the origina source file. If LineNumberTabTe attributes are present
in the attributes table of a given Code attribute, then they may appear in any
order. Furthermore, multiple LineNumberTab1e attributes may together represent a
given line of asourcefile; that is, LineNumberTabTle attributes need not be one-to-
one with source lines.



VERIFICATION OF CLASSFILES 141

The LineNumberTab1e attribute has the following format:

LineNumberTable_attribute {
u2 attribute_name_index;
u4 attribute_length;
u2 line_number_table_length;
{ u2 start_pc;
u2 line_number;
} Tine_number_table[1line_number_table_length];

}
Theitems of the LineNumberTable_attribute structure are as follows:

attribute_name_index

Thevalue of the attribute_name_index item must be avalid
index into the constant_poo1 table. The constant_pool entry
at that index must be a CONSTANT_Utf8_info (84.5.7) structure
representing the string "LineNumberTable".

attribute_length

Thevalue of the attribute_1ength item indicates the length of
the attribute, excluding the initial six bytes.

Tine_number_table_length

Thevalueof the1ine_number_table_length itemindicatesthe
number of entriesin the Tine_number_table array.

Tine_number_table[]

Each entry inthe 1ine_number_table array indicates that the
line number in the original source file changes at a given point in
the code array. Each Tine_number_tab1e entry must contain the
following two items:

start_pc

Thevalue of the start_pc item must indicate theindex into
the code array at which the code for anew linein the
original sourcefile begins. The value of start_pc must be
less than the value of the code_Tength item of the Code
attribute of which this LineNumberTab1le isan attribute.



142

THE CLASSFILE FORMAT

Tine_number

The value of the Tine_number item must give the
corresponding line number in the original source file.

4.8.12 ThelLocalVariableTable Attribute

The LocalvariableTable attribute is an optional variable-length attribute of a
Code (84.8.3) attribute. It may be used by debuggers to determine the value of a
given local variable during the execution of a method. If LocalvariableTable
attributes are present in the attributes table of a given Code attribute, then they
may appear in any order. There may be no more than one LocalVariableTable
attribute per local variablein the Code attribute.

The LocalVariableTable éttribute has the following format:

LocalVariableTable_attribute {
u2 attribute_name_index;
u4 attribute_Tlength;
u2 local_variable_table_Tlength;
{ u2 start_pc;
u2 Tength;
u2 name_index;
u2 descriptor_index;
u2 index;
} Tocal_variable_table[
Tocal_variable_table_length];

}
Theitems of the LocalvariableTable_attribute structure are asfollows:

attribute_name_index

The value of the attribute_name_index item must be avalid
index into the constant_poo1 table. The constant_pool entry
at that index must be a CONSTANT_Utf8_info (84.5.7) structure
representing the string "LocalVariableTable".

attribute_length

Thevalue of the attribute_length item indicates the length of
the attribute, excluding the initial six bytes.



VERIFICATION OF CLASSFILES

local_variable_table_length

Thevalue of the Tocal_variable_table_length item
indicates the number of entriesinthe Tocal_variable_table
array.

Jocal_variable_table[]
Each entry inthe Tocal_variable_table array indicates a
range of code array offsets within which alocal variable has a
value. It also indicates the index into the local variable array of
the current frame at which that local variable can be found. Each
entry must contain the following five items:

start_pc, Tength
The given local variable must have avalue at indicesinto the
code array intheinterval [start_pc, start_pc+1ength),
that is, between start_pc and start_pc+1length
exclusive. Thevalue of start_pc must beavalid index into
the code array of this Code attribute and must be the index
of the opcode of an instruction. The value of
start_pc+Tlength must either be avalid index into the
code array of this Code attribute and be the index of the
opcode of an instruction, or it must be thefirst index beyond
the end of that code array.

name_index, descriptor_index

The value of the name_index item must be avalid index
into the constant_poo1 table. The constant_poo1 entry
at that index must contain a CONSTANT_Utf8_info (84.5.7)
structure representing a valid unqualified name (84.3.2)
denoting alocal variable.

Thevalueof thedescriptor_index itemmust beavalid
index into the constant_poo1 table. The constant_pool
entry at that index must contain a CONSTANT_Utf8_info
(84.5.7) structure. That CONSTANT _Utf8_1nfo structure must
represent afield descriptor (84.4.2) encoding the type of a
local variable in the source program.

index

The given local variable must be at index in the local
variable array of the current frame. If the local variable at

143



144

THE CLASSFILE FORMAT

index isof type double or Tong, it occupies both index
and index+1.

4.8.13 ThelLocalVvariableTypeTable Attribute

The LocalVariableTypeTable attribute isan optiona variable-length attribute of
a Code (84.8.3) attribute. It may be used by debuggers to determine the value of a
given loca variable during the execution of a method. If LocalvariableTy-
peTable attributes are present in the attributes table of a given Code attribute,
then they may appear in any order. There may be no more than one Localvari-
ableTypeTable attribute per local variable in the Code attribute.

The LocalVariableTypeTabTe attribute differsfrom the LocalvariableTable
attribute in that it provides signature information rather than descriptor information.
This differenceisonly significant for variables whose type is a generic reference
type. Such variables will appear in both tables, while variables of other types will
appear only in LocalVariableTable

The LocalvariableTypeTable attribute has the following format:

LocalVariableTypeTable_attribute {
u2 attribute_name_index;
u4 attribute_length;
u2 local_variable_type_table_length;
{ u2 start_pc;
u2 length;
u2 name_index;
u2 signature_index;
u2 index;
} Tocal_variable_type_table[
Tocal_variable_type_table_length];
}

Theitemsof the LocalvariableTypeTable_attribute structure are asfollows:

attribute_name_index
Thevalue of the attribute_name_index item must be avalid
index into the constant_poo1 table al21. The constant_pool
entry at that index must be a CONSTANT_Utf8_info (84.5.7) al22
structure representing the string "LocalVariableTypeTable"
alzs.



VERIFICATION OF CLASSFILES

attribute_length

Thevalue of theattribute_length item indicates the length of
the attribute, excluding the initial six bytes.

local_variable_table_length

Thevalue of the Tocal_variable_table_Tlength item
indicates the number of entriesinthe Tocal_variable_table

array.
Jocal_variable_table[]

Each entry inthe Tocal_variable_table array indicates a
range of code array offsets within which alocal variable has a
value. It also indicates the index into the local variable array of
the current frame at which that local variable can be found. Each
entry must contain the following five items:

start_pc, Tength

Thegiven local variable must have avalue at indicesinto the
code array intheinterva [start_pc, start_pc+length),
that is, between start_pc and start_pc+length
exclusive. Thevalue of start_pc must beavalid index into
the code array of this Code attribute and must be the index
of the opcode of an instructional24. The value of
start_pc+1ength must either be avalid index into the
code array of this Code attribute and be the index of the
opcode of an instruction, or it must be the first index beyond
the end of that code array al25.

name_index, signature_index

The value of the name_index item must be avalid index
into the constant_poo1 table al27. The constant_pool
entry at that index must contain a CONSTANT_Utf8_info
(84.5.7) structure al28 representing avalid unqualified
name (84.3.2) denoting alocal variableal28. Careful here -
do we want any restrictions at al?

