
PolicyConfiguration javax.security.jacc

implies(java.security.Permission permission)

72 Maintenance Release 1.4

javax.security.jacc

PolicyConfiguration

Declaration
public interface PolicyConfiguration

Description

The methods of this interface are used by containers to create policy statements in a Policy provider. An object

that implements the PolicyConfiguration interface provides the policy statement configuration interface for a

corresponding policy context within the corresponding Policy provider.

The life cycle of a policy context is defined by three states; “open”, “inService”, and “deleted”. A policy context

is in one of these three states.

A policy context in the “open” state is in the process of being configured, and may be operated on by any of the

methods of the PolicyConfiguration interface. A policy context in the “open” state must not be assimilated at

Policy.refresh into the policy statements used by the Policy provider in performing its access decisions.

In order for the policy statements of a policy context to be assimilated by the associated provider, the policy

context must be in the “inService” state. A policy context in the “open” state is transitioned to the “inService”

state by calling the commit method.

A policy context in the “inService” state is available for assimilation into the policy statements being used to

perform access decisions by the associated Policy provider. Providers assimilate policy contexts containing

policy statements when the refresh method of the provider is called. When a provider’s refresh method is called,

it must assimilate only those policy contexts whose state is “inService” and it must ensure that the policy

statements put into service for each policy context are only those defined in the context at the time of the call to

refresh. A policy context in the “inService” state is not available for additional configuration and may be

returned to the “open” state by calling the getPolicyConfiguration method of the PolicyConfigurationFactory.

A policy context in the “deleted” state is neither available for configuration, nor is it available for assimilation

into the Provider. A policy context whose state is “deleted” may be reclaimed for subsequent processing by

calling the getPolicyConfiguration method of the associated PolicyConfigurationFactory. A “deleted” policy

context is transitioned to the “open” state when it it returned as a result of a call to getPolicyConfiguration.

The following table captures the correspondence between the policy context life cycle and the methods of the

PolicyConfiguration interface. The rightmost 3 columns of the table correspond to the PolicyConfiguration state

identified at the head of the column. The values in the cells of these columns indicate the next state resulting

from a call to the method identifed in the leftmost column of the corresponding row, or that calling the method

is unsupported in the state represented by the column (in which case the state will remain unchanged).

Method
Current State to Next State

deleted open inService

addToExcludedPolicy Unsupported Operation open Unsupported Operation

addToRole Unsupported Operation open Unsupported Operation

addToUncheckedPolicy Unsupported Operation open Unsupported Operation

javax.security.jacc PolicyConfiguration

addToExcludedPolicy(java.security.PermissionCollection permissions)

73

For a provider implementation to be compatible with multi-threaded environments, it may be necessary to

synchronize the refresh method of the provider with the methods of its PolicyConfiguration interface and with

the getPolicyConfiguration and inService methods of its PolicyConfigurationFactory.

See Also: java.security.Permission, java.security.PermissionCollection, Poli-

cyContextException, PolicyConfigurationFactory

Methods

addToExcludedPolicy(java.security.PermissionCollection permissions)

public void addToExcludedPolicy(java.security.PermissionCollection permissions)

throws PolicyContextException

commit Unsupported Operation inService inService

delete deleted deleted deleted

getContextID deleted open inService

inService deleted open inService

linkConfiguration Unsupported Operation open Unsupported Operation

removeExcludedPolicy Unsupported Operation open Unsupported Operation

removeRole Unsupported Operation open Unsupported Operation

removeUncheckedPolicy Unsupported Operation open Unsupported Operation

Member Summary

Methods

 void addToExcludedPolicy(java.security.Permission permission)

 void addToExcludedPolicy(java.security.PermissionCollection per-

missions)

 void addToRole(java.lang.String roleName, java.security.Permission

permission)

 void addToRole(java.lang.String roleName, java.security.Permis-

sionCollection permissions)

 void addToUncheckedPolicy(java.security.Permission permission)

 void addToUncheckedPolicy(java.security.PermissionCollection per-

missions)

 void commit()

 void delete()

 java.lang.String getContextID()

 boolean inService()

 void linkConfiguration(PolicyConfiguration link)

 void removeExcludedPolicy()

 void removeRole(java.lang.String roleName)

 void removeUncheckedPolicy()

PolicyConfiguration javax.security.jacc

addToExcludedPolicy(java.security.Permission permission)

74 Maintenance Release 1.4

Used to add excluded policy statements to this PolicyConfiguration.

