Wireless Messaging
APl (WMA)

for Java™ 2 Micro Edition

Verson1l.1l

JSR 120 Expert Group
JSR-120-EG@JCP.ORG

Java Community Process (JCP)

Copyright © 2002 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303, U.S.A. All
rights reserved.

Sun Microsystems, Inc. hasintellectual property rights relating to technology embodied in the product that is
described in this document. In particular, and without limitation, these intellectual property rights may include
one or more of the U.S. patents listed at http://www.sun.com/patents and one or more additional patents or
pending patent applicationsin the U.S. and in other countries.

This document and the product to which it pertains are distributed under licenses restricting their use, copying,
distribution, and decompilation. No part of the product or of this document may be reproduced in any form by
any means without prior written authorization of Sun and its licensors, if any.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Sun, Sun Microsystems, the Sun logo and Java are trademarks or registered trademarks of Sun Microsystems,
Inc. inthe U.S. and other countries.

Federal Acquisitions: Commercial Software - Government Users Subject to Standard License Terms and
Conditions.

DOCUMENTATION ISPROVIDED "ASIS' AND ALL EXPRESS OR IMPLIED CONDITIONS,
REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF
MERCHANTABILITY, FITNESS FOR FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY
INVALID.

Copyright © 2002 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303, Etats-Unis.
Tous droits réserveés.

Sun Microsystems, Inc. ales droits de propriété intellectuel s relatants a la technol ogie incorporée dans le
produit qui est décrit dans ce document. En particulier, et sans lalimitation, ces droits de propriété intellectuels
peuvent inclure un ou plus des brevets américains énumeérés a http://www.sun.com/patents et un ou les brevets
plus supplémentaires ou les applications de brevet en attente dans |es Etats - Unis et dans les autres pays.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent

I’ utilisation, la copie, ladistribution, et la décompilation. Aucune partie de ce produit ou document ne peut étre
reproduite sous aucune forme, parquel que moyen gue ce soit, sans |’ autorisation préalable et écrite de Sun et de
ses hailleurs delicence, s'il y ena.

Lelogiciel détenu par destiers, et qui comprend latechnologie relative aux polices de caracteres, est protégé par
un copyright et licencié par des fournisseurs de Sun.

Sun, Sun Microsystems, le logo Sun et Java sont des marques de fabrique ou des marques déposées de Sun
Microsystems, Inc. aux Etats-Unis et dans d' autres pays.

LA DOCUMENTATION EST FOURNIE "EN L' ETAT" ET TOUTES AUTRES CONDITIONS,
DECLARATIONS ET GARANTIES EXPRESSES OU TACITES SONT FORMELLEMENT EXCLUES,
DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRISNOTAMMENT TOUTE
GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE
UTILISATION PARTICULIERE OU A L’ABSENCE DE CONTREFACON.

cContents

O O w >

= = (o TSRO \Y;
OVEINVIEBW ottt e et e e e b e e e e bt e e e s eabb e e e saabe e e e saabeeesansbeeesanneeesansrnas 1
JAVAX.MICT OBAITION.TO ..o et 5

CONNECIOL ..ttt e ettt et e ettt e e ettt e et e e e beeeeaabeeeeaseeesbeeeaasseesasseeesabeeaansseesasseeesabeaaanseeesanseesssseneansenasnns 6
JAVaAX.WIT€l€SS.MESSAGING ...evvcveeieeeiee et ees 11

BinaryMessageccooeveveenernieneeieenns

Messageccoceeverienns

MessageConnection ..

MessageL istener

TextMeSSagecccceeeeereenieneene e
GSM SM S AAPLEN ...t 27
GSM Ceéll Broadcast AapLercccoveriennieeee e 35
CDMA 1S-637 SMS AAPLEr ..ot 37
Deploying JSR 120 Interfaceson aMIDP 2.0 Platformcccceeecvveeennnnnn 39
e 1 0= T TR 45
0 L= 47

Contents

Preface

This book provides information on the messaging APl which isincluded in the JSR 120 Wireless Messaging
APl (WMA) specification. It also describes Sun Microsystem’s reference implementation (RI) of the API.

Who Should Use This Book

This book isintended primarily for those individuals and companies who want to implement WMA, or to port
the WMA RI to anew platform.

Before You Read This Book

This book assumes that you have experience programming in the C and Java™ languages, and that you have
experience with the platforms to which you are porting the RI. It also assumes that you are familiar with the
Mobile Information Device Profile (MIDP), the Connected, Limited Device Configuration (CLDC), and the
Connected Device Configuration (CDC).

Familiarity with multimedia processing recommended, but not required.

References

GSM 03.40 v7.4.0 Digital cellular telecommunications system (Phase 2+); Technical realization of the Short
Message Service (SMS). ETSI 2000

TS 100 900 v7.2.0 (GSM 03.38) Digital cellular telecommunications system (Phase 2+); Alphabets and
language-specific information. ETSI 1999

Mobile Information Device Profile (MIDP) Specification, Version 1.0, Sun Microsystems, 2000

GSM 03.41, ETS Digital Cellular Telecommunication Systems (phase 2+); Technical realization of Short
Message Service Cell Broadcast (SMSCB) (GSM 03.41)

Wreless Datagram Protocol , Version 14-Jun-2001, Wreless Application Protocol WAP-259-WDP-20010614-
aWAP (WDP)

TIA/EIA-637-A: Short Message Service for Spread Spectrum Systems (1S637)

Connected Device Configuration (CDC) and the Foundation Profile, a white paper, (Sun Microsystems, Inc.,
2002)

J2ME™ CDC Specification, v1.0, (Sun Microsystems, Inc., 2002)

Porting Guide for the Connected Device Configuration, Version 1.0, and the Foundation Profile, Version 1.0;
(Sun Microsystems, Inc., 2001)

Related Documentation
The Java™ Language Specification by James Gosling, Bill Joy, and Guy L. Steele (Addison-Wesley, 1996),
ISBN 0-201-63451-1

Preface

The Java™ Virtual Machine Specification (Java Series), Second Edition by Tim Lindholm and Frank Yellin
(Addison-Wesley, 1999), ISBN 0-201-43294-3

Terms, Acronyms, and Abbreviations Used in this Book
SM S - Short Message Service

URL - Uniform Resource Locator

Typographic Conventions

Typeface | Meaning Examples
AaBbCc123 | The namesof commands, files, and directories; on- Edityour . ogi n file.
screen computer output Use |Is -atolistal files.
% You have mail .
AaBbCc123 | What you type, when contrasted with on-screen % su
computer output Passwor d:
AaBbCcl123 | Book titles, new words or terms, words to be Read Chapter 6 in the User’s Guide.
emphasized These are called class options.
Command-line variable; replace with areal name or You must be superuser to do this.
vaue To delete afile, type r m filename.

Accessing Sun Documentation Online
The docs. sun. comweb site enables you to access Sun technical documentation on the Web. You can
browse the docs.sun.com archive or search for a specific book title or subject at:

http://docs. sun. com

Sun Welcomes Your Comments
We are interested in improving our documentation and welcome your comments and suggestions. You can
email your comments to us at:

WTR- conment s@un. com

Vi

CHAPTER

Overview

Description

The messaging API is based on the Generic Connection Framework (GCF), which is defined in the Connected
Limited Device Configuration (CLDC) 1.0 specification. The packagej avax. nmi cr oedi ti on. i o defines
the framework and supports input/output and networking functionality in J2ME profiles. It provides a coherent
way to access and organize datain aresource-constrained environment.

The design of the messaging functionality is similar to the datagram functionality that is used for UDP in the
Generic Connection Framework. Like the datagram functionality, messaging provides the notion of opening a
connection based on a string address and that the connection can be opened in either client or server mode.
However, there are differences between messages and datagrams, so messaging interfaces do not inherit from
datagram. It might also be confusing to use the same interfaces for messages and datagrams.

The interfaces for the messaging APl have been defined inthej avax. wi r el ess. nessagi ng package.

Representation of a message

A message can be thought of as having an address part and a data part. A message is represented by a class that
implements the interface defined for messagesin the API. This interface provides methods that are common for
all messages. Inthej avax. wi r el ess. messagi ng package, the base interface that is implemented by all
messages is named Message. It provides methods for addresses and timestamps.

For the data part of the message, the API is designed to handle both text and binary messages. These are
represented by two subinterfaces of Message: Text Message and Bi nar yMessage. These subinterfaces
provide ways to manipulate the payload of the message as Strings and byte arrays, respectively.

Other subinterfaces of Message can be defined for message payloads which are neither pure text nor pure
binary. Itisalso possibleto create further subinterfaces of Text Message and Bi nar yMessage for possible
protocol-specific features.

Sending and receiving messages

As defined by the Generic Connection Framework, the message sending and receiving functionality is
implemented by aConnect i on interface, in this case, MessageConnect i on. To make a connection, the
application obtains an object implementing the MessageConnect i on from the Connect or class by
providing a URL connection string that identifies the address.

If the application specifies afull destination address that defines arecipient to the Connect or , it getsa
MessageConnect i on that worksin a“client” mode. Thiskind of Connect i on can only be used for
sending messages to the address specified when creating it.

The application can create a“server” mode MessageConnect i on by providing a URL connection string
that includes only an identifier that specifies the messages intended to be received by this application. Then it
can usethis MessageConnect i on object for receiving and sending messages.

The format of the URL connection string that identifies the address is specific to the messaging protocol used.
For sending messages, the MessageConnect i on object provides factory methods for creating Message

objects. For receiving messages, the MessageConnect i on supports an event listener-based receive
mechanism, in addition to a synchronous blocking r ecei ve() method. The methods for sending and

Overview

receiving messages can throw aSecur i t yExcept i on if the application does not have the permission to
perform these operations.

The generic connection framework includes convenience methods for getting | nput St r eamand

Qut put St r eamhandles for connections which are St r eantConnect i ons. The MessageConnect i on
does not support stream based operations. If an application callsthe Connect or . open* St r eammethods,
they will receivean| | | egal Ar gunent Excepti on.