Thevalue of the signature_index item must be avalid
index into the constant_poo1 table. The constant_pool
entry at that index must contain a CONSTANT_Utf8_info
(84.5.7) structure representing afield type signature (84.4.4)
encoding the type of alocal variable in the source program.



146 THE CLASSFILE FORMAT

index

The given local variable must be at index in the local
variable array of the current frame. If the local variable at
index isof type double or Tong, it occupies both index
and index+1.

4.8.14 TheDeprecated Attribute

The Deprecated attribute’ is an optional fixed-length attribute in the attributes
table of ClassFile (84.2), field_info (84.6), and method_info (84.7) struc-
tures. A class, interface, method, or field may be marked using a Deprecated
attribute to indicate that the class, interface, method, or field has been superseded. A
runtime interpreter or tool that reads the c1ass file format, such as a compiler, can
use this marking to advise the user that a superseded class, interface, method, or
field is being referred to. The presence of aDeprecated attribute does not ater the
semantics of aclass or interface.

The Deprecated attribute has the following format:

Deprecated_attribute {
u2 attribute_name_index;
u4 attribute_length;

}

Theitems of theDeprecated_attribute structure are asfollows:

attribute_name_index

Thevalue of the attribute_name_index item must be avalid
index into the constant_poo1 table. The constant_pool entry
at that index must be a CONSTANT_Utf8_info (84.5.7) structure
representing the string "Deprecated".

attribute_length
Thevalue of theattribute_Tlength itemiszero.

7 TheDeprecated attribute was introduced in JDK release 1.1 to support the
@deprecated tag in documentation comments.



VERIFICATION OF CLASSFILES

4.8.15 TheRuntimeVisibleAnnotations attribute

The RuntimeVisibleAnnotations attribute is a variable length attribute in the
attributes table of the ClassFile, field_info, and method_info structures. The
RuntimeVisibleAnnotations attribute records runtime-visible Java program-
ming language annotations on the corresponding class, method, or field. Each
ClassFile, field_info, and method_info structure may contain at most one
RuntimeVisibleAnnotations attribute, which records al the runtime-visible
Java programming language annotations on the corresponding program element.
The VM must make these annotations available so they can be returned by the
appropriate reflective APIs.
TheRuntimeVisibleAnnotations attribute has the following format:
RuntimeVisibleAnnotations_attribute {

u2 attribute_name_index;

u4 attribute_Tlength;

u2 num_annotations;

annotation annotations[num_annotations];

The items of the RuntimeVisibleAnnotations structure are asfollows:

attribute_name_index

The vdue of the attribute_name_index item must be a valid index into the
constant_pool table. The constant_pool entry at that index must be a
CONSTANT_Utf8_1info structure representing the string "RuntimeVisibleAnno-
tations".
attribute_Tlength

The value of the attribute_Tlength item indicates the length of the attribute,
excluding the initial six bytes. The value of the attribute_Tength item is thus
dependent on the number of runtime-visible annotations represented by the struc-
ture, and their values.
num_annotations

The vaue of the num_annotations item gives the number of runtime-visible
annotations represented by the structure. Note that a maximum of 65535 runtime-
visible Java programming language annotations may be directly attached to a pro-
gram element.
annotations

147



148

THE CLASSFILE FORMAT

Each value of the annotations table represents a single runtime-visible annota-
tion on a program element.
The annotation structure has the following format:
annotation {
u2 type_index;
u2 num_element_value_pairs;
{ u2 element_name_index;
element_value value;
} element_value_pairs[num_element_value_pairs]
}
The items of the annotation structure are as follows:
type_index
The value of the type_index item must be a valid index into the
constant_pool table. The constant_pool entry at that index must be a
CONSTANT_Utf8_info structure representing a field descriptor representing the
annotation type corresponding to the annotation represented by this annotation
structure.
num_element_value_pairs
Thevalue of the num_element_value_pairs item gives the number of element-
value pairs of the annotation represented by this annotation structure. Note that a
maximum of 65535 element-value pairs may be contained in a single annotation.
element_value_pairs
Each value of the eTement_value_pairs tablerepresents asingle element-value
pair in the annotation represented by this annotation structure. Each
element_value_pairs entry contains the following two items:
element_name_index
The vaue of the eTement_name_index item must be a valid index into the
constant_pool table. The constant_pool entry a that index must be a
CONSTANT_Utf8_1info structure representing the name of the annotation type ele-
ment represented by thiselement_value_pairs entry.
value
The value of the value item represents the value of the element-value pair rep-
resented by thiselement_value_pairs entry.

4.8.15.1 Theelement_value structure



VERIFICATION OF CLASSFILES 149

The element_value structure is a discriminated union representing the value of an
element-value pair. It is used to represent element vaues in al attributes that
describe annotations ( RuntimeVisibleAnnotations, RuntimeInvisibleAnno-
tations, RuntimeVisibleParameterAnnotations, and RuntimeInvisi-
bleParameterAnnotations).

The element_value structure has the following format:

element_value {
ul tag;
union {

u2 const_value_index;

u2 type_name_index;
u2 const_name_index;
} enum_const_value;
u2 class_info_index;
annotation annotation_value;

{
u2 num_values;
element_value values[num_values];
} array_value;
} value;
}

Theitems of the element_value structure are as follows:

tag
The tag item indicates the type of this annotation element-value pair. The letters
‘B, 'C,'D,'F, 'l 'J,'S, and 'Z' indicate a primitive type. These letters are inter-
preted as BaseType characters (8Table 4.2). The other legal valuesfor tag arelisted
with their interpretationsin this table:
Table 4.8

tag value emen pe

S
e Jflenum constan




150

THE CLASSFILE FORMAT

tag value ement Type
s

@ Jannotauon type
I LY

value
The value item represents the value of this annotation element. This item isa
union. The tag item, above, determines which item of the union isto be used:

const_value_index
The const_value_index itemisused if the tag itemisoneof 'B', 'C, 'D', 'F,
1, '3, 'S, 'Z, or 's. The vaue of the const_value_index item must be a valid
index into the constant_poo1 table. The constant_pool entry at that index must
be of the correct entry typefor thefield type designated by the tag item, as specified
in Table 4.8.
enum_const_value
The enum_const_value item is used if the tag item is '€. The
enum_const_vaTlue item conssts of the following two items:

type_name_index

The value of the type_name_index item must be a valid index into the
constant_pool table. The constant_pool entry at that index must be a
CONSTANT_Utf8_info structure representing the binary name (JLS 13.1) of the
type of the enum constant represented by this element_value structure.
const_name_index

