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1

C H A P T E R 1
Introduction

THE Java™ programming language is a general-purpose, concurrent, class-
based, object-oriented language. It is designed to be simple enough that many
programmers can achieve fluency in the language. The Java programming language
is related to C and C++ but is organized rather differently, with a number of aspects
of C and C++ omitted and a few ideas from other languages included. It is intended
to be a production language, not a research language, and so, as C. A. R. Hoare
suggested in his classic paper on language design, the design has avoided including
new and untested features.

The Java programming language is strongly typed. This specification clearly
distinguishes between the compile-time errors that can and must be detected at
compile time, and those that occur at run time. Compile time normally consists
of translating programs into a machine-independent byte code representation.
Run-time activities include loading and linking of the classes needed to execute
a program, optional machine code generation and dynamic optimization of the
program, and actual program execution.

The Java programming language is a relatively high-level language, in that details
of the machine representation are not available through the language. It includes
automatic storage management, typically using a garbage collector, to avoid
the safety problems of explicit deallocation (as in C's free or C++'s delete).
High-performance garbage-collected implementations can have bounded pauses to
support systems programming and real-time applications. The language does not
include any unsafe constructs, such as array accesses without index checking, since
such unsafe constructs would cause a program to behave in an unspecified way.

The Java programming language is normally compiled to the bytecoded instruction
set and binary format defined in The Java™ Virtual Machine Specification, Java
SE 7 Edition.

This specification is organized as follows:
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Chapter 2 describes grammars and the notation used to present the lexical and
syntactic grammars for the language.

Chapter 3 describes the lexical structure of the Java programming language, which
is based on C and C++. The language is written in the Unicode character set. It
supports the writing of Unicode characters on systems that support only ASCII.

Chapter 4 describes types, values, and variables. Types are subdivided into
primitive types and reference types.

The primitive types are defined to be the same on all machines and in all
implementations, and are various sizes of two's-complement integers, single- and
double-precision IEEE 754 standard floating-point numbers, a boolean type, and
a Unicode character char type. Values of the primitive types do not share state.

Reference types are the class types, the interface types, and the array types. The
reference types are implemented by dynamically created objects that are either
instances of classes or arrays. Many references to each object can exist. All objects
(including arrays) support the methods of the class Object, which is the (single)
root of the class hierarchy. A predefined String class supports Unicode character
strings. Classes exist for wrapping primitive values inside of objects. In many
cases, wrapping and unwrapping is performed automatically by the compiler (in
which case, wrapping is called boxing, and unwrapping is called unboxing). Class
and interface declarations may be generic, that is, they may be parameterized by
other reference types. Such declarations may then be invoked with specific type
arguments.

Variables are typed storage locations. A variable of a primitive type holds a value
of that exact primitive type. A variable of a class type can hold a null reference or
a reference to an object whose type is that class type or any subclass of that class
type. A variable of an interface type can hold a null reference or a reference to an
instance of any class that implements the interface. A variable of an array type can
hold a null reference or a reference to an array. A variable of class type Object can
hold a null reference or a reference to any object, whether class instance or array.

Chapter 5 describes conversions and numeric promotions. Conversions change the
compile-time type and, sometimes, the value of an expression. These conversions
include the boxing and unboxing conversions between primitive types and
reference types. Numeric promotions are used to convert the operands of a numeric
operator to a common type where an operation can be performed. There are no
loopholes in the language; casts on reference types are checked at run time to ensure
type safety.
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Chapter 6 describes declarations and names, and how to determine what names
mean (denote). The language does not require types or their members to be declared
before they are used. Declaration order is significant only for local variables, local
classes, and the order of initializers of fields in a class or interface.

The Java programming language provides control over the scope of names
and supports limitations on external access to members of packages, classes,
and interfaces. This helps in writing large programs by distinguishing the
implementation of a type from its users and those who extend it. Recommended
naming conventions that make for more readable programs are described here.

Chapter 7 describes the structure of a program, which is organized into packages
similar to the modules of Modula. The members of a package are classes, interfaces,
and subpackages. Packages are divided into compilation units. Compilation units
contain type declarations and can import types from other packages to give them
short names. Packages have names in a hierarchical name space, and the Internet
domain name system can usually be used to form unique package names.

Chapter 8 describes classes. The members of classes are classes, interfaces, fields
(variables) and methods. Class variables exist once per class. Class methods operate
without reference to a specific object. Instance variables are dynamically created
in objects that are instances of classes. Instance methods are invoked on instances
of classes; such instances become the current object this during their execution,
supporting the object-oriented programming style.

Classes support single implementation inheritance, in which the implementation
of each class is derived from that of a single superclass, and ultimately from the
class Object. Variables of a class type can reference an instance of that class or of
any subclass of that class, allowing new types to be used with existing methods,
polymorphically.

Classes support concurrent programming with synchronized methods. Methods
declare the checked exceptions that can arise from their execution, which allows
compile-time checking to ensure that exceptional conditions are handled. Objects
can declare a finalize method that will be invoked before the objects are discarded
by the garbage collector, allowing the objects to clean up their state.

For simplicity, the language has neither declaration "headers" separate from the
implementation of a class nor separate type and class hierarchies.

A special form of classes, enums, support the definition of small sets of values and
their manipulation in a type safe manner. Unlike enumerations in other languages,
enums are objects and may have their own methods.
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Chapter 9 describes interface types, which declare a set of abstract methods,
member types, and constants. Classes that are otherwise unrelated can implement
the same interface type. A variable of an interface type can contain a reference
to any object that implements the interface. Multiple interface inheritance is
supported.

Annotation types are specialized interfaces used to annotate declarations. Such
annotations are not permitted to affect the semantics of programs in the Java
programming language in any way. However, they provide useful input to various
tools.

Chapter 10 describes arrays. Array accesses include bounds checking. Arrays are
dynamically created objects and may be assigned to variables of type Object. The
language supports arrays of arrays, rather than multidimensional arrays.

Chapter 11 describes exceptions, which are nonresuming and fully integrated with
the language semantics and concurrency mechanisms. There are three kinds of
exceptions: checked exceptions, run-time exceptions, and errors. The compiler
ensures that checked exceptions are properly handled by requiring that a method
or constructor can result in a checked exception only if the method or constructor
declares it. This provides compile-time checking that exception handlers exist, and
aids programming in the large. Most user-defined exceptions should be checked
exceptions. Invalid operations in the program detected by the Java virtual machine
result in run-time exceptions, such as NullPointerException. Errors result from
failures detected by the Java virtual machine, such as OutOfMemoryError. Most
simple programs do not try to handle errors.

Chapter 12 describes activities that occur during execution of a program. A
program is normally stored as binary files representing compiled classes and
interfaces. These binary files can be loaded into a Java virtual machine, linked to
other classes and interfaces, and initialized.

After initialization, class methods and class variables may be used. Some classes
may be instantiated to create new objects of the class type. Objects that are class
instances also contain an instance of each superclass of the class, and object
creation involves recursive creation of these superclass instances.

When an object is no longer referenced, it may be reclaimed by the garbage
collector. If an object declares a finalizer, the finalizer is executed before the object
is reclaimed to give the object a last chance to clean up resources that would not
otherwise be released. When a class is no longer needed, it may be unloaded.

Chapter 13 describes binary compatibility, specifying the impact of changes to
types on other types that use the changed types but have not been recompiled. These
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considerations are of interest to developers of types that are to be widely distributed,
in a continuing series of versions, often through the Internet. Good program
development environments automatically recompile dependent code whenever a
type is changed, so most programmers need not be concerned about these details.

Chapter 14 describes blocks and statements, which are based on C and C++.
The language has no goto statement, but includes labeled break and continue
statements. Unlike C, the Java programming language requires boolean (or
Boolean) expressions in control-flow statements, and does not convert types to
boolean implicitly (except through unboxing), in the hope of catching more errors
at compile time. A synchronized statement provides basic object-level monitor
locking. A try statement can include catch and finally clauses to protect against
non-local control transfers.

Chapter 15 describes expressions. This document fully specifies the (apparent)
order of evaluation of expressions, for increased determinism and portability.
Overloaded methods and constructors are resolved at compile time by picking the
most specific method or constructor from those which are applicable.

Chapter 16 describes the precise way in which the language ensures that
local variables are definitely set before use. While all other variables are
automatically initialized to a default value, the Java programming language does
not automatically initialize local variables in order to avoid masking programming
errors.

Chapter 17 describes the semantics of threads and locks, which are based on
the monitor-based concurrency originally introduced with the Mesa programming
language. The Java programming language specifies a memory model for shared-
memory multiprocessors that supports high-performance implementations.

Chapter 18 presents a syntactic grammar for the language.

1.1 Example Programs

Most of the example programs given in the text are ready to be executed and are
similar in form to:

class Test { 
    public static void main(String[] args) { 
        for (int i = 0; i < args.length; i++) 
            System.out.print(i == 0 ? args[i] : " " + args[i]); 
        System.out.println(); 
    } 
}
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On a machine with Oracle's Java Development Kit installed, this class, stored in
the file Test.java, can be compiled and executed by giving the commands:

javac Test.java
java Test Hello, world.

producing the output:

Hello, world.

1.2 Notation

Throughout this specification we refer to classes and interfaces drawn from the
Java SE API. Whenever we refer to a class or interface which is not defined in an
example in this specification using a single identifier N, the intended reference is
to the class or interface named N in the package java.lang. We use the canonical
name (§6.7) for classes or interfaces from packages other than java.lang.

Whenever we refer to The Java™ Virtual Machine Specification in this
specification, we mean the Java SE 7 Edition.

1.3 Relationship to Predefined Classes and Interfaces

As noted above, this specification often refers to classes of the Java SE API. In
particular, some classes have a special relationship with the Java programming
language. Examples include classes such as Object, Class, ClassLoader, String,
Thread, and the classes and interfaces in package java.lang.reflect, among
others. The language definition constrains the behavior of these classes and
interfaces, but this document does not provide a complete specification for them.
The reader is referred to other parts of the Java SE platform Specification for such
detailed API specifications.

Thus this document does not describe reflection in any detail. Many linguistic
constructs have analogues in the reflection API, but these are generally not
discussed here. So, for example, when we list the ways in which an object can
be created, we generally do not include the ways in which the reflective API can
accomplish this. Readers should be aware of these additional mechanisms even
though they are not mentioned in this text.
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C H A P T E R 2
Grammars

THIS chapter describes the context-free grammars used in this specification to
define the lexical and syntactic structure of a program.

2.1 Context-Free Grammars

A context-free grammar consists of a number of productions. Each production has
an abstract symbol called a nonterminal as its left-hand side, and a sequence of
one or more nonterminal and terminal symbols as its right-hand side. For each
grammar, the terminal symbols are drawn from a specified alphabet.

Starting from a sentence consisting of a single distinguished nonterminal, called the
goal symbol, a given context-free grammar specifies a language, namely, the set of
possible sequences of terminal symbols that can result from repeatedly replacing
any nonterminal in the sequence with a right-hand side of a production for which
the nonterminal is the left-hand side.

2.2 The Lexical Grammar

A lexical grammar for the Java programming language is given in (Chapter 3,
Lexical Structure). This grammar has as its terminal symbols the characters of
the Unicode character set. It defines a set of productions, starting from the goal
symbol Input (§3.5), that describe how sequences of Unicode characters (§3.1) are
translated into a sequence of input elements (§3.5).

These input elements, with white space (§3.6) and comments (§3.7) discarded,
form the terminal symbols for the syntactic grammar for the Java programming
language and are called tokens (§3.5). These tokens are the identifiers (§3.8),
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keywords (§3.9), literals (§3.10), separators (§3.11), and operators (§3.12) of the
Java programming language.

2.3 The Syntactic Grammar

A syntactic grammar for the Java programming language is given in Chapters
4, 6-10, 14, and 15. This grammar has tokens defined by the lexical grammar
as its terminal symbols. It defines a set of productions, starting from the goal
symbol CompilationUnit (§7.3), that describe how sequences of tokens can form
syntactically correct programs.

2.4 Grammar Notation

Terminal symbols are shown in fixed width font in the productions of the lexical
and syntactic grammars, and throughout this specification whenever the text is
directly referring to such a terminal symbol. These are to appear in a program
exactly as written.

Nonterminal symbols are shown in italic type. The definition of a nonterminal is
introduced by the name of the nonterminal being defined followed by a colon. One
or more alternative right-hand sides for the nonterminal then follow on succeeding
lines.

The subscripted suffix "opt", which may appear after a terminal or nonterminal,
indicates an optional symbol. The alternative containing the optional symbol
actually specifies two right-hand sides, one that omits the optional element and one
that includes it.

A very long right-hand side may be continued on a second line by substantially
indenting this second line.

When the words "one of" follow the colon in a grammar definition, they signify
that each of the terminal symbols on the following line or lines is an alternative
definition.

When an alternative in a lexical production appears to be a token, it represents the
sequence of characters that would make up such a token.

The right-hand side of a lexical production may specify that certain expansions are
not permitted by using the phrase "but not" and then indicating the expansions to
be excluded.
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Finally, a few nonterminal symbols are described by a descriptive phrase in roman
type in cases where it would be impractical to list all the alternatives.
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C H A P T E R 3
Lexical Structure

THIS chapter specifies the lexical structure of the Java programming language.

Programs are written in Unicode (§3.1), but lexical translations are provided (§3.2)
so that Unicode escapes (§3.3) can be used to include any Unicode character using
only ASCII characters. Line terminators are defined (§3.4) to support the different
conventions of existing host systems while maintaining consistent line numbers.

The Unicode characters resulting from the lexical translations are reduced to a
sequence of input elements (§3.5), which are white space (§3.6), comments (§3.7),
and tokens. The tokens are the identifiers (§3.8), keywords (§3.9), literals (§3.10),
separators (§3.11), and operators (§3.12) of the syntactic grammar.

3.1 Unicode

Programs are written using the Unicode character set. Information about this
character set and its associated character encodings may be found at http://
www.unicode.org/.

The Java SE platform tracks the Unicode specification as it evolves. The precise
version of Unicode used by a given release is specified in the documentation of
the class Character.

The Unicode standard was originally designed as a fixed-width 16-bit character
encoding. It has since been changed to allow for characters whose representation
requires more than 16 bits. The range of legal code points is now U+0000
to U+10FFFF, using the hexadecimal U+n notation. Characters whose code
points are greater than U+FFFF are called supplementary characters. To represent
the complete range of characters using only 16-bit units, the Unicode standard
defines an encoding called UTF-16. In this encoding, supplementary characters are
represented as pairs of 16-bit code units, the first from the high-surrogates range,
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(U+D800 to U+DBFF), the second from the low-surrogates range (U+DC00 to U
+DFFF). For characters in the range U+0000 to U+FFFF, the values of code points
and UTF-16 code units are the same.

The Java programming language represents text in sequences of 16-bit code units,
using the UTF-16 encoding. A few APIs, primarily in the Character class, use 32-
bit integers to represent code points as individual entities. The Java SE platform
provides methods to convert between the two representations.

This specification uses the terms code point and UTF-16 code unit where the
representation is relevant, and the generic term character where the representation
is irrelevant to the discussion.

Except for comments (§3.7), identifiers, and the contents of character and string
literals (§3.10.4, §3.10.5), all input elements (§3.5) in a program are formed
only from ASCII characters (or Unicode escapes (§3.3) which result in ASCII
characters). ASCII (ANSI X3.4) is the American Standard Code for Information
Interchange. The first 128 characters of the Unicode character encoding are the
ASCII characters.

3.2 Lexical Translations

A raw Unicode character stream is translated into a sequence of tokens, using the
following three lexical translation steps, which are applied in turn:

1. A translation of Unicode escapes (§3.3) in the raw stream of Unicode characters
to the corresponding Unicode character. A Unicode escape of the form \uxxxx,
where xxxx is a hexadecimal value, represents the UTF-16 code unit whose
encoding is xxxx. This translation step allows any program to be expressed
using only ASCII characters.

2. A translation of the Unicode stream resulting from step 1 into a stream of input
characters and line terminators (§3.4).

3. A translation of the stream of input characters and line terminators resulting
from step 2 into a sequence of input elements (§3.5) which, after white space
(§3.6) and comments (§3.7) are discarded, comprise the tokens (§3.5) that are
the terminal symbols of the syntactic grammar (§2.3).

The longest possible translation is used at each step, even if the result does not
ultimately make a correct program while another lexical translation would. Thus
the input characters a--b are tokenized (§3.5) as a, --, b, which is not part of any
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grammatically correct program, even though the tokenization a, -, -, b could be
part of a grammatically correct program.

3.3 Unicode Escapes

A compiler for the Java programming language ("Java compiler") first recognizes
Unicode escapes in its input, translating the ASCII characters \u followed by four
hexadecimal digits to the UTF-16 code unit (§3.1) of the indicated hexadecimal
value, and passing all other characters unchanged. Representing supplementary
characters requires two consecutive Unicode escapes. This translation step results
in a sequence of Unicode input characters.

UnicodeInputCharacter:
    UnicodeEscape
    RawInputCharacter

UnicodeEscape:
    \ UnicodeMarker HexDigit HexDigit HexDigit HexDigit

UnicodeMarker:
    u
    UnicodeMarker u

RawInputCharacter:
    any Unicode character

HexDigit: one of
    0 1 2 3 4 5 6 7 8 9 a b c d e f A B C D E F

The \, u, and hexadecimal digits here are all ASCII characters.

In addition to the processing implied by the grammar, for each raw input character
that is a backslash \, input processing must consider how many other \ characters
contiguously precede it, separating it from a non-\ character or the start of the input
stream. If this number is even, then the \ is eligible to begin a Unicode escape; if
the number is odd, then the \ is not eligible to begin a Unicode escape.

If an eligible \ is not followed by u, then it is treated as a RawInputCharacter and
remains part of the escaped Unicode stream.
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If an eligible \ is followed by u, or more than one u, and the last u is not followed
by four hexadecimal digits, then a compile-time error occurs.

The character produced by a Unicode escape does not participate in further Unicode
escapes.

The Java programming language specifies a standard way of transforming a
program written in Unicode into ASCII that changes a program into a form that
can be processed by ASCII-based tools. The transformation involves converting
any Unicode escapes in the source text of the program to ASCII by adding an extra
u - for example, \uxxxx becomes \uuxxxx - while simultaneously converting non-
ASCII characters in the source text to Unicode escapes containing a single u each.

This transformed version is equally acceptable to a Java compiler and represents
the exact same program. The exact Unicode source can later be restored from this
ASCII form by converting each escape sequence where multiple u's are present to a
sequence of Unicode characters with one fewer u, while simultaneously converting
each escape sequence with a single u to the corresponding single Unicode character.

3.4 Line Terminators

A Java compiler next divides the sequence of Unicode input characters into lines
by recognizing line terminators.

LineTerminator:
    the ASCII LF character, also known as "newline"
    the ASCII CR character, also known as "return"
    the ASCII CR character followed by the ASCII LF character

InputCharacter:
    UnicodeInputCharacter but not CR or LF

Lines are terminated by the ASCII characters CR, or LF, or CR LF. The two
characters CR immediately followed by LF are counted as one line terminator, not
two.

A line terminator specifies the termination of the // form of a comment (§3.7).

The result is a sequence of line terminators and input characters, which are the
terminal symbols for the third step in the tokenization process.
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3.5 Input Elements and Tokens

The input characters and line terminators that result from escape processing (§3.3)
and then input line recognition (§3.4) are reduced to a sequence of input elements.
Those input elements that are not white space (§3.6) or comments (§3.7) are tokens.
The tokens are the terminal symbols of the syntactic grammar (§2.3).

Input:
    InputElementsopt Subopt

InputElements:
    InputElement
    InputElements InputElement

InputElement:
    WhiteSpace
    Comment
    Token

Token:
    Identifier
    Keyword
    Literal
    Separator
    Operator

Sub:
    the ASCII SUB character, also known as "control-Z"

White space (§3.6) and comments (§3.7) can serve to separate tokens that, if
adjacent, might be tokenized in another manner. For example, the ASCII characters
- and = in the input can form the operator token -= (§3.12) only if there is no
intervening white space or comment.

As a special concession for compatibility with certain operating systems, the ASCII
SUB character (\u001a, or control-Z) is ignored if it is the last character in the
escaped input stream.

Consider two tokens x and y in the resulting input stream. If x precedes y, then we
say that x is to the left of y and that y is to the right of x.
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3.6 White Space

White space is defined as the ASCII space character, horizontal tab character, form
feed character, and line terminator characters (§3.4).

WhiteSpace:
    the ASCII SP character, also known as "space"
    the ASCII HT character, also known as "horizontal tab"
    the ASCII FF character, also known as "form feed"
    LineTerminator

3.7 Comments

There are two kinds of comments.

• /* text */

A traditional comment: all the text from the ASCII characters /* to the ASCII
characters */ is ignored (as in C and C++).

• // text

An end-of-line comment: all the text from the ASCII characters // to the end of
the line is ignored (as in C++).
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Comment:
    TraditionalComment
    EndOfLineComment

TraditionalComment:
    / * CommentTail

EndOfLineComment:
    / / CharactersInLineopt

CommentTail:
    * CommentTailStar
    NotStar CommentTail

CommentTailStar:
    /
    * CommentTailStar
    NotStarNotSlash CommentTail

NotStar:
    InputCharacter but not *
    LineTerminator

NotStarNotSlash:
    InputCharacter but not * or /
    LineTerminator

CharactersInLine:
    InputCharacter
    CharactersInLine InputCharacter

These productions imply all of the following properties:

• Comments do not nest.

• /* and */ have no special meaning in comments that begin with //.

• // has no special meaning in comments that begin with /* or /**.
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3.8 Identifiers

An identifier is an unlimited-length sequence of Java letters and Java digits, the
first of which must be a Java letter.

An identifier cannot have the same spelling (Unicode character sequence) as a
keyword (§3.9), boolean literal (§3.10.3), or the null literal (§3.10.7).

Identifier:
    IdentifierChars but not a Keyword or BooleanLiteral or NullLiteral

IdentifierChars:
    JavaLetter
    IdentifierChars JavaLetterOrDigit

JavaLetter:
    any Unicode character that is a Java letter (see below)

JavaLetterOrDigit:
    any Unicode character that is a Java letter-or-digit (see below)

Letters and digits may be drawn from the entire Unicode character set, which
supports most writing scripts in use in the world today, including the large sets for
Chinese, Japanese, and Korean. This allows programmers to use identifiers in their
programs that are written in their native languages.

A "Java letter" is a character for which the method
Character.isJavaIdentifierStart(int) returns true. A "Java letter-or-digit"
is a character for which the method Character.isJavaIdentifierPart(int)
returns true.

Two identifiers are the same only if they are identical, that is, have the same
Unicode character for each letter or digit. Identifiers that have the same external
appearance may yet be different.

3.9 Keywords

50 character sequences, formed from ASCII letters, are reserved for use as
keywords and cannot be used as identifiers (§3.8).
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Keyword: one of
    abstract   continue   for          new         switch
    assert     default    if           package     synchronized
    boolean    do         goto         private     this
    break      double     implements   protected   throw
    byte       else       import       public      throws
    case       enum       instanceof   return      transient
    catch      extends    int          short       try
    char       final      interface    static      void
    class      finally    long         strictfp    volatile
    const      float      native       super       while

3.10 Literals

A literal is the source code representation of a value of a primitive type (§4.2), the
String type (§4.3.3), or the null type (§4.1).

Literal:
    IntegerLiteral
    FloatingPointLiteral
    BooleanLiteral
    CharacterLiteral
    StringLiteral
    NullLiteral

3.10.1 Integer Literals

An integer literal may be expressed in decimal (base 10), hexadecimal (base 16),
or octal (base 8).



3.10.1 Integer Literals LEXICAL STRUCTURE

22

IntegerLiteral:
    DecimalIntegerLiteral
    HexIntegerLiteral 
    OctalIntegerLiteral

DecimalIntegerLiteral:
    DecimalNumeral IntegerTypeSuffixopt

HexIntegerLiteral:
    HexNumeral IntegerTypeSuffixopt

OctalIntegerLiteral: 
    OctalNumeral IntegerTypeSuffixopt

IntegerTypeSuffix: one of
    l L

An integer literal is of type long if it is suffixed with an ASCII letter L or l (ell);
otherwise it is of type int (§4.2.1).

A decimal numeral is either the single ASCII character 0, representing the integer
zero, or consists of an ASCII digit from 1 to 9, optionally followed by one or more
ASCII digits from 0 to 9, representing a positive integer.

DecimalNumeral:
    0
    NonZeroDigit Digitsopt

Digits:
    Digit
    Digits Digit

Digit:
    0
    NonZeroDigit

NonZeroDigit: one of
    1 2 3 4 5 6 7 8 9

A hexadecimal numeral consists of the leading ASCII characters 0x or 0X followed
by one or more ASCII hexadecimal digits and can represent a positive, zero, or
negative integer. Hexadecimal digits with values 10 through 15 are represented by
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the ASCII letters a through f or A through F, respectively; each letter used as a
hexadecimal digit may be uppercase or lowercase.

HexNumeral:
    0 x HexDigits
    0 X HexDigits

HexDigits:
    HexDigit
    HexDigits HexDigit

HexDigit: one of
    0 1 2 3 4 5 6 7 8 9 a b c d e f A B C D E F

An octal numeral consists of an ASCII digit 0 followed by one or more of the ASCII
digits 0 through 7 and can represent a positive, zero, or negative integer.

OctalNumeral:
    0 OctalDigits

OctalDigits:
    OctalDigit
    OctalDigits OctalDigit

OctalDigit: one of
    0 1 2 3 4 5 6 7

The largest decimal literal of type int is 2147483648 (231). All decimal literals
from 0 to 2147483647 may appear anywhere an int literal may appear, but the
literal 2147483648 may appear only as the operand of the unary negation operator
-.

The largest positive hexadecimal and octal literals of type int are 0x7fffffff and
017777777777, respectively, which equal 2147483647 (231-1).

The most negative hexadecimal and octal literals of type int are 0x80000000
and 020000000000, respectively, each of which represents the decimal value
-2147483648 (-231). The hexadecimal and octal literals 0xffffffff and
037777777777, respectively, represent the decimal value -1.

It is a compile-time error if a decimal literal of type int is larger than 2147483648
(231), or if the literal 2147483648 appears anywhere other than as the operand of
the unary - operator, or if a hexadecimal or octal int literal does not fit in 32 bits.
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The largest decimal literal of type long is 9223372036854775808L (263). All
decimal literals from 0L to 9223372036854775807L may appear anywhere a long
literal may appear, but the literal 9223372036854775808L may appear only as the
operand of the unary negation operator -.

The largest positive hexadecimal and octal literals of type long are
0x7fffffffffffffffL and 0777777777777777777777L, respectively, which
equal 9223372036854775807L (263-1).

The most negative hexadecimal and octal literals literals of type long are
0x8000000000000000L and 01000000000000000000000L, respectively. Each has
the decimal value -9223372036854775808L (-263). The hexadecimal and octal
literals 0xffffffffffffffffL and 01777777777777777777777L, respectively,
represent the decimal value -1L.

It is a compile-time error if a decimal literal of type long is larger than
9223372036854775808L (263), or if the literal 9223372036854775808L appears
anywhere other than as the operand of the unary - operator, or if a hexadecimal or
octal long literal does not fit in 64 bits.

3.10.2 Floating-Point Literals

A floating-point literal has the following parts: a whole-number part, a decimal or
hexadecimal point (represented by an ASCII period character), a fractional part, an
exponent, and a type suffix.

A floating point number may be written either as a decimal value or as a
hexadecimal value. For decimal literals, the exponent, if present, is indicated by
the ASCII letter e or E followed by an optionally signed integer. For hexadecimal
literals, the exponent is always required and is indicated by the ASCII letter p or
P followed by an optionally signed integer.

For decimal floating-point literals, at least one digit, in either the whole number
or the fraction part, and either a decimal point, an exponent, or a float type suffix
are required. All other parts are optional. For hexadecimal floating-point literals, at
least one digit is required in either the whole number or fraction part, the exponent
is mandatory, and the float type suffix is optional.

A floating-point literal is of type float if it is suffixed with an ASCII letter F or
f; otherwise its type is double and it can optionally be suffixed with an ASCII
letter D or d.
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FloatingPointLiteral:
    DecimalFloatingPointLiteral
    HexadecimalFloatingPointLiteral

DecimalFloatingPointLiteral:
    Digits . Digitsopt ExponentPartopt FloatTypeSuffixopt
    . Digits ExponentPartopt FloatTypeSuffixopt
    Digits ExponentPart FloatTypeSuffixopt
    Digits ExponentPartopt FloatTypeSuffix

ExponentPart:
    ExponentIndicator SignedInteger

ExponentIndicator: one of
    e E

SignedInteger:
    Signopt Digits

Sign: one of
    + -

FloatTypeSuffix: one of
    f F d D

HexadecimalFloatingPointLiteral:
    HexSignificand BinaryExponent FloatTypeSuffixopt

HexSignificand:
    HexNumeral
    HexNumeral .
    0x HexDigitsopt . HexDigits
    0X HexDigitsopt . HexDigits

BinaryExponent:
    BinaryExponentIndicator SignedInteger

BinaryExponentIndicator:one of
    p P
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The elements of the types float and double are those values that can be
represented using the IEEE 754 32-bit single-precision and 64-bit double-precision
binary floating-point formats, respectively.

The largest positive finite literal of type float is 3.4028235e38f. The smallest
positive finite nonzero literal of type float is 1.40e-45f.

The largest positive finite literal of type double is 1.7976931348623157e308. The
smallest positive finite nonzero literal of type double is 4.9e-324.

It is a compile-time error if a nonzero floating-point literal is too large, so that on
rounded conversion to its internal representation, it becomes an IEEE 754 infinity.

It is a compile-time error if a nonzero floating-point literal is too small, so that, on
rounded conversion to its internal representation, it becomes a zero.

Predefined constants representing Not-a-Number values are defined in the classes
Float and Double as Float.NaN and Double.NaN.

3.10.3 Boolean Literals

The boolean type has two values, represented by the literals true and false,
formed from ASCII letters.

A boolean literal is always of type boolean.

BooleanLiteral: one of
    true false

3.10.4 Character Literals

A character literal is expressed as a character or an escape sequence (§3.10.6),
enclosed in ASCII single quotes. (The single-quote, or apostrophe, character is
\u0027.)

Character literals can only represent UTF-16 code units (§3.1), i.e., they are limited
to values from \u0000 to \uffff. Supplementary characters must be represented
either as a surrogate pair within a char sequence, or as an integer, depending on
the API they are used with.

A character literal is always of type char.
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CharacterLiteral:
    ' SingleCharacter '
    ' EscapeSequence '

SingleCharacter:
    InputCharacter but not ' or \

As specified in §3.4, the characters CR and LF are never an InputCharacter; they
are recognized as constituting a LineTerminator.

It is a compile-time error for the character following the SingleCharacter or
EscapeSequence to be other than a '.

It is a compile-time error for a line terminator to appear after the opening ' and
before the closing '.

In C and C++, a character literal may contain representations of more than one
character, but the value of such a character literal is implementation-defined. In
the Java programming language, a character literal always represents exactly one
character.

3.10.5 String Literals

A string literal consists of zero or more characters enclosed in double quotes.
Characters may be represented by escape sequences (§3.10.6) - one escape
sequence for characters in the range U+0000 to U+FFFF, two escape sequences
for the UTF-16 surrogate code units of characters in the range U+010000 to U
+10FFFF.

A string literal is always of type String (§4.3.3).

A string literal always refers to the same instance (§4.3.1) of class String.

StringLiteral:
    " StringCharactersopt "

StringCharacters:
    StringCharacter
    StringCharacters StringCharacter

StringCharacter:
    InputCharacter but not " or \
    EscapeSequence
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As specified in §3.4, neither of the characters CR and LF is ever considered to be
an InputCharacter; each is recognized as constituting a LineTerminator.

It is a compile-time error for a line terminator to appear after the opening " and
before the closing matching ". A long string literal can always be broken up into
shorter pieces and written as a (possibly parenthesized) expression using the string
concatenation operator + (§15.18.1).

Each string literal is a reference (§4.3) to an instance (§4.3.1, §12.5) of class String
(§4.3.3). String objects have a constant value. String literals - or, more generally,
strings that are the values of constant expressions (§15.28) - are "interned" so as to
share unique instances, using the method String.intern.

3.10.6 Escape Sequences for Character and String Literals

The character and string escape sequences allow for the representation of some
nongraphic characters as well as the single quote, double quote, and backslash
characters in character literals (§3.10.4) and string literals (§3.10.5).

EscapeSequence:
    \ b    /* \u0008: backspace BS */
    \ t    /* \u0009: horizontal tab HT */
    \ n    /* \u000a: linefeed LF */
    \ f    /* \u000c: form feed FF */
    \ r    /* \u000d: carriage return CR */
    \ "    /* \u0022: double quote " */
    \ '    /* \u0027: single quote ' */
    \ \              /* \u005c: backslash \ */
    OctalEscape        /* \u0000 to \u00ff: from octal value */

OctalEscape:
    \ OctalDigit
    \ OctalDigit OctalDigit
    \ ZeroToThree OctalDigit OctalDigit

OctalDigit: one of
    0 1 2 3 4 5 6 7

ZeroToThree: one of
    0 1 2 3
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It is a compile-time error if the character following a backslash in an escape is not
an ASCII b, t, n, f, r, ", ', \, 0, 1, 2, 3, 4, 5, 6, or 7. The Unicode escape \u is
processed earlier (§3.3). (Octal escapes are provided for compatibility with C, but
can express only Unicode values \u0000 through \u00FF, so Unicode escapes are
usually preferred.)

3.10.7 The Null Literal

The null type has one value, the null reference, represented by the literal null,
which is formed from ASCII characters. A null literal is always of the null type.

NullLiteral:
    null

3.11 Separators

Nine ASCII characters are the separators (punctuators).

Separator: one of
    (    )    {    }    [    ]    ;    ,    .

3.12 Operators

37 tokens are the operators, formed from ASCII characters.

Operator: one of
    =   >   <   !   ~   ?   :
    ==  <=  >=  !=  &&  ||  ++  --
    +   -   *   /   &   |   ^   %   <<   >>   >>>
    +=  -=  *=  /=  &=  |=  ^=  %=  <<=  >>=  >>>=
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C H A P T E R 4
Types, Values, and Variables

THE Java programming language is a strongly typed language, which means that
every variable and every expression has a type that is known at compile time. Types
limit the values that a variable (§4.12) can hold or that an expression can produce,
limit the operations supported on those values, and determine the meaning of the
operations. Strong typing helps detect errors at compile time.

The types of the Java programming language are divided into two categories:
primitive types and reference types. The primitive types (§4.2) are the boolean
type and the numeric types. The numeric types are the integral types byte, short,
int, long, and char, and the floating-point types float and double. The reference
types (§4.3) are class types, interface types, and array types. There is also a special
null type. An object (§4.3.1) is a dynamically created instance of a class type or a
dynamically created array. The values of a reference type are references to objects.
All objects, including arrays, support the methods of class Object (§4.3.2). String
literals are represented by String objects (§4.3.3).

Types exist at compile-time. Some types correspond to classes and interfaces,
which exist at run-time. The correspondence between types and classes or
interfaces is incomplete for two reasons:

1. At run-time, classes and interfaces are loaded by the Java virtual machine using
class loaders. Each class loader defines its own set of classes and interfaces.
As a result, it is possible for two loaders to load an identical class or interface
definition but produce distinct classes or interfaces at run-time.

Consequently, code that compiled correctly may fail at link time if the class
loaders that load it are inconsistent. See the paper Dynamic Class Loading in
the Java™ Virtual Machine, by Sheng Liang and Gilad Bracha, in Proceedings
of OOPSLA '98, published as ACM SIGPLAN Notices, Volume 33, Number
10, October 1998, pages 36-44, and The Java Virtual Machine Specification
for more details.
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2. Type variables (§4.4) and type arguments (§4.5.1) are not reified at run-
time. As a result, the same class or interface at run-time represents different
parameterized types (§4.5) from compile-time. Specifically, all compile-time
invocations of a given generic type declaration (§8.1.2, §9.1.2) share a single
run-time representation.

4.1 The Kinds of Types and Values

There are two kinds of types in the Java programming language: primitive types
(§4.2) and reference types (§4.3). There are, correspondingly, two kinds of data
values that can be stored in variables, passed as arguments, returned by methods,
and operated on: primitive values (§4.2) and reference values (§4.3).

Type:
    PrimitiveType
    ReferenceType

There is also a special null type, the type of the expression null, which has no name.

Because the null type has no name, it is impossible to declare a variable of the null
type or to cast to the null type.

The null reference is the only possible value of an expression of null type.

The null reference can always be cast to any reference type.

4.2 Primitive Types and Values

A primitive type is predefined by the Java programming language and named by
its reserved keyword (§3.9):
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PrimitiveType:
    NumericType
    boolean

NumericType:
    IntegralType
    FloatingPointType

IntegralType: one of
    byte short int long char

FloatingPointType: one of
    float double

Primitive values do not share state with other primitive values.

A variable whose type is a primitive type always holds a primitive value of that
same type.

The value of a variable of primitive type can be changed only by assignment
operations on that variable (including increment (§15.14.2, §15.15.1) and
decrement (§15.14.3, §15.15.2) operators).