Bearer-specific Adapter

Thebasic MessageConnect i on and Message framework provides a general mechanism with establishing
amessaging application. The appendices describe the specific adapter requirements for URL connection string
formatting and bearer-specific message handling requirements.

* JavaDoc APl Documentation

» Appendix A - GSM SMS Adapter

» Appendix B - GSM CBS Adapter

» Appendix C - CDMA 1S-637 SMS Adapter

The appendices of this specification include the definition of SMS and CBS URL connection strings. These
connection schemes MAY be reused in other adapter specifications, as long as the specified syntax is not
modified and the usage does not overlap with these specified adapters (that is, no platform can be expected to
implement two protocol s for which the URI scheme would be the same, making it impossible for the platform to
distinguish which is desired by the application). Other adapter specifications MAY define new connection
schemes, as long as these do not conflict with any other connection scheme in use with the Generic Connection
Framework.

The appendices describe how the SMS and CBS adpaters MUST be implemented to conform to the
requirements of their specific wireless network environments and how these adapters supply the functionality
defined in the javax.wirel ess.messaging package.

When a GSM SM S message connection is established, the platform MUST use the rulesin Appendix A for the
syntax of the URL connection string and for treatment of the message contents.

When a GSM CBS message connection is established, the platform MUST use the rulesin Appendix B for the
syntax of the URL connection string and for treatment of the message contents.

When a CDMA SM S message connection is established, the platform MUST use the rulesin Appendix C for
the syntax of the URL connection string and for treatment of the message contents.

Security
To send and receive messages using this API, applications MUST be granted a permission to perform the
regquested operation. The mechanisms for granting a permission are implementation dependent.

The permissions for sending and receiving MAY depend on the type of messages and addresses being used. An
implementation MAY restrict an application’s ability to send some types of messages and/or sending messages
to certain recipient addresses. These addresses can include device addresses and/or identifiers, such as port
numbers, within a device.

An implementation MAY restrict certain types of messages or connection addresses, such that the permission
would never be available to an application on that device.

The applications MUST NOT assume that successfully sending one message implies that they have the
permission to send all kinds of messages to all addresses.

Overview

An application should handle Secur i t yExcept i onswhen a connection handleis provided from
Connect or. open(url) andfor any messager ecei ve() or send() operation that potentially engages
with the network or the privileged message storage on the device.

Permissionsfor MIDP 1.0 Platform

When the JSR120 interfaces are deployed on aMIDP 1.0 device, there is no forma mechanism to identify how
apermission to use a specific feature can be granted to a running application. On some systems, the decision to
permit a particular operation is |eft in the hands of the end user. If the user decides to deny the required
permission, thenaSecuri t yExcept i on can bethrown from the Connect or . open() , the
MessageConnecti on. send(),orthe MessageConnecti on. recei ve() method.

How to Use the Messaging API
This section provides some examples of how the messaging API can be used.

Sending a text messageto an end user
The following sample code sends the string “Hello World!” to an end user asanormal SMS message.

try {
String addr = “sns://+358401234567";
MessageConnecti on conn = (MessageConnection) Connector.open(addr);
Text Message nmsg =
(Text Message) conn. newiessage(MessageConnecti on. TEXT_MESSAGE) ;
nsg. set Payl oadText (“Hello World!");
conn. send(nsgQ) ;
} catch (Exception e) {

3
A server that respondsto received messages

The following sample code illustrates a server application that waits for messages sent to port 5432 and
responds to them.

Overview

try {
String addr = “sns://:5432";
MessageConnecti on conn = (MessageConnection) Connector.open(addr);

Message nsg = null;

whi | e (sonmeExitCondition) {
/1 wait for incom ng nmessages

neg = conn.receive();
/'l received a nessage
if (msg instanceof Text Message) {
Text Message tnsg = (Text Message) nsg;

String receivedText = tnsg. get Payl oadText ();

/'l respond with the sane text with “Received:”

/1 inserted in the beginning

t nmeg. set Payl oadText (“ Recei ved:” + receivedText);

/1 Note that the recipient address in the message is
/| already correct as we are reusing the sane object

conn. send(tnsg);

} else {
/1l Received nmessage was not a text nessage, but e.g. binary

}

}
} catch (Exception e) {

}

Package Summary

M essaging I nterfaces

javax. wirel ess. This package defines an APl which allows applications to send and receive wireless
nmessagi ng messages.

Networ king Package

javax. mcroedition.io Thispacakgeincludesthe platform networking interfaces which have been modified
for use on platforms that support message connections.

CHAPTER

Package L
javax.microedition.io

Description

This pacakge includes the platform networking interfaces which have been modified for use on platforms that
support message connections.

This package includes the Connect or classfrom MIDP 2.0. This classincludes Securi t yExcepti on as
an expected return from callsto open() which may require explicit authorization to connect.

When the message connection is implemented on a MIDP 1.0 platform, the Secur i t yExcept i on can be

provided by a platform-dependent authorization mechanism. For example, the user might be prompted to ask if
the application can send a message and the user’s denial interpretted asa Securi t yExcepti on.

Since: MIDP2.0

Class Summary

Interfaces

Classes

Connect or Thisclassisfactory for creating new Connect i on objects.

Exceptions

Connector javax.microedition.io

javax.microedition.io

Connector

Declaration
public class Connector

j ava. |l ang. oj ect

+--javax. mcroedition.io.Connector

Description
This classisfactory for creating new Connect i on objects.

The creation of connectionsis performed dynamically by looking up a protocol implementation class whose
name is formed from the platform name (read from a system property) and the protocol name of the requested
connection (extracted from the parameter string supplied by the application programmer). The parameter string
that describes the target should conform to the URL format as described in RFC 2396. This takes the genera
form:

{schene}:[{target}][{parns}]
where:
« schenme isthe name of a protocol such asHTTP.

e target isnormally some kind of network address.
» par ns areformed as a series of equates of the form ; x=y. For example: ; t ype=a.

An optiona second parameter may be specified to the open function. Thisis a mode flag that indicates to the
protocol handler the intentions of the calling code. The options here specify if the connection is going to beread
(READ), written (WRI TE), or both (READ_WRI TE). The validity of these flag settingsis protocol dependent.
For example, a connection for a printer would not allow read access, and would throw an

I I'l egal Ar gunent Except i on. If the mode parameter is not specified, READ_WRI TE is used by default.

An optional third parameter is a boolean flag that indicates if the calling code can handle timeout exceptions. If
thisflag is set, the protocol implementation may throw an | nt er r upt edl OExcept i on when it detectsa
timeout condition. Thisflag isonly ahint to the protocol handler, and it does not guarantee that such exceptions
will actually be thrown. If this parameter is not set, no timeout exceptions will be thrown.

Because connections are frequently opened just to gain access to a specific input or output stream, convenience
functions are provided for this purpose. See also: Dat agr anConnect i on for information relating to
datagram addressing

Since: CLDC 1.0

Member Summary

Fields
static int READ
static int READ WRI TE
static int WRITE

javax.microedition.io

Connector

READ
Member Summary
Methods
static Connection open(java.lang.String nane)
static Connection open(java.lang.String nane, int node)
static Connection open(java.lang.String nane, int node, boolean tineouts)
static java.io. openDatal nputStrean(java.lang. String nane)
Dat al nput St ream
static java.io. openDataQutputStrean(java.lang.String nane)
Dat aQut put St r eam
static java.io. openlnputStrean(java.lang. String nane)
I nput St ream
static java.io. openQutputStream(java.lang.String name)
Qut put St r eam
Inherited Member Summary
Methodsinherited from class Obj ect
equal s(Obj ect), getC ass(), hashCode(), notify(), notifyAll(), toString(), wait(),
wait(), wait()
Fields
READ
Declaration:
public static final int READ
Description:
Access mode READ.
READ WRITE
Declar ation:
public static final int READ WRI TE
Description:
Access mode READ_WRI TE.
WRITE
Declaration:
public static final int WRITE

Description:
Access mode VWRI TE.

Connector javax.microedition.io
open(String)

M ethods

open(String)

Declaration:
public static javax.m croedition.io.Connection open(java.lang.String nane)

throws | CException

Description:
Creates and opens a Connection.

Parameters:
name - the URL for the connection

Returns: anew Connection object

Throws:
java.l ang. ||| egal Argunent Excepti on - if aparameter isinvalid

Connect i onNot FoundExcept i on - if the requested connection cannot be made, or the protocol
type does not exist

java.io. | OExcepti on - if some other kind of I/O error occurs

SecurityException - if areguested protocol handler is not permitted

open(String, int)

Declaration:
public static javax.mcroedition.io.Connection open(java.lang.String nane, int node)

t hrows | CException

Description:
Creates and opens a Connection.

Parameters:
name - the URL for the connection

node - the access mode
Returns: anew Connect i on object

Throws:
java.l ang. ||| egal Argunent Excepti on - if aparameter isinvalid

Connect i onNot FoundExcept i on - if the requested connection cannot be made, or the protocol
type does not exist

java.io. | CExcepti on - if some other kind of I/O error occurs

SecurityException - if areguested protocol handler is not permitted

open(String, int, boolean)

Declaration:
public static javax.m croedition.io.Connection open(java.lang.String nane, int node,

bool ean ti nmeout s)
throws | CException

Description:
Creates and opens a Connection.

javax.microedition.io Connector
openDatal nputStream(String)

Parameters:
nane - the URL for the connection

node - the access mode
t i meout s - aflag to indicate that the caller wants timeout exceptions
Returns. anew Connect i on object

Throws:
java.lang. |1l egal Argunent Excepti on - if aparameter isinvalid

Connect i onNot FoundExcept i on - if the requested connection cannot be made, or the protocol
type does not exist

java.io. | CExcepti on - if some other kind of I/O error occurs

SecurityException - if areguested protocol handler is not permitted

openDatal nputStream(String)

Declar ation:

public static java.io.Datal nput Stream openDat al nput Strean(j ava. | ang. Stri ng nane)
throws | OException

Description:

Creates and opens a connection input stream.