The vaue of the const_name_index item must be a valid index into the
constant_pool table. The constant_pool entry at that index must be a
CONSTANT_Utf8_info structure representing the simple name of the enum con-
stant represented by thiselement_value structure.

class_info_index

The class_info_index item is used if the tag item is 'c. The
class_info_index item must be avalidindex into the constant_poo1 table. The
constant_pool entry at that index must be a CONSTANT_Utf8_info structure rep-
resenting the return descriptor (84.4.3) of the type that is reified by the class repre-
sented by this element_value structure (e.g., 'V’ for Void.class, ‘Ljavallang/
Object;’ for Object, etc.)



VERIFICATION OF CLASSFILES

annotation_value

Theannotation_value itemisusedif the tag itemis'@'. Theelement_value
structure represents a"nested” annotation.
array_value

Thearray_value itemisusedif the tag itemis'[. Thearray_value item con-
sists of the following two items:

num_values
The value of the num_values item gives the number of elementsin the array-
typed value represented by this element_value structure. Note that a maximum of
65535 elements are permitted in an array-typed element value.
values
Each value of the vaTlues table givesthe value of an e ement of the array-typed
value represented by thiselement_value structure.

4.8.16 TheRuntimeInvisibleAnnotations attribute

The RuntimeInvisibleAnnotations attribute is similar to the RuntimeVis-
ibleAnnotations attribute, except that the annotations represented by a Runt-
imeInvisibleAnnotations attribute must not be made available for return by
reflective APIs, unless the the VM has been instructed to retain these annotations
via some implementation-specific mechanism such as a command line flag. In the
absence of such instructions, the VM ignores this attribute.

The RuntimeInvisibleAnnotations attributeisavariable length attribute in the
attributes table of the ClassFile, field_info, and method_info Structures. The
RuntimeInvisibleAnnotations attribute records runtime-invisble Java pro-
gramming language annotations on the corresponding class, method, or field. Each
ClassFile, field_info, and method_info structure may contain at most one
RuntimeInvisibTleAnnotations attribute, which recordsall the runtime-invisible
Java programming language annotations on the corresponding program element.
TheRuntimeInvisibleAnnotations attribute hasthe following format:

151



152

THE CLASSFILE FORMAT

RuntimeInvisibleAnnotations_attribute {
u2 attribute_name_index;
u4 attribute_length;
u2 num_annotations;
annotation annotations[num_annotations];

Theitems of the RuntimeInvisibleAnnotations structure are asfollows;

attribute_name_index

The value of the attribute_name_index item must be a valid index into the
constant_pool table. The constant_pool entry at that index must be a
CONSTANT_Utf8_info structure representing the string "RuntimeInvisibleAn-
notations".
attribute_length

The value of the attribute_length item indicates the length of the attribute,
excluding the initial six bytes. The value of the attribute_length item is thus
dependent on the number of runtime-invisible annotations represented by the struc-
ture, and their values.
num_annotations

The value of the num_annotations item gives the number of runtime-invisible
annotations represented by the structure. Note that a maximum of 65535 runtime-
invisible Java programming language annotations may be directly attached to a pro-
gram element.
annotations

Each value of the annotations table represents a single runtime-invisible anno-
tation on a program element.

4.8.17 TheRuntimeVisibleParameterAnnotations attribute

The RuntimeVisibleParameterAnnotations attribute is a variable length
attribute in the attributes table of the method_info structure. The RuntimeVisi-
bleParameterAnnotations attribute records runtime-visible Java programming
language annotations on the parameters of the corresponding method. Each
method_1info structure may contain at most one RuntimeVisibleParameterAn-
notations attribute, which records al the runtime-visible Java programming lan-
guage annotations on the parameters of the corresponding method. The VM must



ATTRIBUTES 153

make these annotations available so they can be returned by the appropriate reflec-
tive APIs.

TheRuntimeVisibleParameterAnnotations attribute hasthe following format:

RuntimeVisibleParameterAnnotations_attribute {
u2 attribute_name_index;
u4 attribute_Tength;
ul num_parameters;
{
u2 num_annotations;
annotation annotations[num_annotations];
} parameter_annotations[num_parameters];

The items of the RuntimeVisibleParameterAnnotations structure are as fol-
lows;

attribute_name_index

The value of the attribute_name_index item must be avalid index into the
constant_pool table. The constant_pool entry at that index must be a
CONSTANT_Utf8_info structure representing the string "RuntimeVisibleParam-
eterAnnotations".
attribute_length

The value of the attribute_length item indicates the length of the attribute,
excluding the initial six bytes. The value of the attribute_length item is thus
dependent on the number of parameters, the number of runtime-visible annotations
on each parameter, and their values.
num_parameters

The value of the num_parameters item gives the number of parameters of the
method represented by the method_info structure on which the annotation occurs.
(This duplicates information that could be extracted from the method descriptor.)
paramete r_annotations

Each value of the parameter_annotations table represents all of the runtime-
visible annotations on a single parameter. The sequence of valuesin the table corre-
sponds to the sequence of parameters in the method signature. Each
parameter_annotations entry contains the following two items:



num_annotations
The value of the num_annotations item indicates the number of runtime-vis-
ible annotations on the parameter corresponding to the sequence number of this
parameter_annotations element.
annotations
Each value of the annotations table represents a single runtime-visible anno-
tation on the parameter corresponding to the sequence number of this
parameter_annotations eement.

4.8.18 TheRuntimeInvisibleParameterAnnotations attribute

TheRuntimeInvisibleParameterAnnotations attributeissimilar to the Runt-
imeVisibleParameterAnnotations attribute, except that the annotations repre-
sented by a RuntimeInvisibleParameterAnnotations attribute must not be
made available for return by reflective APIs, unless the the VM has specifically
been instructed to retain these annotations via some implementati on-specific mecha-
nism such as a command line flag. In the absence of such instructions, the VM
ignores this attribute.

