
Inner Classes Specification
The newest release of the Java language allows classes to be defined in any
scope. This paper specifies how the language has been extended to permit
this, and shows how Java programmers can benefit from the change.

For more up-to-date and detailed information about the Java language,
platform, and development environment, refer to the JavaSoft web site
http://java.sun.com/products/JDK/1.1/.

Java is developed by JavaSoft, an operating company of Sun Microsystems, Inc.
1

Contents

• What are top-level classes and inner classes?. 3
– Example: A simple adapter class . 4
– Example: A local class . 6
– Anonymous classes . 7

• How do inner classes work? . 8
– References to local variables. 9

• Why does Java need inner classes? . 11
– Why anonymous classes? . 12
– What about dynamic typing and computed selectors (“perform”)? 12

• How do inner classes affect the idea of this in Java code? 13
– Enclosing classes and instantiation . 14

• Do inner classes affect the correct synchronization of Java code?. 15

• Can a nested class be declared final, private, protected, or static? . . . 16
– Members that can be marked static . 16

• How do inner classes affect the organization of the Java Virtual Machine? . . . 17
– Class name transformations . 17
– Names of generated variables and methods . 18
– Security implications . 18

• How does the Java Language Specification change for inner classes? 19

• Other changes in the Java 1.1 language. 21
– Instance initializers . 21
– Anonymous array expressions . 21
– Class literals . 22
– Blank finals and final local variables. 23

• What are the new binary compatibility requirements for Java 1.1 classes? 24
– Bytecode names of classes and interfaces. 24
– The class attribute InnerClasses . 25
– The member attribute Synthetic . 26

• Further Example: Sample AWT code . 27

• Further Example: An API with coordinated inner classes 28

• Further Example: Multi-threaded task partitioning. 29
2 Inner Classes Specification—2/10/97 Release

What are top-level classes and inner classes?
In previous releases, Java supported only top-level classes, which must be
members of packages. In the 1.1 release, the Java 1.1 programmer can now
define inner classes as members of other classes, locally within a block of
statements, or (anonymously) within an expression.

Here are some of the properties that make inner classes useful:

• The inner class’s name is not usable outside its scope, except perhaps in a
qualified name. This helps in structuring the classes within a package.

• The code of an inner class can use simple names from enclosing scopes,
including both class and instance members of enclosing classes, and local
variables of enclosing blocks.

Inner classes result from the combination of block structure with class-based
programming, which was pioneered by the programming language Beta.
Using block structure with inner classes makes it easier for the Java
programmer to connect objects together, since classes can be defined closer to
the objects they need to manipulate, and can directly use the names they need.
With the removal of restrictions on the placement of classes, Java’s scoping
rules become more regular, like those of classical block structured languages
such as Pascal and Scheme.

In addition, the programmer can define a class as a static member of any
top-level class. Classes which are static class members and classes which
are package members are both called top-level classes. They differ from inner
classes in that a top-level class can make direct use only of its own instance
variables. The ability to nest classes in this way allows any top-level class to
provide a package-like organization for a logically related group of secondary
top-level classes, all of which share full access to private members.

Inner classes and nested top-level classes are implemented by the compiler,
and do not require any changes to the Java Virtual Machine. They do not
break source or binary compatibility with existing Java programs.

All of the new nested class constructs are specified via transformations to Java
1.0 code that does not use inner classes. When a Java 1.1 compiler is producing
Java virtual machine bytecodes, these bytecodes must represent the results of
this (hypothetical) source-to-source transformation, so that binaries produced
by different Java 1.1 compilers will be compatible. The bytecodes must also be
tagged with certain attributes to indicate the presence of any nested classes to
other Java 1.1 compilers. This is discussed further below.
Inner Classes Specification—2/10/97 Release 3

Example: A simple adapter class

Consider the design of an adapter class, which receives method invocations
using a specified interface type on behalf of another object not of that type.
Adapter classes are generally required in order to receive events from AWT
and Java Bean components. In Java 1.1, an adapter class is most easily defined
as an inner class, placed inside the class which requires the adapter.

Here is an incomplete class FixedStack which implements a stack, and is
willing to enumerate the elements of the stack, from the top down:

public class FixedStack {
 Object array[];
 int top = 0;
 FixedStack(int fixedSizeLimit) {
 array = new Object[fixedSizeLimit];
 }

 public void push(Object item) {
 array[top++] = item;
 }
 public boolean isEmpty() {
 return top == 0;
 }
 // other stack methods go here...

 /** This adapter class is defined as part of its target class,
 * It is placed alongside the variables it needs to access.
 */
 class Enumerator implements java.util.Enumeration {
 int count = top;
 public boolean hasMoreElements() {
 return count > 0;
 }
 public Object nextElement() {
 if (count == 0)
 throw new NoSuchElementException("FixedStack");
 return array[--count];
 }
 }
 public java.util.Enumeration elements() {
 return new Enumerator();
 }
}

4 Inner Classes Specification—2/10/97 Release

The interface java.util.Enumeration is used to communicate a series of
values to a client. Since FixedStack does not (and should not!) directly
implement the Enumeration interface, a separate adapter class is required to
present the series of elements, in the form of an Enumeration. Of course, the
adapter class will need some sort of access to the stack’s array of elements. If
the programmer puts the definition of the adapter class inside of FixedStack,
the adapter’s code can directly refer to the stack object’s instance variables.

In Java, a class’s non-static members are able to refer to each other, and they
all take their meaning relative to the current instance this. Thus, the instance
variable array of FixedStack is available to the instance method push and
to the entire body of the inner class FixedStack.Enumerator. Just as
instance method bodies “know” their current instance this, the code within
any inner class like Enumerator “knows” its enclosing instance, the instance of
the enclosing class from which variables like array are fetched.

