
Overview.doc Page 61 Thursday, May 13, 2004 11:31 AM
C H A P T E R 3

The Structure of the

Java Virtual Machine

THIS book specifies an abstract machine. It does not document any particular
implementation of the Java virtual machine, including Sun Microsystems’.

To implement the Java virtual machine correctly, you need only be able to
read the class file format and correctly perform the operations specified therein.
Implementation details that are not part of the Java virtual machine’s specification
would unnecessarily constrain the creativity of implementors. For example, the
memory layout of runtime data areas, the garbage-collection algorithm used, and
any internal optimization of the Java virtual machine instructions (for example,
translating them into machine code) are left to the discretion of the implementor.

3.1 The class File Format

Compiled code to be executed by the Java virtual machine is represented using a
hardware- and operating system-independent binary format, typically (but not nec-
essarily) stored in a file, known as the class file format. The class file format pre-
cisely defines the representation of a class or interface, including details such as byte
ordering that might be taken for granted in a platform-specific object file format.

Chapter 4, “The class File Format,” covers the class file format in detail.

3.2 Data Types

Like the Java programming language, the Java virtual machine operates on two
kinds of types: primitive types and reference types. There are, correspondingly, two
61

THE STRUCTURE OF THE JAVA VIRTUAL MACHINE62

Overview.doc Page 62 Thursday, May 13, 2004 11:31 AM
kinds of values that can be stored in variables, passed as arguments, returned by
methods, and operated upon: primitive values and reference values.

The Java virtual machine expects that nearly all type checking is done prior
to run time, typically by a compiler, and does not have to be done by the Java
virtual machine itself. Values of primitive types need not be tagged or otherwise
be inspectable to determine their types at run time, or to be distinguished from
values of reference types. Instead, the instruction set of the Java virtual machine
distinguishes its operand types using instructions intended to operate on values
of specific types. For instance, iadd, ladd, fadd, and dadd are all Java virtual
machine instructions that add two numeric values and produce numeric results,
but each is specialized for its operand type: int, long, float, and double,
respectively. For a summary of type support in the Java virtual machine instruc-
tion set, see §3.11.1.

The Java virtual machine contains explicit support for objects. An object is
either a dynamically allocated class instance or an array. A reference to an
object is considered to have Java virtual machine type reference. Values of
type reference can be thought of as pointers to objects. More than one refer-
ence to an object may exist. Objects are always operated on, passed, and tested
via values of type reference.

3.3 Primitive Types and Values

The primitive data types supported by the Java virtual machine are the numeric
types, the boolean type (§3.3.4),1 and the returnAddress type (§3.3.3). The
numeric types consist of the integral types (§3.3.1) and the floating-point types
(§3.3.2). The integral types are:

• byte, whose values are 8-bit signed two’s-complement integers

• short, whose values are 16-bit signed two’s-complement integers

• int, whose values are 32-bit signed two’s-complement integers

• long, whose values are 64-bit signed two’s-complement integers

• char, whose values are 16-bit unsigned integers representing UTF-16 code
units (§2.1)

1 The first edition of The Java™ Virtual Machine Specification did not consider boolean to be a Java
virtual machine type. However, boolean values do have limited support in the Java virtual
machine. This second edition clarifies the issue by treating boolean as a type.

PRIMITIVE TYPES AND VALUES 63

Overview.doc Page 63 Thursday, May 13, 2004 11:31 AM
The floating-point types are:

• float, whose values are elements of the float value set or, where supported,
the float-extended-exponent value set

• double, whose values are elements of the double value set or, where sup-
ported, the double-extended-exponent value set

The values of the boolean type encode the truth values true and false.
The values of the returnAddress type are pointers to the opcodes of Java

virtual machine instructions. Of the primitive types only the returnAddress type
is not directly associated with a Java programming language type.

3.3.1 Integral Types and Values

The values of the integral types of the Java virtual machine are the same as those for
the integral types of the Java programming language (§2.4.1):

• For byte, from −128 to 127 (−27 to 27−1), inclusive

• For short, from −32768 to 32767 (−215 to 215−1), inclusive

• For int, from −2147483648 to 2147483647 (−231 to 231−1), inclusive

• For long, from −9223372036854775808 to 9223372036854775807 (−263

to 263−1), inclusive

• For char, from 0 to 65535 inclusive

3.3.2 Floating-Point Types, Value Sets, and Values

The floating-point types are float and double, which are conceptually associated
with the 32-bit single-precision and 64-bit double-precision format IEEE 754 values
and operations as specified in IEEE Standard for Binary Floating-Point Arith-
metic, ANSI/IEEE Std. 754-1985 (IEEE, New York).

The IEEE 754 standard includes not only positive and negative sign-magni-
tude numbers, but also positive and negative zeros, positive and negative infinities,
and a special Not-a-Number value (hereafter abbreviated as “NaN”). The NaN
value is used to represent the result of certain invalid operations such as dividing
zero by zero.

Every implementation of the Java virtual machine is required to support two
standard sets of floating-point values, called the float value set and the double

THE STRUCTURE OF THE JAVA VIRTUAL MACHINE64

Overview.doc Page 64 Thursday, May 13, 2004 11:31 AM
value set. In addition, an implementation of the Java virtual machine may, at its
option, support either or both of two extended-exponent floating-point value sets,
called the float-extended-exponent value set and the double-extended-exponent
value set. These extended-exponent value sets may, under certain circumstances,
be used instead of the standard value sets to represent the values of type float or
double.

The finite nonzero values of any floating-point value set can all be expressed
in the form s ⋅ m ⋅ 2(e − N + 1), where s is +1 or −1, m is a positive integer less than
2N, and e is an integer between Emin = − (2K − 1 − 2) and Emax = 2K − 1 − 1, inclu-
sive, and where N and K are parameters that depend on the value set. Some values
can be represented in this form in more than one way; for example, supposing that
a value v in a value set might be represented in this form using certain values for s,
m, and e, then if it happened that m were even and e were less than 2K − 1, one
could halve m and increase e by 1 to produce a second representation for the same
value v. A representation in this form is called normalized if m ≥ 2N − 1; otherwise
the representation is said to be denormalized. If a value in a value set cannot be
represented in such a way that m ≥ 2N − 1, then the value is said to be a denormal-
ized value, because it has no normalized representation.

The constraints on the parameters N and K (and on the derived parameters
Emin and Emax) for the two required and two optional floating-point value sets are
summarized in Table 3.1.

Where one or both extended-exponent value sets are supported by an imple-
mentation, then for each supported extended-exponent value set there is a specific
implementation-dependent constant K, whose value is constrained by Table 3.1;
this value K in turn dictates the values for Emin and Emax.

Each of the four value sets includes not only the finite nonzero values that are
ascribed to it above, but also the five values positive zero, negative zero, positive
infinity, negative infinity, and NaN.

Table 3.1 Floating-point value set parameters

Parameter float
float-extended-
exponent double

double-extended-
exponent

N 24 24 53 53

K 8 ≥ 11 11 ≥ 15

Emax +127 ≥ +1023 +1023 ≥ +16383

Emin −126 ≤ −1022 −1022 ≤ −16382

PRIMITIVE TYPES AND VALUES 65

Overview.doc Page 65 Thursday, May 13, 2004 11:31 AM
Note that the constraints in Table 3.1 are designed so that every element of the
float value set is necessarily also an element of the float-extended-exponent value
set, the double value set, and the double-extended-exponent value set. Likewise,
each element of the double value set is necessarily also an element of the dou-
ble-extended-exponent value set. Each extended-exponent value set has a larger
range of exponent values than the corresponding standard value set, but does not
have more precision.