Parameters:

permissions - the collection of permissions to be added to the excluded policy statements. The

collection may be either a homogenous or heterogenous collection.

Throws:

java.lang.SecurityException - if called by an AccessControlContext that has not been

granted the “setPolicy” SecurityPermission.

java.lang.UnsupportedOperationException - if the state of the policy context whose

interface is this PolicyConfiguration Object is “deleted” or “inService” when this method is called.

PolicyContextException - if the implementation throws a checked exception that has not been

accounted for by the addToExcludedPolicy method signature. The exception thrown by the

implementation class will be encapsulated (during construction) in the thrown

PolicyContextException.

addToExcludedPolicy(java.security.Permission permission)

public void addToExcludedPolicy(java.security.Permission permission)

throws PolicyContextException

Used to add a single excluded policy statement to this PolicyConfiguration.

Parameters:

permission - the permission to be added to the excluded policy statements.

Throws:

java.lang.SecurityException - if called by an AccessControlContext that has not been

granted the “setPolicy” SecurityPermission.

java.lang.UnsupportedOperationException - if the state of the policy context whose

interface is this PolicyConfiguration Object is “deleted” or “inService” when this method is called.

PolicyContextException - if the implementation throws a checked exception that has not been

accounted for by the addToExcludedPolicy method signature. The exception thrown by the

implementation class will be encapsulated (during construction) in the thrown

PolicyContextException.

addToRole(java.lang.String roleName, java.security.PermissionCollection

permissions)

public void addToRole(java.lang.String roleName, java.security.PermissionCollection

permissions)

throws PolicyContextException

Used to add permissions to a named role in this PolicyConfiguration. If the named Role role does not exist

in the PolicyConfiguration, it is created as a result of the call to this function.

It is the job of the Policy provider to ensure that all the permissions added to a role are granted to principals

“mapped to the role”.

Parameters:

roleName - the name of the Role to which the permissions are to be added.

permissions - the collection of permissions to be added to the role. The collection may be either a

homogenous or heterogenous collection.

javax.security.jacc PolicyConfiguration

addToRole(java.lang.String roleName, java.security.Permission permission)

75

Throws:

java.lang.SecurityException - if called by an AccessControlContext that has not been

granted the “setPolicy” SecurityPermission.

java.lang.UnsupportedOperationException - if the state of the policy context whose

interface is this PolicyConfiguration Object is “deleted” or “inService” when this method is called.

PolicyContextException - if the implementation throws a checked exception that has not been

accounted for by the addToRole method signature. The exception thrown by the implementation class

will be encapsulated (during construction) in the thrown PolicyContextException.

addToRole(java.lang.String roleName, java.security.Permission permission)

public void addToRole(java.lang.String roleName, java.security.Permission permission)

throws PolicyContextException

Used to add a single permission to a named role in this PolicyConfiguration. If the named Role role does

not exist in the PolicyConfiguration, it is created as a result of the call to this function.

It is the job of the Policy provider to ensure that all the permissions added to a role are granted to principals

“mapped to the role”.

Parameters:

roleName - the name of the Role to which the permission is to be added.

permission - the permission to be added to the role.

Throws:

java.lang.SecurityException - if called by an AccessControlContext that has not been

granted the “setPolicy” SecurityPermission.

java.lang.UnsupportedOperationException - if the state of the policy context whose

interface is this PolicyConfiguration Object is “deleted” or “inService” when this method is called.

PolicyContextException - if the implementation throws a checked exception that has not been

accounted for by the addToRole method signature. The exception thrown by the implementation class

will be encapsulated (during construction) in the thrown PolicyContextException.

addToUncheckedPolicy(java.security.PermissionCollection permissions)

public void addToUncheckedPolicy(java.security.PermissionCollection permissions)

throws PolicyContextException

Used to add unchecked policy statements to this PolicyConfiguration.

Parameters:

permissions - the collection of permissions to be added as unchecked policy statements. The

collection may be either a homogenous or heterogenous collection.

