
Java™API for XML Processing Maintenance Release 1.6

Description:
Maintenance review of the JAXP 1.5 Specification

Maintenance Lead:
Joe Wang, Oracle Corporation

Feedback:
Please send comments to eg@jaxp.java.net

Rationale for Changes:

1. Use java.util.ServiceLoader

JAXP defines a number of service provider interfaces to allow deployment with alternative parser
implementations (service providers). Service providers are located by means of:

1) Use a system property named after the corresponding factory name;

2) Use the properties file "lib/jaxp.properties" in the JRE directory;

3) Read JAR service file, for example, META-
INF/services/java.xml.datatype.DatatypeFactory ;

4) Fall back to the system default implementation.

This update to the JAXP specification updates the 3rd step so that it requires the use of the service
provider loader facility defined by java.util.ServiceLoader. The rational for this is to allow for future
modularization of the Java SE platform where service providers may be deployed by means other
than JAR files and perhaps without the service configuration files. Note that the JAXP has always
specified the use of the 'Services API' without reference to a specific API or service provider loading
facility.

2. StAX 1.2, JSR 173 Stream API for XML MR3

The javax.xml.stream APIs are updated to StAX 1.2, JSR 173 Streaming API for XML Maintenance
Review 3.

3. API package org.w3c.dom.views

API package org.w3c.dom.events was included by reference in JAXP 1.3. However, its dependent
package org.w3c.dom.views was missing and should be added.

mailto:eg@jaxp.java.net

Announcement
Since JAXP version 1.1, JSR 206 has been distributed as a standalone technology and part of the Java
SE at the same time. The JAXP API has been stable (no significant changes) for a long time and the
need to use newer releases of the JAXP API with shipping releases of Java SE has mostly disappeared
in recent years.

In accordance with JCP 2.9 Process Document, 2.1.4 Platform Inclusion , we are announcing the end of
JAXP Standalone distribution. After MR3, JAXP 1.6, the technology that JSR 206 defines will be
delivered as a part of the Java SE solely. Future changes in the JAXP API will be defined through the
Platform JSR.

The subsumption of the JAXP API into the Platform JSR does not change any mechanisms defined in
JAXP. The service provider interfaces are the same except that they will then be directly specified in
the Platform JSR. Deployment of alternative implementations of the JAXP APIs will continue to be
supported.

Proposed changes

1. Use java.util.ServiceLoader

Use java.util.ServiceLoader to replace the 3rd step. The followings are changes to Chapter 4.
Pluggability Layer in JAXP Specification, Version 1.4.

1.1 SAX Plugability
Defined in the description of the following class and method:
public abstract class SAXParserFactory
public static SAXParserFactory newInstance()

1) The 3rd step:

Original Statement New Statement
Use the Services API (as detailed in the
JAR specification), if available, to
determine the classname. The Services
API will look for the classname in the file
META-
INF/services/javax.xml.parsers.SAXParse
rFactory in jars available to the runtime.

Use the service-provider loading facilities, defined
by the java.util.ServiceLoader class, to attempt to
locate and load an implementation of the service
using the default loading mechanism: the service-
provider loading facility will use the current
thread's context class loader to attempt to load the
service. If the context class
loader is null, the system class loader will be used.

2

2) The 4th step:

Original Statement New Statement
Platform default SAXParserFactory
instance.

Otherwise the system-default
implementation is returned.

1.2 DOM Plugability
 Defined in the description of the following class and method:
 public abstract class DocumentBuilderFactory
 public static DocumentBuilderFactory newInstance()

1) The 3rd step:

Original Statement New Statement
Use the Services API (as detailed in the
JAR specification), if available, to
determine the classname. The Services
API will look for a classname in the file
META-
INF/services/javax.xml.parsers.Document
BuilderFactory in jars available to the
runtime.

Uses the service-provider loading facilities, defined
by the java.util.ServiceLoader class, to attempt to
locate and load an implementation of the service
using the default loading mechanism: the service-
provider loading facility will use the current
thread's context class loader to attempt to load the
service. If the context class loader is null, the
system class loader will be used.