Parameters:
nane - the URL for the connection

Returns. aDat al nput St ream

Throws:
java.lang. ||| egal Argunent Excepti on - if aparameter isinvalid

Connect i onNot FoundExcept i on - if the connection cannot be found
java.io. | Oexcepti on - if some other kind of 1/O error occurs

SecurityException - if access to the requested stream is not permitted

openDataOutputStream(String)

Declaration:

public static java.io.DataQut put Stream openDat aCut put St rean{j ava. |l ang. Stri ng nane)
throws | OException

Description:

Creates and opens a connection output stream.

Parameters;
nane - the URL for the connection

Returns. aDat aCut put St r eam

Throws:
java.l ang. |11 egal Argunment Excepti on - if aparameter isinvalid

Connect i onNot FoundExcept i on - if the connection cannot be found
java.io. | Oexcepti on - if some other kind of I/O error occurs

SecurityException - if accessto the requested stream is not permitted

Connector javax.microedition.io
openl nputStream(String)

openlnputStream(String)

Declaration:
public static java.io.lnputStream openl nput Strean{java.l ang. Stri ng nane)
throws | OException

Description:
Creates and opens a connection input stream.

Parameters;
nane - the URL for the connection

Returns. anl nput St r eam

Throws:
java.l ang. |11 egal Argunment Excepti on - if aparameter isinvalid

Connect i onNot FoundExcept i on - if the connection cannot be found
java.io. | OCExcepti on - if some other kind of 1/O error occurs
SecurityException - if accessto the requested stream is not permitted

openOutputStream(String)

Declaration:
public static java.io.QutputStream openQut put Strean(java.lang. String nane)
throws | OException

Description:
Creates and opens a connection output stream.

Parameters;
nane - the URL for the connection

Returns: an Qut put St r eam

Throws:
java.l ang. |1 egal Argunent Excepti on - if aparameter isinvalid

Connect i onNot FoundExcept i on - if the connection cannot be found
java.io. | Oexcepti on - if some other kind of I/O error occurs
SecurityException - if access to the requested stream is not permitted

10

CHAPTER

Package
javax.wireless.messaging

Description

This package defines an APl which allows applications to send and receive wireless messages. The API is
generic and independent of the underlying messaging protocol. The underlying protocol can be, for example,
GSM Short Message Service, CDMA SMS, and so on.

Overview

This package is designed to work with Message objects that may contain different elements depending on the
underlying messaging protocol. Thisis different from Dat agr ans that are assumed always to be blocks of
binary data.

An adapter specification for a given messaging protocol may define further interfaces derived from the
Message interfacesincluded in this generic specification.

Unlike network layer datagrams, the wireless messaging protocols that are accessed by using this APl are
typically of store-and-forward nature. Messages will usually reach the recipient, even if the recipient is not
connected at the time of sending. This may happen significantly later if the recipient is disconnected for along
period of time. Sending and possibly also receiving these wireless messages typically involves a financial cost
to the end user that cannot be neglected. Therefore, applications should not send unnecessary messages.

The MessageConnection and Message | nterfaces

The MessageConnect i on interface representsaConnect i on that can be used for sending and receiving
messages. The application opensaMessageConnect i on with the Generic Connection Framework by
providing a URL connection string.

TheMessageConnect i on can be opened either in “server” or in“client” mode. A * server” mode connection
is opened by providing a URL that specifies an identifier for an application on the local device for incoming
messages. A port number is an example of an identifier. Messages received with thisidentifier will then be
delivered to the application by using this connection. A “server” mode connection can be used both for sending
and for receiving messages.

A “client” mode connection is opened by providing a URL that points to another device. A “client” mode
connection can only be used for sending messages.

The messages are represented by the Message interface and interfaces derived from it. The Message
interface has the very basic functions that are common to all messages. Derived interfaces represent messages of
different types and provide methods for accessing type-specific features. The kinds of derived interfacesthat are
supported depends on the underlying messaging protocol. If necessary, interfaces derived from Message can
be defined in the adapter definitions for mapping the API to an underlying protocol.

The mechanism to derive new interfaces from the Message isintended as an extensibility mechanism allowing
new protocols to be supported in platforms. Applications are not expected to create their own classes that
implement the Message interface. The only correct way for applications to create object instances
implementing the Message interfaceisto usethe MessageConnect i on. newMessage factory method.

11

javax.wireless.messaging

Sinces WMA 1.0

Class Summary

Interfaces
Bi nar yMessage
Message

MessageConnecti on

Messageli st ener

Text Message

An interface representing a binary message.

Thisisthe base interface for derived interfaces that represent various types of
messages.

The MessageConnect i on interface defines the basic functionality for sending and
receiving messages.

The Messageli st ener interface provides a mechanism for the application to be
notified of incoming messages.

An interface representing a text message.

12

javax.wireless.messaging BinaryM essage
getPayloadData()

javf';\x.wi reless.messaging
BinaryMessage

Declaration
public interface Bi naryMessage extends Message

All Superinterfaces. Message

Description

An interface representing a binary message. Thisis a subinterface of Message which contains methods to get
and set the binary data payload. The set Payl oadDat a() method sets the value of the payload in the data
container without any checking whether the value is valid in any way. Methods for manipulating the address
portion of the message are inherited from Message.

Object instances implementing this interface are just containers for the datathat is passed in.

Member Summary

M ethods
byte[] getPayl oadData()
voi d setPayl oadDat a(byte[] data)

Inherited Member Summary

Methodsinherited from interface Message

get Address(), getTinmestanp(), setAddress(String)

M ethods

getPayloadData()

Declaration:
public byte[] getPayl oadDat a()

Description:
Returns the message payload data as an array of bytes.

Returnsnul | , if the payload for the message is not set.

The returned byte array is areference to the byte array of this message and the same reference is returned
for al calsto this method made before the next call to set Payl oadDat a.

Returns: the payload data of this message or nul | if the data has not been set
See Also: set Payl oadDat a(byte[])

13

BinaryM essage javax.wireless.messaging

setPayloadData(byte{])
setPayloadData(byte[])

14

Declaration:

public void setPayl oadDat a(byte[] data)

Description:

Sets the payload data of this message. The payload may besettonul | .

Setting the payload using this method only sets the reference to the byte array. Changes made to the
contents of the byte array subsequently affect the contents of this Bi nar yMessage object. Therefore,
applications should not reuse this byte array before the message is sent and the MessageConnect i on.
send method returns.

Parameters:
dat a - payload data as a byte array

See Also: get Payl oadDat a()

javax.wireless.messaging M essage
getAddress()

javax.wireless.messaging
Message

Declaration
public interface Message

All Known Subinterfaces. Bi nar yMessage, Text Message

Description

Thisisthe base interface for derived interfaces that represent various types of messages. This packageis
designed to work with Message objects that may contain different elements depending on the underlying
messaging protocol. Thisis different from Dat agr ansthat are assumed alwaysto be just blocks of binary
data. An adapter specification for a given messaging protocol may define further interfaces derived from the
Message interfacesincluded in this generic specification.

The wireless messaging protocols that are accessed viathis APl are typically of store-and-forward nature,
unlike network layer datagrams. Thus, the messages will usually reach the recipient, even if the recipient is not
connected at the time of sending the message. This may happen significantly later if the recipient is
disconnected for along time. Sending, and possibly a so receiving, these wireless messages typically involves a
financial cost to the end user that cannot be neglected. Therefore, applications should not send many messages
unnecessarily.

This interface contains the functionality common to all messages. Concrete object instances representing a
message will typically implement other (sub)interfaces providing access to the content and other informationin
the message which is dependent on the type of the message.

Object instances implementing this interface are just containers for the datathat is passed in. The
set Addr ess() method just sets the value of the address in the data container without any checking whether
thevalueisvalidin any way.

Member Summary

M ethods
java.lang. String getAddress()
java.util.Date getTi nestanp()
voi d set Address(java.lang. String addr)

M ethods

getAddress()

Declaration:
public java.lang. String get Address()

Description:
Returns the address associated with this message.

If thisis amessage to be sent, then this address is the recipient’s address.

15

M essage javax.wireless.messaging

getTimestamp()

If thisis amessage that has been received, then this address is the sender’s address.
Returnsnul | , if the address for the message is not set.

Note: This design allows responses to be sent to a received message by reusing the same Message object
and just replacing the payload. The address field can normally be kept untouched (unless the messaging
protocol requires some specia handling of the address).

The returned address uses the same URL string syntax that Connect or . open() usesto obtain this
MessageConnecti on.

Returns: the address of this message, or nul | if the addressis not set
See Also: set Address(String)

getTimestamp()

Declaration:
public java.util.Date getTi nestanp()

Description:
Returns the timestamp indicating when this message has been sent.

Returns: Dat e indicating the timestamp in the message or nul | if the timestamp is not set or if the time
information is not available in the underlying protocol message

setAddress(String)

16

Declar ation:

public void set Address(java.lang. String addr)

Description:

Sets the address associated with this message, that is, the address returned by the get Addr ess method.
The addressmay besettonul | .

The address MUST use the same URL string syntax that Connect or . open() usesto obtain this
MessageConnecti on.

Parameters:
addr - addressfor the message

See Also: get Addr ess()

javax.wireless.messaging M essageConnection
setAddress(String)

javax.wireless.messaging

M essageConnection

Declaration
public interface MessageConnecti on extends javax. m croedition.io.Connection

All Superinterfaces: j avax. m croedition.io. Connection

Description

The MessageConnect i on interface defines the basic functionality for sending and receiving messages. It
contains methods for sending and receiving messages, factory methods to create anew Message object, and a
method that cal culates the number of segments of the underlying protocol that are needed to send a specified
Message object.

Thisclassisinstantiated by acall to Connect or . open() . An application SHOULD call cl ose() whenit
is finished with the connection. An | OExcept i on isthrown when any method (except cl ose) is called on
the MessageConnect i on after the connection has been closed.

