
9

C H A P T E R 2
Provider Configuration

Subcontract

The Provider Configuration Subcontract defines the requirements placed on

providers and containers such that Policy providers may be integrated with

containers.

2.1 Policy Implementation Class

The contract defined by this specification has been designed to work in J2SE 1.4

or later Java Standard Edition environments with the default

java.security.Policy implementation class, and in J2SE 1.3 environments

with the default javax.security.auth.Policy implementation class.

Support for the contract defined by this specification is optional in J2EE 1.3

environments.

Java platforms provide standard security properties whose values may be

defined to cause replacement of the default system Policy implementation classes.

The security property, “policy.provider”, may be used to replace the default

java.security.Policy implementation class. Similarly, the security

property, "auth.policy.provider", may be used to replace the default

javax.security.auth.Policy implementation class. These properties are

defined in the Java security properties file, and replacement is accomplished by

setting their value to the fully qualified name of the desired Policy implementation

class. The contract defined in this specification, is dependent on the Policy

replacement mechanisms of the target Java environment. An application server

that supports this contract must allow replacement of the top level

JavaTM Authorization Contract for Containers PERMISSION IMPLEMENTATION CLASSES

Final Release 1.0

10

java.security.Policy object used by every JRE of the containers of the application

server.

2.2 Permission Implementation Classes

This contract defines a Java standard extension package,

javax.security.jacc, that contains (among other things) Permission classes

to be used by containers in their access decisions.

2.3 Policy Configuration Interface

The javax.security.jacc package defines an abstract factory class that

implements a static method that uses a system property to find and instantiate a

provider specific factory implementation class. The abstract factory class is

javax.security.jacc.PolicyConfigurationFactory, the static

method is getPolicyConfigurationFactory, and the system property is

javax.security.jacc.PolicyConfigurationFactory.provider.

The abstract factory class also defines an abstract public method used to

create or locate instances of the provider specific class that implements the

interface used to define policy contexts within the associated Policy provider. The

method is getPolicyConfiguration and the interface is

javax.security.jacc.PolicyConfiguration.

The abstract PolicyConfigurationFactory class and the

PolicyConfiguration interface are defined in Chapter “API,” which begins

on page 53. Use of the PolicyConfiguration interface is defined in Chapter

“Policy Configuration Subcontract,” which begins on page 17.

2.4 PolicyContext Class and Context Handlers

This javax.security.jacc package defines a utility class that is used by

containers to communicate policy context identifiers to Policy providers. The

utility class is javax.security.jacc.PolicyContext, and this class

implements static methods that are used to communicate policy relevant context

values from containers to Policy providers. Containers use the static method

PolicyContext.setContextID to associate a policy context identifier with

a thread on which they are about to call a decision interface of a Policy provider.

Policy providers use the static method PolicyContext.getContextID to

Chapter 2 Provider Configuration Subcontract JavaTM Authorization Contract for Containers 11

obtain the context identifier established by a calling container. The role of policy

context identifiers in access decisions is described in Section 3.1.1, “Policy

Contexts and Policy Context Identifiers”.

In addition to the methods used to communicate policy context identifiers, the

javax.security.jacc.PolicyContext class also provides static methods

that allow container specific context handlers that implement the

javax.security.jacc.PolicyContextHandler interface to be

registered with the PolicyContext class. The PolicyContext class also

provides static methods that allow Policy providers to activate registered handlers

to obtain additional policy relevant context to apply in their access decisions.

The PolicyContext utility class and the PolicyContextHandler

interface are defined in Chapter “API,” which begins on page 53. Use of the

PolicyContext class is defined in Chapter “Policy Configuration

Subcontract,” which begins on page 17.

2.5 What a Provider Must Do

Each JRE of an application server must be provided with classes that implement

the PolicyConfigurationFactory class and PolicyConfiguration

interface. These classes must be compatible with the Policy implementation class

installed for use by the JRE. In the case where the provider is not seeking to

replace the Policy implementation used by the JRE, no other components need be

provided.

If the provider is seeking to replace the Policy implementation used by the

JRE, then the JRE must be provided with an environment specific Policy

implementation class. If the JRE is running a J2SE 1.4 or later Java Standard

Edition environment, then it must be provided with an implementation of the

java.security.Policy class. If the JRE is running a J2SE 1.3 security

environment, it must be provided with an implementation of the

javax.security.auth.Policy class (that is, a JAAS Policy object).

A replacement Policy object must assume responsibility for performing all

policy decisions within the JRE in which it is installed that are requested by way

of the Policy interface that it implements. A replacement Policy object may

accomplish this by delegating non-javax.security.jacc policy decisions to

the corresponding default system Policy implementation class. A replacement

Policy object that relies in this way on the corresponding default Policy

implementation class must identify itself in its installation instructions as a

“delegating Policy provider”.

JavaTM Authorization Contract for Containers OPTIONAL PROVIDER SUPPORT FOR JAAS POLI-

Final Release 1.0

12

The standard security properties mechanism for replacing a default system

Policy implementation (see Section 2.1, “Policy Implementation Class) should

not be used to replace a default system Policy provider with a delegating Policy

provider.

