JSR-180 Maintenance Release Change Log
Changes are relative to release 1.0.1
Date modified: 01 December 2006

Please send feedback to: jsr-180-comments@jcp.org

PROPOSED changes

Change

Description

Allowing multiple
credentials in
SipClientConnecti
on.setCredentials(

)

Add a setCredentials(String[] usernames, String[] passwords, String[] realms)
method to SipClientConnection so that multiple credential triplets can be given.
This is necessary in the forking case when the received 401/407 error response
might contain multiple authentication headers.

The existing setCredentials method is kept for backward compatibility. Clarify the
limitation in it's usage: in the forking case only one authentication triplet can be set
in the Unauthorized state.

Document the
RuntimeExcepti
ons that can be
expected to be
thrown throughout
the API.

RuntimeExceptions that the application might encounter (like
NullPointerException if a method argument is null) should be specified in the
Throws list of a method's documentation. These are missing from both the
specification and the TCK.

BYE, NOTIFY,
PRACK, UPDATE
not in

Clarify that requests BYE, NOTIFY, PRACK, UPDATE should not be able to be
created from initRequest ().

initRequest () Since they belong clearly to a dialog, they are created from
SipDialog.getNewClientConnection ()
REFER Add to spec that REFER creates also a dialog.
documentation
missing from
initRequest ()
and Sipbialog
getHeaders/add | The specification does not say clearly how the concatenated header values are
Header/removeH | handled with header manipulation methods. Especially if they are supported and
eader how.
Documentation of these methods will be extended as shown in Appendix 1.
SipRefreshHelp | Update() should throw sipException.INVALID_STATE if it is called before the
er.update () refresh is active (eg. 200 OK is received). Similarly, SipException
and stop () INVALID_STATE is thrown from stop() if it is called before calling send(). In this

case the binding to be cancelled is not yet established so no SIP message must be
sent out.

Clarify the handling of Expires parameter of contact header and the expires
parameter of the update() method in the REGISTER case:

If MIDlet sets the “Expires” parameter to the “Contact” header, the value of the
“Expires” parameter that is given to the SipRefreshHelper.update() function is
ignored. So “Expires” parameter of “Contact” header overrides the “expires”
argument of the update() operation always except if value of the “expires”
argument of the update() operation is zero. Refreshing is always stopped in that
situation. If “Contact” header does not contain “Expires” parameter, the functions
parameter is used as the “Expires” value normally. This behaviour follows the rules
set in RFC-3261, section 10.3.

Clarifications to
SipAddress

Clarify that in SipAddress.setURI(), the possible URI parameters don't overwrite
existing URI parameters, they are simply ignored if present. Parameters can be
manipulated by the get/set/removeParameter() calls.

Also clarify that if the password field is present in the URI then
SipAddress.getUser() should return the value of 'user:password' (instead of only
'user'). The generic format of the SIP URI is 'sip:user:password@host:port;uri-
parameters', and there is no separate method for getting the password.




8 SipClientConne | The specification text is ambiguous in what order the responses should be
ction.receive( | initialized when receive() is called.

) queues The implementation of receive() method should queue the incoming responses in a
responses. FIFO queue.

9 Restricted headers | It might be good to select and agree on a list of headers that are not accessible or
access. have read-only access by the user from Java API. Typically these headers are

related to SIP routing and transaction handling so they are not needed to be read
or modified by the user.