The RuntimeInvisibleParameterAnnotations dttribute is a variable length
attribute in the attributes table of the method_1info structure. The RuntimeInvis-
ibleParameterAnnotations atribute records runtime-invisible Java program-
ming language annotations on the parameters of the corresponding method. Each
method_1info structure may contain at most one RuntimeInvisibleParameter-
Annotations attribute, which records al the runtime-invisible Java programming
language annotations on the parameters of the corresponding method.

The RuntimeInvisibleParameterAnnotations attribute has the following for-
mat:



ATTRIBUTES

RuntimeInvisibleParameterAnnotations_attribute {
u2 attribute_name_index;
u4 attribute_length;
ul num_parameters;
{
u2 num_annotations;
annotation annotations[num_annotations];
} parameter_annotations[num_parameters];

Theitems of theRuntimeInvisibleParameterAnnotations Structure are asfol-
lows:

attribute_name_index

The value of the attribute_name_index item must be a valid index into the
constant_pool table. The constant_pool entry at that index must be a
CONSTANT_Utf8_info structure representing the string "RuntimeInvisiblePa-
rameterAnnotations".
attribute_length

The value of the attribute_length item indicates the length of the attribute,
excluding the initial six bytes. The value of the attribute_length item is thus
dependent on the number of parameters, the number of runtime-invisible annota-
tions on each parameter, and their values.
num_parameters

The value of the num_parameters item gives the number of parameters of the
method represented by the method_info structure on which the annotation occurs.
(This duplicates information that could be extracted from the method descriptor.)
parameter_annotations

Each value of the parameter_annotations table represents al of the runtime-
invisible annotations on a single parameter. The sequence of valuesin the table cor-
responds to the sequence of parameters in the method signature. Each
parameter_annotations entry containsthe following two items:

num_annotations
The value of the num_annotations item indicates the number of runtime-
invisible annotations on the parameter corresponding to the sequence number of this
parameter_annotations element.
annotations

155



156

THE CLASSFILE FORMAT

Each value of the annotations table represents a single runtime-invisible
annotation on the parameter corresponding to the sequence number of this
parameter_annotations element.

4.8.19 TheAnnotationDefault attribute

The AnnotationDefault attribute is a variable length attribute in the attributes
table of certain method_info structures, namely those representing elements of
annotation types. The AnnotationDefault attribute records the default value for
the element represented by the method_info structure. Each method_info struc-
tures representing an element of an annotation types may contain at most one Anno-
tationDefault attribute. The VM must make this default value available so it can
be applied by appropriate reflective APIs.

The AnnotationDefault attribute has the following format:
AnnotationDefault_attribute {
u2 attribute_name_index;
u4 attribute_length;
element_value default_value;

The items of the AnnotationDefault structure are asfollows:
attribute_name_index

The value of the attribute_name_index item must be a valid index into the
constant_pool table. The constant_pool entry at that index must be a
CONSTANT_Utf8_info structure representing the string "AnnotationDefault”.
attribute_length

The value of the attribute_length item indicates the length of the attribute,
excluding the initiad six bytes. The value of the attribute_length item is thus
dependent on the default value.

default_value

The default_value item represents the default value of the annotation type ele-
ment whose default value is represented by this AnnotationDefault attribute.



FORMAT CHECKING

4.9 Format Checking

When a prospective class fileis|oaded (§2.17.2) by the Java virtual machine, the Java
virtual machinefirst ensures that the file has the basic format of aclass file. This process
isknown asformat checking. Thefirst four bytes must contain the right magic number. All
recognized attributes must be of the proper length. The c1ass file must not be truncated or
have extra bytes at the end. The constant pool must not contain any superficialy
unrecognizable information.

This check for basic c1ass file integrity is necessary for any
interpretation of the class file contents.

However, format checking is distinct from verification. Historically, the
two have been confused, because both are aform of integrity check.

4.10 Constraintson Java Virtual Machine Code

The Java virtual machine code for a method, instance initiaization method (83.9),
or class or interface initialization method (83.9) is stored in the code array of the
Code attribute of amethod_1info structure of aclass file. This section describes
the constraints associated with the contents of the Code_attribute structure.

4.10.1 Static Constraints

The static congtraints on a class file are those defining the well-formedness of the
file. With the exception of the static constraints on the Java virtual machine code of
the c1ass file, these constraints have been given in the previous section. The static
congtraints on the Java virtual machine codein aclass file specify how Javavirtua
machine instructions must be laid out in the code array and what the operands of
individual instructions must be.

The static constraints on the instructions in the code array are as follows:

157



158

THE CLASSFILE FORMAT

The code array must not be empty, so the code_Tength item cannot have the
value 0.

The value of the code_Tlength item must be less than 65536.
The opcode of the first instruction in the code array begins at index o.

Only instances of theinstructions documented in Section 6.4 may appear inthe
code array. Instances of instructions using the reserved opcodes (86.2) or any
opcodes not documented in this specification must not appear in the code
array.

For each instruction in the code array except the last, the index of the opcode
of the next instruction equal stheindex of the opcode of the current instruction
plusthe length of that instruction, including al its operands. The wide instruc-
tion istreated like any other instruction for these purposes; the opcode speci-
fying the operation that awide instruction isto modify is treated as one of the
operands of that wide instruction. That opcode must never be directly reach-
able by the computation.

Thelast byte of the last instruction in the code array must be the byte at index
code_Tlength-1.

The static constraints on the operands of instructions in the code array are as fol-
lows:

» Thetarget of each jump and branch instruction (jsr, jsr_w, goto, goto_w, ifeq,

ifne, ifle, iflt, ifge, ifgt, ifnull, ifnonnull, if_icmpeq, if_icmpne, if_icmple,
if_icmplt, if_icmpge, if_icmpgt, if_acmpeq, if_acmpne) must be the opcode of
an instruction within this method. The target of ajump or branch instruction
must never be the opcode used to specify the operation to be modified by a
wide instruction; ajump or branch target may be the wide instruction itself.

Each target, including the default, of each tableswitch instruction must be the
opcode of an instruction within thismethod. Each tableswitch instruction must
have anumber of entriesinitsjump tablethat is consistent with the value of its
low and high jump table operands, and its low value must be less than or equal
toitshigh value. No target of atableswitch instruction may be the opcode used
to specify the operation to be modified by awide instruction; a tableswitch
target may be awide instruction itself.



CONSTRAINTS ON JAVA VIRTUAL MACHINE CODE 159

 Eachtarget, including the default, of each lookupswitch instruction must bethe
opcode of an instruction within this method. Each lookupswitch instruction
must have anumber of match-offset pairsthat is consistent with the value of its
npairs operand. The match-offset pairs must be sorted in increasing numerical
order by signed match value. No target of alookupswitch instruction may be
the opcode used to specify the operation to be modified by awide instruction;
a lookupswitch target may be awide instruction itself.