2) The 4th step:

Original Statement New Statement
Platform default
<code>DocumentBuilderFactory</code
> instance.

Otherwise, the system-default implementation is
returned.

1.3 XSLT Plugability
Defined in the description of the following class and method:
public abstract class TransformerFactory
public static TransformerFactory newInstance() throws TransformerFactoryConfigurationError

3

1) The 3rd step:

Original Statement New Statement
Use the Services API (as detailed in the
JAR specification), if available, to
determine the classname. The Services
API will look for a classname in the file
META-
INF/services/javax.xml.transform.Transfo
rmerFactory in jars available to the
runtime.

Use the service-provider loading facilities, defined
by the ServiceLoader class, to attempt to locate and
load an implementation of the service using the
default loading mechanism: the service-provider
loading facility will use the current thread's context
class loader to attempt to load the service. If the
context class loader is null, the system class loader
will be used.

2) The 4th step:

Original Statement New Statement
Platform default TransformerFactory
instance.

Otherwise, the system-default implementation is
returned.

1.4 XPath Plugability
 Defined in the description of the following class and method:
 public abstract class XPathFactory
 public static final static XPathFactory newInstance()

1) The 3rd step:

Original Statement New Statement
The class loader is asked for service
provider provider-configuration files
matching javax.xml.xpath.XPathFactory
in the resource directory META-
INF/services. See the JAR File
Specification for file format and parsing
rules. Each potential service provider is
required to implement the method:

isObjectModelSupported(String
objectModel)

The first service provider found in class
loader order that supports the specified
object model is returned.

Use the service-provider loading facilities, defined
by the ServiceLoader class, to attempt to locate and
load an implementation of the service using the
default loading mechanism: the service-provider
loading facility will use the current thread's context
class loader to attempt to load the service. If the
context class loader is null, the system class loader
will be used.

Each potential service provider is required to
implement the method
isObjectModelSupported(String objectModel) .

The first service provider found that supports the
specified object model is returned.

4

In case of ServiceConfigurationError an
XPathFactoryConfigurationException will be
thrown.

2) Other minor change:

Original Statement New Statement
public static final XPathFactory
newInstance()

public static XPathFactory newInstance()

1.5 Validation Plugability
Defined in the description of the following class and method:
public abstract class SchemaFactory
public static final static SchemaFactory newInstance(java.lang.String schemaLanguage)

1) The 3rd step:

Original Statement New Statement
The class loader is asked for service
provider provider-configuration files
matching
javax.xml.validation.SchemaFactory in
the resource directory META-
INF/services. See the JAR File
Specification for file format and parsing
rules. Each potential service provider is
required to implement the method:

isSchemaLanguageSupported(String
schemaLanguage)

The first service provider found in class
loader order that supports the specified
schema language is returned.

Use the service-provider loading facilities, defined
by the ServiceLoader class, to attempt to locate and
load an implementation of the service using the
default loading mechanism: the service-provider
loading facility will use the current thread's context
class loader to attempt to load the service. If the
context class loader is null, the system class loader
will be used.

Each potential service provider is required to
implement the method
isSchemaLanguageSupported(String
schemaLanguage) .

The first service provider found that supports the
specified schema language is returned.

In case of ServiceConfigurationError a
SchemaFactoryConfigurationError will be thrown.

2) Other change:
 Fix a typo in the description of class SchemaFactory, Schema Language section

5

Original Statement New Statement
implentors implementors

3) New class

public class SchemaFactoryConfigurationError
Thrown when a problem with configuration with the Schema Factories exists. This error will
typically be thrown when the class of a schema factory specified in the system properties cannot
be found or instantiated.