The elements of the float value set are exactly the values that can be repre-
sented using the single floating-point format defined in the IEEE 754 standard,
except that there is only one NaN value (IEEE 754 specifies 224 − 2 distinct NaN
values). The elements of the double value set are exactly the values that can be
represented using the double floating-point format defined in the IEEE 754 stan-
dard, except that there is only one NaN value (IEEE 754 specifies 253 − 2 distinct
NaN values). Note, however, that the elements of the float-extended-exponent and
double-extended-exponent value sets defined here do not correspond to the values
that be represented using IEEE 754 single extended and double extended formats,
respectively. This specification does not mandate a specific representation for the
values of the floating-point value sets except where floating-point values must be
represented in the class file format (§4.4.4, §4.4.5).

The float, float-extended-exponent, double, and double-extended-exponent
value sets are not types. It is always correct for an implementation of the Java vir-
tual machine to use an element of the float value set to represent a value of type
float; however, it may be permissible in certain contexts for an implementation
to use an element of the float-extended-exponent value set instead. Similarly, it is
always correct for an implementation to use an element of the double value set to
represent a value of type double; however, it may be permissible in certain con-
texts for an implementation to use an element of the double-extended-exponent
value set instead.

Except for NaNs, values of the floating-point value sets are ordered. When
arranged from smallest to largest, they are negative infinity, negative finite values,
positive and negative zero, positive finite values, and positive infinity.

Floating-point positive zero and floating-point negative zero compare as
equal, but there are other operations that can distinguish them; for example, divid-
ing 1.0 by 0.0 produces positive infinity, but dividing 1.0 by -0.0 produces neg-
ative infinity.

NaNs are unordered, so numerical comparisons and tests for numerical equal-
ity have the value false if either or both of their operands are NaN. In particular,
a test for numerical equality of a value against itself has the value false if and

THE STRUCTURE OF THE JAVA VIRTUAL MACHINE66

Overview.doc Page 66 Thursday, May 13, 2004 11:31 AM
only if the value is NaN. A test for numerical inequality has the value true if
either operand is NaN.

3.3.3 The returnAddress Type and Values

The returnAddress type is used by the Java virtual machine’s jsr, ret, and jsr_w
instructions. The values of the returnAddress type are pointers to the opcodes
of Java virtual machine instructions. Unlike the numeric primitive types, the
returnAddress type does not correspond to any Java programming language
type and cannot be modified by the running program.

3.3.4 The boolean Type

Although the Java virtual machine defines a boolean type, it only provides very
limited support for it. There are no Java virtual machine instructions solely dedi-
cated to operations on boolean values. Instead, expressions in the Java program-
ming language that operate on boolean values are compiled to use values of the
Java virtual machine int data type.

The Java virtual machine does directly support boolean arrays. Its newarray
instruction enables creation of boolean arrays. Arrays of type boolean are
accessed and modified using the byte array instructions baload and bastore.2

The Java virtual machine encodes boolean array components using 1 to repre-
sent true and 0 to represent false. Where Java programming language boolean

values are mapped by compilers to values of Java virtual machine type int, the
compilers must use the same encoding.

3.4 Reference Types and Values

There are three kinds of reference types: class types, array types, and interface
types. Their values are references to dynamically created class instances, arrays, or
class instances or arrays that implement interfaces, respectively. A reference

value may also be the special null reference, a reference to no object, which will be
denoted here by null. The null reference initially has no runtime type, but may be
cast to any type (§2.4).

2 In Sun’s JDK releases 1.0 and 1.1, and the Java 2 SDK, Standard Edition, v1.2, boolean arrays in
the Java programming language are encoded as Java virtual machine byte arrays, using 8 bits per
boolean element.

RUNTIME DATA AREAS 67

Overview.doc Page 67 Thursday, May 13, 2004 11:31 AM
The Java virtual machine specification does not mandate a concrete value
encoding null.

3.5 Runtime Data Areas

The Java virtual machine defines various runtime data areas that are used during
execution of a program. Some of these data areas are created on Java virtual
machine start-up and are destroyed only when the Java virtual machine exits. Other
data areas are per thread. Per-thread data areas are created when a thread is created
and destroyed when the thread exits.

3.5.1 The pc Register

The Java virtual machine can support many threads of execution at once (§2.19).
Each Java virtual machine thread has its own pc (program counter) register. At any
point, each Java virtual machine thread is executing the code of a single method, the
current method (§3.6) for that thread. If that method is not native, the pc register
contains the address of the Java virtual machine instruction currently being exe-
cuted. If the method currently being executed by the thread is native, the value of
the Java virtual machine’s pc register is undefined. The Java virtual machine’s pc

register is wide enough to hold a returnAddress or a native pointer on the specific
platform.

3.5.2 Java Virtual Machine Stacks

Each Java virtual machine thread has a private Java virtual machine stack, created at
the same time as the thread.3 A Java virtual machine stack stores frames (§3.6). A
Java virtual machine stack is analogous to the stack of a conventional language such
as C: it holds local variables and partial results, and plays a part in method invoca-
tion and return. Because the Java virtual machine stack is never manipulated directly
except to push and pop frames, frames may be heap allocated. The memory for a
Java virtual machine stack does not need to be contiguous.

The Java virtual machine specification permits Java virtual machine stacks
either to be of a fixed size or to dynamically expand and contract as required by
the computation. If the Java virtual machine stacks are of a fixed size, the size of
each Java virtual machine stack may be chosen independently when that stack is

3 In the first edition of this specification, the Java virtual machine stack was known as the Java stack.

THE STRUCTURE OF THE JAVA VIRTUAL MACHINE68

Overview.doc Page 68 Thursday, May 13, 2004 11:31 AM
created. A Java virtual machine implementation may provide the programmer or
the user control over the initial size of Java virtual machine stacks, as well as, in
the case of dynamically expanding or contracting Java virtual machine stacks,
control over the maximum and minimum sizes.4

The following exceptional conditions are associated with Java virtual machine
stacks:

• If the computation in a thread requires a larger Java virtual machine stack than
is permitted, the Java virtual machine throws a StackOverflowError.

• If Java virtual machine stacks can be dynamically expanded, and expansion is
attempted but insufficient memory can be made available to effect the expan-
sion, or if insufficient memory can be made available to create the initial Java
virtual machine stack for a new thread, the Java virtual machine throws an
OutOfMemoryError.

3.5.3 Heap

The Java virtual machine has a heap that is shared among all Java virtual machine
threads. The heap is the runtime data area from which memory for all class
instances and arrays is allocated.

The heap is created on virtual machine start-up. Heap storage for objects is
reclaimed by an automatic storage management system (known as a garbage col-
lector); objects are never explicitly deallocated. The Java virtual machine assumes
no particular type of automatic storage management system, and the storage man-
agement technique may be chosen according to the implementor’s system require-
ments. The heap may be of a fixed size or may be expanded as required by the
computation and may be contracted if a larger heap becomes unnecessary. The
memory for the heap does not need to be contiguous.

A Java virtual machine implementation may provide the programmer or the
user control over the initial size of the heap, as well as, if the heap can be dynami-

4 In Sun’s implementations of the Java virtual machine in JDK releases 1.0.2 and 1.1, and the Java 2
SDK, Standard Edition, v1.2, Java virtual machine stacks are discontiguous and are independently
expanded as required by the computation. Those implementations do not free memory allocated for
a Java virtual machine stack until the associated thread terminates. Expansion is subject to a size limit
for any one stack. The Java virtual machine stack size limit may be set on virtual machine start-up
using the “-oss” flag. The Java virtual machine stack size limit can be used to limit memory con-
sumption or to catch runaway recursions.

RUNTIME DATA AREAS 69

Overview.doc Page 69 Thursday, May 13, 2004 11:31 AM
cally expanded or contracted, control over the maximum and minimum heap size.5

The following exceptional condition is associated with the heap:

• If a computation requires more heap than can be made available by the auto-
matic storage management system, the Java virtual machine throws an Out-

OfMemoryError.

3.5.4 Method Area

The Java virtual machine has a method area that is shared among all Java virtual
machine threads. The method area is analogous to the storage area for compiled
code of a conventional language or analogous to the “text” segment in a UNIX pro-
cess. It stores per-class structures such as the runtime constant pool, field and
method data, and the code for methods and constructors, including the special meth-
ods (§3.9) used in class and instance initialization and interface type initialization.