Read-only headers. An implementation might throw SipException with
INVALID_OPERATION error code if the user tries to modify the following headers:
Call-ID, Cseq, Proxy-Authenticate, WWW-Authenticate
Inaccessible headers. An implementation might return null if the user tries to read
the following headers. Trying to modify these headers will result in
SipException.INVALID_OPERATION:

Authentication-Info, Authorization, Call-ID, Cseq, Max-—
Forwards, Min-Expires, Proxy-Authorization, Record-Route,
Security-Server, Security-Verify, Service-Route, Via

10 No value in Giving an empty String or nul1 as the value in SipHeader (String name,
SipHeader (Stri | string value) should be allowed. This is convenient when e.g. Proxy-
ng name, Authentication header is constructed. The user may then fill up parameters one by
String value) | one. No need to give an initial value in the constructor.
constructor

11 setCredentials | It is wrong to use the realm value directly from the
() example 2 authentication header with getParameter ("realm") the difference is:
code

SipHeader.getParameter ("realm") returns ""realm" while the value given to
setCredentials () should not have extra quotation marks. The sample code
should be corrected.

Clarify in SipHeader.getParameter() that for some header parameters the returned
value contains quatation marks while for others it doesn't. Applications must be
prepared to handle this.

12 State after errorin | Specify that the state of sipClientConnection should be Completed if sending
SipClientConne | ACK fails and there is forking case. It allows trying to send ACK again, wait for
ction more 2xx responses or close the connection. If the application (after investigating

the error code) finds out that the error is irrevocable, it can close the connection.

13 Exceptions in What should be the Exception for different methods if
Terminated state the sipConnection is in the Terminated state.

P22 now says:"Terminated. The transaction and this connection is closed. The 1/O
methods above will throw IOException "
Specify that the methods must throw SipException. INVALID_STATE if that is
specified to the method and IOException for those methods (e.qg.
Input/OutputStream) that does not have SipException specified.

14 SipServerConne | ltis not possible to give feedback if the asynchronous SipConnection.send ()

ction.send ()
errors

fails, later in time.

Add a setErrorListener(SipErrorListener sel) method to SipConnection and define a
new SipErrorListener interface that the application must implement if it wants to be
notified about errors.

SipErrorListener.notifyError(String message) contains implementation dependent,
non-localized information about the error. Implementations are free to include
platform specific error codes, exception traces etc. in the error message.

Justification: if a SipServerConnection or SipClientConnectin is using the listener
pattern then it won't be notified of transmission errors, as the existing listener
callbacks will not be automatically called. For example the midlet will not be
informed using the listener pattern if the GPRS connection fails.




15 Header access It is not feasible to mandate implementations to initialize immediately the headers
after message init | that are listed in each init-request method.
Should loosen the spec so that it says:
"Following headers will be set on behalf of the user by the implementation before
sending the request. The implementation must set these headers only if they are
not overwritten by the user before sending the request”
This applies to
initRequest()
initAck()
initCancel()
initResponse()
16 CANCEL and ACK | Specify how SipServerConnection.getDialog () behaves when called to the
dialogs ACK and CANCEL requests?
CANCEL: return "null" since the Dialog is in early state and the CANCEL does not
relate to the dialog
ACK: return the dialog normally if it is available
17 SipConnectionNoti | Add to the specification of SipConnectionNotifier.acceptAndOpen() method that it
fier.acceptAndOpe | must check the caller’s permissions and throws SecurityException if the required
n() throws permissions are missing. The exception need not be present in the method’s
SecurityException | throws list (being a RuntimeException) but it should be listed in the Throws section
of the javadoc.
18 Typo in page 1 On page 1 (chapter 1, overview), last line just before
(javax.microedition | the diagram. There should be javax.microedition.io.Connection and
.io) javax.microedition.io.Connector rather than
javax.microedition.Connection and
javax.microedition.Connector as
printed.
19 initResponse () | SipServerConnection.initResponse () does not say how the Contact
no spec about header should be handled (who sets it) for the requests creating a dialog.
Contact
See: RFC3261, p162 "Table 2: Summary of header fields, A--O"
And also specs for REFER and SUBSCRIBE.
Specify that for shared connections Contact is set by the system.
20 SipServerConne | Error in JSR180 specs. In the spec of SipServerConnection, there is a line just

ction state
diagram text

after the Note and state transition diagram :
"Following methods are accessible in each state.”
This line should be changed to something like :

"Following methods are restricted to a certain state. The table shows the list of
restricted methods allowed in each state. "




21

Clarifications to
the refreshing
mechanism

The specification is in many places unclear about the exact behaviour of the
SipRefreshHelper and SipRefreshListener classes. In addition to items #6, #32,
#39, #41, #42 the following clarfications are proposed:

1. If a SipRefreshHelper.stop() operation fails (e.g due to error in the native SIP
stack) then refreshing is stopped and a refresh event is sent to the listeners with
status code 0.

