Updates to the JaVa
Language Specification for
JDK™ Release 1.2 Floating

Point

Changes and transformations every hour, every moment
—Walt Whitman,Visor'd (1860), inLeaves of Grass

T HIS DOCUMENT contains all the portions dfhe Java Language Specificatjon

first edition, that have been changed because of the introduction et thietfp
keyword. Lines containing changes are emphasized using change bars in the left-
hand margin. Lines not marked as containing changes are as they app€eHned in
Java Language Specificatipfirst edition, and may have themselves been modi-
fied or superseded by other updates. Sections are humbered as they dppear
Java Language Specificatiowhere material from a given section was not neces-
sary for context it has been omitted, and that omission represented by ellipsis (. . .).

3.9 Keywords

The following character sequences, formed from ASCII letters, are reserved for
use akeywordsand cannot be used as identifiers (83.8):

Updates to the Java™ Language Specification for JIDK™ Release 1.2 Floating Point

Keyword: one of

abstract default if private this
booTlean do implements protected throw
break doubTe import public throws
byte else instanceof return transient
case extends int short try

catch final interface static void

char finally Tong strictfp volatile
class float native super while
const for new switch

continue goto package synchronized

The keywordsonst andgoto are reserved by Java, even though they are not
currently used in Java. This may allow a Java compiler to produce better error
messages if these C++ keywords incorrectly appear in Java programs.

While true and false might appear to be keywords, they are technically
Boolean literals (83.10.3). Similarly, whileu11 might appear to be a keyword, it
is technically the null literal (83.10.7).

4.2.3 Floating-Point Types, Value Sets, and Values

The floating-point types ar€loat anddouble, which are conceptually associ-
ated with the 32-bit single-precision and 64-bit double-precision format IEEE 754
values and operations as specifiedlHEE Standard for Binary Floating-Point
Arithmetig ANSI/IEEE Standard 754-1985 (IEEE, New York).

The IEEE 754 standard includes not only positive and negative sign-magni-
tude numbers, but also positive and negative zeros, positive and negétiitees
and a speciaNot-a-Numbervalue (hereafter abbreviated as “NaN”). The NaN
value is used to represent the result of certain operations such as dividing zero by
zero. NaN constants of botfioat anddouble type are predefined &joat.NaN
(820.9.5) andouble.NaN (820.10.5).

Every implementation of the Java programming language is required to sup-
port two standard sets of floating-point values, calledfibat value seand the
double value setln addition, an implementation of the Java programming lan-
guage may, at its option, support either or both of two extended-exponent floating-
point value sets, called thitoat-extended-exponent value satd thedouble-
extended-exponent value sEhese extended-exponent value sets may, under cer-
tain circumstances, be used instead of the standard value sets to represent the val-
ues of expressions of tyg@oat or double (85.1.8, §15.28).

The finite nonzero values of any floating-point value set can all be expressed
in the formsOmR(e-N+1) 'wheresis +1 or —1,mis a positive integer less than

Updates to the Java™ Language Specification for JDK™ Release 1.2 Floating Point

2N ande is an integer betweeEmin = —(2K-1-2) anBmax= 2K-1-1 |
inclusive, and wher&l andK are parameters that depend on the value set. Some
values can be represented in this form in more than one way; for example, suppos-
ing that a valuey in a value set might be represented in this form using certain val-
ues fors, m, ande, then if it happened thah were even ane were less than
2K-1one could halven and increase by 1 to produce a second representation
for the same values. A representation in this form is calledormalizedif
m=2(N-1): otherwise the representation is said todemormalizedIf a value in
a value set cannot be represented in such a wayntkza(N -1) , then the value is
said to be alenormalized valyéecause it has no normalized representation.

The constraints on the paramet&tsand K (and on the derived parameters
Emin and Emay for the two required and two optional floating-point value sets
are summarized in Table 4.1.

Parameter | float float extended-|double | double extended-
exponent exponent

N 24 24 53 53

K 8 >11 11 >15

Emax +127 > +1023 +1023 >+16383

Emin -126 <-1022 -1022 <-16382

Table 4.1 Floating-point value set parameters

Where one or both extended-exponent value sets are supported by an imple-
mentation, then for each supported extended-exponent value set there is a specific
implementation-dependent const#jtwhose value is constrained by Table 4.1;
this valueK in turn dictates the values feBminandEmax

Each of the four value sets includes not only the finite nonzero values that are
ascribed to it above, but also the five values positive zero, negative zero, positive
infinity, negative infinity, and NaN.

Note that the constraints in Table 4.1 are designed so that every element of the
float value set is necessarily also an element of the float-extended-exponent value
set, the double value set, and the double-extended-exponent value set. Likewise,
each element of the double value set is necessarily also an element of the double-
extended-exponent value set. Each extended-exponent value set has a larger range
of exponent values than the corresponding standard value set, but does not have
more precision.

The elements of the float value set are exactly the values that can be repre-
sented using the single floating-point format defined in the IEEE 754 standard,
except that there is only one NaN value (IEEE 754 speciffés- 2 distinct NaN

Updates to the Java™ Language Specification for JIDK™ Release 1.2 Floating Point

values). The elements of the double value set are exactly the values that can be
represented using the double floating-point format defined in the IEEE 754 stan-
dard, except that there is only one NaN value (IEEE 754 spedifies? distinct
NaN values). Note, however, that the elements of the float-extended-exponent and
double-extended-exponent value sets defined herotimorrespond to the values

that be represented using IEEE 754 single extended and double extended formats,
respectively.

The float, float-extended-exponent, double, and double-extended-exponent
value sets are not types. It is always correct for an implementation of the Java lan-
guage to use an element of the float value set to represent a value dfltype
however, it may be permissible in certain regions of code for an implementation to
use an element of the float-extended-exponent value set instead. Similarly, it is
always correct for an implementation to use an element of the double value set to
represent a value of typeouble; however, it may be permissible in certain
regions of code for an implementation to use an element of the double-extended-
exponent value set instead.

Except for NaN, floating-point values aocedered arranged from smallest to
largest, they are negative infinity, negative finite nonzero values, positive and neg-
ative zero, positive finite nonzero values, and positive infinity.

Positive zero and negative zero compare equal; thus the result of the expres-
Sion 0.0==-0.0 is true and the result 09.0>-0.0 is false. But other opera-
tions can distinguish positive and negative zero; for exanple/0.0 has the
value positive infinity, while the value df.9/-0.0 is negative infinity. The oper-
ationsMath.min andMath.max also distinguish positive zero and negative zero.

NaN is unordered so the numerical comparison operaters=, >, and>=
returnfalse if either or both operands are NaN (815.19.1). The equality operator
== returnsfalse if either operand is NaN, and the inequality operatereturns
true if either operand is NaN (815.20.1). In particubat=x is true if and only if
x is NaN, and(x<y) == ! (x>=y) will be false if x ory is NaN.

Any value of a floating-point type may be cast to or from any numeric type.
There are no casts between floating-point types and thédygpean.

Chapter 5

In every conversion context, only certain specific conversions are permitted.
The specific conversions that are possible in Java are grouped for convenience of
description into several broad categories:

Updates to the Java™ Language Specification for JDK™ Release 1.2 Floating Point

* Identity conversions

» Widening primitive conversions

* Narrowing primitive conversions

» Widening reference conversions
» Narrowing reference conversions
 String conversions

» Value set conversions

There are fiveconversion contexts which conversion of Java expressions
may occur. Each context allows conversions in some of the categories named
above but not others. The term “conversion” is also used to describe the process of
choosing a specific conversion for such a context. For example, we say that an
expression that is an actual argument in a method invocation is subject to “method
invocation conversion,” meaning that a specific conversion will be implicitly cho-
sen for that expression according to the rules for the method invocation argument
context.

One conversion context is the operand of a numeric operator suclo@s.

The conversion process for such operands is callgderic promotionPromotion
is special in that, in the case of binary operators, the conversion chosen for one
operand may depend in part on the type of the other operand expression.