Throws:

java.lang.SecurityException - if called by an AccessControlContext that has not been

granted the “setPolicy” SecurityPermission.

java.lang.UnsupportedOperationException - if the state of the policy context whose

interface is this PolicyConfiguration Object is “deleted” or “inService” when this method is called.

PolicyContextException - if the implementation throws a checked exception that has not been

accounted for by the addToUncheckedPolicy method signature. The exception thrown by the

implementation class will be encapsulated (during construction) in the thrown

PolicyContextException.

PolicyConfiguration javax.security.jacc

addToUncheckedPolicy(java.security.Permission permission)

76 Maintenance Release 1.4

addToUncheckedPolicy(java.security.Permission permission)

public void addToUncheckedPolicy(java.security.Permission permission)

throws PolicyContextException

Used to add a single unchecked policy statement to this PolicyConfiguration.

Parameters:

permission - the permission to be added to the unchecked policy statements.

Throws:

java.lang.SecurityException - if called by an AccessControlContext that has not been

granted the “setPolicy” SecurityPermission.

java.lang.UnsupportedOperationException - if the state of the policy context whose

interface is this PolicyConfiguration Object is “deleted” or “inService” when this method is called.

PolicyContextException - if the implementation throws a checked exception that has not been

accounted for by the addToUncheckedPolicy method signature. The exception thrown by the

implementation class will be encapsulated (during construction) in the thrown

PolicyContextException.

commit()

public void commit()

throws PolicyContextException

This method is used to set to “inService” the state of the policy context whose interface is this Policy-

Configuration Object. Only those policy contexts whose state is “inService” will be included in the policy

contexts processed by the Policy.refresh method. A policy context whose state is “inService” may be

returned to the “open” state by calling the getPolicyConfiguration method of the PolicyConfiguration fac-

tory with the policy context identifier of the policy context.

When the state of a policy context is “inService”, calling any method other than commit, delete, get-

ContextID, or inService on its PolicyConfiguration Object will cause an UnsupportedOperationException

to be thrown.

Throws:

java.lang.SecurityException - if called by an AccessControlContext that has not been

granted the “setPolicy” SecurityPermission.

java.lang.UnsupportedOperationException - if the state of the policy context whose

interface is this PolicyConfiguration Object is “deleted” when this method is called.

PolicyContextException - if the implementation throws a checked exception that has not been

accounted for by the commit method signature. The exception thrown by the implementation class will

be encapsulated (during construction) in the thrown PolicyContextException.

delete()

public void delete()

throws PolicyContextException

Causes all policy statements to be deleted from this PolicyConfiguration and sets its internal state such that

calling any method, other than delete, getContextID, or inService on the PolicyConfiguration will be

rejected and cause an UnsupportedOperationException to be thrown.

This operation has no affect on any linked PolicyConfigurations other than removing any links involving

the deleted PolicyConfiguration.

javax.security.jacc PolicyConfiguration

getContextID()

77

Throws:

java.lang.SecurityException - if called by an AccessControlContext that has not been

granted the “setPolicy” SecurityPermission.

PolicyContextException - if the implementation throws a checked exception that has not been

accounted for by the delete method signature. The exception thrown by the implementation class will

be encapsulated (during construction) in the thrown PolicyContextException.

getContextID()

public java.lang.String getContextID()

throws PolicyContextException

This method returns this object’s policy context identifier.

Returns: this object’s policy context identifier.

Throws:

java.lang.SecurityException - if called by an AccessControlContext that has not been

granted the “setPolicy” SecurityPermission.

PolicyContextException - if the implementation throws a checked exception that has not been

accounted for by the getContextID method signature. The exception thrown by the implementation

class will be encapsulated (during construction) in the thrown PolicyContextException.

inService()

public boolean inService()

throws PolicyContextException

This method is used to determine if the policy context whose interface is this PolicyConfiguration Object is

in the “inService” state.

Returns: true if the state of the associated policy context is “inService”; false otherwise.

Throws:

java.lang.SecurityException - if called by an AccessControlContext that has not been

granted the “setPolicy” SecurityPermission.

