
r
g

. . ..

left-
in
di-
ar
s-

(. . .).

for
Updates to the Java™

Language Specification fo
JDK™ Release 1.2 Floatin

Point

Changes and transformations every hour, every moment
—Walt Whitman,Visor’d (1860), inLeaves of Grass

THIS DOCUMENTcontains all the portions ofThe Java Language Specification,
first edition, that have been changed because of the introduction of thestrictfp
keyword. Lines containing changes are emphasized using change bars in the
hand margin. Lines not marked as containing changes are as they appearedThe
Java Language Specification, first edition, and may have themselves been mo
fied or superseded by other updates. Sections are numbered as they appeThe
Java Language Specification. Where material from a given section was not nece
sary for context it has been omitted, and that omission represented by ellipsis

3.9 Keywords

The following character sequences, formed from ASCII letters, are reserved
use askeywords and cannot be used as identifiers (§3.8):
1

Updates to the Java™ Language Specification for JDK™ Release 1.2 Floating Point

2

ot
rror

lly

-
54

gni-

N
ro by

up-

n-
ting-

er-
he val-

sed
Keyword: one of
abstract default if private this
boolean do implements protected throw
break double import public throws
byte else instanceof return transient
case extends int short try
catch final interface static void
char finally long strictfp volatile
class float native super while
const for new switch
continue goto package synchronized

The keywordsconst andgoto are reserved by Java, even though they are n
currently used in Java. This may allow a Java compiler to produce better e
messages if these C++ keywords incorrectly appear in Java programs.

While true and false might appear to be keywords, they are technica
Boolean literals (§3.10.3). Similarly, whilenull might appear to be a keyword, it
is technically the null literal (§3.10.7).

4.2.3 Floating-Point Types, Value Sets, and Values

The floating-point types arefloat anddouble, which are conceptually associ
ated with the 32-bit single-precision and 64-bit double-precision format IEEE 7
values and operations as specified inIEEE Standard for Binary Floating-Point
Arithmetic, ANSI/IEEE Standard 754-1985 (IEEE, New York).

The IEEE 754 standard includes not only positive and negative sign-ma
tude numbers, but also positive and negative zeros, positive and negativeinfinities,
and a specialNot-a-Numbervalue (hereafter abbreviated as “NaN”). The Na
value is used to represent the result of certain operations such as dividing ze
zero. NaN constants of bothfloat anddouble type are predefined asFloat.NaN
(§20.9.5) andDouble.NaN (§20.10.5).

Every implementation of the Java programming language is required to s
port two standard sets of floating-point values, called thefloat value setand the
double value set. In addition, an implementation of the Java programming la
guage may, at its option, support either or both of two extended-exponent floa
point value sets, called thefloat-extended-exponent value setand thedouble-
extended-exponent value set. These extended-exponent value sets may, under c
tain circumstances, be used instead of the standard value sets to represent t
ues of expressions of typefloat or double (§5.1.8, §15.28).

The finite nonzero values of any floating-point value set can all be expres
in the form , wheres is +1 or –1,m is a positive integer less thans m 2 e N– 1+()⋅ ⋅

Updates to the Java™ Language Specification for JDK™ Release 1.2 Floating Point

,
me
pos-
al-

n

ue is

s
ts

ple-
ecific
;

t are
itive

f the
value
wise,
uble-

r range
t have

pre-
ard,
aN
, and e is an integer between and
inclusive, and whereN andK are parameters that depend on the value set. So
values can be represented in this form in more than one way; for example, sup
ing that a valuev in a value set might be represented in this form using certain v
ues fors, m, ande, then if it happened thatm were even ande were less than

, one could halvem and increasee by 1 to produce a second representatio
for the same valuev. A representation in this form is callednormalized if

; otherwise the representation is said to bedenormalized. If a value in
a value set cannot be represented in such a way that , then the val
said to be adenormalized value, because it has no normalized representation.

The constraints on the parametersN and K (and on the derived parameter
Emin andEmax) for the two required and two optional floating-point value se
are summarized in Table 4.1.

Table 4.1 Floating-point value set parameters

Where one or both extended-exponent value sets are supported by an im
mentation, then for each supported extended-exponent value set there is a sp
implementation-dependent constantK, whose value is constrained by Table 4.1
this valueK in turn dictates the values forEmin andEmax.

Each of the four value sets includes not only the finite nonzero values tha
ascribed to it above, but also the five values positive zero, negative zero, pos
infinity, negative infinity, and NaN.

Note that the constraints in Table 4.1 are designed so that every element o
float value set is necessarily also an element of the float-extended-exponent
set, the double value set, and the double-extended-exponent value set. Like
each element of the double value set is necessarily also an element of the do
extended-exponent value set. Each extended-exponent value set has a large
of exponent values than the corresponding standard value set, but does no
more precision.

The elements of the float value set are exactly the values that can be re
sented using the single floating-point format defined in the IEEE 754 stand
except that there is only one NaN value (IEEE 754 specifies distinct N

Parameter float float extended-
exponent

double double extended-
exponent

N 24 24 53 53

K 8 ≥ 11 11 ≥ 15

Emax +127 ≥ +1023 +1023 ≥ +16383

Emin −126 ≤ −1022 −1022 ≤ −16382

2N Emin 2K 1– 2–()–= Emax 2K 1– 1–=

2K 1–

m 2 N 1–()≥
m 2 N 1–()≥

224 2–
3

Updates to the Java™ Language Specification for JDK™ Release 1.2 Floating Point

4

an be
tan-
inct
t and

mats,

nent
lan-

n to
it is

et to

ded-

neg-

pres-

.

tor

e.

ted.
ce of
values). The elements of the double value set are exactly the values that c
represented using the double floating-point format defined in the IEEE 754 s
dard, except that there is only one NaN value (IEEE 754 specifies dist
NaN values). Note, however, that the elements of the float-extended-exponen
double-extended-exponent value sets defined here donot correspond to the values
that be represented using IEEE 754 single extended and double extended for
respectively.

The float, float-extended-exponent, double, and double-extended-expo
value sets are not types. It is always correct for an implementation of the Java
guage to use an element of the float value set to represent a value of typefloat;
however, it may be permissible in certain regions of code for an implementatio
use an element of the float-extended-exponent value set instead. Similarly,
always correct for an implementation to use an element of the double value s
represent a value of typedouble; however, it may be permissible in certain
regions of code for an implementation to use an element of the double-exten
exponent value set instead.

Except for NaN, floating-point values areordered; arranged from smallest to
largest, they are negative infinity, negative finite nonzero values, positive and
ative zero, positive finite nonzero values, and positive infinity.

Positive zero and negative zero compare equal; thus the result of the ex
sion 0.0==-0.0 is true and the result of0.0>-0.0 is false. But other opera-
tions can distinguish positive and negative zero; for example,1.0/0.0 has the
value positive infinity, while the value of1.0/-0.0 is negative infinity. The oper-
ationsMath.min andMath.max also distinguish positive zero and negative zero

NaN is unordered, so the numerical comparison operators<, <=, >, and>=
returnfalse if either or both operands are NaN (§15.19.1). The equality opera
== returnsfalse if either operand is NaN, and the inequality operator!= returns
true if either operand is NaN (§15.20.1). In particular,x!=x is true if and only if
x is NaN, and(x<y) == !(x>=y) will be false if x or y is NaN.

Any value of a floating-point type may be cast to or from any numeric typ
There are no casts between floating-point types and the typeboolean.

Chapter 5

. . .
In every conversion context, only certain specific conversions are permit

The specific conversions that are possible in Java are grouped for convenien
description into several broad categories:

253 2–

Updates to the Java™ Language Specification for JDK™ Release 1.2 Floating Point

s
med
ss of
t an
thod
o-
ent

one

clud-

:

n to
t are
tion.

rgu-
rms

ation

plic-
ent

han
xcep-
• Identity conversions

• Widening primitive conversions

• Narrowing primitive conversions

• Widening reference conversions

• Narrowing reference conversions

• String conversions

• Value set conversions

There are fiveconversion contextsin which conversion of Java expression
may occur. Each context allows conversions in some of the categories na
above but not others. The term “conversion” is also used to describe the proce
choosing a specific conversion for such a context. For example, we say tha
expression that is an actual argument in a method invocation is subject to “me
invocation conversion,” meaning that a specific conversion will be implicitly ch
sen for that expression according to the rules for the method invocation argum
context.

One conversion context is the operand of a numeric operator such as+ or *.
The conversion process for such operands is callednumeric promotion. Promotion
is special in that, in the case of binary operators, the conversion chosen for
operand may depend in part on the type of the other operand expression.