Messages are sent on a connection. A connection can be defined as server mode or client mode.

In aclient mode connection, messages can only be sent. A client mode connection is created by passing a string
identifying a destination address to the Connect or . open() method. This method returns a
MessageConnect i on object.

In aserver mode connection, messages can be sent or received. A server mode connection is created by passing
astring that identifies an end point (protocol dependent identifier, for example, a port number) on the local host
tothe Connect or. open() method. If the requested end point identifier is already reserved, either by some
system application or by another Java application, Connect or . open() throwsan| CExcepti on. Java
applications can open MessageConnect i onsfor any unreserved end point identifier, although security
permissions might not allow it to send or receive messages using that end point identifier.

The scheme that identifies which protocol is used is specific to the given protocol. This interface does not
assume any specific protocol and isintended for all wireless messaging protocols.

An application can have several MessageConnect i on instances open simultaneously; these connections can
be both client and server mode.

The application can create a class that implementsthe MessagelLi st ener interface and register an instance
of that class with the MessageConnect i on(s) to be notified of incoming messages. With this technique, a
thread does not have to be blocked, waiting to receive messages.

Member Summary

Fields
static java.lang. Bl NARY_MESSACGE
String
static java.lang. TEXT_MESSAGE
String
Methods

Message newiessage(java.lang. String type)
Message newiessage(java.lang.String type, java.lang. String address)

17

M essageConnection javax.wireless.messaging

BINARY_MESSAGE

Member Summary

int nunber O Segnent s(Message nsQ)
Message receive()
void send(Message nsgQ)
voi d set Messageli st ener (MessagelLi stener |)

Inherited Member Summary

Methodsinherited from interface Connect i on

cl ose()

Fields

BINARY_MESSAGE

Declaration:
public static final java.lang. String Bl NARY_MESSAGE

Description:

Constant for a message type for binary messages (value = “binary”). If this constant is used for thet ype
parameter in the newessage() methods, then the newly created Message will be an instance
implementing the Bi nar yMessage interface.

TEXT_MESSAGE

Declaration:
public static final java.lang.String TEXT_MESSACGE

Description:

Constant for a message type for text messages (value = “text”). If this constant is used for thet ype
parameter in the newessage() methods, then the newly created Message will be an instance
implementing the Text Message interface.

M ethods

newM essage(String)

18

Declaration:
public javax.w rel ess. nessagi ng. Message newMessage(j ava.l ang. String type)

Description:

Constructs a new message object of agiven type. When the string t ext is passed in, the created object
implements the Text Message interface. When the bi nar y constant is passed in, the created object
implementsthe Bi nar yMessage interface. Adapter definitions for messaging protocols can define new
constants and new subinterfaces for the Messages. The type strings are case-sensitive. The parameter is
compared withthe St ri ng. equal s() method and does not need to be instance equivalent with the
constants specified in this class.

javax.wireless.messaging M essageConnection
newM essage(String, String)

For adapter definitions that are not defined within the JCP process, the strings used MUST begin with an
inverted domain name controlled by the defining organization, asis used for Java package names. Strings

that do not contain afull stop character “.” are reserved for specifications done within the JCP process and
MUST NOT be used by other organizations defining adapter specification.

When this method is called from a client mode connection, the newly created Message hasthe destination
address set to the address identified when this Connect i on was created.

When this method is called from a server mode connection, the newly created Message does not have the
destination address set. It must be set by the application before trying to send the message.

If the connection has been closed, this method returns a Message instance.

Parameters:
t ype - the type of message to be created. There are constants for basic types defined in this interface.

Returns. Message object for agiven type of message

Throws:
java. |l ang. 111 egal Ar gument Except i on - if the type parametersis not equal to the value of
TEXT MESSAGE. Bl NARY IVESSAGE or any other type value specified in a private or publicly

standardized adapter specification that is supported by the implementation

newM essage(String, String)

Declar ation:
public javax.w rel ess. nessagi ng. Message newMessage(j ava.l ang. String type, java.lang.
String address)

Description:

Constructs anew Message object of agiven type and initializes it with the given destination address. The
semantics related to the parameter t ype are the same as for the method signature with just thet ype
parameter._

If the connection has been closed, this method returns a Message instance.

Parameters:
t ype - the type of message to be created. There are constants for basic types defined in this interface.

addr ess - destination address for the new message
Returns. Message abject for agiven type of message

Throws:
java.l ang. | |1 egal Ar gunent Except i on - if the type parametersis not equal to the value of
TEXT MESSAGE, Bl NARY_IVESSAGE or any other type value specified in a private or publicly

standardized adapter specification that is supported by the implementation
See Also: newMessage(String)

number Of Segments(M essage)

Declaration:
public int nunber Of Segnent s(j avax. wi rel ess. nessagi ng. Message nsg)

Description:
Returns the number of segments in the underlying protocol that would be needed for sending the specified
Message.

19

M essageConnection javax.wireless.messaging

receive()

Note that this method does not actually send the message. It will only calculate the number of protocol
segments needed for sending the message.

This method will calculate the number of segments needed when this message is split into the protocol
segments using the appropriate features of the underlying protocol. This method does not take into account
possible limitations of the implementation that may limit the number of segmentsthat can be sent using this
feature. These limitations are protocol-specific and are documented with the adapter definition for that
protocol.

If the connection has been closed, this method returns a count of the message segments that would be sent
for the provided Message.

Parameters:
nsg - the message to be used for the calculation

Returns: number of protocol segments needed for sending the message. Returns 0 if the Message object
cannot be sent using the underlying protocol.

receive()

Declaration:
public javax.w rel ess. messagi ng. Message receive()
throws | OException, |nterruptedl OException

Description:
Receives a message.

If there are no Messagesfor thisMessageConnect i on waiting, this method will block until either a
message for thisConnect i on isreceived or the MessageConnect i on isclosed.

Returns. aMessage object representing the information in the received message

Throws:
java.io. | Oexcepti on - if any of these situations occur:

« thereisan error while receiving a message
this method is called while the connection is closed

this method is called on aclient mode MessageConnecti on

java.io.Interruptedl CException -if thisMessageConnect i on object is closed during
this receive method call

javalang.SecurityException - if the application does not have permission to receive messages using the
given port number

See Also: send(Message)

send(M essage)

20

Declaration:
public void send(javax.w rel ess. nessagi ng. Message nsg)
throws | CException, |nterruptedl OException

Description:
Sends a message.

Parameters:
nsg - the message to be sent

javax.wireless.messaging M essageConnection
setM essagel_istener(M essageL i stener)

Throws:
java.io. | CExcepti on - if the message could not be sent or because of network failure or if the
connection is closed

java.l ang. Il egal Argunent Excepti on - if the message isincomplete or containsinvalid
information. This exception is also thrown if the payload of the message exceeds the maximum length
for the given messaging protocol. One specific case when the message is considered to contain invalid
information isif the Message is not of the right type to be sent using this MessageConnect i on:
the Message should be created using the newMessage() method of the same

MessageConnect i on aswill be used for sending it to ensure that it is of the right type.

java.io. | nterruptedl OExcepti on -if atimeout occurs while either trying to send the
message or if thisConnect i on object is closed during thissend operation

javalang.NullPointerException - if the parameter is null
javalang.SecurityException - if the application does not have permission to send the message
See Also: recei ve()

setM essagel istener (M essageL istener)

Declaration:
public void set Messageli stener(javax. w rel ess. nessagi ng. Messageli stener 1)
throws | OException

Description:
RegistersaMessageli st ener object that the platform can notify when a message has been received on
thisMessageConnecti on.

If there are incoming messages in the queue of thisMessageConnect i on that have not been retrieved
by the application prior to calling this method, the newly registered listener object will be notified
immediately once for each such incoming message in the queue.

There can be at most one listener object registered for aMessageConnect i on object at any given point
in time. Setting a new listener will de-register any previously set listener.

Passing nul | asthe parameter will de-register any currently registered listener.

Parameters:
| - Messageli st ener object to beregistered. If nul | , any currently registered listener will be de-
registered and will not receive notifications.

Throws:
javalang.SecurityException - if the application does not have permission to receive messages using the
given port number

java.io. | CExcepti on - if the connection has been closed, or if an attempt is made to register a
listener on aclient connection

21

M essagel istener javax.wireless.messaging
setM essagel i stener(M essagel istener)

javax.wireless.messaging

MessageL istener

Declaration
public interface Messageli stener

Description

The MessagelLi st ener interface provides a mechanism for the application to be notified of incoming
messages.

When an incoming message arrives, thenot i f yl ncom ngMessage() method iscalled. The application
MUST retrieve the message using ther ecei ve() method of the MessageConnect i on.

MessagelLi st ener should not call r ecei ve() directly. Instead, it can start a new thread which will
receive the message or call another method of the application (which is outside of the listener) that will call
recei ve() . For an example of how to use Messagel istener, see A Sample MessageL istener Implementation.
The listener mechanism allows applications to receive incoming messages without needing to have a thread
blockedinther ecei ve() method call.

If multiple messages arrive very closely together in time, the implementation has the option of calling this
listener from multiple threadsin parallel. Applications MUST be prepared to handle this and implement any
necessary synchronization as part of the application code, while obeying the requirements set for the listener
method.

A Sample M essagel istener mplementation

Thefollowing sample codeillustrates how lightweight and resource-friendly aMessageli st ener canbe. In
the sample, a separate thread is spawned to handle message reading. The MIDlet life cycleis respected by
releasing connections and signalling threads to terminate when the MIDlet is paused or destroyed.