2.6 Optional Provider Support for JAAS Policy Object

In J2SE 1.4, the subject based authorization functionality of the JAAS Policy

interface has been integrated into java.security.Policy, and the JAAS

Policy interface (as a separate entity) has been deprecated. This does not mean

that the JAAS Policy interface was removed, but rather that the essential parts of it

have been tightly integrated into the J2SE 1.4 platform.

According to this contract, a J2SE 1.4 or later Java Standard Edition security

environment may support replacement of the JAAS Policy object if and only if all

javax.security.jacc policy decisions performed by the replacement JAAS Policy

object return the same result as when the java.security.Policy interface is used. To

satisfy this requirement, the replacement JAAS Policy object must be compatible

with the implementations of PolicyConfigurationFactory and

PolicyConfiguration interface provided for use with the

java.security.Policy implementation class.

2.7 What the Application Server Must Do

An application server or container must bundle or install the

javax.security.jacc standard extension. This package must include the

abstract javax.security.jacc.PolicyConfigurationFactory class,

the javax.security.jacc.PolicyConfiguration and

javax.security.jacc.PolicyContextHandler interfaces, and

implementations of the

javax.security.jacc.PolicyContextException exception, the

javax.security.jacc Permission classes, and the

javax.security.jacc.PolicyContext utility class. The Permission

classes of the javax.security.jacc package are:

Chapter 2 Provider Configuration Subcontract JavaTM Authorization Contract for Containers 13

• javax.security.jacc.EJBMethodPermission

• javax.security.jacc.EJBRoleRefPermission

• javax.security.jacc.WebResourcePermission

• javax.security.jacc.WebRoleRefPermission

• javax.security.jacc.WebUserDataPermission

To enable delegation of non-javax.security.jacc policy decisions to

default system Policy providers, all application servers must implement the

following Policy replacement algorithm. The intent of the algorithm is to ensure

that Policy objects can capture the instance of the corresponding default system

Policy object during their integration into a container and such that they may

delegate non-container policy evaluations to it.

For each JRE of a J2EE 1.4 or later version Java EE application server, if the

system property “javax.security.jacc.policy.provider” is defined,

the application server must construct an instance of the class identified by the

system property, confirm that the resulting object is an instance of

java.security.Policy, and set, by calling the

java.security.Policy.setPolicy method, the resulting object as the

corresponding Policy object used by the JRE. For example:

 String javaPolicy = System.getProperty(

 "javax.security.jacc.policy.provider"

);

 if (javaPolicy != null) {

 try {

 java.security.Policy.setPolicy(

 (java.security.Policy)

 Class.forName(javaPolicy).newInstance()

);

} catch (ClassNotFoundException cnfe) {

 // problem with property value or classpath

 } catch (IllegalAccessException iae) {

 // problem with policy class definition

 } catch (InstantiationException ie) {

 // problem with policy instantiation

 } catch (ClassCastException cce) {

 // Not instance of java.security.policy

JavaTM Authorization Contract for Containers WHAT THE APPLICATION SERVER MUST DO

Final Release 1.0

14

 }

 }

An application server that chooses to support this contract in a J2SE 1.3

environment must perform the policy replacement algorithm described above

when the system property

“javax.security.jacc.auth.policy.provider” is defined. That is,

for each JRE of the application server, the server must construct an instance of the

class identified by the system property, confirm that the resulting object is an

instance of javax.security.auth.Policy, and set, by calling

javax.security.auth.Policy.setPolicy method, the resulting object

as the corresponding Policy object used by the JRE.

Once an application server has used either of the system properties defined in

this section to replace a Policy object used by a JRE, the application server must

not use setPolicy to replace the corresponding Policy object of the running JRE

again.

The requirements of this section have been designed to ensure that containers

support Policy replacment and to facilitate delegation to a default system Policy

provider. These requirements should not be interpreted as placing any restrictions

on the delegation patterns that may be implemented by replacement Policy

modules.

2.7.1 Modifications to the JAAS SubjectDomainCombiner

The reference implementation of the combine method of the JAAS

SubjectDomainCombiner returns protection domains that are constructed

with a java.security.Permissions collection.This is the norm in J2SE 1.3

environments, and it also occurs in J2SE 1.4 and Java Standard Edition 5.0

environments when the installed JAAS Policy implementation class is not the

com.sun.security.auth.PolicyFile class (that is, the JRE is operating

in backward compatibility mode with respect to JAAS Policy replacement). The

use of java.security.Permissions by the SubjectDomainCombiner

forces JAAS Policy providers to compute all the permissions that pertain to a

subject and code source and effectively precludes integration of Policy

subsystems that are not capable of doing so. To ensure that the implementation of

the JAAS SubjectDomainCombiner does not preclude integration of a class

of Policy providers, this contract imposes the following requirement and

recommendation on application servers.

Chapter 2 Provider Configuration Subcontract JavaTM Authorization Contract for Containers 15

To satisfy the contract defined by this specification, a J2EE 1.3 application

server must install or bundle, such that it is used by every JRE of the application

server, a javax.security.auth.SubjectDomainCombiner whose

combine method returns protection domains constructed using the permission

collections returned by javax.security.auth.Policy.getPermisions.

It is recommended that this requirement also be satisfied by J2EE 1.4 and later

version Java EE application servers in the case where

javax.security.auth.Policy is used (in backward compatibility mode) to

perform javax.security.jacc policy decisions.