One of the ways in which the FixedStack example is incomplete is that there
is a race condition among the operations of the FixedStack and its
Enumerator. If a sequence of pushes and pops occurs between calls to
nextElement, the value returned might not be properly related to previously
enumerated values; it might even be a “garbage value” from beyond the
current end of the stack. It is the responsibility of the programmer to defend
against such race conditions, or to document usage limitations for the class.
This point is discussed later. One defense against races looks like this:

The expression FixedStack.this refers to the enclosing instance.

public class FixedStack {
 ...
 synchronized public void push(Object item) {
 array[top++] = item;
 }
 class Enumerator implements java.util.Enumeration {
 ...
 public Object nextElement() {
 synchronized (FixedStack.this) {
 if (count > top) count = top;
 if (count == 0)
 throw new NoSuchElementException("FixedStack");
 return array[--count];
 }
 }
Inner Classes Specification—2/10/97 Release 5

Example: A local class

When a class definition is local to a block, it may access any names which are
available to ordinary expressions within the same block. Here is an example:

For the moment, we say nothing about how this code works, but Java’s rules of
scoping and variable semantics precisely require what this code does. Even
after the method myEnumerate returns, array can still be used by the inner
object; it does not “go away” as in C. Instead, its value continues to be
available wherever that value is required, including the two methods of E.

Note the final declaration. Local final variables such as array are a new
feature in 1.1. In fact, if a local variable or parameter in one class is referred to
by another (inner) class, it must be declared final. Because of potential
synchronization problems, there is by design no way for two objects to share
access to a changeable local variable. The state variable count could not be
coded as a local variable, unless perhaps it were changed a one-element array:

(Sometimes the combination of inheritance and lexical scoping can be
confusing. For example, if the class E inherited a field named array from
Enumeration, the field would hide the parameter of the same name in the
enclosing scope. To prevent ambiguity in such cases, Java 1.1 allows inherited
names to hide ones defined in enclosing block or class scopes, but prohibits
them from being used without explicit qualification.)

 Enumeration myEnumerate(final Object array[]) {
 class E implements Enumeration {
 int count = 0;
 public boolean hasMoreElements()
 { return count < array.length; }
 public Object nextElement()
 { return array[count++]; }
 }
 return new E();
 }

 Enumeration myEnumerate(final Object array[]) {
 final int count[] = {0}; // final reference to mutable array
 class E implements Enumeration {
 public boolean hasMoreElements()
 { return count[0] < array.length; } ...
6 Inner Classes Specification—2/10/97 Release

Anonymous classes

In the previous example, the local class name E adds little or no clarity to the
code. The problem is not that it is too short: A longer name would convey
little additional information to the maintainer, beyond what can be seen at a
glance in the class body. In order to make very small adapter classes as concise
as possible, Java 1.1 allows an abbreviated notation for local objects. A single
expression syntax combines the definition of an anonymous class with the
allocation of the instance:

In general, a new expression (an instance creation expression) can end with a
class body. The effect of this is to take the class (or interface) named after the
new token, and subclass it (or implement it) with the given body. The resulting
anonymous inner class has the same meaning as if the programmer had
defined it locally, with a name, in the current block of statements.

Anonymous constructs like these must be kept simple, to avoid deeply nested
code. When properly used, they are more understandable and maintainable
than the alternatives—named local classes or top-level adapter classes.

If an anonymous class contains more than a line or two of executable code,
then its meaning is probably not self-evident, and so a descriptive local name
should be given to either the class or (via a local variable) to the instance.

An anonymous class can have initializers but cannot have a constructor. The
argument list of the associated new expression (often empty) is implicitly
passed to a constructor of the superclass.

As already hinted, if an anonymous class is derived from an interface I, the
actual superclass is Object, and the class implements I rather than extending
it. (Explicit implements clauses are illegal.) This is the only way an interface
name can legally follow the keyword new. In such cases, the argument list
must always be null, to match the constructor of the actual superclass, Object.

 Enumeration myEnumerate(final Object array[]) {
 return new Enumeration() {
 int count = 0;
 public boolean hasMoreElements()
 { return count < array.length; }
 public Object nextElement()
 { return array[count++]; }
 };
 }
Inner Classes Specification—2/10/97 Release 7

How do inner classes work?
Inner class code is typically defined relative to some enclosing class instance,
so the inner class instance needs to be able to determine the enclosing instance.

The JavaSoft Java 1.1 compiler arranges this by adding an extra private
instance variable which links the inner class to the enclosing class. This
variable is initialized from an extra argument passed to the inner class
constructor. That argument, in turn, is determined by the expression which
creates the inner class instance; by default it is the object doing the creation.

The Java 1.1 Language Specification specifies that the name of a type which is
a class member, when transformed into Java 1.0 code for the purpose of
generating Java virtual machine bytecodes, consists of the fully qualified name
of the inner class, except that each ‘.’ character following a class name is
replaced by a ‘$’. In addition, each inner class constructor receives the
enclosing instance in a prepended argument. Here is how the transformed
source code of the FixedStack example might look:

public class FixedStack {
 ... (the methods omitted here are unchanged)
 public java.util.Enumeration elements() {
 return new FixedStack$Enumerator(this);
 }
}

class FixedStack$Enumerator implements java.util.Enumeration {
 private FixedStack this$0; // saved copy of FixedStack.this
 FixedStack$Enumerator(FixedStack this$0) {
 this.this$0 = this$0;
 this.count = this$0.top;
 }

 int count;
 public boolean hasMoreElements() {
 return count > 0;
 }
 public Object nextElement() {
 if (count == 0)
 throw new NoSuchElementException(“FixedStack”);
 return this$0.array[--count];
 }
}

8 Inner Classes Specification—2/10/97 Release

Anyone who has already programmed with Java or C++ adapter classes has
written code similar to this, except that the link variables must be manually
defined and explicitly initialized in top-level adapter classes, whereas the Java
1.1 compiler creates them automatically for inner classes.

When the Enumerator needs to refer to the top or array fields of the
enclosing instance, it indirects through a private link called this$0. The
spelling of this name is a mandatory part of the transformation of inner classes
to the Java 1.0 language, so that debuggers and similar tools can recognize
such links easily. (Most programmers are happily unaware of such names.)

(Note: There is a limitation in some implementations of Java 1.1, under which
the initialization of this$0 is delayed until after any superclass constructor is
run. This means that up-level references made by a subclass method may fail
if the method happens to be executed by the superclass constructor.)