This chapter first describes the seven categories of conversions (85.1), includ-
ing value set conversions and the special conversiossitong allowed for the
string concatenation operatarThen the five conversion contexts are described:

» Assignment conversion (85.2, §15.25) converts the type of an expression to
the type of a specified variable. The conversions permitted for assignment are
limited in such a way that assignment conversion never causes an exception.

» Method invocation conversion (85.3, 815.8, §15.11) is applied to each argu-
ment in a method or constructor invocation and, except in one case, performs
the same conversions that assignment conversion does. Method invocation
conversion never causes an exception.

» Casting conversion (85.4) converts the type of an expression to a type explic-
itly specified by a cast operator (§15.15). It is more inclusive than assignment
or method invocation conversion, allowing any specific conversion other than
a string conversion, but certain casts to a reference type may cause an excep-
tion at run time.

Updates to the Java™ Language Specification for JIDK™ Release 1.2 Floating Point

 String conversion (85.4, 815.17.1) allows any type to be converted to type
String.

* Numeric promotion (85.6) brings the operands of a numeric operator to a
common type so that an operation can be performed.

5.1 Kinds of Conversion

Specific type conversions in Java are divided into seven categories.

5.1.8 Value Set Conversion

Value set conversiors the process of mapping a floating-point value from one
value set to another without changing its type.

Within an expression that is not FP-strict (815.28), value set conversion pro-
vides choices to an implementation of the Java language:

« If the value is an element of the float-extended-exponent value set, then the
implementation may, at its option, map the value to the nearest element of the
float value set. This conversion may result in overflow (in which case the
value is replaced by an infinity of the same sign) or underflow (in which case
the value may lose precision because it is replaced by a denormalized number
or zero of the same sign).

« If the value is an element of the double-extended-exponent value set, then the
implementation may, at its option, map the value to the nearest element of the
double value set. This conversion may result in overflow (in which case the
value is replaced by an infinity of the same sign) or underflow (in which case
the value may lose precision because it is replaced by a denormalized number
or zero of the same sign).

Within an FP-strict expression (815.28), value set conversion does not provide
any choices; every implementation must behave in the same way:

Updates to the Java™ Language Specification for JDK™ Release 1.2 Floating Point

« If the value is of typefloat and is not an element of the float value set, then
the implementation must map the value to the nearest element of the float
value set. This conversion may result in overflow or underflow.

* If the value is of typedouble and is not an element of the double value set,
then the implementation must map the value to the nearest element of the dou-
ble value set. This conversion may result in overflow or underflow.

Within an FP-strict expression, mapping values from the float-extended-exponent
value set or double-extended-exponent value set is necessary only when a method
is invoked whose declaration is not FP-strict and the implementation has chosen
to represent the result of the method invocation as an element of an extended-
exponent value set.

Whether in FP-strict code or code that is not FP-strict, value set conversion
always leaves unchanged any value whose type is néitbet nordouble.

5.2 Assignment Conversion

Assignment conversionccurs when the value of an expression is assigned
(815.25) to a variable: the type of the expression must be converted to the type of
the variable. Assignment contexts allow the use of an identity conversion (85.1.1),
a widening primitive conversion (85.1.2), or a widening reference conversion
(85.1.4). In addition, a narrowing primitive conversion may be used if all of the
following conditions are satisfied:

» The expression is a constant expression of tyje
» The type of the variable ls/te, short, orchar.

» The value of the expression (which is known at compile time, because it is a
constant expression) is representable in the type of the variable.

If the type of the expression cannot be converted to the type of the variable by a
conversion permitted in an assignment context, then a compile-time error occurs.
If the type of the variable i$1oat or double, then value set conversion is

applied after the type conversion:

« If the value is of typefToat and is an element of the float-extended-exponent
value set, then the implementation must map the value to the nearest element
of the float value set. This conversion may result in overflow or underflow.

* If the value is of typedouble and is an element of the double-extended-expo-
nent value set, then the implementation must map the value to the nearest ele-

Updates to the Java™ Language Specification for JIDK™ Release 1.2 Floating Point

ment of the double value set. This conversion may result in overflow or
underflow.

If the type of an expression can be converted to the type a variable by assign-
ment conversion, we say the expression (or its valuayssgnable tdhe variable
or, equivalently, that the type of the expressioassignment compatible withe
type of the variable.

5.3 Method Invocation Conversion

Method invocation conversiois applied to each argument value in a method or
constructor invocation (815.8, 815.11): the type of the argument expression must
be converted to the type of the corresponding parameter. Method invocation con-
texts allow the use of an identity conversion (85.1.1), a widening primitive conver-
sion (85.1.2), or a widening reference conversion (85.1.4).

If the type of an argument expression is eitlfi@bat or double, then value
set conversion (85.1.8) is applied after the type conversion:

« If an argument value of typ€loat is an element of the float-extended-expo-
nent value set, then the implementation must map the value to the nearest ele-
ment of the float value set. This conversion may result in overflow or
underflow.

 If an argument value of typdouble is an element of the double-extended-
exponent value set, then the implementation must map the value to the nearest
element of the double value set. This conversion may result in overflow or
underflow.

5.5 Casting Conversion

Sing away sorrow, cast away care.

—Miguel de Cervantes (1547-1616),
Don Quixote(Lockhart's translation), Chapter viii

Casting conversiois applied to the operand of a cast operator (§15.15): the type
of the operand expression must be converted to the type explicitly named by the
cast operator. Casting contexts allow the use of an identity conversion (85.1.1), a

Updates to the Java™ Language Specification for JDK™ Release 1.2 Floating Point

widening primitive conversion (85.1.2), a narrowing primitive conversion
(85.1.3), a widening reference conversion (85.1.4), or a narrowing reference con-
version (85.1.5). Thus casting conversions are more inclusive than assignment or
method invocation conversions: a cast can do any permitted conversion other than
a string conversion.

Value set conversion (85.1.8) is applied after the type conversion.

Some casts can be proven incorrect at compile time; such casts result in a
compile-time error.

5.6.1 Unary Numeric Promotion

Some operators applynary numeric promotioto a single operand, which must
produce a value of a numeric type:

* If the operand is of compile-time tygeyte, short, or char, unary numeric
promotion promotes it to a value of typnt by a widening conversion
(85.1.2).

» Otherwise, a unary numeric operand remains as is and is not converted.

In either case, value set conversion (85.1.8) is then applied.

5.6.2 Binary Numeric Promotion

When an operator appliésnary numeric promotioto a pair of operands, each of
which must denote a value of a numeric type, the following rules apply, in order,
using widening conversion (85.1.2) to convert operands as necessary:

* If either operand is of typdouble, the other is converted touble.

» Otherwise, if either operand is of tyg@oat, the other is converted tbl oat.
» Otherwise, if either operand is of typeng, the other is converted i@ng.

» Otherwise, both operands are converted to type

After the type conversion, if any, value set conversion (85.1.8) is then applied to
each operand.

10

Updates to the Java™ Language Specification for JIDK™ Release 1.2 Floating Point

8.1.2 Class Modifiers

A class declaration may includéass modifiers

ClassModifiers:
ClassModifier
ClassModifiers ClassModifier

ClassMadifier: one of
public abstract final strictfp

The access modifigrub1ic is discussed in 86.6. A compile-time error occurs if
the same modifier appears more than once in a class declaration. If two or more
class modifiers appear in a class declaration, then it is customary, though not
required, that they appear in the order consistent with that shown above in the pro-
duction forClassModifier

8.3 Field Declarations

Poetic fields encompass me around,
And still | seem to tread on classic ground.

—Joseph Addison (1672-171%9) Letter from Italy

The variables of a class type are introduceflddgl declarations

FieldDeclaration:
FieldModifierspt Type VariableDeclarators;

VariableDeclarators:
VariableDeclarator
VariableDeclarators, VariableDeclarator

VariableDeclarator:
VariableDeclaratorld
VariableDeclaratorld = Variablelnitializer

VariableDeclaratorld:
Identifier
VariableDeclaratorld []

Variablelnitializer:
Expression
Arraylnitializer

Updates to the Java™ Language Specification for JDK™ Release 1.2 Floating Point

The FieldModifiersare described in §8.3.1. THdentifier in a FieldDeclarator

may be used in a name to refer to the field. The name of a field has as its scope
(86.3) the entire body of the class declaration in which it is declared. More than
one field may be declared in a single field declaration by using more than one
declarator; thé-ieldModifiersand Typeapply to all the declarators in the declara-
tion. Variable declarations involving array types are discussed in §10.2.