* The operand of each Idc instruction must be avalid index into the
constant_poo1 table. The operands of each Idc_w instruction must represent
avalid index into the constant_poo1 table. In both cases the constant pool
entry referenced by that index must be of type CONSTANT_Class,
CONSTANT_Integer, CONSTANT_Float, or CONSTANT_String if theclassfile
version number islessthan 49.0 If the classfile version is 49.0 or above, then
the constant pool entry referenced by the enty must be of type
CONSTANT_Class, CONSTANT_Integer, CONSTANT_Float, or
CONSTANT_String or CONSTANT_Class.

* The operands of each Idc2_w instruction must represent avalid index into the
constant_pooT table. The constant pool entry referenced by that index must
be of type CONSTANT_Long or CONSTANT_Doub1e. In addition, the subsequent
constant pool index must also be avalid index into the constant pool, and the
constant pool entry at that index must not be used.

» The operands of each getfield, putfield, getstatic, and putstatic instruction
must represent avalid index into the constant_poo1 table. The constant pool
entry referenced by that index must be of type CONSTANT_Fieldref.

» Theindexbyte operands of each invokevirtual, invokespecial, and invokestatic
instruction must represent avalid index into the constant_pool table. The
constant pool entry referenced by that index must be of type
CONSTANT _Methodref.

» Only the invokespecial instruction is allowed to invoke an instance initializa-
tion method (83.9). No other method whose name begins with the character
"<' ("\u00@3c"') may be called by the method invocation instructions. In par-
ticular, the class or interface initialization method specially named <c1init>
is never called explicitly from Java virtual machine instructions, but only
implicitly by the Java virtual machine itself.



160

THE CLASSFILE FORMAT

The indexbyte operands of each invokeinterface instruction must
represent avalid index into the constant_poo1 table. The constant pool
entry referenced by that index must be of type CONSTANT_Interface-
Methodref. The value of the count operand of each invokeinterface
instruction must reflect the number of local variables necessary to store
the arguments to be passed to the interface method, as implied by the
descriptor of the CONSTANT_NameAndType_1info structure referenced by the
CONSTANT_InterfaceMethodref constant pool entry. The fourth operand
byte of each invokeinterface instruction must have the value zero.

The operands of each instanceof, checkcast, new, and anewarray instruction
and the indexbyte operands of each multianewarray instruction must repre-
sent avalid index into the constant_poo1 table. The constant pool entry ref-
erenced by that index must be of type CONSTANT_CTass.

No anewarray instruction may be used to create an array of more than 255
dimensions.

No new instruction may reference a CONSTANT_Class constant_pool table
entry representing an array class. The new instruction cannot be used to create
an array.

A multianewarray instruction must be used only to create an array of atype
that has at least as many dimensions as the value of its dimensions operand.
That is, while amultianewarray instruction is not required to create al of the
dimensions of the array type referenced by itsindexbyte operands, it must not
attempt to create more dimensions than are in the array type. The dimensions
operand of each multianewarray instruction must not be zero.

The atype operand of each newarray instruction must take one of the values
T_BOOLEAN (4), T_CHAR (5), T_FLOAT (6), T_DOUBLE (7), T_BYTE (8), T_SHORT
(9), T_INT (10), or T_LONG (11).

Theindex operand of each iload, fload, aload, istore, fstore, astore, iinc, and ret
instruction must be a nonnegative integer no greater than max_locals—1.

Theimplicit index of each iload_<n>, fload_<n>, aload_<n>, istore_<n>,
fstore_<n>, and astore_<n> instruction must be no greater than the value of
max_locals—1.

The index operand of each lload, dload, Istore, and dstore instruction must be
no greater than the value of max_locals—2.



CONSTRAINTS ON JAVA VIRTUAL MACHINE CODE

» Theimplicit index of each lload_<n>, dload_<n>, Istore_<n>, and
dstore_<n> instruction must be no greater than the value of max_locals-2.

» Theindexbyte operands of each wide instruction modifying an iload, fload,
aload, istore, fstore, astore, ret, or iinc instruction must represent anonnegative
integer no greater than max_Tocals—1. The indexbyte operands of each wide
instruction modifying an lload, dload, Istore, or dstore instruction must repre-
sent a honnegative integer no greater than max_locals—2.

4,10.2 Structural Constraints

The structural constraints on the code array specify constraints on relationships
between Java virtual machine instructions. The structural constraints are as fol-
lows:

» Each instruction must only be executed with the appropriate type and number
of arguments in the operand stack and local variable array, regardless of the
execution path that leads to its invocation. An instruction operating on values
of type int isalso permitted to operate on values of typeboolean, byte, char,
and short. (Asnotedin 83.3.4 and 83.11.1, the Javavirtual machineinternally
converts values of typesboolean, byte, char, and short to type int.)

* If aninstruction can be executed along severa different execution paths, the
operand stack must have the same depth (83.6.2) prior to the execution of the
instruction, regardless of the path taken.

At no point during execution can the order of the local variable pair holding a
value of type Tong or double be reversed or the pair split up. At no point can
the local variables of such apair be operated on individually.

* Nolocal variable (or local variable pair, in the case of avalue of type Tong or
doub1e) can be accessed beforeit is assigned a value.

At no point during execution can the operand stack grow to a depth (83.6.2)
greater than that implied by the max_stack item.

» At no point during execution can more values be popped from the operand
stack than it contains.

 Each invokespecial instruction must name an instance initialization method
(83.9), amethod in the current class, or amethod in asuperclass of the current
class.

161



162

THE CLASSFILE FORMAT

When the instance initialization method (83.9) isinvoked, an uninitialized
classinstance must be in an appropriate position on the operand stack. An
instance initialization method must never be invoked on an initialized class
instance.

When any instance method is invoked or when any instance variable is
accessed, the class instance that contains the instance method or instance
variable must already be initialized.

There must never be an uninitialized class instance on the operand stack or in
alocal variable when any backwards branch is taken.

There must never be an uninitialized class instance on the operand stack or in
alocal variable when ajsr or jsr_w instruction is executed.

Each instanceinitialization method (83.9), except for theinstanceinitialization
method derived from the constructor of classObject, must call either another
instance initialization method of this or an instance initialization method of
itsdirect superclass super beforeitsinstance membersare accessed. However,
instance fields of this that are declared in the current class may be assigned
before calling any instance initialization method.

The arguments to each method invocation must be method invocation compat-
ible (82.6.8) with the method descriptor (84.4.3).