The numeric types are the integral types and the floating-point types.

The integral types are byte, short, int, and long, whose values are 8-bit, 16-bit,
32-bit and 64-bit signed two's-complement integers, respectively, and char, whose
values are 16-bit unsigned integers representing UTF-16 code units (§3.1).

The floating-point types are float, whose values include the 32-bit IEEE 754
floating-point numbers, and double, whose values include the 64-bit IEEE 754
floating-point numbers.

The boolean type has exactly two values: true and false.

4.2.1 Integral Types and Values

The values of the integral types are integers in the following ranges:

• For byte, from -128 to 127, inclusive

• For short, from -32768 to 32767, inclusive

• For int, from -2147483648 to 2147483647, inclusive

• For long, from -9223372036854775808 to 9223372036854775807, inclusive
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• For char, from '\u0000' to '\uffff' inclusive, that is, from 0 to 65535

4.2.2 Integer Operations

The Java programming language provides a number of operators that act on integral
values:

• The comparison operators, which result in a value of type boolean:

◆ The numerical comparison operators <, <=, >, and >= (§15.20.1)

◆ The numerical equality operators == and != (§15.21.1)

• The numerical operators, which result in a value of type int or long:

◆ The unary plus and minus operators + and - (§15.15.3, §15.15.4)

◆ The multiplicative operators *, /, and % (§15.17)

◆ The additive operators + and - (§15.18)

◆ The increment operator ++, both prefix (§15.15.1) and postfix (§15.14.2)

◆ The decrement operator --, both prefix (§15.15.2) and postfix (§15.14.3)

◆ The signed and unsigned shift operators <<, >>, and >>> (§15.19)

◆ The bitwise complement operator ~ (§15.15.5)

◆ The integer bitwise operators &, |, and ^ (§15.22.1)

• The conditional operator ? : (§15.25)

• The cast operator, which can convert from an integral value to a value of any
specified numeric type (§5.5, §15.16)

• The string concatenation operator + (§15.18.1), which, when given a String
operand and an integral operand, will convert the integral operand to a String
representing its value in decimal form, and then produce a newly created String
that is the concatenation of the two strings

Other useful constructors, methods, and constants are predefined in the classes
Byte, Short, Integer, Long, and Character.

If an integer operator other than a shift operator has at least one operand of type
long, then the operation is carried out using 64-bit precision, and the result of
the numerical operator is of type long. If the other operand is not long, it is first
widened (§5.1.5) to type long by numeric promotion (§5.6).
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Otherwise, the operation is carried out using 32-bit precision, and the result of the
numerical operator is of type int. If either operand is not an int, it is first widened
to type int by numeric promotion.

The built-in integer operators do not indicate overflow or underflow in any way.

Integer operators can throw a NullPointerException if unboxing conversion
(§5.1.8) of a null reference is required.

Other than that, the only integer operators that can throw an exception (Chapter 11,
Exceptions) are the integer divide operator / (§15.17.2) and the integer remainder
operator % (§15.17.3), which throw an ArithmeticException if the right-hand
operand is zero, and the increment and decrement operators ++ (§15.15.1, §15.15.2)
and -- (§15.14.3, §15.14.2), which can throw an OutOfMemoryError if boxing
conversion (§5.1.7) is required and there is not sufficient memory available to
perform the conversion.

Any value of any integral type may be cast to or from any numeric type. There are
no casts between integral types and the type boolean.

4.2.3 Floating-Point Types, Formats, and Values

The floating-point types are float and double, which are conceptually associated
with the single-precision 32-bit and double-precision 64-bit format IEEE 754
values and operations as specified in IEEE Standard for Binary Floating-Point
Arithmetic, ANSI/IEEE Standard 754-1985 (IEEE, New York).

The IEEE 754 standard includes not only positive and negative numbers that consist
of a sign and magnitude, but also positive and negative zeros, positive and negative
infinities, and special Not-a-Number values (hereafter abbreviated NaN). A NaN
value is used to represent the result of certain invalid operations such as dividing
zero by zero. NaN constants of both float and double type are predefined as
Float.NaN and Double.NaN.

Every implementation of the Java programming language is required to support two
standard sets of floating-point values, called the float value set and the double value
set. In addition, an implementation of the Java programming language may support
either or both of two extended-exponent floating-point value sets, called the float-
extended-exponent value set and the double-extended-exponent value set. These
extended-exponent value sets may, under certain circumstances, be used instead
of the standard value sets to represent the values of expressions of type float or
double (§5.1.13, §15.4).
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The finite nonzero values of any floating-point value set can all be expressed in
the form s · m · 2(e - N + 1), where s is +1 or -1, m is a positive integer less than
2N, and e is an integer between Emin = -(2K-1-2) and Emax = 2K-1-1, inclusive, and
where N and K are parameters that depend on the value set. Some values can
be represented in this form in more than one way; for example, supposing that a
value v in a value set might be represented in this form using certain values for
s, m, and e, then if it happened that m were even and e were less than 2K-1, one
could halve m and increase e by 1 to produce a second representation for the same
value v. A representation in this form is called normalized if m ≥ 2(N-1); otherwise
the representation is said to be denormalized. If a value in a value set cannot be
represented in such a way that m ≥ 2(N-1), then the value is said to be a denormalized
value, because it has no normalized representation.

The constraints on the parameters N and K (and on the derived parameters Emin
and Emax) for the two required and two optional floating-point value sets are
summarized in Table 4.1.

Table 4.1. Floating-point value set parameters

Parameter float float-
extended-
exponent

double double-
extended-
exponent

N 24 24 53 53

K 8 ≥ 11 ≥ 11 15

Emax +127 ≥ +1023 +1023 ≥ +16383

Emin -126 ≤ -1022 -1022 ≤ -16382

Where one or both extended-exponent value sets are supported by an
implementation, then for each supported extended-exponent value set there is
a specific implementation-dependent constant K, whose value is constrained by
Table 4.1; this value K in turn dictates the values for Emin and Emax.

Each of the four value sets includes not only the finite nonzero values that are
ascribed to it above, but also NaN values and the four values positive zero, negative
zero, positive infinity, and negative infinity.

Note that the constraints in Table 4.1 are designed so that every element of the
float value set is necessarily also an element of the float-extended-exponent value
set, the double value set, and the double-extended-exponent value set. Likewise,
each element of the double value set is necessarily also an element of the double-
extended-exponent value set. Each extended-exponent value set has a larger range
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of exponent values than the corresponding standard value set, but does not have
more precision.

The elements of the float value set are exactly the values that can be represented
using the single floating-point format defined in the IEEE 754 standard. The
elements of the double value set are exactly the values that can be represented using
the double floating-point format defined in the IEEE 754 standard. Note, however,
that the elements of the float-extended-exponent and double-extended-exponent
value sets defined here do not correspond to the values that can be represented
using IEEE 754 single extended and double extended formats, respectively.

The float, float-extended-exponent, double, and double-extended-exponent value
sets are not types. It is always correct for an implementation of the Java
programming language to use an element of the float value set to represent a value
of type float; however, it may be permissible in certain regions of code for an
implementation to use an element of the float-extended-exponent value set instead.
Similarly, it is always correct for an implementation to use an element of the double
value set to represent a value of type double; however, it may be permissible in
certain regions of code for an implementation to use an element of the double-
extended-exponent value set instead.

Except for NaN, floating-point values are ordered; arranged from smallest to
largest, they are negative infinity, negative finite nonzero values, positive and
negative zero, positive finite nonzero values, and positive infinity.

IEEE 754 allows multiple distinct NaN values for each of its single and double
floating-point formats. While each hardware architecture returns a particular bit
pattern for NaN when a new NaN is generated, a programmer can also create
NaNs with different bit patterns to encode, for example, retrospective diagnostic
information.

For the most part, the Java SE platform treats NaN values of a given
type as though collapsed into a single canonical value (and hence this
specification normally refers to an arbitrary NaN as though to a canonical value).
However, version 1.3 of the Java SE platform introduced methods enabling the
programmer to distinguish between NaN values: the Float.floatToRawIntBits
and Double.doubleToRawLongBits methods. The interested reader is referred to
the specifications for the Float and Double classes for more information.

Positive zero and negative zero compare equal; thus the result of the expression
0.0==-0.0 is true and the result of 0.0>-0.0 is false. But other operations can
distinguish positive and negative zero; for example, 1.0/0.0 has the value positive
infinity, while the value of 1.0/-0.0 is negative infinity.
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NaN is unordered, so the numerical comparison operators <, <=, >, and >= return
false if either or both operands are NaN (§15.20.1). The equality operator ==
returns false if either operand is NaN, and the inequality operator != returns true
if either operand is NaN (§15.21.1). In particular, x!=x is true if and only if x is
NaN, and (x<y) == !(x>=y) will be false if x or y is NaN.

Any value of a floating-point type may be cast to or from any numeric type. There
are no casts between floating-point types and the type boolean.

4.2.4 Floating-Point Operations

The Java programming language provides a number of operators that act on
floating-point values:

• The comparison operators, which result in a value of type boolean:

◆ The numerical comparison operators <, <=, >, and >= (§15.20.1)

◆ The numerical equality operators == and != (§15.21.1)

• The numerical operators, which result in a value of type float or double:

◆ The unary plus and minus operators + and - (§15.15.3, §15.15.4)

◆ The multiplicative operators *, /, and % (§15.17)

◆ The additive operators + and - (§15.18.2)

◆ The increment operator ++, both prefix (§15.15.1) and postfix (§15.14.2)

◆ The decrement operator --, both prefix (§15.15.2) and postfix (§15.14.3)

• The conditional operator ? : (§15.25)

• The cast operator, which can convert from a floating-point value to a value of
any specified numeric type (§5.5, §15.16)

• The string concatenation operator + (§15.18.1), which, when given a String
operand and a floating-point operand, will convert the floating-point operand to
a String representing its value in decimal form (without information loss), and
then produce a newly created String by concatenating the two strings

Other useful constructors, methods, and constants are predefined in the classes
Float, Double, and Math.

If at least one of the operands to a binary operator is of floating-point type, then
the operation is a floating-point operation, even if the other is integral.
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If at least one of the operands to a numerical operator is of type double, then the
operation is carried out using 64-bit floating-point arithmetic, and the result of the
numerical operator is a value of type double. (If the other operand is not a double,
it is first widened to type double by numeric promotion (§5.6).) Otherwise, the
operation is carried out using 32-bit floating-point arithmetic, and the result of the
numerical operator is a value of type float. If the other operand is not a float, it
is first widened to type float by numeric promotion.

Operators on floating-point numbers behave as specified by IEEE 754 (with
the exception of the remainder operator (§15.17.3)). In particular, the Java
programming language requires support of IEEE 754 denormalized floating-point
numbers and gradual underflow, which make it easier to prove desirable properties
of particular numerical algorithms. Floating-point operations do not "flush to zero"
if the calculated result is a denormalized number.

The Java programming language requires that floating-point arithmetic behave
as if every floating-point operator rounded its floating-point result to the result
precision. Inexact results must be rounded to the representable value nearest to the
infinitely precise result; if the two nearest representable values are equally near,
the one with its least significant bit zero is chosen. This is the IEEE 754 standard's
default rounding mode known as round to nearest.

The language uses round toward zero when converting a floating value to an integer
(§5.1.3), which acts, in this case, as though the number were truncated, discarding
the mantissa bits. Rounding toward zero chooses at its result the format's value
closest to and no greater in magnitude than the infinitely precise result.

Floating-point operators can throw a NullPointerException if unboxing
conversion (§5.1.8) of a null reference is required. Other than that, the only
floating-point operators that can throw an exception (Chapter 11, Exceptions) are
the increment and decrement operators ++ (§15.15.1, §15.15.2) and -- (§15.14.3,
§15.14.2), which can throw an OutOfMemoryError if boxing conversion (§5.1.7)
is required and there is not sufficient memory available to perform the conversion.

An operation that overflows produces a signed infinity, an operation that
underflows produces a denormalized value or a signed zero, and an operation that
has no mathematically definite result produces NaN. All numeric operations with
NaN as an operand produce NaN as a result. As has already been described, NaN is
unordered, so a numeric comparison operation involving one or two NaNs returns
false and any != comparison involving NaN returns true, including x!=x when
x is NaN.
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4.2.5 The boolean Type and boolean Values

The boolean type represents a logical quantity with two possible values, indicated
by the literals true and false (§3.10.3). The boolean operators are:

• The relational operators == and != (§15.21.2)

• The logical-complement operator ! (§15.15.6)

• The logical operators &, ^, and | (§15.22.2)

• The conditional-and and conditional-or operators && (§15.23) and || (§15.24)

• The conditional operator ? : (§15.25)

• The string concatenation operator + (§15.18.1), which, when given a String
operand and a boolean operand, will convert the boolean operand to a String
(either "true" or "false"), and then produce a newly created String that is the
concatenation of the two strings

Boolean expressions determine the control flow in several kinds of statements:

• The if statement (§14.9)

• The while statement (§14.12)

• The do statement (§14.13)

• The for statement (§14.14)

A boolean expression also determines which subexpression is evaluated in the
conditional ? : operator (§15.25).

Only boolean and Boolean expressions can be used in control flow statements and
as the first operand of the conditional operator ? :.

An integer x can be converted to a boolean, following the C language convention
that any nonzero value is true, by the expression x!=0.

An object reference obj can be converted to a boolean, following the C language
convention that any reference other than null is true, by the expression obj!
=null.

A cast of a boolean value to type boolean or Boolean is allowed (§5.1.1); no other
casts on type boolean are allowed.

A boolean can be converted to a String by string conversion (§5.4).
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4.3 Reference Types and Values

There are four kinds of reference types: class types (Chapter 8, Classes), interface
types (Chapter 9, Interfaces), type variables (§4.4), and array types (Chapter 10,
Arrays).

ReferenceType:
    ClassOrInterfaceType
    TypeVariable
    ArrayType

ClassOrInterfaceType:
    ClassType
    InterfaceType

ClassType:
    TypeDeclSpecifier TypeArgumentsopt

InterfaceType:
    TypeDeclSpecifier TypeArgumentsopt

TypeDeclSpecifier:
    Identifier
    ClassOrInterfaceType . Identifier

TypeName:
    Identifier
    TypeName . Identifier

TypeVariable:
    Identifier

ArrayType:
    Type [ ]

A class or interface type consists of a type declaration specifier, optionally
followed by type arguments (§4.5.1). If type arguments appear anywhere in a class
or interface type, it is a parameterized type (§4.5).

A type declaration specifier may be either a type name (§6.5.5), or a class or
interface type followed by "." and an identifier. In the latter case, the specifier has
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the form T.id, where id must be the simple name of an accessible (§6.6) member
type (§8.5, §9.5) of T, or a compile-time error occurs. The specifier denotes that
member type.

4.3.1 Objects

An object is a class instance or an array.

The reference values (often just references) are pointers to these objects, and a
special null reference, which refers to no object.

A class instance is explicitly created by a class instance creation expression (§15.9).
An array is explicitly created by an array creation expression (§15.10).

A new class instance is implicitly created when the string concatenation operator +
(§15.18.1) is used in a non-constant (§15.28) expression, resulting in a new object
of type String (§4.3.3).

A new array object is implicitly created when an array initializer expression (§10.6)
is evaluated; this can occur when a class or interface is initialized (§12.4), when
a new instance of a class is created (§15.9), or when a local variable declaration
statement is executed (§14.4).

New objects of the types Boolean, Byte, Short, Character, Integer, Long, Float,
and Double may be implicitly created by boxing conversion (§5.1.7).

The operators on references to objects are:

• Field access, using either a qualified name (§6.6) or a field access expression
(§15.11)

• Method invocation (§15.12)

• The cast operator (§5.5, §15.16)

• The string concatenation operator + (§15.18.1), which, when given a String
operand and a reference, will convert the reference to a String by invoking the
toString method of the referenced object (using "null" if either the reference
or the result of toString is a null reference), and then will produce a newly
created String that is the concatenation of the two strings

• The instanceof operator (§15.20.2)

• The reference equality operators == and != (§15.21.3)

• The conditional operator ? : (§15.25).
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There may be many references to the same object. Most objects have state, stored
in the fields of objects that are instances of classes or in the variables that are the
components of an array object. If two variables contain references to the same
object, the state of the object can be modified using one variable's reference to the
object, and then the altered state can be observed through the reference in the other
variable.

Each object has an associated lock (§17.1), which is used by synchronized
methods (§8.4.3) and the synchronized statement (§14.19) to provide control over
concurrent access to state by multiple threads (Chapter 17, Threads and Locks).

4.3.2 The Class Object

The class Object is a superclass (§8.1) of all other classes.

All class and array types inherit the methods of class Object, which are
summarized as follows:

• The method clone is used to make a duplicate of an object.

• The method equals defines a notion of object equality, which is based on value,
not reference, comparison.

• The method finalize is run just before an object is destroyed (§12.6).

• The method getClass returns the Class object that represents the class of the
object for reflection purposes. A Class object exists for each reference type.

The type of a method invocation expression of getClass is Class<? extends
|T|> where T is the class or interface searched (§15.12.1) for getClass.

A class method that is declared synchronized (§8.4.3.6) synchronizes on the
lock associated with the Class object of the class.

• The method hashCode is very useful, together with the method equals, in
hashtables such as java.util.Hashmap.

• The methods wait, notify, and notifyAll are used in concurrent programming
using threads (§17.2).

• The method toString returns a String representation of the object.

A variable of type Object can hold a reference to the null reference or to any object,
whether it is an instance of a class or an array (Chapter 10, Arrays).
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4.3.3 The Class String

Instances of class String represent sequences of Unicode code points.

A String object has a constant (unchanging) value.

String literals (§3.10.5) are references to instances of class String.

The string concatenation operator + (§15.18.1) implicitly creates a new String
object when the result is not a compile-time constant expression (§15.28).

4.3.4 When Reference Types Are the Same

Two reference types are the same compile-time type if they have the same binary
name (§13.1) and their type arguments, if any, are the same, applying this definition
recursively.

When two reference types are the same, they are sometimes said to be the same
class or the same interface.

At run time, several reference types with the same binary name may be loaded
simultaneously by different class loaders. These types may or may not represent
the same type declaration. Even if two such types do represent the same type
declaration, they are considered distinct.

Two reference types are the same run-time type if:

• They are both class or both interface types, are defined by the same class loader,
and have the same binary name (§13.1), in which case they are sometimes said
to be the same run-time class or the same run-time interface.

• They are both array types, and their component types are the same run-time type
(Chapter 10, Arrays).

4.4 Type Variables

A type variable is an unqualified identifier.

A type variable is known as a type parameter when it is introduced by a generic
class declaration (§8.1.2), generic interface declaration (§9.1.2), generic method
declaration (§8.4.4), or generic constructor declaration (§8.8.4).
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TypeParameter:
    TypeVariable TypeBoundopt

TypeBound:
    extends TypeVariable
    extends ClassOrInterfaceType AdditionalBoundListopt

AdditionalBoundList:
    AdditionalBound AdditionalBoundList
    AdditionalBound

AdditionalBound:
    & InterfaceType

A type variable has an optional bound, T & I1 & ... & In. The bound consists of
either a type variable, or a class or interface type T possibly followed by further
interface types I1, ..., In. If no bound is given for a type variable, Object is assumed.

It is a compile-time error if any of the types I1 ... In is a class type or type variable.

The erasures (§4.6) of all constituent types of a bound must be pairwise different,
or a compile-time error occurs.

The order of types in a bound is only significant in that the erasure of a type variable
is determined by the first type in its bound, and that a class type or type variable
may only appear in the first position.

A type variable may not at the same time be a subtype of two interface types which
are different parameterizations of the same generic interface.

The members of a type variable X with bound T & I1 & ... & In are the members
of the intersection type (§4.9) T & I1 & ... & In appearing at the point where the
type variable is declared.

4.5 Parameterized Types

A generic class or interface declaration C (§8.1.2, §9.1.2) with one or more type
parameters A1,...,An which have corresponding bounds B1,...,Bn defines a set of
parameterized types, one for each possible invocation of the type parameter section.

A parameterized type is written as a ClassType or InterfaceType that contains at
least one type declaration specifier immediately followed by a type argument list
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<T1,...,Tn>. The type argument list denotes a particular invocation of the type
parameters of the generic type indicated by the type declaration specifier.

Given a type declaration specifier immediately followed by a type argument list,
let C be the final Identifier in the specifier.

It is a compile-time error if C is not the name of a generic class or interface, or if
the number of type arguments in the type argument list differs from the number
of type parameters of C.

Let P = C<T1,...,Tn> be a parameterized type. It must be the case that, after P is
subjected to capture conversion (§5.1.10) resulting in the type C<X1,...,Xn>, for each
type argument Xi (1 ≤ i ≤ n), Xi <: Bi[A1:=X1,...,An:=Xn] (§4.10), or a compile-
time error occurs.

In this specification, whenever we speak of a class or interface type, we include the
generic version as well, unless explicitly excluded.

Two parameterized types are provably distinct if either of the following conditions
hold:

• They are invocations of distinct generic type declarations.

• Any of their type arguments are provably distinct.

4.5.1 Type Arguments and Wildcards

Type arguments may be either reference types or wildcards. Wildcards are useful
in situations where only partial knowledge about the type parameter is required.
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TypeArguments:
    < TypeArgumentList >

TypeArgumentList: 
    TypeArgument
    TypeArgumentList , TypeArgument

TypeArgument:
    ReferenceType
    Wildcard

Wildcard:
    ? WildcardBoundsopt

WildcardBounds:
    extends ReferenceType
    super ReferenceType

Wildcards may be given explicit bounds, just like regular type variable
declarations. An upper bound is signified by the syntax:

? extends B

where B is the bound.

Unlike ordinary type variables declared in a method signature, no type inference
is required when using a wildcard. Consequently, it is permissible to declare lower
bounds on a wildcard, using the syntax:

? super B

where B is a lower bound.

Two type arguments are provably distinct if one of the following is true:

• Neither argument is a type variable or wildcard, and the two arguments are not
the same type.

• One type argument is a type variable or wildcard, with an upper bound (from
capture conversion, if necessary) of S; and the other type argument T is not a
type variable or wildcard; and neither |S| <: |T| nor |T| <: |S|.

• Each type argument is a type variable or wildcard, with upper bounds (from
capture conversion, if necessary) of S and T; and neither |S| <: |T| nor |T| <: |S|.
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A type argument T1 is said to contain another type argument T2, written T2 <= T1,
if the set of types denoted by T2 is provably a subset of the set of types denoted
by T1 under the reflexive and transitive closure of the following rules (where <:
denotes subtyping (§4.10)):

• ? extends T <= ? extends S if T <: S

• ? super T <= ? super S if S <: T

• T <= T

• T <= ? extends T

• T <= ? super T

4.5.2 Members and Constructors of Parameterized Types

Let C be a generic class or interface declaration with type parameters A1,...,An, and
let C<T1,...,Tn> be an invocation of C, where, for 1 ≤ i ≤ n, Ti are types (rather than
wildcards). Then:

• Let m be a member or constructor declaration (§8.2, §8.8.6) in C, whose type as
declared is T. Then the type of m in C<T1,...,Tn>, is T[A1:=T1,...,An:=Tn].

• Let m be a member or constructor declaration in D, where D is a class extended
by C or an interface implemented by C. Let D<U1,...,Uk> be the supertype of
C<T1,...,Tn> that corresponds to D. Then the type of m in C<T1,...,Tn> is the type
of m in D<U1,...,Uk>.

If any of the type arguments in the invocation of C are wildcards, then:

• The types of the fields, methods, and constructors in C<T1,...,Tn> are undefined.

• Let D be a (possibly generic) class or interface declaration in C. Then the type
of D in C<T1,...,Tn> is D where, if D is generic, all type arguments are unbounded
wildcards.

4.6 Type Erasure

Type erasure is a mapping from types (possibly including parameterized types and
type variables) to types (that are never parameterized types or type variables). We
write |T| for the erasure of type T. The erasure mapping is defined as follows.

• The erasure of a parameterized type (§4.5) G<T1,...,Tn> is |G|.
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• The erasure of a nested type T.C is |T|.C.

• The erasure of an array type T[] is |T|[].

• The erasure of a type variable (§4.4) is the erasure of its leftmost bound.

• The erasure of every other type is the type itself.

Type erasure also maps the signature (§8.4.2) of a constructor or method to a
signature that has no parameterized types or type variables. The erasure of a
constructor or method signature s is a signature consisting of the same name as s
and the erasures of all the formal parameter types given in s.

The type parameters of a constructor or method (§8.4.4), and the return type
(§8.4.5) of a method, also undergo erasure if the constructor or method's signature
is erased.

The erasure of the signature of a generic method has no type parameters.

4.7 Reifiable Types

Because some type information is erased during compilation, not all types are
available at run time. Types that are completely available at run time are known
as reifiable types.

A type is reifiable if and only if one of the following holds:

• It refers to a non-generic class or interface type declaration.

• It is a parameterized type in which all type arguments are unbounded wildcards
(§4.5.1).

• It is a raw type (§4.8).

• It is a primitive type (§4.2).

• It is an array type (§10.1) whose element type is reifiable.

• It is a nested type where, for each type T separated by a ".", T itself is reifiable.

An intersection type is not reifiable.
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4.8 Raw Types

To facilitate interfacing with non-generic legacy code, it is possible to use as a type
the erasure (§4.6) of a parameterized type (§4.5). Such a type is called a raw type.

More precisely, a raw type is defined to be one of:

• The reference type that is formed by taking the name of a generic type
declaration without an accompanying type argument list.

• An array type whose element type is a raw type.

• A non-static type member of a raw type R that is not inherited from a superclass
or superinterface of R.

A non-generic class or interface type is not a raw type.

The superclasses (respectively, superinterfaces) of a raw type are the erasures of
the superclasses (superinterfaces) of any of its parameterized invocations.

The type of a constructor (§8.8), instance method (§8.4, §9.4), or non-static field
(§8.3) M of a raw type C that is not inherited from its superclasses or superinterfaces
is the raw type that corresponds to the erasure of its type in the generic declaration
corresponding to C.

The type of a static method or static field of a raw type C is the same as its type in
the generic declaration corresponding to C.

It is a compile-time error to pass type arguments to a non-static type member of a
raw type that is not inherited from its superclasses or superinterfaces.

It is a compile-time error to attempt to use a type member of a parameterized type
as a raw type.

The use of raw types is allowed only as a concession to compatibility of legacy
code. The use of raw types in code written after the introduction of genericity into
the Java programming language is strongly discouraged. It is possible that future
versions of the Java programming language will disallow the use of raw types.

To make sure that potential violations of the typing rules are always flagged, some
accesses to members of a raw type will result in compile-time warnings. The rules
for compile-time warnings when accessing members or constructors of raw types
are as follows:

• At an assignment to a field: if the type of the left-hand operand is a raw type,
then an unchecked warning occurs if erasure changes the field's type.
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• At an invocation of a method or constructor: if the type of the class or interface
to search (§15.12.1) is a raw type, then an unchecked warning occurs if erasure
changes any of the types of any of the arguments to the method or constructor.

• No unchecked warning is required for a method call when the argument types do
not change under erasure (even if the result type and/or throws clause changes),
for reading from a field, or for a class instance creation of a raw type.

The supertype of a class may be a raw type. Member accesses for the class are
treated as normal, and member accesses for the supertype are treated as for raw
types. In the constructor of the class, calls to super are treated as method calls on
a raw type.

4.9 Intersection Types

An intersection type takes the form T1 & ... & Tn (n > 0), where Ti (1 ≤ i ≤ n)
are type expressions.

Intersection types arise in the processes of capture conversion (§5.1.10) and type
inference (§15.12.2.7). It is not possible to write an intersection type directly as
part of a program; no syntax supports this.

The values of an intersection type are those objects that are values of all of the
types Ti for 1 ≤ i ≤ n.

The members of an intersection type T1 & ... & Tn are determined as follows:

• For each Ti (1 ≤ i ≤ n), let Ci be the most specific class or array type such that
Ti <: Ci. Then there must be some Tk <: Ck such that Ck <: Ci for any i (1 ≤ i ≤
n), or a compile-time error occurs.

• For 1 ≤ j ≤ n, if Tj is a type variable, then let Tj' be an interface whose members
are the same as the public members of Tj; otherwise, if Tj is an interface, then
let Tj' be Tj.

• Then the intersection type has the same members as a class type (Chapter 8,
Classes) with an empty body, direct superclass Ck and direct superinterfaces
T1', ..., Tn', declared in the same package in which the intersection type appears.

4.10 Subtyping

The subtype and supertype relations are binary relations on types.
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The supertypes of a type are obtained by reflexive and transitive closure over the
direct supertype relation, written S >1 T, which is defined by rules given later in
this section. We write S :> T to indicate that the supertype relation holds between
S and T.

S is a proper supertype of T, written S > T, if S :> T and S ≠ T.

The subtypes of a type T are all types U such that T is a supertype of U, and the
null type. We write T <: S to indicate that that the subtype relation holds between
types T and S.

T is a proper subtype of S, written T < S, if T <: S and S ≠ T.

T is a direct subtype of S, written T <1 S, if S >1 T.

Subtyping does not extend through parameterized types: T <: S does not imply that
C<T> <: C<S>.

4.10.1 Subtyping among Primitive Types

The following rules define the direct supertype relation among the primitive types:

• double >1 float

• float >1 long

• long >1 int

• int >1 char

• int >1 short

• short >1 byte

4.10.2 Subtyping among Class and Interface Types

Given a generic type declaration C<F1,...,Fn>, the direct supertypes of the
parameterized type C<T1,...,Tn> are all of the following:

• the direct superclasses of C

• the direct superinterfaces of C

• the type Object, if C is an interface type with no direct superinterfaces.

• The raw type C.

The direct supertypes of the type C<T1,...,Tn>, where Ti (1 ≤ i ≤ n) is a type, are
D<U1 θ,...,Uk θ>, where:
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• D<U1,...,Uk> is a direct supertype of C<F1,...,Fn>, and θ is the substitution
[F1:=T1,...,Fn:=Tn].

• C<S1,...,Sn> where Si contains Ti (§4.5.1) for 1 ≤ i ≤ n.

The direct supertypes of the type C<R1,...,Rn>, where at least one of the Ri (1
≤ i ≤ n) is a wildcard type argument, are the direct supertypes of C<X1,...,Xn>,
where C<X1,...,Xn> is the result of applying capture conversion (§5.1.10) to
C<R1,...,Rn>.

The direct supertypes of an intersection type (§4.9) T1 & ... & Tn, are Ti (1 ≤ i ≤ n).

The direct supertypes of a type variable are the types listed in its bound.

A type variable is a direct supertype of its lower bound.

The direct supertypes of the null type are all reference types other than the null
type itself.

4.10.3 Subtyping among Array Types

The following rules define the direct subtype relation among array types:

• If S and T are both reference types, then S[] >1 T[] iff S >1 T.

• Object >1 Object[]

• Cloneable >1 Object[]

• java.io.Serializable >1 Object[]

• If P is a primitive type, then:

◆ Object >1 P[]

◆ Cloneable >1 P[]

◆ java.io.Serializable >1 P[]

4.11 Where Types Are Used

Types are used when they appear in declarations or in certain expressions.

Types are also used as arguments to parameterized types.
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4.12 Variables

A variable is a storage location and has an associated type, sometimes called its
compile-time type, that is either a primitive type (§4.2) or a reference type (§4.3).

A variable's value is changed by an assignment (§15.26) or by a prefix or postfix +
+ (increment) or -- (decrement) operator (§15.14.2, §15.14.3, §15.15.1, §15.15.2).

4.12.1 Variables of Primitive Type

A variable of a primitive type always holds a value of that exact primitive type.

4.12.2 Variables of Reference Type

A variable of a class type T can hold a null reference or a reference to an instance
of class T or of any class that is a subclass of T.

A variable of an interface type can hold a null reference or a reference to any
instance of any class that implements the interface.

If T is a primitive type, then a variable of type "array of T" can hold a null reference
or a reference to any array of type "array of T".

If T is a reference type, then a variable of type "array of T" can hold a null reference
or a reference to any array of type "array of S" such that type S is a subclass or
subinterface of type T.

A variable of type Object[] can hold an array of any reference type.

A variable of type Object can hold a null reference or a reference to any object,
whether class instance or array.

It is possible that a variable of a parameterized type will refer to an object that is
not of that parameterized type. This situation is known as heap pollution. Heap
pollution can only occur if the program performed some operation involving a raw
type that would give rise to an unchecked warning at compile-time (§4.9, §5.1.9).

The variable will always refer to an object that is an instance of a class that
represents the parameterized type.

4.12.3 Kinds of Variables

There are seven kinds of variables:
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1. A class variable is a field declared using the keyword static within a class
declaration (§8.3.1.1), or with or without the keyword static within an
interface declaration (§9.3).

A class variable is created when its class or interface is prepared (§12.3.2) and
is initialized to a default value (§4.12.5). The class variable effectively ceases
to exist when its class or interface is unloaded (§12.7).

2. An instance variable is a field declared within a class declaration without using
the keyword static (§8.3.1.1).

If a class T has a field a that is an instance variable, then a new instance variable
a is created and initialized to a default value (§4.12.5) as part of each newly
created object of class T or of any class that is a subclass of T (§8.1.4). The
instance variable effectively ceases to exist when the object of which it is a field
is no longer referenced, after any necessary finalization of the object (§12.6)
has been completed.

3. Array components are unnamed variables that are created and initialized to
default values (§4.12.5) whenever a new object that is an array is created
(Chapter 10, Arrays, §15.10). The array components effectively cease to exist
when the array is no longer referenced.

4. Method parameters (§8.4.1) name argument values passed to a method.

For every parameter declared in a method declaration, a new parameter variable
is created each time that method is invoked (§15.12). The new variable is
initialized with the corresponding argument value from the method invocation.
The method parameter effectively ceases to exist when the execution of the
body of the method is complete.

5. Constructor parameters (§8.8.1) name argument values passed to a
constructor.

For every parameter declared in a constructor declaration, a new parameter
variable is created each time a class instance creation expression (§15.9) or
explicit constructor invocation (§8.8.7) invokes that constructor. The new
variable is initialized with the corresponding argument value from the creation
expression or constructor invocation. The constructor parameter effectively
ceases to exist when the execution of the body of the constructor is complete.

6. An exception parameter is created each time an exception is caught by a catch
clause of a try statement (§14.20).
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The new variable is initialized with the actual object associated with the
exception (§11.3, §14.18). The exception parameter effectively ceases to exist
when execution of the block associated with the catch clause is complete.

7. Local variables are declared by local variable declaration statements (§14.4).

Whenever the flow of control enters a block (§14.2) or for statement (§14.14),
a new variable is created for each local variable declared in a local variable
declaration statement immediately contained within that block or for statement.

A local variable declaration statement may contain an expression which
initializes the variable. The local variable with an initializing expression is
not initialized, however, until the local variable declaration statement that
declares it is executed. (The rules of definite assignment (Chapter 16, Definite
Assignment) prevent the value of a local variable from being used before it has
been initialized or otherwise assigned a value.) The local variable effectively
ceases to exist when the execution of the block or for statement is complete.

Were it not for one exceptional situation, a local variable could always be
regarded as being created when its local variable declaration statement is
executed. The exceptional situation involves the switch statement (§14.11),
where it is possible for control to enter a block but bypass execution of a
local variable declaration statement. Because of the restrictions imposed by the
rules of definite assignment (Chapter 16, Definite Assignment), however, the
local variable declared by such a bypassed local variable declaration statement
cannot be used before it has been definitely assigned a value by an assignment
expression (§15.26).

4.12.4 final Variables

A variable can be declared final. A final variable may only be assigned to once.

It is a compile-time error if a final variable is assigned to unless it is definitely
unassigned (Chapter 16, Definite Assignment) immediately prior to the assignment.

A blank final is a final variable whose declaration lacks an initializer.

Once a final variable has been assigned, it always contains the same value. If a
final variable holds a reference to an object, then the state of the object may be
changed by operations on the object, but the variable will always refer to the same
object.

We call a variable, of primitive type or type String, that is final and initialized
with a compile-time constant expression (§15.28) a constant variable.
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4.12.5 Initial Values of Variables

Every variable in a program must have a value before its value is used.

• Each class variable, instance variable, or array component is initialized with a
default value when it is created (§15.9, §15.10):

◆ For type byte, the default value is zero, that is, the value of (byte)0.

◆ For type short, the default value is zero, that is, the value of (short)0.

◆ For type int, the default value is zero, that is, 0.

◆ For type long, the default value is zero, that is, 0L.

◆ For type float, the default value is positive zero, that is, 0.0f.

◆ For type double, the default value is positive zero, that is, 0.0d.

◆ For type char, the default value is the null character, that is, '\u0000'.

◆ For type boolean, the default value is false.

◆ For all reference types (§4.3), the default value is null.

• Each method parameter (§8.4.1) is initialized to the corresponding argument
value provided by the invoker of the method (§15.12).

• Each constructor parameter (§8.8.1) is initialized to the corresponding argument
value provided by a class instance creation expression (§15.9) or explicit
constructor invocation (§8.8.7).

• An exception parameter (§14.20) is initialized to the thrown object representing
the exception (§11.3, §14.18).