Synopsis:
public SchemaFactoryConfigurationError extends Error {

public SchemaFactoryConfigurationError();
public SchemaFactoryConfigurationError(java.lang.String message);
public SchemaFactoryConfigurationError(java.lang.String message, java.lang.Throwable
cause);
public SchemaFactoryConfigurationError(java.lang.Throwable cause);

}

Inheritance Path:
java.lang.Object

java.lang.Throwable
java.lang.Error
javax.xml.validation.SchemaFactoryConfigurationError

Constructor Summary

Constructor and Description
SchemaFactoryConfigurationError()
Create a new SchemaFactoryConfigurationError with no detail message.
SchemaFactoryConfigurationError(java.lang.String message)
Create a new SchemaFactoryConfigurationError with the String specified as
an error message.
SchemaFactoryConfigurationError(java.lang.String message,
java.lang.Throwable cause)
Create a new SchemaFactoryConfigurationError with the given Throwable
base cause and detail message.
SchemaFactoryConfigurationError(java.lang.Throwable cause)
Create a new SchemaFactoryConfigurationError with the given Throwable
base cause.

6

http://10.229.188.203:8080/ln_jaxp/spec/jaxp1.6-serviceloader/specdiff/javax/xml/validation/SchemaFactoryConfigurationError.html#SchemaFactoryConfigurationError(java.lang.Throwable)
http://10.229.188.203:8080/ln_jaxp/spec/jaxp1.6-serviceloader/specdiff/javax/xml/validation/SchemaFactoryConfigurationError.html#SchemaFactoryConfigurationError(java.lang.String,%20java.lang.Throwable)
http://10.229.188.203:8080/ln_jaxp/spec/jaxp1.6-serviceloader/specdiff/javax/xml/validation/SchemaFactoryConfigurationError.html#SchemaFactoryConfigurationError(java.lang.String)
http://10.229.188.203:8080/ln_jaxp/spec/jaxp1.6-serviceloader/specdiff/javax/xml/validation/SchemaFactoryConfigurationError.html#SchemaFactoryConfigurationError()

1.6 Streaming API for XML Plugability
Defined in the description of the following classes and methods:
public abstract class XMLEventFactory
 public static XMLEventFactory newInstance() throws FactoryConfigurationError

public abstract class XMLInputFactory
 public static XMLInputFactory newInstance() throws FactoryConfigurationError

public abstract class XMLOutputFactory
 public static XMLOutputFactory newInstance() throws FactoryConfigurationError

1) The 3rd step:

Original Statement New Statement
Use the Services API (as detailed in
the JAR specification), if available, to
determine the classname. The Services
API will look for a classname in the
file META-
INF/services/javax.xml.stream.XMLE
ventFactory in jars available to the
runtime.

Use the service-provider loading facilities, defined by
the ServiceLoader class, to attempt to locate and load
an implementation of the service using the default
loading mechanism: the service-provider loading
facility will use the current thread's context class
loader to attempt to load the service. If the context
class loader is null, the system class loader will be
used.

2) The 4th step:

Original Statement New Statement
Platform default XMLEventFactory
instance.

Otherwise, the system-default implementation is
returned.

3) Error:

Original Statement New Statement
Throws:
 FactoryConfigurationError - if an
instance of this factory cannot be
loaded

Throws:
 FactoryConfigurationError - in case of service
configuration error or if the implementation is not
available or cannot be instantiated.

7

1.7 Datatype Plugability
Defined in the description of the following class:
public abstract class DatatypeFactory

1) The general statement:

Original Statement New Statement
#newInstance() is used to create a new
DatatypeFactory.The following
implementation resolution mechanisms
are used in the following order:

A new instance of the DatatypeFactory is created
through the #newInstance() method that uses the
following implementation resolution mechanisms to
determine an implementation:

2) The 3rd step:

Original Statement New Statement
The services resolution mechanism is
used, e.g. META-
INF/services/java.xml.datatype.Datatype
Factory.
Any Exception thrown during the
instantiation process is wrapped as a
DatatypeConfigurationException.

Uses the service-provider loading facilities, defined
by the java.util.ServiceLoader class, to attempt to
locate and load an implementation of the service
using the default loading mechanism: the service-
provider loading facility will use the current thread's
context class loader to attempt to load the service. If
the context class loader is null, the system class
loader will be used.