The method area is created on virtual machine start-up. Although the method
area is logically part of the heap, simple implementations may choose not to either
garbage collect or compact it. This version of the Java virtual machine specifica-
tion does not mandate the location of the method area or the policies used to man-
age compiled code. The method area may be of a fixed size or may be expanded as
required by the computation and may be contracted if a larger method area
becomes unnecessary. The memory for the method area does not need to be contig-
uous.

A Java virtual machine implementation may provide the programmer or the
user control over the initial size of the method area, as well as, in the case of a vary-
ing-size method area, control over the maximum and minimum method area size.6

The following exceptional condition is associated with the method area:

• If memory in the method area cannot be made available to satisfy an allocation
request, the Java virtual machine throws an OutOfMemoryError.

5 Sun’s implementations of the Java virtual machine in JDK releases 1.0.2 and 1.1, and the Java 2
SDK, Standard Edition, v1.2, dynamically expand the heap as required by the computation, but
never contract the heap. The initial and maximum sizes may be specified on virtual machine
start-up using the “-ms” and “-mx” flags, respectively.

6 Sun’s implementation of the Java virtual machine in JDK release 1.0.2 dynamically expands the
method area as required by the computation, but never contracts the method area. The Java virtual
machine implementations in Sun’s JDK release 1.1 and the Java 2 SDK, Standard Edition, v1.2 gar-
bage collect the method area. In neither case is user control over the initial, minimum, or maximum
size of the method area provided.

THE STRUCTURE OF THE JAVA VIRTUAL MACHINE70

Overview.doc Page 70 Thursday, May 13, 2004 11:31 AM
3.5.5 Runtime Constant Pool

A runtime constant pool is a per-class or per-interface runtime representation of the
constant_pool table in a class file (§4.4). It contains several kinds of constants,
ranging from numeric literals known at compile time to method and field references
that must be resolved at run time. The runtime constant pool serves a function sim-
ilar to that of a symbol table for a conventional programming language, although
it contains a wider range of data than a typical symbol table.

Each runtime constant pool is allocated from the Java virtual machine’s
method area (§3.5.4). The runtime constant pool for a class or interface is con-
structed when the class or interface is created (§5.3) by the Java virtual machine.

The following exceptional condition is associated with the construction of the
runtime constant pool for a class or interface:

• When creating a class or interface, if the construction of the runtime constant
pool requires more memory than can be made available in the method area of
the Java virtual machine, the Java virtual machine throws an OutOfMemory-

Error.

See Chapter 5 for information about the construction of the runtime constant
pool.

3.5.6 Native Method Stacks

An implementation of the Java virtual machine may use conventional stacks, collo-
quially called “C stacks,” to support native methods, methods written in a lan-
guage other than the Java programming language. Native method stacks may also be
used by the implementation of an interpreter for the Java virtual machine’s instruc-
tion set in a language such as C. Java virtual machine implementations that cannot
load native methods and that do not themselves rely on conventional stacks need
not supply native method stacks. If supplied, native method stacks are typically allo-
cated per thread when each thread is created.

The Java virtual machine specification permits native method stacks either to
be of a fixed size or to dynamically expand and contract as required by the compu-
tation. If the native method stacks are of a fixed size, the size of each native
method stack may be chosen independently when that stack is created. In any
case, a Java virtual machine implementation may provide the programmer or the
user control over the initial size of the native method stacks. In the case of

FRAMES 71

Overview.doc Page 71 Thursday, May 13, 2004 11:31 AM
varying-size native method stacks, it may also make available control over the
maximum and minimum method stack sizes.7

The following exceptional conditions are associated with native method
stacks:

• If the computation in a thread requires a larger native method stack than is
permitted, the Java virtual machine throws a StackOverflowError.

• If native method stacks can be dynamically expanded and native method stack
expansion is attempted but insufficient memory can be made available, or if
insufficient memory can be made available to create the initial native method
stack for a new thread, the Java virtual machine throws an OutOfMemory-

Error.

3.6 Frames

A frame is used to store data and partial results, as well as to perform dynamic link-
ing, return values for methods, and dispatch exceptions.

A new frame is created each time a method is invoked. A frame is destroyed
when its method invocation completes, whether that completion is normal or abrupt
(it throws an uncaught exception). Frames are allocated from the Java virtual
machine stack (§3.5.2) of the thread creating the frame. Each frame has its own
array of local variables (§3.6.1), its own operand stack (§3.6.2), and a reference to
the runtime constant pool (§3.5.5) of the class of the current method.

The sizes of the local variable array and the operand stack are determined at
compile time and are supplied along with the code for the method associated with
the frame (§4.7.3). Thus the size of the frame data structure depends only on the
implementation of the Java virtual machine, and the memory for these structures
can be allocated simultaneously on method invocation.

Only one frame, the frame for the executing method, is active at any point in a
given thread of control. This frame is referred to as the current frame, and its
method is known as the current method. The class in which the current method is

7 Sun’s implementations of the Java virtual machine in JDK releases 1.0.2 and 1.1, and the Java 2
SDK, Standard Edition, v1.2, allocate fixed-size native method stacks of a single size. The size of
the native method stacks may be set on virtual machine start-up using the “-ss” flag. The native
method stack size limit can be used to limit memory consumption or to catch runaway recursions
in native methods. Sun’s implementations do not check for native method stack overflow.

THE STRUCTURE OF THE JAVA VIRTUAL MACHINE72

Overview.doc Page 72 Thursday, May 13, 2004 11:31 AM
defined is the current class. Operations on local variables and the operand stack
are typically with reference to the current frame.

A frame ceases to be current if its method invokes another method or if its
method completes. When a method is invoked, a new frame is created and
becomes current when control transfers to the new method. On method return, the
current frame passes back the result of its method invocation, if any, to the previ-
ous frame. The current frame is then discarded as the previous frame becomes the
current one.

Note that a frame created by a thread is local to that thread and cannot be ref-
erenced by any other thread.

3.6.1 Local Variables

Each frame (§3.6) contains an array of variables known as its local variables. The
length of the local variable array of a frame is determined at compile time and sup-
plied in the binary representation of a class or interface along with the code for the
method associated with the frame (§4.7.3).

A single local variable can hold a value of type boolean, byte, char, short,
int, float, reference, or returnAddress. A pair of local variables can hold a
value of type long or double.

Local variables are addressed by indexing. The index of the first local variable
is zero. An integer is considered to be an index into the local variable array if and
only if that integer is between zero and one less than the size of the local variable
array.

A value of type long or type double occupies two consecutive local vari-
ables. Such a value may only be addressed using the lesser index. For example, a
value of type double stored in the local variable array at index n actually occupies
the local variables with indices n and n +1; however, the local variable at index
n +1 cannot be loaded from. It can be stored into. However, doing so invalidates
the contents of local variable n.

The Java virtual machine does not require n to be even. In intuitive terms, val-
ues of types double and long need not be 64-bit aligned in the local variables
array. Implementors are free to decide the appropriate way to represent such val-
ues using the two local variables reserved for the value.

The Java virtual machine uses local variables to pass parameters on method
invocation. On class method invocation any parameters are passed in consecutive
local variables starting from local variable 0. On instance method invocation, local
variable 0 is always used to pass a reference to the object on which the instance

FRAMES 73

Overview.doc Page 73 Thursday, May 13, 2004 11:31 AM
method is being invoked (this in the Java programming language). Any parame-
ters are subsequently passed in consecutive local variables starting from local
variable 1.

3.6.2 Operand Stacks

Each frame (§3.6) contains a last-in-first-out (LIFO) stack known as its operand
stack. The maximum depth of the operand stack of a frame is determined at compile
time and is supplied along with the code for the method associated with the frame
(§4.7.3).

Where it is clear by context, we will sometimes refer to the operand stack of
the current frame as simply the operand stack.