References to local variables

A class definition which is local to a block may access local variables. This
complicates the compiler’s job. Here is the previous example of a local class:

In order to make a local variable visible to a method of the inner class, the
compiler must copy the variable’s value into a place where the inner class can
access it. References to the same variable may use different code sequences in
different places, as long as the same value is produced everywhere, so that the
name consistently appears to refer to the same variable in all parts of its scope.

By convention, a local variable like array is copied into a private field
val$array of the inner class. (Because array is final, such copies never
contain inconsistent values.) Each copied value is passed to the inner class
constructor as a separate argument of the same name.

 Enumeration myEnumerate(final Object array[]) {
 class E implements Enumeration {
 int count = 0;
 public boolean hasMoreElements()
 { return count < array.length; }
 public Object nextElement() {
 { return array[count++]; }
 }
 return new E();
 }
Inner Classes Specification—2/10/97 Release 9

Here is what the resulting transformed code looks like:

A compiler may avoid allocating an inner class field to a variable, if it can
determine that the variable is used only within the inner class constructors.

Notice that a class defined by a block, like E, is not a member of its enclosing
class, and so it cannot be named outside of its block. This is the same scoping
restriction as applies to local variables, which also cannot be named outside of
their blocks. In fact, any class contained in a block (whether directly or inside
an intervening local class) cannot be named outside the block. All such classes
are called inaccessible. For purposes of linking, the compiler must generate a
unique externally visible name for every inaccessible class. The overall form of
these names is a class name, followed by additional numbers or names,
separated by $ characters.

Also, variable names synthesized by the compiler beginning with this$ and
val$ must follow the usage patterns described here.

These names and conventions must be recognized by 1.1-compliant tools, and
are strongly suggested for most compilation purposes. They are discussed
further in the section on binary compatibility.

It must be emphasized that these oddly-named “this$“ and “val$“ fields
and extra constructor arguments are added by the compiler to the generated
bytecodes, and cannot be directly referenced by Java source code. Likewise,
bytecode-level class names like MyOuterClass$19 cannot be used by source
code (except under pre-1.1 compilers, which know nothing of inner classes).

 Enumeration myEnumerate(final Object array[]) {
 return new MyOuterClass$19(array);
 }
...
class MyOuterClass$19 implements Enumeration {
 private Object val$array[];
 int count;
 MyOuterClass$19(Object val$array[])
 { this.val$array = val$array; count = 0; }
 public boolean hasMoreElements()
 { return count < val$array.length; }
 public Object nextElement()
 { return val$array[count++]; }
}

10 Inner Classes Specification—2/10/97 Release

Why does Java need inner classes?
From the very beginnings of Java, its designers have recognized the need for a
construct like a “method pointer,” which (in all its various forms) amounts to a
handle on an individual block of code which can be used without reference to
the object or class containing the code. In languages (like C or Lisp) where
functions are free standing, independent of objects, function pointers serve this
role. For example, these pointers often serve to connect a “callback” or “event”
in one module to a piece of code in another. In a more object oriented style,
Smalltalk has “blocks,” which are chunks of code that behave like little objects.
As with C or Lisp function pointers, Smalltalk blocks can be used to organize
complex control flow patterns, such as iteration over collections.

In Java, the same complex control flow patterns, including event management
and iteration, are expressed by classes and interfaces. Java uses interfaces with
one method where other languages might use separate “function types.” The
Java programmer creates the equivalent of a callback or a Smalltalk block by
wrapping the desired code in an adapter class which implements the required
interface. With inner classes, the notation for adapters is about as simple as
that of Smalltalk blocks, or of inner functions in other languages. However,
since classes are richer than functions (because they have multiple entry
points), Java adapter objects are more powerful and more structured than
function pointers.

So, whereas C, Lisp, and Smalltalk programmers use variations of “method
pointers” to encapsulate chunks of code, Java programmers use objects. Where
other languages have specialized function types and notations to encapsulate
behavior as functions, Java has only class and interface types. In Java, “the
class is the quantum of behavior.” One benefit of this approach is simplicity
and stability for the Java Virtual Machine, which needs no special support for
inner classes or function pointers.

Without inner classes, Java programmers can create callbacks and iterators by
means of adapter classes defined at top-level, but the notation is so clumsy as
to be impractical. By means of inner classes, Java programmers can write
concise adapter classes which are coded precisely where they are needed, and
operate directly on the internal variables and methods of a class or a block.

Thus, inner classes make adapter classes practical as a coding style. In the
future, inner classes will also be more efficient than equivalent top-level
adapter classes, because of increased opportunities for optimization, especially
of (externally) inaccessible classes.
Inner Classes Specification—2/10/97 Release 11

Why anonymous classes?

An anonymous class is an abbreviated notation for creating a simple local
object “in-line” within any expression, simply by wrapping the desired code in
a “new” expression.

As noted previously, not every inner class should be anonymous, but very
simple “one-shot” local objects are such a common case that they merit some
syntactic sugar.

Anonymous classes are useful for writing small encapsulated “callbacks,” such
as enumerations, iterators, visitors, etc. They are also helpful for adding
behavior to objects which already have names, such as AWT components (to
which anonymous event handlers are added), and threads. In both cases, an
intervening class name can detract from the clarity of the code.

Several other languages from which Java derives inspiration, such as Smalltalk
and Beta, offer similar shorthands for anonyous objects or functions.

What about dynamic typing and computed selectors (“perform”)?

In order to support the construction of robust and secure systems, Java is
statically typed. In other languages, callbacks sometimes take a form which is
untyped, or dynamically typed. C callbacks usually work with an untyped
“client data” address, while Smalltalk classes sometimes plug into each other
by means of symbolic method references computed at run time, which are
passed to an interpretive “perform” method.

The closest equivalent to a C void* pointer in Java is a reference of type
Object. As in C, it is possible to program in Java with such “untyped”
references. A generic “argument” field in an event descriptor might be an
undifferentiated Object, as is the element type of java.util.Vector.
Coding with untyped references is sometimes a workable technique, despite
the execution costs of dynamic type checking, but the lack of static declarations
can make programs hard to understand and maintain.