In case of service configuration error a
javax.xml.datatype.DatatypeConfigurationException
will be thrown.

2 StAX 1.2, JSR 173 Stream API for XML MR3
The revision 1.2 of Stream API for XML Processing for the Java Platform, that is, JSR 173
Maintenance Review 3, deprecated newInstance methods in the StAX factories and added
newFactory methods. The followings are API changes of StAX 1.2 with the ServiceLoader
changes above incorporated in the description of the newFactory methods. Refer to Change Log
for JSR-000173 Streaming API for XML, Maintenance Review 3.

2.1 Deprecations
Class:
javax.xml.stream.XMLEventFactory

8

Method:
public static XMLEventFactory newInstance(java.lang.String factoryId,

java.lang.ClassLoader classLoader throws FactoryConfigurationError

Add the following deprecation notice:
@deprecated to maintain API consistency. All newInstance methods are replaced with
corresponding newFactory methods. The replacement newFactory(String factoryId,
ClassLoader classLoader) method defines no changes in behavior from this method.

 Class:
 javax.xml.stream.XMLInputFactory

Method:
public static XMLInputFactory newInstance(java.lang.String factoryId,

java.lang.ClassLoader classLoader throws FactoryConfigurationError

Add the following deprecation notice:
@deprecated to maintain API consistency. All newInstance methods are replaced with
corresponding newFactory methods. The replacement newFactory(String factoryId,
ClassLoader classLoader) method defines no changes in behavior from this method.

 Class:
 javax.xml.stream.XMLOutputFactory

Method:
public static XMLInputFactory newInstance(java.lang.String factoryId,

java.lang.ClassLoader classLoader throws FactoryConfigurationError

Add the following deprecation notice:
@deprecated This method has been deprecated because it returns an instance of
XMLInputFactory, which is of the wrong class. Use the new method
newFactory(java.lang.String factoryId, java.lang.ClassLoader classLoader) instead.

2.2 New factory methods

2.2.1 javax.xml.stream.XMLEventFactory

Method:
public static XMLEventFactory newFactory() throws FactoryConfigurationError

Create a new instance of the factory.

9

This static method creates a new factory instance. This method uses the following ordered
lookup procedure to determine the XMLEventFactory implementation class to load:

• Use the javax.xml.stream.XMLEventFactory system property.
• Use the properties file "lib/stax.properties" in the JRE directory. This configuration file is in

standard java.util.Properties format and contains the fully qualified name of the
implementation class with the key being the system property defined above.

• Use the service-provider loading facilities, defined by the ServiceLoader class, to
attempt to locate and load an implementation of the service using the default loading
mechanism: the service-provider loading facility will use the current thread's context class
loader to attempt to load the service. If the context class loader is null, the system class loader
will be used.

• Otherwise, the system-default implementation is returned.

Once an application has obtained a reference to a XMLEventFactory it can use the factory to
configure and obtain stream instances.

Note that this is a new method that replaces the deprecated newInstance() method. No changes in
behavior are defined by this replacement method relative to the deprecated method.

Throws:
FactoryConfigurationError - in case of service configuration error or if the
implementation is not available or cannot be instantiated.

public static XMLEventFactory newFactory(java.lang.String factoryId,
 java.lang.ClassLoader classLoader) throws FactoryConfigurationError

Create a new instance of the factory. If the classLoader argument is null, then the
ContextClassLoader is used.

This method uses the following ordered lookup procedure to determine the XMLEventFactory
implementation class to load:

• Use the value of the system property identified by factoryId.
• Use the properties file "lib/stax.properties" in the JRE directory. This configuration file is in

standard java.util.Properties format and contains the fully qualified name of the
implementation class with the key being the given factoryId.

• If factoryId is "javax.xml.stream.XMLEventFactory", use the service-provider loading
facilities, defined by the ServiceLoader class, to attempt to locate and load an
implementation of the service using the specified ClassLoader. If the classLoader is null, the
default loading mechanism will apply: That is, the service-provider loading facility will use
the current thread's context class loader to attempt to load the service. If the context class
loader is null, the system class loader will be used.