The operand stack is empty when the frame that contains it is created. The
Java virtual machine supplies instructions to load constants or values from local
variables or fields onto the operand stack. Other Java virtual machine instructions
take operands from the operand stack, operate on them, and push the result back
onto the operand stack. The operand stack is also used to prepare parameters to be
passed to methods and to receive method results.

For example, the iadd instruction adds two int values together. It requires
that the int values to be added be the top two values of the operand stack, pushed
there by previous instructions. Both of the int values are popped from the oper-
and stack. They are added, and their sum is pushed back onto the operand stack.
Subcomputations may be nested on the operand stack, resulting in values that can
be used by the encompassing computation.

Each entry on the operand stack can hold a value of any Java virtual machine
type, including a value of type long or type double.

Values from the operand stack must be operated upon in ways appropriate to
their types. It is not possible, for example, to push two int values and subse-
quently treat them as a long or to push two float values and subsequently add
them with an iadd instruction. A small number of Java virtual machine instruc-
tions (the dup instructions and swap) operate on runtime data areas as raw values
without regard to their specific types; these instructions are defined in such a way
that they cannot be used to modify or break up individual values. These restric-
tions on operand stack manipulation are enforced through class file verification
(§4.9).

At any point in time an operand stack has an associated depth, where a value
of type long or double contributes two units to the depth and a value of any other
type contributes one unit.

THE STRUCTURE OF THE JAVA VIRTUAL MACHINE74

Overview.doc Page 74 Thursday, May 13, 2004 11:31 AM
3.6.3 Dynamic Linking

Each frame (§3.6) contains a reference to the runtime constant pool (§3.5.5) for
the type of the current method to support dynamic linking of the method code. The
class file code for a method refers to methods to be invoked and variables to be
accessed via symbolic references. Dynamic linking translates these symbolic
method references into concrete method references, loading classes as necessary
to resolve as-yet-undefined symbols, and translates variable accesses into appro-
priate offsets in storage structures associated with the runtime location of these
variables.

This late binding of the methods and variables makes changes in other classes
that a method uses less likely to break this code.

3.6.4 Normal Method Invocation Completion

A method invocation completes normally if that invocation does not cause an excep-
tion (§2.16, §3.10) to be thrown, either directly from the Java virtual machine or as a
result of executing an explicit throw statement. If the invocation of the current
method completes normally, then a value may be returned to the invoking method.
This occurs when the invoked method executes one of the return instructions
(§3.11.8), the choice of which must be appropriate for the type of the value being
returned (if any).

The current frame (§3.6) is used in this case to restore the state of the invoker,
including its local variables and operand stack, with the program counter of the
invoker appropriately incremented to skip past the method invocation instruction.
Execution then continues normally in the invoking method’s frame with the
returned value (if any) pushed onto the operand stack of that frame.

3.6.5 Abrupt Method Invocation Completion

A method invocation completes abruptly if execution of a Java virtual machine
instruction within the method causes the Java virtual machine to throw an exception
(§2.16, §3.10), and that exception is not handled within the method. Execution of an
athrow instruction also causes an exception to be explicitly thrown and, if the
exception is not caught by the current method, results in abrupt method invocation
completion. A method invocation that completes abruptly never returns a value to its
invoker.

REPRESENTATION OF OBJECTS 75

Overview.doc Page 75 Thursday, May 13, 2004 11:31 AM
3.6.6 Additional Information

A frame may be extended with additional implementation-specific information,
such as debugging information.

3.7 Representation of Objects

The Java virtual machine does not mandate any particular internal structure for
objects.8

3.8 Floating-Point Arithmetic

The Java virtual machine incorporates a subset of the floating-point arithmetic spec-
ified in IEEE Standard for Binary Floating-Point Arithmetic (ANSI/IEEE Std.
754-1985, New York).

3.8.1 Java Virtual Machine Floating-Point Arithmetic and IEEE 754

The key differences between the floating-point arithmetic supported by the Java vir-
tual machine and the IEEE 754 standard are:

• The floating-point operations of the Java virtual machine do not throw excep-
tions, trap, or otherwise signal the IEEE 754 exceptional conditions of invalid
operation, division by zero, overflow, underflow, or inexact. The Java virtual
machine has no signaling NaN value.

• The Java virtual machine does not support IEEE 754 signaling floating-point
comparisons.

• The rounding operations of the Java virtual machine always use IEEE 754
round to nearest mode. Inexact results are rounded to the nearest representable
value, with ties going to the value with a zero least-significant bit. This is the
IEEE 754 default mode. But Java virtual machine instructions that convert

8 In some of Sun’s implementations of the Java virtual machine, a reference to a class instance is a
pointer to a handle that is itself a pair of pointers: one to a table containing the methods of the object
and a pointer to the Class object that represents the type of the object, and the other to the memory
allocated from the heap for the object data.

THE STRUCTURE OF THE JAVA VIRTUAL MACHINE76

Overview.doc Page 76 Thursday, May 13, 2004 11:31 AM
values of floating-point types to values of integral types round toward zero. The
Java virtual machine does not give any means to change the floating-point
rounding mode.

• The Java virtual machine does not support either the IEEE 754 single extended
or double extended format, except insofar as the double and double-
extended-exponent value sets may be said to support the single extended for-
mat. The float-extended-exponent and double-extended-exponent value sets,
which may optionally be supported, do not correspond to the values of the
IEEE 754 extended formats: the IEEE 754 extended formats require extended
precision as well as extended exponent range.

3.8.2 Floating-Point Modes

Every method has a floating-point mode, which is either FP-strict or not FP-strict.
The floating-point mode of a method is determined by the setting of the
ACC_STRICT bit of the access_flags item of the method_info structure (§4.6)
defining the method. A method for which this bit is set is FP-strict; otherwise, the
method is not FP-strict.

Note that this mapping of the ACC_STRICT bit implies that methods in classes
compiled by a compiler that predates the Java 2 platform, v1.2, are effectively not
FP-strict.

We will refer to an operand stack as having a given floating-point mode when
the method whose invocation created the frame containing the operand stack has
that floating-point mode. Similarly, we will refer to a Java virtual machine instruc-
tion as having a given floating-point mode when the method containing that
instruction has that floating-point mode.

If a float-extended-exponent value set is supported (§3.3.2), values of type
float on an operand stack that is not FP-strict may range over that value set
except where prohibited by value set conversion (§3.8.3). If a double-
extended-exponent value set is supported (§3.3.2), values of type double on an
operand stack that is not FP-strict may range over that value set except where pro-
hibited by value set conversion.

In all other contexts, whether on the operand stack or elsewhere, and regard-
less of floating-point mode, floating-point values of type float and double may
only range over the float value set and double value set, respectively. In particular,
class and instance fields, array elements, local variables, and method parameters
may only contain values drawn from the standard value sets.

FLOATING-POINT ARITHMETIC 77

Overview.doc Page 77 Thursday, May 13, 2004 11:31 AM
3.8.3 Value Set Conversion

An implementation of the Java virtual machine that supports an extended float-
ing-point value set is permitted or required, under specified circumstances, to map a
value of the associated floating-point type between the extended and the standard
value sets. Such a value set conversion is not a type conversion, but a mapping
between the value sets associated with the same type.

Where value set conversion is indicated, an implementation is permitted to
perform one of the following operations on a value:

• If the value is of type float and is not an element of the float value set, it maps
the value to the nearest element of the float value set.

• If the value is of type double and is not an element of the double value set, it
maps the value to the nearest element of the double value set.

In addition, where value set conversion is indicated certain operations are
required:

• Suppose execution of a Java virtual machine instruction that is not FP-strict
causes a value of type float to be pushed onto an operand stack that is
FP-strict, passed as a parameter, or stored into a local variable, a field, or an
element of an array. If the value is not an element of the float value set, it maps
the value to the nearest element of the float value set.