• A local variable (§14.4, §14.14) must be explicitly given a value before it is
used, by either initialization (§14.4) or assignment (§15.26), in a way that can be
verified by the Java compiler using the rules for definite assignment (Chapter 16,
Definite Assignment).

4.12.6 Types, Classes, and Interfaces

In the Java programming language, every variable and every expression has a type
that can be determined at compile-time. The type may be a primitive type or a
reference type. Reference types include class types and interface types. Reference
types are introduced by type declarations, which include class declarations (§8.1)
and interface declarations (§9.1). We often use the term type to refer to either a
class or an interface.
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Every object belongs to some particular class: the class that was mentioned in the
creation expression that produced the object, the class whose Class object was
used to invoke a reflective method to produce the object, or the String class for
objects implicitly created by the string concatenation operator + (§15.18.1). This
class is called the class of the object. (Arrays also have a class, as described at
the end of this section.) An object is said to be an instance of its class and of all
superclasses of its class.

Sometimes a variable or expression is said to have a "run-time type". This refers
to the class of the object referred to by the value of the variable or expression at
run time, assuming that the value is not null.

The compile-time type of a variable is always declared, and the compile-time type
of an expression can be deduced at compile-time. The compile-time type limits the
possible values that the variable can hold or the expression can produce at run time.
If a run-time value is a reference that is not null, it refers to an object or array
that has a class, and that class will necessarily be compatible with the compile-
time type.

Even though a variable or expression may have a compile-time type that is an
interface type, there are no instances of interfaces. A variable or expression whose
type is an interface type can reference any object whose class implements (§8.1.5)
that interface.

Every array also has a class (§10.8); the method getClass, when invoked for an
array object, will return a class object (of class Class) that represents the class of
the array.
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C H A P T E R 5
Conversions and Promotions

EVERY expression written in the Java programming language has a type that
can be deduced from the structure of the expression and the types of the literals,
variables, and methods mentioned in the expression. It is possible, however, to
write an expression in a context where the type of the expression is not appropriate.
In some cases, this leads to an error at compile time. In other cases, the context may
be able to accept a type that is related to the type of the expression; as a convenience,
rather than requiring the programmer to indicate a type conversion explicitly, the
language performs an implicit conversion from the type of the expression to a type
acceptable for its surrounding context.

A specific conversion from type S to type T allows an expression of type S to be
treated at compile time as if it had type T instead. In some cases this will require
a corresponding action at run time to check the validity of the conversion or to
translate the run-time value of the expression into a form appropriate for the new
type T.

In every conversion context, only certain specific conversions are permitted. For
convenience of description, the specific conversions that are possible in the Java
programming language are grouped into several broad categories:

• Identity conversions

• Widening primitive conversions

• Narrowing primitive conversions

• Widening reference conversions

• Narrowing reference conversions

• Boxing conversions

• Unboxing conversions

• Unchecked conversions
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• Capture conversions

• String conversions

• Value set conversions

There are five conversion contexts in which conversion of expressions may occur.
Each context allows conversions in some of the categories named above but not
others. The term "conversion" is also used to describe the process of choosing a
specific conversion for such a context. For example, we say that an expression
that is an actual argument in a method invocation is subject to "method invocation
conversion," meaning that a specific conversion will be implicitly chosen for that
expression according to the rules for the method invocation argument context.

One conversion context is the operand of a numeric operator such as + or *. The
conversion process for such operands is called numeric promotion. Promotion is
special in that, in the case of binary operators, the conversion chosen for one
operand may depend in part on the type of the other operand expression.

This chapter first describes the eleven categories of conversions (§5.1), including
the special conversions to String allowed for the string concatenation operator +.
Then the five conversion contexts are described:

• Assignment conversion (§5.2, §15.26) converts the type of an expression
to the type of a specified variable. Assignment conversion may cause
a OutOfMemoryError (as a result of boxing conversion (§5.1.7)), a
NullPointerException (as a result of unboxing conversion (§5.1.8)), or a
ClassCastException (as a result of an unchecked conversion (§5.1.9)) to be
thrown at run time.

• Method invocation conversion (§5.3, §15.9, §15.12) is applied to each argument
in a method or constructor invocation and, except in one case, performs the same
conversions that assignment conversion does. Method invocation conversion
may cause a OutOfMemoryError (as a result of boxing conversion (§5.1.7)),
a NullPointerException (as a result of unboxing conversion (§5.1.8)), or a
ClassCastException (as a result of an unchecked conversion (§5.1.9)) to be
thrown at run time.

• Casting conversion (§5.5) converts the type of an expression to a type explicitly
specified by a cast operator (§15.16). It is more inclusive than assignment or
method invocation conversion, allowing any specific conversion other than a
string conversion, but certain casts to a reference type may cause an exception
at run time.
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• String conversion (§5.4, §15.18.1) allows any type to be converted to type
String.

• Numeric promotion (§5.6) brings the operands of a numeric operator to a
common type so that an operation can be performed.

5.1 Kinds of Conversion

Specific type conversions in the Java programming language are divided into 13
categories.

5.1.1 Identity Conversions

A conversion from a type to that same type is permitted for any type.

5.1.2 Widening Primitive Conversion

19 specific conversions on primitive types are called the widening primitive
conversions.

• byte to short, int, long, float, or double

• short to int, long, float, or double

• char to int, long, float, or double

• int to long, float, or double

• long to float or double

• float to double

A widening primitive conversion does not lose information about the overall
magnitude of a numeric value, with the exception that a widening conversion from
float to double that is not strictfp may lose information about the overall
magnitude of the converted value.

A widening conversion from an integral type to another integral type, or from float
to double in a strictfp expression, do not lose any information at all; the numeric
value is preserved exactly.

A widening conversion of an int or a long value to float, or of a long value to
double, may result in loss of precision - that is, the result may lose some of the
least significant bits of the value. In this case, the resulting floating-point value
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will be a correctly rounded version of the integer value, using IEEE 754 round-to-
nearest mode (§4.2.4).

A widening conversion of a signed integer value to an integral type T simply sign-
extends the two's-complement representation of the integer value to fill the wider
format.

A widening conversion of a char to an integral type T zero-extends the
representation of the char value to fill the wider format.

Despite the fact that loss of precision may occur, widening conversions among
primitive types never result in a run-time exception (Chapter 11, Exceptions).

5.1.3 Narrowing Primitive Conversions

22 specific conversions on primitive types are called the narrowing primitive
conversions.

• short to byte or char

• char to byte or short

• int to byte, short, or char

• long to byte, short, char, or int

• float to byte, short, char, int, or long

• double to byte, short, char, int, long, or float

A narrowing primitive conversion may lose information about the overall
magnitude of a numeric value and may also lose precision and range.

A narrowing primitive conversion from double to float is governed by the IEEE
754 rounding rules (§4.2.4). This conversion can lose precision, but also lose range,
resulting in a float zero from a nonzero double and a float infinity from a
finite double. A double NaN is converted to a float NaN and a double infinity is
converted to the same-signed float infinity.

A narrowing conversion of a signed integer to an integral type T simply discards
all but the n lowest order bits, where n is the number of bits used to represent type
T. In addition to a possible loss of information about the magnitude of the numeric
value, this may cause the sign of the resulting value to differ from the sign of the
input value.

A narrowing conversion of a char to an integral type T likewise simply discards
all but the n lowest order bits, where n is the number of bits used to represent type
T. In addition to a possible loss of information about the magnitude of the numeric
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value, this may cause the resulting value to be a negative number, even though
chars represent 16-bit unsigned integer values.

A narrowing conversion of a floating-point number to an integral type T takes two
steps:

1. In the first step, the floating-point number is converted either to a long, if T is
long, or to an int, if T is byte, short, char, or int, as follows:

• If the floating-point number is NaN (§4.2.3), the result of the first step of the
conversion is an int or long 0.

• Otherwise, if the floating-point number is not an infinity, the floating-point
value is rounded to an integer value V, rounding toward zero using IEEE 754
round-toward-zero mode (§4.2.3). Then there are two cases:

a. If T is long, and this integer value can be represented as a long, then the
result of the first step is the long value V.

b. Otherwise, if this integer value can be represented as an int, then the
result of the first step is the int value V.

• Otherwise, one of the following two cases must be true:

a. The value must be too small (a negative value of large magnitude
or negative infinity), and the result of the first step is the smallest
representable value of type int or long.

b. The value must be too large (a positive value of large magnitude
or positive infinity), and the result of the first step is the largest
representable value of type int or long.

2. In the second step:

• If T is int or long, the result of the conversion is the result of the first step.

• If T is byte, char, or short, the result of the conversion is the result of a
narrowing conversion to type T (§5.1.3) of the result of the first step.

Despite the fact that overflow, underflow, or other loss of information may occur,
narrowing conversions among primitive types never result in a run-time exception
(Chapter 11, Exceptions).

5.1.4 Widening and Narrowing Primitive Conversions

The following conversion combines both widening and narrowing primitive
conversions:
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• byte to char

First, the byte is converted to an int via widening primitive conversion (§5.1.2),
and then the resulting int is converted to a char by narrowing primitive conversion
(§5.1.3).

5.1.5 Widening Reference Conversions

A widening reference conversion exists from any reference type S to any reference
type T, provided S is a subtype (§4.10) of T.

Widening reference conversions never require a special action at run time and
therefore never throw an exception at run time. They consist simply in regarding
a reference as having some other type in a manner that can be proved correct at
compile time.

5.1.6 Narrowing Reference Conversions

Six kinds of conversions are called the narrowing reference conversions.

• From any reference type S to any reference type T, provided that S is a proper
supertype (§4.10) of T.

An important special case is that there is a narrowing conversion from the class
type Object to any other reference type.

• From any class type C to any non-parameterized interface type K, provided that
C is not final and does not implement K.

• From any interface type J to any non-parameterized class type C that is not final.

• From any interface type J to any non-parameterized interface type K, provided
that J is not a subinterface of K.

• From the interface types Cloneable and java.io.Serializable to any array
type T[].

• From any array type SC[] to any array type TC[], provided that SC and TC are
reference types and there is a narrowing reference conversion from SC to TC.

Such conversions require a test at run time to find out whether the actual reference
value is a legitimate value of the new type. If not, then a ClassCastException is
thrown.
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5.1.7 Boxing Conversion

Boxing conversion converts expressions of primitive type to corresponding
expressions of reference type. Specifically, the following eight conversions are
called the boxing conversions:

• From type booleanto type Boolean

• From type byte to type Byte

• From type char to type Character

• From type short to type Short

• From type int to type Integer

• From type long to type Long

• From type float to type Float

• From type double to type Double

The null type may undergo boxing conversion (§15.25); the result is the null type.

At run time, boxing conversion proceeds as follows:

• If p is a value of type boolean, then boxing conversion converts p into a reference
r of class and type Boolean, such that r.booleanValue() == p

• If p is a value of type byte, then boxing conversion converts p into a reference
r of class and type Byte, such that r.byteValue() == p

• If p is a value of type char, then boxing conversion converts p into a reference
r of class and type Character, such that r.charValue() == p

• If p is a value of type short, then boxing conversion converts p into a reference
r of class and type Short, such that r.shortValue() == p

• If p is a value of type int, then boxing conversion converts p into a reference r
of class and type Integer, such that r.intValue() == p

• If p is a value of type long, then boxing conversion converts p into a reference
r of class and type Long, such that r.longValue() == p

• If p is a value of type float then:

◆ If p is not NaN, then boxing conversion converts p into a reference r of class
and type Float, such that r.floatValue() evaluates to p

◆ Otherwise, boxing conversion converts p into a reference r of class and type
Float such that r.isNaN() evaluates to true
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• If p is a value of type double, then:

◆ If p is not NaN, boxing conversion converts p into a reference r of class and
type Double, such that r.doubleValue() evaluates to p

◆ Otherwise, boxing conversion converts p into a reference r of class and type
Double such that r.isNaN() evaluates to true

• If p is a value of any other type, boxing conversion is equivalent to an identity
conversion §5.1.1

If the value p being boxed is true, false, a byte, or a char in the range \u0000
to \u007f, or an int or short number between -128 and 127, then let r1 and r2 be
the results of any two boxing conversions of p. It is always the case that r1 == r2.

A boxing conversion may result in an OutOfMemoryError if a new instance of one
of the wrapper classes (Boolean, Byte, Character, Short, Integer, Long, Float,
or Double) needs to be allocated and insufficient storage is available.

5.1.8 Unboxing Conversion

Unboxing conversion converts expressions of reference type to corresponding
expressions of primitive type. Specifically, the following eight conversions are
called the unboxing conversions:

• From type Boolean to type boolean

• From type Byte to type byte

• From type Character to type char

• From type Short to type short

• From type Integer to type int

• From type Long to type long

• From type Float to type float

• From type Double to type double

At run time, unboxing conversion proceeds as follows:

• If r is a reference of type Boolean, then unboxing conversion converts r into
r.booleanValue()

• If r is a reference of type Byte, then unboxing conversion converts r into
r.byteValue()
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• If r is a reference of type Character, then unboxing conversion converts r into
r.charValue()

• If r is a reference of type Short, then unboxing conversion converts r into
r.shortValue()

• If r is a reference of type Integer, then unboxing conversion converts r into
r.intValue()

• If r is a reference of type Long, then unboxing conversion converts r into
r.longValue()

• If r is a reference of type Float, unboxing conversion converts r into
r.floatValue()

• If r is a reference of type Double, then unboxing conversion converts r into
r.doubleValue()

• If r is null, unboxing conversion throws a NullPointerException

A type is said to be convertible to a numeric type if it is a numeric type (§4.2), or it is
a reference type that may be converted to a numeric type by unboxing conversion.

A type is said to be convertible to an integral type if it is an integral type, or it is a
reference type that may be converted to an integral type by unboxing conversion.

5.1.9 Unchecked Conversion

Let G name a generic type declaration with n type parameters.

There is an unchecked conversion from the raw class or interface type (§4.8) G to
any parameterized type of the form G<T1,...,Tn>>.

There is an unchecked conversion from the raw array type G[] to any parameterized
type of the form G[]<T1,...,Tn>.

Use of an unchecked conversion generates a compile-time unchecked warning
unless the parameterized type G<...> is a parameterized type in which all type
arguments are unbounded wildcards (§4.5.1), or the unchecked warning is
suppressed by the SuppressWarnings annotation (§9.6.3.5).

5.1.10 Capture Conversion

Let G name a generic type declaration with n type parameters A1,...,An with
corresponding bounds U1,...,Un. There exists a capture conversion from G<T1,...,Tn>
to G<S1,...,Sn>, where, for 1 ≤ i ≤ n :
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• If Ti is a wildcard type argument (§4.5.1) of the form ?, then Si is a fresh type
variable whose upper bound is Ui[A1:=S1,...,An:=Sn] and whose lower bound
is the null type.

• If Ti is a wildcard type argument of the form ? extends Bi, then Si is a fresh
type variable whose upper bound is glb(Bi, Ui[A1:=S1,...,An:=Sn]) and whose
lower bound is the null type.

glb(V1,...,Vm) is V1 & ... & Vm. It is a compile-time error if, for any two classes
(not interfaces) Vi and Vj, Vi is not a subclass of Vj or vice versa.

• If Ti is a wildcard type argument of the form ? super Bi, then Si is a fresh type
variable whose upper bound is Ui[A1:=S1,...,An:=Sn] and whose lower bound
is Bi.

• Otherwise, Si = Ti.

Capture conversion on any type other than a parameterized type (§4.5) acts as an
identity conversion (§5.1.1). Capture conversion never requires a special action at
run time and therefore never throws an exception at run time.

Capture conversion is not applied recursively.

5.1.11 String Conversions

Any type may be converted to type String by string conversion.

A value x of primitive type T is first converted to a reference value as if by giving
it as an argument to an appropriate class instance creation expression:

• If T is boolean, then use new Boolean(x).

• If T is char, then use new Character(x).

• If T is byte, short, or int, then use new Integer(x).

• If T is long, then use new Long(x).

• If T is float, then use new Float(x).

• If T is double, then use new Double(x).

This reference value is then converted to type String by string conversion.

Now only reference values need to be considered:

• If the reference is null, it is converted to the string "null" (four ASCII characters
n, u, l, l).
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• Otherwise, the conversion is performed as if by an invocation of the toString
method of the referenced object with no arguments; but if the result of invoking
the toString method is null, then the string "null" is used instead.

The toString method is defined by the primordial class Object; many classes
override it, notably Boolean, Character, Integer, Long, Float, Double, and
String.

See §5.4 for details of the string conversion context.

5.1.12 Forbidden Conversions

Any conversion that is not explicitly allowed is forbidden.

5.1.13 Value Set Conversion

Value set conversion is the process of mapping a floating-point value from one
value set to another without changing its type.

Within an expression that is not FP-strict (§15.4), value set conversion provides
choices to an implementation of the Java programming language:

• If the value is an element of the float-extended-exponent value set, then the
implementation may, at its option, map the value to the nearest element of the
float value set. This conversion may result in overflow (in which case the value
is replaced by an infinity of the same sign) or underflow (in which case the value
may lose precision because it is replaced by a denormalized number or zero of
the same sign).

• If the value is an element of the double-extended-exponent value set, then the
implementation may, at its option, map the value to the nearest element of the
double value set. This conversion may result in overflow (in which case the value
is replaced by an infinity of the same sign) or underflow (in which case the value
may lose precision because it is replaced by a denormalized number or zero of
the same sign).

Within an FP-strict expression (§15.4), value set conversion does not provide any
choices; every implementation must behave in the same way:

• If the value is of type float and is not an element of the float value set, then the
implementation must map the value to the nearest element of the float value set.
This conversion may result in overflow or underflow.
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• If the value is of type double and is not an element of the double value set, then
the implementation must map the value to the nearest element of the double value
set. This conversion may result in overflow or underflow.

Within an FP-strict expression, mapping values from the float-extended-exponent
value set or double-extended-exponent value set is necessary only when a method
is invoked whose declaration is not FP-strict and the implementation has chosen to
represent the result of the method invocation as an element of an extended-exponent
value set.

Whether in FP-strict code or code that is not FP-strict, value set conversion always
leaves unchanged any value whose type is neither float nor double.

5.2 Assignment Conversion

Assignment conversion occurs when the value of an expression is assigned (§15.26)
to a variable: the type of the expression must be converted to the type of the
variable.

Assignment contexts allow the use of one of the following:

• an identity conversion (§5.1.1)

• a widening primitive conversion (§5.1.2)

• a widening reference conversion (§5.1.5)

• a boxing conversion (§5.1.7) optionally followed by a widening reference
conversion

• an unboxing conversion (§5.1.8) optionally followed by a widening primitive
conversion.

If, after the conversions listed above have been applied, the resulting type is a raw
type (§4.8), unchecked conversion (§5.1.9) may then be applied.

It is a compile-time error if the chain of conversions contains two parameterized
types that are not in the subtype relation.

In addition, if the expression is a constant expression (§15.28) of type byte, short,
char, or int:

• A narrowing primitive conversion may be used if the type of the variable is byte,
short, or char, and the value of the constant expression is representable in the
type of the variable.
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• A narrowing primitive conversion followed by a boxing conversion may be used
if the type of the variable is:

◆ Byte and the value of the constant expression is representable in the type byte.

◆ Short and the value of the constant expression is representable in the type
short.

◆ Character and the value of the constant expression is representable in the type
char.

If the type of the expression cannot be converted to the type of the variable by a
conversion permitted in an assignment context, then a compile-time error occurs.

If the type of the variable is float or double, then value set conversion is applied
to the value v that is the result of the type conversion:

• If v is of type float and is an element of the float-extended-exponent value set,
then the implementation must map v to the nearest element of the float value set.
This conversion may result in overflow or underflow.

• If v is of type double and is an element of the double-extended-exponent value
set, then the implementation must map v to the nearest element of the double
value set. This conversion may result in overflow or underflow.

If the type of an expression can be converted to the type of a variable by assignment
conversion, we say the expression (or its value) is assignable to the variable or,
equivalently, that the type of the expression is assignment compatible with the type
of the variable.

If, after the type conversions above have been applied, the resulting value is an
object which is not an instance of a subclass or subinterface of the erasure of the
type of the variable, then a ClassCastException is thrown.

The only exceptions that an assignment conversion may cause are:

• An OutOfMemoryError as a result of a boxing conversion.

• A ClassCastException in the special circumstances indicated above.

• A NullPointerException as a result of an unboxing conversion on a null
reference.

(Note, however, that an assignment may result in an exception in special cases
involving array elements or field access - see §10.5 and §15.26.1.)

A value of the null type (the null reference is the only such value) may be assigned
to any reference type, resulting in a null reference of that type.
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5.3 Method Invocation Conversion

Method invocation conversion is applied to each argument value in a method
or constructor invocation (§8.8.7.1, §15.9, §15.12): the type of the argument
expression must be converted to the type of the corresponding parameter.

Method invocation contexts allow the use of one of the following:

• an identity conversion (§5.1.1)

• a widening primitive conversion (§5.1.2)

• a widening reference conversion (§5.1.5)

• a boxing conversion (§5.1.7) optionally followed by widening reference
conversion

• an unboxing conversion (§5.1.8) optionally followed by a widening primitive
conversion.

If, after the conversions listed above have been applied, the resulting type is a raw
type (§4.8), an unchecked conversion (§5.1.9) may then be applied.

It is a compile-time error if the chain of conversions contains two parameterized
types that are not in the subtype relation.

If the type of an argument expression is either float or double, then value set
conversion (§5.1.13) is applied after the type conversion:

• If an argument value of type float is an element of the float-extended-exponent
value set, then the implementation must map the value to the nearest element of
the float value set. This conversion may result in overflow or underflow.

• If an argument value of type double is an element of the double-extended-
exponent value set, then the implementation must map the value to the nearest
element of the double value set. This conversion may result in overflow or
underflow.

If, after the type conversions above have been applied, the resulting value is an
object which is not an instance of a subclass or subinterface of the erasure of the
corresponding formal parameter type, then a ClassCastException is thrown.
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5.4 String Conversion

String conversion applies only to the operands of the binary + operator when one
of the arguments is a String.

In this single special case, the other argument to the + undergoes string conversion
(§5.1.11) to a String, and a new String which is the concatenation (§15.18.1) of
the two strings is the result of the +.

5.5 Casting Conversion

Casting conversion is applied to the operand of a cast operator (§15.16): the type
of the operand expression must be converted to the type explicitly named by the
cast operator.

Casting contexts allow the use of one of:

• an identity conversion (§5.1.1)

• a widening primitive conversion (§5.1.2)

• a narrowing primitive conversion (§5.1.3)

• a widening and narrowing primitive conversion (§5.1.4)

• a widening reference conversion (§5.1.5) optionally followed by either an
unboxing conversion (§5.1.8) or an unchecked conversion (§5.1.9)

• a narrowing reference conversion (§5.1.6) optionally followed by either an
unboxing conversion (§5.1.8) or an unchecked conversion

• a boxing conversion (§5.1.7) optionally followed by a widening reference
conversion (§5.1.5)

• an unboxing conversion (§5.1.8) optionally followed by a widening primitive
conversion (§5.1.2).

Value set conversion (§5.1.13) is applied after the type conversion.

The compile-time legality of a casting conversion is as follows:

• An expression of a primitive type can always undergo casting conversion to
another primitive type without error, by identity conversion (if the types are
the same) or by a widening primitive conversion or by a narrowing primitive
conversion or by a widening and narrowing primitive conversion.
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• An expression of a primitive type can always be undergo casting conversion to
a reference type without error, by boxing conversion.

• An expression of a reference type can always undergo casting conversion to a
primitive type without error, by unboxing conversion.

• An expression of a reference type can undergo casting conversion to another
reference type if no compile-time error occurs given the rules in §5.5.1.

5.5.1 Reference Type Casting

Given a compile-time reference type S (source) and a compile-time reference type
T (target), a casting conversion exists from S to T if no compile-time errors occur
due to the following rules.

If S is a class type:

• If T is a class type, then either |S| <: |T|, or |T| <: |S|. Otherwise, a compile-time
error occurs.

Furthermore, if there exists a supertype X of T, and a supertype Y of S, such
that both X and Y are provably distinct parameterized types (§4.5), and that the
erasures of X and Y are the same, a compile-time error occurs.

• If T is an interface type:

◆ If S is not a final class (§8.1.1), then, if there exists a supertype X of T, and
a supertype Y of S, such that both X and Y are provably distinct parameterized
types, and that the erasures of X and Y are the same, a compile-time error occurs.

Otherwise, the cast is always legal at compile time (because even if S does not
implement T, a subclass of S might).

◆ If S is a final class (§8.1.1), then S must implement T, or a compile-time error
occurs.

• If T is a type variable, then this algorithm is applied recursively, using the upper
bound of T in place of T.

• If T is an array type, then S must be the class Object, or a compile-time error
occurs.

If S is an interface type:

• If T is an array type, then S must be the type java.io.Serializable or
Cloneable (the only interfaces implemented by arrays), or a compile-time error
occurs.
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• If T is a type that is not final (§8.1.1), then if there exists a supertype X of T, and
a supertype Y of S, such that both X and Y are provably distinct parameterized
types, and that the erasures of X and Y are the same, a compile-time error occurs.

Otherwise, the cast is always legal at compile time (because even if T does not
implement S, a subclass of T might).

• If T is a type that is final, then:

◆ If S is not a parameterized type or a raw type, then T must implement S, or a
compile-time error occurs.

◆ Otherwise, S is either a parameterized type that is an invocation of some
generic type declaration G, or a raw type corresponding to a generic type
declaration G. Then there must exist a supertype X of T, such that X is an
invocation of G, or a compile-time error occurs.

Furthermore, if S and X are provably distinct parameterized types then a
compile-time error occurs.

If S is a type variable, then this algorithm is applied recursively, using the upper
bound of S in place of S.

If S is an intersection type A1 & ... & An, then it is a compile-time error if there
exists an Ai (1 ≤ i ≤ n) such that S cannot be cast to Ai by this algorithm. That
is, the success of the cast is determined by the most restrictive component of the
intersection type.

If S is an array type SC[], that is, an array of components of type SC:

• If T is a class type, then if T is not Object, then a compile-time error occurs
(because Object is the only class type to which arrays can be assigned).

• If T is an interface type, then a compile-time error occurs unless T is
the type java.io.Serializable or the type Cloneable (the only interfaces
implemented by arrays).

• If T is a type variable, then:

◆ If the upper bound of T is Object or java.io.Serializable or Cloneable,
or a type variable that S could undergo casting conversion to, then the cast is
legal (though unchecked).

◆ If the upper bound of T is an array type TC[], then a compile-time error occurs
unless the type SC[] can undergo casting conversion to TC[].

◆ Otherwise, a compile-time error occurs.
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• If T is an array type TC[], that is, an array of components of type TC, then a
compile-time error occurs unless one of the following is true:

◆ TC and SC are the same primitive type.

◆ TC and SC are reference types and type SC can undergo casting conversion to TC.

5.5.2 Checked Casts and Unchecked Casts

A cast from a type S to a type T is statically known to be correct if and only if S
<: T (§4.10).

A cast from a type S to a parameterized type (§4.5) T is unchecked unless at least
one of the following conditions holds:

• S <: T

• All of the type arguments (§4.5.1) of T are unbounded wildcards

• T <: S and S has no subtype X other than T where the type arguments of X are
not contained in the type arguments of T.

A cast from a type S to a type variable T is unchecked unless S <: T.

An unchecked cast from S to T is completely unchecked if the cast from |S| to |T| is
statically known to be correct. Otherwise, it is partially unchecked.

An unchecked cast causes an unchecked warning to occur, unless it is suppressed
using the SuppressWarnings annotation (§9.6.3.5).

A cast is a checked cast if it is not statically known to be correct and it is not
unchecked.

If a cast to a reference type is not a compile-time error, there are several cases:

• The cast is statically known to be correct. No run time action is performed for
such a cast.

• The cast is a completely unchecked cast. No run time action is performed for
such a cast.

• The cast is a partially unchecked cast. Such a cast requires a run-time validity
check. The check is performed as if the cast had been a checked cast between
|S| and |T|, as described below.

• The cast is a checked cast. Such a cast requires a run-time validity check. If the
value at run time is null, then the cast is allowed. Otherwise, let R be the class of
the object referred to by the run-time reference value, and let T be the erasure of
the type named in the cast operator. A cast conversion must check, at run time,
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that the class R is assignment compatible with the type T, via the algorithm in
§5.5.3.

5.5.3 Checked Casts at Run-time

Here is the algorithm to check whether the run-time type R of an object is
assignment compatible with the type T which is the erasure of the type named in
the cast operator. If a run-time exception is thrown, it is a ClassCastException.

If R is an ordinary class (not an array class):

• If T is a class type, then R must be either the same class (§4.3.4) as T or a subclass
of T, or a run-time exception is thrown.

• If T is an interface type, then R must implement (§8.1.5) interface T, or a run-
time exception is thrown.

• If T is an array type, then a run-time exception is thrown.

If R is an interface:

• If T is a class type, then T must be Object (§4.3.2), or a run-time exception is
thrown.

• If T is an interface type, then R must be either the same interface as T or a
subinterface of T, or a run-time exception is thrown.

• If T is an array type, then a run-time exception is thrown.

If R is a class representing an array type RC[], that is, an array of components of
type RC:

• If T is a class type, then T must be Object (§4.3.2), or a run-time exception is
thrown.

• If T is an interface type, then a run-time exception is thrown unless T is
the type java.io.Serializable or the type Cloneable (the only interfaces
implemented by arrays).

• If T is an array type TC[], that is, an array of components of type TC, then a run-
time exception is thrown unless one of the following is true:

◆ TC and RC are the same primitive type.

◆ TC and RC are reference types and type RC can be cast to TC by a recursive
application of these run-time rules for casting.
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5.6 Numeric Promotions

Numeric promotion is applied to the operands of an arithmetic operator.

Numeric promotion contexts allow the use of:

• an identity conversion (§5.1.1)

• a widening primitive conversion (§5.1.2)

• an unboxing conversion (§5.1.8)

Numeric promotions are used to convert the operands of a numeric operator to a
common type so that an operation can be performed. The two kinds of numeric
promotion are unary numeric promotion (§5.6.1) and binary numeric promotion
(§5.6.2).

5.6.1 Unary Numeric Promotion

Some operators apply unary numeric promotion to a single operand, which must
produce a value of a numeric type:

• If the operand is of compile-time type Byte, Short, Character, or Integer, it is
subjected to unboxing conversion. The result is then promoted to a value of type
int by a widening primitive conversion or an identity conversion.

• Otherwise, if the operand is of compile-time type Long, Float, or Double it is
subjected to unboxing conversion.

• Otherwise, if the operand is of compile-time type byte, short, or char, unary
numeric promotion promotes it to a value of type int by a widening primitive
conversion.

• Otherwise, a unary numeric operand remains as is and is not converted.

In any case, value set conversion (§5.1.13) is then applied.

Unary numeric promotion is performed on expressions in the following situations:

• Each dimension expression in an array creation expression (§15.10)

• The index expression in an array access expression (§15.13)

• The operand of a unary plus operator + (§15.15.3)

• The operand of a unary minus operator - (§15.15.4)

• The operand of a bitwise complement operator ~ (§15.15.5)
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• Each operand, separately, of a shift operator >>, >>>, or << (§15.19).

A long shift distance (right operand) does not promote the value being shifted
(left operand) to long.

5.6.2 Binary Numeric Promotion

When an operator applies binary numeric promotion to a pair of operands, each
of which must denote a value that is convertible to a numeric type, the following
rules apply, in order:

1. If any operand is of a reference type, it is subjected to unboxing conversion.

2. Widening primitive conversion is applied to convert either or both operands,
as follows:

• If either operand is of type double, the other is converted to double.

• Otherwise, if either operand is of type float, the other is converted to float.

• Otherwise, if either operand is of type long, the other is converted to long.

• Otherwise, both operands are converted to type int.

After the type conversion, if any, value set conversion (§5.1.13) is applied to each
operand.

Binary numeric promotion is performed on the operands of certain operators:

• The multiplicative operators *, / and % (§15.17)

• The addition and subtraction operators for numeric types + and - (§15.18.2)

• The numerical comparison operators <, <=, >, and >= (§15.20.1)

• The numerical equality operators == and != (§15.21.1)

• The integer bitwise operators &, ^, and | (§15.22.1)

• In certain cases, the conditional operator ? : (§15.25)
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C H A P T E R 6
Names

NAMES are used to refer to entities declared in a program. A declared entity
(§6.1) is a package, class type (normal or enum), interface type (normal or
annotation type), member (class, interface, field, or method) of a reference type,
type parameter (of a class, interface, method or constructor), parameter (to a
method, constructor, or exception handler), or local variable.

Names in programs are either simple, consisting of a single identifier, or qualified,
consisting of a sequence of identifiers separated by "." tokens (§6.2).

Every declaration that introduces a name has a scope (§6.3), which is the part of the
program text within which the declared entity can be referred to by a simple name.

A qualified name N.x may be used to refer to a member of a package or reference
type, where N is a simple or qualified name and x is an identifier. If N names a
package, then x is a member of that package, which is either a class or interface
type or a subpackage. If N names a reference type or a variable of a reference type,
then x names a member of that type, which is either a class, an interface, a field,
or a method.

In determining the meaning of a name (§6.5), the context of the occurrence is used
to disambiguate among packages, types, variables, and methods with the same
name.

Access control (§6.6) can be specified in a class, interface, method, or field
declaration to control when access to a member is allowed. Access is a different
concept from scope. Access specifies the part of the program text within which the
declared entity can be referred to by a qualified name, a field access expression
(§15.11), or a method invocation expression (§15.12) in which the method is not
specified by a simple name. The default access is that a member can be accessed
anywhere within the package that contains its declaration; other possibilities are
public, protected, and private.

Fully qualified and canonical names (§6.7) are also discussed in this chapter.
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6.1 Declarations

A declaration introduces an entity into a program and includes an identifier (§3.8)
that can be used in a name to refer to this entity.

A declared entity is one of the following:

• A package, declared in a package declaration (§7.4)

• An imported type, declared in a single-type-import declaration (§7.5.1) or a type-
import-on-demand declaration (§7.5.2)

• A class, declared in a class type declaration (§8.1)

• An interface, declared in an interface type declaration (§9.1)

• A type variable (§4.4), declared as a type parameter of a generic class (§8.1.2),
interface (§9.1.2), method (§8.4.4) or constructor (§8.8.1).

• A member of a reference type (§8.2, §9.2, §10.7), one of the following:

◆ A member class (§8.5, §9.5)

◆ A member interface (§8.5, §9.5)

◆ An enum constant (§8.9)

◆ A field, one of the following:

❖ A field declared in a class type (§8.3)

❖ A field declared in an interface type (§9.3)

❖ The field length, which is implicitly a member of every array type (§10.7)

◆ A method, one of the following:

❖ A method (abstract or otherwise) declared in a class type (§8.4)

❖ A method (always abstract) declared in an interface type (§9.4)

• A parameter, one of the following:

◆ A parameter of a method or constructor of a class (§8.4.1, §8.8.1)

◆ A parameter of an abstract method of an interface (§9.4)

◆ A parameter of an exception handler declared in a catch clause of a try
statement (§14.20)

• A local variable, one of the following:

◆ A local variable declared in a block (§14.4)
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◆ A local variable declared in a for statement (§14.14)

Constructors (§8.8) are also introduced by declarations, but use the name of the
class in which they are declared rather than introducing a new name.

6.2 Names and Identifiers

A name is used to refer to an entity declared in a program.

There are two forms of names: simple names and qualified names.

A simple name is a single identifier.

A qualified name consists of a name, a "." token, and an identifier.

In determining the meaning of a name (§6.5), the context in which the name appears
is taken into account. The rules of §6.5 distinguish among contexts where a name
must denote (refer to) a package (§6.5.3), a type (§6.5.5), a variable or value in an
expression (§6.5.6), or a method (§6.5.7).

Not all identifiers in a program are a part of a name. Identifiers are also used in
the following situations:

• In declarations (§6.1), where an identifier may occur to specify the name by
which the declared entity will be known.

• As labels in labeled statements (§14.7) and in break and continue statements
(§14.15, §14.16) that refer to statement labels.

• In field access expressions (§15.11), where an identifier occurs after a "." token
to indicate a member of an object that is the value of an expression or the keyword
super that appears before the "." token

• In some method invocation expressions (§15.12), where an identifier may occur
after a "." token and before a "(" token to indicate a method to be invoked for
an object that is the value of an expression or the keyword super that appears
before the "." token

• In qualified class instance creation expressions (§15.9), where an identifier
occurs immediately to the right of the leftmost new token to indicate a type that
must be a member of the compile-time type of the primary expression preceding
the "." preceding the leftmost new token.

The identifiers used in labeled statements and their associated break and continue
statements are completely separate from those used in declarations.
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6.3 Scope of a Declaration

The scope of a declaration is the region of the program within which the entity
declared by the declaration can be referred to using a simple name, provided it is
visible (§6.4.1).

A declaration is said to be in scope at a particular point in a program if and only
if the declaration's scope includes that point.

The scope of the declaration of an observable (§7.4.3) top level package is all
observable compilation units (§7.3).

The declaration of a package that is not observable is never in scope.

The declaration of a subpackage is never in scope.

The package java is always in scope.