This chapter first describes the seven categories of conversions (§5.1), in
ing value set conversions and the special conversions toString allowed for the
string concatenation operator+. Then the five conversion contexts are described

• Assignment conversion (§5.2, §15.25) converts the type of an expressio
the type of a specified variable. The conversions permitted for assignmen
limited in such a way that assignment conversion never causes an excep

• Method invocation conversion (§5.3, §15.8, §15.11) is applied to each a
ment in a method or constructor invocation and, except in one case, perfo
the same conversions that assignment conversion does. Method invoc
conversion never causes an exception.

• Casting conversion (§5.4) converts the type of an expression to a type ex
itly specified by a cast operator (§15.15). It is more inclusive than assignm
or method invocation conversion, allowing any specific conversion other t
a string conversion, but certain casts to a reference type may cause an e
tion at run time.
5

Updates to the Java™ Language Specification for JDK™ Release 1.2 Floating Point

6

ype

o a

e

pro-

the
f the
the
se

mber

n the
f the
the
se

mber

vide
• String conversion (§5.4, §15.17.1) allows any type to be converted to t
String.

• Numeric promotion (§5.6) brings the operands of a numeric operator t
common type so that an operation can be performed.

. . .

5.1 Kinds of Conversion

Specific type conversions in Java are divided into seven categories.

5.1.8 Value Set Conversion

Value set conversionis the process of mapping a floating-point value from on
value set to another without changing its type.

Within an expression that is not FP-strict (§15.28), value set conversion
vides choices to an implementation of the Java language:

• If the value is an element of the float-extended-exponent value set, then
implementation may, at its option, map the value to the nearest element o
float value set. This conversion may result in overflow (in which case
value is replaced by an infinity of the same sign) or underflow (in which ca
the value may lose precision because it is replaced by a denormalized nu
or zero of the same sign).

• If the value is an element of the double-extended-exponent value set, the
implementation may, at its option, map the value to the nearest element o
double value set. This conversion may result in overflow (in which case
value is replaced by an infinity of the same sign) or underflow (in which ca
the value may lose precision because it is replaced by a denormalized nu
or zero of the same sign).

Within an FP-strict expression (§15.28), value set conversion does not pro
any choices; every implementation must behave in the same way:

Updates to the Java™ Language Specification for JDK™ Release 1.2 Floating Point

n
float

t,
dou-

nent
ethod
osen
ded-

sion

ed
e of
.1),
ion
he

is a

by a
urs.

nt
ment
.

o-
t ele-
• If the value is of typefloat and is not an element of the float value set, the
the implementation must map the value to the nearest element of the
value set. This conversion may result in overflow or underflow.

• If the value is of typedouble and is not an element of the double value se
then the implementation must map the value to the nearest element of the
ble value set. This conversion may result in overflow or underflow.

Within an FP-strict expression, mapping values from the float-extended-expo
value set or double-extended-exponent value set is necessary only when a m
is invoked whose declaration is not FP-strict and the implementation has ch
to represent the result of the method invocation as an element of an exten
exponent value set.

Whether in FP-strict code or code that is not FP-strict, value set conver
always leaves unchanged any value whose type is neitherfloat nordouble.

5.2 Assignment Conversion

Assignment conversionoccurs when the value of an expression is assign
(§15.25) to a variable: the type of the expression must be converted to the typ
the variable. Assignment contexts allow the use of an identity conversion (§5.1
a widening primitive conversion (§5.1.2), or a widening reference convers
(§5.1.4). In addition, a narrowing primitive conversion may be used if all of t
following conditions are satisfied:

• The expression is a constant expression of typeint.

• The type of the variable isbyte, short, orchar.

• The value of the expression (which is known at compile time, because it
constant expression) is representable in the type of the variable.

If the type of the expression cannot be converted to the type of the variable
conversion permitted in an assignment context, then a compile-time error occ

If the type of the variable isfloat or double, then value set conversion is
applied after the type conversion:

• If the value is of typefloat and is an element of the float-extended-expone
value set, then the implementation must map the value to the nearest ele
of the float value set. This conversion may result in overflow or underflow

• If the value is of typedouble and is an element of the double-extended-exp
nent value set, then the implementation must map the value to the neares
7

Updates to the Java™ Language Specification for JDK™ Release 1.2 Floating Point

8

or

ign-

or
must
con-
er-

-
t ele-
or

-
arest
or

.
,
i

pe
the

1), a
ment of the double value set. This conversion may result in overflow
underflow.

If the type of an expression can be converted to the type a variable by ass
ment conversion, we say the expression (or its value) isassignable tothe variable
or, equivalently, that the type of the expression isassignment compatible withthe
type of the variable.

. . .

5.3 Method Invocation Conversion

Method invocation conversionis applied to each argument value in a method
constructor invocation (§15.8, §15.11): the type of the argument expression
be converted to the type of the corresponding parameter. Method invocation
texts allow the use of an identity conversion (§5.1.1), a widening primitive conv
sion (§5.1.2), or a widening reference conversion (§5.1.4).

If the type of an argument expression is eitherfloat or double, then value
set conversion (§5.1.8) is applied after the type conversion:

• If an argument value of typefloat is an element of the float-extended-expo
nent value set, then the implementation must map the value to the neares
ment of the float value set. This conversion may result in overflow
underflow.

• If an argument value of typedouble is an element of the double-extended
exponent value set, then the implementation must map the value to the ne
element of the double value set. This conversion may result in overflow
underflow.

. . .

5.5 Casting Conversion

Sing away sorrow, cast away care
—Miguel de Cervantes (1547–1616)

Don Quixote (Lockhart's translation), Chapter vii

Casting conversionis applied to the operand of a cast operator (§15.15): the ty
of the operand expression must be converted to the type explicitly named by
cast operator. Casting contexts allow the use of an identity conversion (§5.1.

Updates to the Java™ Language Specification for JDK™ Release 1.2 Floating Point

n
con-
nt or
than

in a

t

f
er,

d to
widening primitive conversion (§5.1.2), a narrowing primitive conversio
(§5.1.3), a widening reference conversion (§5.1.4), or a narrowing reference
version (§5.1.5). Thus casting conversions are more inclusive than assignme
method invocation conversions: a cast can do any permitted conversion other
a string conversion.

Value set conversion (§5.1.8) is applied after the type conversion.
Some casts can be proven incorrect at compile time; such casts result

compile-time error.
. . .

5.6.1 Unary Numeric Promotion

Some operators applyunary numeric promotionto a single operand, which mus
produce a value of a numeric type:

• If the operand is of compile-time typebyte, short, or char, unary numeric
promotion promotes it to a value of typeint by a widening conversion
(§5.1.2).

• Otherwise, a unary numeric operand remains as is and is not converted.

In either case, value set conversion (§5.1.8) is then applied.
. . .

5.6.2 Binary Numeric Promotion

When an operator appliesbinary numeric promotionto a pair of operands, each o
which must denote a value of a numeric type, the following rules apply, in ord
using widening conversion (§5.1.2) to convert operands as necessary:

• If either operand is of typedouble, the other is converted todouble.

• Otherwise, if either operand is of typefloat, the other is converted tofloat.

• Otherwise, if either operand is of typelong, the other is converted tolong.

• Otherwise, both operands are converted to typeint.

After the type conversion, if any, value set conversion (§5.1.8) is then applie
each operand.

. . .
9

Updates to the Java™ Language Specification for JDK™ Release 1.2 Floating Point

10

if
more

not
pro-

d,
.

8.1.2 Class Modifiers

A class declaration may includeclass modifiers.

ClassModifiers:
ClassModifier
ClassModifiers ClassModifier

ClassModifier: one of
public abstract final strictfp

The access modifierpublic is discussed in §6.6. A compile-time error occurs
the same modifier appears more than once in a class declaration. If two or
class modifiers appear in a class declaration, then it is customary, though
required, that they appear in the order consistent with that shown above in the
duction forClassModifier.