2. If a SipRefreshHelper.update() operation fails (e.g due to error in the native SIP
stack) then refreshing is stopped and a refresh event is sent to the listeners with
the status code of the response received. If the status code is not available then an
implementation dependent error code (and response phrase) is reported in the
refreshEvent. The implementations are free to choose a suitable SIP error code
(like 408 — Timeout) or an implementation specific code (with the exception of 0,
1xx and 2xx) and reason phrase. The behaviour is the same in case the
OutputStream.close() operation fails within an update() operation.

3. The specification does not define the strategy for timely refreshing of
registrations and subscriptions, implementations may choose the algorithm of when
to send the refresh request.

4. The implementation MUST report the subsequent refresh responses to the
refreshEvent() callback in case of failure response codes (3xx — 6xx), and it MAY
report them in case of successful refreshing (2xx). It MUST NOT report provisional
(1xx) responses.

5. The application can receive notification of response to the original request twice:
once by calling receive() of the SipClientConnection which was used to send the
request, and once in the SipRefreshListener.refreshEvent() callback. (Note that
according to the previous statement this might not be true in case of successful
response: the implementation may not report it in the refreshEvent() callback.)

6. In case of failure of either the original request or a subsequent refresh request
the refreshing is automatically stopped and the failure response is reported in the
refreshEvent() callback.

7. Passing ‘null’ as SipRefreshListener in SipClientConnection.enableRefresh()
does not clear a previously set listener and does not stop a refresh. Refreshing
should be stopped by calling stop(). Calling enableRefresh() for the second time
with a non-null value does not overwrite the previously set listener. In this case the
previously set listener remains valid, and the method throws
SipException.INVALID_STATE

8. If a response arrives to a refresh request that was updated by the application
since the request was sent then the application must not report the response in the
refreshEvent() callback.

9. After an error response the refresh task is stopped and the corresponding ID is
invalidated, so calling update() with the same ID will throw an exception. The
application has to start a new refresh task if it wishes so and the implementation
will assign a new refresh ID.

10. If refresh responses are not received due to network problems,
SipRefreshHelper reports failure to the user in the refreshEvent() callback. The
implementations are free to choose a suitable SIP error code (like 408 — Timeout)
or an implementation specific code (with the exception of 0, 1xx and 2xx) and
reason phrase.

11. JSR 180 refers to RFC3261, 10.2.2 on how to cancel bindings in the
REGISTER case. Add as clarification that SUBSCRIBE and PUBLISH require
different ways to cancel bindings in RFC 3265, 3.1.4.3 (SUBSCRIBE) and RFC
3903, 4.5 (PUBLISH) which the SipRefreshHelper should comply to. Similarly for
update(), refer RFC 3903 Section 4.4 for modifying event state in the PUBLISH
case.

12. Giving null or empty string as type or 0 as length in SipRefreshHelper.update()
means that subsequent refresh request will have no content. It does not mean that
the request will contain the content of the original request unmodified.




22

SipHeader.setPar
ameter("name”,

");

The spec should define the behaviour of setting parameter with empty string.
Currently it only talks about null.