The scope of a type imported by a single-type-import declaration (§7.5.1) or
a type-import-on-demand declaration (§7.5.2) is all the class and interface type
declarations (§7.6) in the compilation unit in which the import declaration appears,
as well as any annotations on the package declaration (if any) of the compilation
unit .

The scope of a member imported by a single-static-import declaration (§7.5.3) or
a static-import-on-demand declaration (§7.5.4) is all the class and interface type
declarations (§7.6) in the compilation unit in which the import declaration appears,
as well as any annotations on the package declaration (if any) of the compilation
unit .

The scope of a top level type (§7.6) is all type declarations in the package in which
the top level type is declared.

The scope of a member m declared in or inherited by a class type C (§8.1.6) is the
entire body of C, including any nested type declarations.

The scope of a member m declared in or inherited by an interface type I (§9.1.4) is
the entire body of I, including any nested type declarations.

The scope of a parameter of a method (§8.4.1) or constructor (§8.8.1) is the entire
body of the method or constructor.

The scope of an class's type parameter (§8.1.2) is the type parameter section of the
class declaration, the type parameter section of any superclass or superinterface of
the class declaration, and the class body.
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The scope of an interface's type parameter (§9.1.2) is the type parameter section
of the interface declaration, the type parameter section of any superinterface of the
interface declaration, and the interface body.

The scope of a method's type parameter (§8.4.4) is the entire declaration of the
method, including the type parameter section, but excluding the method modifiers.

The scope of a constructor's type parameter (§8.8.4) is the entire declaration of
the constructor, including the type parameter section, but excluding the constructor
modifiers.

The scope of a local class immediately enclosed by a block (§14.2) is the rest of
the immediately enclosing block, including its own class declaration.

The scope of a local class in a switch block statement group (§14.11) is the rest of
the immediately enclosing switch block statement group, including its own class
declaration.

The scope of a local variable declaration in a block (§14.4.2) is the rest of the
block in which the declaration appears, starting with its own initializer (§14.4)
and including any further declarators to the right in the local variable declaration
statement.

The scope of a local variable declared in the ForInit part of a basic for statement
(§14.14.1) includes all of the following:

• Its own initializer

• Any further declarators to the right in the ForInit part of the for statement

• The Expression and ForUpdate parts of the for statement

• The contained Statement

The scope of a local variable declared in the FormalParameter part of an enhanced
for statement (§14.14.2) is the contained Statement.

The scope of a parameter of an exception handler that is declared in a catch clause
of a try statement (§14.20) is the entire block associated with the catch.

The scope of an enum constant C declared in an enum type T is the body of T, and
any case label of a switch statement whose expression is of enum type T.

These rules imply that declarations of class and interface types need not appear
before uses of the types.
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6.4 Shadowing and Obscuring

6.4.1 Shadowing

Some declarations may be shadowed in part of their scope by another declaration of
the same name, in which case a simple name cannot be used to refer to the declared
entity.

A declaration d of a type named n shadows the declarations of any other types
named n that are in scope at the point where d occurs throughout the scope of d.

A declaration d of a field, method parameter, constructor parameter, or exception
handler parameter named n shadows the declarations of any other fields, method
parameters, constructor parameters, or exception handler parameters named n that
are in scope at the point where d occurs throughout the scope of d.

A declaration d of a local variable named n shadows the declarations of any fields
named n that are in scope at the point where d occurs throughout the scope of d
(§14.4.3).

A declaration d of a method named n shadows the declarations of any other methods
named n that are in an enclosing scope at the point where d occurs throughout the
scope of d.

A package declaration never shadows any other declaration.

A type-import-on-demand declaration never causes any other declaration to be
shadowed.

A static-import-on-demand declaration never causes any other declaration to be
shadowed.

A single-type-import declaration d in a compilation unit c of package p that imports
a type named n shadows, throughout c, the declarations of:

• any top level type named n declared in another compilation unit of p

• any type named n imported by a type-import-on-demand declaration in c

• any type named n imported by a static-import-on-demand declaration in c

A single-static-import declaration d in a compilation unit c of package p that
imports a field named n shadows the declaration of any static field named n
imported by a static-import-on-demand declaration in c, throughout c.

A single-static-import declaration d in a compilation unit c of package p that
imports a method named n with signature s shadows the declaration of any
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static method named n with signature s imported by a static-import-on-demand
declaration in c, throughout c.

A single-static-import declaration d in a compilation unit c of package p that
imports a type named n shadows, throughout c, the declarations of:

• any static type named n imported by a static-import-on-demand declaration in c;

• any top level type (§7.6) named n declared in another compilation unit (§7.3)
of p;

• any type named n imported by a type-import-on-demand declaration (§7.5.2) in
c.

A declaration d is said to be visible at point p in a program if the scope of d includes
p, and d is not shadowed by any other declaration at p.

When the program point we are discussing is clear from context, we will often
simply say that a declaration is visible.

6.4.2 Obscuring

A simple name may occur in contexts where it may potentially be interpreted as
the name of a variable, a type, or a package. In these situations, the rules of §6.5
specify that a variable will be chosen in preference to a type, and that a type will
be chosen in preference to a package. Thus, it is may sometimes be impossible to
refer to a visible type or package declaration via its simple name. We say that such
a declaration is obscured.

•

•

•

•

•

•

•

•
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6.5 Determining the Meaning of a Name

The meaning of a name depends on the context in which it is used. The
determination of the meaning of a name requires three steps:

1. First, context causes a name syntactically to fall into one of six
categories: PackageName, TypeName, ExpressionName, MethodName,
PackageOrTypeName, or AmbiguousName.

2. Second, a name that is initially classified by its context as an AmbiguousName
or as a PackageOrTypeName is then reclassified to be a PackageName,
TypeName, or ExpressionName.

3. Third, the resulting category then dictates the final determination of the
meaning of the name (or a compilation error if the name has no meaning).

PackageName:
    Identifier
    PackageName . Identifier

TypeName:
    Identifier
    PackageOrTypeName . Identifier

ExpressionName:
    Identifier
    AmbiguousName . Identifier

MethodName:
    Identifier
    AmbiguousName . Identifier

PackageOrTypeName:
    Identifier
    PackageOrTypeName . Identifier

AmbiguousName:
    Identifier
    AmbiguousName . Identifier

The name of a field, parameter, or local variable may be used as an expression
(§15.14.1).
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The name of a method may appear in an expression only as part of a method
invocation expression (§15.12).

The name of a class or interface type may appear in an expression only as
part of a class literal (§15.8.2), a qualified this expression (§15.8.4), a class
instance creation expression (§15.9), an array creation expression (§15.10), a
cast expression (§15.16), an instanceof expression (§15.20.2), an enum constant
(§8.9), or as part of a qualified name for a field or method.

The name of a package may appear in an expression only as part of a qualified
name for a class or interface type.

6.5.1 Syntactic Classification of a Name According to Context

A name is syntactically classified as a PackageName in these contexts:

• In a package declaration (§7.4)

• To the left of the "." in a qualified PackageName

A name is syntactically classified as a TypeName in these contexts:

• In a single-type-import declaration (§7.5.1)

• To the left of the "." in a single static import (§7.5.3) declaration

• To the left of the "." in a static import-on-demand (§7.5.4) declaration

• To the left of the "<" in a parameterized type (§4.5)

• In a type argument list of a parameterized type

• In an explicit type argument list in a method or constructor invocation

• In an extends clause in a type variable declaration (§8.1.2)

• In an extends clause of a wildcard type argument (§4.5.1)

• In a super clause of a wildcard type argument (§4.5.1)

• In an extends clause in a class declaration (§8.1.4)

• In an implements clause in a class declaration (§8.1.5)

• In an extends clause in an interface declaration (§9.1.3)

• After the "@" sign in an annotation (§9.7)

• As a Type (or the part of a Type that remains after all brackets are deleted) in
any of the following contexts:
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◆ In a field declaration (§8.3, §9.3)

◆ As the result type of a method (§8.4, §9.4)

◆ As the type of a formal parameter of a method or constructor (§8.4.1, §8.8.1,
§9.4)

◆ As the type of an exception that can be thrown by a method or constructor
(§8.4.6, §8.8.5, §9.4)

◆ As the type of a local variable (§14.4)

◆ As the type of an exception parameter in a catch clause of a try statement
(§14.20)

◆ As the type in a class literal (§15.8.2)

◆ As the qualifying type of a qualified this expression (§15.8.4).

◆ As the class type which is to be instantiated in an unqualified class instance
creation expression (§15.9)

◆ As the direct superclass or direct superinterface of an anonymous class
(§15.9.5) which is to be instantiated in an unqualified class instance creation
expression (§15.9)

◆ As the element type of an array to be created in an array creation expression
(§15.10)

◆ As the qualifying type of field access using the keyword super (§15.11.2)

◆ As the qualifying type of a method invocation using the keyword super
(§15.12)

◆ As the type mentioned in the cast operator of a cast expression (§15.16)

◆ As the type that follows the instanceof relational operator (§15.20.2)

A name is syntactically classified as an ExpressionName in these contexts:

• As the qualifying expression in a qualified superclass constructor invocation
(§8.8.7.1)

• As the qualifying expression in a qualified class instance creation expression
(§15.9)

• As the array reference expression in an array access expression (§15.13)

• As a PostfixExpression (§15.14)

• As the left-hand operand of an assignment operator (§15.26)
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A name is syntactically classified as a MethodName in these contexts:

• Before the "(" in a method invocation expression (§15.12)

• To the left of the "=" sign in an annotation's element value pair (§9.7)

A name is syntactically classified as a PackageOrTypeName in these contexts:

• To the left of the "." in a qualified TypeName

• In a type-import-on-demand declaration (§7.5.2)

A name is syntactically classified as an AmbiguousName in these contexts:

• To the left of the "." in a qualified ExpressionName

• To the left of the "." in a qualified MethodName

• To the left of the "." in a qualified AmbiguousName

• In the default value clause of an annotation type element declaration (§9.6)

• To the right of an "=" in an an element value pair (§9.7)

6.5.2 Reclassification of Contextually Ambiguous Names

An AmbiguousName is then reclassified as follows.

If the AmbiguousName is a simple name, consisting of a single Identifier:

• If the Identifier appears within the scope (§6.3) of a local variable declaration
(§14.4) or parameter declaration (§8.4.1, §8.8.1, §14.20) or field declaration
(§8.3) with that name, then the AmbiguousName is reclassified as an
ExpressionName.

• Otherwise, if a field of that name is declared in the compilation unit (§7.3)
containing the Identifier by a single-static-import declaration (§7.5.3), or by
a static-import-on-demand declaration (§7.5.4) then the AmbiguousName is
reclassified as an ExpressionName.

• Otherwise, if the Identifier appears within the scope (§6.3) of a top level class
(Chapter 8, Classes) or interface type declaration (Chapter 9, Interfaces), a local
class declaration (§14.3) or member type declaration (§8.5, §9.5) with that name,
then the AmbiguousName is reclassified as a TypeName.

• Otherwise, if a type of that name is declared in the compilation unit (§7.3)
containing the Identifier, either by a single-type-import declaration (§7.5.1), or
by a type-import-on-demand declaration (§7.5.2), or by a single-static-import
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declaration (§7.5.3), or by a static-import-on-demand declaration (§7.5.4), then
the AmbiguousName is reclassified as a TypeName.

• Otherwise, the AmbiguousName is reclassified as a PackageName. A later step
determines whether or not a package of that name actually exists.

If the AmbiguousName is a qualified name, consisting of a name, a ".", and an
Identifier, then the name to the left of the "." is first reclassified, for it is itself an
AmbiguousName. There is then a choice:

• If the name to the left of the "." is reclassified as a PackageName, then if there
is a package whose name is the name to the left of the "." and that package
contains a declaration of a type whose name is the same as the Identifier, then
this AmbiguousName is reclassified as a TypeName.

Otherwise, this AmbiguousName is reclassified as a PackageName. A later step
determines whether or not a package of that name actually exists.

• If the name to the left of the "." is reclassified as a TypeName, then if the
Identifier is the name of a method or field of the type denoted by TypeName, this
AmbiguousName is reclassified as an ExpressionName.

Otherwise, if the Identifier is the name of a member type of the type denoted
by TypeName, this AmbiguousName is reclassified as a TypeName. Otherwise,
a compile-time error occurs.

• If the name to the left of the "." is reclassified as an ExpressionName, then let
T be the type of the expression denoted by ExpressionName. If the Identifier is
the name of a method or field of the type denoted by T, this AmbiguousName is
reclassified as an ExpressionName.

Otherwise, if the Identifier is the name of a member type (§8.5, §9.5) of the
type denoted by T, then this AmbiguousName is reclassified as a TypeName.
Otherwise, a compile-time error occurs.

6.5.3 Meaning of Package Names

The meaning of a name classified as a PackageName is determined as follows.

6.5.3.1 Simple Package Names

If a package name consists of a single Identifier, then this identifier denotes a top
level package named by that identifier. If no top level package of that name is in
scope (§6.3), then a compile-time error occurs.
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6.5.3.2 Qualified Package Names

If a package name is of the form Q.Id, then Q must also be a package name. The
package name Q.Id names a package that is the member named Id within the
package named by Q.

If Q does not name an observable package (§7.4.3), or Id is not the simple name of
an observable subpackage of that package, then a compile-time error occurs.

6.5.4 Meaning of PackageOrTypeNames

6.5.4.1 Simple PackageOrTypeNames

If the PackageOrTypeName, Q, occurs in the scope of a type named Q, then the
PackageOrTypeName is reclassified as a TypeName.

Otherwise, the PackageOrTypeName is reclassified as a PackageName. The
meaning of the PackageOrTypeName is the meaning of the reclassified name.

6.5.4.2 Qualified PackageOrTypeNames

Given a qualified PackageOrTypeName of the form Q.Id, if the type or package
denoted by Q has a member type named Id, then the qualified PackageOrTypeName
name is reclassified as a TypeName.

Otherwise, it is reclassified as a PackageName. The meaning of the qualified
PackageOrTypeName is the meaning of the reclassified name.

6.5.5 Meaning of Type Names

The meaning of a name classified as a TypeName is determined as follows.

6.5.5.1 Simple Type Names

If a type name consists of a single Identifier, then the identifier must occur in the
scope of exactly one visible declaration of a type with this name, or a compile-time
error occurs. The meaning of the type name is that type.

6.5.5.2 Qualified Type Names

If a type name is of the form Q.Id, then Q must be either a type name or a package
name.
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If Id names exactly one accessible (§6.6) type that is a member of the type or
package denoted by Q, then the qualified type name denotes that type.

If Id does not name a member type (§8.5, §9.5) within Q, or there is not exactly one
accessible (§6.6) member type named Id within Q, or Id names a static member
type (§8.5.2) within Q and Q is parameterized, then a compile-time error occurs.

6.5.6 Meaning of Expression Names

The meaning of a name classified as an ExpressionName is determined as follows.

6.5.6.1 Simple Expression Names

If an expression name consists of a single Identifier, then there must be exactly one
visible declaration denoting either a local variable, parameter, or field in scope at
the point at which the the Identifier occurs. Otherwise, a compile-time error occurs.

If the declaration declares a final variable which is definitely assigned before the
simple expression, the meaning of the name is the value of that variable. Otherwise,
the meaning of the expression name is the variable declared by the declaration.

If the field is an instance variable (§8.3), the expression name must appear within
the declaration of an instance method (§8.4), constructor (§8.8), instance initializer
(§8.6), or instance variable initializer (§8.3.2.2). If it appears within a static method
(§8.4.3.2), static initializer (§8.7), or initializer for a static variable (§8.3.2.1,
§12.4.2), then a compile-time error occurs.

If the expression name appears in a context where it is subject to assignment
conversion or method invocation conversion or casting conversion, then the type
of the expression name is the declared type of the field, local variable, or parameter
after capture conversion (§5.1.10). Otherwise, the type of the expression name is
the declared type of the field, local variable or parameter.

6.5.6.2 Qualified Expression Names

If an expression name is of the form Q.Id, then Q has already been classified as a
package name, a type name, or an expression name.

If Q is a package name, then a compile-time error occurs.

If Q is a type name that names a class type (Chapter 8, Classes), then:

• If there is not exactly one accessible (§6.6) member of the class type that is a
field named Id, then a compile-time error occurs.
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• Otherwise, if the single accessible member field is not a class variable (that is, it
is not declared static), then a compile-time error occurs.

• Otherwise, if the class variable is declared final, then Q.Id denotes the value
of the class variable. The type of the expression Q.Id is the declared type of the
class variable after capture conversion (§5.1.10).

If Q.Id appears in a context that requires a variable and not a value, then a
compile-time error occurs.

• Otherwise, Q.Id denotes the class variable. The type of the expression Q.Id is
the declared type of the class variable after capture conversion (§5.1.10).

If Q is a type name that names an interface type (Chapter 9, Interfaces), then:

• If there is not exactly one accessible (§6.6) member of the interface type that is
a field named Id, then a compile-time error occurs.

• Otherwise, Q.Id denotes the value of the field. The type of the expression Q.Id
is the declared type of the field after capture conversion (§5.1.10).

If Q.Id appears in a context that requires a variable and not a value, then a
compile-time error occurs.

If Q is an expression name, let T be the type of the expression Q:

• If T is not a reference type, a compile-time error occurs.

• If there is not exactly one accessible (§6.6) member of the type T that is a field
named Id, then a compile-time error occurs.

• Otherwise, if this field is any of the following:

◆ A field of an interface type

◆ A final field of a class type (which may be either a class variable or an
instance variable)

◆ The final field length of an array type

then Q.Id denotes the value of the field, unless it appears in a context that
requires a variable and the field is a definitely unassigned blank final field, in
which case it yields a variable. The type of the expression Q.Id is the declared
type of the field after capture conversion (§5.1.10).

If Q.Id appears in a context that requires a variable and not a value, and the field
denoted by Q.Id is definitely assigned, then a compile-time error occurs.
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• Otherwise, Q.Id denotes a variable, the field Id of class T, which may be either
a class variable or an instance variable. The type of the expression Q.Id is the
type of the field member after capture conversion (§5.1.10).

Note that expression names may be qualified by type names, but not by types in
general. A consequence is that it is not possible to access a class variable through
a parameterized type.

6.5.7 Meaning of Method Names

A MethodName can appear only in a method invocation expression (§15.12) or as
an element name in an element-value pair (§9.7). The meaning of a name classified
as a MethodName is determined as follows.

6.5.7.1 Simple Method Names

A simple method name may appear as the element name in an element-value
pair. The Identifier in an ElementValuePair must be the simple name of one of
the elements of the annotation type identified by TypeName in the containing
annotation. Otherwise, a compile-time error occurs. (In other words, the identifier
in an element-value pair must also be a method name in the interface identified
by TypeName.)

Otherwise, a simple method name necessarily appears in the context of a method
invocation expression. In that case, if a method name consists of a single Identifier,
then Identifier is the method name to be used for method invocation. The Identifier
must name at least one visible (§6.4.1) method that is in scope at the point where
the Identifier appears or a method imported by a single-static-import declaration
(§7.5.3) or static-import-on-demand declaration (§7.5.4) within the compilation
unit within which the Identifier appears.

6.5.7.2 Qualified Method Names

A qualified method name can only appear in the context of a method invocation
expression.

If a method name is of the form Q.Id, then Q has already been classified as a package
name, a type name, or an expression name.

If Q is a package name, then a compile-time error occurs. Otherwise, Id is the
method name to be used for method invocation.

If Q is a type name, then Id must name at least one static method of the type Q.
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If Q is an expression name, then let T be the type of the expression Q. Id must name
at least one method of the type T.

Like expression names, method names may be qualified by type names, but not
by types in general. The implications are similar to those for expression names as
discussed in §6.5.6.2.

6.6 Access Control

The Java programming language provides mechanisms for access control, to
prevent the users of a package or class from depending on unnecessary details of the
implementation of that package or class. If access is permitted, then the accessed
entity is said to be accessible.

Qualified names are a means of access to members of packages and reference
types. When the name of such a member is classified from its context (§6.5.1) as a
qualified type name (denoting a member of a package or reference type, §6.5.5.2)
or a qualified expression name (denoting a member of a reference type, §6.5.6.2),
access control is applied.

6.6.1 Determining Accessibility

• A package is always accessible.

• If a class or interface type is declared public, then it may be accessed by
any code, provided that the compilation unit (§7.3) in which it is declared is
observable. If a top level class or interface type is not declared public, then it
may be accessed only from within the package in which it is declared.

• An array type is accessible if and only if its element type is accessible.

• A member (class, interface, field, or method) of a reference (class, interface,
or array) type or a constructor of a class type is accessible only if the type is
accessible and the member or constructor is declared to permit access:

◆ If the member or constructor is declared public, then access is permitted. All
members of interfaces are implicitly public.

◆ Otherwise, if the member or constructor is declared protected, then access is
permitted only when one of the following is true:



6.6.2 Details on protected Access NAMES

98

❖ Access to the member or constructor occurs from within the package
containing the class in which the protected member or constructor is
declared.

❖ Access is correct as described in §6.6.2.

◆ Otherwise, if the member or constructor is declared private, then access is
permitted if and only if it occurs within the body of the top level class (§7.6)
that encloses the declaration of the member or constructor.

◆ Otherwise, we say there is default access, which is permitted only when the
access occurs from within the package in which the type is declared.

6.6.2 Details on protected Access

A protected member or constructor of an object may be accessed from outside
the package in which it is declared only by code that is responsible for the
implementation of that object.

6.6.2.1 Access to a protected Member

Let C be the class in which a protected member is declared. Access is permitted
only within the body of a subclass S of C.

In addition, if Id denotes an instance field or instance method, then:

• If the access is by a qualified name Q.Id, where Q is an ExpressionName, then
the access is permitted if and only if the type of the expression Q is S or a subclass
of S.

• If the access is by a field access expression E.Id, where E is a Primary
expression, or by a method invocation expression E.Id(. . .), where E is a
Primary expression, then the access is permitted if and only if the type of E is
S or a subclass of S.

6.6.2.2 Qualified Access to a protected Constructor

Let C be the class in which a protected constructor is declared and let S be the
innermost class in whose declaration the use of the protected constructor occurs.
Then:

• If the access is by a superclass constructor invocation super(. . .) or by a
qualified superclass constructor invocation of the form E.super(. . .), where
E is a Primary expression, then the access is permitted.
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• If the access is by an anonymous class instance creation expression of the form
new C(. . .){...} or by a qualified class instance creation expression of the
form E.new C(. . .){...}, where E is a Primary expression, then the access
is permitted.

• Otherwise, if the access is by a simple class instance creation expression of the
form new C(. . .) or by a qualified class instance creation expression of the
form E.new C(. . .), where E is a Primary expression, then the access is not
permitted.

A protected constructor can be accessed by a class instance creation expression
(that does not declare an anonymous class) only from within the package in
which it is defined.

6.7 Fully Qualified Names and Canonical Names

Every named package, top level class, top level interface, and primitive type has
a fully qualified name.

• The fully qualified name of a primitive type is the keyword for that primitive
type, namely boolean, char, byte, short, int, long, float, or double.

• The fully qualified name of a named package that is not a subpackage of a named
package is its simple name.

• The fully qualified name of a named package that is a subpackage of another
named package consists of the fully qualified name of the containing package,
followed by ".", followed by the simple (member) name of the subpackage.

• The fully qualified name of a top level class or top level interface that is declared
in an unnamed package is the simple name of the class or interface.

• The fully qualified name of a top level class or top level interface that is declared
in a named package consists of the fully qualified name of the package, followed
by ".", followed by the simple name of the class or interface.

Each member class, member interface, and array type may have a fully qualified
name.

• A member class or member interface M of another class C has a fully qualified
name if and only if C has a fully qualified name.

In that case, the fully qualified name of M consists of the fully qualified name of
C, followed by ".", followed by the simple name of M.



6.7 Fully Qualified Names and Canonical Names NAMES

100

• An array type has a fully qualified name if and only if its element type has a
fully qualified name.

In that case, the fully qualified name of an array type consists of the fully
qualified name of the component type of the array type followed by "[]".

A local class does not have a fully qualified name.

Every named package, top level class, top level interface, and primitive type has
a canonical name.

For every named package, top level class, top level interface, and primitive type,
the canonical name is the same as the fully qualified name.

Each member class, member interface, and array type may have a canonical name.

• A member class or member interface M declared in another class C has a canonical
name if and only if C has a canonical name.

In that case, the canonical name of M consists of the canonical name of C, followed
by ".", followed by the simple name of M.

• An array type has a canonical name if and only if its element type has a canonical
name.

In that case, the canonical name of the array type consists of the canonical name
of the component type of the array type followed by "[]".

A local class does not have a canonical name.
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C H A P T E R 7
Packages

PROGRAMS are organized as sets of packages. Each package has its own set
of names for types, which helps to prevent name conflicts. A top level type is
accessible (§6.6) outside the package that declares it only if the type is declared
public.

The naming structure for packages is hierarchical (§7.1). The members of a package
are class and interface types (§7.6), which are declared in compilation units of the
package, and subpackages, which may contain compilation units and subpackages
of their own.

A package can be stored in a file system or in a database (§7.2). Packages that are
stored in a file system may have certain constraints on the organization of their
compilation units to allow a simple implementation to find classes easily.

A package consists of a number of compilation units (§7.3). A compilation unit
automatically has access to all types declared in its package and also automatically
imports all of the public types declared in the predefined package java.lang.

For small programs and casual development, a package can be unnamed (§7.4.2) or
have a simple name, but if code is to be widely distributed, unique package names
should be chosen using qualified names. This can prevent the conflicts that would
otherwise occur if two development groups happened to pick the same package
name and these packages were later to be used in a single program.

7.1 Package Members

The members of a package are its subpackages and all the top level class types
(§7.6, Chapter 8, Classes) and top level interface types (Chapter 9, Interfaces)
declared in all the compilation units (§7.3) of the package.
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If the fully qualified name (§6.7) of a package is P, and Q is a subpackage of P,
then P.Q is the fully qualified name of the subpackage, and furthermore denotes
a package.

A package may not contain two members of the same name, or a compile-time
error results.

The hierarchical naming structure for packages is intended to be convenient for
organizing related packages in a conventional manner, but has no significance in
itself other than the prohibition against a package having a subpackage with the
same simple name as a top level type (§7.6) declared in that package.

There is no special access relationship between a package named oliver and
another package named oliver.twist, or between packages named evelyn.wood
and evelyn.waugh. That is, the code in a package named oliver.twist has no
better access to the types declared within package oliver than code in any other
package.

7.2 Host Support for Packages

Each host system determines how packages and compilation units are created and
stored.

In simple implementations of the Java SE platform, packages and compilation units
may be stored in a local file system. Other implementations may store them using
a distributed file system or some form of database.

If a host system stores packages and compilation units in a database, then the
database must not impose the optional restrictions (§7.6) on compilation units
permissible in file-based implementations.

Systems that use a database must, however, provide an option to convert a
program to a form that obeys the restrictions, for purposes of export to file-based
implementations.

7.3 Compilation Units

CompilationUnit is the goal symbol (§2.1) for the syntactic grammar (§2.3) of Java
programs. It is defined by the following productions:
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CompilationUnit:
    PackageDeclarationopt ImportDeclarationsopt TypeDeclarationsopt

ImportDeclarations:
    ImportDeclaration
    ImportDeclarations ImportDeclaration

TypeDeclarations:
    TypeDeclaration
    TypeDeclarations TypeDeclaration

A compilation unit consists of three parts, each of which is optional:

• A package declaration (§7.4), giving the fully qualified name (§6.7) of the
package to which the compilation unit belongs.

A compilation unit that has no package declaration is part of an unnamed
package (§7.4.2).

• import declarations (§7.5) that allow types from other packages and static
members of types to be referred to using their simple names

• Top level type declarations (§7.6) of class and interface types

Every compilation unit implicitly imports every public type name declared in
the predefined package java.lang, as if the declaration import java.lang.*;
appeared at the beginning of each compilation unit immediately after any package
statement. As a result, the names of all those types are available as simple names
in every compilation unit.

Types declared in different compilation units can depend on each other, circularly.
A Java compiler must arrange to compile all such types at the same time.

All the compilation units of the predefined package java and its subpackages lang
and io are always observable.

For all other packages, the host system determines which compilation units are
observable.

7.4 Package Declarations

A package declaration appears within a compilation unit to indicate the package
to which the compilation unit belongs.
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7.4.1 Named Packages

A package declaration in a compilation unit specifies the name (§6.2) of the
package to which the compilation unit belongs.

PackageDeclaration:
    Annotationsopt package PackageName ;

The package name mentioned in a package declaration must be the fully qualified
name (§6.7) of the package.

The PackageName in a package declaration ensures there is an observable package
with the supplied canonical name, and that it is not subject to the rules in §6.5.3
for determining the meaning of a package name.

The keyword package may optionally be preceded by annotation modifiers. If an
annotation a (§9.7) on a package declaration corresponds to an annotation type T
(§9.6), and T has a (meta-)annotation m that corresponds to annotation.Target,
then m must have an element whose value is annotation.ElementType.PACKAGE,
or a compile-time error occurs.

At most one annotated package declaration is permitted for a given package.

7.4.2 Unnamed Packages

A compilation unit that has no package declaration is part of an unnamed package.

Unnamed packages are provided by the Java SE platform principally for
convenience when developing small or temporary applications or when just
beginning development.

Note that an unnamed package cannot have subpackages, since the syntax of a
package declaration always includes a reference to a named top level package.

An implementation of the Java SE platform must support at least one unnamed
package; it may support more than one unnamed package but is not required to do
so. Which compilation units are in each unnamed package is determined by the
host system.

7.4.3 Observability of a Package

A package is observable if and only if either:

• A compilation unit containing a declaration of the package is observable.

• A subpackage of the package is observable.
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The packages java, java.lang, and java.io are always observable.

7.5 Import Declarations

An import declaration allows a named type or a static member to be referred to by
a simple name (§6.2) that consists of a single identifier.

Without the use of an appropriate import declaration, the only way to refer to a
type declared in another package, or a static member of another type, is to use a
fully qualified name (§6.7).

ImportDeclaration:
    SingleTypeImportDeclaration
    TypeImportOnDemandDeclaration 
    SingleStaticImportDeclaration 
    StaticImportOnDemandDeclaration

A single-type-import declaration (§7.5.1) imports a single named type, by
mentioning its canonical name (§6.7).

A type-import-on-demand declaration (§7.5.2) imports all the accessible (§6.6)
types of a named type or named package as needed, by mentioning the canonical
name of a type or package.

A single static import declaration (§7.5.3) imports all accessible static members
with a given name from a type, by giving its canonical name.

A static-import-on-demand declaration (§7.5.4) imports all accessible static
members of a named type as needed, by mentioning the canonical name of a type.

An import declaration makes types or members available by their simple names
only within the compilation unit that actually contains the import declaration.
The scope of the type(s) or member(s) introduced by an import declaration
specifically does not include the PackageName of a package declaration, other
import declarations in the current compilation unit, or other compilation units in
the same package.

7.5.1 Single-Type-Import Declaration

A single-type-import declaration imports a single type by giving its canonical
name (§6.7), making it available under a simple name in the class and interface
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declarations of the compilation unit in which the single-type-import declaration
appears.

SingleTypeImportDeclaration:
    import TypeName ;

The TypeName must be the canonical name of a class type, interface type, enum
type, or annotation type.

It is a compile-time error if the named type is not accessible (§6.6).

If two single-type-import declarations in the same compilation unit attempt to
import types with the same simple name, then a compile-time error occurs, unless
the two types are the same type, in which case the duplicate declaration is ignored.

If the type imported by the the single-type-import declaration is declared in the
compilation unit that contains the import declaration, the import declaration is
ignored.

If a compilation unit contains both a single-static-import declaration (§7.5.3) that
imports a type whose simple name is n, and a single-type-import declaration
(§7.5.1) that imports a type whose simple name is n, a compile-time error occurs.

If another top level type with the same simple name is otherwise declared in the
current compilation unit except by a type-import-on-demand declaration (§7.5.2) or
a static-import-on-demand declaration (§7.5.4), then a compile-time error occurs.

7.5.2 Type-Import-on-Demand Declaration

A type-import-on-demand declaration allows all accessible (§6.6) types declared
in the type or package named by a canonical name to be imported as needed.

TypeImportOnDemandDeclaration:
    import PackageOrTypeName . * ;

The PackageOrTypeName must be the canonical name of a package, a class type,
an interface type, an enum type, or an annotation type.

It is a compile-time error if the named package or type is not accessible (§6.6).

Two or more type-import-on-demand declarations in the same compilation unit
may name the same type or package. All but one of these declarations are
considered redundant; the effect is as if that type was imported only once.
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If a compilation unit contains both a static-import-on-demand declaration and a
type-import-on-demand (§7.5.2) declaration that name the same type, the effect is
as if the static member types of that type were imported only once.

It is not a compile-time error to name the current package or java.lang in a type-
import-on-demand declaration. The type-import-on-demand declaration is ignored
in such cases.

7.5.3 Single Static Import Declaration

A single-static-import declaration imports all accessible (§6.6) static members
with a given simple name from a type. This makes these static members available
under their simple name in the class and interface declarations of the compilation
unit in which the single-static import declaration appears.

SingleStaticImportDeclaration:
    import static TypeName . Identifier ;

The TypeName must be the canonical name (§6.7) of a class type, interface type,
enum type, or annotation type.

It is a compile-time error if the named type is not accessible (§6.6).

The Identifier must name at least one static member of the named type. It is a
compile-time error if there is no static member of that name, or if all of the named
members are not accessible.

It is permissible for one single-static-import declaration to import several fields or
types with the same name, or several methods with the same name and signature.

If a compilation unit contains both a single-static-import (§7.5.3) declaration that
imports a type whose simple name is n, and a single-type-import declaration
(§7.5.1) that imports a type whose simple name is n, a compile-time error occurs.

If a single-static-import declaration imports a type whose simple name is n, and
the compilation unit also declares a top level type (§7.6) whose simple name is n,
a compile-time error occurs.

7.5.4 Static-Import-on-Demand Declaration

A static-import-on-demand declaration allows all accessible (§6.6) static members
of the type named by a canonical name to be imported as needed.

StaticImportOnDemandDeclaration:
    import static TypeName . * ;



7.6 Top Level Type Declarations PACKAGES

108

The TypeName must be the canonical name of a class type, interface type, enum
type, or annotation type.

It is a compile-time error if the named type is not accessible.

Two or more static-import-on-demand declarations in the same compilation unit
may name the same type ; the effect is as if there was exactly one such declaration.

Two or more static-import-on-demand declarations in the same compilation unit
may name the same member; the effect is as if the member was imported exactly
once.

Note that it is permissible for one static-import-on-demand declaration to import
several fields or types with the same name, or several methods with the same name
and signature.

If a compilation unit contains both a static-import-on-demand declaration and a
type-import-on-demand (§7.5.2) declaration that name the same type, the effect is
as if the static member types of that type were imported only once.

A static-import-on-demand declaration never causes any other declaration to be
shadowed.

7.6 Top Level Type Declarations

A top level type declaration declares a top level class type (Chapter 8, Classes) or
a top level interface type (Chapter 9, Interfaces).

TypeDeclaration:
    ClassDeclaration
    InterfaceDeclaration
    ;

By default, the top level types declared in a package are accessible only within the
compilation units of that package, but a type may be declared to be public to grant
access to the type from code in other packages (§6.6, §8.1.1, §9.1.1).

It is a compile-time error if a top level type declaration contains any one of the
following access modifiers: protected, private, or static.

If a top level type named T is declared in a compilation unit of a package whose
fully qualified name is P, then the fully qualified name of the type is P.T.
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If the type is declared in an unnamed package (§7.4.2), then the type has the fully
qualified name T.

An implementation of the Java SE platform must keep track of types within
packages by their binary names (§13.1). Multiple ways of naming a type must be
expanded to binary names to make sure that such names are understood as referring
to the same type.

If and only if packages are stored in a file system (§7.2), the host system may
choose to enforce the restriction that it is a compile-time error if a type is not found
in a file under a name composed of the type name plus an extension (such as .java
or .jav) if either of the following is true:

• The type is referred to by code in other compilation units of the package in which
the type is declared.

• The type is declared public (and therefore is potentially accessible from code
in other packages).

It is a compile-time error if the name of a top level type appears as the name of any
other top level class or interface type declared in the same package.

It is a compile-time error if the name of a top level type is also declared as a type by
a single-type-import declaration (§7.5.1) in the compilation unit (§7.3) containing
the type declaration.
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C H A P T E R 8
Classes

CLASS declarations define new reference types and describe how they are
implemented (§8.1).

A top level class is a class that is not a nested class.

A nested class is any class whose declaration occurs within the body of another
class or interface.

This chapter discusses the common semantics of all classes - top level (§7.6)
and nested (including member classes (§8.5, §9.5), local classes (§14.3) and
anonymous classes (§15.9.5)). Details that are specific to particular kinds of classes
are discussed in the sections dedicated to these constructs.

A named class may be declared abstract (§8.1.1.1) and must be declared abstract
if it is incompletely implemented; such a class cannot be instantiated, but can be
extended by subclasses. A class may be declared final (§8.1.1.2), in which case it
cannot have subclasses. If a class is declared public, then it can be referred to from
other packages. Each class except Object is an extension of (that is, a subclass
of) a single existing class (§8.1.4) and may implement interfaces (§8.1.5). Classes
may be generic, that is, they may declare type variables whose bindings may differ
among different instances of the class.