It is a compile-time error for the body of a class declaration to contain decla-
rations of two fields with the same name. Methods and fields may have the same
name, since they are used in different contexts and are disambiguated by the dif-
ferent lookup procedures (86.5).

If the class declares a field with a certain name, then the declaration of that
field is said tohide (86.3.1) any and all accessible declarations of fields with the
same name in the superclasses and superinterfaces of the class.

If a field declaration hides the declaration of another field, the two fields need
not have the same type.

A class inherits from its direct superclass and direct superinterfaces all the
fields of the superclass and superinterfaces that are both accessible to code in the
class and not hidden by a declaration in the class.

It is possible for a class to inherit more than one field with the same name
(88.3.3.3). Such a situation does not in itself cause a compile-time error. However,
any attempt within the body of the class to refer to any such field by its simple
name will result in a compile-time error, because such a reference is ambiguous.

There might be several paths by which the same field declaration might be
inherited from an interface. In such a situation, the field is considered to be inher-
ited only once, and it may be referred to by its simple name without ambiguity.

A hidden field can be accessed by using a qualified name (ifsitasic) or
by using a field access expression (815.10) that contains the keywpsd or a
cast to a superclass type. See §15.10.2 for discussion and an example.

A value stored in a field of typ€loat is always an element of the float value
set (84.2.3); similarly, a value stored in a field of typeuble is always an ele-
ment of the double value set. It is not permitted for a field of tfpeat to contain
an element of the float-extended-exponent value set that is not also an element of
the float value set, nor for a field of typleuble to contain an element of the dou-
ble-extended-exponent value set that is not also an element of the double value
set.

8.4.1 Formal Parameters

Theformal parameter®f a method, if any, are specified by a list of comma-sepa-
rated parameter specifiers. Each parameter specifier consists of a type and an iden-
tifier (optionally followed by brackets) that specifies the name of the parameter:

11

12

Updates to the Java™ Language Specification for JIDK™ Release 1.2 Floating Point

FormalParameterList:
FormalParameter
FormalParameterList, FormalParameter

FormalParameter:
Type VariableDeclaratorld

The following is repeated from 88.3 to make the presentation here clearer:

VariableDeclaratorld:
Identifier
VariableDeclaratorld []

If a method has no parameters, only an empty pair of parentheses appears in
the method'’s declaration.

If two formal parameters are declared to have the same name (that is, their
declarations mention the sandentifien, then a compile-time error occurs.

When the method is invoked (815.11), the values of the actual argument
expressions initialize newly created parameter variables, each of the declared
Type,before execution of the body of the method. TiHentifier that appears in
theDeclaratorldmay be used as a simple name in the body of the method to refer
to the formal parameter.

The scope of formal parameter names is the entire body of the method. These
parameter names may not be redeclared as local variables or exception parameters
within the method; that is, hiding the name of a parameter is not permitted.

Formal parameters are referred to only using simple names, never by using
qualified names (86.6).

A method parameter of typ&loat always contains an element of the float
value set (84.2.3); similarly, a method parameter of typeb1e always contains
an element of the double value set. It is not permitted for a method parameter of
type float to contain an element of the float-extended-exponent value set that is
not also an element of the float value set, nor for a method parameter afdype
ble to contain an element of the double-extended-exponent value set that is not
also an element of the double value set.

Where an actual argument expression corresponding to a parameter variable is
not FP-strict (815.28), evaluation of that actual argument expression is permitted
to use intermediate values drawn from the appropriate extended-exponent value
sets. Prior to being stored in the parameter variable the result of such an expres-
sion is mapped to the nearest value in the corresponding standard value set by
method invocation conversion (85.3).

Updates to the Java™ Language Specification for JDK™ Release 1.2 Floating Point

8.4.3 Method Modifiers

MethodModifiers:
MethodModifier
MethodModifiers MethodModifier

MethodModifier: one of
public protected private abstract static
final synchronized native strictfp

The access modifiensublic, protected, andprivate are discussed in §6.6.
A compile-time error occurs if the same modifier appears more than once in a
method declaration, or if a method declaration has more than one of the access
modifierspublic, protected, andprivate. A compile-time error occurs if a
method declaration that contains the keywabdtract also contains any one of
the keywordgrivate, static, final, native, strictfp, or synchronized. A
compile-time error occurs if a method declaration that contains the keyword
native also containstrictfp.

If two or more method modifiers appear in a method declaration, it is custom-
ary, though not required, that they appear in the order consistent with that shown
above in the production fdriethodModifier

8.4.6.1 Overriding (By Instance Methods)

If a class declares an instance method, then the declaration of that method is said
to overrideany and all methods with the same signature in the superclasses and
superinterfaces of the class that would otherwise be accessible to code in the class.
Moreover, if the method declared in the class is alsdtract, then the declara-

tion of that method is said tomplementany and all declarations afbstract
methods with the same signature in the superclasses and superinterfaces of the
class that would otherwise be accessible to code in the class.

A compile-time error occurs if an instance method overridestatic
method. In this respect, overriding of methods differs from hiding of fields (88.3),
for it is permissible for an instance variable to hideatic variable.

An overridden method can be accessed by using a method invocation expres-
sion (815.11) that contains the keywasdper. Note that a qualified name or a
cast to a superclass type is not effective in attempting to access an overridden
method; in this respect, overriding of methods differs from hiding of fields. See
§15.11.4.10 for discussion and examples of this point.

The presence or absence of thari ctfp modifier has absolutely no effect on
the rules for overriding methods and implementing abstract methods. For exam-
ple, it is permitted for a method that is not FP-strict to override an FP-strict

13

14

Updates to the Java™ Language Specification for JIDK™ Release 1.2 Floating Point

method and it is permitted for an FP-strict method to override a method that is not
FP-strict.

8.6.3 Constructor Modifiers

ConstructorModifiers:
ConstructorModifier
ConstructorModifiers ConstructorModifier

ConstructorModifier: one of
public protected private

The access modifiensub1ic, protected, andprivate are discussed in §6.6.

A compile-time error occurs if the same modifier appears more than once in a
constructor declaration, or if a constructor declaration has more than one of the
access modifiensubl1ic, protected, andprivate.

Unlike methods, a constructor cannotdisstract, static, final, native,
or synchronized. A constructor is not inherited, so there is no need to declare it
final and ambstract constructor could never be implemented. A constructor is
always invoked with respect to an object, so it makes no sense for a constructor to
be static. There is no practical need for a constructor tody@chronized,
because it would lock the object under construction, which is normally not made
available to other threads until all constructors for the object have completed their
work. The lack ofnative constructors is an arbitrary language design choice that
makes it easy for an implementation of the Java Virtual Machine to verify that
superclass constructors are always properly invoked during object creation.

A ConstructorModifiermaynotbestrictfp. A compile-time error occurs if
strictfp appears as a constructor modifier. This difference in the definitions for
ConstructorModifierand MethodModifier (§88.4.3) is an intentional language
design choice; it effectively ensures that a constructor is FP-strict if and only if its
class is FP-strict, so to speak.

9.1.2 Interface Modifiers

An interface declaration may be precedednbgrface modifiers

InterfaceModifiers:
InterfaceModifier
InterfaceModifiers InterfaceModifier

InterfaceModifier: one of
public abstract strictfp

Updates to the Java™ Language Specification for JDK™ Release 1.2 Floating Point

The access modifigrub1ic is discussed in 86.6. A compile-time error occurs if
the same modifier appears more than once in an interface declaration.

9.4 Abstract Method Declarations

AbstractMethodDeclaration:
AbstractMethodModifieept ResultType MethodDeclarator Throws ;

AbstractMethodModifiers:
AbstractMethodModifier
AbstractMethodModifiers AbstractMethodModifier

AbstractMethodModifier: one of
public abstract

The access modifigrubTic is discussed in 86.6. A compile-time error occurs if
the same modifier appears more than once in an abstract method declaration.