22

javax.wireless.messaging M essagel istener
setM essagelistener(M essageL i stener)

/1 Sanpl e message |istener program
i nport java.io.l OException;
i mport javax.mcroedition. mdlet.*;
i mport javax.mcroedition.io.*;
i mport javax.wrel ess. nessagi ng. *;
public class Exanple extends M D et inplenments MessagelLi stener {
_MessageConnecti on nessconn;
bool ean done;
Reader reader;
_// Initial tests setup and execution.
_public void startApp() {
try {
/1 Get our receiving port connection.
nessconn = (MessageConnecti on)
Connect or. open(“sns://:6222");
/1 Register a listener for inbound nmessages.
nessconn. set Messageli st ener (this);
/1 Start a message-reading thread.
done = fal se;
reader = new Reader();
new Thread(reader).start();
} catch (I OException e) {
/1 Handl e startup errors
}

_I'1 Asynchronous cal |l back for inbound nessage.

_public void notifylncom ngMessage(MessageConnecti on conn) {
if (conn == nessconn) {

r eader . handl eMessage() ;
}

/! Required M Dl et nethod - rel ease the connection and
/Il signal the reader thread to term nate.
_public void pauseApp() {
done = true;
try {
nmessconn. cl ose();
} catch (1 OException e) {
/1 Handle errors
}

-}
/! Required M Dl et nethod - shutdown.
/1 @aramunconditional forced shutdown flag
_public void destroyApp(bool ean unconditional) {
done = true,
try {
nmessconn. set Messageli stener(nul |);
nessconn. cl ose();
} catch (I OException e) {
/1 Handl e shutdown errors.
}

I/ lsolate blocking I1/O on a separate thread, so call back
/Il can return inmmediately.
_class Reader inplenents Runnabl e {

private int pendi ngMessages = 0;

/1 The run nmethod perforns the actual nessage reading.
public void run() {

while (!done) {
synchroni zed(this) {

if (pendingMessages == 0) {

} catch (Exception e) {
/1 Handl e interruption
_}

}

23

M essagel istener javax.wireless.messaging
notifyl ncomingM essage(M essageConnection)

pendi nghMessages- - ;

[l _The benefit of the Messagelistener is here.
[/ This thread could via simlar triggers be

// handling other kind of events as well in
// addition to just receiving the nessages.
“try {

Message ness = nessconn.receive();
} catch (1 CException ioe) {
// Handle reading errors

| PLP

public synchroni zed void handl eMessage() {
pendi ngMessages++;

notify();:
_}
)
}

Member Summary

M ethods

void notifylncom ngMessage(MessageConnecti on conn)

M ethods

notifyl ncomingM essage(M essageConnection)

Declaration:
public void notifylncom ngMessage(j avax. wi rel ess. nessagi ng. MessageConnecti on conn)

Description:
Called by the platform when an incoming message arrivesto aMessageConnect i on wherethe
application has registered this listener object.

This method is called once for each incoming message to the MessageConnect i on.

NOTE: Theimplementation of this method MUST return quickly and MUST NOT perform any extensive
operations. The application SHOULD NOT receive and handle the message during this method call.
Instead, it should act only as atrigger to start the activity in the application’s own thread.

Parameters:
conn - the MessageConnect i on where the incoming message has arrived

24

javax.wireless.messaging TextM essage
getPayloadText()

javax.wireless.messaging

TextMessage

Declaration
public interface Text Message extends Message

All Superinterfaces. Message

Description

An interface representing atext message. Thisis a subinterface of Message which contains methods to get
and set the text payload. The set Payl oadText method sets the value of the payload in the data container
without any checking whether the valueisvalid in any way. Methods for manipulating the address portion of the
message are inherited from Message.

Object instances implementing this interface are just containers for the datathat is passed in.

Character Encoding Considerations

Text messages using this interface deal with St ri ngs encoded in Java. The underlying implementation will
convert the St r i ngsinto a suitable encoding for the messaging protocol in question. Different protocols
recognize different character sets. To ensure that characters are transmitted correctly across the network, an
application should use the character set(s) recognized by the protocol. If an application is unaware of the
protocol, or uses a character set that the protocol does not recognize, then some characters might be transmitted
incorrectly.

Member Summary

Methods
java.lang. String getPayl oadText ()
voi d setPayl oadText (j ava.l ang. String data)

Inherited Member Summary

Methodsinherited from interface Message

get Address(), getTinmestanp(), setAddress(String)

M ethods

getPayloadText()

Declaration:
public java.lang. String getPayl oadText ()

25

TextM essage javax.wireless.messaging

setPayload Text(String)

Description:
Returns the message payload dataasa St ri ng.

Returns: the payload of this message, or nul | if the payload for the messageis not set
See Also: set Payl oadText (Stri ng)

setPayloadText(String)

26

Declaration:
public voi d setPayl oadText (j ava.l ang. Stri ng data)

Description:
Sets the payload data of this message. The payload datamay be nul | .

Parameters:
dat a - payload dataasaSt ri ng

See Also: get Payl oadText ()

APPENDIX

GSM SMS Adapter _

This appendix describes an adapter that uses the messaging APl with the GSM Short Message Service.

A.1.0 GSM SM S Message Structure

The GSM SM S messages are defined in the GSM 03.40 standard [1]. The message consists of a fixed header
and afield called TP-User-Data. The TP-User-Data field carries the payload of the short message and optional
header information that is not part of the fixed header. This optional header information is contained in afield
called User-Data-Header. The presence of optional header information in the TP-User-Datafield isindicated by
aseparate field that is part of the fixed header.

The TP-User-Data can use different encodings depending on the type of the payload content. Possible
encodings are a 7-bit alphabet defined in the GSM 03.38 standard, 8-bit binary data, or 16-bit UCS-2 a phabet.

A.1.1 Message Payload L ength

The maximum length of the SM S protocol message payload depends on the encoding and whether there are
optional headers present in the TP-User-Datafield. If the optional header information specifies a port number,
then the payload which fitsinto the SM S protocol message will be smaller. Typicaly, the message is displayed
to the end user. However, this Java APl supports the use of port numbers to specify a Java application as the
message target.

The messages that the Java application sends can be too long to fit in asingle SMS protocol message. In this
case, the implementation MUST use the concatenation feature specified in sections 9.2.3.24.1 and 9.2.3.24.8 of
the GSM 03.40 standard [1]. This feature can be used to split the message payload given to the Java API into
multiple SM S protocol messages. Similarly, when receiving messages, the implementation MUST
automatically concatenate the received SM S protocol messages and pass the fully reassembled payload to the
application viathe API.

A.1.2 Message Payload Concatenation

The GSM 03.40 standard [1] specifies two mechanisms for the concatenation, specified in sections 9.2.3.24.1
and 9.2.3.24.8. They differ in the length of the reference number. For messages that are sent, the implementation

27

can use either mechanism. For received messages, implementations MUST accept messages with both
mechanisms.

Note: Depending on which mechanism is used for sending messages, the maximum length of the payload of a
single SM'S protocol message differs by one character/byte. For concatenation to work, regardless of which
mechanism is used by the implementation, applications are recommended to assume the 16-bit reference
number length when estimating how many SM S protocol messages it will take to send a given message. The
lengthsin Table 1 below are cal culated assuming the 16-bit reference number length.

Implementations of this APl MUST support at least 3 SMS protocol messages to be received and concatenated
together. Similarly, for sending, messages that can be sent with up to 3 SM S protocol messages MUST be
supported. Depending on the implementation, these limits may be higher. However, applications are advised not
to send messages that will take up more than 3 SMS protocol messages, unless they have reason to assume that
the recipient will be able to handle alarger number. The MessageConnect i on. nunber O Segnent s
method allows the application to check how many SMS protocol messages a given message will use when sent.

Table 1: Number of SM S protocol messages needed for different payload lengths

Sggggij No port number present (message | Port number present (message
Encoding to bedisplayed to the end user) targeted at an application)
Length SM S messages Length SM S messages
GSM 7-bit alphabet 0-160 chars 1 0-152 chars 1
161-304 chars 2 153-290 chars 2
305-456 chars 3 291-435 chars 3
8-bit binary data 0-140 bytes 1 0-133 bytes 1
41-266 bytes 2 134-254 bytes 2
267-399 bytes 3 255-381 bytes 3
UCS-2 alphabet 0-70 chars 1 0-66 chars 1
71-132 chars 2 67-126 chars 2
133-198 chars 3 127-189 chars 3

Table 1 assumes for the GSM 7-bit a phabet that only characters that can be encoded with a single septet are
used. If acharacter that encodes into two septets (using the escape code to the extension table) is used, it counts
as two charactersin this length calculation.

Note: the valuesin Table 1 include a concatenation header in all messages, when the message can not be sent in
asingle SM S protocol message.

Character Mapping Table

GSM 7-bit UCS-2 Character name

0x00 0x0040 COMMERCIAL AT

0x01 0x00a3 POUND SIGN

0x02 0x0024 DOLLAR SIGN

0x03 0x0035 YEN SIGN

0x04 0x00e8 LATIN SMALL LETTER E WITH GRAVE
0x05 0x00e9 LATIN SMALL LETTER E WITH ACUTE

28

GSM 7-bit UCS-2 Character name

0x06 0x00f9 LATIN SMALL LETTER U WITH GRAVE
0x07 0x00ec LATIN SMALL LETTER | WITH GRAVE
0x08 0x00f2 LATIN SMALL LETTER OWITH GRAVE
0x09 0x00c7 LATIN CAPITAL LETTER CWITH CEDILLA
0x0a 0x000a ontrol: line feed

0x0b 0x00d8 LATIN CAPITAL LETTER O WITH STROKE
0x0c 0x00f8 LATIN SMALL LETTER OWITH STROKE
0x0d 0x000d control: carriage return

0x0e 0x00c5 LATIN CAPITAL LETTER A WITH RING ABOVE
OxOf 0x00e5 LATIN SMALL LETTER A WITH RING ABOVE
0x10 0x0394 GREEK CAPITAL LETTER DELTA