• Otherwise, throws a FactoryConfigurationError.

10

http://10.229.188.203:8080/ln_jaxp/spec/jaxp1.6-serviceloader/specdiff/javax/xml/stream/FactoryConfigurationError.html
http://10.229.188.203:8080/ln_jaxp/spec/jaxp1.6-serviceloader/specdiff/javax/xml/stream/FactoryConfigurationError.html

Note that this is a new method that replaces the deprecated newInstance(String
factoryId, ClassLoader classLoader) method. No changes in behavior are defined
by this replacement method relative to the deprecated method.

@apiNote The parameter factoryId defined here is inconsistent with that of other JAXP factories
where the first parameter is fully qualified factory class name that provides implementation of the
factory.

Parameters:
factoryId - Name of the factory to find, same as a property name
classLoader - classLoader to use

Returns:
the factory implementation

Throws:
FactoryConfigurationError - in case of service configuration error or if the
implementation is not available or cannot be instantiated.
FactoryConfigurationError - if an instance of this factory cannot be loaded

2.2.2 javax.xml.stream.XMLInputFactory

Method:
public static XMLInputFactory newFactory() throws FactoryConfigurationError

Create a new instance of the factory.

This static method creates a new factory instance. This method uses the following ordered
lookup procedure to determine the XMLInputFactory implementation class to load:

• Use the javax.xml.stream.XMLInputFactory system property.
• Use the properties file "lib/stax.properties" in the JRE directory. This configuration file is in

standard java.util.Properties format and contains the fully qualified name of the
implementation class with the key being the system property defined above.

• If factoryId is "javax.xml.stream.XMLInputFactory", use the service-provider loading
facilities, defined by the ServiceLoader class, to attempt to locate and load an
implementation of the service using the default loading mechanism: the service-provider
loading facility will use the current thread's context class loader to attempt to load the service.
If the context class loader is null, the system class loader will be used.

• Otherwise, the system-default implementation is returned.

Once an application has obtained a reference to a XMLInputFactory it can use the factory to
configure and obtain stream instances.

Note that this is a new method that replaces the deprecated newInstance() method. No changes in
behavior are defined by this replacement method relative to the deprecated method.

11

http://10.229.188.203:8080/ln_jaxp/spec/jaxp1.6-serviceloader/specdiff/javax/xml/stream/FactoryConfigurationError.html
http://10.229.188.203:8080/ln_jaxp/spec/jaxp1.6-serviceloader/specdiff/javax/xml/stream/FactoryConfigurationError.html
http://10.229.188.203:8080/ln_jaxp/spec/jaxp1.6-serviceloader/specdiff/javax/xml/stream/XMLInputFactory.html#newInstance(java.lang.String,%20java.lang.ClassLoader)
http://10.229.188.203:8080/ln_jaxp/spec/jaxp1.6-serviceloader/specdiff/javax/xml/stream/XMLInputFactory.html#newInstance(java.lang.String,%20java.lang.ClassLoader)

Throws:
FactoryConfigurationError - in case of service configuration error or if the
implementation is not available or cannot be instantiated.

public static XMLInputFactory newFactory(java.lang.String factoryId,
 java.lang.ClassLoader classLoader) throws FactoryConfigurationError

Create a new instance of the factory. If the classLoader argument is null, then the
ContextClassLoader is used.

This method uses the following ordered lookup procedure to determine the XMLInputFactory
implementation class to load:

• Use the value of the system property identified by factoryId.
• Use the properties file "lib/stax.properties" in the JRE directory. This configuration file is in

standard java.util.Properties format and contains the fully qualified name of the
implementation class with the key being the given factoryId.

• If factoryId is "javax.xml.stream.XMLInputFactory", use the service-provider loading
facilities, defined by the ServiceLoader class, to attempt to locate and load an
implementation of the service using the specified ClassLoader. If the classLoader is null, the
default loading mechanism will apply: That is, the service-provider loading facility will use
the current thread's context class loader to attempt to load the service. If the context class
loader is null, the system class loader will be used.

