
JSR-180 Maintenance Release Change Log

13/10/2004

Please send feedback to: jsr-180-comments@jcp.org

PROPOSED changes

 Change Reasoning
1 Add Message Sequence Chart (MSC) and/or

example code snippet of the method usage:
SipClientConnection.setCredentials().

page 23

It should be more specific how the SIP
authentication below the API works. Now the
setCredentials() method explanation is a bit
vague.

2 Should say clearly that the
SipClientConnection returned from the
SipDialog.getNewClientConnection() is in
Initialized state.

page 35

The state is not specified explicitly in the text.

3 Correct SipDialog SUBSCRIBE code example.
The opened SipClientConnection is not in
shared mode. Should set both From and Contact
header for the initial SUBSCRIBE request.

Also correct the line
scc.setHeader("Accept",
"application/xpidf+xml");
to be
scc.setHeader("Accept",
"application/pidf+xml");

page 34

Confusion when the From and Contact header
should be set by the application. From and Contact

headers are never set in the code example.

4 The SipDialog state diagram indicates that the
SipDialog instance is already created when
INVITE/SUBSCRIBE is sent. That is not the case;
it is not necessary (for API implementation) to
create the SipDialog until the provisional 101-
199 response is received. The state diagram is
also wrong for the SUBSCRIBE case because
there you do not get provisional response at all. It
is directly 2xx or NOTIFY, that creates the dialog.

Proposed to add a new state Initialized which in
practise is never visible to the user, but acts as a
common starting point for both
INVITE/SUBSCRIBE cases. The SipDialog can
be fetched earliest in the Early state.

In order to help reading draw separate
SipDialog state diagrams for both client and
server sides.

page 33

The SipDialog state diagram is unambiguous and
false for SUBSCRIBE method.

5 SipClientConnection.receive() cannot be
called after sending ACK. This prevents receiving
200 OKs from multiple end-points (forking case)
and multiple re-sent 200 OKs from the same end-
point.

Correct state diagram and the rules for receiving
multiple 2xx responses. Enable calling
receive() in Completed state.

Furthermore, it should be clarified how responses
from multiple endpoints are treated in the
SipClientConnection. Essentially
SipClientConnection associates with latest
response fetched with receive() method. Also
the dialog will be always associated to the latest
response received.

page 16 & 22

Unclear how the multiple 200 OK responses are
handled with the API.

6 Error response to INVITE:

When error response for INVITE is received the
client transaction sends automatically ACK. Now
on the server side this ACK is handled in the same
server transaction that received original INVITE,
but the ACK is not given up to the TU (as a new
SipServerConnection).

200 OK response to INVITE:

Should be able to resend 200 OK if the ACK has
not been received. Correct
SipServerConnection state diagram to enable
calling send() for 2xx responses in Completed
state.

Generally if sending response fails IOException
is thrown.

These should be clarified in the
SipServerConnection section.

page 24

Clarification why ACK is (not) visible to the
application in error response case.

In the case where 200 OK has been sent for INVITE,
but the ACK has not been received it should be
possible to resend the 200 OK

7 Rewrite server connection initialization rules.
SipConnectionNotifier can be opened with
following URI:

sip:[nnnn][;type="application/x-
game"]

sip: or sips: - protocol scheme
without address to indicate server
mode

nnnn - listening port number
(optional)

type - URI parameter specifying
application identifier (optional)

- Port number nnnn specifies the listening
port. The IOException is thrown if the
port number is already in use or it cannot
be opened for other reason. If the port
number is given it always indicates
dedicated port number for the application
(not shared SIP identity mode).

- If only “sip:” scheme is given the system
is selecting the port number, otherwise the
case is similar as if the number was given
by the application.

- If application identifier is given with
parameter ‘type’ the system listening port
and the SIP identity is shared, with other
applications (shared SIP identity mode).

page 9 & 10

Clarify SipConnectionNotifier opening method
to have more exact rules. It is assumed that
applications using JSR180 would mostly use the
shared identity case (where port number is omitted).

8 More specific definition how incoming request
messages are dispatched to applications when
using shared mode server connection.

page 9,10, 11 (SIP Identity)
page 58 (Appendix A)

Clarify how the SIP dispatching should be done in
the JSR180 implementations.

9 Correct interface
SipServerConnectionListener, the
parameter ssc in notifyRequest() should be
named scn.

page 32

This is just to avoid confusion. The type of the
notifyRequest() parameter is
SipConnectionNotifier not
SipServerConnection.

10 Should state clearly that the
SipConnection.send() method is
asynchronous. Any kind of immediate failure
should throw IOException.

The InterruptedIOException should be
removed from SipConnection.send().

page 12

Now for example if the network is not available
calling send() could throw IOException
immediately.

The description of InterruptedIOException is
wrong for send(), since it does not timeout.
Furthermore, this exception does not carry any extra
information to the IOException. Also this exception
is used with InputStream/OutputStream based
classes.

11 Create PRACK from the SipDialog. At the
moment the SipDialog does not allow that in the
state diagram specification. It should be generally
possible to call getNewClientConnection() in
Early state

page 33

Support for RFC3262, Reliability of Provisional
Responses in the Session Initiation Protocol (SIP)

12 Remove the InterruptedIOException from
SipConnectionNotifier.acceptAndOpen().

page 29-30

The InterruptedIOException is used with the
InputStream and OutputStream based classes
and does not give any additional information here. If
the SipConnectionNotifier is closed for some
reason the IOException should be thrown.

13 Giving SipConnectionNotifier as a
parameter for
SipClientConnection.initRequest(…)

1) In the shared mode, when creating a new
request, the From and Contact headers are set
by the system (when the request is initialized).
Furthermore, the SIP registration is done by the
system automatically (e.g. when terminal is
started).

2) In not-shared mode, the application is
responsible for setting the From and Contact
header (change to current specification).
Furthermore, the application has to do the SIP
registration.

page 19-20

Clarify the rules for
SipClientConnection.initRequest(…), when
SipConnectionNotifier is given as a
parameter. The SipConnectionNotifier can be
in either shared or not shared SIP identity mode. See
also the item 7.

ACCEPTED changes

 None

DEFERRED changes

 None

