
Federated Management Architecture Specification 1.0 Changelog
July 26, 2000

The following changes are PROPOSED:

•= Add ALWAYS_ACTIVE modifier. Some services must be reactivated and
remain active if they are a source of activity, such as explicit lease renewal.
Section 4.14.5.

•= Proxy is in the wrong package. It should be in the package javax.fma.common,
not javax.fma.client.. Section 4.16.1.

•= BaseServiceInfo and StationAddress need clone methods since the classes are
mutable (FMA10-0093). Section 4.7.3 and Chapter 3. Neither should have
toString() as it is defined appropriately by AbstractEntry. All null fields and noarg
ctor are ordained to be consistent with other Jini entries.

•= ConcurrentControllerException should be final. Section 9.4.
•= ConcurrentThreadException should be final. Section 8.2.
•= ConcurrentTransactionException should be final. Section 7.2.
•= Remove unused public constructor for LogicalThreadID. Section 4.6.2.
•= Make StationSecurityException final. Section 5.7.3.
•= Add newPermissionCollection to AccessPermission so that implies() will work.

Section 5.7.3.
•= Remove redundant private constructor and add newPermissionCollection() so that

implies will work. Section 4.8.2.
•= Make Controller.Lock fields private. Section 16.3.
•= add subscribeResponsibleAfter() to event service interface. Section 18.3.
•= Add constructor to SerializationFailureException. Section 17.1.1.
•= Add IllegalArgumentException to LogService.post() and search(). Section 17.1.2.
•= Specify that implementations of Search shall throw an

UnsupportedOperationException if the remove() operation is invoked . Section
17.1.3.2.

•= Remove javax.fma.common.PersistenceStream as the marker interface of streams
used for persistence. Section 10.2.2.

•= Remove ContextMap field from javax.fma.common.Context. Add EmptyContext
inner class to Context. Section 4.6.6.

•= Change javax.fma.common.StationSecurityException to extend StationException
rather than SecurityException. Section 5.7.3.

•= The javadoc for the class LogMessage reads:
...
* and category parameters are cloned. Throwables are
* not cloned under the assumption that all throwables
* are imutable. If a particular throwable is not immutable,
* a client’s attempt to log the message (via a
* LogService.log() call) will throw a
* LogMessage.SerializationFailureException
* when the throwable cannot be serialized.)
*/



Since log() is specifically required NOT to throw any exceptions, this
should read that the SerializationFailureException will REPLACE the
unserializable throwable in the log message. Additionally, the
constructor to LogMessage also requires an almost identical change.

Also, the javadoc to the inner class SerializationFailureException says:

/** Exception thrown indicating that a client has attempted
* to post a LogMessage that contains
* a throwable which cannot be serialized.
*/

This must be changed to reflect that this eexception is never thrown, only
used as a replacement.

•= Make SecurityService to be a Base Service. Security is defined to be an integral part
of any FMA implementation. Functioning of the security framework is dependant on
guaranteed existence of the SecurityService, which constitutes a definition of a Base
Service. Thus, the SecurityService is suggested to be made a Base Service. If the
SecurityService is not a BaseService, then it either needs to be pulled out of the
specification, in which case the specification will be left underspecified on the
authentication side or special provisions will have to be put in the specification
outlining the instantiation of the SecurityService other than via dynamic deployment
model, as dynamic deployment is not acceptable for the reasons of start up-
dependencies in secure environment.

Once the SecurityService is made a BaseService, the corresponding artifacts,
such addition of getSecurityService() in ServiceFinder should be added.

•= Move ProperLoginModule into a javax package. The specification defines a proper
JAAS login module. This login module is used on the client-side to authenticate in
FMA. However, because of the way ProperLoginModule has been specified, an
implementation dependence has been introduced. Making the already well-defined
ProperLoginModule a specification class would eliminate the implementation
dependency.

•= Add a class to the specification to provide for a generic “well-known”
RemoteEventListener stub class. This would allow clients that use the EventService
as subscribers or the SchedulingService to not have to provide class servers to
provide the stub class used for remote communication of the RemoteEventListener.
The specification should also dictate that all event sources, regardless of their type,
have this well-known class locally available to them.


