
JavaTM Authorization Contract for Containers WHAT A JAVA EE PLATFORM’S DEPLOYMENT

Maintenance Release 1.4

38

security-role-ref elements, an EJBRoleRefPermission must be added to

each security-role of the application whose name does not appear as the

role-name in a security-role-ref within the element. The name of each

such EJBRoleRefPermission must be the value of the ejb-name element within

the element in which the security-role-ref elements could otherwise

occur. The actions (that is, reference) of each such EJBRoleRefPermission must

be the corresponding (non-appearing) role-name. The resulting permissions

must be added13 to the corresponding roles by calling the addToRole method on

the PolicyConfiguration object.

3.1.6 Deploying an Application or Module

The application server’s deployment tools must translate the declarative

authorization policy appearing in the application or module deployment

descriptor(s) into policy statements within the Policy providers used by the

containers to which the components of the application or module are being

deployed. In Servlet 3.0 containers, the policy statements resulting from the

deployment and initialization of a web module, must represent the effects of any

programmatic registration and security configuration of servlets that occurred

during the initialization of the module.

When a module is deployed, its policy context must be linked to all the other

policy contexts with which it must share the same principal-to-role mapping.

When an application is deployed, every policy context of the application must be

linked to every other policy context of the application with which it shares a

common Policy provider. Policy contexts are linked14 by calling the

linkConfiguration method on the PolicyConfiguration objects of the provider.

After the translation and linking has occurred (note that they may occur in

either order) for a policy context, the commit method must be called on the

corresponding PolicyConfiguration object to place it in service such that its

policy statements will be assimilated by the corresponding Policy providers.

13. For example, if an application declares roles {R1, R2, R3} and defines a session EJB

named “shoppingCart” that contains one security-role-ref element with role-

name R1, then an additional EJBRoleRefPermission must be added to each of the roles

R2 and R3. The name of both permissions must be “shoppingCart”, and the actions value

of the permission added to role R2 must be “R2”, and the actions value of the permission

added to role R3 must be “R3”.
14. Policy context linking is transitive and symmetric, and this specification should not be

interpreted as requiring that linkConfiguration be called on every combination of policy

contexts that must share the same principal-to-role mapping, or that all contexts must be

linked before any can be committed.

Chapter 3 Policy Configuration Subcontract JavaTM Authorization Contract for Containers 39

These three operations, translate, link and commit, must be performed for all of

the policy contexts of the application.

Once the translation, linking, and committing has occurred, a call must be

made to Policy.refresh on the Policy provider used by each of the containers

to which the application or module is being deployed. The calls to

Policy.refresh must occur before the containers will accept requests for the

deployed resources. If a module corresponding to a policy context may have inter-

module, initialization-time, dependencies that must be satisfied before the

translation of the policy context of the dependent module can be completed15, the

commit of the depended upon modules must occur before the initialization of the

dependent module, and the calls to Policy.refresh described above must

additionally occur after the processing of the depended upon modules and before

the initialization of the dependent module.

The policy context identifiers corresponding to the deployed application or

module must be recorded in the application server so that they can be used by

containers to establish the policy context as required by Section 4.6, “Setting the

Policy Context” of the Policy Decision and Enforcement Subcontract, and such

that the Deployer may subsequently remove or modify the corresponding policy

contexts as a result of the undeployment or redeployment of the application.

3.1.7 Undeploying an Application or Module

To ensure that there is not a period during undeployment when the removal of

policy statements on application components renders what were protected

components unprotected, the application server must stop dispatching requests for

the application’s components before undeploying an application or module.

To undeploy an application or module, the deployment tools must indicate at

all the Policy providers to which policy contexts of the application or module have

been deployed that the policy contexts associated with the application or module

that have been configured in the provider are to be removed from service. A

deployment tool indicates that a policy context is to be removed from service

either by calling getPolicyConfiguration with the identifier of the policy context

on the provider’s PolicyConfigurationFactory or by calling delete on the

corresponding PolicyConfiguration object. If the getPolicyConfiguration method

is used, the value true should be passed as the second argument to cause the

corresponding policy statements to be deleted from the context. After the policy

15. Such as having a Servlet 3.0 ServletContextListener configured that could

programmatically register a servlet and configure its security constraints and that could

also perform a local invocation of an EJB in another module of the application.