8.3 Field Declarations

Poetic fields encompass me aroun
And still I seem to tread on classic ground

—Joseph Addison (1672–1719),A Letter from Italy

The variables of a class type are introduced byfield declarations:

FieldDeclaration:
FieldModifiersopt Type VariableDeclarators ;

VariableDeclarators:
VariableDeclarator
VariableDeclarators , VariableDeclarator

VariableDeclarator:
VariableDeclaratorId
VariableDeclaratorId = VariableInitializer

VariableDeclaratorId:
Identifier
VariableDeclaratorId []

VariableInitializer:
Expression
ArrayInitializer

Updates to the Java™ Language Specification for JDK™ Release 1.2 Floating Point

cope
han
one
-

la-
ame
e dif-

that
he

eed

the
in the

me
ver,
ple
ous.
t be
her-
y.

nt of
-
value

a-
iden-

er:
The FieldModifiersare described in §8.3.1. TheIdentifier in a FieldDeclarator
may be used in a name to refer to the field. The name of a field has as its s
(§6.3) the entire body of the class declaration in which it is declared. More t
one field may be declared in a single field declaration by using more than
declarator; theFieldModifiersandTypeapply to all the declarators in the declara
tion. Variable declarations involving array types are discussed in §10.2.

It is a compile-time error for the body of a class declaration to contain dec
rations of two fields with the same name. Methods and fields may have the s
name, since they are used in different contexts and are disambiguated by th
ferent lookup procedures (§6.5).

If the class declares a field with a certain name, then the declaration of
field is said tohide (§6.3.1) any and all accessible declarations of fields with t
same name in the superclasses and superinterfaces of the class.

If a field declaration hides the declaration of another field, the two fields n
not have the same type.

A class inherits from its direct superclass and direct superinterfaces all
fields of the superclass and superinterfaces that are both accessible to code
class and not hidden by a declaration in the class.

It is possible for a class to inherit more than one field with the same na
(§8.3.3.3). Such a situation does not in itself cause a compile-time error. Howe
any attempt within the body of the class to refer to any such field by its sim
name will result in a compile-time error, because such a reference is ambigu

There might be several paths by which the same field declaration migh
inherited from an interface. In such a situation, the field is considered to be in
ited only once, and it may be referred to by its simple name without ambiguit

A hidden field can be accessed by using a qualified name (if it isstatic) or
by using a field access expression (§15.10) that contains the keywordsuper or a
cast to a superclass type. See §15.10.2 for discussion and an example.

A value stored in a field of typefloat is always an element of the float value
set (§4.2.3); similarly, a value stored in a field of typedouble is always an ele-
ment of the double value set. It is not permitted for a field of typefloat to contain
an element of the float-extended-exponent value set that is not also an eleme
the float value set, nor for a field of typedouble to contain an element of the dou
ble-extended-exponent value set that is not also an element of the double
set.

8.4.1 Formal Parameters

The formal parametersof a method, if any, are specified by a list of comma-sep
rated parameter specifiers. Each parameter specifier consists of a type and an
tifier (optionally followed by brackets) that specifies the name of the paramet
11

Updates to the Java™ Language Specification for JDK™ Release 1.2 Floating Point

12

ars in

their

ent
lared

efer

hese
eters

sing

t

er of
at is

not

ble is
itted
value
pres-
et by
FormalParameterList:
FormalParameter
FormalParameterList , FormalParameter

FormalParameter:
Type VariableDeclaratorId

The following is repeated from §8.3 to make the presentation here clearer:

VariableDeclaratorId:
Identifier
VariableDeclaratorId []

If a method has no parameters, only an empty pair of parentheses appe
the method’s declaration.

If two formal parameters are declared to have the same name (that is,
declarations mention the sameIdentifier), then a compile-time error occurs.

When the method is invoked (§15.11), the values of the actual argum
expressions initialize newly created parameter variables, each of the dec
Type,before execution of the body of the method. TheIdentifier that appears in
theDeclaratorIdmay be used as a simple name in the body of the method to r
to the formal parameter.

The scope of formal parameter names is the entire body of the method. T
parameter names may not be redeclared as local variables or exception param
within the method; that is, hiding the name of a parameter is not permitted.

Formal parameters are referred to only using simple names, never by u
qualified names (§6.6).

A method parameter of typefloat always contains an element of the floa
value set (§4.2.3); similarly, a method parameter of typedouble always contains
an element of the double value set. It is not permitted for a method paramet
typefloat to contain an element of the float-extended-exponent value set th
not also an element of the float value set, nor for a method parameter of typedou-
ble to contain an element of the double-extended-exponent value set that is
also an element of the double value set.

Where an actual argument expression corresponding to a parameter varia
not FP-strict (§15.28), evaluation of that actual argument expression is perm
to use intermediate values drawn from the appropriate extended-exponent
sets. Prior to being stored in the parameter variable the result of such an ex
sion is mapped to the nearest value in the corresponding standard value s
method invocation conversion (§5.3).

Updates to the Java™ Language Specification for JDK™ Release 1.2 Floating Point

in a
cess

ord

m-
own

said
and

class.

of the

3),

pres-

dden
ee

am-
rict
8.4.3 Method Modifiers

MethodModifiers:
MethodModifier
MethodModifiers MethodModifier

MethodModifier: one of
public protected private abstract static
final synchronized native strictfp

The access modifierspublic, protected, andprivate are discussed in §6.6.
A compile-time error occurs if the same modifier appears more than once
method declaration, or if a method declaration has more than one of the ac
modifierspublic, protected, andprivate. A compile-time error occurs if a
method declaration that contains the keywordabstract also contains any one of
the keywordsprivate, static, final, native, strictfp, orsynchronized. A
compile-time error occurs if a method declaration that contains the keyw
native also containsstrictfp.

If two or more method modifiers appear in a method declaration, it is custo
ary, though not required, that they appear in the order consistent with that sh
above in the production forMethodModifier.

8.4.6.1 Overriding (By Instance Methods)

If a class declares an instance method, then the declaration of that method is
to overrideany and all methods with the same signature in the superclasses
superinterfaces of the class that would otherwise be accessible to code in the
Moreover, if the method declared in the class is notabstract, then the declara-
tion of that method is said toimplementany and all declarations ofabstract
methods with the same signature in the superclasses and superinterfaces
class that would otherwise be accessible to code in the class.

A compile-time error occurs if an instance method overrides astatic
method. In this respect, overriding of methods differs from hiding of fields (§8.
for it is permissible for an instance variable to hide astatic variable.

An overridden method can be accessed by using a method invocation ex
sion (§15.11) that contains the keywordsuper. Note that a qualified name or a
cast to a superclass type is not effective in attempting to access an overri
method; in this respect, overriding of methods differs from hiding of fields. S
§15.11.4.10 for discussion and examples of this point.

The presence or absence of thestrictfp modifier has absolutely no effect on
the rules for overriding methods and implementing abstract methods. For ex
ple, it is permitted for a method that is not FP-strict to override an FP-st
13

Updates to the Java™ Language Specification for JDK™ Release 1.2 Floating Point

14

not

in a
f the

e it
is

tor to

ade
their
hat
hat

for

f its
method and it is permitted for an FP-strict method to override a method that is
FP-strict.

8.6.3 Constructor Modifiers

ConstructorModifiers:
ConstructorModifier
ConstructorModifiers ConstructorModifier

ConstructorModifier: one of
public protected private

The access modifierspublic, protected, andprivate are discussed in §6.6.
A compile-time error occurs if the same modifier appears more than once
constructor declaration, or if a constructor declaration has more than one o
access modifierspublic, protected, andprivate.

Unlike methods, a constructor cannot beabstract, static, final, native,
or synchronized. A constructor is not inherited, so there is no need to declar
final and anabstract constructor could never be implemented. A constructor
always invoked with respect to an object, so it makes no sense for a construc
be static. There is no practical need for a constructor to besynchronized,
because it would lock the object under construction, which is normally not m
available to other threads until all constructors for the object have completed
work. The lack ofnative constructors is an arbitrary language design choice t
makes it easy for an implementation of the Java Virtual Machine to verify t
superclass constructors are always properly invoked during object creation.

A ConstructorModifiermaynot bestrictfp. A compile-time error occurs if
strictfp appears as a constructor modifier. This difference in the definitions
ConstructorModifierand MethodModifier (§8.4.3) is an intentional language
design choice; it effectively ensures that a constructor is FP-strict if and only i
class is FP-strict, so to speak.

9.1.2 Interface Modifiers

An interface declaration may be preceded byinterface modifiers:

InterfaceModifiers:
InterfaceModifier
InterfaceModifiers InterfaceModifier

InterfaceModifier: one of
public abstract strictfp

Updates to the Java™ Language Specification for JDK™ Release 1.2 Floating Point

if

if
.

ility
e, to

cify

y-
ow-
at is

y be
The access modifierpublic is discussed in §6.6. A compile-time error occurs
the same modifier appears more than once in an interface declaration.