• Suppose execution of a Java virtual machine instruction that is not FP-strict
causes a value of type double to be pushed onto an operand stack that is
FP-strict, passed as a parameter, or stored into a local variable, a field, or an
element of an array. If the value is not an element of the double value set, it
maps the value to the nearest element of the double value set.

Such required value set conversions may occur as a result of passing a param-
eter of a floating-point type during method invocation, including native method
invocation; returning a value of a floating-point type from a method that is not
FP-strict to a method that is FP-strict; or storing a value of a floating-point type
into a local variable, a field, or an array in a method that is not FP-strict.

Not all values from an extended-exponent value set can be mapped exactly to
a value in the corresponding standard value set. If a value being mapped is too
large to be represented exactly (its exponent is greater than that permitted by the
standard value set), it is converted to a (positive or negative) infinity of the corre-

THE STRUCTURE OF THE JAVA VIRTUAL MACHINE78

Overview.doc Page 78 Thursday, May 13, 2004 11:31 AM
sponding type. If a value being mapped is too small to be represented exactly (its
exponent is smaller than that permitted by the standard value set), it is rounded to
the nearest of a representable denormalized value or zero of the same sign.

Value set conversion preserves infinities and NaNs and cannot change the sign
of the value being converted. Value set conversion has no effect on a value that is
not of a floating-point type.

3.9 Specially Named Initialization Methods

At the level of the Java virtual machine, every constructor (§2.12) appears as an
instance initialization method that has the special name <init>. This name is
supplied by a compiler. Because the name <init> is not a valid identifier, it can-
not be used directly in a program written in the Java programming language.
Instance initialization methods may be invoked only within the Java virtual
machine by the invokespecial instruction, and they may be invoked only on unini-
tialized class instances. An instance initialization method takes on the access per-
missions (§2.7.4) of the constructor from which it was derived.

A class or interface has at most one class or interface initialization method and
is initialized (§2.17.4) by invoking that method. The initialization method of a class
or interface is static and takes no arguments. It has the special name <clinit>. This
name is supplied by a compiler. Because the name <clinit> is not a valid identi-
fier, it cannot be used directly in a program written in the Java programming lan-
guage. Class and interface initialization methods are invoked implicitly by the Java
virtual machine; they are never invoked directly from any Java virtual machine
instruction, but are invoked only indirectly as part of the class initialization process.

3.10 Exceptions

In the Java programming language, throwing an exception results in an immedi-
ate nonlocal transfer of control from the point where the exception was thrown. This
transfer of control may abruptly complete, one by one, multiple statements, construc-
tor invocations, static and field initializer evaluations, and method invocations. The
process continues until a catch clause (§2.16.2) is found that handles the thrown
value. If no such clause can be found, the current thread exits.

In cases where a finally clause (§2.16.2) is used, the finally clause is exe-
cuted during the propagation of an exception thrown from the associated try block

EXCEPTIONS 79

Overview.doc Page 79 Thursday, May 13, 2004 11:31 AM
and any associated catch block, even if no catch clause that handles the thrown
exception may be found.

As implemented by the Java virtual machine, each catch or finally clause
of a method is represented by an exception handler. An exception handler speci-
fies the range of offsets into the Java virtual machine code implementing the
method for which the exception handler is active, describes the type of exception
that the exception handler is able to handle, and specifies the location of the code
that is to handle that exception. An exception matches an exception handler if the
offset of the instruction that caused the exception is in the range of offsets of the
exception handler and the exception type is the same class as or a subclass of the
class of exception that the exception handler handles. When an exception is
thrown, the Java virtual machine searches for a matching exception handler in the
current method. If a matching exception handler is found, the system branches to
the exception handling code specified by the matched handler.

If no such exception handler is found in the current method, the current
method invocation completes abruptly (§3.6.5). On abrupt completion, the oper-
and stack and local variables of the current method invocation are discarded, and
its frame is popped, reinstating the frame of the invoking method. The exception
is then rethrown in the context of the invoker’s frame and so on, continuing up the
method invocation chain. If no suitable exception handler is found before the top
of the method invocation chain is reached, the execution of the thread in which the
exception was thrown is terminated.

The order in which the exception handlers of a method are searched for a match
is important. Within a class file the exception handlers for each method are stored in
a table (§4.7.3). At run time, when an exception is thrown, the Java virtual machine
searches the exception handlers of the current method in the order that they appear in
the corresponding exception handler table in the class file, starting from the begin-
ning of that table. Because try statements are structured, a compiler for the Java pro-
gramming language can always order the entries of the exception handler table such
that, for any thrown exception and any program counter value in that method, the first
exception handler that matches the thrown exception corresponds to the innermost
matching catch or finally clause.

Note that the Java virtual machine does not enforce nesting of or any ordering of
the exception table entries of a method (§4.9.5). The exception handling semantics of
the Java programming language are implemented only through cooperation with the
compiler. When class files are generated by some other means, the defined search
procedure ensures that all Java virtual machines will behave consistently.

THE STRUCTURE OF THE JAVA VIRTUAL MACHINE80

Overview.doc Page 80 Thursday, May 13, 2004 11:31 AM
More information on the implementation of catch and finally clauses is
given in Chapter 7, “Compiling for the Java Virtual Machine.”

3.11 Instruction Set Summary

A Java virtual machine instruction consists of a one-byte opcode specifying the
operation to be performed, followed by zero or more operands supplying arguments
or data that are used by the operation. Many instructions have no operands and con-
sist only of an opcode.

Ignoring exceptions, the inner loop of a Java virtual machine interpreter is
effectively

do {

fetch an opcode;

if (operands) fetch operands;

execute the action for the opcode;

} while (there is more to do);

The number and size of the operands are determined by the opcode. If an
operand is more than one byte in size, then it is stored in big-endian order—
high-order byte first. For example, an unsigned 16-bit index into the local vari-
ables is stored as two unsigned bytes, byte1 and byte2, such that its value is

(byte1 << 8) | byte2

The bytecode instruction stream is only single-byte aligned. The two exceptions are
the tableswitch and lookupswitch instructions, which are padded to force internal
alignment of some of their operands on 4-byte boundaries.

The decision to limit the Java virtual machine opcode to a byte and to forgo
data alignment within compiled code reflects a conscious bias in favor of com-
pactness, possibly at the cost of some performance in naive implementations. A
one-byte opcode also limits the size of the instruction set. Not assuming data
alignment means that immediate data larger than a byte must be constructed
from bytes at run time on many machines.

3.11.1 Types and the Java Virtual Machine

Most of the instructions in the Java virtual machine instruction set encode type
information about the operations they perform. For instance, the iload instruction

INSTRUCTION SET SUMMARY 81

Overview.doc Page 81 Thursday, May 13, 2004 11:31 AM
loads the contents of a local variable, which must be an int, onto the operand stack.
The fload instruction does the same with a float value. The two instructions may
have identical implementations, but have distinct opcodes.

For the majority of typed instructions, the instruction type is represented
explicitly in the opcode mnemonic by a letter: i for an int operation, l for long, s
for short, b for byte, c for char, f for float, d for double, and a for refer-
ence. Some instructions for which the type is unambiguous do not have a type let-
ter in their mnemonic. For instance, arraylength always operates on an object that
is an array. Some instructions, such as goto, an unconditional control transfer, do
not operate on typed operands.

Given the Java virtual machine’s one-byte opcode size, encoding types into
opcodes places pressure on the design of its instruction set. If each typed instruc-
tion supported all of the Java virtual machine’s runtime data types, there would be
more instructions than could be represented in a byte. Instead, the instruction set
of the Java virtual machine provides a reduced level of type support for certain
operations. In other words, the instruction set is intentionally not orthogonal. Sep-
arate instructions can be used to convert between unsupported and supported data
types as necessary.

Table 3.2 summarizes the type support in the instruction set of the Java virtual
machine. A specific instruction, with type information, is built by replacing the T
in the instruction template in the opcode column by the letter in the type column.
If the type column for some instruction template and type is blank, then no
instruction exists supporting that type of operation. For instance, there is a load
instruction for type int, iload, but there is no load instruction for type byte.