The Rl interpretes this at the moment like:

SipHeader.setParameter("name”, ""); -> name

Specify that the behaviour is the same: the result is non-value parameter i.e. token-
parameter. Similarly as the result of following call:

SipHeader.setParameter("name”, null);

23 Reading Content When the request or response has been sent it should not be required from
after sending implementations to store the message content. l.e. calling
message? openContentInputStream() is not feasible for SipClientConnection or
SipServerConnection right after sending message.
24 getDialog() after The spec does not clearly say what the
error response SipConnection.getDialog () should return, when 3xx, 4xx, terminating error
response has been received.
Specify that it should return 'null' when/after error response is received.
An already (after 1xx or 2xx) fetched dialog, will turn to "Terminated' state.
25 Dialog ID in spec "Dialog ID (Call-ID + remote tag + local tag)...”
at Remove exact form of dialogid (callid-tags) from spec, give reference to rfc instead.
SipDialog.getDialo | (RFC3261, p69)
gID))
26 Requirements for | The implementations MUST support at least the Digest authentication, as
authentication defined in RFC 3261.
Implementations that interface with a GSM or IMS/MMD identity module MUST
also support Digest-AKA authentication.
Implementations MUST handle both 401 and 407 responses if the required
authentication mechanism is supported.
Implementations MUST support the invocation of
javax.microedition.sip.
SipClientConnection.setCredentials both in Initialized and
Unauthorized states.
This is requirement CID. 180.3 of MSA (JSR-248). By making MSA requirements
mandatory in JSR-180 they can be removed from future releases of MSA.
27 SipConnection. | These methods should be available in Unauthorized state.
getReasonPhras
e () and
getStatusCode (
) in Unauthorized
state.
28 SipClientConne | Make the following correction at P28 of jsr:

ction.initCanc
el () onfinal
response.

Exceptions:

“INVALID_STATE if the request can not be set, because of wrong state (in
SipClientConnection) or the system has already got the 200 OK response (even if
not read with receive() method).”

Should be:

“INVALID_STATE if the request can not be set, because of wrong state (in
SipClientConnection) or the system has already got a final response (even if not
read with receive() method).”




29

SipAddress URI
parameters
validation

Clarify that an implementation is not mandated to do any semantic checks in
SipAddress parser in addition to ABNF syntax validation, which basically accepts
any kind of parameter combinations.

As information the following checks could be mentioned: (RFC3261 Page 149-
151).

- Even though an arbitrary number of URI parameters may be included in a URI,
any given parameter-name MUST NOT appear more than once.

- This extensible mechanism includes the transport, maddr, ttl, user, method and Ir
parameters.

- For a SIPS URI, the transport parameter MUST indicate a reliable transport.

- The maddr parameter indicates the server address to be contacted for this user,
overriding any address derived from the host field.

- The ttl parameter determines the time-to-live value of the UDP multicast packet
and MUST only be used if maddr is a multicast address and the transport protocol
is UDP. For example, to specify a call to alice@atlanta.com using multicast to
239.255.255.1 with a ttl of 15, the following URI would be used:
sip:alice@atlanta.com;maddr=239.255.255.1;ttl=15

- The user URI parameter exists to distinguish telephone numbers from user
names that happen to look like telephone numbers. If the user string contains a
telephone number formatted as a telephone-subscriber, the user parameter value
"phone" SHOULD be present.

- The method of the SIP request constructed from the URI can be specified with the
method parameter.

- Since the uri-parameter mechanism is extensible, SIP elements MUST silently
ignore any uri-parameters that they do not understand.

30 Which RFCs and Follow the requirement in the latest MSA (JSR248) specification. Add the text in
methods are Appendix 2 to the package description chapter.
supported.

This is requirement CID.180.1 of MSA (JSR-248). By making MSA requirements
mandatory in JSR-180 they can be removed from future releases of MSA.

31 Mark This code is not used anywhere.

DIALOG_UNAVAI
LABLE
SipException
error codes as
deprecated.

32 SipRefreshHelper. | Clarify that refreshing REGISTER and SUBSCRIBE requests must be possible
Which methods using the refreshHelper mechanism, however it is not mandated that refreshing
are supported to PUBLISH requests is supported by the refreshHelper mechanism. Refreshing
be refreshed. PUBLISH requests must be possible by sending the appropriate SIP request from

the application.