9.4 Abstract Method Declarations

AbstractMethodDeclaration:
AbstractMethodModifiersopt ResultType MethodDeclarator Throwsopt ;

AbstractMethodModifiers:
AbstractMethodModifier
AbstractMethodModifiers AbstractMethodModifier

AbstractMethodModifier: one of
public abstract

The access modifierpublic is discussed in §6.6. A compile-time error occurs
the same modifier appears more than once in an abstract method declaration

Every method declaration in the body of an interface is implicitlyabstract,
so its body is always represented by a semicolon, not a block. For compatib
with older versions of Java, it is permitted but discouraged, as a matter of styl
redundantly specify theabstract modifier for methods declared in interfaces.

Every method declaration in the body of an interface is implicitlypublic. It
is permitted, but strongly discouraged as a matter of style, to redundantly spe
thepublic modifier for interface methods.

Note that a method declared in an interface must not be declaredstatic, or a
compile-time error occurs, because in Javastatic methods cannot beabstract.

Note that a method declared in an interface must not be declaredstrictfp
or native or synchronized, or a compile-time error occurs, because those ke
words describe implementation properties rather than interface properties. H
ever, a method declared in an interface may be implemented by a method th
declaredstrictfp or native or synchronized in a class that implements the
interface.

Note that a method declared in an interface must not be declaredfinal or a
compile-time error occurs. However, a method declared in an interface ma
implemented by a method that is declaredfinal in a class that implements the
interface.

Chapter 10

. . .
15

Updates to the Java™ Language Specification for JDK™ Release 1.2 Floating Point

16

t

ment

dou-

se

The

of

or a
nt
le of
All the components of an array have the same type, called thecomponent type
of the array. If the component type of an array isT, then the type of the array itself
is writtenT[].

An array component of typefloat is always an element of the float value se
(§4.2.3); similarly, an array component of typedouble is always an element of
the double value set. It is not permitted for an array component of typefloat to
be an element of the float-extended-exponent value set that is not also an ele
of the float value set, nor for an array component of typedouble to be an element
of the double-extended-exponent value set that is not also an element of the
ble value set.

. . .

14.3.1 Local Variable Declarators and Types

Eachdeclaratorin a local variable declaration declares one local variable, who
name is theIdentifier that appears in the declarator.

The type of the variable is denoted by theTypethat appears at the start of the
local variable declaration, followed by any bracket pairs that follow theIdentifier
in the declarator. Thus, the local variable declaration:

int a, b[], c[][];

is equivalent to the series of declarations:

int a;
int[] b;
int[][] c;

Brackets are allowed in declarators as a nod to the tradition of C and C++.
general rule, however, also means that the local variable declaration:

float[][] f[][], g[][][], h[]; // Yechh!

is equivalent to the series of declarations:

float[][][][] f;
float[][][][][] g;
float[][][] h;

We do not recommend such “mixed notation” for array declarations.
A local variable of typefloat always contains a value that is an element

the float value set (§4.2.3); similarly, a local variable of typedouble always con-
tains a value that is an element of the double value set. It is not permitted f
local variable of typefloat to contain an element of the float-extended-expone
value set that is not also an element of the float value set, nor for a local variab

Updates to the Java™ Language Specification for JDK™ Release 1.2 Floating Point

that

) or

tor

-
The

of

t

xpo-

uble-

just

to
ruc-
typedouble to contain an element of the double-extended-exponent value set
is not also an element of the double value set.

14.15 Thereturn Statement

A return statement returns control to the invoker of a method (§8.4, §15.11
constructor (§8.6, §15.8).

ReturnStatement:
return Expressionopt ;

A return statement with noExpressionmust be contained in the body of a
method that is declared, using the keywordvoid, not to return any value (§8.4), or
in the body of a constructor (§8.6). A compile-time error occurs if areturn state-
ment appears within a static initializer (§8.5). Areturn statement with no
Expressionattempts to transfer control to the invoker of the method or construc
that contains it. To be precise, areturn statement with noExpressionalways
completes abruptly, the reason being areturn with no value.

A return statement with anExpressionmust be contained in a method decla
ration that is declared to return a value (§8.4) or a compile-time error occurs.
Expressionmust denote a variable or value of some typeT, or a compile-time
error occurs. The typeT must be assignable (§5.2) to the declared result type
the method, or a compile-time error occurs.

A return statement with anExpressionattempts to transfer control to the
invoker of the method that contains it; the value of theExpressionbecomes the
value of the method invocation. More precisely, execution of such areturn state-
ment first evaluates theExpression. If the evaluation of theExpressioncompletes
abruptly for some reason, then thereturn statement completes abruptly for tha
reason. If evaluation of theExpressioncompletes normally, producing a valueV,
then thereturn statement completes abruptly, the reason being areturn with
valueV. (If the expression is of typefloat and is not FP-strict (§15.28), then the
value may be an element of either the float value set or the float-extended-e
nent value set (§4.2.3). If the expression is of typedouble and is not FP-strict,
then the value may be an element of either the double value set or the do
extended-exponent value set.)

It can be seen, then, that areturn statement always completes abruptly.
The preceding descriptions say “attempts to transfer control” rather than

“transfers control” because if there are anytry statements (§14.18) within the
method or constructor whosetry blocks contain thereturn statement, then any
finally clauses of thosetry statements will be executed, in order, innermost
outermost, before control is transferred to the invoker of the method or const
17

Updates to the Java™ Language Specification for JDK™ Release 1.2 Floating Point

18

i-

pres-
opera-

on
thod
tate-
pear
t is a
case

that

type
tor

eval-
sion
tor. Abrupt completion of afinally clause can disrupt the transfer of control in
tiated by areturn statement.

15.1 Evaluation, Denotation, and Result

When an expression in a Java program isevaluated(executed), theresultdenotes
one of three things:

• A variable (§4.5) (in C, this would be called anlvalue)

• A value (§4.2, §4.3)

• Nothing (the expression is said to bevoid)

Evaluation of an expression can also produce side effects, because ex
sions may contain embedded assignments, increment operators, decrement
tors, and method invocations.

An expression denotes nothing if and only if it is a method invocati
(§15.11) that invokes a method that does not return a value, that is, a me
declaredvoid (§8.4). Such an expression can be used only as an expression s
ment (§14.7), because every other context in which an expression can ap
requires the expression to denote something. An expression statement tha
method invocation may also invoke a method that produces a result; in this
the value returned by the method is quietly discarded.

Value set conversion (§5.1.8) is applied to the result of every expression
produces a value.

Each expression occurs in the declaration of some (class or interface)
that is being declared: in a field initializer, in a static initializer, in a construc
declaration, or in the code for a method.

15.2 Variables as Values

If an expression denotes a variable, and a value is required for use in further
uation, then the value of that variable is used. In this context, if the expres
denotes a variable or a value, we may speak simply of thevalueof the expression.

If the value of a variable of typefloat or double is used in this manner, then
value set conversion (§5.1.8) is applied to the value of the variable.

15.7.1 Literals

A literal (§3.10) denotes a fixed, unchanging value.

Updates to the Java™ Language Specification for JDK™ Release 1.2 Floating Point

oat-
le

.

f the
ined

r the

y)
bles
tion

efer-
The following production from §3.10 is repeated here for convenience:

Literal:
IntegerLiteral
FloatingPointLiteral
BooleanLiteral
CharacterLiteral
StringLiteral
NullLiteral

The type of a literal is determined as follows:

• The type of an integer literal that ends withL or l is long; the type of any
other integer literal isint.

• The type of a floating-point literal that ends withF or f is float and its value
must be an element of the float value set (§4.2.3). The type of any other fl
ing-point literal isdouble and its value must be an element of the doub
value set.

• The type of a boolean literal isboolean.

• The type of a character literal ischar.

• The type of a string literal isString.

• The type of the null literalnull is the null type; its value is the null reference

Evaluation of a literal always completes normally.

15.7.3 Parenthesized Expressions

A parenthesized expression is a primary expression whose type is the type o
contained expression and whose value at run time is the value of the conta
expression.

Parentheses do not affect in any way the choice of value set (§4.2.3) fo
value of an expression of typefloat or double.

15.11.4.5 Create Frame, Synchronize, Transfer Control

A methodm in some classS has been identified as the one to be invoked.
Now a newactivation frameis created, containing the target reference (if an

and the argument values (if any), as well as enough space for the local varia
and stack for the method to be invoked and any other bookkeeping informa
that may be required by the implementation (stack pointer, program counter, r
19

Updates to the Java™ Language Specification for JDK™ Release 1.2 Floating Point

20

ory

The
ated
le as

to its
rsion

-
or a
the
ari-

hen
d no

eric

) to
ent

lue
sum

an
ot a
tor.