The type of every classinstance that is the target of a method invocation
instruction must be assignment compatible (82.6.7) with the class or interface
type specified in the instruction. In addition, the type of the target of an
invokespecial instruction must be assignment compatible with the current
class, unless an instance initialization method is being invoked. Each return
instruction must match its method’s return type. If the method returns aboo1 -
ean, byte, char, short, or int, only the ireturn instruction may be used. If
the method returns a f1oat, Tong, or double, only an freturn, Ireturn, or
dreturn instruction, respectively, may be used. If the method returns a
reference type, it must do so using an areturn instruction, and the type of the
returned value must be assignment compatible (82.6.7) with the return descrip-
tor (84.4.3) of the method. All instance initialization methods, class or inter-
faceinitialization methods, and methods declared to return void must use only
the return instruction.

If getfield or putfield isused to accessaprotected field of asuperclassthat is
amember of different runtime package than the current class, then the type of



CONSTRAINTS ON JAVA VIRTUAL MACHINE CODE 163

the class instance being accessed must be the same as or a subclass of the cur-
rent class. If invokevirtual or invokespecial is used to access a

protected method of asuperclassthat isamember of different runtime pack-
age than the current class, then the type of the class instance being accessed
must be the same as or a subclass of the current class

» Thetype of every classinstance accessed by agetfield instruction or modified
by aputfield instruction must be assignment compatible (82.6.7) with the class
type specified in the instruction.

» Thetype of every value stored by a putfield or putstatic instruction must be
compatiblewith the descriptor of thefield (84.4.2) of the classinstance or class
being stored into. If thedescriptor typeisboolean, byte, char, short, or int,
thenthevaluemust bean int. If the descriptor typeisfloat, Tong, or double,
thenthevaluemust beafloat, Tong, or doubTe, respectively. If the descriptor
typeisareference type, then the value must be of atype that is assignment
compatible (82.6.7) with the descriptor type.

» Thetype of every value stored into an array by an aastore instruction must be
areference type. The component type of the array being stored into by the aas-
tore instruction must also be areference type.

 Each athrow instruction must throw only values that are instances of class
Throwab1e or of subclasses of Throwab1e. Each class mentioned in a
catch_type item of amethod’s exception table must be Throwab1e or of sub-
classes of Throwab1le.

» Execution never falls off the bottom of the code array.

» No return address (avalue of type returnAddress) may be loaded from a
local variable.

» Theinstruction following each jsr or jsr_w instruction may be returned to only
by asingle ret instruction.

* Nojsr or jsr_w instruction may be used to recursively call asubroutine if that
subroutine is already present in the subroutine call chain. (Subroutines can be
nested when using try-finally constructsfromwithinafinally clause. For
more information on Java virtual machine subroutines, see §4.11.1.6.)

» Eachinstance of type returnAddress can bereturned to at most once. If aret
instruction returns to a point in the subroutine call chain above the ret instruc-



164

THE CLASSFILE FORMAT

tion corresponding to a given instance of type returnAddress, then that
instance can never be used as areturn address.

4.11 Verification of class Files

Even though any compiler for the Java programming language must only produce
classfiles that satisfy all the static constraints in the previous sections, the Java vir-
tual machine has no guarantee that any file it is asked to load was generated by that
compiler or is properly formed. Applications such asweb browsers do not download
source code, which they then compile; these applications download already-com-
piled class files. The browser needs to determine whether the class file was pro-
duced by atrustworthy compiler or by an adversary attempting to exploit the virtual
machine.

An additional problem with compile-time checking is version skew. A
user may have successfully compiled a class, say
PurchaseStockOptions, to be asubclass of TradingClass. But the
definition of TradingClass might have changed sincethetimethe class
was compiled in away that is not compatible with preexisting binaries.
Methods might have been deleted or had their return types or modifiers
changed. Fields might have changed types or changed from instance
variables to class variables. The access modifiers of a method or
variable may have changed from pub1ic to private. For adiscussion
of these issues, see Chapter 13, “Binary Compatibility,” in the The
Java™ Language Specification.

Because of these potential problems, the Java virtual machine needsto verify for itself that
the desired constraints are satisfied by the class filesit attempts to incorporate. A Java
virtual machine implementation verifies that each class file satisfies the necessary
constraints at linking time (82.17.3).

Linking-time verification enhances the performance of the interpreter. Expensive checks
that would otherwise have to be performed to verify constraints at run time for each
interpreted instruction can be eliminated. The Java virtual machine can assume that these
checks have already been performed. For example, the Java virtual machine will already
know the following:

» There are no operand stack overflows or underflows.

* All local variable uses and stores are valid.



VERIFICATION OF cTass FILES
» The argumentsto all the Javavirtual machineinstructions are of valid types.

The verifier also performs verification that can be done without looking at the
code array of the Code attribute (84.8.3). The checks performed include the
following:

» Ensuringthat final classesare not subclassed and that final methods are not
overridden.

» Checking that every class (except Object) hasadirect superclass.

 Ensuring that the constant pool satisfies the documented static constraints: for
example, that each CONSTANT_Class_info structure in the constant pool con-
tainsinits name_index item avalid constant pool index for a
CONSTANT_Utf8_info structure.

» Checking that all field references and method references in the constant pool
have valid names, valid classes, and avalid type descriptor.

Note that these check do not ensure that the given field or method actually existsin
the given class, nor doesit check that the type descriptors given refer to real classes.
They ensure only that these items are well formed. More detailed checking is per-
formed when the byte codes themselves are verified, and during resolution.

Verification by type inference must be supported by all Java virtual machines,
except those conforming to the JavaCard and J2ME CLDC profiles.

4.11.1 Verification by Type Inference

4.11.1.1 TheProcess of Verification by Type Inference

During linking, the verifier checksthe code array of the Code attribute for each
method of the class file by performing data-flow analysis on each method. The
verifier ensuresthat at any given point in the program, no matter what code path is
taken to reach that point, the following is true:

» The operand stack is always the same size and contains the same types of val-
ues.

* Nolocal variableisaccessed unlessit is known to contain avalue of an appro-
priate type.

» Methods are invoked with the appropriate arguments.

165



166 THE CLASSFILE FORMAT

 Fields are assigned only using values of appropriate types.

« All opcodes have appropriate type arguments on the operand stack and in the
local variable array.

e Thereisnever an uninitialized classinstancein aloca variable in code pro-
tected by an exception handler. However, an uninitiaized class instance may
be on the operand stack in code protected by an exception handler. When an
exception is thrown, the contents of the operand stack are discarded.

For further information on this pass, see Section 4.11.1.2, “The Bytecode Verifier.”