Every method declaration in the body of an interface is implicithgtract,
so its body is always represented by a semicolon, not a block. For compatibility
with older versions of Java, it is permitted but discouraged, as a matter of style, to
redundantly specify thebstract modifier for methods declared in interfaces.

Every method declaration in the body of an interface is impligitiT1ic. It
is permitted, but strongly discouraged as a matter of style, to redundantly specify
thepub1ic modifier for interface methods.

Note that a method declared in an interface must not be dedlarad c, or a
compile-time error occurs, because in Jawatic methods cannot bebstract.

Note that a method declared in an interface must not be dectaredttfp
ofr native or synchronized, or a compile-time error occurs, because those key-
words describe implementation properties rather than interface properties. How-
ever, a method declared in an interface may be implemented by a method that is
declaredstrictfp or native or synchronized in a class that implements the
interface.

Note that a method declared in an interface must not be decfdred or a
compile-time error occurs. However, a method declared in an interface may be
implemented by a method that is declarichal in a class that implements the
interface.

Chapter 10

15

16

Updates to the Java™ Language Specification for JIDK™ Release 1.2 Floating Point

All the components of an array have the same type, calleddh@onent type
of the array. If the component type of an arrayjshen the type of the array itself
is writtenT[].

An array component of typ€loat is always an element of the float value set
(84.2.3); similarly, an array component of tygeuble is always an element of
the double value set. It is not permitted for an array component of iypet to
be an element of the float-extended-exponent value set that is not also an element
of the float value set, nor for an array component of typeb1e to be an element
of the double-extended-exponent value set that is not also an element of the dou-
ble value set.

14.3.1 Local Variable Declarators and Types

Eachdeclaratorin a local variable declaration declares one local variable, whose
name is thédentifierthat appears in the declarator.

The type of the variable is denoted by thgpethat appears at the start of the
local variable declaration, followed by any bracket pairs that followl ttemtifier
in the declarator. Thus, the local variable declaration:

int a, b[], c[I[];
is equivalent to the series of declarations:

int a;

int[] b;

int[][] c;
Brackets are allowed in declarators as a nod to the tradition of C and C++. The
general rule, however, also means that the local variable declaration:

float[1[1 fLI[1, g[1[1[1, h[]; // Yechh!
is equivalent to the series of declarations:

float[J[1[1[] F;

float[J[1L1[1[] g;

float[I[1[1 h;
We do not recommend such “mixed notation” for array declarations.

A local variable of typefloat always contains a value that is an element of
the float value set (84.2.3); similarly, a local variable of tyjoeble always con-
tains a value that is an element of the double value set. It is not permitted for a
local variable of typefloat to contain an element of the float-extended-exponent
value set that is not also an element of the float value set, nor for a local variable of

Updates to the Java™ Language Specification for JDK™ Release 1.2 Floating Point

typedouble to contain an element of the double-extended-exponent value set that
is not also an element of the double value set.

14.15 Thereturn Statement

A return statement returns control to the invoker of a method (88.4, §15.11) or
constructor (88.6, §15.8).

ReturnStatement:
return Expressionpt ;

A return statement with ndxpressiormust be contained in the body of a
method that is declared, using the keyweed d, not to return any value (88.4), or
in the body of a constructor (88.6). A compile-time error occursriéurn state-
ment appears within a static initializer (88.5). #eturn statement with no
Expressiorattempts to transfer control to the invoker of the method or constructor
that contains it. To be precise,r@turn statement with ndExpressionalways
completes abruptly, the reason being:aurn with no value.

A return statement with aExpressiormust be contained in a method decla-
ration that is declared to return a value (88.4) or a compile-time error occurs. The
Expressionmust denote a variable or value of some typeor a compile-time
error occurs. The typ& must be assignable (85.2) to the declared result type of
the method, or a compile-time error occurs.

A return statement with arkExpressionattempts to transfer control to the
invoker of the method that contains it; the value of teressiorbecomes the
value of the method invocation. More precisely, execution of sucktarn state-
ment first evaluates thiexpressionlf the evaluation of th&xpressiorcompletes
abruptly for some reason, then theturn statement completes abruptly for that
reason. If evaluation of thExpressiorcompletes normally, producing a valug
then thereturn statement completes abruptly, the reason beimgtarn with
value V. (If the expression is of typ€loat and is not FP-strict (§15.28), then the
value may be an element of either the float value set or the float-extended-expo-
nent value set (84.2.3). If the expression is of tge@ble and is not FP-strict,
then the value may be an element of either the double value set or the double-
extended-exponent value set.)

It can be seen, then, thateturn statement always completes abruptly.

The preceding descriptions say “attempts to transfer control” rather than just
“transfers control” because if there are atwy statements (814.18) within the
method or constructor whosgy blocks contain theeturn statement, then any
finally clauses of thosery statements will be executed, in order, innermost to
outermost, before control is transferred to the invoker of the method or construc-

17

18

Updates to the Java™ Language Specification for JIDK™ Release 1.2 Floating Point

tor. Abrupt completion of &inally clause can disrupt the transfer of control ini-
tiated by areturn statement.

15.1 Evaluation, Denotation, and Result

When an expression in a Java programyaluatedexecutell theresultdenotes
one of three things:

» Avariable (84.5) (in C, this would be calledlaalue)
* Avalue (84.2, 84.3)
» Nothing (the expression is said to\aei d)

Evaluation of an expression can also produce side effects, because expres-
sions may contain embedded assignments, increment operators, decrement opera-
tors, and method invocations.

An expression denotes nothing if and only if it is a method invocation
(815.11) that invokes a method that does not return a value, that is, a method
declaredvoid (88.4). Such an expression can be used only as an expression state-
ment (814.7), because every other context in which an expression can appear
requires the expression to denote something. An expression statement that is a
method invocation may also invoke a method that produces a result; in this case
the value returned by the method is quietly discarded.

Value set conversion (85.1.8) is applied to the result of every expression that
produces a value.

Each expression occurs in the declaration of some (class or interface) type
that is being declared: in a field initializer, in a static initializer, in a constructor
declaration, or in the code for a method.

15.2 Variables as Values

If an expression denotes a variable, and a value is required for use in further eval-
uation, then the value of that variable is used. In this context, if the expression
denotes a variable or a value, we may speak simply ovéheeof the expression.

If the value of a variable of typ€loat or double is used in this manner, then
value set conversion (85.1.8) is applied to the value of the variable.

15.7.1 Literals

A literal (83.10) denotes a fixed, unchanging value.

Updates to the Java™ Language Specification for JDK™ Release 1.2 Floating Point

The following production from §3.10 is repeated here for convenience:

Literal:
IntegerLiteral
FloatingPointLiteral
BooleanLiteral
CharacterLiteral
StringLiteral
NullLiteral

The type of a literal is determined as follows:

* The type of an integer literal that ends withor 1 is Tong; the type of any
other integer literal i$nt.

» The type of a floating-point literal that ends withor f is float and its value
must be an element of the float value set (84.2.3). The type of any other float-
ing-point literal isdouble and its value must be an element of the double
value set.

* The type of a boolean literal i®o1ean.
* The type of a character literaldgar.
» The type of a string literal String.

» The type of the null literahu11 is the null type; its value is the null reference.

Evaluation of a literal always completes normally.

15.7.3 Parenthesized Expressions

A parenthesized expression is a primary expression whose type is the type of the
contained expression and whose value at run time is the value of the contained
expression.

Parentheses do not affect in any way the choice of value set (84.2.3) for the
value of an expression of tyff@oat or double.

15.11.4.5 Create Frame, Synchronize, Transfer Control

A methodm in some class has been identified as the one to be invoked.

Now a newactivation framds created, containing the target reference (if any)
and the argument values (if any), as well as enough space for the local variables
and stack for the method to be invoked and any other bookkeeping information
that may be required by the implementation (stack pointer, program counter, refer-

19

20

Updates to the Java™ Language Specification for JIDK™ Release 1.2 Floating Point

ence to previous activation frame, and the like). If there is not sufficient memory
available to create such an activation frame&)wt®fMemoryError is thrown.