0x11 0x005f LOW LINE

0x12 0x03a6 GREEK CAPITAL LETTER PHI

0x13 0x0393 GREEK CAPITAL LETTER GAMMA

0x14 0x039b GREEK CAPITAL LETTER LAMDA

0x15 0x03a9 GREEK CAPITAL LETTER OMEGA

0x16 0x03a0 GREEK CAPITAL LETTERPI

0x17 0x03a8 GREEK CAPITAL LETTERPSI

0x18 0x03a3 GREEK CAPITAL LETTER SIGMA

0x19 0x0398 GREEK CAPITAL LETTER THETA

Oxla 0x039% GREEK CAPITAL LETTER XI

Ox1b XXX escape to extension table

Ox1c 0x00c6 LATIN CAPITAL LETTER AE

Ox1d 0x00e6 LATIN SMALL LETTER AE

Oxle 0x00df LATIN SMALL LETTER SHARP S

Oxaf 0x00c9 LATIN CAPITAL LETTEREWITH ACUTE
0x20 0x0020 SPACE

0x21 0x0021 EXCLAMATION MARK

0x22 0x0022 QUOTATION MARK

0x23 0x0023 NUMBER SIGN

0x24 0x00a4 CURRENCY SIGN

0x25 0x0025 PERCENT SIGN

0x26 0x0026 AMPERSAND

0x27 0x0027 APOSTROPHE

0x28 0x0028 LEFT PARENTHESIS

0x29 0x0029 RIGHT PARENTHESIS

Ox2a 0x002a ASTERISK

0x2b 0x002b PLUSSIGN

Ox2c 0x002c COMMA

0x2d 0x002d HYPHEN-MINUS

0x2e 0x002e FULL STOP

Ox2f 0x002f SOLIDUS

0x30 0x0030 DIGIT ZERO

0x31 0x0031 DIGIT ONE

0x32 0x0032 DIGIT TWO

0x33 0x0033 DIGIT THREE

0x34 0x0034 DIGIT FOUR

0x35 0x0035 DIGIT FIVE

0x36 0x0036 DIGIT SIX

0x37 0x0037 DIGIT SEVEN

29

GSM 7-bit UCS-2 Character name

0x38 0x0038 DIGIT EIGHT

0x39 0x0039 DIGIT NINE

0Ox3a 0x003a COLON

0x3b 0x003b SEMICOLON

0x3c 0x003c LESS-THAN SIGN

0x3d 0x003d EQUALSSIGN

0x3e 0x003e GREATER-THAN SIGN

Ox3f 0x003f QUESTION MARK

0x40 0x00al INVERTED EXCLAMATION MARK
0x41 0x0041 LATIN CAPITAL LETTERA
0x42 0x0042 LATIN CAPITAL LETTERB
0x43 0x0043 LATIN CAPITAL LETTERC
0x44 0x0044 LATIN CAPITAL LETTERD
0x45 0x0045 LATIN CAPITAL LETTERE
0x46 0x0046 LATIN CAPITAL LETTERF
0x47 0x0047 LATIN CAPITAL LETTERG
0x48 0x0048 LATIN CAPITAL LETTER H
0x49 0x0049 LATIN CAPITAL LETTERI
Ox4a 0x004a LATIN CAPITAL LETTER J
Ox4b 0x004b LATIN CAPITAL LETTERK
Ox4c 0x004c LATIN CAPITAL LETTERL
Ox4d 0x004d LATIN CAPITAL LETTER M
Ox4e 0x004e LATIN CAPITAL LETTER N
Ox4f 0x004f LATIN CAPITAL LETTERO
0x50 0x0050 LATIN CAPITAL LETTERP
0x51 0x0051 LATIN CAPITAL LETTERQ
Ox52 0x0052 LATIN CAPITAL LETTERR
0x53 0x0053 LATIN CAPITAL LETTER S
0x54 0x0054 LATIN CAPITAL LETTERT
Ox55 0x0055 LATIN CAPITAL LETTER U
0x56 0x0056 LATIN CAPITAL LETTERV
Ox57 0x0057 LATIN CAPITAL LETTERW
0x58 0x0058 LATIN CAPITAL LETTER X
0x59 0x0059 LATIN CAPITAL LETTERY
Ox5a 0x005a LATIN CAPITAL LETTER Z
Ox5b 0x00c4 LATIN CAPITAL LETTER A WITH DIARESIS
Ox5¢ 0x00d6 LATIN CAPITAL LETTEROWITH DIARESIS
0x5d 0x00d1 LATIN CAPITAL LETTERN WITH TILDE
0x5e 0x00dc LATIN CAPITAL LETTER U WITH DIARESIS
Ox5f 0x00a7 SECTION SIGN

0x60 0x00bf INVERTED QUESTION MARK
0x61 0x0061 LATIN SMALL LETTERA
0x62 0x0062 LATIN SMALL LETTER B
0x63 0x0063 LATIN SMALL LETTERC
0x64 0x0064 LATIN SMALL LETTERD
0x65 0x0065 LATIN SMALL LETTERE
0x66 0x0066 LATIN SMALL LETTERF
0x67 0x0067 LATIN SMALL LETTER G
0x68 0x0068 LATIN SMALL LETTERH
0x69 0x0069 LATIN SMALL LETTER|

30

GSM 7-bit UCS-2 Character name

Ox6a 0x006a LATIN SMALL LETTER J

0x6b 0x006b LATIN SMALL LETTERK

0x6c 0x006¢ LATIN SMALL LETTERL

oxéd 0x006d LATIN SMALL LETTERM

Ox6e 0x006e LATIN SMALL LETTERN

Ox6f 0x006f LATIN SMALL LETTER O

0x70 0x0070 LATIN SMALL LETTER P

Ox71 0x0071 LATIN SMALL LETTERQ

Ox72 0x0072 LATIN SMALL LETTERR

Ox73 0x0073 LATIN SMALL LETTER S

OX74 0x0074 LATIN SMALL LETTERT

Ox75 0x0075 LATIN SMALL LETTERU

OX76 0x0076 LATIN SMALL LETTERV

ox77 0x0077 LATIN SMALL LETTERW

Ox78 0x0078 LATIN SMALL LETTER X

OX79 0x0079 LATIN SMALL LETTERY

Ox7a 0x007a LATIN SMALL LETTER Z

Ox7b 0x00e4 LATIN SMALL LETTER A WITH DIARESIS
Ox7c 0x00f6 LATIN SMALL LETTER O WITH DIARESIS
ox7d 0x00f1 LATIN SMALL LETTERN WITH TILDE
Ox7e 0x00fc LATIN SMALL LETTER U WITH DIARESIS
Ox7f 0x00e0 LATIN SMALL LETTERA WITH GRAVE
0x1b 0x14 0x005e CIRCUMFLEX ACCENT

0x1b 0x28 0x007b LEFT CURLY BRACKET

0x1b 0x29 0x007d RIGHT CURLY BRACKET

Ox1b Ox2f 0x005¢ REVERSE SOLIDUS

0x1b Ox3c 0x005b LEFT SQUARE BRACKET

0x1b 0x3d 0x007e TILDE

0x1b Ox3e 0x005d RIGHT SQUARE BRACKET

0x1b 0x40 0x007¢ VERTICAL LINE

0x1b 0x65 0x20ac EURO SIGN

The GSM 7-hit characters that use the escape code for atwo septet combination are represented in this table
with the hexadecimal representations of the two septets separately. In the encoded messages, the septets are
encoded together with no extra alignment to octet boundaries.

A.2.0 Message Addressing

The syntax of the URL connection strings that specify the address are described in Table 2.

Table 2: Connection Stringsfor M essage Addresses

String Definition

smsurl =="sms//" address part

address _part === foreign_host_address | local_host_address
local_host_address == port_number_part

port_number_part ==""digits

31

String Definition

foreign_host_address === msisdn | msisdn port_number_part

msisdn n=="+" digits| digits

digit e O A I I R I o G o v =
digits == digit | digit digits

Examples of valid URL connection strings are:

sms: // +358401234567
sms: /[+358401234567: 6578
sns://:3381

When this adapter is used and the Connect or . open() method is passed a URL with this syntax, it MUST
return an instance implementing thej avax. wi r el ess. nessagi ng. MessageConnect i on interface.

A.2.1 Specifying Recipient Addresses
In this URL connection string, the MSISDN part identifies the recipient phone number and the port number part

of the application port number address as specified in the GSM 3.40 SM S specification [1] (sections 9.2.3.24.3
and 9.2.3.24.4). The same mechanism is used, for example, for the WAP WDP messages.

When the port number is present in the address, the TP-User-Data of the SMS MUST contain a User-Data
Header with the Application port addressing scheme information element.

When the recipient address does not contain a port number, the TP-User-Data MUST NOT contain the
Application port addressing header. Java applications cannot receive thiskind of message, but it will be handled
as usual in the recipient device; for example, text messages will be displayed to the end user.

A.2.2 Client Mode and Server M ode Connections

Messages can be sent using this API viaclient or server type MessageConnect i ons. When amessage
identifying a port number is sent from a server type MessageConnect i on, the originating port number in
the message is set to the port number of the MessageConnect i on. Thisallows the recipient to send a
response to the message that will be received by this MessageConnect i on.

However, when a client type MessageConnect i on isused for sending a message with a port number, the
originating port number is set to an implementati on-specific value and any possible messages received to this
port number are not delivered to the MessageConnect i on.

Thus, only the server mode MessageConnect i ons can be used for receiving messages. Any messages to
which the other party is expected to respond should be sent using the appropriate server mode
MessageConnect i on.

A.2.3 Handling Received M essages

When SM S messages are received by an application, they are removed from the SIM/ME memory where they
may have been stored.

If the message information MUST be stored more persistently, then the application is responsible for saving it.
For example, the application could could save the message information by using the RM S facility of the MIDP
API or any other available mechanism.

The GSM SM S protocol does not guarantee to preserve the ordering when multiple messages are sent. When a
large message is split into multiple GSM SM S sections as specified in A.1.2, ordering is handled correctly when

they are automatically concatenated back into asingle Message object. If the application sends multiple
Messages to the same recipient, they might not be delivered in the correct order. The application must be
written so that it is able to deal with this issue appropriately. However, even when the ordering may change

32

during the delivery in the network, the implementation MUST guarantee that the messages are delivered to the
application in the same order as they were received by the implementation of the recipient terminal.