This is needed to satisfy requirement CID.180.5 of MSA (JSR-248). The MSA
requirement is ambiguous in whether it is mandatory to support the refreshing of
the given methods by the SipRefreshHelper mechanism. This clarification removes
this ambiguity.

By making MSA requirements mandatory in JSR-180 they can be removed from
future releases of MSA.

33 Responding 100 Add to the SipClientConnection.receive() text and possibly on SipClientConnection
Trying (non- state machine diagram that it 100 Trying responses for NIN transactions must not
INVITE be passed up to the application level.
transaction)

Reasoning: it is not explicitly required/expected by JSR and it is anyway only useful
information for the transaction layer (way below JSR180 API), which takes care of
request resends.

34 Accept-Contact It should be specified in more detail, when the Accept-Contact header is required to

header in shared
connections

be set in outgoing requests. The following text should be added: The application
must set the Accept-Contact header when using shared connection to all outgoing
request except CANCEL and ACK.




35 Connector.open(St | In JSR180 the specified URI for shared connections contains quotes as the URI-
ring name) URI parameters:
and quoted sip:*;type="application/<app_subtype>"[;<other_params>]
strings.

In contrary CLDC1.1 says following about the Connector URI "The parameter string
that describes the target should conform to the URL format as described in RFC
2396."
In that RFC the quote “ is considered unsafe and should be escaped.
Clarify that
- this usage is allowed. Reasoning: this shared URI is not used in the
outgoing requests. It is just used locally. The parameters given in the URI
are actually compared to the Accept-Contact header parameters, which
allows quoted strings.
- the implemenation must also allow the usage of the escaped form
That is the application can use either quote characters or it's escaped version
(%22).

36 Server connection | Clarify that it is not mandatory to support both shared and dedicated server
modes connections.

37 Support for Clarify that getting and setting RequestUri is not mandated to be supported, that is
SipConnection.get | getRequestURI can return null in any state and setRequestURI may throw
RequestUri() SipException.INVALID_OPERATION or SipException_INVALID_STATE.

38 Behaviour of Clarify that all SipDialog objects belonging to the same dialog behave the same
SipDialog objects | way: they have same dialog ID and same requests can be created from them. Note

that they are not necessarily the same java object.

There might be certain scenarios when this requirement is not feasible to be
supported. In this case SipDialog.getNewClientConnection() operation must throw
SipException. TRANSACTION_UNAVAILABLE, if creation of SipClientConnection
object is not possible for any reason.

39 Header values of a | Clarify that an update from a refreshHelper does not change the header values of
SipClientConnecti | the original request.
on after a
SipRefreshHelper. | Reasoning: SipClientConnection deals with a transaction constructed by the user,
update() whereas SipRefreshHelper is normally implemented as an independet helper

module. It will interact with the original request, but it does not update the headers
of the original response/request. SipRefrehHelper sends the REGISTER update in
an independent transaction.

It will only report the MIDlet with listener callback refreshEvent(), where it just tells
that 200 ok has been received (update succesfull). If the user is still keeping the
original SipClientConnection those header fields are not touched.Generally the
getHeader() returns always a header value from currently edited request or the
latest response received.

40 Dialog creating Implementations MUST support the creation of dialogs based on at least
methods INVITE, SUBSCRIBE/NOTIFY, and REFER/NOTIFY requests.

This is requirement CID.180.4 of MSA (JSR-248). By making MSA requirements
mandatory in JSR-180 they can be removed from future releases of MSA.

41 Change 200 to 2xx | The documented behaviour for SipRefreshHelper / SipRefreshListener does not
in handle the successful 202 response described in RFC3265 (the RFC for the
SipRefreshHelper/ | SUBSCRIBE message). Change references to 200 to 2xx.