The newly created activation frame becomes the current activation frame. The
effect of this is to assign the argument values to corresponding freshly created
parameter variables of the method, and to make the target reference available as
this, if there is a target reference. Before each argument value is assigned to its
corresponding parameter variable, it is subjected to method invocation conversion
(85.3), which includes any required value set conversion (85.1.8).

15.13.2 Postfix Increment Operatok+

PostincrementExpression:
PostfixExpression-+

A postfix expression followed by &+ operator is a postfix increment expres-
sion. The result of the postfix expression must be a variable of a numeric type, or a
compile-time error occurs. The type of the postfix increment expression is the
type of the variable. The result of the postfix increment expression is not a vari-
able, but a value.

At run time, if evaluation of the operand expression completes abruptly, then
the postfix increment expression completes abruptly for the same reason and no
incrementation occurs. Otherwise, the vallis added to the value of the variable
and the sum is stored back into the variable. Before the addition, binary numeric
promotion (85.6.2) is performed on the valuand the value of the variable. If
necessary, the sum is narrowed by a narrowing primitive conversion (85.1.3) to
the type of the variable before it is stored. The value of the postfix increment
expression is the value of the variabkforethe new value is stored.

Note that the binary numeric promotion mentioned above may include value
set conversion (85.1.8). If necessary, value set conversion is applied to the sum
prior to its being stored in the variable.

A variable that is declareflinal cannot be incremented, because when an
access of &inal variable is used as an expression, the result is a value, not a
variable. Thus, it cannot be used as the operand of a postfix increment operator.

15.13.3 Postfix Decrement Operatos -

PostDecrementExpression:
PostfixExpression--

A postfix expression followed by a- operator is a postfix decrement expres-
sion. The result of the postfix expression must be a variable of a numeric type, or a

Updates to the Java™ Language Specification for JDK™ Release 1.2 Floating Point

compile-time error occurs. The type of the postfix decrement expression is the
type of the variable. The result of the postfix decrement expression is not a vari-
able, but a value.

At run time, if evaluation of the operand expression completes abruptly, then
the postfix decrement expression completes abruptly for the same reason and no
decrementation occurs. Otherwise, the value subtracted from the value of the
variable and the difference is stored back into the variable. Before the subtraction,
binary numeric promotion (85.6.2) is performed on the valuend the value of
the variable. If necessary, the difference is narrowed by a narrowing primitive con-
version (85.1.3) to the type of the variable before it is stored. The value of the
postfix decrement expression is the value of the varibbferethe new value is
stored.

Note that the binary numeric promotion mentioned above may include value
set conversion (85.1.8). If necessary, value set conversion is applied to the differ-
ence prior to its being stored in the variable.

A variable that is declaredliinal cannot be decremented, because when an
access of &inal variable is used as an expression, the result is a value, not a
variable. Thus, it cannot be used as the operand of a postfix decrement operator.

15.14.1 Prefix Increment Operator++

A unary expression preceded by-a operator is a prefix increment expression.
The result of the unary expression must be a variable of a numeric type, or a com-
pile-time error occurs. The type of the prefix increment expression is the type of
the variable. The result of the prefix increment expression is not a variable, but a
value.

At run time, if evaluation of the operand expression completes abruptly, then
the prefix increment expression completes abruptly for the same reason and no
incrementation occurs. Otherwise, the valuis added to the value of the variable
and the sum is stored back into the variable. Before the addition, binary numeric
promotion (85.6.2) is performed on the valueand the value of the variable. If
necessary, the sum is narrowed by a narrowing primitive conversion (85.1.3) to
the type of the variable before it is stored. The value of the prefix increment
expression is the value of the variabfterthe new value is stored.

Note that the binary numeric promotion mentioned above may include value
set conversion (85.1.8). If necessary, value set conversion is applied to the sum
prior to its being stored in the variable.

A variable that is declaredlinal cannot be incremented, because when an
access of &inal variable is used as an expression, the result is a value, not a
variable. Thus, it cannot be used as the operand of a prefix increment operator.

21

22

Updates to the Java™ Language Specification for JIDK™ Release 1.2 Floating Point

15.14.2 Prefix Decrement Operator-

He must increase, but | must decrease.
—John 3:30

A unary expression preceded by-a operator is a prefix decrement expression.
The result of the unary expression must be a variable of a numeric type, or a com-
pile-time error occurs. The type of the prefix decrement expression is the type of
the variable. The result of the prefix decrement expression is not a variable, but a
value.

At run time, if evaluation of the operand expression completes abruptly, then
the prefix decrement expression completes abruptly for the same reason and no
decrementation occurs. Otherwise, the valug subtracted from the value of the
variable and the difference is stored back into the variable. Before the subtraction,
binary numeric promotion (85.6.2) is performed on the valuend the value of
the variable. If necessary, the difference is narrowed by a narrowing primitive con-
version (85.1.3) to the type of the variable before it is stored. The value of the pre-
fix decrement expression is the value of the variafter the new value is stored.

Note that the binary numeric promotion mentioned above may include value
set conversion (85.1.8). If necessary, value set conversion is applied to the differ-
ence prior to its being stored in the variable.

A variable that is declareflinal cannot be decremented, because when an
access of &inal variable is used as an expression, the result is a value, not a
variable. Thus, it cannot be used as the operand of a prefix decrement operator.

15.14.4 Unary Minus Operator-

It is so very agreeable to hear a voice and to see all the signs of that expression.
—Gertrude SteinRoomg1914), inTender Buttons

The type of the operand expression of the unagperator must be a primitive
numeric type, or a compile-time error occurs. Unary numeric promotion (85.6.1)
is performed on the operand. The type of the unary minus expression is the pro-
moted type of the operand.

Note that unary numeric promotion performs value set conversion (85.1.8).
Whatever value set the promoted operand value is drawn from, the unary negation
operation is carried out and the result is drawn from that same value set. That
result is then subject to further value set conversion.

At run time, the value of the unary plus expression is the arithmetic negation
of the promoted value of the operand.

Updates to the Java™ Language Specification for JDK™ Release 1.2 Floating Point

For integer values, negation is the same as subtraction from zero. Java uses
two’s-complement representation for integers, and the range of two’s-complement
values is not symmetric, so negation of the maximum negativeor Tong results
in that same maximum negative number. Overflow occurs in this case, but no
exception is thrown. For all integer values-x equals(~x) +1.

For floating-point values, negation is not the same as subtraction from zero,
because ik is +0.0, then0.0-x equals+0.0, but -x equals-0.0. Unary minus
merely inverts the sign of a floating-point number. Special cases of interest:

* If the operand is NaN, the result is NaN (recall that NaN has no sign).
* If the operand is an infinity, the result is the infinity of opposite sign.

* If the operand is a zero, the result is the zero of opposite sign.

15.15 Cast Expressions

My days among the dead are passed,;
Around me | behold,

Where’er these casual eyes are cast,
The mighty minds of old . . .

—Robert Southey (1774-1843),
Occasional Piecexviii

A cast expression converts, at run time, a value of one numeric type to a similar
value of another numeric type; or confirms, at compile time, that the type of an
expression idoolean; or checks, at run time, that a reference value refers to an

object whose class is compatible with a specified reference type.

CastExpression:
(PrimitiveType Dimé&pt) UnaryExpression
(ReferenceTyp® UnaryExpressionNotPlusMinus

See 815.14 for a discussion of the distinction betwgaaryExpressiorand
UnaryExpressionNotPlusMinus

The type of a cast expression is the type whose name appears within the
parentheses. (The parentheses and the type they contain are sometimes called the
cast operatal) The result of a cast expression is not a variable, but a value, even if
the result of the operand expression is a variable.

