
Chapter 3 Policy Configuration Subcontract JavaTM Authorization Contract for Containers 21

permissions of each such collection are implied1 by the permissions of the 

corresponding or excluded collection of the other translation. Translation 

equivalence is only required with respect to the permission types that are the 

subject of the translation.

3.1.1 Policy Contexts and Policy Context Identifiers

It must be possible to define separate authorization policy contexts corresponding 

to each deployed instance of a Java EE module. This per module scoping of policy 

context is necessary to provide for the independent administration of policy 

contexts corresponding to individual application modules (perhaps multiply 

deployed) within a common Policy provider.

Each policy context contains all of the policy statements (as defined by this 

specification) that effect access to the resources2 in one or more deployed 

modules.   At policy configuration, a PolicyConfiguration object is created 

for each policy context, and populated with the policy statements (represented by 

permission objects) corresponding to the context. Each policy context has an 

associated policy context identifier.

In the Policy Decision and Enforcement Subcontract, access decisions are 

performed by checking permissions that identify resources by name and perhaps 

action. When a permission is checked, this specification requires identification of 

the authorization policy context in which the evaluation is to be performed (see 

Section 4.6, “Setting the Policy Context,” on page 52).

3.1.1.1 Policy Context Life Cycle

Figure 3.1 depicts the policy context life cycle as effected through the methods of 

the PolicyConfiguration interface. A policy context is in one of three states and all 

implementations of the PolicyConfiguration interface must implement the state 

semantics defined in this section.

•  open

A policy context in the open state must be available for configuration by any 

of the methods of the PolicyConfiguration interface. A policy context in the 

open state must not be assimilated at Policy.refresh into the policy statements 

1. For some permission types, such as the EJBMethodPermission, it will generally not be 

possible to use the implies method of the PermissionCollection to compute collection 

equivalence (because the implies method is unable to determine when a collection 

contains all the permissions implied by a wild carded form of the permission). 
2. An exception to this rule is described in Section 3.1.4, “EJB Policy Context Identifiers”. 