Listener

42 The statusCode in | The current desciption is incorrect as it gives the original request as the source of
SipRefreshListene | status data.
r.refreshEvent
corresponds to the
most recent
response received

43 Automatic Add a new error code to SipException (ALREADY_RESPONDED) to signal that

response sending
before notifying
the MIDlet.

the system has sent a response to the SIP request before notifying the midlet. This
is to fit with a platform supporting message queuing, as in RFC3428 (Session
Initiation Protocol (SIP) Extension for Instant Messaging). Systems that implement
the message relay functionality (see RFC3428) inside the terminal may have
definitive knowledge that the terminal has already responded with 202 in which
case this exception will be thrown in SipServerConnection.initResponse().




a4

Setting Content-
Length
automatically

SipClientConnection.openContentOutputStream requires that the content length
must be known in advance. This disables one of the advantages

of output streams; an application that wants to write arbitrary strings via
DataOutputStream.writeUTF will have to construct its own byte array, write to it
with a ByteArrayOutputStream, and check the size of the array before it can call
openContentOutputStream. Proposal: Allow the midlet to open the stream without
setting the Content-Length; automatically set it before sending.

45

Redraw the state
diagram of
SipClientConnecti
on

The state machine for SipClientConnection might be easier to understand if the
sequence for sending the third message of an INVITE 3-way handshake was
separated from the way to send all other messages. That state machine can also
be terminated from any state, not just the ones that are explicitly show with a link to
the closed state (so all links to the Terminated state can be implicit).

Add this redrawn diagram as explanatory material to the specification of
SipClientConnection, but the original one also should be kept as that contains the
states used throughout the spec.

The new diagram is shown in Appendix 3.

46

Transport protocol
support

Add a section about the required transport support to the specification of
SipConnection. A proposed wording:

All compliant implementations MUST support sending and receiving SIP
messages, at least on UDP and TCP transport protocols, as defined in
RFC3261 (section 18). The default transport protocol MUST be UDP.
Whenever requested, the preferred transport protocol MUST be indicated with
the ; transport={transport} parameter within the URI indicated in the
Connector.open () method, either for client or server connections. The
choice of transport protocols on which an UAS MUST listen are specified by
RFC3261 (18.2.1):

"For any port and interface that a server listens on for UDP, it MUST listen on
that same port and interface for TCP. This is because a message may need to
be sent using TCP, rather than UDP, if it is too large. As a result, the converse
is not true. A server need not listen for UDP on a particular address and port
just because it is listening on that same address and port for TCP."

This means that for a SipConnectionNotifier listening on UDP transport protocol is
not mandatory if all requests have been sent on top of TCP, that is if all the
Contact headers sent within a registration or within dialogs indicate transport=tcp.

This is requirement CID.180.2 of MSA (JSR-248) with some additional explanatory
text. By making MSA requirements mandatory in JSR-180 they can be removed
from future releases of MSA.

ACCEPTED changes

DEFERRED changes

None

None

Appendix 1. Clarification to the header manipulation methods

The text in italic and the examples are additional to the JSR180 specification. The examples
highlight how the header manipulation is realized in different cases.

Method: setHeader (String name, String value)

Sets header value in SIP message. If the header does not exist it will be added to the message,
otherwise the existing header is overwritten. If multiple header field values exist the topmost is
overwritten. The implementations MAY restrict the access to some headers according to RFC 3261

(1.

The implementations are free to store the multiple header field-values either as separate rows or as
comma-separated list (if the header type follows the grammar defined in [RFC3261] section 7.3).




The value argument of the method may contain a list of comma-separated header values. If there
exist headers of the same type then only the first (topmost) one will be overwritten, indifferently of
the number of header values in the comma-separated list. See exampe 3. below.

The method works atomically, that is if the value argument of setHeader() is a list of comma-
separated values then the method should either set all of them or none of them. That is if an
exception is thrown from the method then no headers are changed, even if the error occurred when
setting the second, third etc header value.