Also, some applications for “method pointer” constructs, such as application
builders or the Java Beans component framework, have needed the ability to
invoke a method of a computed name on an arbitrary object. This capability is
provided by the Java Core Reflection API, java.lang.reflect, a new Java
1.1 API.
12 Inner Classes Specification—2/10/97 Release

How do inner classes affect the idea of this in Java code?
Recall that the code of a top-level class T can make use of the current instance,
either directly by means of the keyword this, or indirectly, by naming one of
the instance members of T. The idea of a current instance has been extended,
so that inner classes have more than one current instance. This allows the code
of an inner class C to execute relative to an enclosing instance of its outer class,
as well as the current instance of C.

In our first example of adapter classes, the Enumerator code had two current
instances, the enclosing FixedStack and the Enumerator object itself. More
generally, within the entire body of an inner class C, there is a current instance
for C, another current instance for every inner class enclosing C, and finally a
current instance for the innermost enclosing top-level class. (A static class is
a top-level class, not an inner class. Therefore, our enumeration of current
instances stops at the first static keyword.)

Top-level classes do not have multiple current instances. Within the non-
static code of a top-level class T, there is one current instance of type T.
Within the static code of a top-level class T, there are no current instances.
This has always been true of top-level classes which are package members, and
is also true of top-level classes which are static members of other top-level
classes. It is as if all package members have been implicitly static all along.

In all classes, each current instance can be named explicitly or can play an
implicit part when its members are used. Any current instance can be referred
to by explicitly qualifying the keyword this as if it were a name:
FixedStack.this, Enumerator.this, etc. (This notation is always
effective, since the language prohibits an inner class from having the same
name as any of its enclosing classes.) As always, the innermost current
instance can be named with the unqualified keyword this.

Remember that an instance variable reference m has the same meaning as a
field reference expression this.m, so the current instance is implicitly used.
In a given piece of code, all members of all current classes are in scope and
usable (except for name hiding by intervening scopes). The simple name of a
member is implicitly qualified by the current instance in whose class the name
was found. (All static members of enclosing classes are always usable.)

In particular, Java code can directly use all methods of all current instances.
Class scoping does not influence overloading: If the inner class has one print
method, the simple method name print refers to that method, not any of the
ten print methods in the enclosing class.
Inner Classes Specification—2/10/97 Release 13

Enclosing classes and instantiation

It is sometimes useful to speak of an enclosing instance of an inner class C. This
is defined as any current instance within C, other than the instance of C itself.
Every instance of C is permanently associated with its enclosing instances.

When a constructor is invoked, the new object must be supplied with an
enclosing instance, which will become a current instance for all the code
executed by the new object. (If there are layers of enclosing instances, the
innermost is required, and it in turn determines all the others.) The enclosing
instance may be specified explicitly, by qualifying the keyword new:

A subclass of an inner class C must pass an enclosing instance to C’s
constructor. This may be done, as just shown, by explicitly qualifying the
keyword super. By default, a current instance of the caller becomes the
enclosing instance of a new inner object. In an earlier example, the expression
new Enumerator() is equivalent to the explicitly qualified this.new
Enumerator(). This default is almost always correct, but some applications
(such as source code generators) may need to override it from time to time.

class Automobile {
 class Wheel {
 String hubcapType;
 float radius;
 }

 Wheel leftWheel = this. new Wheel();
 Wheel rightWheel = this. new Wheel();
 Wheel extra;

 static void thirdWheel(Automobile car) {
 if (car.extra == null) {
 car.extra = car. new Wheel();
 }
 return car.extra;
 }
}

class WireRimWheel extends Automobile.Wheel {
 WireRimWheel(Automobile car, float wireGauge) {
 car. super();
 }
}

14 Inner Classes Specification—2/10/97 Release

Do inner classes affect the correct synchronization of Java code?
An inner class is part of the implementation of its enclosing class (or classes).
As such, it has access to the private members of any enclosing class. This
means that the programmer must be aware of the possibility of concurrent
access to state stored in private variables, and ensure that non-private
methods are correctly synchronized. Sometimes this just means that the
enclosing method needs to be declared with the synchronized keyword.

When more than one object is involved, as with FixedStack and its
enumerator, the programmer must choose which instance to synchronize upon,
and write an explicit synchronized statement for the enclosing instance:

There is no special relation between the synchronized methods of an inner
class and the enclosing instance. To synchronize on an enclosing instance, use
an explicit synchronized statement.

When writing multi-threaded code, programmers must always be aware of
potential asynchronous accesses to shared state variables. Anonymous inner
classes make it extremely easy to create threads which share private fields or
local variables. The programmer must take care either to synchronize access to
these variables, or to make separate copies of them for each thread. For
example, this for-loop needs to make copies of its index variable:

It is a common mistake to try to use the loop index directly within the inner
class body. Since the index is not final, the compiler reports an error.

 public Object nextElement() {
 ...
 synchronized (FixedStack.this) {
 return array[--count];
 }
 }

 for (int ii = 0; ii < getBinCount(); ii++) {
 final int i = ii; // capture a stable copy for each thread
 Runnable r = new Runnable() {
 public void run() { processBin(i); }
 };
 new Thread(r, "processBin("+i+")").start();
 }
Inner Classes Specification—2/10/97 Release 15

Can a nested class be declared final, private, protected, or static?
All the existing access protection and modification modes apply in a regular
fashion to types which are members of other classes. Classes and interfaces
can be declared private or protected within their enclosing classes.

A class which is local to a block is not a member, and so cannot be public,
private, protected, or static. It is in effect private to the block, since it
cannot be used outside its scope.

Access protection never prevents a class from using any member of another
class, as long as one encloses the other, or they are enclosed by a third class.

Any class (if it has a name) can be declared final or abstract, and any
accessible non-final named class or interface can serve as a supertype. A
compiler may also change a class to be final if it can determine that it has no
subclasses, and that there is no way for subclasses to be added later. This is
possible when a private or block-local class has no subclasses in its scope.

Members that can be marked static

The static declaration modifier was designed to give programmers a way to
define class methods and class variables which pertain to a class as a whole,
rather than any particular instance. They are “top-level” entities.