• Otherwise, throws a FactoryConfigurationError.

Note that this is a new method that replaces the deprecated newInstance(String
factoryId, ClassLoader classLoader) method. No changes in behavior are defined
by this replacement method relative to the deprecated method.

@apiNote The parameter factoryId defined here is inconsistent with that of other JAXP factories
where the first parameter is fully qualified factory class name that provides implementation of the
factory.

Parameters:
factoryId - Name of the factory to find, same as a property name
classLoader - classLoader to use

Returns:
the factory implementation

Throws:
FactoryConfigurationError - in case of service configuration error or if the
implementation is not available or cannot be instantiated.
FactoryConfigurationError - if an instance of this factory cannot be loaded

12

http://10.229.188.203:8080/ln_jaxp/spec/jaxp1.6-serviceloader/specdiff/javax/xml/stream/FactoryConfigurationError.html
http://10.229.188.203:8080/ln_jaxp/spec/jaxp1.6-serviceloader/specdiff/javax/xml/stream/FactoryConfigurationError.html
http://10.229.188.203:8080/ln_jaxp/spec/jaxp1.6-serviceloader/specdiff/javax/xml/stream/XMLInputFactory.html#newInstance(java.lang.String,%20java.lang.ClassLoader)
http://10.229.188.203:8080/ln_jaxp/spec/jaxp1.6-serviceloader/specdiff/javax/xml/stream/XMLInputFactory.html#newInstance(java.lang.String,%20java.lang.ClassLoader)
http://10.229.188.203:8080/ln_jaxp/spec/jaxp1.6-serviceloader/specdiff/javax/xml/stream/FactoryConfigurationError.html
http://10.229.188.203:8080/ln_jaxp/spec/jaxp1.6-serviceloader/specdiff/javax/xml/stream/FactoryConfigurationError.html

2.2.3 javax.xml.stream.XMLOutputFactory

Method:
public static XMLOutputFactory newFactory() throws FactoryConfigurationError

Create a new instance of the factory.

This static method creates a new factory instance. This method uses the following ordered
lookup procedure to determine the XMLOutputFactory implementation class to load:

• Use the javax.xml.stream.XMLOuputFactory system property.
• Use the properties file "lib/stax.properties" in the JRE directory. This configuration file is in

standard java.util.Properties format and contains the fully qualified name of the
implementation class with the key being the system property defined above.

• Use the service-provider loading facilities, defined by the ServiceLoader class, to
attempt to locate and load an implementation of the service using the default loading
mechanism: the service-provider loading facility will use the current thread's context class
loader to attempt to load the service. If the context class loader is null, the system class loader
will be used.

• Otherwise, the system-default implementation is returned.

Once an application has obtained a reference to a XMLOutputFactory it can use the factory to
configure and obtain stream instances.

Note that this is a new method that replaces the deprecated newInstance() method. No changes in
behavior are defined by this replacement method relative to the deprecated method.

Throws:
FactoryConfigurationError - in case of service configuration error or if the
implementation is not available or cannot be instantiated.

public static XMLOutputFactory newFactory(java.lang.String factoryId,
 java.lang.ClassLoader classLoader) throws FactoryConfigurationError

Create a new instance of the factory. If the classLoader argument is null, then the
ContextClassLoader is used.

This method uses the following ordered lookup procedure to determine the XMLOutputFactory
implementation class to load:

• Use the value of the system property identified by factoryId.
• Use the properties file "lib/stax.properties" in the JRE directory. This configuration file is in

standard java.util.Properties format and contains the fully qualified name of the

13

http://10.229.188.203:8080/ln_jaxp/spec/jaxp1.6-serviceloader/specdiff/javax/xml/stream/FactoryConfigurationError.html

implementation class with the key being the given factoryId.
• If factoryId is "javax.xml.stream.XMLOutputFactory", use the service-provider loading

facilities, defined by the ServiceLoader class, to attempt to locate and load an
implementation of the service using the specified ClassLoader. If the classLoader is null, the
default loading mechanism will apply: That is, the service-provider loading facility will use
the current thread's context class loader to attempt to load the service. If the context class
loader is null, the system class loader will be used.