Example1: Replacing single header field row. The message already contains following headers:

Route: <sip:alice@atlanta.com>
Route: <sip:carol@chicago.com>

setHeader ("Route", " <sip:bob@biloxi.com>");
the result will be

Route: <sip:bob@biloxi.com>
Route: <sip:carol@chicago.com>

Example2: Setting multiple header field rows as a comma-separated list. The message already
contains one header:

Route: <sip:carol@chicago.com>

setHeader ("Route", "<sip:alice@atlanta.com>, <sip:bob@biloxi.com>");
the result will be either

Route: <sip:alice@atlanta.com>, <sip:bob@biloxi.com>

or

Route: <sip:alice@atlanta.com>
Route: <sip:bob@biloxi.com>

Example3: Setting multiple header field rows as a comma-separated list. The message already
contains two headers:

Route: <sip:carol@chicago.com>
Route: <sip:joe@joe.com>

setHeader ("Route", "<sip:alice@atlanta.com>, <sip:bob@biloxi.com>");
the result will be either

Route: <sip:alice@atlanta.com>, <sip:bob@biloxi.com>, <sip:joe@joe.com>
or

Route: <sip:alice@atlanta.com>

Route: <sip:bob@biloxi.com>

Route: <sip:joe@joe.com>

The result would be the same if the original message contained the headers in a concatenated list
form:

Route: <sip:carol@chicago.com>, <sip:joe@joe.com>

Method: addHeader (String name, String value)

Adds a header to the SIP message. If multiple header field values exist the header value is added
topmost of this type of headers. The implementations MAY restrict the access to some headers
according to [RFC 3261].

The header value string may contain a single value or multiple values as a comma-separated list
(that is, if it follows the grammar defined in [RFC3261] section 7.3). The implementations are free to
store the multiple header field rows either as comma separated list or in separate rows.



The method works atomically, that is if the value argument of addHeader() is a list of comma-
separated values then the method should either add all of them or none of them. That is if an
exception is thrown from the method then no headers are changed, even if the error occurred when
adding the second, third etc header value

Example1: Adding single header field row. The message already contains header Route:
<sip:carol@chicago.com>.

addHeader ("Route", " <sip:alice@atlanta.com>");
the result will be

Route: <sip:alice@atlanta.com>
Route: <sip:carol@chicago.com>

or
Route: <sip:alice@atlanta.com>, <sip:carol@chicago.com>

Example2: Adding multiple header field rows as a comma-separated list. The message already
contains header Route: <sip:carol@chicago.com>.

addHeader ("Route", "<sip:alice@atlanta.com>, <sip:bob@biloxi.com>");
the result will be either

Route: <sip:alice@atlanta.com>, <sip:bob@biloxi.com>
Route: <sip:carol@chicago.com>

or

Route: <sip:alice@atlanta.com>
Route: <sip:bob@biloxi.com>
Route: <sip:carol@chicago.com>

or

Route: <sip:alice@atlanta.com>, <sip:bob@biloxi.com>,
<sip:carol@chicago.com>

Method: String getHeader (String name)
Returns:

Topmost header field value, or null if the current message does not have such a header or the
header is for other reason not available (e.g. message not initialized).

Example1: Get topmost Route header from a message that contains three Route headers in a
comma-separated header field value.

Route: <sip:alice@atlanta.com>,<sip:carol@chicago.com>,
<sip:bob@biloxi.com>

getHeader ("Route") ;
the result is:

<sip:alice@atlanta.com>

Method: String[] getHeaders (String name)

Gets the header field value(s) of specified header type. The method returns the header field-values
separated in an array regardless of how they are stored in the message.

Example1: Get Route headers from a message that contains two Route headers in separate header
field rows.



Route: <sip:alice@atlanta.com>
Route: <sip:carol@chicago.com>

getHeaders ("Route") ;
the result is a String array:
{"<sip:alice@atlanta.com>", "<sip:carol@chicago.com>"}

Example2: Get Route headers from a message that contains three Route headers in a comma-
separated header field value.