The static keyword may also modify the declaration of a class C within the
body of a top-level class T. Its effect is to declare that C is also a top-level class.
Just as a class method of T has no current instance of T in its body, C also has
no current instance of T. Thus, this new usage of static is not arbitrary.

As opposed to top-level classes (whether nested or not), inner classes cannot
declare any static members at all. To create a class variable for an inner
class, the programmer must place the desired variable in an enclosing class.

It is helpful at this point to abuse the terminology somewhat, and say, loosely,
that the static keyword always marks a “top-level” construct (variable,
method, or class), which is never subject to an enclosing instance.

This shows why an inner class cannot declare a static member, because the
entire body of the inner class is in the scope of one or more enclosing instances.

While the C language allows block-local static variables, the same effect can
be obtained in Java, more regularly and maintainably, by defining the desired
long-lived variable in the scope which corresponds to the required lifetime.
16 Inner Classes Specification—2/10/97 Release

How do inner classes affect the organization of the Java Virtual Machine?
There are no changes to the class file format as processed by the Java Virtual
Machine, or to the standard class libraries. The new features are implemented
by the compiler. The organization of the resulting bytecodes is specified with
enough precision that all 1.1-conforming compilers will produce binary
compatible class files.

A single file of Java source code can compile to many class files. Although this
is not a new phenomenon, the power of the inner class notation means that the
programmer can end up creating a larger number of class files with relatively
less code. In addition, adapter classes tend to be very simple, with few
methods. This means that a Java program which uses many inner classes will
compile to many small class files. Packaging technologies for such classes
process them reasonably efficiently. For example, the class file for the example
class FixedStack.Enumeration occupies about three quarters of a kilobyte,
of which about 40% is directly required to implement its code. This ratio is
likely to improve over time as file formats are tuned. The memory usage
patterns in the virtual machine are comparable.

Class name transformations

Names of nested classes are transformed as necessary by the compiler to avoid
conflicts with identical names in other scopes. Names are encoded to the
virtual machine by taking their source form, qualified with dots, and changing
each dot ‘.’ after a class name into a dollar sign ‘$’. (Mechanical translators are
allowed to use dollar signs in Java.)

When a class name is private or local to a block, it is globally inaccessible. A
compiler may opt to code such an inaccessible name by using an accessible
enclosing class name as a prefix, followed by a ‘$’ separator and a locally
unique decimal number. Anonymous classes must be encoded this way.

So, an inner class pkg.Foo.Bar gets a run-time name of pkg.Foo$Bar, or
perhaps something like pkg.Foo$23, if Bar is a private member or local
class. Implementations must conform to the format of names, even globally
inaccessible ones, so that debuggers and similar tools can recognize them.

Any class file which defines or uses a transformed name also contains an
attribute (as supported by the 1.0 file format) recording the transformation.
These attributes are ignorable by the virtual machine and by 1.0 compilers.
The format of this attribute is described in the section on binary compatibility.
Inner Classes Specification—2/10/97 Release 17

Names of generated variables and methods

As we have seen previously, if an inner class uses a variable from an enclosing
scope, the name expression will be transformed, into a reference either to a
field of an enclosing instance, or to a field of the current instance which
provides the value of a final local variable. A reference to an enclosing
instance, in turn, is transformed into a reference to a field in a more accessible
current instance. These techniques require that the compiler synthesize hidden
fields in inner classes.

There is one more category of compiler-generated members. A private
member m of a class C may be used by another class D, if one class encloses the
other, or if they are enclosed by a common class. Since the virtual machine
does not know about this sort of grouping, the compiler creates a local protocol
of access methods in C to allow D to read, write, or call the member m. These
methods have names of the form access$0, access$1, etc. They are never
public. Access methods are unique in that they may be added to enclosing
classes, not just inner classes.

All generated variables and methods are declared in a class file attribute, so
that the 1.1 compilers can prevent programs from referring to them directly.

Security implications

If an inner class C requires access to a private member m of an enclosing
class T, the inserted access method for m opens up T to illegal access by any
class K in the same package. There at present are no known security problems
with such access methods, since it is difficult to misuse a method with package
scope. The compiler can be instructed to emit warnings when it creates access
methods, to monitor the creation of possible loopholes.

If a class N is a protected member of another class C, then N's class file
defines it as a public class. A class file attribute correctly records the
protection mode bits. This attribute is ignored by the current virtual machine,
which therefore will allow access to N by any class, and not just to subclasses
of C. The compiler, of course, will correctly diagnose such errors, because it
looks at the attribute. This is not a security hole, since malicious users can
easily create subclasses of C and so gain access to N, protected or not.

Likewise, if a class is a private member of another class, its class file defines
it as having package scope, and an attribute declares the true access protection,
so that 1.1 compilers can prevent inadvertant access, even within the package.
18 Inner Classes Specification—2/10/97 Release

How does the Java Language Specification change for inner classes?
There are few significant changes, since the new features primarily relax
restrictions in the existing language, and work out new implications for the old
design. The key change is that types can now have types as members. (But
type names can’t contain instance expressions.) The basic definitions of scope,
name scoping, member naming, and member access control are unchanged.

Here are the extensions to the class body and block syntax:

ClassMemberDeclaration, InterfaceMemberDeclaration:
...
ClassDeclaration
InterfaceDeclaration

BlockStatement:
...
ClassDeclaration

A type which is a type member is inherited by subtypes, and may be hidden in
them by type declarations of the same name. (Types are never “virtual.”)
Members which are types may be declared private or protected.

A non-static member class, or a class defined by a block or expression, is an
inner class. All other classes are top-level. Inner classes may not declare
static members, static initializers, or member interfaces. Package
members are never static. But a class which is a member of a top-level class
may be declared static, thereby declaring it also to be a top-level class.
Interfaces are always static, as are their non-method members.

A class may not have the same simple name as any of its enclosing classes.

The keyword this can be qualified, to select one of possibly several current
instances. (Inner classes have two or more current instances.)