-
or a
ence to previous activation frame, and the like). If there is not sufficient mem
available to create such an activation frame, anOutOfMemoryError is thrown.

The newly created activation frame becomes the current activation frame.
effect of this is to assign the argument values to corresponding freshly cre
parameter variables of the method, and to make the target reference availab
this, if there is a target reference. Before each argument value is assigned
corresponding parameter variable, it is subjected to method invocation conve
(§5.3), which includes any required value set conversion (§5.1.8).

. . .

15.13.2 Postfix Increment Operator++

PostIncrementExpression:
PostfixExpression ++

A postfix expression followed by a++ operator is a postfix increment expres
sion. The result of the postfix expression must be a variable of a numeric type,
compile-time error occurs. The type of the postfix increment expression is
type of the variable. The result of the postfix increment expression is not a v
able, but a value.

At run time, if evaluation of the operand expression completes abruptly, t
the postfix increment expression completes abruptly for the same reason an
incrementation occurs. Otherwise, the value1 is added to the value of the variable
and the sum is stored back into the variable. Before the addition, binary num
promotion (§5.6.2) is performed on the value1 and the value of the variable. If
necessary, the sum is narrowed by a narrowing primitive conversion (§5.1.3
the type of the variable before it is stored. The value of the postfix increm
expression is the value of the variablebeforethe new value is stored.

Note that the binary numeric promotion mentioned above may include va
set conversion (§5.1.8). If necessary, value set conversion is applied to the
prior to its being stored in the variable.

A variable that is declaredfinal cannot be incremented, because when
access of afinal variable is used as an expression, the result is a value, n
variable. Thus, it cannot be used as the operand of a postfix increment opera

15.13.3 Postfix Decrement Operator--

PostDecrementExpression:
PostfixExpression --

A postfix expression followed by a-- operator is a postfix decrement expres
sion. The result of the postfix expression must be a variable of a numeric type,

Updates to the Java™ Language Specification for JDK™ Release 1.2 Floating Point

the
vari-

hen
nd no

tion,

on-
the

lue
iffer-

an
ot a
ator.

.
om-

e of
ut a

hen
d no

eric

) to
ent

lue
sum

an
ot a
or.
compile-time error occurs. The type of the postfix decrement expression is
type of the variable. The result of the postfix decrement expression is not a
able, but a value.

At run time, if evaluation of the operand expression completes abruptly, t
the postfix decrement expression completes abruptly for the same reason a
decrementation occurs. Otherwise, the value1 is subtracted from the value of the
variable and the difference is stored back into the variable. Before the subtrac
binary numeric promotion (§5.6.2) is performed on the value1 and the value of
the variable. If necessary, the difference is narrowed by a narrowing primitive c
version (§5.1.3) to the type of the variable before it is stored. The value of
postfix decrement expression is the value of the variablebeforethe new value is
stored.

Note that the binary numeric promotion mentioned above may include va
set conversion (§5.1.8). If necessary, value set conversion is applied to the d
ence prior to its being stored in the variable.

A variable that is declaredfinal cannot be decremented, because when
access of afinal variable is used as an expression, the result is a value, n
variable. Thus, it cannot be used as the operand of a postfix decrement oper

15.14.1 Prefix Increment Operator++

A unary expression preceded by a++ operator is a prefix increment expression
The result of the unary expression must be a variable of a numeric type, or a c
pile-time error occurs. The type of the prefix increment expression is the typ
the variable. The result of the prefix increment expression is not a variable, b
value.

At run time, if evaluation of the operand expression completes abruptly, t
the prefix increment expression completes abruptly for the same reason an
incrementation occurs. Otherwise, the value1 is added to the value of the variable
and the sum is stored back into the variable. Before the addition, binary num
promotion (§5.6.2) is performed on the value1 and the value of the variable. If
necessary, the sum is narrowed by a narrowing primitive conversion (§5.1.3
the type of the variable before it is stored. The value of the prefix increm
expression is the value of the variableafter the new value is stored.

Note that the binary numeric promotion mentioned above may include va
set conversion (§5.1.8). If necessary, value set conversion is applied to the
prior to its being stored in the variable.

A variable that is declaredfinal cannot be incremented, because when
access of afinal variable is used as an expression, the result is a value, n
variable. Thus, it cannot be used as the operand of a prefix increment operat
21

Updates to the Java™ Language Specification for JDK™ Release 1.2 Floating Point

22

e.

n.
om-
e of
but a

hen
nd no

tion,

on-
pre-

lue
iffer-

an
ot a
tor.

sion.

.1)
pro-

.8).
ation
That

tion
15.14.2 Prefix Decrement Operator--

He must increase, but I must decreas
—John 3:30

A unary expression preceded by a-- operator is a prefix decrement expressio
The result of the unary expression must be a variable of a numeric type, or a c
pile-time error occurs. The type of the prefix decrement expression is the typ
the variable. The result of the prefix decrement expression is not a variable,
value.

At run time, if evaluation of the operand expression completes abruptly, t
the prefix decrement expression completes abruptly for the same reason a
decrementation occurs. Otherwise, the value1 is subtracted from the value of the
variable and the difference is stored back into the variable. Before the subtrac
binary numeric promotion (§5.6.2) is performed on the value1 and the value of
the variable. If necessary, the difference is narrowed by a narrowing primitive c
version (§5.1.3) to the type of the variable before it is stored. The value of the
fix decrement expression is the value of the variableafter the new value is stored.

Note that the binary numeric promotion mentioned above may include va
set conversion (§5.1.8). If necessary, value set conversion is applied to the d
ence prior to its being stored in the variable.

A variable that is declaredfinal cannot be decremented, because when
access of afinal variable is used as an expression, the result is a value, n
variable. Thus, it cannot be used as the operand of a prefix decrement opera

15.14.4 Unary Minus Operator-

It is so very agreeable to hear a voice and to see all the signs of that expres
—Gertrude Stein,Rooms (1914), inTender Buttons

The type of the operand expression of the unary- operator must be a primitive
numeric type, or a compile-time error occurs. Unary numeric promotion (§5.6
is performed on the operand. The type of the unary minus expression is the
moted type of the operand.

Note that unary numeric promotion performs value set conversion (§5.1
Whatever value set the promoted operand value is drawn from, the unary neg
operation is carried out and the result is drawn from that same value set.
result is then subject to further value set conversion.

At run time, the value of the unary plus expression is the arithmetic nega
of the promoted value of the operand.

Updates to the Java™ Language Specification for JDK™ Release 1.2 Floating Point

uses
ent

t no

ero,

,

ilar
an
an

the
led the
n if

e of

to an
For integer values, negation is the same as subtraction from zero. Java
two’s-complement representation for integers, and the range of two’s-complem
values is not symmetric, so negation of the maximum negativeint or long results
in that same maximum negative number. Overflow occurs in this case, bu
exception is thrown. For all integer valuesx, -x equals(~x)+1.

For floating-point values, negation is not the same as subtraction from z
because ifx is +0.0, then0.0-x equals+0.0, but -x equals-0.0. Unary minus
merely inverts the sign of a floating-point number. Special cases of interest:

• If the operand is NaN, the result is NaN (recall that NaN has no sign).

• If the operand is an infinity, the result is the infinity of opposite sign.

• If the operand is a zero, the result is the zero of opposite sign.

15.15 Cast Expressions

My days among the dead are passed;
 Around me I behold,
Where’er these casual eyes are cast,
 The mighty minds of old . . .

—Robert Southey (1774–1843)
Occasional Pieces, xviii

A cast expression converts, at run time, a value of one numeric type to a sim
value of another numeric type; or confirms, at compile time, that the type of
expression isboolean; or checks, at run time, that a reference value refers to
object whose class is compatible with a specified reference type.

CastExpression:
(PrimitiveType Dimsopt) UnaryExpression
(ReferenceType) UnaryExpressionNotPlusMinus

See §15.14 for a discussion of the distinction betweenUnaryExpressionand
UnaryExpressionNotPlusMinus.

The type of a cast expression is the type whose name appears within
parentheses. (The parentheses and the type they contain are sometimes cal
cast operator.) The result of a cast expression is not a variable, but a value, eve
the result of the operand expression is a variable.