Classes may be decorated with annotations (§9.7) just like any other kind of
declaration.

The body of a class declares members (fields and methods and nested classes
and interfaces), instance and static initializers, and constructors (§8.1.6). The
scope (§6.3) of a member (§8.2) is the entire body of the declaration of the class
to which the member belongs. Field, method, member class, member interface,
and constructor declarations may include the access modifiers (§6.6) public,
protected, or private. The members of a class include both declared and
inherited members (§8.2). Newly declared fields can hide fields declared in a
superclass or superinterface. Newly declared class members and interface members
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can hide class or interface members declared in a superclass or superinterface.
Newly declared methods can hide, implement, or override methods declared in a
superclass or superinterface.

Field declarations (§8.3) describe class variables, which are incarnated once, and
instance variables, which are freshly incarnated for each instance of the class. A
field may be declared final (§8.3.1.2), in which case it can be assigned to only
once. Any field declaration may include an initializer.

Member class declarations (§8.5) describe nested classes that are members of the
surrounding class. Member classes may be static, in which case they have no
access to the instance variables of the surrounding class; or they may be inner
classes (§8.1.3).

Member interface declarations (§8.5) describe nested interfaces that are members
of the surrounding class.

Method declarations (§8.4) describe code that may be invoked by method
invocation expressions (§15.12). A class method is invoked relative to the class
type; an instance method is invoked with respect to some particular object that is
an instance of a class type. A method whose declaration does not indicate how
it is implemented must be declared abstract. A method may be declared final
(§8.4.3.3), in which case it cannot be hidden or overridden. A method may be
implemented by platform-dependent native code (§8.4.3.4). A synchronized
method (§8.4.3.6) automatically locks an object before executing its body and
automatically unlocks the object on return, as if by use of a synchronized
statement (§14.19), thus allowing its activities to be synchronized with those of
other threads (Chapter 17, Threads and Locks).

Method names may be overloaded (§8.4.9).

Instance initializers (§8.6) are blocks of executable code that may be used to help
initialize an instance when it is created (§15.9).

Static initializers (§8.7) are blocks of executable code that may be used to help
initialize a class.

Constructors (§8.8) are similar to methods, but cannot be invoked directly by a
method call; they are used to initialize new class instances. Like methods, they may
be overloaded (§8.8.8).
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8.1 Class Declaration

A class declaration specifies a new named reference type.

There are two kinds of class declarations: normal class declarations and enum
declarations.

ClassDeclaration:
    NormalClassDeclaration
    EnumDeclaration

NormalClassDeclaration:
    ClassModifiersopt class Identifier TypeParametersopt
                                               Superopt Interfacesopt ClassBody

The rules in this section apply to all class declarations unless this specification
explicitly states otherwise. In many cases, special restrictions apply to enum
declarations. Enum declarations are described in detail in §8.9.

The Identifier in a class declaration specifies the name of the class.

It is a compile-time error if a class has the same simple name as any of its enclosing
classes or interfaces.

8.1.1 Class Modifiers

A class declaration may include class modifiers.

ClassModifiers:
    ClassModifier
    ClassModifiers ClassModifier

ClassModifier: one of
    Annotation public protected private
    abstract static final strictfp

If an annotation a (§9.7) on a class declaration corresponds to an annotation type
T (§9.6), and T has a (meta-)annotation m that corresponds to annotation.Target,
then m must have an element whose value is annotation.ElementType.TYPE, or
a compile-time error occurs.

The access modifier public (§6.6) pertains only to top level classes (§7.6) and to
member classes (§8.5), not to local or anonymous classes.
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The access modifiers protected and private (§6.6) pertain only to member
classes within a directly enclosing class or enum declaration (§8.5.1).

The modifier static pertains only to member classes (§8.5.2), not to top level or
local or anonymous classes.

It is a compile-time error if the same modifier appears more than once in a class
declaration.

8.1.1.1 abstract Classes

An abstract class is a class that is incomplete, or to be considered incomplete.

Normal classes may have abstract methods (§8.4.3.1, §9.4), that is, methods that
are declared but not yet implemented, only if they are abstract classes. If a normal
class that is not abstract contains an abstract method, then a compile-time error
occurs.

Enum types (§8.9) must not be declared abstract; doing so will result in a
compile-time error.

It is a compile-time error for an enum type E to have an abstract method m as a
member unless E has one or more enum constants, and all of E's enum constants
have class bodies that provide concrete implementations of m.

It is a compile-time error for the class body of an enum constant to declare an
abstract method.

A class C has abstract methods if any of the following is true:

• C explicitly contains a declaration of an abstract method (§8.4.3).

• Any of C's superclasses has an abstract method and C neither declares nor
inherits a method that implements (§8.4.8.1) it.

• A direct superinterface (§8.1.5) of C declares or inherits a method (which is
therefore necessarily abstract) and C neither declares nor inherits a method that
implements it.

It is a compile-time error if an attempt is made to create an instance of an abstract
class using a class instance creation expression (§15.9).

A subclass of an abstract class that is not itself abstract may be instantiated,
resulting in the execution of a constructor for the abstract class and, therefore,
the execution of the field initializers for instance variables of that class.

It is a compile-time error to declare an abstract class type such that it is not
possible to create a subclass that implements all of its abstract methods.
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8.1.1.2 final Classes

A class can be declared final if its definition is complete and no subclasses are
desired or required.

It is a compile-time error if the name of a final class appears in the extends clause
(§8.1.4) of another class declaration; this implies that a final class cannot have
any subclasses.

It is a compile-time error if a class is declared both final and abstract, because
the implementation of such a class could never be completed (§8.1.1.1).

Because a final class never has any subclasses, the methods of a final class are
never overridden (§8.4.8.1).

8.1.1.3 strictfp Classes

The effect of the strictfp modifier is to make all float or double expressions
within the class declaration (including within instance variable initializers, instance
initializers, static initializers, and constructors) be explicitly FP-strict (§15.4).

This implies that all methods declared in the class, and all nested types declared in
the class, are implicitly strictfp.

8.1.2 Generic Classes and Type Parameters

A class is generic if it declares one or more type variables (§4.4).

These type variables are known as the type parameters of the class. The type
parameter section follows the class name and is delimited by angle brackets.

TypeParameters:
 < TypeParameterList >

TypeParameterList:
  TypeParameterList , TypeParameter
  TypeParameter

In a class's type parameter section, a type variable T directly depends on a type
variable S if S is the bound of T, while T depends on S if either T directly depends on
S or T directly depends on a type variable U that depends on S (using this definition
recursively). It is a compile-time error if a type variable in a class's type parameter
section depends on itself.
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A generic class declaration defines a set of parameterized types, one for each
possible invocation of the type parameter section. All of these parameterized types
share the same class at runtime.

It is a compile-time error if a generic class is a direct or indirect subclass of
Throwable.

It is a compile-time error to refer to a type parameter of a class C anywhere in the
declaration of a static member of C or the declaration of a static member of any
type declaration nested within C.

It is a compile-time error to refer to a type parameter of a class C within the static
initializer of C or any class nested within C.

Parameterized class declarations can be nested inside other declarations.

8.1.3 Inner Classes and Enclosing Instances

An inner class is a nested class that is not explicitly or implicitly declared static.

Inner classes include local (§14.3), anonymous (§15.9.5) and non-static member
classes (§8.5).

Inner classes may not declare static initializers (§8.7) or member interfaces.

Inner classes may not declare static members, unless they are constant variables
(§4.12.4).

Inner classes may inherit static members that are not compile-time constants even
though they may not declare them. Nested classes that are not inner classes may
declare static members freely, in accordance with the usual rules of the Java
programming language.

Member interfaces (§8.5) are implicitly static so they are never considered to be
inner classes.

A statement or expression occurs in a static context if and only if the innermost
method, constructor, instance initializer, static initializer, field initializer, or
explicit constructor invocation statement enclosing the statement or expression is
a static method, a static initializer, the variable initializer of a static variable, or an
explicit constructor invocation statement (§8.8.7).

An inner class C is a direct inner class of a class O if O is the immediately lexically
enclosing class of C and the declaration of C does not occur in a static context.

A class C is an inner class of class O if it is either a direct inner class of O or an
inner class of an inner class of O.
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A class O is the zeroth lexically enclosing class of itself.

A class O is the n'th lexically enclosing class of a class C if it is the immediately
enclosing class of the n-1'th lexically enclosing class of C.

An instance i of a direct inner class C of a class O is associated with an instance of
O, known as the immediately enclosing instance of i. The immediately enclosing
instance of an object, if any, is determined when the object is created (§15.9.2).

An object o is the zeroth lexically enclosing instance of itself.

An object o is the n'th lexically enclosing instance of an instance i if it is the
immediately enclosing instance of the n-1'th lexically enclosing instance of i.

When an inner class refers to an instance variable that is a member of a lexically
enclosing class, the variable of the corresponding lexically enclosing instance is
used.

A blank final (§4.12.4) field of a lexically enclosing class may not be assigned
within an inner class.

An instance of an inner class I whose declaration occurs in a static context has
no lexically enclosing instances. However, if I is immediately declared within a
static method or static initializer then I does have an enclosing block, which is the
innermost block statement lexically enclosing the declaration of I.

For every superclass S of C which is itself a direct inner class of a class SO, there is
an instance of SO associated with i, known as the immediately enclosing instance
of i with respect to S. The immediately enclosing instance of an object with respect
to its class' direct superclass, if any, is determined when the superclass constructor
is invoked via an explicit constructor invocation statement.

Any local variable, formal method parameter, or exception handler parameter used
but not declared in an inner class must be declared final.

Any local variable used but not declared in an inner class must be definitely
assigned (Chapter 16, Definite Assignment) before the body of the inner class.

Inner classes whose declarations do not occur in a static context may freely refer
to the instance variables of their enclosing class. An instance variable is always
defined with respect to an instance. In the case of instance variables of an enclosing
class, the instance variable must be defined with respect to an enclosing instance
of that class.



8.1.4 Superclasses and Subclasses CLASSES

118

8.1.4 Superclasses and Subclasses

The optional extends clause in a normal class declaration specifies the direct
superclass of the current class.

Super:
    extends ClassType

A class is said to be a direct subclass of its direct superclass. The direct superclass
is the class from whose implementation the implementation of the current class is
derived.

The direct superclass of an enum type E is Enum<E>.

The extends clause must not appear in the definition of the class Object, because
it is the primordial class and has no direct superclass.

Given a (possibly generic) class declaration for C<F1,...,Fn> (n ≥ 0, C ≠ Object),
the direct superclass of the class type (§4.5) C<F1,...,Fn> is the type given in the
extends clause of the declaration of C if an extends clause is present, or Object
otherwise.

Let C<F1,...,Fn> (n > 0) be a generic class declaration. The direct superclass of
the parameterized class type C<T1,...,Tn>, where Ti (1 ≤ i ≤ n) is a type, is D<U1
θ,...,Uk θ>, where D<U1,...,Uk> is the direct superclass of C<F1,...,Fn>, and θ is
the substitution [F1:=T1,...,Fn:=Tn].

The ClassType must name an accessible (§6.6) class type, or a compile-time error
occurs.

If the specified ClassType names a class that is final (§8.1.1.2), then a compile-
time error occurs, as final classes are not allowed to have subclasses.

It is a compile-time error if the ClassType names the class Enum or any invocation
of it.

If the TypeName is followed by any type arguments, it must be a correct invocation
of the type declaration denoted by TypeName, and none of the type arguments may
be wildcard type arguments, or a compile-time error occurs.

The subclass relationship is the transitive closure of the direct subclass relationship.
A class A is a subclass of class C if either of the following is true:

• A is the direct subclass of C

• There exists a class B such that A is a subclass of B, and B is a subclass of C,
applying this definition recursively.
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Class C is said to be a superclass of class A whenever A is a subclass of C.

A class C directly depends on a type T if T is mentioned in the extends or
implements clause of C either as a superclass or superinterface, or as a qualifier of
a superclass or superinterface name.

A class C depends on a reference type T if any of the following conditions hold:

• C directly depends on T.

• C directly depends on an interface I that depends (§9.1.3) on T.

• C directly depends on a class D that depends on T (using this definition
recursively).

It is a compile-time error if a class depends on itself.

If circularly declared classes are detected at run time, as classes are loaded (§12.2),
then a ClassCircularityError is thrown.

8.1.5 Superinterfaces

The optional implements clause in a class declaration lists the names of interfaces
that are direct superinterfaces of the class being declared.

Interfaces:
    implements InterfaceTypeList

InterfaceTypeList:
    InterfaceType
   InterfaceTypeList , InterfaceType

Given a (possibly generic) class declaration for C<F1,...,Fn> (n ≥ 0, C ≠ Object),
the direct superinterfaces of the class type (§4.5) C<F1,...,Fn> are the types given
in the implements clause of the declaration of C, if an implements clause is present.

Let C<F1,...,Fn> (n > 0) be a generic class declaration. The direct superinterfaces
of the parameterized class type C<T1,...,Tn>, where Ti (1 ≤ i ≤ n) is a type,
are all types I<U1 θ,...,Uk θ>, where I<U1,...,Uk> is a direct superinterface of
C<F1,...,Fn>, and θ is the substitution [F1:=T1,...,Fn:=Tn].

Each InterfaceType must name an accessible (§6.6) interface type, or a compile-
time error occurs.



8.1.6 Class Body and Member Declarations CLASSES

120

If the TypeName is followed by any type arguments, it must be a correct invocation
of the type declaration denoted by TypeName, and none of the type arguments may
be wildcard type arguments, or a compile-time error occurs.

It is a compile-time error if the same interface is mentioned as a direct
superinterface two or more times in a single implements clause's names. This is
true even if the interface is named in different ways.

An interface type I is a superinterface of class type C if any of the following is true:

• I is a direct superinterface of C.

• C has some direct superinterface J for which I is a superinterface, using the
definition of "superinterface of an interface" given in §9.1.3.

• I is a superinterface of the direct superclass of C.

A class is said to implement all its superinterfaces.

A class can have a superinterface in more than one way.

Unless the class being declared is abstract, the declarations of all the method
members of each direct superinterface must be implemented either by a declaration
in this class or by an existing method declaration inherited from the direct
superclass, because a class that is not abstract is not permitted to have abstract
methods (§8.1.1.1).

It is permitted for a single method declaration in a class to implement methods of
more than one superinterface.

A class may not at the same time be a subtype of two interface types which are
different invocations of the same generic interface (§9.1.2), or an invocation of a
generic interface and a raw type naming that same generic interface.

8.1.6 Class Body and Member Declarations

A class body may contain declarations of members of the class, that is, fields (§8.3),
methods (§8.4), classes (§8.5), and interfaces (§8.5).

A class body may also contain instance initializers (§8.6), static initializers (§8.7),
and declarations of constructors (§8.8) for the class.
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ClassBody:
    { ClassBodyDeclarationsopt }

ClassBodyDeclarations:
    ClassBodyDeclaration
    ClassBodyDeclarations ClassBodyDeclaration

ClassBodyDeclaration:
    ClassMemberDeclaration
    InstanceInitializer
    StaticInitializer
    ConstructorDeclaration

ClassMemberDeclaration:
    FieldDeclaration
    MethodDeclaration
    ClassDeclaration      
    InterfaceDeclaration
    ;

8.2 Class Members

The members of a class type are all of the following:

• Members inherited from its direct superclass (§8.1.4), except in class Object,
which has no direct superclass

• Members inherited from any direct superinterfaces (§8.1.5)

• Members declared in the body of the class (§8.1.6)

Members of a class that are declared private are not inherited by subclasses of
that class.

Only members of a class that are declared protected or public are inherited by
subclasses declared in a package other than the one in which the class is declared.

Constructors, static initializers, and instance initializers are not members and
therefore are not inherited.

We use the phrase the type of a member to denote:

• For a field, its type.
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• For a method, an ordered 3-tuple consisting of:

◆ argument types: a list of the types of the arguments to the method member.

◆ return type: the return type of the method member.

◆ throws clause: exception types declared in the throws clause of the method
member.

Fields, methods, and member types of a class type may have the same name,
since they are used in different contexts and are disambiguated by different lookup
procedures (§6.5). However, this is discouraged as a matter of style.

8.3 Field Declarations

The variables of a class type are introduced by field declarations.

FieldDeclaration:
    FieldModifiersopt Type VariableDeclarators ;

VariableDeclarators:
    VariableDeclarator
    VariableDeclarators , VariableDeclarator

VariableDeclarator:
    VariableDeclaratorId
    VariableDeclaratorId = VariableInitializer

VariableDeclaratorId:
    Identifier
    VariableDeclaratorId [ ]

VariableInitializer:
    Expression
    ArrayInitializer

The Identifier in a FieldDeclarator may be used in a name to refer to the field.

More than one field may be declared in a single field declaration by using more
than one declarator; the FieldModifiers and Type apply to all the declarators in the
declaration.
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The declared type of a field is denoted by the Type that appears in the field
declaration, followed by any bracket pairs that follow the Identifier in the
declarator.

It is a compile-time error for the body of a class declaration to declare two fields
with the same name.

If the class declares a field with a certain name, then the declaration of that field
is said to hide any and all accessible declarations of fields with the same name in
superclasses, and superinterfaces of the class.

If a field declaration hides the declaration of another field, the two fields need not
have the same type.

A class inherits from its direct superclass and direct superinterfaces all the non-
private fields of the superclass and superinterfaces that are both accessible to code
in the class and not hidden by a declaration in the class.

Note that a private field of a superclass might be accessible to a subclass (for
example, if both classes are members of the same class). Nevertheless, a private
field is never inherited by a subclass.

It is possible for a class to inherit more than one field with the same name. Such a
situation does not in itself cause a compile-time error. However, any attempt within
the body of the class to refer to any such field by its simple name will result in a
compile-time error, because such a reference is ambiguous.

There might be several paths by which the same field declaration might be inherited
from an interface. In such a situation, the field is considered to be inherited only
once, and it may be referred to by its simple name without ambiguity.

A value stored in a field of type float is always an element of the float value set
(§4.2.3); similarly, a value stored in a field of type double is always an element
of the double value set. It is not permitted for a field of type float to contain an
element of the float-extended-exponent value set that is not also an element of the
float value set, nor for a field of type double to contain an element of the double-
extended-exponent value set that is not also an element of the double value set.
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8.3.1 Field Modifiers

FieldModifiers:
    FieldModifier
    FieldModifiers FieldModifier

FieldModifier: one of
    Annotation public protected private
    static final transient volatile

If an annotation a (§9.7) on a field declaration corresponds to an annotation type
T (§9.6), and T has a (meta-)annotation m that corresponds to annotation.Target,
then m must have an element whose value is annotation.ElementType.FIELD, or
a compile-time error occurs.

It is a compile-time error if the same modifier appears more than once in a field
declaration, or if a field declaration has more than one of the access modifiers
public, protected, and private.

8.3.1.1 static Fields

If a field is declared static, there exists exactly one incarnation of the field, no
matter how many instances (possibly zero) of the class may eventually be created.
A static field, sometimes called a class variable, is incarnated when the class is
initialized (§12.4).

A field that is not declared static (sometimes called a non-static field) is called
an instance variable. Whenever a new instance of a class is created (§12.5), a new
variable associated with that instance is created for every instance variable declared
in that class or any of its superclasses.

8.3.1.2 final Fields

A field can be declared final (§4.12.4). Both class and instance variables (static
and non-static fields) may be declared final.

It is a compile-time error if a blank final (§4.12.4) class variable is not definitely
assigned (§16.8) by a static initializer (§8.7) of the class in which it is declared.

A blank final instance variable must be definitely assigned (§16.9) at the end of
every constructor (§8.8) of the class in which it is declared; otherwise a compile-
time error occurs.
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8.3.1.3 transient Fields

Variables may be marked transient to indicate that they are not part of the
persistent state of an object.

8.3.1.4 volatile Fields

A field may be declared volatile, in which case the Java Memory Model (§17.4)
ensures that all threads see a consistent value for the variable.

It is a compile-time error if a final variable is also declared volatile.

8.3.2 Initialization of Fields

If a field declarator contains a variable initializer, then it has the semantics of an
assignment (§15.26) to the declared variable, and:

• If the declarator is for a class variable (that is, a static field), then the variable
initializer is evaluated and the assignment performed exactly once, when the
class is initialized (§12.4).

• If the declarator is for an instance variable (that is, a field that is not static),
then the variable initializer is evaluated and the assignment performed each time
an instance of the class is created (§12.5).

8.3.2.1 Initializers for Class Variables

If a reference by simple name to any instance variable occurs in an initialization
expression for a class variable, then a compile-time error occurs.

If the keyword this (§15.8.3) or the keyword super (§15.11.2, §15.12) occurs in
an initialization expression for a class variable, then a compile-time error occurs.

8.3.2.2 Initializers for Instance Variables

Initialization expressions for instance variables may use the simple name of any
static variable declared in or inherited by the class, even one whose declaration
occurs textually later.

Initialization expressions for instance variables are permitted to refer to the current
object this (§15.8.3) and to use the keyword super (§15.11.2, §15.12).
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8.3.2.3 Restrictions on the use of Fields during Initialization

The declaration of a member needs to appear textually before it is used only if the
member is an instance (respectively static) field of a class or interface C and all
of the following conditions hold:

• The usage occurs in an instance (respectively static) variable initializer of C or
in an instance (respectively static) initializer of C.

• The usage is not on the left hand side of an assignment.

• The usage is via a simple name.

• C is the innermost class or interface enclosing the usage.

It is a compile-time error if any of the four requirements above are not met.

These restrictions are designed to catch, at compile time, circular or otherwise
malformed initializations.

8.4 Method Declarations

A method declares executable code that can be invoked, passing a fixed number
of values as arguments.

MethodDeclaration:
    MethodHeader MethodBody

MethodHeader:
    MethodModifiersopt TypeParametersopt Result MethodDeclarator Throwsopt

Result:
    Type
    void

MethodDeclarator:
    Identifier ( FormalParameterListopt )

The Identifier in a MethodDeclarator may be used in a name to refer to the method.

The Result of a method declaration either declares the type of value that the method
returns, or uses the keyword void to indicate that the method does not return a
value.
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For compatibility with older versions of the Java SE platform, the declaration of a
method that returns an array is allowed to place (some or all of) the empty bracket
pairs that form the declaration of the array type after the parameter list. This is
supported by the obsolescent production:

MethodDeclarator:
    MethodDeclarator [ ]

but should not be used in new code.

It is a compile-time error for the body of a class to declare as members two methods
with override-equivalent signatures (§8.4.2).

8.4.1 Formal Parameters

The formal parameters of a method or constructor, if any, are specified by a list
of comma-separated parameter specifiers. Each parameter specifier consists of a
type (optionally preceded by the final modifier and/or one or more annotations
(§9.7)) and an identifier (optionally followed by brackets) that specifies the name
of the parameter.

The last formal parameter in a list is special: it may be a variable arity parameter,
indicated by an ellipsis following the type.
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FormalParameterList:
    LastFormalParameter
    FormalParameters , LastFormalParameter

FormalParameters:
    FormalParameter
    FormalParameters , FormalParameter

FormalParameter:
    VariableModifiersopt Type VariableDeclaratorId

VariableModifiers:
    VariableModifier
    VariableModifiers VariableModifier

VariableModifier: one of
    Annotation final

LastFormalParameter:
    VariableModifiersopt Type... VariableDeclaratorId
    FormalParameter

If a method or constructor has no formal parameters, only an empty pair of
parentheses appears in the declaration of the method or constructor.

If an annotation a (§9.7) on a formal parameter corresponds to an
annotation type T (§9.6), and T has a (meta-)annotation m that corresponds
to annotation.Target, then m must have an element whose value is
annotation.ElementType.PARAMETER, or a compile-time error occurs.

The declared type of a formal parameter is denoted by the Type that appears in its
parameter specifier, followed by any bracket pairs that follow the Identifier in the
declarator, except for a variable arity parameter, whose declared type is the Type
that appears in its parameter specifier.

It is a compile-time error to use mixed array notation (§10.2) for a variable arity
parameter.

It is a compile-time error if two formal parameters of the same method or
constructor are declared to have the same name (that is, their declarations mention
the same Identifier).

A formal parameter can only be referred to using a simple name (§6.5.6.1), not a
qualified name.
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It is a compile-time error if the name of a formal parameter is redeclared as a local
variable of the method or constructor, or as an exception parameter of a catch
clause in a try statement in the body of the method or constructor.

It is a compile-time error if a formal parameter that is declared final is assigned
to within the body of the method or constructor.

When the method or constructor is invoked (§15.12), the values of the actual
argument expressions initialize newly created parameter variables, each of the
declared Type, before execution of the body of the method or constructor. The
Identifier that appears in the DeclaratorId may be used as a simple name in the
body of the method or constructor to refer to the formal parameter.

If the last formal parameter is a variable arity parameter of type T, it is considered to
define a formal parameter of type T[]. The method is then a variable arity method.
Otherwise, it is a fixed arity method.

Invocations of a variable arity method may contain more actual argument
expressions than formal parameters. All the actual argument expressions that do
not correspond to the formal parameters preceding the variable arity parameter will
be evaluated and the results stored into an array that will be passed to the method
invocation (§15.12.4.2).

A method or constructor parameter of type float always contains an element of
the float value set (§4.2.3); similarly, a method or constructor parameter of type
double always contains an element of the double value set. It is not permitted for a
method or constructor parameter of type float to contain an element of the float-
extended-exponent value set that is not also an element of the float value set, nor for
a method parameter of type double to contain an element of the double-extended-
exponent value set that is not also an element of the double value set.

Where an actual argument expression corresponding to a parameter variable is
not FP-strict (§15.4), evaluation of that actual argument expression is permitted to
use intermediate values drawn from the appropriate extended-exponent value sets.
Prior to being stored in the parameter variable, the result of such an expression
is mapped to the nearest value in the corresponding standard value set by method
invocation conversion (§5.3).

8.4.2 Method Signature

It is a compile-time error to declare two methods with override-equivalent
signatures in a class.
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Two methods have the same signature if they have the same name and argument
types.

Two method or constructor declarations M and N have the same argument types if
all of the following conditions hold:

• They have the same number of formal parameters (possibly zero)

• They have the same number of type parameters (possibly zero)

• Let A1, ..., An be the type parameters of M and let B1, ..., Bn be the type parameters
of N. After renaming each occurrence of a Bi in N's type to Ai, the bounds of
corresponding type variables are the same, and the formal parameter types of M
and N are the same.

The signature of a method m1 is a subsignature of the signature of a method m2 if
either:

• m2 has the same signature as m1, or

• the signature of m1 is the same as the erasure of the signature of m2.

Two method signatures m1 and m2 are override-equivalent iff either m1 is a
subsignature of m2 or m2 is a subsignature of m1.

8.4.3 Method Modifiers

MethodModifiers:
    MethodModifier
    MethodModifiers MethodModifier

MethodModifier: one of
    Annotation public protected private abstract
    static final synchronized native strictfp

If an annotation a (§9.7) on a method declaration corresponds to an annotation type
T (§9.6), and T has a (meta-)annotation m that corresponds to annotation.Target,
then m must have an element whose value is annotation.ElementType.METHOD,
or a compile-time error occurs.

It is a compile-time error if the same modifier appears more than once in a method
declaration, or if a method declaration has more than one of the access modifiers
public, protected, and private.
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It is a compile-time error if a method declaration that contains the keyword
abstract also contains any one of the keywords private, static, final, native,
strictfp, or synchronized.

It is a compile-time error if a method declaration that contains the keyword native
also contains strictfp.

8.4.3.1 abstract Methods

An abstract method declaration introduces the method as a member, providing
its signature (§8.4.2), return type, and throws clause (if any), but does not provide
an implementation.

The declaration of an abstract method m must appear directly within an abstract
class (call it A) unless it occurs within an enum (§8.9); otherwise a compile-time
error occurs.

Every subclass of A that is not abstract (§8.1.1.1) must provide an implementation
for m, or a compile-time error occurs.

An abstract class can override an abstract method by providing another
abstract method declaration.

An instance method that is not abstract can be overridden by an abstract
method.

8.4.3.2 static Methods

A method that is declared static is called a class method.

It is a compile-time to use the name of a type parameter of any surrounding
declaration in the header or body of a class method.

A class method is always invoked without reference to a particular object. It is a
compile-time error to attempt to reference the current object using the keyword
this or the keyword super.

A method that is not declared static is called an instance method, and sometimes
called a non-static method.

An instance method is always invoked with respect to an object, which becomes
the current object to which the keywords this and super refer during execution
of the method body.

8.4.3.3 final Methods

A method can be declared final to prevent subclasses from overriding or hiding it.
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It is a compile-time error to attempt to override or hide a final method.

A private method and all methods declared immediately within a final class
(§8.1.1.2) behave as if they are final, since it is impossible to override them.

8.4.3.4 native Methods

A method that is native is implemented in platform-dependent code, typically
written in another programming language such as C, C++, FORTRAN,or assembly
language. The body of a native method is given as a semicolon only, indicating
that the implementation is omitted, instead of a block.

8.4.3.5 strictfp Methods

The effect of the strictfp modifier is to make all float or double expressions
within the method body be explicitly FP-strict (§15.4).

8.4.3.6 synchronized Methods

A synchronized method acquires a monitor (§17.1) before it executes.

For a class (static) method, the monitor associated with the Class object for the
method's class is used. For an instance method, the monitor associated with this
(the object for which the method was invoked) is used.

These are the same monitors that can be used by the synchronized statement
(§14.19).

8.4.4 Generic Methods

A method is generic if it declares one or more type variables (§4.4).

These type variables are known as the type parameters of the method. The form of
the type parameter section of a generic method is identical to the type parameter
section of a generic class (§8.1.2).

8.4.5 Method Return Type

The return type of a method declares the type of value a method returns, if it returns
a value, or states that the method is void.

A method declaration d1 with return type R1 is return-type-substitutable for another
method d2 with return type R2, if and only if the following conditions hold:

• If R1 is void then R2 is void.
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• If R1 is a primitive type, then R2 is identical to R1.

• If R1 is a reference type then:

◆ R1 is either a subtype of R2 or R1 can be converted to a subtype of R2 by
unchecked conversion (§5.1.9), or

◆ R1 = |R2|

8.4.6 Method Throws

A throws clause is used to declare any checked exception classes (§11.1.1) that
the statements in a method or constructor body can throw.

Throws:
    throws ExceptionTypeList

ExceptionTypeList:
    ExceptionType
    ExceptionTypeList , ExceptionType

ExceptionType:
    ClassType
    TypeVariable

It is a compile-time error if any ExceptionType mentioned in a throws clause is
not a subtype (§4.10) of Throwable.

It is permitted but not required to mention unchecked exception classes (§11.1.1)
in a throws clause.

A method that overrides or hides another method (§8.4.8), including methods that
implement abstract methods defined in interfaces, may not be declared to throw
more checked exceptions than the overridden or hidden method.

More precisely, suppose that B is a class or interface, and A is a superclass or
superinterface of B, and a method declaration n in B overrides or hides a method
declaration m in A. If n has a throws clause that mentions any checked exception
types, then m must have a throws clause, and for every checked exception type
listed in the throws clause of n, that same exception class or one of its supertypes
must occur in the erasure of the throws clause of m; otherwise, a compile-time error
occurs.

If the unerased throws clause of m does not contain a supertype of each exception
type in the throws clause of n, an unchecked warning must be issued.
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Type variables are allowed in a throws clause even though they are not allowed
in a catch clause.

8.4.7 Method Body

A method body is either a block of code that implements the method or simply a
semicolon, indicating the lack of an implementation.

The body of a method must be a semicolon if and only if the method is either
abstract (§8.4.3.1) or native (§8.4.3.4).

MethodBody:
    Block 
    ;

It is a compile-time error if a method declaration is either abstract or native and
has a block for its body.

It is a compile-time error if a method declaration is neither abstract nor native
and has a semicolon for its body.

If a method is declared void, then its body must not contain any return statement
(§14.17) that has an Expression.

If a method is declared to have a return type, then every return statement (§14.17)
in its body must have an Expression.

If a method is declared to have a return type, then a compile-time error occurs if
the body of the method can complete normally (§14.1).

8.4.8 Inheritance, Overriding, and Hiding

A class C inherits from its direct superclass and direct superinterfaces all non-
private methods (whether abstract or not) of the superclass and superinterfaces
that are public, protected, or declared with default access in the same package
as C and are neither overridden (§8.4.8.1) nor hidden (§8.4.8.2) by a declaration
in the class.

If the method not inherited is declared in a class, or the method not inherited
is declared in an interface and the new declaration is abstract, then the new
declaration is said to override it.

If the method not inherited is abstract and the new declaration is not abstract,
then the new declaration is said to implement it.
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8.4.8.1 Overriding (by Instance Methods)

An instance method m1 declared in a class C overrides another instance method, m2,
declared in class A iff all of the following are true:

• C is a subclass of A.

• The signature of m1 is a subsignature (§8.4.2) of the signature of m2.

• Either:

◆ m2 is public, protected, or declared with default access in the same package
as C, or

◆ m1 overrides a method m3, m3 distinct from m1, m3 distinct from m2, such that m3
overrides m2.

Moreover, if m1 is not abstract, then m1 is said to implement any and all
declarations of abstract methods that it overrides.

It is a compile-time error if an instance method overrides a static method.

An overridden method can be accessed by using a method invocation expression
(§15.12) that contains the keyword super. Note that a qualified name or a cast to
a superclass type is not effective in attempting to access an overridden method; in
this respect, overriding of methods differs from hiding of fields. See §15.12.4.4 for
discussion and examples of this point.

The presence or absence of the strictfp modifier has absolutely no effect on the
rules for overriding methods and implementing abstract methods. For example, it
is permitted for a method that is not FP-strict to override an FP-strict method and
it is permitted for an FP-strict method to override a method that is not FP-strict.

8.4.8.2 Hiding (by Class Methods)

If a class declares a static method m, then the declaration m is said to hide any
method m', where the signature of m is a subsignature (§8.4.2) of the signature of
m', in the superclasses and superinterfaces of the class that would otherwise be
accessible to code in the class.

It is a compile-time error if a static method hides an instance method.

A hidden method can be accessed by using a qualified name or by using a method
invocation expression (§15.12) that contains the keyword super or a cast to a
superclass type. In this respect, hiding of methods is similar to hiding of fields.
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8.4.8.3 Requirements in Overriding and Hiding

If a method declaration d1 with return type R1 overrides or hides the declaration of
another method d2 with return type R2, then d1 must be return-type-substitutable
(§8.4.5) for d2, or a compile-time error occurs.

Furthermore, if R1 is not a subtype of R2, an unchecked warning must be issued
(unless suppressed (§9.6.3.5)).

A method declaration must not have a throws clause that conflicts (§8.4.6) with
that of any method that it overrides or hides; otherwise, a compile-time error occurs.

It is a compile-time error if a type declaration T has a member method m1 and there
exists a method m2 declared in T or a supertype of T such that all of the following
conditions hold:

• m1 and m2 have the same name.

• m2 is accessible from T.

• The signature of m1 is not a subsignature (§8.4.2) of the signature of m2.

• The signature of m1 or some method m1 overrides (directly or indirectly) has the
same erasure as the signature of m2 or some method m2 overrides (directly or
indirectly).

The access modifier (§6.6) of an overriding or hiding method must provide at least
as much access as the overridden or hidden method, or a compile-time error occurs.

• If the overridden or hidden method is public, then the overriding or hiding
method must be public; otherwise, a compile-time error occurs.

• If the overridden or hidden method is protected, then the overriding or hiding
method must be protected or public; otherwise, a compile-time error occurs.

• If the overridden or hidden method has default (package) access, then the
overriding or hiding method must not be private; otherwise, a compile-time
error occurs.

8.4.8.4 Inheriting Methods with Override-Equivalent Signatures

It is possible for a class to inherit multiple methods with override-equivalent
(§8.4.2) signatures.

It is a compile-time error if a class C inherits a concrete method whose signature is
a subsignature of another concrete method inherited by C.

Otherwise, there are two possible cases:
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• If one of the inherited methods is not abstract, then there are two subcases:

◆ If the method that is not abstract is static, a compile-time error occurs.

◆ Otherwise, the method that is not abstract is considered to override, and
therefore to implement, all the other methods on behalf of the class that inherits
it.

If the signature of the non-abstract method is not a subsignature of each
of the other inherited methods, an unchecked warning must be issued (unless
suppressed (§9.6.3.5)).

If the return type of the non-abstract method is not a subtype of the return
type of any of the other inherited methods, an unchecked warning must be
issued.

A compile-time error occurs if the return type of the non-abstract method is
not return-type-substitutable (§8.4.5) for each of the other inherited methods.

A compile-time error occurs if the inherited method that is not abstract has
a throws clause that conflicts (§8.4.6) with that of any other of the inherited
methods.

• If all the inherited methods are abstract, then the class is necessarily an
abstract class and is considered to inherit all the abstract methods.

One of the inherited methods must be return-type-substitutable for any other
inherited method; otherwise, a compile-time error occurs. (The throws clauses
do not cause errors in this case.)

There might be several paths by which the same method declaration might be
inherited from an interface. This fact causes no difficulty and never, of itself, results
in a compile-time error.