Note that most instructions in Table 3.2 do not have forms for the integral
types byte, char, and short. None have forms for the boolean type. Compilers
encode loads of literal values of types byte and short using Java virtual
machine instructions that sign-extend those values to values of type int at com-
pile time or run time. Loads of literal values of types boolean and char are
encoded using instructions that zero-extend the literal to a value of type int at
compile time or run time. Likewise, loads from arrays of values of type boolean,
byte, short, and char are encoded using Java virtual machine instructions that
sign-extend or zero-extend the values to values of type int. Thus, most opera-
tions on values of actual types boolean, byte, char, and short are correctly
performed by instructions operating on values of computational type int.

THE STRUCTURE OF THE JAVA VIRTUAL MACHINE82

Overview.doc Page 82 Thursday, May 13, 2004 11:31 AM
The mapping between Java virtual machine actual types and Java virtual
machine computational types is summarized by Table 3.3.

Table 3.2 Type support in the Java virtual machine instruction set

opcode byte short int long float double char reference

Tipush bipush sipush

Tconst iconst lconst fconst dconst aconst

Tload iload lload fload dload aload

Tstore istore lstore fstore dstore astore

Tinc iinc

Taload baload saload iaload laload faload daload caload aaload

Tastore bastore sastore iastore lastore fastore dastore castore aastore

Tadd iadd ladd fadd dadd

Tsub isub lsub fsub dsub

Tmul imul lmul fmul dmul

Tdiv idiv ldiv fdiv ddiv

Trem irem lrem frem drem

Tneg ineg lneg fneg dneg

Tshl ishl lshl

Tshr ishr lshr

Tushr iushr lushr

Tand iand land

Tor ior lor

Txor ixor lxor

i2T i2b i2s i2l i2f i2d

l2T l2i l2f l2d

f2T f2i f2l f2d

d2T d2i d2l d2f

Tcmp lcmp

Tcmpl fcmpl dcmpl

Tcmpg fcmpg dcmpg
if_TcmpOP if_icmpOP if_acmpOP

Treturn ireturn lreturn freturn dreturn areturn

INSTRUCTION SET SUMMARY 83

Overview.doc Page 83 Thursday, May 13, 2004 11:31 AM
Certain Java virtual machine instructions such as pop and swap operate on the
operand stack without regard to type; however, such instructions are constrained
to use only on values of certain categories of computational types, also given in
Table 3.3.

The remainder of this chapter summarizes the Java virtual machine instruction
set.

3.11.2 Load and Store Instructions

The load and store instructions transfer values between the local variables (§3.6.1)
and the operand stack (§3.6.2) of a Java virtual machine frame (§3.6):

• Load a local variable onto the operand stack: iload, iload_<n>, lload,
lload_<n>, fload, fload_<n>, dload, dload_<n>, aload, aload_<n>.

• Store a value from the operand stack into a local variable: istore, istore_<n>,
lstore, lstore_<n>, fstore, fstore_<n>, dstore, dstore_<n>, astore, astore_<n>.

• Load a constant onto the operand stack: bipush, sipush, ldc, ldc_w, ldc2_w,
aconst_null, iconst_m1, iconst_<i>, lconst_<l>, fconst_<f>, dconst_<d>.

• Gain access to more local variables using a wider index, or to a larger immedi-
ate operand: wide.

Table 3.3 Java virtual machine actual and computational types

Actual Type Computational Type Category

boolean int category 1

byte int category 1

char int category 1

short int category 1

int int category 1

float float category 1

reference reference category 1

returnAddress returnAddress category 1

long long category 2

double double category 2

THE STRUCTURE OF THE JAVA VIRTUAL MACHINE84

Overview.doc Page 84 Thursday, May 13, 2004 11:31 AM
Instructions that access fields of objects and elements of arrays (§3.11.5) also trans-
fer data to and from the operand stack.

Instruction mnemonics shown above with trailing letters between angle brack-
ets (for instance, iload_<n>) denote families of instructions (with members
iload_0, iload_1, iload_2, and iload_3 in the case of iload_<n>). Such families of
instructions are specializations of an additional generic instruction (iload) that
takes one operand. For the specialized instructions, the operand is implicit and
does not need to be stored or fetched. The semantics are otherwise the same
(iload_0 means the same thing as iload with the operand 0). The letter between the
angle brackets specifies the type of the implicit operand for that family of instruc-
tions: for <n>, a nonnegative integer; for <i>, an int; for <l>, a long; for <f>, a
float; and for <d>, a double. Forms for type int are used in many cases to per-
form operations on values of type byte, char, and short (§3.11.1).

This notation for instruction families is used throughout The Java™ Virtual
Machine Specification.

3.11.3 Arithmetic Instructions

The arithmetic instructions compute a result that is typically a function of two val-
ues on the operand stack, pushing the result back on the operand stack. There are
two main kinds of arithmetic instructions: those operating on integer values and
those operating on floating-point values. Within each of these kinds, the arithmetic
instructions are specialized to Java virtual machine numeric types. There is no direct
support for integer arithmetic on values of the byte, short, and char types
(§3.11.1), or for values of the boolean type; those operations are handled by
instructions operating on type int. Integer and floating-point instructions also differ
in their behavior on overflow and divide-by-zero. The arithmetic instructions are as
follows:

• Add: iadd, ladd, fadd, dadd.

• Subtract: isub, lsub, fsub, dsub.

• Multiply: imul, lmul, fmul, dmul.

• Divide: idiv, ldiv, fdiv, ddiv.

• Remainder: irem, lrem, frem, drem.

• Negate: ineg, lneg, fneg, dneg.

• Shift: ishl, ishr, iushr, lshl, lshr, lushr.

INSTRUCTION SET SUMMARY 85

Overview.doc Page 85 Thursday, May 13, 2004 11:31 AM
• Bitwise OR: ior, lor.

• Bitwise AND: iand, land.

• Bitwise exclusive OR: ixor, lxor.

• Local variable increment: iinc.

• Comparison: dcmpg, dcmpl, fcmpg, fcmpl, lcmp.

The semantics of the Java programming language operators on integer and
floating-point values (§2.4.2, §2.4.4) are directly supported by the semantics of
the Java virtual machine instruction set.

The Java virtual machine does not indicate overflow during operations on
integer data types. The only integer operations that can throw an exception are the
integer divide instructions (idiv and ldiv) and the integer remainder instructions
(irem and lrem), which throw an ArithmeticException if the divisor is zero.

Java virtual machine operations on floating-point numbers behave as specified
in IEEE 754. In particular, the Java virtual machine requires full support of IEEE
754 denormalized floating-point numbers and gradual underflow, which make it
easier to prove desirable properties of particular numerical algorithms.

The Java virtual machine requires that floating-point arithmetic behave as if
every floating-point operator rounded its floating-point result to the result preci-
sion. Inexact results must be rounded to the representable value nearest to the infi-
nitely precise result; if the two nearest representable values are equally near, the
one having a least significant bit of zero is chosen. This is the IEEE 754 standard’s
default rounding mode, known as round to nearest mode.

The Java virtual machine uses the IEEE 754 round towards zero mode when
converting a floating-point value to an integer. This results in the number being
truncated; any bits of the significand that represent the fractional part of the oper-
and value are discarded. Round towards zero mode chooses as its result the type’s
value closest to, but no greater in magnitude than, the infinitely precise result.

The Java virtual machine’s floating-point operators do not throw runtime
exceptions (not to be confused with IEEE 754 floating-point exceptions). An
operation that overflows produces a signed infinity, an operation that underflows
produces a denormalized value or a signed zero, and an operation that has no
mathematically definite result produces NaN. All numeric operations with NaN as
an operand produce NaN as a result.

Comparisons on values of type long (lcmp) perform a signed comparison.
Comparisons on values of floating-point types (dcmpg, dcmpl, fcmpg, fcmpl) are
performed using IEEE 754 nonsignaling comparisons.