A cast operator has no effect on the choice of value set (§4.2.3) for a valu
typefloat or typedouble. Consequently, a cast to typefloat within an expres-
sion that is not FP-strict does not necessarily cause its value to be converted
23

Updates to the Java™ Language Specification for JDK™ Release 1.2 Floating Point

24

of the

the

ht).

imi-
is
the

8).

E

ave

e

element of the float value set, and a cast to typedouble within an expression that is
not FP-strict does not necessarily cause its value to be converted to an element
double value set.

At run time, the operand value is converted by casting conversion (§5.4) to
type specified by the cast operator.

. . .

15.16 Multiplicative Operators

The operators*, /, and% are called themultiplicative operators. They have the
same precedence and are syntactically left-associative (they group left-to-rig

MultiplicativeExpression:
UnaryExpression
MultiplicativeExpression * UnaryExpression
MultiplicativeExpression / UnaryExpression
MultiplicativeExpression % UnaryExpression

The type of each of the operands of a multiplicative operator must be a pr
tive numeric type, or a compile-time error occurs. Binary numeric promotion
performed on the operands (§5.6.2). The type of a multiplicative expression is
promoted type of its operands. If this promoted type isint or long, then integer
arithmetic is performed; if this promoted type isfloat or double, then floating-
point arithmetic is performed.

Note that binary numeric promotion performs value set conversion (§5.1.

15.16.1 Multiplication Operator *

. . .
The result of a floating-point multiplication is governed by the rules of IEE

754 arithmetic:

• If either operand is NaN, the result is NaN.

• If the result is not NaN, the sign of the result is positive if both operands h
the same sign, and negative if the operands have different signs.

• Multiplication of an infinity by a zero results in NaN.

• Multiplication of an infinity by a finite value results in a signed infinity. Th
sign is determined by the rule stated above.

Updates to the Java™ Language Specification for JDK™ Release 1.2 Floating Point

act
en:

n, at

cho-

prod-
per-
se,
IEEE
adual

ur,

of

ave

is
• In the remaining cases, where neither an infinity or NaN is involved, the ex
mathematical product is computed. A floating-point value set is then chos

◆ If the multiplication expression is FP-strict (§15.28):

❖ If the type of the multiplication expression isfloat, then the float value
set must be chosen.

❖ If the type of the multiplication expression isdouble, then the double
value set must be chosen.

◆ If the multiplication expression is not FP-strict:

❖ If the type of the multiplication expression isfloat, then the either the
float value set or the float-extended-exponent value set may be chose
the whim of the implementation.

❖ If the type of the multiplication expression isdouble, then the either the
double value set or the double-extended-exponent value set may be
sen, at the whim of the implementation.

Next, a value must be chosen from the chosen value set to represent the
uct. If the magnitude of the product is too large to represent, we say the o
ation overflows; the result is then an infinity of appropriate sign. Otherwi
the product is rounded to the nearest value in the chosen value set using
754 round-to-nearest mode. The Java language requires support of gr
underflow as defined by IEEE 754 (§4.2.4).

Despite the fact that overflow, underflow, or loss of information may occ
evaluation of a multiplication operator* never throws a run-time exception.

15.16.2 Division Operator/

. . .
The result of a floating-point division is determined by the specification

IEEE arithmetic:

• If either operand is NaN, the result is NaN.

• If the result is not NaN, the sign of the result is positive if both operands h
the same sign, negative if the operands have different signs.

• Division of an infinity by an infinity results in NaN.

• Division of an infinity by a finite value results in a signed infinity. The sign
determined by the rule stated above.
25

Updates to the Java™ Language Specification for JDK™ Release 1.2 Floating Point

26

is

ite
ove.

he

act
sen:

t

t the

at the

quo-
the
er-
using
grad-

a-

ric
• Division of a finite value by an infinity results in a signed zero. The sign
determined by the rule stated above.

• Division of a zero by a zero results in NaN; division of zero by any other fin
value results in a signed zero. The sign is determined by the rule stated ab

• Division of a nonzero finite value by a zero results in a signed infinity. T
sign is determined by the rule stated above.

• In the remaining cases, where neither an infinity or NaN is involved, the ex
mathematical quotient is computed. A floating-point value set is then cho

◆ If the division expression is FP-strict (§15.28):

❖ If the type of the division expression isfloat, then the float value set
must be chosen.

❖ If the type of the division expression isdouble, then the double value se
must be chosen.

◆ If the division expression is not FP-strict:

❖ If the type of the division expression isfloat, then the either the float
value set or the float-extended-exponent value set may be chosen, a
whim of the implementation.

❖ If the type of the division expression isdouble, then the either the double
value set or the double-extended-exponent value set may be chosen,
whim of the implementation.

Next, a value must be chosen from the chosen value set to represent the
tient. If the magnitude of the quotient is too large to represent, we say
operation overflows; the result is then an infinity of appropriate sign. Oth
wise, the quotient is rounded to the nearest value in the chosen value set
IEEE 754 round-to-nearest mode. The Java language requires support of
ual underflow as defined by IEEE 754 (§4.2.4).

Despite the fact that overflow, underflow, division by zero, or loss of inform
tion may occur, evaluation of a floating-point division operator/ never throws a
run-time exception.

15.17.2 Additive Operators (+ and -) for Numeric Types

The binary+ operator performs addition when applied to two operands of nume
type, producing the sum of the operands. The binary- operator performs subtrac-
tion, producing the difference of two numeric operands.

Updates to the Java™ Language Specification for JDK™ Release 1.2 Floating Point

e of
ands.

8).
side
type,

he
ent

n of

les

rand.

site

is
des,

hen

t

Binary numeric promotion is performed on the operands (§5.6.2). The typ
an additive expression on numeric operands is the promoted type of its oper
If this promoted type isint or long, then integer arithmetic is performed; if this
promoted type isfloat or double, then floating-point arithmetic is performed.

Note that binary numeric promotion performs value set conversion (§5.1.
Addition is a commutative operation if the operand expressions have no

effects. Integer addition is associative when the operands are all of the same
but floating-point addition is not associative.

If an integer addition overflows, then the result is the low-order bits of t
mathematical sum as represented in some sufficiently large two’s-complem
format. If overflow occurs, then the sign of the result is not the same as the sig
the mathematical sum of the two operand values.

The result of a floating-point addition is determined using the following ru
of IEEE arithmetic:

• If either operand is NaN, the result is NaN.

• The sum of two infinities of opposite sign is NaN.

• The sum of two infinities of the same sign is the infinity of that sign.

• The sum of an infinity and a finite value is equal to the infinite operand.

• The sum of two zeros of opposite sign is positive zero.

• The sum of two zeros of the same sign is the zero of that sign.

• The sum of a zero and a nonzero finite value is equal to the nonzero ope

• The sum of two nonzero finite values of the same magnitude and oppo
sign is positive zero.

• In the remaining cases, where neither an infinity, nor a zero, nor NaN
involved, and the operands have the same sign or have different magnitu
the exact mathematical sum is computed. A floating-point value set is t
chosen:

◆ If the addition expression is FP-strict (§15.28):

❖ If the type of the addition expression isfloat, then the float value set
must be chosen.

❖ If the type of the addition expression isdouble, then the double value se
must be chosen.

◆ If the addition expression is not FP-strict:
27

Updates to the Java™ Language Specification for JDK™ Release 1.2 Floating Point

28

t the

at the

sum.
tion
um
und-
w as

be a
ion

is

.8).
hat

ary
e of
o-

.8).
hat
❖ If the type of the addition expression isfloat, then the either the float
value set or the float-extended-exponent value set may be chosen, a
whim of the implementation.

❖ If the type of the addition expression isdouble, then the either the double
value set or the double-extended-exponent value set may be chosen,
whim of the implementation.

Next, a value must be chosen from the chosen value set to represent the
If the magnitude of the sum is too large to represent, we say the opera
overflows; the result is then an infinity of appropriate sign. Otherwise, the s
is rounded to the nearest value in the chosen value set using IEEE 754 ro
to-nearest mode. The Java language requires support of gradual underflo
defined by IEEE 754 (§4.2.4).

. . .

15.19.1 Numerical Comparison Operators<, <=, >, and>=

The type of each of the operands of a numerical comparison operator must
primitive numeric type, or a compile-time error occurs. Binary numeric promot
is performed on the operands (§5.6.2). If the promoted type of the operands isint
or long, then signed integer comparison is performed; if this promoted type
float or double, then floating-point comparison is performed.

Note that binary numeric promotion performs value set conversion (§5.1
Comparison is carried out accurately on floating-point values, no matter w
value sets their representing values were drawn from.

. . .