8.4.9 Overloading

If two methods of a class (whether both declared in the same class, or both inherited
by a class, or one declared and one inherited) have the same name but signatures
that are not override-equivalent, then the method name is said to be overloaded.

This fact causes no difficulty and never of itself results in a compile-time error.
There is no required relationship between the return types or between the throws
clauses of two methods with the same name, unless their signatures are override-
equivalent.

Methods are overridden on a signature-by-signature basis.
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When a method is invoked (§15.12), the number of actual arguments (and any
explicit type arguments) and the compile-time types of the arguments are used,
at compile time, to determine the signature of the method that will be invoked
(§15.12.2). If the method that is to be invoked is an instance method, the actual
method to be invoked will be determined at run time, using dynamic method lookup
(§15.12.4).

8.5 Member Type Declarations

A member class is a class whose declaration is directly enclosed in another class
or interface declaration.

A member interface is an interface whose declaration is directly enclosed in another
class or interface declaration.

If the class declares a member type with a certain name, then the declaration of that
type is said to hide any and all accessible declarations of member types with the
same name in superclasses and superinterfaces of the class.

A class inherits from its direct superclass and direct superinterfaces all the
non-private member types of the superclass and superinterfaces that are both
accessible to code in the class and not hidden by a declaration in the class.

A class may inherit two or more type declarations with the same name, either from
two interfaces or from its superclass and an interface. It is a compile-time error to
attempt to refer to any ambiguously inherited class or interface by its simple name.

If the same type declaration is inherited from an interface by multiple paths, the
class or interface is considered to be inherited only once. It may be referred to by
its simple name without ambiguity.

8.5.1 Access Modifiers

It is a compile-time error if a member type declaration has more than one of the
access modifiers public, protected, and private (§6.6).

A member interface in a class declaration is implicitly public unless an access
modifier is specified.

Member type declarations may have annotation modifiers (§9.7) like any other type
or member declaration.
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8.5.2 Static Member Type Declarations

The static keyword may modify the declaration of a member type C within the
body of a non-inner class or interface T. Its effect is to declare that C is not an inner
class. Just as a static method of T has no current instance of T in its body, C also
has no current instance of T, nor does it have any lexically enclosing instances.

It is a compile-time error if a static class contains a usage of a non-static
member of an enclosing class.

Member interfaces are always implicitly static.

It is permitted but not required for the declaration of a member interface to
explicitly list the static modifier.

8.6 Instance Initializers

An instance initializer declared in a class is executed when an instance of the class
is created (§15.9), §8.8.7.1).

InstanceInitializer:
    Block

It is a compile-time error if an instance initializer cannot complete normally
(§14.21).

It is a compile-time error if a return statement (§14.17) appears anywhere within
an instance initializer.

Instance initializers are permitted to refer to the current object via the keyword
this (§15.8.3), to use the keyword super (§15.11.2, §15.12), and to use any type
variables in scope.

8.7 Static Initializers

Any static initializers declared in a class are executed when the class is initialized
(§12.4). Together with any field initializers for class variables (§8.3.2), static
initializers may be used to initialize the class variables of the class.

StaticInitializer:
    static Block
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It is a compile-time error if a static initializer cannot complete normally (§14.21).

It is a compile-time error if a return statement (§14.17) appears anywhere within
a static initializer.

It is a compile-time error if the keyword this (§15.8.3) or the keyword super
(§15.11, §15.12) or any type variable declared outside the static initializer, appears
anywhere within a static initializer.

The static initializers and class variable initializers of a class are executed in textual
order (§12.4.2).

8.8 Constructor Declarations

A constructor is used in the creation of an object that is an instance of a class.

ConstructorDeclaration:
    ConstructorModifiersopt ConstructorDeclarator
                                Throwsopt ConstructorBody

ConstructorDeclarator:
    TypeParametersopt SimpleTypeName ( FormalParameterListopt )

The SimpleTypeName in the ConstructorDeclarator must be the simple name of
the class that contains the constructor declaration; otherwise a compile-time error
occurs.

In all other respects, the constructor declaration looks just like a method declaration
that has no result type.

Constructors are invoked by class instance creation expressions (§15.9), by
the conversions and concatenations caused by the string concatenation operator
+ (§15.18.1), and by explicit constructor invocations from other constructors
(§8.8.7).

Constructors are never invoked by method invocation expressions (§15.12).

Access to constructors is governed by access modifiers (§6.6).

Constructor declarations are not members. They are never inherited and therefore
are not subject to hiding or overriding.
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8.8.1 Formal Parameters and Type Parameters

The formal parameters and type parameters of a constructor are identical in syntax
and semantics to those of a method (§8.4.1).

8.8.2 Constructor Signature

It is a compile-time error to declare two constructors with override-equivalent
(§8.4.2) signatures in a class.

It is a compile-time error to declare two constructors whose signatures have the
same erasure (§4.6) in a class.

8.8.3 Constructor Modifiers

ConstructorModifiers:
    ConstructorModifier
    ConstructorModifiers ConstructorModifier

ConstructorModifier: one of
    Annotation public protected private

If an annotation a (§9.7) on a constructor corresponds to an annotation type T (§9.6),
and T has a (meta-)annotation m that corresponds to annotation.Target, then m
must have an element whose value is annotation.ElementType.CONSTRUCTOR, or
a compile-time error occurs.

It is a compile-time error if the same modifier appears more than once in a
constructor declaration, or if a constructor declaration has more than one of the
access modifiers public, protected, and private.

It is a compile-time error if the constructor of an enum type (§8.9) is declared
public or protected.

If no access modifier is specified for the constructor of a normal class, the
constructor has default access.

If no access modifier is specified for the constructor of an enum type, the
constructor is private.

8.8.4 Generic Constructors

It is possible for a constructor to be declared generic, independently of whether the
class the constructor is declared in is itself generic.
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A constructor is generic if it declares one or more type variables (§4.4).

These type variables are known as the type parameters of the constructor. The
form of the type parameter section of a generic constructor is identical to the type
parameter section of a generic class (§8.1.2).

8.8.5 Constructor Throws

The throws clause for a constructor is identical in structure and behavior to the
throws clause for a method (§8.4.6).

8.8.6 The Type of a Constructor

The type of a constructor consists of its signature and the exception types given
its throws clause.

8.8.7 Constructor Body

The first statement of a constructor body may be an explicit invocation of another
constructor of the same class or of the direct superclass (§8.8.7.1).

ConstructorBody:
    { ExplicitConstructorInvocationopt BlockStatementsopt }

It is a compile-time error for a constructor to directly or indirectly invoke itself
through a series of one or more explicit constructor invocations involving this.

If the constructor is a constructor for an enum type (§8.9), it is a compile-time error
for it to invoke the superclass constructor explicitly.

If a constructor body does not begin with an explicit constructor invocation and
the constructor being declared is not part of the primordial class Object, then
the constructor body is implicitly assumed by the Java compiler to begin with a
superclass constructor invocation "super();", an invocation of the constructor of
its direct superclass that takes no arguments.

Except for the possibility of explicit constructor invocations, the body of a
constructor is like the body of a method (§8.4.7).

A return statement (§14.17) may be used in the body of a constructor if it does
not include an expression.
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8.8.7.1 Explicit Constructor Invocations

ExplicitConstructorInvocation:
    NonWildTypeArgumentsopt this ( ArgumentListopt ) ;
    NonWildTypeArgumentsopt super ( ArgumentListopt ) ;
    Primary . NonWildTypeArgumentsopt super ( ArgumentListopt ) ;

NonWildTypeArguments:
    < ReferenceTypeList >

ReferenceTypeList: 
    ReferenceType
    ReferenceTypeList , ReferenceType

Explicit constructor invocation statements can be divided into two kinds:

• Alternate constructor invocations begin with the keyword this (possibly
prefaced with explicit type arguments). They are used to invoke an alternate
constructor of the same class.

• Superclass constructor invocations begin with either the keyword super
(possibly prefaced with explicit type arguments) or a Primary expression. They
are used to invoke a constructor of the direct superclass.

Superclass constructor invocations may be subdivided:

◆ Unqualified superclass constructor invocations begin with the keyword super
(possibly prefaced with explicit type arguments).

◆ Qualified superclass constructor invocations begin with a Primary expression.

They allow a subclass constructor to explicitly specify the newly created
object's immediately enclosing instance with respect to the direct superclass
(§8.1.3). This may be necessary when the superclass is an inner class.

An explicit constructor invocation statement in a constructor body may not refer
to any instance variables or instance methods or inner classes declared in this class
or any superclass, or use this or super in any expression; otherwise, a compile-
time error occurs.

Let C be the class being instantiated, and let S be the direct superclass of C.

It is a compile-time error if S is not accessible (§6.6).

If a superclass constructor invocation statement is qualified, then:
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• If S is not an inner class, or if the declaration of S occurs in a static context, then
a compile-time error occurs.

• Otherwise, let p be the Primary expression immediately preceding ".super". Let
O be the innermost lexically enclosing class of S. It is a compile-time error if the
type of p is not O or a subclass of O, or if the type of p is not accessible (§6.6).

If a superclass constructor invocation statement is unqualified, and if S is an inner
member class, then it is a compile-time error if S is not a member of a lexically
enclosing class of C by declaration or inheritance .

Evaluation of an alternate constructor invocation statement proceeds by first
evaluating the arguments to the constructor, left-to-right, as in an ordinary method
invocation; and then invoking the constructor.

Evaluation of a superclass constructor invocation statement is more complicated.
Let C be the class being instantiated, let S be the direct superclass of C, and let i be
the instance being created. The immediately enclosing instance of i with respect
to S (if any) must be determined, as follows:

• If S is not an inner class, or if the declaration of S occurs in a static context, no
immediately enclosing instance of i with respect to S exists.

• If the superclass constructor invocation is qualified, then the Primary expression
p immediately preceding ".super" is evaluated.

If p evaluates to null, a NullPointerException is raised, and the superclass
constructor invocation completes abruptly.

Otherwise, the result of this evaluation is the immediately enclosing instance of
i with respect to S.

• If the superclass constructor invocation is not qualified, then:

◆ If S is a local class (§14.3), then let O be the innermost lexically enclosing class
of S. Let n be an integer such that O is the n'th lexically enclosing class of C.

The immediately enclosing instance of i with respect to S is the n'th lexically
enclosing instance of this.

◆ Otherwise, S is an inner member class (§8.5).

Let O be the innermost lexically enclosing class of S, and let n be an integer
such that O is the n'th lexically enclosing class of C.

The immediately enclosing instance of i with respect to S is the n'th lexically
enclosing instance of this.
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After determining the immediately enclosing instance of i with respect to S (if
any), evaluation of the superclass constructor invocation statement proceeds by
evaluating the arguments to the constructor, left-to-right, as in an ordinary method
invocation; and then invoking the constructor.

Finally, if the superclass constructor invocation statement completes normally, then
all instance variable initializers of C and all instance initializers of C are executed.
If an instance initializer or instance variable initializer I textually precedes another
instance initializer or instance variable initializer J, then I is executed before J.

Execution of instance variable initializers and instance initializers is performed
regardless of whether the superclass constructor invocation actually appears as an
explicit constructor invocation statement or is provided automatically. An alternate
constructor invocation does not perform this additional implicit execution.

8.8.8 Constructor Overloading

Overloading of constructors is identical in behavior to overloading of methods. The
overloading is resolved at compile time by each class instance creation expression
(§15.9).

8.8.9 Default Constructor

If a class contains no constructor declarations, then a default constructor with no
parameters is automatically provided.

If the class being declared is the primordial class Object, then the default
constructor has an empty body. Otherwise, the default constructor simply invokes
the superclass constructor with no arguments.

It is a compile-time error if a default constructor is provided by the Java compiler
but the superclass does not have an accessible constructor (§6.6) that takes no
arguments.

A default constructor has no throws clause.

In a class type, if the class is declared public, then the default constructor
is implicitly given the access modifier public (§6.6); if the class is declared
protected, then the default constructor is implicitly given the access modifier
protected (§6.6); if the class is declared private, then the default constructor
is implicitly given the access modifier private (§6.6); otherwise, the default
constructor has the default access implied by no access modifier.

In an enum type, the default constructor is implicitly private (§8.9.2).
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8.8.10 Preventing Instantiation of a Class

A class can be designed to prevent code outside the class declaration from creating
instances of the class by declaring at least one constructor, to prevent the creation
of an implicit constructor, and by declaring all constructors to be private.

A public class can likewise prevent the creation of instances outside its package
by declaring at least one constructor, to prevent creation of a default constructor
with public access, and by declaring no constructor that is public.

8.9 Enums

An enum declaration specifies a new enum type.

EnumDeclaration:
    ClassModifiersopt enum Identifier Interfacesopt EnumBody

EnumBody:
    { EnumConstantsopt ,opt EnumBodyDeclarationsopt }

Enum types (§8.9) must not be declared abstract; doing so will result in a
compile-time error.

An enum type is implicitly final unless it contains at least one enum constant that
has a class body.

It is a compile-time error to explicitly declare an enum type to be final.

Nested enum types are implicitly static. It is permissible to explicitly declare a
nested enum type to be static.

The direct superclass of an enum type named E is Enum<E>.

An enum type has no instances other than those defined by its enum constants.

It is a compile-time error to attempt to explicitly instantiate an enum type (§15.9.1).

8.9.1 Enum Constants

The body of an enum type may contain enum constants. An enum constant defines
an instance of the enum type.
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EnumConstants:
    EnumConstant
    EnumConstants , EnumConstant

EnumConstant:
    Annotationsopt Identifier Argumentsopt ClassBodyopt

Arguments:
    ( ArgumentListopt )

EnumBodyDeclarations:
    ; ClassBodyDeclarationsopt

An enum constant may optionally be preceded by annotation modifiers. If an
annotation a (§9.7) on an enum constant corresponds to an annotation type T (§9.6),
and T has a (meta-)annotation m that corresponds to annotation.Target, then
m must have an element whose value is annotation.ElementType.FIELD, or a
compile-time error occurs.

The Identifier in a EnumConstant may be used in a name to refer to the enum
constant.

An enum constant may be followed by arguments, which are passed to the
constructor of the enum type when the constant is created during class initialization
as described later in this section. The constructor to be invoked is chosen using
the normal overloading rules (§15.12.2). If the arguments are omitted, an empty
argument list is assumed.

The optional class body of an enum constant implicitly defines an anonymous class
declaration (§15.9.5) that extends the immediately enclosing enum type. The class
body is governed by the usual rules of anonymous classes; in particular it cannot
contain any constructors.

It is a compile-time error for the class body of an enum constant to declare an
abstract method.

Because there is only one instance of each enum constant, it is permissible to use the
== operator in place of the equals method when comparing two object references
if it is known that at least one of them refers to an enum constant.
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8.9.2 Enum Body and Member Declarations

Any constructor or member declarations within an enum declaration apply to the
enum type exactly as if they had been present in the class body of a normal class
declaration, unless explicitly stated otherwise.

It is a compile-time error if a constructor declaration of an enum type is public
or protected.

If an enum type has no constructor declarations, then a private constructor that
takes no parameters (to match the implicit empty argument list) is automatically
provided.

It is a compile-time error for an enum declaration to declare a finalizer.

An instance of an enum type may never be finalized.

It is a compile-time error for an enum type E to have an abstract method m as a
member unless E has one or more enum constants, and all of E's enum constants
have class bodies that provide concrete implementations of m.

In addition to the members that an enum type E inherits from Enum<E>, for each
declared enum constant with the name n, the enum type has an implicitly declared
public static final field named n of type E. These fields are considered to be
declared in the same order as the corresponding enum constants, before any static
fields explicitly declared in the enum type. Each such field is initialized to the enum
constant that corresponds to it. Each such field is also considered to be annotated
by the same annotations as the corresponding enum constant. The enum constant
is said to be created when the corresponding field is initialized.

In addition, if E is the name of an enum type, then that type has the following
implicitly declared static methods:

/**
* Returns an array containing the constants of this enum 
* type, in the order they're declared.  This method may be
* used to iterate over the constants as follows:
*
*    for(E c : E.values())
*        System.out.println(c);
*
* @return an array containing the constants of this enum 
* type, in the order they're declared
*/
public static E[] values();

/**
* Returns the enum constant of this type with the specified
* name.
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* The string must match exactly an identifier used to declare
* an enum constant in this type.  (Extraneous whitespace 
* characters are not permitted.)
* 
* @return the enum constant with the specified name
* @throws IllegalArgumentException if this enum type has no
* constant with the specified name
*/
public static E valueOf(String name);

It is a compile-time error to reference a static field of an enum type that is not
a compile-time constant (§15.28) from constructors, instance initializer blocks, or
instance variable initializer expressions of that type.

It is a compile-time error for the constructors, instance initializer blocks, or instance
variable initializer expressions of an enum constant e to refer to itself or to an enum
constant of the same type that is declared to the right of e.
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C H A P T E R 9
Interfaces

AN interface declaration introduces a new reference type whose members
are classes, interfaces, constants, and abstract methods. This type has no
implementation, but otherwise unrelated classes can implement it by providing
implementations for its abstract methods.

A nested interface is any interface whose declaration occurs within the body of
another class or interface.

A top-level interface is an interface that is not a nested interface.

We distinguish between two kinds of interfaces - normal interfaces and annotation
types.

This chapter discusses the common semantics of all interfaces - normal interfaces,
both top-level (§7.6) and nested (§8.5, §9.5), and annotation types (§9.6). Details
that are specific to particular kinds of interfaces are discussed in the sections
dedicated to these constructs.

Programs can use interfaces to make it unnecessary for related classes to share a
common abstract superclass or to add methods to Object.

An interface may be declared to be a direct extension of one or more other
interfaces, meaning that it implicitly specifies all the member types, abstract
methods, and constants of the interfaces it extends, except for any member types
and constants that it may hide.

A class may be declared to directly implement one or more interfaces, meaning
that any instance of the class implements all the abstract methods specified
by the interface or interfaces. A class necessarily implements all the interfaces
that its direct superclasses and direct superinterfaces do. This (multiple) interface
inheritance allows objects to support (multiple) common behaviors without sharing
any implementation.
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A variable whose declared type is an interface type may have as its value a
reference to any instance of a class which implements the specified interface. It is
not sufficient that the class happen to implement all the abstract methods of the
interface; the class or one of its superclasses must actually be declared to implement
the interface, or else the class is not considered to implement the interface.

9.1 Interface Declarations

An interface declaration specifies a new named reference type. There are two
kinds of interface declarations - normal interface declarations and annotation type
declarations.

InterfaceDeclaration:
    NormalInterfaceDeclaration
    AnnotationTypeDeclaration

Annotation types are described further in §9.6.

NormalInterfaceDeclaration:
    InterfaceModifiersopt interface Identifier TypeParametersopt
                                                    ExtendsInterfacesopt InterfaceBody

The Identifier in an interface declaration specifies the name of the interface.

It is a compile-time error if an interface has the same simple name as any of its
enclosing classes or interfaces.

9.1.1 Interface Modifiers

An interface declaration may include interface modifiers.

InterfaceModifiers:
    InterfaceModifier
    InterfaceModifiers InterfaceModifier

InterfaceModifier: one of
    Annotation public protected private
    abstract static strictfp

If an annotation a (§9.7) on an interface declaration corresponds to an
annotation type T (§9.6), and T has a (meta-)annotation m that corresponds



INTERFACES Generic Interfaces and Type Parameters 9.1.2

153

to annotation.Target, then m must have an element whose value is
annotation.ElementType.TYPE, or a compile-time error occurs.

The access modifiers protected and private pertain only to member interfaces
within a directly enclosing class or enum declaration (§8.5.1).

The modifier static pertains only to member interfaces (§8.5, §9.5), not to top
level interfaces.

It is a compile-time error if the same modifier appears more than once in an
interface declaration.

9.1.1.1 abstract Interfaces

Every interface is implicitly abstract.

9.1.1.2 strictfp Interfaces

The effect of the strictfp modifier is to make all float or double expressions
within the interface declaration be explicitly FP-strict (§15.4).

This implies that all nested types declared in the interface are implicitly strictfp.

9.1.2 Generic Interfaces and Type Parameters

An interface is generic if it declares one or more type variables (§4.4).

These type variables are known as the type parameters of the interface. The type
parameter section follows the interface name and is delimited by angle brackets.

In a interface's type parameter section, a type variable T directly depends on a
type variable S if S is the bound of T, while T depends on S if either T directly
depends on S or T directly depends on a type variable U that depends on S (using this
definition recursively). It is a compile-time error if a type variable in a interface's
type parameter section depends on itself.

A generic interface declaration defines a set of types, one for each possible
invocation of the type parameter section. All parameterized types share the same
interface at runtime.

It is a compile-time error to refer to a type parameter of an interface I anywhere in
the declaration of a field or type member of I.
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9.1.3 Superinterfaces and Subinterfaces

If an extends clause is provided, then the interface being declared extends each of
the other named interfaces and therefore inherits the member types, methods, and
constants of each of the other named interfaces.

These other named interfaces are the direct superinterfaces of the interface being
declared.

Any class that implements the declared interface is also considered to implement
all the interfaces that this interface extends.

ExtendsInterfaces:
    extends InterfaceTypeList

Given a (possibly generic) interface declaration for I<F1,...,Fn> (n ≥ 0), the direct
superinterfaces of the interface type (§4.5) I<F1,...,Fn> are the types given in the
extends clause of the declaration of I if an extends clause is present.

Let I<F1,...,Fn> (n > 0), be a generic interface declaration. The direct
superinterfaces of the parameterized interface type I<T1,...,Tn>, where Ti (1 ≤
i ≤ n) is a type, are all types J<U1 θ,...,Uk θ>, where J<U1,...,Uk> is a direct
superinterface of I<F1,...,Fn>, and θ is the substitution [F1:=T1,...,Fn:=Tn].

Each InterfaceType in the extends clause of an interface declaration must name
an accessible (§6.6) interface type; otherwise a compile-time error occurs.

An interface I directly depends on a type T if T is mentioned in the extends clause
of I either as a superinterface or as a qualifier within a superinterface name.

An interface I depends on a reference type T if any of the following conditions hold:

• I directly depends on T.

• I directly depends on a class C that depends (§8.1.5) on T.

• I directly depends on an interface J that depends on T (using this definition
recursively).

It is a compile-time error if an interface depends on itself.

While every class is an extension of class Object, there is no single interface of
which all interfaces are extensions.

The superinterface relationship is the transitive closure of the direct superinterface
relationship. An interface K is a superinterface of interface I if either of the
following is true:

• K is a direct superinterface of I.
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• There exists an interface J such that K is a superinterface of J, and J is a
superinterface of I,applying this definition recursively.

Interface I is said to be a subinterface of interface K whenever K is a superinterface
of I.

9.1.4 Interface Body and Member Declarations

The body of an interface may declare members of the interface, that is, fields (§9.3),
methods (§9.4), classes (§9.5), and interfaces (§9.5).

InterfaceBody:
    { InterfaceMemberDeclarationsopt }

InterfaceMemberDeclarations:
    InterfaceMemberDeclaration
    InterfaceMemberDeclarations InterfaceMemberDeclaration

InterfaceMemberDeclaration:
    ConstantDeclaration
    AbstractMethodDeclaration
    ClassDeclaration 
    InterfaceDeclaration
    ;

9.2 Interface Members

The members of an interface are:

• Those members declared in the interface.

• Those members inherited from direct superinterfaces.

• If an interface has no direct superinterfaces, then the interface implicitly declares
a public abstract member method m with signature s, return type r, and throws
clause t corresponding to each public instance method m with signature s, return
type r, and throws clause t declared in Object, unless a method with the same
signature, same return type, and a compatible throws clause is explicitly declared
by the interface.

It is a compile-time error if the interface explicitly declares such a method m in
the case where m is declared to be final in Object.
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It follows that is a compile-time error if the interface declares a method with a
signature that is override-equivalent (§8.4.2) to a public method of Object, but
has a different return type or incompatible throws clause.

The interface inherits, from the interfaces it extends, all members of those
interfaces, except for fields, classes, and interfaces that it hides and methods that
it overrides.

Fields, methods, and member types of an interface type may have the same name,
since they are used in different contexts and are disambiguated by different lookup
procedures (§6.5). However, this is discouraged as a matter of style.

9.3 Field (Constant) Declarations

ConstantDeclaration:
    ConstantModifiersopt Type VariableDeclarators ;

ConstantModifiers: 
    ConstantModifier
    ConstantModifier ConstantModifers 

ConstantModifier: one of
    Annotation public static final

If an annotation a (§9.7) on a field declaration corresponds to an annotation type
T (§9.6), and T has a (meta-)annotation m that corresponds to annotation.Target,
then m must have an element whose value is annotation.ElementType.FIELD, or
a compile-time error occurs.

Every field declaration in the body of an interface is implicitly public, static,
and final. It is permitted to redundantly specify any or all of these modifiers for
such fields.

It is a compile-time error if the same modifier appears more than once in a field
declaration.

The declared type of a field is denoted by the Type that appears in the field
declaration, followed by any bracket pairs that follow the Identifier in the
declarator.
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If the interface declares a field with a certain name, then the declaration of that field
is said to hide any and all accessible declarations of fields with the same name in
superinterfaces of the interface.

It is a compile-time error for the body of an interface declaration to declare two
fields with the same name.

It is possible for an interface to inherit more than one field with the same name.
Such a situation does not in itself cause a compile-time error. However, any attempt
within the body of the interface to refer to any such field by its simple name will
result in a compile-time error, because such a reference is ambiguous.

There might be several paths by which the same field declaration might be inherited
from an interface. In such a situation, the field is considered to be inherited only
once, and it may be referred to by its simple name without ambiguity.

9.3.1 Initialization of Fields in Interfaces

Every field in the body of an interface must have an initialization expression, which
need not be a constant expression.

The variable initializer is evaluated and the assignment performed exactly once,
when the interface is initialized (§12.4).

It is a compile-time error if an initialization expression for an interface field
contains a reference by simple name to the same field or to another field whose
declaration occurs textually later in the same interface.

One subtlety here is that, at run time, fields that are initialized with compile-time
constant values are initialized first. This applies also to static final fields in
classes (§8.3.2.1). This means, in particular, that these fields will never be observed
to have their default initial values (§4.12.5), even by devious programs. See §12.4.2
and §13.4.9 for more discussion.

If the keyword this (§15.8.3) or the keyword super (§15.11.2, §15.12) occurs in
an initialization expression for a field of an interface, then unless the occurrence is
within the body of an anonymous class (§15.9.5), a compile-time error occurs.
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9.4 Abstract Method Declarations

AbstractMethodDeclaration:
    AbstractMethodModifiersopt TypeParametersopt Result
                                           MethodDeclarator Throwsopt ;

AbstractMethodModifiers:
    AbstractMethodModifier
    AbstractMethodModifiers AbstractMethodModifier

AbstractMethodModifier: one of
    Annotation public abstract

If an annotation a (§9.7) on a method declaration corresponds to an annotation type
T (§9.6), and T has a (meta-)annotation m that corresponds to annotation.Target,
then m must have an element whose value is annotation.ElementType.METHOD,
or a compile-time error occurs.

Every method declaration in the body of an interface is implicitly public (§6.6).

Every method declaration in the body of an interface is implicitly abstract, so its
body is always represented by a semicolon, not a block.

It is permitted, but discouraged as a matter of style, to redundantly specify the
public and/or abstract modifier for a method declared in an interface.

It is a compile-time error if the same modifier appears more than once on a method
declared in an interface.

It is a compile-time error if a method declared in an interface is declared static,
because static methods cannot be abstract.

It is a compile-time error if a method declared in an interface is strictfp or native
or synchronized, because those keywords describe implementation properties
rather than interface properties.

However, a method declared in an interface may be implemented by a method that
is declared strictfp or native or synchronized in a class that implements the
interface.

It is a compile-time error if a method declared in an interface is declared final.

However, a method declared in an interface may be implemented by a method that
is declared final in a class that implements the interface.
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It is a compile-time error for the body of an interface to declare, explicitly or
implicitly, two methods with override-equivalent signatures (§8.4.2).

However, an interface may inherit several methods with such signatures (§9.4.1).

A method in an interface may be generic. The rules for type parameters of a generic
method in an interface are the same as for a generic method in a class (§8.4.4).

9.4.1 Inheritance and Overriding

An instance method m1 declared in an interface I overrides another instance method,
m2, declared in interface J iff both of the following are true:

• I is a subinterface of J.

• The signature of m1 is a subsignature (§8.4.2) of the signature of m2.

If a method declaration d1 with return type R1 overrides or hides the declaration of
another method d2 with return type R2, then d1 must be return-type-substitutable
(§8.4.5) for d2, or a compile-time error occurs.

Furthermore, if R1 is not a subtype of R2, an unchecked warning must be issued.

Moreover, a method declaration must not have a throws clause that conflicts
(§8.4.6) with that of any method that it overrides; otherwise, a compile-time error
occurs.

It is a compile-time error if a type declaration T has a member method m1 and there
exists a method m2 declared in T or a supertype of T such that all of the following
conditions hold:

• m1 and m2 have the same name.

• m2 is accessible from T.

• The signature of m1 is not a subsignature (§8.4.2) of the signature of m2.

• The signature of m1 or some method m1 overrides (directly or indirectly) has the
same erasure as the signature of m2 or some method m2 overrides (directly or
indirectly).

Methods are overridden on a signature-by-signature basis. If, for example, an
interface declares two public methods with the same name, and a subinterface
overrides one of them, the subinterface still inherits the other method.

An interface inherits from its direct superinterfaces all methods of the
superinterfaces that are not overridden by a declaration in the interface.
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It is possible for an interface to inherit several methods with override-equivalent
signatures (§8.4.2). Such a situation does not in itself cause a compile-time error.
The interface is considered to inherit all the methods.

However, one of the inherited methods must be return-type-substitutable for any
other inherited method; otherwise, a compile-time error occurs. (The throws
clauses do not cause errors in this case.)

There might be several paths by which the same method declaration is inherited
from an interface. This fact causes no difficulty and never, of itself, results in a
compile-time error.

9.4.2 Overloading

If two methods of an interface (whether both declared in the same interface, or both
inherited by an interface, or one declared and one inherited) have the same name
but different signatures that are not override-equivalent (§8.4.2), then the method
name is said to be overloaded.

This fact causes no difficulty and never of itself results in a compile-time error.
There is no required relationship between the return types or between the throws
clauses of two methods with the same name but different signatures that are not
override-equivalent.

9.5 Member Type Declarations

Interfaces may contain member type declarations (§8.5).

A member type declaration in an interface is implicitly static and public. It is
permitted to redundantly specify either or both of these modifiers.

It is a compile-time error if the same modifier appears more than once in a member
type declaration in an interface.

If a member type declared with simple name C is directly enclosed within the
declaration of an interface with fully qualified name N, then the member type has
the fully qualified name N.C.

If the interface declares a member type with a certain name, then the declaration of
that type is said to hide any and all accessible declarations of member types with
the same name in superinterfaces of the interface.
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An interface inherits from its direct superinterfaces all the non-private member
types of the superinterfaces that are both accessible to code in the interface and not
hidden by a declaration in the interface.

An interface may inherit two or more type declarations with the same name. It
is a compile-time error to attempt to refer to any ambiguously inherited class or
interface by its simple name.

If the same type declaration is inherited from an interface by multiple paths, the
class or interface is considered to be inherited only once; it may be referred to by
its simple name without ambiguity.

9.6 Annotation Types

An annotation type declaration is a special kind of interface declaration. To
distinguish an annotation type declaration from an ordinary interface declaration,
the keyword interface is preceded by an at-sign (@).

AnnotationTypeDeclaration:
    InterfaceModifiersopt @ interface Identifier AnnotationTypeBody

AnnotationTypeBody:
    { AnnotationTypeElementDeclarationsopt }

AnnotationTypeElementDeclarations:
    AnnotationTypeElementDeclaration
    AnnotationTypeElementDeclarations AnnotationTypeElementDeclaration

If an annotation a on an annotation type declaration corresponds to an
annotation type T, and T has a (meta-)annotation m that corresponds to
annotation.Target, then m must have either an element whose value is
annotation.ElementType.ANNOTATION_TYPE, or an element whose value is
annotation.ElementType.TYPE, or a compile-time error occurs.

The Identifier in an annotation type declaration specifies the name of the annotation
type.

It is a compile-time error if an annotation type has the same simple name as any
of its enclosing classes or interfaces.

The direct superinterface of an annotation type is always
annotation.Annotation.
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An annotation type declaration inherits several members from
annotation.Annotation, including the implicitly declared methods
corresponding to the instance methods in Object, yet these methods do not define
elements (§9.6.1) of the annotation type and it is illegal to use them in annotations.

Unless explicitly modified herein, all of the rules that apply to ordinary interface
declarations apply to annotation type declarations.

9.6.1 Annotation Type Elements

Each method declaration in an annotation type declaration defines an element of
the annotation type.

Annotation types can have zero or more elements. An annotation type has no
elements other than those defined by the methods it explicitly declares.

AnnotationTypeElementDeclaration:
    AbstractMethodModifiersopt Type Identifier ( ) Dimsopt DefaultValueopt ;
    ConstantDeclaration
    ClassDeclaration
    InterfaceDeclaration
    EnumDeclaration
    AnnotationTypeDeclaration
    ;

DefaultValue:
    default ElementValue

It is a compile-time error if the return type of a method declared in an annotation
type is not one of the following: a primitive type, String, Class, any parameterized
invocation of Class, an enum type (§8.9), an annotation type, or an array type
(Chapter 10, Arrays) whose element type is one of the preceding types.

It is a compile-time error if any method declared in an annotation type has a
signature that is override-equivalent to that of any public or protected method
declared in class Object or in the interface annotation.Annotation.

It is a compile-time error if an annotation type declaration T contains an element
of type T, either directly or indirectly.

By convention, the name of the sole element in a single-element annotation type
is value. Linguistic support for this convention is provided by the single element
annotation construct (§9.7.3); one must obey the convention in order to take
advantage of the construct.
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9.6.2 Defaults for Annotation Type Elements

An annotation type element may have a default value specified for it. This is done
by following its (empty) parameter list with the keyword default and the default
value of the element.

Defaults are applied dynamically at the time annotations are read; default values are
not compiled into annotations. Thus, changing a default value affects annotations
even in classes that were compiled before the change was made (presuming these
annotations lack an explicit value for the defaulted element).

An ElementValue (§9.7) is used to specify a default value.

It is a compile-time error if the type of the element is not commensurate (§9.7) with
the default value specified.

9.6.3 Predefined Annotation Types

Several annotation types are predefined in the libraries of the Java SE platform.
Some of these predefined annotation types have special semantics. These semantics
are specified in this section. This section does not provide a complete specification
for the predefined annotations contained here in; that is the role of the appropriate
API specifications. Only those semantics that require special behavior on the part
of a Java compiler or Java virtual machine implementation are specified here.

9.6.3.1 Target

The annotation type annotation.Target is intended to be used in meta-
annotations that indicate the kind of program element that an annotation type is
applicable to.

annotation.Target has one element, of type annotation.ElementType[].

It is a compile-time error if a given enum constant appears more than once in an
annotation whose corresponding type is annotation.Target.

9.6.3.2 Retention

Annotations may be present only in source code, or they may be present in the
binary form of a class or interface. An annotation that is present in the binary form
may or may not be available at run-time via the reflection libraries of the Java SE
platform. The annotation type annotation.Retention is used to choose among
these possibilities.
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If an annotation a corresponds to a type T, and T has a (meta-)annotation m that
corresponds to annotation.Retention, then:

• If m has an element whose value is annotation.RetentionPolicy.SOURCE, then
a Java compiler must ensure that a is not present in the binary representation of
the class or interface in which a appears.

• If m has an element whose value is annotation.RetentionPolicy.CLASS, or
annotation.RetentionPolicy.RUNTIME, then a Java compiler must ensure that
a is represented in the binary representation of the class or interface in which a
appears, unless m annotates a local variable declaration.

An annotation on a local variable declaration is never retained in the binary
representation.

In addition, if m has an element whose value is
annotation.RetentionPolicy.RUNTIME, the reflection libraries of the Java SE
platform must make a available at run-time.

If T does not have a (meta-)annotation m that corresponds to
annotation.Retention, then a Java compiler must treat T as if it
does have such a meta-annotation m with an element whose value is
annotation.RetentionPolicy.CLASS.

9.6.3.3 Inherited

The annotation type annotation.Inherited is used to indicate that annotations on
a class C corresponding to a given annotation type are inherited by subclasses of C.

9.6.3.4 Override

Programmers occasionally overload a method declaration when they mean to
override it, leading to subtle problems. The annotation type Override supports
early detection of such problems.

If a method declaration is annotated with the annotation @Override, but the method
does not in fact override or implement a method of a supertype, or a public method
of Object, a compile-time error will occur.

9.6.3.5 SuppressWarnings

The annotation type SuppressWarnings supports programmer control over
warnings otherwise issued by a Java compiler. It contains a single element that is
an array of String.
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If a program declaration is annotated with the annotation
@SuppressWarnings(value = {S1, ..., Sk}), then a Java compiler must not
report any warning identified by one of S1 ... Sk if that warning would have been
generated as a result of the annotated declaration or any of its parts.