PrimaryNoNewArray:
...
ClassName . this

The syntax for class instance creation extended to support anonymous classes
and enclosing instances:

ClassInstanceCreationExpression:
new TypeName (ArgumentListopt) ClassBodyopt

Primary . new Identifier (ArgumentListOpt) ClassBodyopt
Inner Classes Specification—2/10/97 Release 19

A new expression may define an anonymous class by specifying its body.
Independently, the type of a new expression may specified as the simple name
of an inner class, if an instance of the immediately enclosing class is given as a
qualifying expression before the keyword new. The qualifying instance
becomes the enclosing instance of the new object. A corresponding
qualification of super allows a subclass constructor to specify an enclosing
instance for a superclass which is an inner:

ExplicitConstructorInvocation: ...
 Primary . super (ArgumentListOpt) ;

If an inner class is constructed by an unqualified new or super expression, the
enclosing instance will be the (innermost) current instance of the required type.

Some of the detailed descriptions of name binding in the 1.0 Java Language
Specification require amendment to reflect the new regularity in lexical
scoping. For example, a simple variable name refers to the innermost lexically
apparent definition, whether that definition comes from a class or a block. The
same is true for simple type names. The grammar for a qualifier name (i.e., an
AmbiguousName) is extended to reflect the possibility of class names qualifying
other type names. The initial simple name in a qualified type name is taken to
be a class name if a class of that name is in scope; otherwise it is taken to be a
package name, as in Java 1.0.

Any inherited member m of a subclass C is in scope within the body of C,
including any inner classes within C. If C itself is an inner class, there may be
definitions of the same kind (variable, method, or type) for m in enclosing
scopes. (The scopes may be blocks, classes, or packages.) In all such cases, the
inherited member m hides the other definitions of m. Additionally, unless the
hidden definition is a package member, the simple name m is illegal; the
programmer must write C.this.m.

Nested classes of all sorts (top-level or inner) can be imported by either kind of
import statement. Class names in import statements must be fully package
qualified, and be resolvable without reference to inheritance relations. As in
Java 1.0, it is illegal for a class and a package of the same name to co-exist.

A break or continue statement must refer to a label within the immediately
enclosing method or initializer block. There are no non-local jumps.

The checking of definite assignment includes classes defined by blocks and
expressions, and extends to occurrences of variables within those classes. Any
local variable used but not defined in an inner class must be declared final,
and must be definitely assigned before the body of the inner class.
20 Inner Classes Specification—2/10/97 Release

Other changes in the Java 1.1 language
The Java 1.1 language includes four additional extensions which fill small
holes in the language, and make certain kinds of APIs easier to use.

Instance initializers

The static initializer syntax is extended to support instance initialization also:

ClassBodyDeclaration:
Block

Initialization code introduced without the static keyword is executed by
every constructor, just after the superclass constructor is called, in textual order
along with any instance variable initializations.

An instance initializer may not return, nor throw a checked exception, unless
that exception is explicitly declared in the throws clause of each constructor.
An instance initializer in an anonymous class can throw any exceptions.

Instance initializers are useful when instance variables (including blank finals)
must be initialized by code which must catch exceptions, or perform other
kinds of control flow which cannot be expressed in a single initializer
expression. Instance initializers are required if an anonymous class is to
initialize itself, since an anonymous class cannot declare any constructors.

Anonymous array expressions

The array allocation syntax is extended to support initialization of the elements
of anonymous arrays. Just as a named array can be initialized by a brace-
enclosed list of element expressions, an array creation expression can now be
followed by such a brace-enclosed list. In both cases, the array type is not
allowed to include any dimension expressions; the dimension is computed by
counting the number of element expressions. Here is the new syntax:

ArrayCreationExpression:
new Type Dims ArrayInitializer

The equivalence of the following two statements illustrates the new syntax:

T v[] = {a};
T v[] = new T[] {a};
Inner Classes Specification—2/10/97 Release 21

Class literals
PrimaryNoNewArray:

...
Type . class
void . class

A class literal is an expression consisting of the name of a class, interface, array,
or primitive type followed by a ‘.’ and the token class. It evaluates to an
object of type Class, the class object for the named type (or for void).

For reference types, a class literal is equivalent to a call to Class.forName
with the appropriate string, except that it does not raise any checked
exceptions. (Its efficiency is likely to be comparable to that of a field access,
rather than a method call.) The class literal of a reference type can raise
NoClassDefFoundError, in much the same way that a class variable
reference can raise that error if the variable’s class is not available.

The class literal of a primitive type or void is equivalent to a static variable
reference to a pre-installed primitive type descriptor, according to this table:

Java APIs which require class objects as method arguments are much easier to
use when the class literal syntax is available. Note that the compiler is
responsible for taking into account the ambient package and import
statements when processing the TypeName of a class literal.

The older usage of Class.forName requires the programmer to figure out the
desired package prefix and write it in a class name string. The difficulty of
getting the string spelled right becomes greater in the presence of inner classes,
since their names (as processed by Class.forName) are encoded with ‘$’
characters instead of dots.

Note that a class literal never contains an expression, only a type name.

boolean.class == Boolean.TYPE
char.class == Character.TYPE
byte.class == Byte.TYPE
short.class == Short.TYPE
int.class == Integer.TYPE
long.class == Long.TYPE
float.class == Float.TYPE
double.class == Double.TYPE
void.class == Void.TYPE
22 Inner Classes Specification—2/10/97 Release

Blank finals and final local variables

A blank final is final variable declaration (of any kind) which lacks an
initializer. A blank final must be assigned an initial value, at most once.

The definite assignment rules are extended to record variables which are
“definitely unassigned,” and an assignment to a blank final is prohibited
unless the final is definitely unassigned before the assignment statement.
Subsequently, it is definitely assigned, and, being a final, it cannot be re-
assigned along the same execution path.

The definite unassignment rules take into account back-branches of loops, so
that a variable occurrence in a loop body may not be definitely unassigned if
the loop makes an assignment which can reach the occurrence via a back-
branch. The definite assignment checks work as if the first iteration of the loop
had been unrolled into an if statement.

A blank final class variable must be definitely assigned by a static initializer
(in the same class). This is the only context where class variables are checked
for definite assignment.