A cast operator has no effect on the choice of value set (§84.2.3) for a value of
type float or typedoubTle. Consequently, a cast to tyg@oat within an expres-
sion that is not FP-strict does not necessarily cause its value to be converted to an

23

24

Updates to the Java™ Language Specification for JIDK™ Release 1.2 Floating Point

element of the float value set, and a cast to meb1e within an expression that is
not FP-strict does not necessarily cause its value to be converted to an element of the
double value set.

At run time, the operand value is converted by casting conversion (85.4) to the
type specified by the cast operator.

15.16 Multiplicative Operators

The operatorg, /, and% are called themultiplicative operatorsThey have the
same precedence and are syntactically left-associative (they group left-to-right).

MultiplicativeExpression:
UnaryExpression
MultiplicativeExpression* UnaryExpression
MultiplicativeExpression/ UnaryExpression
MultiplicativeExpressiorgs UnaryExpression

The type of each of the operands of a multiplicative operator must be a primi-
tive numeric type, or a compile-time error occurs. Binary humeric promotion is
performed on the operands (85.6.2). The type of a multiplicative expression is the
promoted type of its operands. If this promoted typérs or Tong, then integer
arithmetic is performed,; if this promoted typefi3oat or double, then floating-
point arithmetic is performed.

Note that binary numeric promotion performs value set conversion (85.1.8).

15.16.1 Multiplication Operator *

The result of a floating-point multiplication is governed by the rules of IEEE
754 arithmetic:

If either operand is NaN, the result is NaN.

If the result is not NaN, the sign of the result is positive if both operands have
the same sign, and negative if the operands have different signs.

Multiplication of an infinity by a zero results in NaN.

Multiplication of an infinity by a finite value results in a signed infinity. The
sign is determined by the rule stated above.

Updates to the Java™ Language Specification for JDK™ Release 1.2 Floating Point

* In the remaining cases, where neither an infinity or NaN is involved, the exact
mathematical product is computed. A floating-point value set is then chosen:

o If the multiplication expression is FP-strict (815.28):

o If the type of the multiplication expression f3oat, then the float value
set must be chosen.

o If the type of the multiplication expression #uble, then the double
value set must be chosen.

o If the multiplication expression is not FP-strict:

o If the type of the multiplication expression fdoat, then the either the
float value set or the float-extended-exponent value set may be chosen, at
the whim of the implementation.

o If the type of the multiplication expressiondsuble, then the either the
double value set or the double-extended-exponent value set may be cho-
sen, at the whim of the implementation.

Next, a value must be chosen from the chosen value set to represent the prod-
uct. If the magnitude of the product is too large to represent, we say the oper-
ation overflows; the result is then an infinity of appropriate sign. Otherwise,
the product is rounded to the nearest value in the chosen value set using IEEE
754 round-to-nearest mode. The Java language requires support of gradual
underflow as defined by IEEE 754 (84.2.4).

Despite the fact that overflow, underflow, or loss of information may occur,
evaluation of a multiplication operat&rnever throws a run-time exception.

| 15.16.2 Division Operator/

The result of a floating-point division is determined by the specification of
IEEE arithmetic:

* If either operand is NaN, the result is NaN.

« If the result is not NaN, the sign of the result is positive if both operands have
the same sign, negative if the operands have different signs.

« Division of an infinity by an infinity results in NaN.

« Division of an infinity by a finite value results in a signed infinity. The sign is
determined by the rule stated above.

25

26

Updates to the Java™ Language Specification for JIDK™ Release 1.2 Floating Point

« Division of a finite value by an infinity results in a signed zero. The sign is
determined by the rule stated above.

« Division of a zero by a zero results in NaN; division of zero by any other finite
value results in a signed zero. The sign is determined by the rule stated above.

« Division of a nonzero finite value by a zero results in a signed infinity. The
sign is determined by the rule stated above.

« In the remaining cases, where neither an infinity or NaN is involved, the exact
mathematical quotient is computed. A floating-point value set is then chosen:

o If the division expression is FP-strict (§15.28):

o If the type of the division expression iloat, then the float value set
must be chosen.

o If the type of the division expression é®uble, then the double value set
must be chosen.

o If the division expression is not FP-strict:

o If the type of the division expression loat, then the either the float
value set or the float-extended-exponent value set may be chosen, at the
whim of the implementation.

o If the type of the division expressiondsuble, then the either the double
value set or the double-extended-exponent value set may be chosen, at the
whim of the implementation.

Next, a value must be chosen from the chosen value set to represent the quo-
tient. If the magnitude of the quotient is too large to represent, we say the
operation overflows; the result is then an infinity of appropriate sign. Other-
wise, the quotient is rounded to the nearest value in the chosen value set using
IEEE 754 round-to-nearest mode. The Java language requires support of grad-
ual underflow as defined by IEEE 754 (§84.2.4).

Despite the fact that overflow, underflow, division by zero, or loss of informa-
tion may occur, evaluation of a floating-point division operatanever throws a
run-time exception.

15.17.2 Additive Operators ¢ and -) for Numeric Types

The binary+ operator performs addition when applied to two operands of numeric
type, producing the sum of the operands. The biraoperator performs subtrac-
tion, producing the difference of two numeric operands.

Updates to the Java™ Language Specification for JDK™ Release 1.2 Floating Point

Binary numeric promotion is performed on the operands (85.6.2). The type of

an additive expression on numeric operands is the promoted type of its operands.
If this promoted type ignt or Tong, then integer arithmetic is performed,; if this
promoted type i$T1oat or double, then floating-point arithmetic is performed.

Note that binary numeric promotion performs value set conversion (85.1.8).
Addition is a commutative operation if the operand expressions have no side

effects. Integer addition is associative when the operands are all of the same type,
but floating-point addition is not associative.

If an integer addition overflows, then the result is the low-order bits of the

mathematical sum as represented in some sufficiently large two’s-complement
format. If overflow occurs, then the sign of the result is not the same as the sign of
the mathematical sum of the two operand values.

The result of a floating-point addition is determined using the following rules

of IEEE arithmetic:

If either operand is NaN, the result is NaN.

The sum of two infinities of opposite sign is NaN.

The sum of two infinities of the same sign is the infinity of that sign.

The sum of an infinity and a finite value is equal to the infinite operand.

The sum of two zeros of opposite sign is positive zero.

The sum of two zeros of the same sign is the zero of that sign.

The sum of a zero and a nonzero finite value is equal to the nonzero operand.

The sum of two nonzero finite values of the same magnitude and opposite
sign is positive zero.

In the remaining cases, where neither an infinity, nor a zero, nor NaN is
involved, and the operands have the same sign or have different magnitudes,
the exact mathematical sum is computed. A floating-point value set is then
chosen:

o If the addition expression is FP-strict (§15.28):

o If the type of the addition expression fdoat, then the float value set
must be chosen.

o If the type of the addition expressiondsuble, then the double value set
must be chosen.

o If the addition expression is not FP-strict:

27

28

Updates to the Java™ Language Specification for JIDK™ Release 1.2 Floating Point

o If the type of the addition expression fdoat, then the either the float
value set or the float-extended-exponent value set may be chosen, at the
whim of the implementation.

o If the type of the addition expressiondsubTe, then the either the double
value set or the double-extended-exponent value set may be chosen, at the
whim of the implementation.

Next, a value must be chosen from the chosen value set to represent the sum.
If the magnitude of the sum is too large to represent, we say the operation
overflows; the result is then an infinity of appropriate sign. Otherwise, the sum
is rounded to the nearest value in the chosen value set using IEEE 754 round-
to-nearest mode. The Java language requires support of gradual underflow as
defined by IEEE 754 (§4.2.4).

15.19.1 Numerical Comparison Operators, <=, >, and >=

The type of each of the operands of a numerical comparison operator must be a
primitive numeric type, or a compile-time error occurs. Binary numeric promotion
is performed on the operands (85.6.2). If the promoted type of the operahds is
or long, then signed integer comparison is performed; if this promoted type is
float ordouble, then floating-point comparison is performed.

Note that binary numeric promotion performs value set conversion (85.1.8).
Comparison is carried out accurately on floating-point values, no matter what
value sets their representing values were drawn from.