THE STRUCTURE OF THE JAVA VIRTUAL MACHINE86

Overview.doc Page 86 Thursday, May 13, 2004 11:31 AM
3.11.4 Type Conversion Instructions

The type conversion instructions allow conversion between Java virtual machine
numeric types. These may be used to implement explicit conversions in user code or
to mitigate the lack of orthogonality in the instruction set of the Java virtual machine.

The Java virtual machine directly supports the following widening numeric con-
versions:

• int to long, float, or double

• long to float or double

• float to double

The widening numeric conversion instructions are i2l, i2f, i2d, l2f, l2d, and f2d.
The mnemonics for these opcodes are straightforward given the naming conventions
for typed instructions and the punning use of 2 to mean “to.” For instance, the i2d
instruction converts an int value to a double. Widening numeric conversions do
not lose information about the overall magnitude of a numeric value. Indeed, con-
versions widening from int to long and int to double do not lose any informa-
tion at all; the numeric value is preserved exactly. Conversions widening from
float to double that are FP-strict (§3.8.2) also preserve the numeric value
exactly; however, such conversions that are not FP-strict may lose information
about the overall magnitude of the converted value.

Conversion of an int or a long value to float, or of a long value to double,
may lose precision, that is, may lose some of the least significant bits of the value;
the resulting floating-point value is a correctly rounded version of the integer
value, using IEEE 754 round to nearest mode.

A widening numeric conversion of an int to a long simply sign-extends the
two’s-complement representation of the int value to fill the wider format. A wid-
ening numeric conversion of a char to an integral type zero-extends the represen-
tation of the char value to fill the wider format.

Despite the fact that loss of precision may occur, widening numeric conver-
sions never cause the Java virtual machine to throw a runtime exception (not to be
confused with an IEEE 754 floating-point exception).

Note that widening numeric conversions do not exist from integral types byte,
char, and short to type int. As noted in §3.11.1, values of type byte, char, and
short are internally widened to type int, making these conversions implicit.

The Java virtual machine also directly supports the following narrowing
numeric conversions:

INSTRUCTION SET SUMMARY 87

Overview.doc Page 87 Thursday, May 13, 2004 11:31 AM
• int to byte, short, or char

• long to int

• float to int or long

• double to int, long, or float

The narrowing numeric conversion instructions are i2b, i2c, i2s, l2i, f2i, f2l,
d2i, d2l, and d2f. A narrowing numeric conversion can result in a value of dif-
ferent sign, a different order of magnitude, or both; it may thereby lose preci-
sion.

A narrowing numeric conversion of an int or long to an integral type T

simply discards all but the N lowest-order bits, where N is the number of bits used
to represent type T. This may cause the resulting value not to have the same sign
as the input value.

In a narrowing numeric conversion of a floating-point value to an integral type
T, where T is either int or long, the floating-point value is converted as follows:

• If the floating-point value is NaN, the result of the conversion is an int or
long 0.

• Otherwise, if the floating-point value is not an infinity, the floating-point value
is rounded to an integer value V using IEEE 754 round towards zero mode.
There are two cases:

◆ If T is long and this integer value can be represented as a long, then the
result is the long value V.

◆ If T is of type int and this integer value can be represented as an int, then
the result is the int value V.

• Otherwise:

◆ Either the value must be too small (a negative value of large magnitude or
negative infinity), and the result is the smallest representable value of type
int or long.

◆ Or the value must be too large (a positive value of large magnitude or positive
infinity), and the result is the largest representable value of type int or long.

A narrowing numeric conversion from double to float behaves in accordance
with IEEE 754. The result is correctly rounded using IEEE 754 round to nearest
mode. A value too small to be represented as a float is converted to a positive or

THE STRUCTURE OF THE JAVA VIRTUAL MACHINE88

Overview.doc Page 88 Thursday, May 13, 2004 11:31 AM
negative zero of type float; a value too large to be represented as a float is con-
verted to a positive or negative infinity. A double NaN is always converted to a
float NaN.

Despite the fact that overflow, underflow, or loss of precision may occur,
narrowing conversions among numeric types never cause the Java virtual
machine to throw a runtime exception (not to be confused with an IEEE 754
floating-point exception).

3.11.5 Object Creation and Manipulation

Although both class instances and arrays are objects, the Java virtual machine
creates and manipulates class instances and arrays using distinct sets of
instructions:

• Create a new class instance: new.

• Create a new array: newarray, anewarray, multianewarray.

• Access fields of classes (static fields, known as class variables) and fields
of class instances (non-static fields, known as instance variables): getfield,
putfield, getstatic, putstatic.

• Load an array component onto the operand stack: baload, caload, saload, iaload,
laload, faload, daload, aaload.

• Store a value from the operand stack as an array component: bastore, castore,
sastore, iastore, lastore, fastore, dastore, aastore.

• Get the length of array: arraylength.

• Check properties of class instances or arrays: instanceof, checkcast.

3.11.6 Operand Stack Management Instructions

A number of instructions are provided for the direct manipulation of the operand
stack: pop, pop2, dup, dup2, dup_x1, dup2_x1, dup_x2, dup2_x2, swap.

3.11.7 Control Transfer Instructions

The control transfer instructions conditionally or unconditionally cause the Java vir-
tual machine to continue execution with an instruction other than the one following
the control transfer instruction. They are:

INSTRUCTION SET SUMMARY 89

Overview.doc Page 89 Thursday, May 13, 2004 11:31 AM
• Conditional branch: ifeq, iflt, ifle, ifne, ifgt, ifge, ifnull, ifnonnull, if_icmpeq,
if_icmpne, if_icmplt, if_icmpgt, if_icmple, if_icmpge, if_acmpeq, if_acmpne.

• Compound conditional branch: tableswitch, lookupswitch.

• Unconditional branch: goto, goto_w, jsr, jsr_w, ret.

The Java virtual machine has distinct sets of instructions that conditionally
branch on comparison with data of int and reference types. It also has distinct
conditional branch instructions that test for the null reference and thus is not
required to specify a concrete value for null (§3.4).

Conditional branches on comparisons between data of types boolean, byte,
char, and short are performed using int comparison instructions (§3.11.1). A
conditional branch on a comparison between data of types long, float, or dou-
ble is initiated using an instruction that compares the data and produces an int

result of the comparison (§3.11.3). A subsequent int comparison instruction tests
this result and effects the conditional branch. Because of its emphasis on int

comparisons, the Java virtual machine provides a rich complement of conditional
branch instructions for type int.

All int conditional control transfer instructions perform signed comparisons.

3.11.8 Method Invocation and Return Instructions

The following four instructions invoke methods:

• invokevirtual invokes an instance method of an object, dispatching on the
(virtual) type of the object. This is the normal method dispatch in the Java
programming language.

• invokeinterface invokes an interface method, searching the methods imple-
mented by the particular runtime object to find the appropriate method.

• invokespecial invokes an instance method requiring special handling, whether
an instance initialization method (§3.9), a private method, or a superclass
method.

• invokestatic invokes a class (static) method in a named class.

The method return instructions, which are distinguished by return type, are ireturn
(used to return values of type boolean, byte, char, short, or int), lreturn, fre-
turn, dreturn, and areturn. In addition, the return instruction is used to return from

THE STRUCTURE OF THE JAVA VIRTUAL MACHINE90

Overview.doc Page 90 Thursday, May 13, 2004 11:31 AM
methods declared to be void, instance initialization methods, and class or interface
initialization methods.

3.11.9 Throwing Exceptions

An exception is thrown programmatically using the athrow instruction. Exceptions
can also be thrown by various Java virtual machine instructions if they detect an
abnormal condition.

3.11.10 Implementing finally

The implementation of the finally keyword uses the jsr, jsr_w, and ret instruc-
tions. See Section 4.9.6, “Exceptions and finally,” and Section 7.13, “Compiling
finally.”