For efficiency reasons, certain tests that could in principle be performed by the veri-
fier are delayed until the first time the code for the method is actually invoked. In so
doing, the verifier avoids loading cl1ass filesunlessit hasto.

For example, if amethod invokes another method that returns an instance of class A, and
that instanceis assigned only to afield of the sametype, the verifier does not bother to
check if the class A actualy exists. However, if it is assigned to afield of the type B, the
definitions of both A and B must be loaded in to ensure that A is a subclass of B.

4.11.1.2 The Bytecode Verifier
This section looks at the verification of Java virtual machine code in more detail.

The code for each method is verified independently. First, the bytes that make up the code
are broken up into a sequence of instructions, and the index into the code array of the start
of each instruction is placed in an array. The verifier then goes through the code a second
time and parses the instructions. During this pass a data structure is built to hold
information about each Java virtual machine instruction in the method. The operands, if
any, of each instruction are checked to make sure they are valid. For instance:

« Branches must be within the bounds of the code array for the method.

» Thetargets of al control-flow instructions are each the start of an instruction.
In the case of awide instruction, the wide opcode is considered the start of the
instruction, and the opcode giving the operation modified by that wide instruc-
tion is not considered to start an instruction. Branches into the middle of an
instruction are disallowed.

* Noinstruction can access or modify alocal variable at an index greater than or
equal to the number of local variables that its method indicates it all ocates.

« All referencesto the constant pool must be to an entry of the appropriate type.
| For example: the instruction getfield must reference afield.



VERIFICATION OF class FILES

» The code does not end in the middle of an instruction.
» Execution cannot fall off the end of the code.

* For each exception handler, the starting and ending point of code protected by
the handler must be at the beginning of an instruction or, in the case of the end-
ing point, immediately past the end of the code. The starting point must be
before the ending point. The exception handler code must start at avalid
instruction, and it must not start at an opcode being modified by the wide
instruction.

For each instruction of the method, the verifier records the contents of the operand stack
and the contents of the local variable array prior to the execution of that instruction. For
the operand stack, it needs to know the stack height and the type of each value on it. For
each local variable, it needsto know either the type of the contents of that local variable or
that the local variable contains an unusable or unknown value (it might be uninitialized).
The bytecode verifier does not need to distinguish between the integral types (e.g., byte,
short, char) when determining the value types on the operand stack.

Next, adata-flow anayzer isinitialized. For the first instruction of the method, the local
variables that represent parametersinitially contain values of the typesindicated by the
method’s type descriptor; the operand stack is empty. All other local variables contain an
illegal value. For the other instructions, which have not been examined yet, no information
is available regarding the operand stack or local variables.

Finally, the data-flow analyzer is run. For each instruction, a*“changed” bit indicates
whether thisinstruction needs to be looked at. Initialy, the “ changed” bit is set only for
the first instruction. The data-flow analyzer executes the following loop:

1. Select avirtual machine instruction whose “changed” bit is set. If no instruc-
tion remains whose “ changed” bit is set, the method has successfully been ver-
ified. Otherwise, turn off the “changed” bit of the selected instruction.

2. Model the effect of theinstruction on the operand stack and local variable array
by doing the following:

« |f theinstruction uses values from the operand stack, ensure that
there are a sufficient number of values on the stack and that the top
values on the stack are of an appropriate type. Otherwise, verifica-
tion falils.

« If theinstruction usesalocal variable, ensurethat the specified local
variable contains a value of the appropriate type. Otherwise, verifi-
cation fails.

167



168 THE CLASSFILE FORMAT

* If the instruction pushes values onto the operand stack, ensure that
thereis sufficient room on the operand stack for the new values. Add
the indicated types to the top of the modeled operand stack.

« |f theinstruction modifiesalocal variable, record that thelocal vari-
able now contains the new type.

3. Determine the instructions that can follow the current instruction. Successor
instructions can be one of the following:

¢ The next instruction, if the current instruction is not an uncondi-
tional control transfer instruction (for instance goto, return, or
athrow). Verification failsif it is possible to “fall off” the last
instruction of the method.

» Thetarget(s) of aconditional or unconditional branch or switch.

« Any exception handlers for thisinstruction.

4. Merge the state of the operand stack and local variable array at the end of the
execution of the current instruction into each of the successor instructions. In
the specia case of control transfer to an exception handler, the operand stack
isset to contain asingle object of the exception type indicated by the exception
handler information.

« If thisisthe first time the successor instruction has been visited,
record that the operand stack and local variable values calculated in
steps 2 and 3 are the state of the operand stack and local variable
array prior to executing the successor instruction. Set the “changed”
bit for the successor instruction.

« |f the successor instruction has been seen before, merge the operand
stack and local variable values calculated in steps 2 and 3 into the
values already there. Set the “changed” bit if there is any modifica-
tion to the values.

5. Continue at step 1.

To merge two operand stacks, the number of values on each stack must be identical. The
types of values on the stacks must also be identical, except that differently typed
reference values may appear at corresponding places on the two stacks. In this case, the
merged operand stack contains a reference to an instance of the first common superclass
of the two types. Such areference type always exists because the type Object isa



VERIFICATION OF class FILES

superclass of al class and interface types. If the operand stacks cannot be merged,
verification of the method fails.

To merge two local variable array states, corresponding pairs of local variables are
compared. If the two types are not identical, then unless both contain reference values, the
verifier records that the local variable contains an unusable value. If both of the pair of local
variables contain reference values, the merged state contains a reference to an instance
of thefirst common superclass of the two types.

If the data-flow analyzer runs on amethod without reporting a verification failure, then the
method has been successfully verified by the c1ass file verifier.

Certain instructions and data types complicate the data-flow analyzer. We now examine
each of these in more detail.

4.11.1.3 Valuesof Typeslong and double

Values of the Tong and doubTe types are treated specialy by the verification pro-
Cess.

Whenever avalue of type Tong or double ismoved into alocal variable at index n, index
n + 1 isspecialy marked to indicate that it has been reserved by the value at index n and

must not be used as alocal variable index. Any value previously at index n + 1 becomes

unusable.

Whenever avalueis moved to alocal variable at index n, theindex n — 1 is examined to
seeif itistheindex of avalue of type Tong or doubTe. If so, thelocal variable at index n —
1 ischanged to indicate that it now contains an unusable value. Since the local variable at
index n has been overwritten, the local variable at index n — 1 cannot represent a value of
type Tong or doubTe.

Dealing with values of types Tong or double on the operand stack is simpler; the verifier
treats them as single values on the stack. For example, the verification code for the dadd
opcode (add two doub1e values) checks that the top two items on the stack are both of
type doube. When calculating operand stack length, values of type Tong and double
have length two.