• Otherwise, throws a FactoryConfigurationError.

Note that this is a new method that replaces the deprecated newInstance(String
factoryId, ClassLoader classLoader) method. No changes in behavior are defined
by this replacement method relative to the deprecated method.

@apiNote The parameter factoryId defined here is inconsistent with that of other JAXP factories
where the first parameter is fully qualified factory class name that provides implementation of the
factory.

Parameters:
factoryId - Name of the factory to find, same as a property name
classLoader - classLoader to use

Returns:
the factory implementation

Throws:
FactoryConfigurationError - in case of service configuration error or if the
implementation is not available or cannot be instantiated.
FactoryConfigurationError - if an instance of this factory cannot be loaded

3. API package org.w3c.dom.views
This specification includes the following API package by reference:
 org.w3c.dom.views

The org.w3c.dom.views package includes the following interfaces:

 public interface AbstractView
 public DocumentView getDocument();

 public interface DocumentView
 public AbstractView getDefaultView();

4. Compatibility for the ServiceLoader change
This specification mandates the use of java.util.ServiceLoader for finding service providers. Service
providers across JAXP will now be located consistently following the process as defined in
ServiceLoader. This change may represent some subtle difference from implementations of previous

14

http://10.229.188.203:8080/ln_jaxp/spec/jaxp1.6-serviceloader/specdiff/javax/xml/stream/FactoryConfigurationError.html
http://10.229.188.203:8080/ln_jaxp/spec/jaxp1.6-serviceloader/specdiff/javax/xml/stream/FactoryConfigurationError.html
http://10.229.188.203:8080/ln_jaxp/spec/jaxp1.6-serviceloader/specdiff/javax/xml/stream/XMLInputFactory.html#newInstance(java.lang.String,%20java.lang.ClassLoader)
http://10.229.188.203:8080/ln_jaxp/spec/jaxp1.6-serviceloader/specdiff/javax/xml/stream/XMLInputFactory.html#newInstance(java.lang.String,%20java.lang.ClassLoader)
http://10.229.188.203:8080/ln_jaxp/spec/jaxp1.6-serviceloader/specdiff/javax/xml/stream/FactoryConfigurationError.html

versions of the specification where the provider-configuration file may have been located
differently, for example, by using a different getXXX method of the ClassLoader than
ServiceLoader. Applications that implement their own Classloaders shall therefore make sure that
the ClassLoaders’ getXXX methods are implemented consistently so as to maintain compatibility.

The StAX API, JSR 173, defined newInstance/newFactory method with a factoryId as a parameter.
Since there was no constraint on what the value could be in the StAX specification, it implied it
could be any arbitrary string. With this specification change, in the context of JAXP, the value of
factoryId must be the name of the base service class if it is intended to represent the name of the
service configuration file, that is, if it is not the name of a System Property.

5. End of JSR 206 Java™API for XML Processing
This MR, JAXP 1.6, will be the last of JSR 206 JAXP specification as a standalone. After this MR,
JSR 206 will be subsumed into the Java Platform JSR, and JAXP will no longer exist as a
standalone library.

15

	Proposed changes
	1. Use java.util.ServiceLoader
	1.1 SAX Plugability
	1.2 DOM Plugability
	1.3 XSLT Plugability
	1.4 XPath Plugability
	1.5 Validation Plugability
	1.6 Streaming API for XML Plugability
	1.7 Datatype Plugability
	2 StAX 1.2, JSR 173 Stream API for XML MR3
	2.1 Deprecations
	2.2 New factory methods
	2.2.1 javax.xml.stream.XMLEventFactory
	2.2.2 javax.xml.stream.XMLInputFactory
	2.2.3 javax.xml.stream.XMLOutputFactory

	3. API package org.w3c.dom.views
	4. Compatibility for the ServiceLoader change

	5. End of JSR 206 Java™API for XML Processing