3.11.11 Synchronization

The Java virtual machine supports synchronization of both methods and sequences
of instructions within a method using a single synchronization construct: the moni-
tor.

Method-level synchronization is handled as part of method invocation and
return (see Section 3.11.8, “Method Invocation and Return Instructions”).

Synchronization of sequences of instructions is typically used to encode the
synchronized blocks of the Java programming language. The Java virtual machine
supplies the monitorenter and monitorexit instructions to support such constructs.

Proper implementation of synchronized blocks requires cooperation from a
compiler targeting the Java virtual machine. The compiler must ensure that at any
method invocation completion a monitorexit instruction will have been executed
for each monitorenter instruction executed since the method invocation. This must
be the case whether the method invocation completes normally (§3.6.4) or
abruptly (§3.6.5).

The compiler enforces proper pairing of monitorenter and monitorexit
instructions on abrupt method invocation completion by generating exception
handlers (§3.10) that will match any exception and whose associated code exe-
cutes the necessary monitorexit instructions (§7.14).

CLASS LIBRARIES 91

Overview.doc Page 91 Thursday, May 13, 2004 11:31 AM
3.12 Class Libraries

The Java virtual machine must provide sufficient support for the implementation of
the class libraries of the associated platform. Some of the classes in these libraries
cannot be implemented without the cooperation of the Java virtual machine.

Classes that might require special support from the Java virtual machine
include those that support:

• Reflection, such as the classes in the package java.lang.reflect and the
class Class.

• Loading and creation of a class or interface. The most obvious example is the
class ClassLoader.

• Linking and initialization of a class or interface. The example classes cited
above fall into this category as well.

• Security, such as the classes in the package java.security and other classes
such as SecurityManager.

• Multithreading, such as the class Thread.

• Weak references, such as the classes in the package java.lang.ref.9

The list above is meant to be illustrative rather than comprehensive. An
exhaustive list of these classes or of the functionality they provide is beyond the
scope of this book. See the specifications of the Java and Java 2 platform class
libraries for details.

3.13 Public Design, Private Implementation

Thus far this book has sketched the public view of the Java virtual machine: the
class file format and the instruction set. These components are vital to the hard-
ware-, operating system-, and implementation-independence of the Java virtual
machine. The implementor may prefer to think of them as a means to securely com-
municate fragments of programs between hosts each implementing the Java or Java
2 platform, rather than as a blueprint to be followed exactly.

9 Weak references were introduced in the Java 2 platform, v1.2.

THE STRUCTURE OF THE JAVA VIRTUAL MACHINE92

Overview.doc Page 92 Thursday, May 13, 2004 11:31 AM
It is important to understand where the line between the public design and the
private implementation lies. A Java virtual machine implementation must be able
to read class files and must exactly implement the semantics of the Java virtual
machine code therein. One way of doing this is to take this document as a specifi-
cation and to implement that specification literally. But it is also perfectly feasible
and desirable for the implementor to modify or optimize the implementation
within the constraints of this specification. So long as the class file format can be
read and the semantics of its code are maintained, the implementor may imple-
ment these semantics in any way. What is “under the hood” is the implementor’s
business, as long as the correct external interface is carefully maintained.10

The implementor can use this flexibility to tailor Java virtual machine imple-
mentations for high performance, low memory use, or portability. What makes
sense in a given implementation depends on the goals of that implementation. The
range of implementation options includes the following:

• Translating Java virtual machine code at load time or during execution into the
instruction set of another virtual machine.

• Translating Java virtual machine code at load time or during execution into the
native instruction set of the host CPU (sometimes referred to as just-in-time, or
JIT, code generation).

The existence of a precisely defined virtual machine and object file format
need not significantly restrict the creativity of the implementor. The Java virtual
machine is designed to support many different implementations, providing new
and interesting solutions while retaining compatibility between implementations.

10 There are some exceptions: debuggers, profilers, and just-in-time code generators can each require
access to elements of the Java virtual machine that are normally considered to be “under the hood.”
Where appropriate, Sun is working with other Java virtual machine implementors and tools ven-
dors to develop common interfaces to the Java virtual machine for use by such tools, and to pro-
mote those interfaces across the industry. Information on publicly available low-level interfaces to
the Java virtual machine will be made available at http://java.sun.com.

	chapter �3
	The Structure of the Java Virtual Machine
	3.1 The class File Format
	3.2 Data Types
	3.3 Primitive Types and Values
	• byte, whose values are 8-bit signed two’s-complement integers
	• float, whose values are elements of the float value set or, where supported, the float-extended...
	3.3.1 Integral Types and Values
	• For byte, from -128 to 127 (-27 to 27�-�1), inclusive

	3.3.2 Floating-Point Types, Value Sets, and Values
	Table 3.1 Floating-point value set parameters

	3.3.3 The returnAddress Type and Values
	3.3.4 The boolean Type

	3.4 Reference Types and Values
	3.5 Runtime Data Areas
	3.5.1 The pc Register
	3.5.2 Java Virtual Machine Stacks
	• If the computation in a thread requires a larger Java virtual machine stack than is permitted, ...

	3.5.3 Heap
	• If a computation requires more heap than can be made available by the automatic storage managem...

	3.5.4 Method Area
	• If memory in the method area cannot be made available to satisfy an allocation request, the Jav...

	3.5.5 Runtime Constant Pool
	• When creating a class or interface, if the construction of the runtime constant pool requires m...

	3.5.6 Native Method Stacks
	• If the computation in a thread requires a larger native method stack than is permitted, the Jav...

	3.6 Frames
	3.6.1 Local Variables
	3.6.2 Operand Stacks
	3.6.3 Dynamic Linking
	3.6.4 Normal Method Invocation Completion
	3.6.5 Abrupt Method Invocation Completion
	3.6.6 Additional Information

	3.7 Representation of Objects
	3.8 Floating-Point Arithmetic
	3.8.1 Java Virtual Machine Floating-Point Arithmetic and IEEE 754
	• The floating-point operations of the Java virtual machine do not throw exceptions, trap, or oth...

	3.8.2 Floating-Point Modes
	3.8.3 Value Set Conversion
	• If the value is of type float and is not an element of the float value set, it maps the value t...
	• Suppose execution of a Java virtual machine instruction that is not FP-strict causes a value of...

	3.9 Specially Named Initialization Methods
	3.10 Exceptions
	3.11 Instruction Set Summary
	do {
	fetch an opcode;
	if (operands) fetch operands;
	execute the action for the opcode;
	(byte1 << 8)�|�byte2
	3.11.1 Types and the Java Virtual Machine
	Table 3.2 Type support in the Java virtual machine instruction set
	Table 3.3 Java virtual machine actual and computational types

	3.11.2 Load and Store Instructions
	• Load a local variable onto the operand stack: iload, iload_<n>, lload, lload_<n>, fload, fload_...

	3.11.3 Arithmetic Instructions
	• Add: iadd, ladd, fadd, dadd.

	3.11.4 Type Conversion Instructions
	• int to long, float, or double
	• int to byte, short, or char
	• If the floating-point value is NaN, the result of the conversion is an int or long 0.

	3.11.5 Object Creation and Manipulation
	• Create a new class instance: new.
	• Create a new array: newarray, anewarray, multianewarray.

	3.11.6 Operand Stack Management Instructions
	3.11.7 Control Transfer Instructions
	• Conditional branch: ifeq, iflt, ifle, ifne, ifgt, ifge, ifnull, ifnonnull, if_icmpeq, if_icmpne...

	3.11.8 Method Invocation and Return Instructions
	• invokevirtual invokes an instance method of an object, dispatching on the (virtual) type of the...

	3.11.9 Throwing Exceptions
	3.11.10 Implementing finally
	3.11.11 Synchronization

	3.12 Class Libraries
	• Reflection, such as the classes in the package java.lang.reflect and the class Class.

	3.13 Public Design, Private Implementation
	• Translating Java virtual machine code at load time or during execution into the instruction set...