Unchecked warnings are identified by the string "unchecked".

9.6.3.6 Deprecated

A program element annotated @Deprecated is one that programmers are
discouraged from using, typically because it is dangerous, or because a better
alternative exists.

A Java compiler must produce a warning when a deprecated type, method, field,
or constructor is used (overridden, invoked, or referenced by name) unless:

• The use is within an entity that itself is is annotated with the annotation
@Deprecated; or

• The declaration and use are both within the same outermost class; or

• The use site is within an entity that is annotated to suppress the warning with the
annotation @SuppressWarnings("deprecation").

Use of the annotation @Deprecated on a local variable declaration or on a
parameter declaration has no effect.

9.7 Annotations

An annotation is a modifier consisting of the name of an annotation type (§9.6) and
zero or more element-value pairs, each of which associates a value with a different
element of the annotation type.

The purpose of an annotation is simply to associate information with the annotated
program element.

Annotations must contain an element-value pair for every element of the
corresponding annotation type, except for those elements with default values, or a
compile-time error occurs.

Annotations may, but are not required to, contain element-value pairs for elements
with default values.

Annotations may be used as modifiers in any declaration, whether package (§7.4.1),
class (§8.1.1) (including enums (§8.9)), interface (§9.1.1) (including annotation
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types (§9.6)), field (§8.3.1, §9.3), method (§8.4.3, §9.4), formal parameter (§8.4.1),
constructor (§8.8.3), or local variable (§14.4.1).

Annotations may also be used on enum constants. Such annotations are placed
immediately before the enum constant they annotate.

It is a compile-time error if a declaration is annotated with more than one annotation
for a given annotation type.

Annotations:
    Annotation
    Annotations Annotation

Annotation:
    NormalAnnotation
    MarkerAnnotation
    SingleElementAnnotation

There are three kinds of annotations. The first (normal annotation) is fully
general. The others (marker annotation and single-element annotation) are merely
shorthands.

9.7.1 Normal Annotations

A normal annotation is used to annotate a program element.
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NormalAnnotation:
    @ TypeName ( ElementValuePairsopt )

ElementValuePairs:
    ElementValuePair
    ElementValuePairs , ElementValuePair

ElementValuePair:
    Identifier = ElementValue

ElementValue:
    ConditionalExpression
    Annotation
    ElementValueArrayInitializer

ElementValueArrayInitializer:
    { ElementValuesopt ,opt }

ElementValues:
    ElementValue
    ElementValues , ElementValue

The TypeName names the annotation type corresponding to the annotation.

It is a compile-time error if TypeName does not name an annotation type that is
accessible (§6.6) at the point where the annotation is used.

The Identifier in an ElementValuePair must be the simple name of one of the
elements (i.e. methods) of the annotation type identified by TypeName; otherwise,
a compile-time error occurs.

The return type of this method defines the element type of the element-value pair.

An element type T is commensurate with an element value V if and only if one of
the following conditions is true:

• T is an array type E[] and either:

◆ V is an ElementValueArrayInitializer and each ElementValue (analogous to a
VariableInitializer in an array initializer) in V is commensurate with E; or

◆ V is an ElementValue that is commensurate with E.

• The type of V is assignment compatible (§5.2) with T, and furthermore:

◆ If T is a primitive type or String, and V is a constant expression (§15.28).



9.7.2 Marker Annotations INTERFACES

168

◆ V is not null.

◆ If T is Class, or an invocation of Class, and V is a class literal (§15.8.2).

◆ If T is an enum type, and V is an enum constant.

It is a compile-time error if the element type is not commensurate with the
ElementValue.

If the element type is not an annotation type or an array type, ElementValue must
be a ConditionalExpression (§15.25).

If the element type is an array type and the corresponding ElementValue is not
an ElementValueArrayInitializer, then an array value whose sole element is the
value represented by the ElementValue is associated with the element. Otherwise,
if the corresponding ElementValue is an ElementValueArrayInitializer, then the
array value represented by the ElementValueArrayInitializer is associated with the
element.

An ElementValue is always FP-strict (§15.4).

An annotation on an annotation type declaration is known as a meta-annotation.

An annotation type may be used to annotate its own declaration. More generally,
circularities in the transitive closure of the "annotates" relation are permitted.

9.7.2 Marker Annotations

The second form of annotation, marker annotation, is a shorthand designed for use
with marker annotation types.

MarkerAnnotation:
    @ Identifier

It is shorthand for the normal annotation:

@Identifier()

Note that it is legal to use the marker annotation form for annotation types with
elements, so long as all the elements have default values.

9.7.3 Single-Element Annotations

The third form of annotation, single-element annotation, is a shorthand designed
for use with single-element annotation types.
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SingleElementAnnotation:
    @ Identifier ( ElementValue )

It is shorthand for the normal annotation:

@Identifier(value = ElementValue)

Note that it is legal to use single-element annotations for annotation types with
multiple elements, so long as one element is named value, and all other elements
have default values.
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C H A P T E R 10
Arrays

IN the Java programming language, arrays are objects (§4.3.1), are dynamically
created, and may be assigned to variables of type Object (§4.3.2). All methods of
class Object may be invoked on an array.

An array object contains a number of variables. The number of variables may be
zero, in which case the array is said to be empty. The variables contained in an
array have no names; instead they are referenced by array access expressions that
use non-negative integer index values. These variables are called the components
of the array. If an array has n components, we say n is the length of the array;
the components of the array are referenced using integer indices from 0 to n - 1,
inclusive.

All the components of an array have the same type, called the component type of
the array. If the component type of an array is T, then the type of the array itself
is written T[].

The value of an array component of type float is always an element of the float
value set (§4.2.3); similarly, the value of an array component of type double is
always an element of the double value set. It is not permitted for the value of an
array component of type float to be an element of the float-extended-exponent
value set that is not also an element of the float value set, nor for the value of an
array component of type double to be an element of the double-extended-exponent
value set that is not also an element of the double value set.

The component type of an array may itself be an array type. The components
of such an array may contain references to subarrays. If, starting from any array
type, one considers its component type, and then (if that is also an array type) the
component type of that type, and so on, eventually one must reach a component
type that is not an array type; this is called the element type of the original array,
and the components at this level of the data structure are called the elements of the
original array.
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There are some situations in which an element of an array can be an array: if the
element type is Object or Cloneable or java.io.Serializable, then some or all
of the elements may be arrays, because any array object can be assigned to any
variable of these types.

10.1 Array Types

Array types are used in declarations and in cast expressions (§15.16).

An array type is written as the name of an element type followed by some number
of empty pairs of square brackets []. The number of bracket pairs indicates the
depth of array nesting.

An array's length is not part of its type.

The element type of an array may be any type, whether primitive or reference. In
particular:

• Arrays with an interface type as the element type are allowed. An element of
such an array may have as its value a null reference or an instance of any type
that implements the interface.

• Arrays with an abstract class type as the element type are allowed. An element
of such an array may have as its value a null reference or an instance of any
subclass of the abstract class that is not itself abstract.

The direct superclass of an array type is Object.

Every array type implements the interfaces Cloneable and
java.io.Serializable.

10.2 Array Variables

A variable of array type holds a reference to an object. Declaring a variable of array
type does not create an array object or allocate any space for array components. It
creates only the variable itself, which can contain a reference to an array.

However, the initializer part of a declarator (§8.3, §9.3, §14.4.1) may create an
array, a reference to which then becomes the initial value of the variable.

The [] may appear as part of the type at the beginning of the declaration, or as part
of the declarator for a particular variable, or both.
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In a variable declaration (§8.3, §8.4.1, §9.3, §14.14, §14.20) except for a variable
arity parameter or , the array type of a variable is denoted by the array type that
appears at the beginning of the declaration, followed by any bracket pairs that
follow the variable's Identifier in the declarator.

We do not recommend "mixed notation" in an array variable declaration, where
brackets appear on both the type and in declarators.

Once an array object is created, its length never changes. To make an array variable
refer to an array of different length, a reference to a different array must be assigned
to the variable.

A single variable of array type may contain references to arrays of different lengths,
because an array's length is not part of its type.

If an array variable v has type A[], where A is a reference type, then v can hold a
reference to an instance of any array type B[], provided B can be assigned to A. This
may result in a run-time exception on a later assignment; see §10.5 for a discussion.

10.3 Array Creation

An array is created by an array creation expression (§15.10) or an array initializer
(§10.6).

An array creation expression specifies the element type, the number of levels of
nested arrays, and the length of the array for at least one of the levels of nesting.
The array's length is available as a final instance variable length.

It is a compile-time error if the element type is not a reifiable type (§4.7)

An array initializer creates an array and provides initial values for all its
components.

10.4 Array Access

A component of an array is accessed by an array access expression (§15.13) that
consists of an expression whose value is an array reference followed by an indexing
expression enclosed by [ and ], as in A[i]. All arrays are 0-origin. An array with
length n can be indexed by the integers 0 to n - 1.
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Arrays must be indexed by int values; short, byte, or char values may also
be used as index values because they are subjected to unary numeric promotion
(§5.6.1) and become int values.

An attempt to access an array component with a long index value results in a
compile-time error.

All array accesses are checked at run time; an attempt to use an index that
is less than zero or greater than or equal to the length of the array causes an
ArrayIndexOutOfBoundsException to be thrown.

10.5 Array Store Exception

An assignment to an element of an array whose type is A[], where A is a reference
type, is checked at run-time to ensure that the value assigned can be assigned to
the actual element type of the array, where the actual element type may be any
reference type that is assignable to A.

If the value assigned to the element is not assignment-compatible (§5.2) with the
actual element type, an ArrayStoreException is thrown.

10.6 Array Initializers

An array initializer may be specified in a declaration (§8.3, §9.3, §14.4), or as part
of an array creation expression (§15.10), to create an array and provide some initial
values.

ArrayInitializer:
    { VariableInitializersopt ,opt }

VariableInitializers:
    VariableInitializer
    VariableInitializers , VariableInitializer

An array initializer is written as a comma-separated list of expressions, enclosed
by braces { and }.

A trailing comma may appear after the last expression in an array initializer and
is ignored.
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The length of the array to be constructed is equal to the number of variable
initializers immediately enclosed by the braces of the array initializer. Space is
allocated for a new array of that length. If there is insufficient space to allocate
the array, evaluation of the array initializer completes abruptly by throwing an
OutOfMemoryError. Otherwise, a one-dimensional array is created of the specified
length, and each component of the array is initialized to its default value (§4.12.5).

The variable initializers immediately enclosed by the braces of the array initializer
are then executed from left to right in the textual order they occur in the source
code. The n'th variable initializer specifies the value of the n-1'th array component.
If execution of a variable initializer completes abruptly, then execution of the array
initializer completes abruptly for the same reason. If all the variable initializer
expressions complete normally, the array initializer completes normally, with the
value of the newly initialized array.

Each variable initializer must be assignment-compatible (§5.2) with the array's
component type, or a compile-time error occurs.

It is a compile-time error if the component type of the array being initialized is not
reifiable (§4.7).

If the component type is an array type, then the variable initializer specifying a
component may itself be an array initializer; that is, array initializers may be nested.
In this case, execution of the nested array initializer constructs and initializes
an array object by recursive application of this algorithm, and assigns it to the
component.

10.7 Array Members

The members of an array type are all of the following:

• The public final field length, which contains the number of components of
the array. length may be positive or zero.

• The public method clone, which overrides the method of the same name in
class Object and throws no checked exceptions. The return type of the clone
method of an array type T[] is T[].

• All the members inherited from class Object; the only method of Object that is
not inherited is its clone method.

A clone of a multidimensional array is shallow, which is to say that it creates only
a single new array. Subarrays are shared.
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10.8 Class Objects for Arrays

Every array has an associated Class object, shared with all other arrays with the
same component type.

10.9 An Array of Characters is Not a String

In the Java programming language, unlike C, an array of char is not a String,
and neither a String nor an array of char is terminated by '\u0000' (the NUL
character).

A String object is immutable, that is, its contents never change, while an array of
char has mutable elements. The method toCharArray in class String returns an
array of characters containing the same character sequence as a String. The class
StringBuffer implements useful methods on mutable arrays of characters.
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C H A P T E R 11
Exceptions

WHEN a program violates the semantic constraints of the Java programming
language, the Java virtual machine signals this error to the program as an exception.
An example of such a violation is an attempt to index outside the bounds of an array.

Some programming languages and their implementations react to such errors by
peremptorily terminating the program; other programming languages allow an
implementation to react in an arbitrary or unpredictable way. Neither of these
approaches is compatible with the design goals of the Java SE platform: to provide
portability and robustness.

Instead, the Java programming language specifies that an exception will be thrown
when semantic constraints are violated and will cause a non-local transfer of control
from the point where the exception occurred to a point that can be specified by the
programmer. An exception is said to be thrown from the point where it occurred
and is said to be caught at the point to which control is transferred.

Programs can also throw exceptions explicitly, using throw statements (§14.18).

Explicit use of throw statements provides an alternative to the old-fashioned style
of handling error conditions by returning funny values, such as the integer value
-1 where a negative value would not normally be expected. Experience shows that
too often such funny values are ignored or not checked for by callers, leading to
programs that are not robust, exhibit undesirable behavior, or both.

Every exception is represented by an instance of the class Throwable or one
of its subclasses; such an object can be used to carry information from the
point at which an exception occurs to the handler that catches it. Handlers are
established by catch clauses of try statements (§14.20). During the process of
throwing an exception, the Java virtual machine abruptly completes, one by one,
any expressions, statements, method and constructor invocations, initializers, and
field initialization expressions that have begun but not completed execution in
the current thread. This process continues until a handler is found that indicates
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that it handles that particular exception by naming the class of the exception or
a superclass of the class of the exception. If no such handler is found, then the
exception may be handled by the current thread's uncaught exception handler, or
else by the uncaught exception handler of the ThreadGroup that is the parent of the
current thread, or else by the global uncaught exception handler - thus every effort
is made to avoid letting an exception go unhandled.

The exception mechanism of the Java SE platform is integrated with its
synchronization model (§17.1), so that locks are released as synchronized
statements (§14.19) and invocations of synchronized methods (§8.4.3.6, §15.12)
complete abruptly.

This chapter describes the hierarchy of classes, rooted at Throwable, that represent
exceptions, and gives an overview of the causes of exceptions (§11.1). It details
how exceptions are checked at compile-time (§11.2) and processed at run-time
(§11.3).

11.1 The Kinds and Causes of Exceptions

11.1.1 The Kinds of Exceptions

An exception is represented by an instance of the class Throwable (a direct subclass
of Object) or one of its subclasses.

Throwable and all its subclasses are, collectively, the exception classes.

The classes Exception and Error are direct subclasses of Throwable.

Exception is the superclass of all the exceptions that ordinary programs may wish
to recover from.

Error and all its subclasses are, collectively, the error classes. They are exceptions
from which ordinary programs are not ordinarily expected to recover.

The class RuntimeException is a direct subclass of Exception.
RuntimeException and all its subclasses are, collectively, the runtime exception
classes. They are exceptions which may be thrown for many reasons during
expression evaluation, but from which recovery may still be possible.

The unchecked exception classes are the runtime exception classes and the error
classes.
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The checked exception classes are all exception classes other than the unchecked
exception classes. That is, the checked exception classes are all subclasses of
Exception other than RuntimeException and its subclasses.

11.1.2 The Causes of Exceptions

An exception is thrown for one of three reasons:

• A throw statement (§14.18) was executed.

• An abnormal execution condition was synchronously detected by the Java virtual
machine.

Such conditions arise because:

◆ evaluation of an expression violates the normal semantics of the language
(§15.6), such as an integer divide by zero.

◆ an error occurs while loading, linking, or initializing part of the program
(§12.2, §12.3, §12.4); in this case, an instance of a subclass of LinkageError
is thrown.

◆ an internal error or resource limitation prevents the Java virtual machine from
implementing the semantics of the Java programming language; in this case,
an instance of a subclass of VirtualMachineError is thrown.

These exceptions are not thrown at an arbitrary point in the program, but rather at
a point where they are specified as a possible result of an expression evaluation
or statement execution.

• An asynchronous exception occurred (§11.1.3).

11.1.3 Asynchronous Exceptions

Most exceptions occur synchronously as a result of an action by the thread in which
they occur, and at a point in the program that is specified to possibly result in such
an exception. An asynchronous exception is, by contrast, an exception that can
potentially occur at any point in the execution of a program.

Asynchronous exceptions occur only as a result of:

• An invocation of the (deprecated) stop method of class Thread or ThreadGroup.

• An internal error in the Java virtual machine; in this case, the asynchronous
exception that is thrown is an instance of a subclass of InternalError or
UnknownError.
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The Java SE platform permits a small but bounded amount of execution to occur
before an asynchronous exception is thrown.

11.2 Compile-Time Checking of Exceptions

A Java compiler checks, at compile time, that a program contains handlers for
checked exceptions, by analyzing which checked exception types can result from
execution of a method or constructor.

For each checked exception which is a possible result, the throws clause for the
method (§8.4.6) or constructor (§8.8.5) must mention the class of that exception
or one of the superclasses of the class of that exception. This compile-time
checking for the presence of exception handlers is designed to reduce the number
of exceptions which are not properly handled.

The checked exception classes (§11.1.1) named in the throws clause are part of
the contract between the implementor and user of the method or constructor. The
throws clause of an overriding method may not specify that this method will result
in throwing any checked exception which the overridden method is not permitted,
by its throws clause, to throw (§8.4.8.3).

When interfaces are involved, more than one method declaration may be
overridden by a single overriding declaration. In this case, the overriding
declaration must have a throws clause that is compatible with all the overridden
declarations (§9.4.1).

The unchecked exception classes (§11.1.1) are exempted from compile-time
checking.

We say that a statement or expression can throw a checked exception type E if,
according to the rules given below, the execution of the statement or expression
can result in an exception of type E being thrown.

11.2.1 Exception Analysis of Expressions

A class instance creation expression (§15.9) can throw an exception type E iff
either:

• The expression is a qualified class instance creation expression and the
qualifying expression can throw E; or

• Some expression of the argument list can throw E; or
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• E is determined to be an exception type of the throws clause of the constructor
that is invoked (§15.12.2.6); or

• The class instance creation expression includes a ClassBody, and some instance
initializer block or instance variable initializer expression in the ClassBody can
throw E.

A method invocation expression (§15.12) can throw an exception type E iff either:

• The method to be invoked is of the form Primary.Identifier and the Primary
expression can throw E; or

• Some expression of the argument list can throw E; or

• E is determined to be an exception type of the throws clause of the method that
is invoked (§15.12.2.6).

For every other kind of expression, the expression can throw an exception type E
iff one of its immediate subexpressions can throw E.

11.2.2 Exception Analysis of Statements

A throw statement (§14.18) whose thrown expression has static type E can throw
E, or any exception type thrown by the thrown expression.

A try statement (§14.20) can throw an exception type E iff either:

• The try block can throw E and E is not assignable to any catch parameter of
the try statement and either no finally block is present or the finally block
can complete normally; or

• Some catch block of the try statement can throw E and either no finally block
is present or the finally block can complete normally; or

• A finally block is present and can throw E.

An explicit constructor invocation statement (§8.8.7.1) can throw an exception type
E iff either:

• Some subexpression of the constructor invocation's parameter list can throw E;
or

• E is determined to be an exception type of the throws clause of the constructor
that is invoked (§15.12.2.6).

Any other statement S can throw an exception type E iff an expression or statement
immediately contained in S can throw E.
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11.2.3 Exception Checking

It is a compile-time error if a method or constructor body can throw some exception
type E when E is a checked exception type and E is not a subtype of some type
declared in the throws clause of the method or constructor.

It is a compile-time error if a class variable initializer (§8.3.2) or static initializer
(§8.7) of a named class or interface can throw a checked exception type.

It is a compile-time error if an instance variable initializer or instance initializer of
a named class can throw a checked exception type unless that exception type or
one of its supertypes is explicitly declared in the throws clause of each constructor
of its class and the class has at least one explicitly declared constructor.

It is a compile-time error if a catch clause catches checked exception type E1 when
the try block corresponding to the catch clause can throw E2 and E2 is not a subtype
of E1, unless E1 is a supertype of Exception.

It is a compile-time error if a catch clause catches checked exception type E1 and
a preceding catch block of the immediately enclosing try statement catches E1 or
a supertype of E1.

11.3 Run-Time Handling of an Exception

When an exception is thrown, control is transferred from the code that caused
the exception to the nearest dynamically-enclosing catch clause, if any, of a try
statement (§14.20) that can handle the exception.

A statement or expression is dynamically enclosed by a catch clause if it appears
within the try block of the try statement of which the catch clause is a part, or
if the caller of the statement or expression is dynamically enclosed by the catch
clause.

The caller of a statement or expression depends on where it occurs:

• If within a method, then the caller is the method invocation expression (§15.12)
that was executed to cause the method to be invoked.

• If within a constructor or an instance initializer or the initializer for an instance
variable, then the caller is the class instance creation expression (§15.9) or the
method invocation of newInstance that was executed to cause an object to be
created.
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• If within a static initializer or an initializer for a static variable, then the caller
is the expression that used the class or interface so as to cause it to be initialized
(§12.4).

Whether a particular catch clause can handle an exception is determined by
comparing the class of the object that was thrown to the declared type of the
parameter of the catch clause. The catch clause can handle the exception if the
type of its parameter is the class of the exception or a superclass of the class of
the exception.

The control transfer that occurs when an exception is thrown causes abrupt
completion of expressions (§15.6) and statements (§14.1) until a catch clause is
encountered that can handle the exception; execution then continues by executing
the block of that catch clause. The code that caused the exception is never resumed.

All exceptions (synchronous and asynchronous) are precise: when the transfer of
control takes place, all effects of the statements executed and expressions evaluated
before the point from which the exception is thrown must appear to have taken
place. No expressions, statements, or parts thereof that occur after the point from
which the exception is thrown may appear to have been evaluated.

If no catch clause that can handle an exception can be found, then the current thread
(the thread that encountered the exception) is terminated. Before termination, all
finally clauses are executed and the uncaught exception is handled according to
the following rules:

• If the current thread has an uncaught exception handler set, then that handler is
executed.

• Otherwise, the method uncaughtException is invoked for the ThreadGroup
that is the parent of the current thread. If the ThreadGroup and its parent
ThreadGroups do not override uncaughtException, then the default handler's
uncaughtException method is invoked.
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C H A P T E R 12
Execution

THIS chapter specifies activities that occur during execution of a program. It
is organized around the life cycle of the Java virtual machine and of the classes,
interfaces, and objects that form a program.

The Java virtual machine starts up by loading a specified class and then invoking the
method main in this specified class. Section §12.1 outlines the loading, linking, and
initialization steps involved in executing main, as an introduction to the concepts in
this chapter. Further sections specify the details of loading (§12.2), linking (§12.3),
and initialization (§12.4).

The chapter continues with a specification of the procedures for creation of new
class instances (§12.5); and finalization of class instances (§12.6). It concludes by
describing the unloading of classes (§12.7) and the procedure followed when a
program exits (§12.8).

12.1 Java virtual machine Start-Up

A Java virtual machine starts execution by invoking the method main of some
specified class, passing it a single argument, which is an array of strings. In the
examples in this specification, this first class is typically called Test.

The precise semantics of Java virtual machine start-up are given in chapter 5 of The
Java Virtual Machine Specification. Here we present an overview of the process
from the viewpoint of the Java programming language.

The manner in which the initial class is specified to the Java virtual machine is
beyond the scope of this specification, but it is typical, in host environments that
use command lines, for the fully-qualified name of the class to be specified as a
command-line argument and for following command-line arguments to be used as
strings to be provided as the argument to the method main.
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We now outline the steps the Java virtual machine may take to execute Test, as
an example of the loading, linking, and initialization processes that are described
further in later sections.

12.1.1 Load the Class Test

The initial attempt to execute the method main of class Test discovers that the class
Test is not loaded - that is, that the Java virtual machine does not currently contain
a binary representation for this class. The Java virtual machine then uses a class
loader to attempt to find such a binary representation. If this process fails, then an
error is thrown. This loading process is described further in §12.2.

12.1.2 Link Test: Verify, Prepare, (Optionally) Resolve

After Test is loaded, it must be initialized before main can be invoked. And Test,
like all (class or interface) types, must be linked before it is initialized. Linking
involves verification, preparation, and (optionally) resolution. Linking is described
further in §12.3.

Verification checks that the loaded representation of Test is well-formed, with a
proper symbol table. Verification also checks that the code that implements Test
obeys the semantic requirements of the Java programming language and the Java
virtual machine. If a problem is detected during verification, then an error is thrown.
Verification is described further in §12.3.1.

Preparation involves allocation of static storage and any data structures that are
used internally by the implementation of the Java virtual machine, such as method
tables. Preparation is described further in §12.3.2.

Resolution is the process of checking symbolic references from Test to other
classes and interfaces, by loading the other classes and interfaces that are mentioned
and checking that the references are correct.

The resolution step is optional at the time of initial linkage. An implementation may
resolve symbolic references from a class or interface that is being linked very early,
even to the point of resolving all symbolic references from the classes and interfaces
that are further referenced, recursively. (This resolution may result in errors from
these further loading and linking steps.) This implementation choice represents one
extreme and is similar to the kind of "static" linkage that has been done for many
years in simple implementations of the C language. (In these implementations,
a compiled program is typically represented as an "a.out" file that contains a
fully-linked version of the program, including completely resolved links to library
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routines used by the program. Copies of these library routines are included in the
"a.out" file.)

An implementation may instead choose to resolve a symbolic reference only when
it is actively used; consistent use of this strategy for all symbolic references would
represent the "laziest" form of resolution. In this case, if Test had several symbolic
references to another class, then the references might be resolved one at a time,
as they are used, or perhaps not at all, if these references were never used during
execution of the program.

The only requirement on when resolution is performed is that any errors detected
during resolution must be thrown at a point in the program where some action
is taken by the program that might, directly or indirectly, require linkage to the
class or interface involved in the error. Using the "static" example implementation
choice described above, loading and linkage errors could occur before the program
is executed if they involved a class or interface mentioned in the class Test or
any of the further, recursively referenced, classes and interfaces. In a system that
implemented the "laziest" resolution, these errors would be thrown only when an
incorrect symbolic reference is actively used.

The resolution process is described further in §12.3.3.

12.1.3 Initialize Test: Execute Initializers

In our continuing example, the Java virtual machine is still trying to execute the
method main of class Test. This is permitted only if the class has been initialized
(§12.4.1).

Initialization consists of execution of any class variable initializers and static
initializers of the class Test, in textual order. But before Test can be initialized,
its direct superclass must be initialized, as well as the direct superclass of its direct
superclass, and so on, recursively. In the simplest case, Test has Object as its
implicit direct superclass; if class Object has not yet been initialized, then it must
be initialized before Test is initialized. Class Object has no superclass, so the
recursion terminates here.

If class Test has another class Super as its superclass, then Super must be
initialized before Test. This requires loading, verifying, and preparing Super if
this has not already been done and, depending on the implementation, may also
involve resolving the symbolic references from Super and so on, recursively.

Initialization may thus cause loading, linking, and initialization errors, including
such errors involving other types.



12.1.4 Invoke Test.main EXECUTION

188

The initialization process is described further in §12.4.

12.1.4 Invoke Test.main

Finally, after completion of the initialization for class Test (during which other
consequential loading, linking, and initializing may have occurred), the method
main of Test is invoked.

The method main must be declared public, static, and void. It must accept a
single argument that is an array of String. This method can be declared as either:

public static void main(String[] args)

or

public static void main(String... args)

12.2 Loading of Classes and Interfaces

Loading refers to the process of finding the binary form of a class or interface type
with a particular name, perhaps by computing it on the fly, but more typically by
retrieving a binary representation previously computed from source code by a Java
compiler, and constructing, from that binary form, a Class object to represent the
class or interface.

The precise semantics of loading are given in chapter 5 of The Java Virtual Machine
Specification. Here we present an overview of the process from the viewpoint of
the Java programming language.

The binary format of a class or interface is normally the class file format described
in The Java Virtual Machine Specification cited above, but other formats are
possible, provided they meet the requirements specified in §13.1. The method
defineClass of class ClassLoader may be used to construct Class objects from
binary representations in the class file format.

Well-behaved class loaders maintain these properties:

• Given the same name, a good class loader should always return the same class
object.

• If a class loader L1 delegates loading of a class C to another loader L2, then for
any type T that occurs as the direct superclass or a direct superinterface of C, or
as the type of a field in C, or as the type of a formal parameter of a method or
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constructor in C, or as a return type of a method in C, L1 and L2 should return
the same Class object.

A malicious class loader could violate these properties. However, it could not
undermine the security of the type system, because the Java virtual machine guards
against this.

12.2.1 The Loading Process

The loading process is implemented by the class ClassLoader and its subclasses.
Different subclasses of ClassLoader may implement different loading policies. In
particular, a class loader may cache binary representations of classes and interfaces,
prefetch them based on expected usage, or load a group of related classes together.
These activities may not be completely transparent to a running application if, for
example, a newly compiled version of a class is not found because an older version
is cached by a class loader. It is the responsibility of a class loader, however, to
reflect loading errors only at points in the program where they could have arisen
without prefetching or group loading.

If an error occurs during class loading, then an instance of one of the following
subclasses of class LinkageError will be thrown at any point in the program that
(directly or indirectly) uses the type:

• ClassCircularityError: A class or interface could not be loaded because it
would be its own superclass or superinterface (§13.4.4).

• ClassFormatError: The binary data that purports to specify a requested
compiled class or interface is malformed.

• NoClassDefFoundError: No definition for a requested class or interface could
be found by the relevant class loader.

Because loading involves the allocation of new data structures, it may fail with an
OutOfMemoryError.

12.3 Linking of Classes and Interfaces

Linking is the process of taking a binary form of a class or interface type and
combining it into the runtime state of the Java virtual machine, so that it can be
executed. A class or interface type is always loaded before it is linked.

Three different activities are involved in linking: verification, preparation, and
resolution of symbolic references.
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The precise semantics of linking are given in chapter 5 of The Java Virtual Machine
Specification. Here we present an overview of the process from the viewpoint of
the Java programming language.

This specification allows an implementation flexibility as to when linking activities
(and, because of recursion, loading) take place, provided that the semantics of the
language are respected, that a class or interface is completely verified and prepared
before it is initialized, and that errors detected during linkage are thrown at a point
in the program where some action is taken by the program that might require
linkage to the class or interface involved in the error.

For example, an implementation may choose to resolve each symbolic reference
in a class or interface individually, only when it is used (lazy or late resolution), or
to resolve them all at once while the class is being verified (static resolution). This
means that the resolution process may continue, in some implementations, after a
class or interface has been initialized.

Because linking involves the allocation of new data structures, it may fail with an
OutOfMemoryError.

12.3.1 Verification of the Binary Representation

Verification ensures that the binary representation of a class or interface is
structurally correct. For example, it checks that every instruction has a valid
operation code; that every branch instruction branches to the start of some other
instruction, rather than into the middle of an instruction; that every method is
provided with a structurally correct signature; and that every instruction obeys the
type discipline of the Java virtual machine language.

If an error occurs during verification, then an instance of the following subclass
of class LinkageError will be thrown at the point in the program that caused the
class to be verified:

• VerifyError: The binary definition for a class or interface failed to pass a set of
required checks to verify that it obeys the semantics of the Java virtual machine
language and that it cannot violate the integrity of the Java virtual machine. (See
§13.4.2, §13.4.4, §13.4.9, and §13.4.17 for some examples.)

12.3.2 Preparation of a Class or Interface Type

Preparation involves creating the static fields (class variables and constants) for
a class or interface and initializing such fields to the default values (§4.12.5). This
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does not require the execution of any source code; explicit initializers for static
fields are executed as part of initialization (§12.4), not preparation.

12.3.3 Resolution of Symbolic References

The binary representation of a class or interface references other classes and
interfaces and their fields, methods, and constructors symbolically, using the binary
names (§13.1) of the other classes and interfaces (§13.1). For fields and methods,
these symbolic references include the name of the class or interface type of which
the field or method is a member, as well as the name of the field or method itself,
together with appropriate type information.

Before a symbolic reference can be used it must undergo resolution, wherein a
symbolic reference is checked to be correct and, typically, replaced with a direct
reference that can be more efficiently processed if the reference is used repeatedly.

If an error occurs during resolution, then an error will be thrown. Most
typically, this will be an instance of one of the following subclasses of the class
IncompatibleClassChangeError, but it may also be an instance of some other
subclass of IncompatibleClassChangeError or even an instance of the class
IncompatibleClassChangeError itself. This error may be thrown at any point in
the program that uses a symbolic reference to the type, directly or indirectly:

• IllegalAccessError: A symbolic reference has been encountered that specifies
a use or assignment of a field, or invocation of a method, or creation of an
instance of a class, to which the code containing the reference does not have
access because the field or method was declared with private, protected, or
default access (not public), or because the class was not declared public.

This can occur, for example, if a field that is originally declared public is
changed to be private after another class that refers to the field has been
compiled (§13.4.7).

• InstantiationError: A symbolic reference has been encountered that is used
in class instance creation expression, but an instance cannot be created because
the reference turns out to refer to an interface or to an abstract class.

This can occur, for example, if a class that is originally not abstract is changed
to be abstract after another class that refers to the class in question has been
compiled (§13.4.1).

• NoSuchFieldError: A symbolic reference has been encountered that refers to a
specific field of a specific class or interface, but the class or interface does not
contain a field of that name.
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This can occur, for example, if a field declaration was deleted from a class after
another class that refers to the field was compiled (§13.4.8).

• NoSuchMethodError: A symbolic reference has been encountered that refers to
a specific method of a specific class or interface, but the class or interface does
not contain a method of that signature.

This can occur, for example, if a method declaration was deleted from a class
after another class that refers to the method was compiled (§13.4.12).

Additionally, an UnsatisfiedLinkError (a subclass of LinkageError) may be
thrown if a class declares a native method for which no implementation can be
found. The error will occur if the method is used, or earlier, depending on what
kind of resolution strategy is being used by an implementation of the Java virtual
machine (§12.3).

12.4 Initialization of Classes and Interfaces

Initialization of a class consists of executing its static initializers and the initializers
for static fields (class variables) declared in the class.

Initialization of an interface consists of executing the initializers for fields
(constants) declared in the interface.

Before a class is initialized, its direct superclass must be initialized, but interfaces
implemented by the class are not initialized. Similarly, the superinterfaces of an
interface are not initialized before the interface is initialized.

12.4.1 When Initialization Occurs

A class or interface type T will be initialized immediately before the first occurrence
of any one of the following:

• T is a class and an instance of T is created.

• T is a class and a static method declared by T is invoked.

• A static field declared by T is assigned.

• A static field declared by T is used and the field is not a constant variable
(§4.12.4).

• T is a top-level class, and an assert statement (§14.10) lexically nested within
T is executed.
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Invocation of certain reflective methods in class Class and in package
java.lang.reflect also causes class or interface initialization. A class or
interface will not be initialized under any other circumstance.

The intent here is that a class or interface type has a set of initializers that put it in a
consistent state, and that this state is the first state that is observed by other classes.
The static initializers and class variable initializers are executed in textual order,
and may not refer to class variables declared in the class whose declarations appear
textually after the use, even though these class variables are in scope (§8.3.2.3).
This restriction is designed to detect, at compile time, most circular or otherwise
malformed initializations.

The fact that initialization code is unrestricted allows examples to be constructed
(§8.3.2.3) where the value of a class variable can be observed when it still has
its initial default value, before its initializing expression is evaluated, but such
examples are rare in practice. (Such examples can be also constructed for instance
variable initialization; see the example at the end of §12.5). The full power of the
language is available in these initializers; programmers must exercise some care.
This power places an extra burden on code generators, but this burden would arise
in any case because the language is concurrent (§12.4.2).

Before a class is initialized, its superclasses are initialized, if they have not
previously been initialized.

A reference to a class field causes initialization of only the class or interface that
actually declares it, even though it might be referred to through the name of a
subclass, a subinterface, or a class that implements an interface.

Initialization of an interface does not, of itself, cause initialization of any of its
superinterfaces.

12.4.2 Detailed Initialization Procedure

Because the Java programming language is multithreaded, initialization of a class
or interface requires careful synchronization, since some other thread may be trying
to initialize the same class or interface at the same time. There is also the possibility
that initialization of a class or interface may be requested recursively as part of the
initialization of that class or interface; for example, a variable initializer in class A
might invoke a method of an unrelated class B, which might in turn invoke a method
of class A. The implementation of the Java virtual machine is responsible for
taking care of synchronization and recursive initialization by using the following
procedure. It assumes that the Class object has already been verified and prepared,
and that the Class object contains state that indicates one of four situations:
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• This Class object is verified and prepared but not initialized.

• This Class object is being initialized by some particular thread T.

• This Class object is fully initialized and ready for use.

• This Class object is in an erroneous state, perhaps because initialization was
attempted and failed.

For each class or interface C, there is a unique initialization lock LC. The mapping
from C to LC is left to the discretion of the Java virtual machine implementation.
The procedure for initializing C is then as follows:

1. Synchronize on the initialization lock, LC, for C. This involves waiting until the
current thread can acquire LC.

2. If the Class object for C indicates that initialization is in progress for C by some
other thread, then release LC and block the current thread until informed that
the in-progress initialization has completed, at which time repeat this step.