15.20.1 Numerical Equality Operators== and !=

If the operands of an equality operator are both of primitive numeric type, binary
numeric promotion is performed on the operands (85.6.2). If the promoted type of
the operands isnt or Tong, then an integer equality test is performed; if the pro-
moted type ifToat ordouble, then a floating-point equality test is performed.

Note that binary numeric promotion performs value set conversion (85.1.8).
Comparison is carried out accurately on floating-point values, no matter what
value sets their representing values were drawn from.

Updates to the Java™ Language Specification for JDK™ Release 1.2 Floating Point

15.24 Conditional Operator? :

The conditional operatcdr : uses the boolean value of one expression to decide
which of two other expressions should be evaluated.

The conditional operator is syntactically right-associative (it groups right-to-
left), so thata?b:c?d:e?f:g means the same agb: (c?d: (e?f:g)).

ConditionalExpression:
ConditionalOrExpression
ConditionalOrExpressior? Expression: ConditionalExpression

The conditional operator has three operand expressioagpears between
the first and second expressions, andppears between the second and third
expressions.

The first expression must be of tyjpe1ean, or a compile-time error occurs.

The conditional operator may be used to choose between second and third
operands of numeric type, or second and third operands ofbkygkean, or sec-
ond and third operands that are each of either reference type or the null type. All
other cases result in a compile-time error.

Note that it is not permitted for either the second or the third operand expres-
sion to be an invocation of @id method. In fact, it is not permitted for a condi-
tional expression to appear in any context where an invocationvoi é method
could appear (814.7).

The type of a conditional expression is determined as follows:

« If the second and third operands have the same type (which may be the null
type), then that is the type of the conditional expression.

» Otherwise, if the second and third operands have numeric type, then there are
several cases:

o If one of the operands is of tygsyte and the other is of typshort, then
the type of the conditional expressiorsi®rt.

o If one of the operands is of typewhereT is byte, short, or char, and the
other operand is a constant expression of tifpewhose value is represent-
able in typeT, then the type of the conditional expression.is

o Otherwise, binary numeric promotion (85.6.2) is applied to the operand
types, and the type of the conditional expression is the promoted type of the
second and third operands. Note that binary numeric promotion performs
value set conversion (85.1.8).

29

Updates to the Java™ Language Specification for JIDK™ Release 1.2 Floating Point

« If one of the second and third operands is of the null type and the type of the
other is a reference type, then the type of the conditional expression is that
reference type.

« If the second and third operands are of different reference types, then it must
be possible to convert one of the types to the other type (call this lattemype
by assignment conversion (85.2); the type of the conditional expressibn is
It is a compile-time error if neither type is assignment compatible with the
other type.

15.25.1 Simple Assignment Operatos

A compile-time error occurs if the type of the right-hand operand cannot be con-
verted to the type of the variable by assignment conversion (85.2).

At run time, the expression is evaluated in one of two ways. If the left-hand
operand expression is not an array access expression, then three steps are
required:

« First, the left-hand operand is evaluated to produce a variable. If this evalua-
tion completes abruptly, then the assignment expression completes abruptly
for the same reason; the right-hand operand is not evaluated and no assign-
ment occurs.

» Otherwise, the right-hand operand is evaluated. If this evaluation completes
abruptly, then the assignment expression completes abruptly for the same rea-
son and no assignment occurs.

« Otherwise, the value of the right-hand operand is converted to the type of the
left-hand variable, is subjected to value set conversion (85.1.8) to the appro-
priate standard value set (not an extended-exponent value set), and the result
of the conversion is stored into the variable.

If the left-hand operand expression is an array access expression (815.12), then
many steps are required:

« First, the array reference subexpression of the left-hand operand array access
expression is evaluated. If this evaluation completes abruptly, then the assign-
ment expression completes abruptly for the same reason; the index subexpres-
sion (of the left-hand operand array access expression) and the right-hand
operand are not evaluated and no assignment occurs.

» Otherwise, the index subexpression of the left-hand operand array access
expression is evaluated. If this evaluation completes abruptly, then the assign-

30

Updates to the Java™ Language Specification for JDK™ Release 1.2 Floating Point

ment expression completes abruptly for the same reason and the right-hand
operand is not evaluated and no assignment occurs.

Otherwise, the right-hand operand is evaluated. If this evaluation completes
abruptly, then the assignment expression completes abruptly for the same rea-
son and no assignment occurs.

Otherwise, if the value of the array reference subexpressioalis, then no
assignment occurs and\al1PointerException is thrown.

Otherwise, the value of the array reference subexpression indeed refers to an
array. If the value of the index subexpression is less than zero, or greater
than or equal to the length of the array, then no assignment occurs and an
IndexOutOfBoundsException is thrown.

Otherwise, the value of the index subexpression is used to select a component
of the array referred to by the value of the array reference subexpression. This
component is a variable; call its ty&. Also, let TC be the type of the left-

hand operand of the assignment operator as determined at compile time.

o If TCis a primitive type, thersC is necessarily the same as. The value of
the right-hand operand is converted to the type of the selected array compo-
nent, is subjected to value set conversion (85.1.8) to the appropriate stan-
dard value set (not an extended-exponent value set), and the result of the
conversion is stored into the array component.

o If T is a reference type, thesC may not be the same &sbut rather a type
that extends or implementX. Let RC be the class of the object referred to
by the value of the right-hand operand at run time.

The compiler may be able to prove at compile time that the array compo-
nent will be of typeTC exactly (for exampleTC might befinal). But if the
compiler cannot prove at compile time that the array component will be of
type TC exactly, then a check must be performed at run time to ensure that
the classkC is assignment compatible (85.2) with the actual tggeof the
array component. This check is similar to a narrowing cast (85.4, §15.15),
except that if the check fails, akrrayStoreException is thrown rather
than aClassCastException. Therefore:

o If classRC is not assignable to typ&C, then no assignment occurs and an
ArrayStoreException is thrown.

o Otherwise, the reference value of the right-hand operand is stored into the
selected array component.

31

Updates to the Java™ Language Specification for JIDK™ Release 1.2 Floating Point

15.25.2 Compound Assignment Operators

All compound assignment operators require both operands to be of primitive type,
except for+=, which allows the right-hand operand to be of any type if the left-
hand operand is of tyfetring.

A compound assignment expression of the fadfinop= E2 is equivalent to
E1=(T)((EL) op (E2)), whereT is the type ofE1, except that1 is evaluated
only once. Note that the implied cast to typanay be either an identity conver-
sion (85.1.1) or a narrowing primitive conversion (85.1.3). For example, the fol-
lowing code is correct:

short x = 3;
X += 4.6;

and results ix having the valu& because it is equivalent to:

short x = 3;
X = (short)(x + 4.6);

At run time, the expression is evaluated in one of two ways. If the left-hand
operand expression is not an array access expression, then four steps are required:

« First, the left-hand operand is evaluated to produce a variable. If this evalua-
tion completes abruptly, then the assignment expression completes abruptly
for the same reason; the right-hand operand is not evaluated and no assign-
ment occurs.

« Otherwise, the value of the left-hand operand is saved and then the right-hand
operand is evaluated. If this evaluation completes abruptly, then the assign-
ment expression completes abruptly for the same reason and no assignment
occurs.

» Otherwise, the saved value of the left-hand variable and the value of the right-
hand operand are used to perform the binary operation indicated by the com-
pound assignment operator. If this operation completes abruptly (the only
possibility is an integer division by zero—see §15.16.2), then the assignment
expression completes abruptly for the same reason and no assignment occurs.

» Otherwise, the result of the binary operation is converted to the type of the
left-hand variable, subjected to value set conversion (85.1.8) to the appropri-
ate standard value set (not an extended-exponent value set), and the result of
the conversion is stored into the variable.

If the left-hand operand expression is an array access expression (815.12), then
many steps are required:

Updates to the Java™ Language Specification for JDK™ Release 1.2 Floating Point

First, the array reference subexpression of the left-hand operand array access
expression is evaluated. If this evaluation completes abruptly, then the assign-
ment expression completes abruptly for the same reason; the index subexpres-
sion (of the left-hand operand array access expression) and the right-hand
operand are not evaluated and no assignment occurs.