PolicyContextException - if the implementation throws a checked exception that has not been

accounted for by the inService method signature. The exception thrown by the implementation class

will be encapsulated (during construction) in the thrown PolicyContextException.

linkConfiguration(PolicyConfiguration link)

public void linkConfiguration(PolicyConfiguration link)

throws PolicyContextException

Creates a relationship between this configuration and another such that they share the same principal-to-

role mappings. PolicyConfigurations are linked to apply a common principal-to-role mapping to multiple

seperately manageable PolicyConfigurations, as is required when an application is composed of multiple

modules.

Note that the policy statements which comprise a role, or comprise the excluded or unchecked policy col-

lections in a PolicyConfiguration are unaffected by the configuration being linked to another.

Parameters:

link - a reference to a different PolicyConfiguration than this PolicyConfiguration.

PolicyConfiguration javax.security.jacc

removeExcludedPolicy()

78 Maintenance Release 1.4

The relationship formed by this method is symetric, transitive and idempotent. If the argument

PolicyConfiguration does not have a different Policy context identifier than this PolicyConfiguration

no relationship is formed, and an exception, as described below, is thrown.

Throws:

java.lang.SecurityException - if called by an AccessControlContext that has not been

granted the “setPolicy” SecurityPermission.

java.lang.UnsupportedOperationException - if the state of the policy context whose

interface is this PolicyConfiguration Object is “deleted” or “inService” when this method is called.

java.lang.IllegalArgumentException - if called with an argument PolicyConfiguration

whose Policy context is equivalent to that of this PolicyConfiguration.

PolicyContextException - if the implementation throws a checked exception that has not been

accounted for by the linkConfiguration method signature. The exception thrown by the implementation

class will be encapsulated (during construction) in the thrown PolicyContextException.

removeExcludedPolicy()

public void removeExcludedPolicy()

throws PolicyContextException

Used to remove any excluded policy statements from this PolicyConfiguration. This method has no effect

on the links between this PolicyConfiguration and others.

Throws:

java.lang.SecurityException - if called by an AccessControlContext that has not been

granted the “setPolicy” SecurityPermission.

java.lang.UnsupportedOperationException - if the state of the policy context whose

interface is this PolicyConfiguration Object is “deleted” or “inService” when this method is called.

PolicyContextException - if the implementation throws a checked exception that has not been

accounted for by the removeExcludedPolicy method signature. The exception thrown by the

implementation class will be encapsulated (during construction) in the thrown

PolicyContextException.

removeRole(java.lang.String roleName)

public void removeRole(java.lang.String roleName)

throws PolicyContextException

Used to remove a role and all its permissions from this PolicyConfiguration. This method has no effect on

the links between this PolicyConfiguration and others.

Parameters:

roleName - the name of the Role role to remove from this PolicyConfiguration. If the value of the

roleName parameter is “*” and no role with name “*” exists in this PolicyConfiguration, then all roles

must be removed from this PolicyConfiguration.

Throws:

java.lang.SecurityException - if called by an AccessControlContext that has not been

granted the “setPolicy” SecurityPermission.

java.lang.UnsupportedOperationException - if the state of the policy context whose

interface is this PolicyConfiguration Object is “deleted” or “inService” when this method is called.

javax.security.jacc PolicyConfiguration

removeUncheckedPolicy()

79

PolicyContextException - if the implementation throws a checked exception that has not been

accounted for by the removeRole method signature. The exception thrown by the implementation class

will be encapsulated (during construction) in the thrown PolicyContextException.

removeUncheckedPolicy()

public void removeUncheckedPolicy()

throws PolicyContextException

Used to remove any unchecked policy statements from this PolicyConfiguration. This method has no effect

on the links between this PolicyConfiguration and others.

Throws:

java.lang.SecurityException - if called by an AccessControlContext that has not been

granted the “setPolicy” SecurityPermission.

java.lang.UnsupportedOperationException - if the state of the policy context whose

interface is this PolicyConfiguration Object is “deleted” or “inService” when this method is called.

PolicyContextException - if the implementation throws a checked exception that has not been

accounted for by the removeUncheckedPolicy method signature. The exception thrown by the

implementation class will be encapsulated (during construction) in the thrown

PolicyContextException.