A.3.0 Short Message Service Center Address

Applications might need to obtain the Short Message Service Center (SM SC) address to decide which recipient
number to use. For example, the application might need to do this because it is using service numbers for
application servers which might not be consistent in all networks and SMSCs.

The SMSC address used for sending the messages MUST be made available using Syst em get Property
with the property name described in Table 3.

Table 3: Property Name and Description for SM SC Addresses

Property name Description

Wi rel ess. nessagi ng. sns. snscC The address of the SM S expressed using the syntax expressed by the msisdn
item of thefollowing BNF definition:

nmeisdn ::== "+" digits | digits

digit ::=="0" | "2" | "2" | "3" | "4" | "5" | "6"
| 7| e | e

digits ::==digit | digit digits

A.4.0 Using Port Numbers

Thereceiving application in adevice isidentified with the port number included in the message. When opening
the server mode MessageConnect i on, the application specifiesthe port number that it will use for receiving

messages.
Thefirst application to allocate a given port number will get it. If other applicationstry to allocate the same port
number while it is being used by thefirst application, an |OException will be thrown when they attempt to open
the MessageConnect i on. The samerule appliesif a port number isbeing used by a system application in
the device. In this case, the Java applications will not be able to use that port number.

As specified in the GSM 03.40 standard [1], the port numbers are split into ranges. The IANA (Internet
Assigned Numbers Authority) controls one of the ranges. If an application author wants to ensure that an
application can always use a specific port number value, then it can be registered with IANA. Otherwise, the
author can pick anumber at random from the freely usable range and hope that the same number is not used by
another application that might be installed in the same device. Thisis exactly the same way that port numbers
are currently used with TCP and UDP in the Internet.

A.5.0 Message Types

SMS messages can be sent using the Text Message or the Bi nar y Message message type of the API. The
encodings used in the SM S protocol are defined in the GSM 03.38 standard (Part 4 SM S Data Coding Scheme)
[2].

When the application uses the Text Message type, the TP-Data-Coding-Scheme in the SMS MUST indicate
the GSM default 7-bit alphabet or UCS-2. The TP-User-DataMUST be encoded appropriately using the chosen

33

alphabet. The 7-bit alphabet MUST be used for encoding if the String that is given by the application only
contains characters that are present in the GSM 7-bit aphabet. If the String given by the application contains at
least one character that is not present in the GSM 7-bit alphabet, the UCS-2 encoding MUST be used.

When the application uses the Bi nar y Message, the TP-Data-Coding-Scheme in the SMS MUST indicate 8-
bit data.

The application is responsible for ensuring that the message payload fitsin an SM S message when encoded as
defined in this specification. If the application tries to send a message with a payload that is too long, the
MessageConnect i on. send() methodwill throwan] 1| egal Ar gunent Except i on and the message
will not be sent. This specification contains the information that applications need to determine the maximum
payload for the message type they are trying to send.

All messages sent viathis APl MUST be sent as Class 1 messages GSM 3.40 SM S specification [1], Section 9.
2.3.9 "TP-Protocol-Identifier”.

A.6.0 Restrictionson Port Numbersfor SMS M essages

For security reasons, Java applications are not allowed to send SMS messages to the port numbers
listed in Table 4. Implementations MUST throw a Secur.i t yExcepti on in the

MessageConnect i on. send() method if an application tries to send a message to any of these port
numbers.

Table 4: Port Numbers Restricted to SM S M essages

Port number Description

2805 WAP WTA secure connection-less session service
2923 WAP WTA secure session service

2948 WAP Push connectionless session service (client side)
2949 WAP Push secure connectionless session service (client side)
5502 Service Card reader

5503 Internet access configuration reader

5508 Dynamic Menu Control Protocol

5511 Message Access Protocol

5512 Simple Email Notification

9200 WAP connectionless session service

9201 WAP session service

9202 WAP secure connectionless session service

9203 WAP secure session service

9207 WAP vCa Secure

49996 SyncML OTA configuration

49999 WAP OTA configuration

APPENDIX

GSM Cell Broadcast Adapter

This appendix describes an adapter that uses the messaging APl with the GSM Cell Broadcast short message
Service (CBS).

The Cell Broadcast serviceisaunidirectional data service where messages are broadcast by a base station and
received by every mobile station listening to that base station. The Wireless Messaging API isused for receiving
these messages.

B.1.0 GSM CBS message structure

The GSM CBS messages are defined in the GSM 03.41 standard [4].

The source/type of a CBS message is defined by its Message-ldentifier field, which is used to choose topics to
subscribe to. Applications can receive messages of a specific topic by opening aMessageConnect i on with
aURL connection string in the format defined below. In the format, Message-Identifier is analogous to a port
number.

Cell broadcast messages can be encoded using the same data coding schemes as GSM SM S messages (See
Character Mapping Table in Appendix A, GSM SMS Adapter). The implementation of the API will convert
messages encoded with the GSM 7-bit aphabet or UCS-2 into Text Message objects and messages encoded
in 8-bit binary to Bi nar yMessage objects.

Because the cell broadcast messages do not contain any timestamps, the Message. get Ti neSt anp method
MUST always return null for received cell broadcast messages.

B.2.0 Addressing

The URL connection strings that specify the address use the following syntax: _
String Description
cbsurl ;== "cbs://" address part
address _part .1 == message_identifier_part
message_identifier_par co== " " digits
digit e O e B R N N R R A I S
digits ;== digit | digit digits

35

Examples of valid URL connection strings are:

cbs://:3382
chs://:3383
In this URL, the message identifier part specifies the message identifier of the cell broadcast messages that the

application wants to receive.

When this adapter is used and the Connect or . open() method is passed a URL with this syntax, it MUST
return an instance implementing thej avax. wi r el ess. nessagi ng. MessageConnect i on interface.
These MessageConnect i on instances can be used only for receiving messages. Attemptsto call the send
method on these MessageConnect i on instances MUST result inan | OExcept i on being thrown.

36

APPENDIX

CDMA 1S-637 SMS Adapter

This appendix describes an adapter that uses the messaging APl with the CDMA |1S-637 SMS service.

C.1.0CDMA 15637 SM S M essage Structure
CDMA SM S messages are defined in the CDMA 1S-637 standard [6].

C.2.0 Addressing

Thesamesns: URL connection string is used asfor GSM SMS (See Appendix A).

C.3.0 Port Numbers

The|S-637 SMS protocol does not include a port number or any other field for differentiating between recipient
applications. For this purpose, the WAP WDP for 1S-637 SM S defined in section 6.5 of the WAP Forum WDP
specification[5] MUST be used.

Similarly, any rules for segmentation and reassembly follow the WAP WDP guidelines for adapting CDMA
SM S messages for a common behavior with corresponding GSM SM S bearer capabilities.

Messages without a port number are sent as normal SM S messages targeted for presentation to the end user.

CDMA SM S messages MUST support aminimum of 3 concatenated messages to be consistent with the GSM
SM S message adapter.

37

38

APPENDIX

Deploying JSR 120 Interfaces
onaMIDP 2.0 Platform

D.1.0 Introduction
This section provides implementation notes for platform devel opers deploying the JSR 120 interfaces on a
MIDP 2.0 platform.

This section addresses features available in aMIDP 2.0 device that can be used to enhance WMA applications.
In particular, this document describes how to:

 usethe MIDP 2.0 security features to control access to WMA capabilities
* usethe MIDP 2.0 Push mechanism with SMS and CBS messages
« write applications to remain portable between the MIDP 1.0 and MIDP 2.0 platforms

D.2.0 Security

To send and receive messages using this API, applications MUST be granted a permission to perform the
requested operation. The mechanisms for granting a permission are implementation dependent.

D.2.1 Permissions for Opening Connections

The JSR 118 MIDP NG specification defines a mechanism for granting permissions to use privileged features.
This mechanism is based on a policy mechanism enforced in the platform implementation. The following
permissions are defined for the JSR 120 messaging functionality, when deployed with a JSR 118 MIDP 2.0
implementation.

To open aconnection, aMIDlet suite requires an appropriate permission to accessthe MessageConnect i on
implementation. If the permission is not granted, then Connect or . open methods MUST throw a
Securi t yExcepti on. Thefollowing table indicates the permission that must be granted for each protocol.

Permission Protocol
javax. m croedition.io.Connector. sns
SIB

39

Permission Protocol

javax. m croedition.io.Connector. cbs
cbs

D.2.2 Permissionsfor Send and Receive Operations

To send and receive messages, the MIDlet suite requires the appropriate permissions. If the permission is not
granted, then the MessageConnect i on. send and the MessageConnect i on. r ecei ve methods
MUST throw aSecuri t yExcept i on. Thefollowing table indicates the permission that must be granted for
each requested operation.

Permission Protocol
javax.w rel ess. nessagi ng. sns. send sns
javax. w rel ess. nessagi ng. sns. sns
receive

j avax. w rel ess. nessagi ng. cbs. chs
recei ve

The permissions for sending and receiving MAY depend on the type of messages and addresses being used. An
implementation MAY restrict an application’s ability to send some types of messages and/or sending messages
to certain recipient addresses. These addresses can include device addresses and/or identifiers, such as port
numbers, within a device.

An implementation MAY restrict certain types of messages or connection addresses, such that sending such
messages will fail and throw aSecur i t yExcept i on even when the application has the permission to send
messages in general.

The applications MUST NOT assume that successfully sending one message implies that they have the
permission to send all kinds of messages to all addresses.

An application should handle Secur i t yExcept i ons when aconnection handle is provided from
Connect or. open(url) andfor any messager ecei ve or send operation that potentially engages with
the network or the privileged message storage on the device.

D.3.0 WMA Push Capabilities

MIDP 2.0 includes a mechanism to register a M1Dlet when a connection notification event is detected. Once the
MIDlet has been launched it performs the same I/O operations it would normally use to open a connection and
read and write data.

For WMA applications this capability alows the application to be launched if messages arrive either while the
MIDlet is not running or while another MIDIet is running.