15.20.1 Numerical Equality Operators== and !=

If the operands of an equality operator are both of primitive numeric type, bin
numeric promotion is performed on the operands (§5.6.2). If the promoted typ
the operands isint or long, then an integer equality test is performed; if the pr
moted type isfloat or double, then a floating-point equality test is performed.

Note that binary numeric promotion performs value set conversion (§5.1
Comparison is carried out accurately on floating-point values, no matter w
value sets their representing values were drawn from.

Updates to the Java™ Language Specification for JDK™ Release 1.2 Floating Point

ide

to-

rd

.
third

. All

res-
-

null

e are

nd
f the
rms
15.24 Conditional Operator? :

The conditional operator? : uses the boolean value of one expression to dec
which of two other expressions should be evaluated.

The conditional operator is syntactically right-associative (it groups right-
left), so thata?b:c?d:e?f:g means the same asa?b:(c?d:(e?f:g)).

ConditionalExpression:
ConditionalOrExpression
ConditionalOrExpression ? Expression : ConditionalExpression

The conditional operator has three operand expressions;? appears between
the first and second expressions, and: appears between the second and thi
expressions.

The first expression must be of typeboolean, or a compile-time error occurs
The conditional operator may be used to choose between second and

operands of numeric type, or second and third operands of typeboolean, or sec-
ond and third operands that are each of either reference type or the null type
other cases result in a compile-time error.

Note that it is not permitted for either the second or the third operand exp
sion to be an invocation of avoid method. In fact, it is not permitted for a condi
tional expression to appear in any context where an invocation of avoid method
could appear (§14.7).

The type of a conditional expression is determined as follows:

• If the second and third operands have the same type (which may be the
type), then that is the type of the conditional expression.

• Otherwise, if the second and third operands have numeric type, then ther
several cases:

◆ If one of the operands is of typebyte and the other is of typeshort, then
the type of the conditional expression isshort.

◆ If one of the operands is of typeT whereT is byte, short, or char, and the
other operand is a constant expression of typeint whose value is represent-
able in typeT, then the type of the conditional expression isT.

◆ Otherwise, binary numeric promotion (§5.6.2) is applied to the opera
types, and the type of the conditional expression is the promoted type o
second and third operands. Note that binary numeric promotion perfo
value set conversion (§5.1.8).
29

Updates to the Java™ Language Specification for JDK™ Release 1.2 Floating Point

30

the
that

ust
e
is
he

on-

nd
s are

lua-
uptly
sign-

etes
rea-

f the
pro-
result

, then

ccess
sign-
pres-
hand

cess
sign-
• If one of the second and third operands is of the null type and the type of
other is a reference type, then the type of the conditional expression is
reference type.

• If the second and third operands are of different reference types, then it m
be possible to convert one of the types to the other type (call this latter typT)
by assignment conversion (§5.2); the type of the conditional expressionT.
It is a compile-time error if neither type is assignment compatible with t
other type.

. . .

15.25.1 Simple Assignment Operator=

A compile-time error occurs if the type of the right-hand operand cannot be c
verted to the type of the variable by assignment conversion (§5.2).

At run time, the expression is evaluated in one of two ways. If the left-ha
operand expression is not an array access expression, then three step
required:

• First, the left-hand operand is evaluated to produce a variable. If this eva
tion completes abruptly, then the assignment expression completes abr
for the same reason; the right-hand operand is not evaluated and no as
ment occurs.

• Otherwise, the right-hand operand is evaluated. If this evaluation compl
abruptly, then the assignment expression completes abruptly for the same
son and no assignment occurs.

• Otherwise, the value of the right-hand operand is converted to the type o
left-hand variable, is subjected to value set conversion (§5.1.8) to the ap
priate standard value set (not an extended-exponent value set), and the
of the conversion is stored into the variable.

If the left-hand operand expression is an array access expression (§15.12)
many steps are required:

• First, the array reference subexpression of the left-hand operand array a
expression is evaluated. If this evaluation completes abruptly, then the as
ment expression completes abruptly for the same reason; the index subex
sion (of the left-hand operand array access expression) and the right-
operand are not evaluated and no assignment occurs.

• Otherwise, the index subexpression of the left-hand operand array ac
expression is evaluated. If this evaluation completes abruptly, then the as

Updates to the Java™ Language Specification for JDK™ Release 1.2 Floating Point

hand

etes
rea-

to an
ater
d an

nent
This

.

po-
tan-
f the

o

po-

of
that

15),

n

the
ment expression completes abruptly for the same reason and the right-
operand is not evaluated and no assignment occurs.

• Otherwise, the right-hand operand is evaluated. If this evaluation compl
abruptly, then the assignment expression completes abruptly for the same
son and no assignment occurs.

• Otherwise, if the value of the array reference subexpression isnull, then no
assignment occurs and aNullPointerException is thrown.

• Otherwise, the value of the array reference subexpression indeed refers
array. If the value of the index subexpression is less than zero, or gre
than or equal to the length of the array, then no assignment occurs an
IndexOutOfBoundsException is thrown.

• Otherwise, the value of the index subexpression is used to select a compo
of the array referred to by the value of the array reference subexpression.
component is a variable; call its typeSC. Also, letTC be the type of the left-
hand operand of the assignment operator as determined at compile time

◆ If TC is a primitive type, thenSC is necessarily the same asTC. The value of
the right-hand operand is converted to the type of the selected array com
nent, is subjected to value set conversion (§5.1.8) to the appropriate s
dard value set (not an extended-exponent value set), and the result o
conversion is stored into the array component.

◆ If T is a reference type, thenSC may not be the same asT, but rather a type
that extends or implementsTC. Let RC be the class of the object referred t
by the value of the right-hand operand at run time.

The compiler may be able to prove at compile time that the array com
nent will be of typeTC exactly (for example,TC might befinal). But if the
compiler cannot prove at compile time that the array component will be
typeTC exactly, then a check must be performed at run time to ensure
the classRC is assignment compatible (§5.2) with the actual typeSC of the
array component. This check is similar to a narrowing cast (§5.4, §15.
except that if the check fails, anArrayStoreException is thrown rather
than aClassCastException. Therefore:

❖ If classRC is not assignable to typeSC, then no assignment occurs and a
ArrayStoreException is thrown.

❖ Otherwise, the reference value of the right-hand operand is stored into
selected array component.

. . .
31

Updates to the Java™ Language Specification for JDK™ Release 1.2 Floating Point

32

ype,
ft-

fol-

nd
quired:

lua-
uptly
sign-

hand
ign-
ment

ght-
om-
nly
ent

ccurs.

the
pri-
ult of

, then
15.25.2 Compound Assignment Operators

All compound assignment operators require both operands to be of primitive t
except for+=, which allows the right-hand operand to be of any type if the le
hand operand is of typeString.

A compound assignment expression of the formE1 op= E2 is equivalent to
E1 = (T)((E1) op (E2)), whereT is the type ofE1, except thatE1 is evaluated
only once. Note that the implied cast to typeT may be either an identity conver-
sion (§5.1.1) or a narrowing primitive conversion (§5.1.3). For example, the
lowing code is correct:

short x = 3;
x += 4.6;

and results inx having the value7 because it is equivalent to:

short x = 3;
x = (short)(x + 4.6);

At run time, the expression is evaluated in one of two ways. If the left-ha
operand expression is not an array access expression, then four steps are re

• First, the left-hand operand is evaluated to produce a variable. If this eva
tion completes abruptly, then the assignment expression completes abr
for the same reason; the right-hand operand is not evaluated and no as
ment occurs.

• Otherwise, the value of the left-hand operand is saved and then the right-
operand is evaluated. If this evaluation completes abruptly, then the ass
ment expression completes abruptly for the same reason and no assign
occurs.

• Otherwise, the saved value of the left-hand variable and the value of the ri
hand operand are used to perform the binary operation indicated by the c
pound assignment operator. If this operation completes abruptly (the o
possibility is an integer division by zero—see §15.16.2), then the assignm
expression completes abruptly for the same reason and no assignment o

• Otherwise, the result of the binary operation is converted to the type of
left-hand variable, subjected to value set conversion (§5.1.8) to the appro
ate standard value set (not an extended-exponent value set), and the res
the conversion is stored into the variable.

If the left-hand operand expression is an array access expression (§15.12)
many steps are required:

Updates to the Java™ Language Specification for JDK™ Release 1.2 Floating Point

ccess
sign-
pres-
hand

cess
sign-
hand

to an
ater
d an

nent
The

ated.
om-
imple
efore
ssion,
and

hose

ed at

and
om-
nly

ign-
sign-

the
8) to
• First, the array reference subexpression of the left-hand operand array a
expression is evaluated. If this evaluation completes abruptly, then the as
ment expression completes abruptly for the same reason; the index subex
sion (of the left-hand operand array access expression) and the right-
operand are not evaluated and no assignment occurs.