A blank final instance variable must be definitely assigned by a non-static
initializer, or else by every constructor. These are the only contexts in which
definite assignment checking is done on instance variables. Within these
contexts, an assignment to this.V is recognized as performing an assignment
to the name V for purposes of definite assignment checking.

Local variables and parameters of all sorts can now be declared final:

LocalVariableDeclaration:
ModifiersOpt Type VariableDeclarators

FormalParameter:
ModifiersOpt Type VariableDeclaratorId

Such a variable is subject to the usual definite assignment rules governing local
variables. In addition, it cannot be assigned to, except for initialization.

A method parameter or catch formal parameter may be declared final. This
has no effect on the method signature or the caught exception type. Within the
body of the method or catch, the parameter may not be assigned to.

The final declaration modifier may be used to make local variables and
parameters available to inner classes.
Inner Classes Specification—2/10/97 Release 23

What are the new binary compatibility requirements for Java 1.1 classes?
In order to binary ensure compatibility between bytecodes output for Java 1.1
compilers from different vendors, and to ensure proper applicability of
debuggers and similar tools to those bytecodes, Java makes certain
requirements on the form of the bytecodes produced. This section describes
the requirements, new in Java 1.1, which pertain to the implementation of
various kinds of inner and nested top-level classes.

Bytecode names of classes and interfaces

Instances of the Java Virtual Machines, and Java bytecodes, refer to reference
types by means of bytecode names which differ in detail from the names used in
Java source code. The bytecode name of a package member T is defined as the
name of the package, with every ‘.’ replaced by ‘/’, followed (if the package
name is not null) by another ‘/’, and then by the simple name of T. The
bytecode name of T also serves as a prefix for the bytecode name of every class
defined within the body of T.

The bytecode name of a class C which is a non-private member of another
class, and which is not contained (directly or indirectly) in any block or
private class, is defined as the bytecode name of the immediately-enclosing
class, followed by ‘$’, followed by the simple name of C.

All other classes are called inaccessible. No inaccessible class N can ever be
referenced by the code of any other compilation unit. Thus, as long as the
name of N is chosen by the compiler in such as way as not to conflict with any
other class in the same compilation unit, the name will be globally unique,
because (as required previously) its prefix is unique to the package member in
which it occurs.

For the sake of tools, there are some additional requirements on the naming of
an inaccessible class N. Its bytecode name must consist of the bytecode name
of an enclosing class (the immediately enclosing class, if it is a member),
followed either by ‘$’ and a positive decimal numeral chosen by the compiler,
or by ‘$’ and the simple name of N, or else by both (in that order). Moreover,
the bytecode name of a block-local N must consist of its enclosing package
member T, the characters ‘1’, and N, if the resulting name would be unique.

The string produced by the getName method of Class is derived, in all of
these cases, from the bytecode name, by replacing ‘/’ by ‘.’. There is no
attempt to “clean up” the name to make it resemble Java source code.
24 Inner Classes Specification—2/10/97 Release

The class attribute InnerClasses

The bytecode output of a Java 1.1 compiler may refer (via CONSTANT_Class
entries) to bytecode names of classes or interfaces which are not package
members. If so, the bytecodes must also contain an class attribute called
InnerClasses which declares the encoding of those names. This attribute
contains an array of records, one for each encoded name:

Each array element records a class with an encoded name, its defining scope,
its simple name, and a bitmask of the originally declared, untransformed
access flags. If an inner class is not a member, its outer_class_info_index
is zero. If a class is anonymous, its inner_name_index is zero.

If a class C was declared protected, the public access flag bit is cleared in
its InnerClasses record, even though it is set in C’s access_flags field.

If the outer_class_info_index of a record refers to a class E which itself is
not a package member, then an earlier record of the same InnerClasses
attribute must describe E.

If a class has members which are types, it must have an InnerClasses
attribute, with a record for each of the types. The rules already given imply
that a class which is not a package member has an InnerClasses attribute
which has a record for it and all of its enclosing classes, except the outermost.

These rules ensure that compilers and debuggers can correctly interpret
bytecode names without parsing them, and without opening additional files to
examine inner class definitions. Compilers are allowed to omit
InnerClasses records for inaccessible classes, but they are encouraged to
include records for all classes, especially when the code is being compiled for
use with a debugger.

InnerClasses_attribute {
 u2 attribute_name_index;
 u4 attribute_length;
 u2 number_of_classes;
 {
 u2 inner_class_info_index; // CONSTANT_Class_info index
 u2 outer_class_info_index; // CONSTANT_Class_info index
 u2 inner_name_index; // CONSTANT_Utf8_info index
 u2 inner_class_access_flags; // access_flags bitmask
 } classes[number_of_classes]
}

Inner Classes Specification—2/10/97 Release 25

The member attribute Synthetic

As discussed previously, the compiler synthesizes certain hidden fields and
methods in order to implement the scoping of names. These fields are
private unless noted otherwise, or they are at most of package scope.

Java 1.1 compilers are required, when producing bytecodes, to mark any field
or member not directly defined in the source code with an attribute named
Synthetic. (At present, the length must be zero.) This will allow other
compilers to avoid inadvertant source-level references to non-private hidden
members, and will allow tools to avoid displaying them unnecessarily.

(A corresponding mechanism for declaring a local variable to be Synthetic
may also be introduced.)

Java 1.1 compilers are strongly encouraged, though not required, to use the
following naming conventions when implementing inner classes. Compilers
may not use synthetic names of the forms defined here for any other purposes.

A synthetic field pointing to the outermost enclosing instance is named
this$0. The next-outermost enclosing instance is this$1, and so forth. (At
most one such field is necessary in any given inner class.) A synthetic field
containing a copy of a constant v is named val$v. These fields are final.

All these synthetic fields are initialized by constructor parameters, which have
the same names as the fields they initialize. If one of the parameters is the
innermost enclosing instance, it is the first. All such constructor parameters
are deemed to be synthetic. If the compiler determines that the synthetic
field’s value is used only in the code of the constructor, it may omit the field
itself, and use only the parameter to implement variable references.

A non-private final synthetic method which grants access to a private
member or constructor has a name of the form access$N, where N is a
decimal numeral. The organization of such access protocols is unspecified.