Otherwise, the index subexpression of the left-hand operand array access
expression is evaluated. If this evaluation completes abruptly, then the assign-
ment expression completes abruptly for the same reason and the right-hand
operand is not evaluated and no assignment occurs.

Otherwise, if the value of the array reference subexpressioalis, then no
assignment occurs andal1PointerException is thrown.

Otherwise, the value of the array reference subexpression indeed refers to an
array. If the value of the index subexpression is less than zero, or greater
than or equal to the length of the array, then no assignment occurs and an
IndexOutOfBoundsException is thrown.

Otherwise, the value of the index subexpression is used to select a component
of the array referred to by the value of the array reference subexpression. The
value of this component is saved and then the right-hand operand is evaluated.
If this evaluation completes abruptly, then the assignment expression com-
pletes abruptly for the same reason and no assignment occurs. (For a simple
assignment operator, the evaluation of the right-hand operand occurs before
the checks of the array reference subexpression and the index subexpression,
but for a compound assignment operator, the evaluation of the right-hand
operand occurs after these checks.)

Otherwise, consider the array component selected in the previous step, whose
value was saved. This component is a variable; call its s/p&lso, let T be

the type of the left-hand operand of the assignment operator as determined at
compile time.

o If Tis a primitive type, thes is necessarily the same &s

o The saved value of the array component and the value of the right-hand
operand are used to perform the binary operation indicated by the com-
pound assignment operator. If this operation completes abruptly (the only
possibility is an integer division by zero—see §15.16.2), then the assign-
ment expression completes abruptly for the same reason and no assign-
ment occurs.

o Otherwise, the result of the binary operation is converted to the type of the
selected array component, subjected to value set conversion (85.1.8) to

33

34

Updates to the Java™ Language Specification for JIDK™ Release 1.2 Floating Point

the appropriate standard value set (not an extended-exponent value set),
and the result of the conversion is stored into the array component.

o If T is a reference type, then it must Bering. Because clasString is a
final class,S must also bestring. Therefore the run-time check that is
sometimes required for the simple assignment operator is never required for
a compound assignment operator.

o The saved value of the array component and the value of the right-hand
operand are used to perform the binary operation (string concatenation)
indicated by the compound assignment operator (which is necessarily
+=). If this operation completes abruptly, then the assignment expression
completes abruptly for the same reason and no assignment occurs.

o Otherwise, theString result of the binary operation is stored into the
array component.

| 15.27 Constant Expression

ConstantExpression:
Expression

A compile-time constant expressiois an expression denoting a value of

primitive type or e&string that is composed using only the following:

Literals of primitive type and literals of tysaring

Casts to primitive types and casts to tgpeing

The unary operators -, ~, and! (but not++ or --)

The multiplicative operators, /, and%

The additive operatorsand-

The shift operatorg<, >>, and>>>

The relational operatoks <=, >, and>= (but notinstanceof)
The equality operators= and!=

The bitwise and logical operatdsA, and |

The conditional-and operat&& and the conditional-or operatpr

The ternary conditional operater :

Updates to the Java™ Language Specification for JDK™ Release 1.2 Floating Point

e Simple names that refer tinal variables whose initializers are constant
expressions

* Qualified names of the formiypeName. Identifier that refer tofinal vari-
ables whose initializers are constant expressions

Compile-time constant expressions are usechise labels inswitch statements
(814.9) and have a special significance for assignment conversion (85.2).

A compile-time constant expression is always treated as FP-strict (§15.28),
even if it occurs in a context where a non-constant expression would not be con-
sidered to be FP-strict.

15.28 FP-strict Expressions

If the type of an expression fSloat or double, then there is a question as to what
value set (84.2.3) the value of the expression may be drawn from. This is governed
by the rules of value set conversion (85.1.8); these rules in turn depend on whether
or not the expression iEP-strict

Every compile-time constant expression (815.27) is FP-strict. If an expression
is not a compile-time constant expression, then consider all the class declarations,
interface declarations, and method declarations that contain the expressioy. If
such declaration bears therictfp modifier, then the expression is FP-strict.

It follows that an expression is not FP-strict if and only if it is not a compile-
time constant expressi@ndit does not appear within any declaration that has the
strictfp strict modifier.

Within an FP-strict expression, all intermediate values must be elements of
the float value set or the double value set, implying that the results of all FP-strict
expressions must be those predicted by IEEE 754 arithmetic on operands repre-
sented using single and double formats. Within an expression that is not FP-strict,
some leeway is granted for an implementation to use an extended exponent range
to represent intermediate results; the net effect, roughly speaking, is that a calcula-
tion might produce “the correct answer” in situations where exclusive use of the
float value set or double value set might result in overflow or underflow.

35

	Updates to the Java™ Language Specification for JDK™ Release 1.2 Floating Point
	3.9���Keywords
	4.2.3���Floating-Point Types, Value Sets, and Values

	Chapter 5
	• Identity conversions
	• Assignment conversion (§5.2, §15.25) converts the type of an expression to the type of a specif...

	5.1���Kinds of Conversion
	5.1.8���Value Set Conversion
	• If the value is an element of the float-extended-exponent value set, then the implementation ma...
	• If the value is of type float and is not an element of the float value set, then the implementa...

	5.2���Assignment Conversion
	• The expression is a constant expression of type int.
	• If the value is of type float and is an element of the float-extended-exponent value set, then ...

	5.3���Method Invocation Conversion
	• If an argument value of type float is an element of the float-extended-exponent value set, then...

	5.5���Casting Conversion
	5.6.1���Unary Numeric Promotion
	• If the operand is of compile-time type byte, short, or char, unary numeric promotion promotes i...
	5.6.2���Binary Numeric Promotion

	• If either operand is of type double, the other is converted to double.
	8.1.2���Class Modifiers

	8.3���Field Declarations
	8.4.1���Formal Parameters
	8.4.3���Method Modifiers
	8.4.6.1���Overriding (By Instance Methods)

	8.6.3���Constructor Modifiers
	9.1.2���Interface Modifiers

	9.4���Abstract Method Declarations
	Chapter 10
	14.3.1���Local Variable Declarators and Types
	int a;
	float[][][][] f;

	14.15���The return Statement
	15.1���Evaluation, Denotation, and Result
	• A variable (§4.5) (in C, this would be called an lvalue)

	15.2���Variables as Values
	15.7.1���Literals
	• The type of an integer literal that ends with L or l is long; the type of any other integer lit...
	15.7.3���Parenthesized Expressions
	15.11.4.5���Create Frame, Synchronize, Transfer Control

	15.13.2���Postfix Increment Operator ++
	15.13.3���Postfix Decrement Operator --
	15.14.1���Prefix Increment Operator ++
	15.14.2���Prefix Decrement Operator --
	15.14.4���Unary Minus Operator -

	• If the operand is NaN, the result is NaN (recall that NaN has no sign).

	15.15���Cast Expressions
	15.16���Multiplicative Operators
	15.16.1���Multiplication Operator *
	• If either operand is NaN, the result is NaN.
	15.16.2���Division Operator /

	• If either operand is NaN, the result is NaN.
	15.17.2���Additive Operators (+ and -) for Numeric Types

	• If either operand is NaN, the result is NaN.
	15.19.1���Numerical Comparison Operators <, <=, >, and >=
	15.20.1���Numerical Equality Operators ==�and !=

	15.24���Conditional Operator ?�:
	• If the second and third operands have the same type (which may be the null type), then that is ...
	• Otherwise, if the second and third operands have numeric type, then there are several cases:
	15.25.1���Simple Assignment Operator =

	• First, the left-hand operand is evaluated to produce a variable. If this evaluation completes a...
	• First, the array reference subexpression of the left-hand operand array access expression is ev...
	15.25.2���Compound Assignment Operators
	short x = 3;
	short x = 3;

	• First, the left-hand operand is evaluated to produce a variable. If this evaluation completes a...
	• First, the array reference subexpression of the left-hand operand array access expression is ev...

	15.27���Constant Expression
	• Literals of primitive type and literals of type String

	15.28���FP-strict Expressions