• Otherwise, the index subexpression of the left-hand operand array ac
expression is evaluated. If this evaluation completes abruptly, then the as
ment expression completes abruptly for the same reason and the right-
operand is not evaluated and no assignment occurs.

• Otherwise, if the value of the array reference subexpression isnull, then no
assignment occurs and aNullPointerException is thrown.

• Otherwise, the value of the array reference subexpression indeed refers
array. If the value of the index subexpression is less than zero, or gre
than or equal to the length of the array, then no assignment occurs an
IndexOutOfBoundsException is thrown.

• Otherwise, the value of the index subexpression is used to select a compo
of the array referred to by the value of the array reference subexpression.
value of this component is saved and then the right-hand operand is evalu
If this evaluation completes abruptly, then the assignment expression c
pletes abruptly for the same reason and no assignment occurs. (For a s
assignment operator, the evaluation of the right-hand operand occurs b
the checks of the array reference subexpression and the index subexpre
but for a compound assignment operator, the evaluation of the right-h
operand occurs after these checks.)

• Otherwise, consider the array component selected in the previous step, w
value was saved. This component is a variable; call its typeS. Also, letT be
the type of the left-hand operand of the assignment operator as determin
compile time.

◆ If T is a primitive type, thenS is necessarily the same asT.

❖ The saved value of the array component and the value of the right-h
operand are used to perform the binary operation indicated by the c
pound assignment operator. If this operation completes abruptly (the o
possibility is an integer division by zero—see §15.16.2), then the ass
ment expression completes abruptly for the same reason and no as
ment occurs.

❖ Otherwise, the result of the binary operation is converted to the type of
selected array component, subjected to value set conversion (§5.1.
33

Updates to the Java™ Language Specification for JDK™ Release 1.2 Floating Point

34

set),

d for

and
tion)
arily
sion

e

f

the appropriate standard value set (not an extended-exponent value
and the result of the conversion is stored into the array component.

◆ If T is a reference type, then it must beString. Because classString is a
final class,S must also beString. Therefore the run-time check that is
sometimes required for the simple assignment operator is never require
a compound assignment operator.

❖ The saved value of the array component and the value of the right-h
operand are used to perform the binary operation (string concatena
indicated by the compound assignment operator (which is necess
+=). If this operation completes abruptly, then the assignment expres
completes abruptly for the same reason and no assignment occurs.

❖ Otherwise, theString result of the binary operation is stored into th
array component.

. . .

15.27 Constant Expression

ConstantExpression:
Expression

A compile-time constant expressionis an expression denoting a value o
primitive type or aString that is composed using only the following:

• Literals of primitive type and literals of typeString

• Casts to primitive types and casts to typeString

• The unary operators+, -, ~, and! (but not++ or --)

• The multiplicative operators*, /, and%

• The additive operators+ and-

• The shift operators<<, >>, and>>>

• The relational operators<, <=, >, and>= (but notinstanceof)

• The equality operators== and!=

• The bitwise and logical operators&, ^, and|

• The conditional-and operator&& and the conditional-or operator||

• The ternary conditional operator? :

Updates to the Java™ Language Specification for JDK™ Release 1.2 Floating Point

t

28),
con-

t
rned
ether

sion
tions,
If

e-
he

s of
trict
epre-
trict,
range
cula-
the
• Simple names that refer tofinal variables whose initializers are constan
expressions

• Qualified names of the formTypeName. Identifier that refer tofinal vari-
ables whose initializers are constant expressions

Compile-time constant expressions are used incase labels inswitch statements
(§14.9) and have a special significance for assignment conversion (§5.2).

A compile-time constant expression is always treated as FP-strict (§15.
even if it occurs in a context where a non-constant expression would not be
sidered to be FP-strict.

. . .

15.28 FP-strict Expressions

If the type of an expression isfloat or double, then there is a question as to wha
value set (§4.2.3) the value of the expression may be drawn from. This is gove
by the rules of value set conversion (§5.1.8); these rules in turn depend on wh
or not the expression isFP-strict.

Every compile-time constant expression (§15.27) is FP-strict. If an expres
is not a compile-time constant expression, then consider all the class declara
interface declarations, and method declarations that contain the expression.any
such declaration bears thestrictfp modifier, then the expression is FP-strict.

It follows that an expression is not FP-strict if and only if it is not a compil
time constant expressionandit does not appear within any declaration that has t
strictfp strict modifier.

Within an FP-strict expression, all intermediate values must be element
the float value set or the double value set, implying that the results of all FP-s
expressions must be those predicted by IEEE 754 arithmetic on operands r
sented using single and double formats. Within an expression that is not FP-s
some leeway is granted for an implementation to use an extended exponent
to represent intermediate results; the net effect, roughly speaking, is that a cal
tion might produce “the correct answer” in situations where exclusive use of
float value set or double value set might result in overflow or underflow.
35

	Updates to the Java™ Language Specification for JDK™ Release 1.2 Floating Point
	3.9���Keywords
	4.2.3���Floating-Point Types, Value Sets, and Values

	Chapter 5
	• Identity conversions
	• Assignment conversion (§5.2, §15.25) converts the type of an expression to the type of a specif...

	5.1���Kinds of Conversion
	5.1.8���Value Set Conversion
	• If the value is an element of the float-extended-exponent value set, then the implementation ma...
	• If the value is of type float and is not an element of the float value set, then the implementa...

	5.2���Assignment Conversion
	• The expression is a constant expression of type int.
	• If the value is of type float and is an element of the float-extended-exponent value set, then ...

	5.3���Method Invocation Conversion
	• If an argument value of type float is an element of the float-extended-exponent value set, then...

	5.5���Casting Conversion
	5.6.1���Unary Numeric Promotion
	• If the operand is of compile-time type byte, short, or char, unary numeric promotion promotes i...
	5.6.2���Binary Numeric Promotion

	• If either operand is of type double, the other is converted to double.
	8.1.2���Class Modifiers

	8.3���Field Declarations
	8.4.1���Formal Parameters
	8.4.3���Method Modifiers
	8.4.6.1���Overriding (By Instance Methods)

	8.6.3���Constructor Modifiers
	9.1.2���Interface Modifiers

	9.4���Abstract Method Declarations
	Chapter 10
	14.3.1���Local Variable Declarators and Types
	int a;
	float[][][][] f;

	14.15���The return Statement
	15.1���Evaluation, Denotation, and Result
	• A variable (§4.5) (in C, this would be called an lvalue)

	15.2���Variables as Values
	15.7.1���Literals
	• The type of an integer literal that ends with L or l is long; the type of any other integer lit...
	15.7.3���Parenthesized Expressions
	15.11.4.5���Create Frame, Synchronize, Transfer Control

	15.13.2���Postfix Increment Operator ++
	15.13.3���Postfix Decrement Operator --
	15.14.1���Prefix Increment Operator ++
	15.14.2���Prefix Decrement Operator --
	15.14.4���Unary Minus Operator -

	• If the operand is NaN, the result is NaN (recall that NaN has no sign).

	15.15���Cast Expressions
	15.16���Multiplicative Operators
	15.16.1���Multiplication Operator *
	• If either operand is NaN, the result is NaN.
	15.16.2���Division Operator /

	• If either operand is NaN, the result is NaN.
	15.17.2���Additive Operators (+ and -) for Numeric Types

	• If either operand is NaN, the result is NaN.
	15.19.1���Numerical Comparison Operators <, <=, >, and >=
	15.20.1���Numerical Equality Operators ==�and !=

	15.24���Conditional Operator ?�:
	• If the second and third operands have the same type (which may be the null type), then that is ...
	• Otherwise, if the second and third operands have numeric type, then there are several cases:
	15.25.1���Simple Assignment Operator =

	• First, the left-hand operand is evaluated to produce a variable. If this evaluation completes a...
	• First, the array reference subexpression of the left-hand operand array access expression is ev...
	15.25.2���Compound Assignment Operators
	short x = 3;
	short x = 3;

	• First, the left-hand operand is evaluated to produce a variable. If this evaluation completes a...
	• First, the array reference subexpression of the left-hand operand array access expression is ev...

	15.27���Constant Expression
	• Literals of primitive type and literals of type String

	15.28���FP-strict Expressions