Route: <sip:alice@atlanta.com>,<sip:carol@chicago.com>,
<sip:bob@biloxi.com>

getHeaders ("Route") ;
the result is a String array:

{"<sip:alice@atlanta.com>", "<sip:carol@chicago.com>",
"<sip:bob@biloxi.com>"}

Method: removeHeader (String name)

Removes header from the message. If multiple header field values exist the topmost is removed.
The implementations MAY restrict the access to some headers according to [RFC 3261]. If the
named header is not found this method does nothing.

The removeHeader() method only removes one header value even if the header values are stored in
a comma-separated list.

Example1: Removing header from a message that contains two Route headers in separate header
field rows.

Route: <sip:alice@atlanta.com>
Route: <sip:carol@chicago.com>

removeHeader ("Route") ;
the result is:
Route: <sip:carol@chicago.com>

Example2: Removing header from a message that contains three Route headers in a comma-
separated header field value.

Route: <sip:alice@atlanta.com>, <sip:carol@chicago.com>,
<sip:bob@biloxi.com>

removeHeader ("Route") ;
the result is:

Route: <sip:carol@chicago.com>, <sip:bob@biloxi.com>

Appendix 2 SIP methods support

All compliant implementations MUST support at least the methods defined in RFC 2976,
RFC 3261, RFC 3262, RFC 3265, RFC 3311, RFC 3428, RFC 3515, and RFC 3903.

In particular, implementations MUST support:

— Sending INFO, REGISTER, OPTIONS, INVITE, CANCEL, BYE, ACK, PRACK,
SUBSCRIBE, NOTIFY, UPDATE, MESSAGE, REFER, and PUBLISH requests on

the SsipClientConnection interface

— Receiving INFO, OPTIONS, INVITE, CANCEL, BYE, ACK, PRACK, SUBSCRIBE,
NOTIFY, UPDATE, MESSAGE, and REFER requests on the

SipServerConnection interface



- Implementations MUST also freely allow sending and receiving of any other non-dialogcreating
requests, whether in-dialog or out-of-dialog, as described in RFC3261

The API contains dedicated methods for initiating some of these requests. Each request
type is only required to be supported using the appropriate API method (as defined in the
JSR 180 specification).

These RFCs have requirements for both the SIP protocol stack underneath the JSR 180
API as well as for the application level corresponding to the applications using the API. The
SIP protocol stack MUST implement those requirements of the RFCs that are relevant for
the stack, but following the application level requirements is the responsibility of the
applications using the JSR 180 API. The responsibilities are approximately divided as
follows:

Following are the requirements of the SIP protocol stack:

— Support the defined method type

— Support possible new header types defined in the RFC

— Support the responses defined in the RFC

— Manage basic transactions for new requests and responses

— Create and manage the dialog, if the request creates a dialog

Following are the requirements of the application level:

— Send appropriate requests and responses in the correct order

— Fill required user headers

— Fill required content with the required content type

— Maintain and provide event states and content for the PUBLISH method, as defined

in RFC 3903

— Other application-specific requirements defined by the RFC that are not directly

related to the SIP protocol



Appendix 3 SipClientConnection state diagram

Created from Connector

Created
Created from Dial

initRequest Created from initCancel

Initialized for non-ACK openContertOutputStraam Stream open for non-ACK

send() or close stream

The difference Y |_—setCradentials
between these
states is that Proceading, no
resp received
INVITE can be
CANCEL'd after
isi raceiva Txx
& provisional receive 401 ar 407
response has -
been received.
initCancel -
cnpp Erovitonel to
~ separate recahad
chentConnection
Only INVITE can ! 4
receive multiple
2% responses recaive Jux-Giod not 401 or 407
receive 2xx
raceive 2x:

recaive 2xx

Completed,
error

C ¥
acknowledged

InitAck send|) or close stream

Only INVITE
can send ACKs

openContentOutpuiStream (
Initialized for ACK »

—k Stream open for ACK