Debuggers and similar tools which are 1.1 compatible must recognize these
naming conventions, and organize variable displays and symbol tables
accordingly. Note that tools may need to parse these names. Compilers are
strongly encouraged to use these conventions, at least by default.

Implementations of the Java Virtual Machine may verify and require that the
synthetic members specified here are defined and used properly. It is
reasonable to exploit the nature of synthetic members by basing optimization
techniques on them.
26 Inner Classes Specification—2/10/97 Release

Further Example: Sample AWT code
The 1.1 version of the Java Abstract Window Toolkit provides a new event
handling framework, based on “event listener” interfaces, to which the
programmer must write callback objects. The callbacks amount to a flexible
new layer between the GUI and the application’s data structures. These
adapters must be subclassed to hook them up to the application. The point of
this is to avoid the need to subclass the GUI components themselves, or to
write complicated if/else and switch statements to interpret event codes.

This design requires that the adapter classes be simpler to write and maintain
than the corresponding if/else and switch code! This is where inner
classes become important.

Here is an typical example of AWT event handling code. It uses a named inner
class App.GUI to organize the GUI code, and anonymous adapters to tie
individual GUI components to the application’s methods:

public class App {
 void search() { ...do search operation...}
 void sort() { ...do sort operation ... }
 static public void main(String args[]) {
 App app = new App(args);
 GUI gui = app.new GUI(); // make a new GUI enclosed by app
 }
 class GUI extends Frame { // App.GUI is enclosed in an App.
 public GUI() {
 setLayout(new FlowLayout());
 Button b;
 add(b = new Button("Search"));
 b.setActionListener(
 new ActionAdaptor() {
 public void actionPerformed(ActionEvent e) {
 search(); // App.this.search()
 }
 }
);
 ... build a Sort button the same way ...
 pack(); show();
 }
 }
 ...
}

Inner Classes Specification—2/10/97 Release 27

Further Example: An API with coordinated inner classes
Sometimes a class-based API will include as an essential feature secondary
classes or interfaces. These latter can be structured quite naturally as static
inner classes of the main class.

To see an example of this, imagine a hypothetical utility Sort with an interface
Comparer which virtualizes the comparison operation, and a handful of
standard reusable comparison implementations. (This example has a flaw:
Comparer is generic enough to stand alone.) The code might look like this:

public class Sorter {
 public interface Comparer {
 /** Returns <0 if x < y, etc. */
 int compare(Object x, Object y);
 }
 public static void sort(Object keys[], Comparer c) {...}
 public static void sort(Object keys[], Comparer c,
 Object values[]) {...}
 public static void sort(String keys[], Object values[])
 { sort(keys, stringComparer, values); }

 public static class StringComparer implements Comparer {
 public int compare(Object x, Object y) {
 if (x == null) return (y == null) ? 0 : -1;
 if (y == null) return 1;
 return x.toString().compareTo(y.toString());
 }
 }
 public static final Comparer stringComparer
 = new StringComparer();

 public static class LongComparer implements Comparer {
 ... long lx = ((Number)x).longValue(); ...
 }
 public static final Comparer longComparer
 = new LongComparer();

 /** Compose 2 comparisons, presumably on distinct sub-keys. */
 public static class CombinedComparer implements Comparer {...}
 public static Comparer combine(Comparer c1, Comparer c2) {...}
 ...
}

28 Inner Classes Specification—2/10/97 Release

Further Example: Multi-threaded task partitioning.
It is sometimes useful to parallelize a task with independent sub-tasks, by
assigning each sub-task to a thread. This can make the whole task finish
sooner, if multiple processors are involved. (This will be the case, if the sub-
tasks perform network traffic.) In interactive Java programs, multithreading is
also used to enable partial results from sub-tasks to be pushed through to the
end user, while slower sub-tasks continue to grind away.

The code below (based on an example from Doug Lea) shows a very simple
way to control the rendering of several pictures in such a way that each picture
is delivered to a displayer as soon as it’s ready, but the original requester
blocks until all rendering is finished. Each sub-task is coded by an anonymous
implementation of Runnable which is at the heart of each thread.

public class GroupPictureRenderer {
 private PictureRenderer renderer;
 private PictureDisplayer displayer;
 ...

 public Picture[] render(final byte[][] rawPictures)
 throws InterruptedException {
 Thread workers[] = new Thread[rawPictures.length];
 final Picture results[] = new Picture[rawPictures.length];
 // start one thread per rendering sub-task
 for (int ii = 0; ii < rawPictures.length; ii++) {
 final int i = ii; // capture ii for each new thread
 Runnable work = new Runnable() {
 public void run() {
 results[i] = renderer.render(rawPictures[i]);
 displayer.display(results[i]);
 }
 };
 workers[i] = new Thread(work, "Renderer");
 workers[i].start();
 }
 // all threads are running; now wait for them all to finish
 for (int i = 0; i < workers.length; i++)
 workers[i].join();
 // give all the finished pictures to the caller, too:
 return results;
 }
}

Inner Classes Specification—2/10/97 Release 29

	Inner Classes Specification
	Contents
	What are top-level classes and inner classes?
	Example: A simple adapter class
	Example: A local class
	Anonymous classes

	How do inner classes work?
	References to local variables

	Why does Java need inner classes?
	Why anonymous classes?
	What about dynamic typing and computed selectors (...

	How do inner classes affect the idea of this in Ja...
	Enclosing classes and instantiation

	Do inner classes affect the correct synchronizatio...
	Can a nested class be declared final, private, pro...
	Members that can be marked static

	How do inner classes affect the organization of th...
	Class name transformations
	Names of generated variables and methods
	Security implications

	How does the Java Language Specification change fo...
	Other changes in the Java 1.1 language
	Instance initializers
	Anonymous array expressions
	Class literals
	Blank finals and final local variables

	What are the new binary compatibility requirements...
	Bytecode names of classes and interfaces
	The class attribute InnerClasses
	The member attribute Synthetic

	Further Example: Sample AWT code
	Further Example: An API with coordinated inner cla...
	Further Example: Multi-threaded task partitioning....