Untyped instructions that manipulate the operand stack must treat values of type double
and Tong as atomic (indivisible). For example, the verifier reports afailureif thetop value
on the stack isadouble and it encounters an instruction such as pop or dup. The
instructions pop2 or dup2 must be used instead.

4.11.1.4 Instancelnitialization M ethods and Newly Created Objects

Creating anew class instance is amultistep process. The statement

169



170 THE CLASSFILE FORMAT

new myClass(i, j, k);
can be implemented by the following:

new #1 /I Allocate uninitialized space for myClass

dup /I Duplicate object on the operand stack
iload_1 /I Push i
iload_2 /I Push j
iload_3 /I Push k

invokespecial #5 /I Invoke myClass.<init>

This instruction sequence leaves the newly created and initialized object on top of
the operand stack. (Additional examples of compilation to the instruction set of the
Java virtua machine are given in Chapter 7, “Compiling for the Java Virtua
Machine”)

The instance initiaization method (83.9) for classmyClass sees the new uninitialized
object asits this argument in local variable 0. Before that method invokes another
instance initialization method of myClass or itsdirect superclass on this, the only
operation the method can perform on this is assigning fields declared within myClass.

When doing dataflow analysis on instance methods, the verifier initializes local variable @
to contain an object of the current class, or, for instance initialization methods, local
variable 0 contains a specia type indicating an uninitialized object. After an appropriate
instance initialization method is invoked (from the current class or the current superclass)
on this object, al occurrences of this special type on the verifier's model of the operand
stack and in the local variable array are replaced by the current class type. The verifier
rejects code that uses the new object before it has been initialized or that initializes the
object more than once. In addition, it ensures that every normal return of the method has
invoked an instance initialization method either in the class of this method or in the direct
superclass.

Similarly, aspecial typeis created and pushed on the verifier'smodel of the operand stack
asthe result of the Java virtual machine instruction new. The specia type indicates the
instruction by which the class instance was created and the type of the uninitialized class
instance created. When an instance initialization method isinvoked on that class instance,
all occurrences of the special type are replaced by the intended type of the class instance.
This change in type may propagate to subsequent instructions as the dataflow analysis
proceeds.



LIMITATIONS OF THE JAVA VIRTUAL MACHINE 171

Theinstruction number needs to be stored as part of the special type, as there may be
multiple not-yet-initialized instances of a classin existence on the operand stack at one
time. For example, the Java virtual machine instruction sequence that implements

new InputStream(new Foo(), new InputStream("foo™))

may have two uninitialized instances of InputStream on the operand stack at once.
When an instance initialization method is invoked on a class instance, only those
occurrences of the special type on the operand stack or in the local variable array
that are the same object as the class instance are replaced.

A valid instruction sequence must not have an uninitialized object on the operand stack or
in alocal variable during a backwards branch, or in alocal variable in code protected by
an exception handler or a finally clause. Otherwise, a devious piece of code might fool

the verifier into thinking it had initialized a class instance when it had, in fact, initialized a
classinstance created in a previous pass through aloop.

4.11.1.5 Exception Handlers

Java virtual machine code produced by Sun’s compiler for the Java programming
language alway's generates exception handlers such that:

« Either the ranges of instructions protected by two different exception handlers
always are completely digoint, or else one is a subrange of the other. Thereis
never apartial overlap of ranges.

» The handler for an exception will never be inside the code that is being pro-
tected.

» Theonly entry to an exception handler isthrough an exception. Itisimpossible
to fall through or “goto” the exception handler.

Theserestrictions are not enforced by the c1ass file verifier sincethey do not posea
threat to the integrity of the Java virtual machine. Aslong as every nonexceptiona
path to the exception handler causes there to be a single object on the operand stack,
and aslong as dl other criteriaof the verifier are met, the verifier will passthe code.

4.12 Limitations of the Java Virtual M achine

The following limitations of the Java virtual machine are implicit in the class file
format:



172

THE CLASSFILE FORMAT

* The per-class or per-interface constant pool is limited to 65535 entries by the

16-bit constant_pool_count field of the ClassFile structure (84.2). This
actsasan internal limit on the total complexity of asingle class or interface.

The greatest number of local variablesin the local variables array of aframe
created upon invocation of amethod is limited to 65535 by the size of the
max_Tlocals item of the Code attribute (84.8.3) giving the code of the method,
and by the 16-bit local variableindexing of the Javavirtual machineinstruction
set. Note that values of type Tong and doub1e are each considered to reserve
two local variables and contribute two unitstoward themax_Tlocals value, so
use of local variables of those types further reduces this limit.

The number of fields that may be declared by a class or interfaceis limited to
65535 by the size of the fields_count item of the ClassFile structure
(84.2). Note that the value of the fields_count item of the ClassFile struc-
ture does not include fields that are inherited from superclasses or superinter-
faces.

The number of methods that may be declared by aclass or interface islimited
to 65535 by the size of the methods_count item of the ClassFiTe structure
(84.2). Note that the value of the methods_count item of the ClassFile
structure does not include methods that are inherited from superclasses or
superinterfaces.

The number of direct superinterfaces of aclassor interfaceislimited to 65535
by the size of the interfaces_count item of the ClassFiTe structure (84.2).

The size of an operand stack in aframe (83.6) islimited to 65535 values by the
max_stack field of the Code attribute (84.8.3). Note that values of type Tong
and doub1e are each considered to contribute two unitstoward themax_stack
value, so use of values of these types on the operand stack

further reduces this limit.

The number of dimensionsin an array islimited to 255 by the size of the
dimensions opcode of the multianewarray instruction and by the constraints
imposed on the multianewarray, anewarray, and newarray instructions by
84.10.2.

The number of method parametersis limited to 255 by the definition of a
method descriptor (84.4.3), where the limit includes one unit for this in the
case of instance or interface method invocations. Note that amethod descriptor
isdefinedintermsof anotion of method parameter length in which aparameter



LIMITATIONS OF THE JAVA VIRTUAL MACHINE 173

of type Tong or doub1e contributes two units to the length, so parameters of
these types further reduce the limit.

» Thelength of field and method names, field and method descriptors, and other
constant string valuesis limited to 65535 characters by the 16-bit unsigned
Tength item of the CONSTANT_Utf8_info structure (84.5.7). Note that the
limit is on the number of bytes in the encoding and not on the number of
encoded characters. UTF-8 encodes some characters using two or three bytes.
Thus, strings incorporating multibyte characters are further constrained.



174 THE CLASSFILE FORMAT



