
JavaTM Authorization Contract for Containers WHAT A JAVA EE PLATFORM’S DEPLOYMENT

Maintenance Release 1.2

20

The declarative authorization policy statements derived from the application

or module deployment descriptor(s) must be translated to create instances of the

corresponding javax.security.jacc Permission classes.

WebResourcePermission webPerm =

new WebResourcePermission(“/elephant”,“GET”);

Methods of the PolicyConfiguration interface must be used with the

permissions resulting from the translation to create policy statements within the

PolicyConfiguration objects.

petPC.addToRole(“customer”,webPerm);

The PolicyConfiguration objects must be linked such that the same

principal-to-role mapping will be applied to all the modules of the application.

petPC.linkConfiguration(petFoodPC);

The PolicyConfiguration objects must be placed in Service such that they will

be assimilated into the Policy providers used by the containers to which the

application has been deployed.

petPC.commit();

Independent of this specification, J2EE deployment tools must translate and

complete the declarative policy statements appearing in deployment descriptors

into a form suitable for securing applications on the platform. On versions of the

Java EE platform that require support for authorization policy annotations, the

deployment tools must combine policy annotations in Java code with policy

statements appearing in deployment descriptors to yield complete representations

of authorization policy suitable for securing applications on the platform. The

rules for combining authorization policy annotations with declarative policy

statements are described in the versions of the EJB, Servlet, and Java EE platform

specifications that require support for the annotations. Independent of whether

annotations factor in the translation, the resulting policy statements may differ in

form from the policy statements appearing in the deployment descriptors. The

policy translation defined by this subcontract is described assuming that the policy

statement form used by a platform is identical to that used to express policy in the

deployment descriptors. Where this is not the case, the output of the translation

must be equivalent to the translation that would occur if policy was completely

specified in the deployment descriptors and the translation had proceeded directly

from the deployment descriptors to the Java SE policy forms defined by this

subcontract. Two translations are equivalent if they produce corresponding

collections of unchecked, excluded, and role permissions, and if all of the

Chapter 3 Policy Configuration Subcontract JavaTM Authorization Contract for Containers 21

permissions of each such collection are implied1 by the permissions of the

corresponding or excluded collection of the other translation. Translation

equivalence is only required with respect to the permission types that are the

subject of the translation.

3.1.1 Policy Contexts and Policy Context Identifiers

It must be possible to define separate authorization policy contexts corresponding

to each deployed instance of a Java EE module. This per module scoping of policy

context is necessary to provide for the independent administration of policy

contexts corresponding to individual application modules (perhaps multiply

deployed) within a common Policy provider.

Each policy context contains all of the policy statements (as defined by this

specification) that effect access to the resources in one or more deployed modules.

At policy configuration, a PolicyConfiguration object is created for each

policy context, and populated with the policy statements (represented by

permission objects) corresponding to the context. Each policy context has an

associated policy context identifier.

In the Policy Decision and Enforcement Subcontract, access decisions are

performed by checking permissions that identify resources by name and perhaps

action. When a permission is checked, this specification requires identification of

the authorization policy context in which the evaluation is to be performed (see

Section 4.6, “Setting the Policy Context,” on page 50).

3.1.1.1 Policy Context Life Cycle

Figure 3.1 depicts the policy context life cycle as effected through the methods of

the PolicyConfiguration interface. A policy context is in one of three states and all

implementations of the PolicyConfiguration interface must implement the state

semantics defined in this section.

• open

A policy context in the open state must be available for configuration by any

of the methods of the PolicyConfiguration interface. A policy context in the

open state must not be assimilated at Policy.refresh into the policy statements

used by the Policy provider in performing its access decisions.

1. For some permission types, such as the EJBMethodPermission, it will generally not be

possible to use the implies method of the PermissionCollection to compute collection

equivalence (because the implies method is unable to determine when a collection

contains all the permissions implied by a wild carded form of the permission).