D.3.1 WMA Push Registration Entry

Push registrations are either defined in the application descriptor or made dynamically at runtime via
PushRegi st ry. Theentry for aWMA protocol will include the connection URL string which identifies the
scheme and port number of the inbound message connection. The entry also contains afilter field that
designates which senders are permitted to send messages that launch the registered MIDlet. An asterisk ("*")
and question mark ("?") can be used in the filter field as awild cards as specified in the MIDP 2.0 specification.

40

For thesns: protocol, the filter field is matched against the MSISDN part of the sender address, as defined by
thensi sdn element of thesns: URL syntax in section A.2.0 of the WMA API specification. The sender port
number is not included in matching the filter. Wildcard characters can be used in the filter as specified in the
MIDP 2.0 specification.

For the CBS: protocol, the filtering is not performed and only "** MUST be used as the filter.

For example :

M Dl et - Push-1: sns://:12345, SnsExanple, 123456789
M Dl et - Push-2: cbs://:54321, CbhsExanple, *
Unlike theinitia push connections defined in JSR 118 for MIDP 2.0, the SM S protocol includes an explicit

buffering mechanism where messages are held until processed by some application that reads and deletes
messages when they are done with data. If a message is delivered to the device and does not pass the specified
filter, the message will be deleted by the Application Management Software.

When the application is started in response to a Pus h message, the application SHOULD read and process all
messages that are buffered for it. If an application fails to read and process the messages when started or if
starting of the application is denied (for example, by the end user), the platform implementation MAY delete
unread messages from the buffer, if it becomes necessary to do so. For example, the platform implementation
may del ete messages when the buffer becomes full.

Another difference between the WMA interface and other JSR 118 protocol handlersin MIDP 2.0, isthat WMA
includesaMessagelLi st ener which provides asynchronous callbacks when messages become available
while the application is running.

D.4.0 Portable WMA Applications

If permitted by the device security policy, aWMA application written for aMIDP 1.0 platform will work
without any modification on aMIDP 2.0 system. This behavior is defined by the JSR 118 specification of
untrusted applications.

MIDP 2.0 a so supports the concept of trusted applications. For these applications, the device can automatically
handle trust decisions based on signed JAR files and a platform-specific policy mechanism that associates
specific permissions with the signed application.

The security model also alows for the definition of user-granted permissions on a one-shot, session or blanket
authorization. In many cases, the platform-dependent policy for permissions on MIDP 1.0 will be able to be
mapped onto the MIDP 2.0 defined permissions.

An application designed to work only on aMIDP 2.0 device can use the methodsin the PushRegi st ry class
to check if there are active connections (I i st Connect i ons) or to add or remove registered connections at
runtime (r egi st er Connecti on or unr egi st er Connect i on).

An application designed to run portably on MIDP 1.0 or MIDP 2.0 platforms will only use the application
descriptor and attributes in the manifest to describe requested permissions and push registration entries. See the
JSR 118 MIDP 2.0 specification for details about the MIDlet-Permissions and MIDlet-Push-<n> attributes. On
aMIDP 1.0 platforms these properties will be ignored. On aMIDP 2.0 platform, these properties will direct the
application management software to perform the necessary checks and registrations when the application is
installed and removed from the system.

41

42

43

ALMANAC LEGEND
The almanac presents classes and intefaces in al phabetic order, regardless of their package. Fields, methods and
constructors are in alphabetic order in asingle list.

This aimanac is modeled after the style introduced by Patrick Chan in his excellent book Java Developers

Almanac.
ue 0
RealtimeThread javax.realtime |
[][J Object
[Thread [0 Runnable
(] RealtimeThread Schedulable
void addToFeasibility()
D] DD RealtimeThread currentRealtimeThread()
1.3 O Scheduler getScheduler()
] RealtimeThread()
13 [RealtimeThread(SchedulingParameters scheduling)
0O void sleep(Clock clock, HighResolutionTime time)
DD throws InterruptedException
1. Name of the class, interface, nested class or nested interface. Interfaces areitalic.
2. Name of the package containing the class or interface.
3. Inheritance hierarchy. Inthisexample, Real t i meThr ead extends Thr ead, which extends Obj ect .
4. Implemented interfaces. The interface isto the right of, and on the same line as, the class that implements

it. Inthisexample, Thr ead implements Runnabl e, and Real t i meThr ead implements
Schedul abl e.

. Thefirst column aboveisfor the value of the @i nce comment, which indicates the version in which the

item was introduced.

. The second column above is for the following icons. If the “protected” symbol does not appear, the

member is public. (Private and package-private modifiers also have no symbols.) One symbol from each
group can appear in this column.

Modifiers Access Modifiers Constructorsand Fields
0 abstract 4 protected O constructor

e find 0O field

0 dsatic

m saticfina

7. Return type of a method or declared type of afield. Blank for constructors.

8. Name of the constructor, field or method. Nested classes arelisted in 1, not here.

Almanac

BinaryMessage javax.wireless.messaging

BinaryMessage Message
byte[] getPayloadData()

void setPayloadData(byte[] data)

Connector javax.microedition.io

Object
[0 Connector

Connection open(String name) throws java.io.lOException
Connection open(String name, int mode) throws java.io.lOException

Connection open(String name, int mode, boolean timeouts) throws java.io.
IOException

java.io.DatalnputStream openDatalnputStream(String name) throws java.io.lOException
java.io.DataOutputStream openDataOutputStream(String name) throws java.io.lOException
java.io.InputStream openlinputStream(String name) throws java.io.lOException
java.io.OutputStream openOutputStream(String name) throws java.io.lOException
int READ
int READ_WRITE
int WRITE

WY ooooo ooo

Message javax.wireless.messaging
Message

String getAddress()
java.util.Date getTimestamp()
void setAddress(String addr)

MessageConnection javax.wireless.messaging
MessageConnection javax.microedition.io.Connection
String BINARY_MESSAGE

Message newMessage(String type)
Message newMessage(String type, String address)
int numberOfSegments(Message msg)

Message receive() throws java.io.lOException, java.io.InterruptedlOException

45

Almanac

void send(Message msg) throws java.io.IOException, java.io.
InterruptedIOException

void setMessagelistener(MessageListener) throws java.io.lOException
] String TEXT_MESSAGE

Messagelistener javax.wireless.messaging

Messagelistener

void notifylncomingMessage(MessageConnection conn)

TextMessage javax.wireless.messaging

TextMessage Message
String getPayloadText()

void setPayloadText(String data)

46

| ndex
B |

BINARY_MESSAGE |
of javax.wireless.messaging.M essageConnec-
tion 18 |
BinaryM essage
of javax.wireless.messaging 13 |

C I

Connector |
of javax.microedition.io 6

G

getAddress()
of javax.wireless.messaging.Message 15
getPayloadData()
of javax.wireless.messaging.BinaryM essage
13
getPayloadText() |
of javax.wireless.messaging. TextM essage 25
getTimestamp() |
of javax.wireless.messaging.Message 16

M

M essage

of javax.wireless.messaging 15 |
M essageConnection

of javax.wireless.messaging 17 |
M essagel istener

of javax.wireless.messaging 22

N

newM essage(String)
of javax.wireless.messaging.M essageConnec- |
tion 18
newM essage(String, String) |
of javax.wireless.messaging.M essageConnec-
tion 19
notifyl ncomingM essage(M essageConnection)
of javax.wireless.messaging.Messagel istener
24
number Of Segments(M essage) |
of javax.wireless.messaging.M essageConnec- |
tion 19

O

open(String)

of javax.microedition.io.Connector 8
open(String, int)

of javax.microedition.io.Connector 8
open(String, int, boolean)

of javax.microedition.io.Connector 8
openDatal nputStream(String)

of javax.microedition.io.Connector 9
openDataOutputStream(String)

of javax.microedition.io.Connector 9
openlnputStream(String)

of javax.microedition.io.Connector 10
openOutputStream(String)

of javax.microedition.io.Connector 10

R

READ
of javax.microedition.io.Connector 7
READ_WRITE
of javax.microedition.io.Connector 7
receive()
of javax.wireless.messaging.M essageConnec-
tion 20

S

send(M essage)
of javax.wireless.messaging.M essageConnec-
tion 20
setAddress(String)
of javax.wireless.messaging.Message 16
setM essagel istener (M essagel istener)
of javax.wireless.messaging.M essageConnec-
tion 21
setPayloadData(byt€]])
of javax.wireless.messaging.BinaryMessage
14
setPayloadText(String)
of javax.wireless.messaging. TextM essage 26

T

TEXT_MESSAGE
of javax.wireless.messaging.M essageConnec-
tion 18
TextMessage
of javax.wireless.messaging 25

47

Index

W

WRITE
of javax.microedition.io.Connector 7

48

	Wireless Messaging API (WMA)
	Contents
	Preface
	Overview
	javax.microedition.io
	Connector

	javax.wireless.messaging
	BinaryMessage
	Message
	MessageConnection
	MessageListener
	A Sample Message�Listener Implementation
	TextMessage

	GSM SMS Adapter
	A.1.0 GSM SMS Message Structure
	A.1.1 Message Payload Length
	A.1.2 Message Payload Concatenation
	A.2.0 Message Addressing
	A.3.0 Short Message Service Center Address
	A.4.0 Using Port Numbers
	A.5.0 Message Types
	A.6.0 Restrictions on Port Numbers for SMS Messages

	GSM Cell Broadcast Adapter
	B.1.0 GSM CBS message structure
	B.2.0 Addressing

	CDMA IS-637 SMS Adapter
	C.1.0 CDMA IS-637 SMS Message Structure
	C.2.0 Addressing
	C.3.0 Port Numbers

	Deploying JSR 120 Interfaces on a MIDP 2.0 Platform
	D.1.0 Introduction
	D.2.0 Security
	D.3.0 WMA Push Capabilities
	D.4.0 Portable WMA Applications

	Almanac
	BinaryMessage
	Connector
	Message
	MessageConnection
	MessageListener
	TextMessage

	Index