3. If the Class object for C indicates that initialization is in progress for C by the
current thread, then this must be a recursive request for initialization. Release
LC and complete normally.

4. If the Class object for C indicates that C has already been initialized, then no
further action is required. Release LC and complete normally.

5. If the Class object for C is in an erroneous state, then initialization is not
possible. Release LC and throw a NoClassDefFoundError.

6. Otherwise, record the fact that initialization of the Class object for C is in
progress by the current thread, and release LC.

Then, initialize the final class variables and fields of interfaces whose values
are compile-time constants (§8.3.2.1, §9.3.1, §13.4.9).

7. Next, if C is a class rather than an interface, and its superclass SC has not
yet been initialized, then recursively perform this entire procedure for SC. If
necessary, verify and prepare SC first. If the initialization of SC completes
abruptly because of a thrown exception, then acquire LC, label the Class object
for C as erroneous, notify all waiting threads, release LC, and complete abruptly,
throwing the same exception that resulted from initializing SC.

8. Next, determine whether assertions are enabled (§14.10) for C by querying its
defining class loader.
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9. Next, execute either the class variable initializers and static initializers of the
class, or the field initializers of the interface, in textual order, as though they
were a single block.

10. If the execution of the initializers completes normally, then acquire LC, label
the Class object for C as fully initialized, notify all waiting threads, release LC,
and complete this procedure normally.

11. Otherwise, the initializers must have completed abruptly by throwing some
exception E. If the class of E is not Error or one of its subclasses, then create
a new instance of the class ExceptionInInitializerError, with E as the
argument, and use this object in place of E in the following step. But if a
new instance of ExceptionInInitializerError cannot be created because
an OutOfMemoryError occurs, then instead use an OutOfMemoryError object
in place of E in the following step.

12. Acquire LC, label the Class object for C as erroneous, notify all waiting
threads, release LC, and complete this procedure abruptly with reason E or its
replacement as determined in the previous step.

12.5 Creation of New Class Instances

A new class instance is explicitly created when evaluation of a class instance
creation expression (§15.9) causes a class to be instantiated.

A new class instance may be implicitly created in the following situations:

• Loading of a class or interface that contains a String literal (§3.10.5) may create
a new String object to represent that literal. (This might not occur if the same
String has previously been interned (§3.10.5).)

• Execution of an operation that causes boxing conversion (§5.1.7). Boxing
conversion may create a new object of a wrapper class associated with one of
the primitive types.

• Execution of a string concatenation operator (§15.18.1) that is not part of a
constant expression sometimes creates a new String object to represent the
result. String concatenation operators may also create temporary wrapper objects
for a value of a primitive type.

Each of these situations identifies a particular constructor (§8.8) to be called with
specified arguments (possibly none) as part of the class instance creation process.
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Whenever a new class instance is created, memory space is allocated for it with
room for all the instance variables declared in the class type and all the instance
variables declared in each superclass of the class type, including all the instance
variables that may be hidden (§8.3).

If there is not sufficient space available to allocate memory for the object, then
creation of the class instance completes abruptly with an OutOfMemoryError.
Otherwise, all the instance variables in the new object, including those declared in
superclasses, are initialized to their default values (§4.12.5).

Just before a reference to the newly created object is returned as the result, the
indicated constructor is processed to initialize the new object using the following
procedure:

1. Assign the arguments for the constructor to newly created parameter variables
for this constructor invocation.

2. If this constructor begins with an explicit constructor invocation (§8.8.7.1) of
another constructor in the same class (using this), then evaluate the arguments
and process that constructor invocation recursively using these same five
steps. If that constructor invocation completes abruptly, then this procedure
completes abruptly for the same reason; otherwise, continue with step 5.

3. This constructor does not begin with an explicit constructor invocation of
another constructor in the same class (using this). If this constructor is for
a class other than Object, then this constructor will begin with an explicit
or implicit invocation of a superclass constructor (using super). Evaluate the
arguments and process that superclass constructor invocation recursively using
these same five steps. If that constructor invocation completes abruptly, then
this procedure completes abruptly for the same reason. Otherwise, continue
with step 4.

4. Execute the instance initializers and instance variable initializers for this class,
assigning the values of instance variable initializers to the corresponding
instance variables, in the left-to-right order in which they appear textually in
the source code for the class. If execution of any of these initializers results
in an exception, then no further initializers are processed and this procedure
completes abruptly with that same exception. Otherwise, continue with step 5.

5. Execute the rest of the body of this constructor. If that execution completes
abruptly, then this procedure completes abruptly for the same reason.
Otherwise, this procedure completes normally.

Unlike C++, the Java programming language does not specify altered rules for
method dispatch during the creation of a new class instance. If methods are
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invoked that are overridden in subclasses in the object being initialized, then these
overriding methods are used, even before the new object is completely initialized.

12.6 Finalization of Class Instances

The class Object has a protected method called finalize; this method can be
overridden by other classes. The particular definition of finalize that can be
invoked for an object is called the finalizer of that object. Before the storage for an
object is reclaimed by the garbage collector, the Java virtual machine will invoke
the finalizer of that object.

Finalizers provide a chance to free up resources that cannot be freed automatically
by an automatic storage manager. In such situations, simply reclaiming the memory
used by an object would not guarantee that the resources it held would be reclaimed.

The Java programming language does not specify how soon a finalizer will be
invoked, except to say that it will happen before the storage for the object is reused.
Also, the language does not specify which thread will invoke the finalizer for any
given object.

It is guaranteed that the thread that invokes the finalizer will not be holding any
user-visible synchronization locks when the finalizer is invoked.

If an uncaught exception is thrown during the finalization, the exception is ignored
and finalization of that object terminates.

The completion of an object's constructor happens-before (§17.4.5) the execution
of its finalize method (in the formal sense of happens-before).

The finalize method declared in class Object takes no action. The fact that class
Object declares a finalize method means that the finalize method for any class
can always invoke the finalize method for its superclass. This should always
be done, unless it is the programmer's intent to nullify the actions of the finalizer
in the superclass. (Unlike constructors, finalizers do not automatically invoke the
finalizer for the superclass; such an invocation must be coded explicitly.)

A finalizer may be invoked explicitly, just like any other method.

The package java.lang.ref describes weak references, which interact with
garbage collection and finalization. As with any API that has special interactions
with the language, implementors must be cognizant of any requirements imposed
by the java.lang.ref API. This specification does not discuss weak references in
any way. Readers are referred to the API documentation for details.
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12.6.1 Implementing Finalization

Every object can be characterized by two attributes: it may be reachable, finalizer-
reachable, or unreachable, and it may also be unfinalized, finalizable, or finalized.

A reachable object is any object that can be accessed in any potential continuing
computation from any live thread.

A finalizer-reachable object can be reached from some finalizable object through
some chain of references, but not from any live thread.

An unreachable object cannot be reached by either means.

An unfinalized object has never had its finalizer automatically invoked.

A finalized object has had its finalizer automatically invoked.

A finalizable object has never had its finalizer automatically invoked, but the Java
virtual machine may eventually automatically invoke its finalizer.

An object o is not finalizable until its constructor has invoked the constructor
for Object on o and that invocation has completed successfully (that is, without
throwing an exception). Every pre-finalization write to a field of an object must be
visible to the finalization of that object. Furthermore, none of the pre-finalization
reads of fields of that object may see writes that occur after finalization of that
object is initiated.

12.6.1.1 Interaction with the Memory Model

It must be possible for the memory model (§17.4) to decide when it can commit
actions that take place in a finalizer. This section describes the interaction of
finalization with the memory model.

Each execution has a number of reachability decision points, labeled di. Each
action either comes-before di or comes-after di. Other than as explicitly mentioned,
the comes-before ordering described in this section is unrelated to all other
orderings in the memory model.

If r is a read that sees a write w and r comes-before di, then w must come-before di.

If x and y are synchronization actions on the same variable or monitor such that
so(x, y) (§17.4.4) and y comes-before di, then x must come-before di.

At each reachability decision point, some set of objects are marked as unreachable,
and some subset of those objects are marked as finalizable. These reachability
decision points are also the points at which references are checked, enqueued, and



EXECUTION Implementing Finalization 12.6.1

199

cleared according to the rules provided in the API documentation for the package
java.lang.ref.

The only objects that are considered definitely reachable at a point di are those that
can be shown to be reachable by the application of these rules:

• An object B is definitely reachable at di from static fields if there exists a write
w1 to a static field v of a class C such that the value written by w1 is a reference
to B, the class C is loaded by a reachable classloader, and there does not exist a
write w2 to v such that hb(w2, w1) is not true and both w1 and w2 come-before di.

• An object B is definitely reachable from A at di if there is a write w1 to an element
v of A such that the value written by w1 is a reference to B and there does not
exist a write w2 to v such that hb(w2, w1) is not true and both w1 and w2 come-
before di.

• If an object C is definitely reachable from an object B, and object B is definitely
reachable from an object A, then C is definitely reachable from A.

An action a is an active use of X if and only if at least one of the following conditions
holds:

• a reads or writes an element of X

• a locks or unlocks X and there is a lock action on X that happens-after the
invocation of the finalizer for X

• a writes a reference to X

• a is an active use of an object Y, and X is definitely reachable from Y

If an object X is marked as unreachable at di, then:

• X must not be definitely reachable at di from static fields; and

• All active uses of X in thread t that come-after di must occur in the finalizer
invocation for X or as a result of thread t performing a read that comes-after di
of a reference to X; and

• All reads that come-after di that see a reference to X must see writes to elements
of objects that were unreachable at di, or see writes that came-after di.

If an object X is marked as finalizable at di, then:

• X must be marked as unreachable at di; and

• di must be the only place where X is marked as finalizable; and

• actions that happen-after the finalizer invocation must come-after di.
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12.6.2 Finalizer Invocations are Not Ordered

The Java programming language imposes no ordering on finalize method calls.
Finalizers may be called in any order, or even concurrently.

12.7 Unloading of Classes and Interfaces

An implementation of the Java programming language may unload classes.

A class or interface may be unloaded if and only if its defining class loader may be
reclaimed by the garbage collector as discussed in §12.6.

Classes and interfaces loaded by the bootstrap loader may not be unloaded.

12.8 Program Exit

A program terminates all its activity and exits when one of two things happens:

• All the threads that are not daemon threads terminate.

• Some thread invokes the exit method of class Runtime or class System, and the
exit operation is not forbidden by the security manager.
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C H A P T E R 13
Binary Compatibility

DEVELOPMENT tools for the Java programming language should support
automatic recompilation as necessary whenever source code is available. Particular
implementations may also store the source and binary of types in a versioning
database and implement a ClassLoader that uses integrity mechanisms of the
database to prevent linkage errors by providing binary-compatible versions of types
to clients.

Developers of packages and classes that are to be widely distributed face a
different set of problems. In the Internet, which is our favorite example of a widely
distributed system, it is often impractical or impossible to automatically recompile
the pre-existing binaries that directly or indirectly depend on a type that is to be
changed. Instead, this specification defines a set of changes that developers are
permitted to make to a package or to a class or interface type while preserving (not
breaking) compatibility with pre-existing binaries.

The paper quoted above appears in Proceedings of OOPSLA '95, published as ACM
SIGPLAN Notices, Volume 30, Number 10, October 1995, pages 426-438. Within
the framework of that paper, Java programming language binaries are binary
compatible under all relevant transformations that the authors identify (with some
caveats with respect to the addition of instance variables). Using their scheme, here
is a list of some important binary compatible changes that the Java programming
language supports:

• Reimplementing existing methods, constructors, and initializers to improve
performance.

• Changing methods or constructors to return values on inputs for which they
previously either threw exceptions that normally should not occur or failed by
going into an infinite loop or causing a deadlock.

• Adding new fields, methods, or constructors to an existing class or interface.

• Deleting private fields, methods, or constructors of a class.
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• When an entire package is updated, deleting default (package-only) access fields,
methods, or constructors of classes and interfaces in the package.

• Reordering the fields, methods, or constructors in an existing type declaration.

• Moving a method upward in the class hierarchy.

• Reordering the list of direct superinterfaces of a class or interface.

• Inserting new class or interface types in the type hierarchy.

This chapter specifies minimum standards for binary compatibility guaranteed by
all implementations. The Java programming language guarantees compatibility
when binaries of classes and interfaces are mixed that are not known to be from
compatible sources, but whose sources have been modified in the compatible ways
described here. Note that we are discussing compatibility between releases of an
application. A discussion of compatibility among releases of the Java SE platform
is beyond the scope of this chapter.

We encourage development systems to provide facilities that alert developers to
the impact of changes on pre-existing binaries that cannot be recompiled.

This chapter first specifies some properties that any binary format for the Java
programming language must have (§13.1). It next defines binary compatibility,
explaining what it is and what it is not (§13.2). It finally enumerates a large set
of possible changes to packages (§13.3), classes (§13.4), and interfaces (§13.5),
specifying which of these changes are guaranteed to preserve binary compatibility
and which are not.

13.1 The Form of a Binary

Programs must be compiled either into the class file format specified by the The
Java Virtual Machine Specification, or into a representation that can be mapped
into that format by a class loader written in the Java programming language.
Furthermore, the resulting class file must have certain properties. A number of
these properties are specifically chosen to support source code transformations that
preserve binary compatibility.

The required properties are:

1. The class or interface must be named by its binary name, which must meet the
following constraints:

• The binary name of a top-level type is its canonical name (§6.7).
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• The binary name of a member type consists of the binary name of its
immediately enclosing type, followed by $, followed by the simple name of
the member.

• The binary name of a local class (§14.3) consists of the binary name of
its immediately enclosing type, followed by $, followed by a non-empty
sequence of digits, followed by the simple name of the local class.

• The binary name of an anonymous class (§15.9.5) consists of the binary
name of its immediately enclosing type, followed by $, followed by a non-
empty sequence of digits.

• The binary name of a type variable declared by a generic class or interface is
the binary name of its immediately enclosing type, followed by $, followed
by the simple name of the type variable.

• The binary name of a type variable declared by a generic method is the
binary name of the type declaring the method, followed by $, followed
by the descriptor of the method as defined in The Java Virtual Machine
Specification, followed by $, followed by the simple name of the type
variable.

• The binary name of a type variable declared by a generic constructor is the
binary name of the type declaring the constructor, followed by $, followed
by the descriptor of the constructor as defined in The Java Virtual Machine
Specification, followed by $, followed by the simple name of the type
variable.

2. A reference to another class or interface type must be symbolic, using the
binary name of the type.

3. References to fields that are constant variables (§4.12.4) are resolved at
compile time to the constant value that is denoted. No reference to such a field
should be present in the code in a binary file (except in the class or interface
containing the field, which will have code to initialize it). Such a field must
always appear to have been initialized (§12.4.2); the default initial value for
the type of such a field must never be observed. See §13.4.9 for a discussion.

4. Given a legal expression denoting a field access in a class C, referencing a
non-constant (§13.4.9) field named f declared in a (possibly distinct) class or
interface D, we define the qualifying type of the field reference as follows:

• If the expression is of the form Primary.f then:

◆ If the compile-time type of Primary is an intersection type (§4.9) V1 & ...
& Vn, then the qualifying type of the reference is V1.
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◆ Otherwise, the compile-time type of Primary is the qualifying type of the
reference.

• If the expression is of the form super.f then the superclass of C is the
qualifying type of the reference.

• If the expression is of the form X.super.f then the superclass of X is the
qualifying type of the reference.

• If the reference is of the form X.f, where X denotes a class or interface, then
the class or interface denoted by X is the qualifying type of the reference.

• If the expression is referenced by a simple name, then if f is a member of the
current class or interface, C, then let T be C. Otherwise, let T be the innermost
lexically enclosing class of which f is a member. In either case, T is the
qualifying type of the reference.

The reference to f must be compiled into a symbolic reference to the erasure
(§4.6) of the qualifying type of the reference, plus the simple name of the
field, f. The reference must also include a symbolic reference to the erasure
of the declared type of the field so that the verifier can check that the type is
as expected.

5. Given a method invocation expression in a class or interface C referencing a
method named m declared (or implicitly declared (§9.2)) in a (possibly distinct)
class or interface D, we define the qualifying type of the method invocation as
follows:

If D is Object then the qualifying type of the expression is Object. Otherwise:

• If the expression is of the form Primary.m then:

◆ If the compile-time type of Primary is an intersection type (§4.9) V1 & ...
& Vn, then the qualifying type of the method invocation is V1.

◆ Otherwise, the compile-time type of Primary is the qualifying type of the
method invocation.

• If the expression is of the form super.m then the superclass of C is the
qualifying type of the method invocation.

• If the expression is of the form X.super.m then the superclass of X is the
qualifying type of the method invocation.

• If the reference is of the form X.m, where X denotes a class or interface,
then the class or interface denoted by X is the qualifying type of the method
invocation.
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• If the method is referenced by a simple name, then if m is a member of the
current class or interface, C, then let T be C. Otherwise, let T be the innermost
lexically enclosing class of which m is a member. In either case, T is the
qualifying type of the method invocation.

A reference to a method must be resolved at compile time to a symbolic
reference to the erasure (§4.6) of the qualifying type of the invocation, plus
the erasure of the signature of the method (§8.4.2). A reference to a method
must also include either a symbolic reference to the erasure of the return type
of the denoted method or an indication that the denoted method is declared
void and does not return a value. The signature of a method must include all
of the following:

• The simple name of the method

• The number of formal parameters of the method

• A symbolic reference to the type of each formal parameter

6. Given a class instance creation expression (§15.9) or a constructor invocation
statement (§8.8.7.1) in a class or interface C referencing a constructor m
declared in a (possibly distinct) class or interface D, we define the qualifying
type of the constructor invocation as follows:

• If the expression is of the form new D(...) or X.new D(...), then the
qualifying type of the invocation is D.

• If the expression is of the form new D(...){...} or X.new D(...){...},
then the qualifying type of the expression is the compile-time type of the
expression.

• If the expression is of the form super(...) or Primary.super(...) then
the qualifying type of the expression is the direct superclass of C.

• If the expression is of the form this(...), then the qualifying type of the
expression is C.

A reference to a constructor must be resolved at compile time to a symbolic
reference to the erasure (§4.6) of the qualifying type of the invocation, plus
the signature of the constructor (§8.8.2). The signature of a constructor must
include both:

• The number of parameters of the constructor

• A symbolic reference to the type of each formal parameter
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In addition, the constructor of a non-private inner member class must be
compiled such that it has as its first parameter, an additional implicit parameter
representing the immediately enclosing instance (§8.1.3).

7. Any constructs introduced by a Java compiler that do not have a corresponding
construct in the source code must be marked as synthetic, except for default
constructors, the class initialization method, and the values and valueOf
methods of the Enum class.

A binary representation for a class or interface must also contain all of the
following:

1. If it is a class and is not class Object, then a symbolic reference to the erasure
of the direct superclass of this class.

2. A symbolic reference to the erasure of each direct superinterface, if any.

3. A specification of each field declared in the class or interface, given as the
simple name of the field and a symbolic reference to the erasure of the type
of the field.

4. If it is a class, then the erased signature of each constructor, as described above.

5. For each method declared in the class or interface (excluding, for an interface,
its implicitly declared methods (§9.2)), its erased signature and return type, as
described above.

6. The code needed to implement the class or interface:

• For an interface, code for the field initializers

• For a class, code for the field initializers, the instance and static initializers,
and the implementation of each method or constructor

7. Every type must contain sufficient information to recover its canonical name
(§6.7).

8. Every member type must have sufficient information to recover its source level
access modifier.

9. Every nested class must have a symbolic reference to its immediately enclosing
class.

10. Every class that contains a nested class must contain symbolic references to all
of its member classes, and to all local and anonymous classes that appear in its
methods, constructors, and static or instance initializers.
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The following sections discuss changes that may be made to class and interface type
declarations without breaking compatibility with pre-existing binaries. Under the
translation requirements given above, the Java virtual machine and its class file
format support these changes. Any other valid binary format, such as a compressed
or encrypted representation that is mapped back into class files by a class loader
under the above requirements, will necessarily support these changes as well.

13.2 What Binary Compatibility Is and Is Not

A change to a type is binary compatible with (equivalently, does not break binary
compatibility with) pre-existing binaries if pre-existing binaries that previously
linked without error will continue to link without error.

Binaries are compiled to rely on the accessible members and constructors of other
classes and interfaces. To preserve binary compatibility, a class or interface should
treat its accessible members and constructors, their existence and behavior, as a
contract with its users.

The Java programming language is designed to prevent additions to contracts
and accidental name collisions from breaking binary compatibility. Specifically,
addition of more methods overloading a particular method name does not break
compatibility with pre-existing binaries. The method signature that the pre-existing
binary will use for method lookup is chosen by the method overload resolution
algorithm at compile time (§15.12.2).

Binary compatibility is not the same as source compatibility. In particular, the
example in §13.4.6 shows that a set of compatible binaries can be produced from
sources that will not compile all together. This example is typical: a new declaration
is added, changing the meaning of a name in an unchanged part of the source code,
while the pre-existing binary for that unchanged part of the source code retains the
fully-qualified, previous meaning of the name. Producing a consistent set of source
code requires providing a qualified name or field access expression corresponding
to the previous meaning.

13.3 Evolution of Packages

A new top-level class or interface type may be added to a package without breaking
compatibility with pre-existing binaries, provided the new type does not reuse a
name previously given to an unrelated type.
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If a new type reuses a name previously given to an unrelated type, then a conflict
may result, since binaries for both types could not be loaded by the same class
loader.

Changes in top-level class and interface types that are not public and that are not a
superclass or superinterface, respectively, of a public type, affect only types within
the package in which they are declared. Such types may be deleted or otherwise
changed, even if incompatibilities are otherwise described here, provided that the
affected binaries of that package are updated together.

13.4 Evolution of Classes

This section describes the effects of changes to the declaration of a class and its
members and constructors on pre-existing binaries.

13.4.1 abstract Classes

If a class that was not declared abstract is changed to be declared abstract,
then pre-existing binaries that attempt to create new instances of that class will
throw either an InstantiationError at link time, or (if a reflective method is
used) an InstantiationException at run time; such a change is therefore not
recommended for widely distributed classes.

Changing a class that is declared abstract to no longer be declared abstract does
not break compatibility with pre-existing binaries.

13.4.2 final Classes

If a class that was not declared final is changed to be declared final, then a
VerifyError is thrown if a binary of a pre-existing subclass of this class is loaded,
because final classes can have no subclasses; such a change is not recommended
for widely distributed classes.

Changing a class that is declared final to no longer be declared final does not
break compatibility with pre-existing binaries.

13.4.3 public Classes

Changing a class that is not declared public to be declared public does not break
compatibility with pre-existing binaries.
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If a class that was declared public is changed to not be declared public, then an
IllegalAccessError is thrown if a pre-existing binary is linked that needs but no
longer has access to the class type; such a change is not recommended for widely
distributed classes.

13.4.4 Superclasses and Superinterfaces

A ClassCircularityError is thrown at load time if a class would be a superclass
of itself. Changes to the class hierarchy that could result in such a circularity
when newly compiled binaries are loaded with pre-existing binaries are not
recommended for widely distributed classes.

Changing the direct superclass or the set of direct superinterfaces of a class type
will not break compatibility with pre-existing binaries, provided that the total set of
superclasses or superinterfaces, respectively, of the class type loses no members.

If a change to the direct superclass or the set of direct superinterfaces results in any
class or interface no longer being a superclass or superinterface, respectively, then
linkage errors may result if pre-existing binaries are loaded with the binary of the
modified class. Such changes are not recommended for widely distributed classes.

13.4.5 Class Type Parameters

Adding or removing a type parameter of a class does not, in itself, have any
implications for binary compatibility.

If such a type parameter is used in the type of a field or method, that may have the
normal implications of changing the aforementioned type.

Renaming a type parameter of a class has no effect with respect to pre-existing
binaries.

Changing the first bound of a type parameter of a class may change the erasure
(§4.6) of any member that uses that type parameter in its own type, and this may
affect binary compatibility. The change of such a bound is analogous to the change
of the first bound of a type parameter of a method or constructor (§13.4.13).

Changing any other bound has no effect on binary compatibility.

13.4.6 Class Body and Member Declarations

No incompatibility with pre-existing binaries is caused by adding an instance
(respectively static) member that has the same name and accessibility (for fields),
or same name and accessibility and signature and return type (for methods), as an



13.4.7 Access to Members and Constructors BINARY COMPATIBILITY

210

instance (respectively static) member of a superclass or subclass. No error occurs
even if the set of classes being linked would encounter a compile-time error.

Deleting a class member or constructor that is not declared private may cause a
linkage error if the member or constructor is used by a pre-existing binary.

The super keyword can be used to access a method declared in a
superclass, bypassing any methods declared in the current class. The expression
super.Identifier is resolved, at compile time, to a method M in the superclass S. If
the method M is an instance method, then the method MR invoked at run-time is the
method with the same signature as M that is a member of the direct superclass of
the class containing the expression involving super.

13.4.7 Access to Members and Constructors

Changing the declared access of a member or constructor to permit less access may
break compatibility with pre-existing binaries, causing a linkage error to be thrown
when these binaries are resolved. Less access is permitted if the access modifier is
changed from default access to private access; from protected access to default
or private access; or from public access to protected, default, or private
access. Changing a member or constructor to permit less access is therefore not
recommended for widely distributed classes.

Perhaps surprisingly, the binary format is defined so that changing a member or
constructor to be more accessible does not cause a linkage error when a subclass
(already) defines a method to have less access.

Allowing superclasses to change protected methods to be public without
breaking binaries of pre-existing subclasses helps make binaries less fragile.
The alternative, where such a change would cause a linkage error, would create
additional binary incompatibilities.

13.4.8 Field Declarations

Widely distributed programs should not expose any fields to their clients. Apart
from the binary compatibility issues discussed below, this is generally good
software engineering practice. Adding a field to a class may break compatibility
with pre-existing binaries that are not recompiled.

Assume a reference to a field f with qualifying type T. Assume further that f is
in fact an instance (respectively static) field declared in a superclass of T, S, and
that the type of f is X.
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If a new field of type X with the same name as f is added to a subclass of S that is a
superclass of T or T itself, then a linkage error may occur. Such a linkage error will
occur only if, in addition to the above, either one of the following conditions hold:

• The new field is less accessible than the old one.

• The new field is a static (respectively instance) field.

In particular, no linkage error will occur in the case where a class could no longer
be recompiled because a field access previously referenced a field of a superclass
with an incompatible type. The previously compiled class with such a reference
will continue to reference the field declared in a superclass.

Deleting a field from a class will break compatibility with any pre-existing binaries
that reference this field, and a NoSuchFieldError will be thrown when such a
reference from a pre-existing binary is linked. Only private fields may be safely
deleted from a widely distributed class.

For purposes of binary compatibility, adding or removing a field f whose type
involves type variables (§4.4) or parameterized types (§4.5) is equivalent to the
addition (respectively, removal) of a field of the same name whose type is the
erasure (§4.6) of the type of f.

13.4.9 final Fields and Constants

If a field that was not declared final is changed to be declared final, then it can
break compatibility with pre-existing binaries that attempt to assign new values to
the field.

Deleting the keyword final or changing the value to which a field is initialized
does not break compatibility with existing binaries.

If a field is a constant variable (§4.12.4), then deleting the keyword final or
changing its value will not break compatibility with pre-existing binaries by
causing them not to run, but they will not see any new value for the usage of the
field unless they are recompiled. This is true even if the usage itself is not a compile-
time constant expression (§15.28).

This result is a side-effect of the decision to support conditional compilation, as
discussed at the end of §14.21.

The best way to avoid problems with "inconstant constants" in widely-distributed
code is to declare as compile time constants only values which truly are unlikely
ever to change. Other than for true mathematical constants, we recommend that
source code make very sparing use of class variables that are declared static and
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final. If the read-only nature of final is required, a better choice is to declare a
private static variable and a suitable accessor method to get its value.

Thus we recommend:

private static int N;
public static int getN() { return N; }

rather than:

public static final int N = ...;

There is no problem with:

public static int N = ...;

if N need not be read-only. We also recommend, as a general rule, that only truly
constant values be declared in interfaces.

We note, but do not recommend, that if a field of primitive type of an interface may
change, its value may be expressed idiomatically as in:

interface Flags {
    boolean debug = new Boolean(true).booleanValue();
}

ensuring that this value is not a constant. Similar idioms exist for the other primitive
types.

One other thing to note is that static final fields that have constant values
(whether of primitive or String type) must never appear to have the default initial
value for their type (§4.12.5). This means that all such fields appear to be initialized
first during class initialization (§8.3.2.1, §9.3.1, §12.4.2).

13.4.10 static Fields

If a field that is not declared private was not declared static and is changed
to be declared static, or vice versa, then a linkage error, specifically an
IncompatibleClassChangeError, will result if the field is used by a pre-existing
binary which expected a field of the other kind. Such changes are not recommended
in code that has been widely distributed.

13.4.11 transient Fields

Adding or deleting a transient modifier of a field does not break compatibility
with pre-existing binaries.
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13.4.12 Method and Constructor Declarations

Adding a method or constructor declaration to a class will not break compatibility
with any pre-existing binaries, even in the case where a type could no longer be
recompiled because an invocation previously referenced a method or constructor
of a superclass with an incompatible type. The previously compiled class with
such a reference will continue to reference the method or constructor declared in
a superclass.

Assume a reference to a method m with qualifying type T. Assume further that m is
in fact an instance (respectively static) method declared in a superclass of T, S.

If a new method of type X with the same signature and return type as m is added to
a subclass of S that is a superclass of T or T itself, then a linkage error may occur.
Such a linkage error will occur only if, in addition to the above, either one of the
following conditions hold:

• The new method is less accessible than the old one.

• The new method is a static (respectively instance) method.

Deleting a method or constructor from a class may break compatibility
with any pre-existing binary that referenced this method or constructor; a
NoSuchMethodError may be thrown when such a reference from a pre-existing
binary is linked. Such an error will occur only if no method with a matching
signature and return type is declared in a superclass.

13.4.13 Method and Constructor Type Parameters

Adding or removing a type parameter of a method or constructor does not, in itself,
have any implications for binary compatibility.

If such a type parameter is used in the type of the method or constructor, that may
have the normal implications of changing the aforementioned type.

Renaming a type parameter of a method or constructor has no effect with respect
to pre-existing binaries.

Changing the first bound of a type parameter of a method or constructor may change
the erasure (§4.6) of any member that uses that type parameter in its own type, and
this may affect binary compatibility. Specifically:

• If the type parameter is used as the type of a field, the effect is as if the field was
removed and a field with the same name, whose type is the new erasure of the
type variable, was added.
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• If the type parameter is used as the type of any formal parameter of a method, but
not as the return type, the effect is as if that method were removed, and replaced
with a new method that is identical except for the types of the aforementioned
formal parameters, which now have the new erasure of the type parameter as
their type.

• If the type parameter is used as a return type of a method, but not as the type of
any formal parameter of the method, the effect is as if that method were removed,
and replaced with a new method that is identical except for the return type, which
is now the new erasure of the type parameter.

• If the type parameter is used as a return type of a method and as the type of one
or more formal parameters of the method, the effect is as if that method were
removed, and replaced with a new method that is identical except for the return
type, which is now the new erasure of the type parameter, and except for the
types of the aforementioned formal parameters, which now have the new erasure
of the type parameter as their types.

Changing any other bound has no effect on binary compatibility.

13.4.14 Method and Constructor Formal Parameters

Changing the name of a formal parameter of a method or constructor does not
impact pre-existing binaries.

Changing the name of a method, or the type of a formal parameter to a method
or constructor, or adding a parameter to or deleting a parameter from a method or
constructor declaration creates a method or constructor with a new signature, and
has the combined effect of deleting the method or constructor with the old signature
and adding a method or constructor with the new signature (§13.4.12).

Changing the type of the last formal parameter of a method from T[] to a variable
arity parameter (§8.4.1) of type T (i.e. to T...), and vice versa, does not impact
pre-existing binaries.

For purposes of binary compatibility, adding or removing a method or constructor
m whose signature involves type variables (§4.4) or parameterized types (§4.5)
is equivalent to the addition (respectively, removal) of an otherwise equivalent
method whose signature is the erasure (§4.6) of the signature of m.

13.4.15 Method Result Type

Changing the result type of a method, or replacing a result type with void, or
replacing void with a result type, has the combined effect of deleting the old
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method and adding a new method with the new result type or newly void result
(see §13.4.12).

For purposes of binary compatibility, adding or removing a method or constructor
m whose return type involves type variables (§4.4) or parameterized types (§4.5)
is equivalent to the addition (respectively, removal) of the an otherwise equivalent
method whose return type is the erasure (§4.6) of the return type of m.

13.4.16 abstract Methods

Changing a method that is declared abstract to no longer be declared abstract
does not break compatibility with pre-existing binaries.

Changing a method that is not declared abstract to be declared abstract will
break compatibility with pre-existing binaries that previously invoked the method,
causing an AbstractMethodError.

13.4.17 final Methods

Changing a method that is declared final to no longer be declared final does not
break compatibility with pre-existing binaries.

Changing an instance method that is not declared final to be declared final may
break compatibility with existing binaries that depend on the ability to override the
method.

Changing a class (static) method that is not declared final to be declared final
does not break compatibility with existing binaries, because the method could not
have been overridden.

13.4.18 native Methods

Adding or deleting a native modifier of a method does not break compatibility
with pre-existing binaries.

The impact of changes to types on pre-existing native methods that are not
recompiled is beyond the scope of this specification and should be provided with
the description of an implementation. Implementations are encouraged, but not
required, to implement native methods in a way that limits such impact.
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13.4.19 static Methods

If a method that is not declared private is also declared static (that is, a class
method) and is changed to not be declared static (that is, to an instance method),
or vice versa, then compatibility with pre-existing binaries may be broken, resulting
in a linkage time error, namely an IncompatibleClassChangeError, if these
methods are used by the pre-existing binaries. Such changes are not recommended
in code that has been widely distributed.

13.4.20 synchronized Methods

Adding or deleting a synchronized modifier of a method does not break
compatibility with pre-existing binaries.

13.4.21 Method and Constructor Throws

Changes to the throws clause of methods or constructors do not break compatibility
with pre-existing binaries; these clauses are checked only at compile time.

13.4.22 Method and Constructor Body

Changes to the body of a method or constructor do not break compatibility with
pre-existing binaries.

The keyword final on a method does not mean that the method can be safely
inlined; it means only that the method cannot be overridden. It is still possible that a
new version of that method will be provided at link time. Furthermore, the structure
of the original program must be preserved for purposes of reflection.

Therefore, we note that a Java compiler cannot expand a method inline at compile
time. In general we suggest that implementations use late-bound (run-time) code
generation and optimization.

13.4.23 Method and Constructor Overloading

Adding new methods or constructors that overload existing methods or constructors
does not break compatibility with pre-existing binaries. The signature to be used
for each invocation was determined when these existing binaries were compiled;
therefore newly added methods or constructors will not be used, even if their
signatures are both applicable and more specific than the signature originally
chosen.
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While adding a new overloaded method or constructor may cause a compile-time
error the next time a class or interface is compiled because there is no method or
constructor that is most specific (§15.12.2.5), no such error occurs when a program
is executed, because no overload resolution is done at execution time.

13.4.24 Method Overriding

If an instance method is added to a subclass and it overrides a method in a
superclass, then the subclass method will be found by method invocations in pre-
existing binaries, and these binaries are not impacted.

If a class method is added to a class, then this method will not be found unless the
qualifying type of the reference is the subclass type.

13.4.25 Static Initializers

Adding, deleting, or changing a static initializer (§8.7) of a class does not impact
pre-existing binaries.

13.4.26 Evolution of Enums

Adding or reordering constants in an enum type will not break compatibility with
pre-existing binaries.

If a pre-existing binary attempts to access an enum constant that no longer exists,
the client will fail at run-time with a NoSuchFieldError. Therefore such a change
is not recommended for widely distributed enums.

In all other respects, the binary compatibility rules for enums are identical to those
for classes.

13.5 Evolution of Interfaces

This section describes the impact of changes to the declaration of an interface and
its members on pre-existing binaries.

13.5.1 public Interfaces

Changing an interface that is not declared public to be declared public does not
break compatibility with pre-existing binaries.
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If an interface that is declared public is changed to not be declared public, then
an IllegalAccessError is thrown if a pre-existing binary is linked that needs but
no longer has access to the interface type, so such a change is not recommended
for widely distributed interfaces.

13.5.2 Superinterfaces

Changes to the interface hierarchy cause errors in the same way that changes to
the class hierarchy do, as described in §13.4.4. In particular, changes that result in
any previous superinterface of a class no longer being a superinterface can break
compatibility with pre-existing binaries, resulting in a VerifyError.

13.5.3 The Interface Members

Adding a method to an interface does not break compatibility with pre-existing
binaries.

A field added to a superinterface of C may hide a field inherited from
a superclass of C. If the original reference was to an instance field, an
IncompatibleClassChangeError will result. If the original reference was an
assignment, an IllegalAccessError will result.

Deleting a member from an interface may cause linkage errors in pre-existing
binaries.

13.5.4 Interface Type Parameters

The effects of changes to the type parameters of an interface are the same as those
of analogous changes to the type parameters of a class.

13.5.5 Field Declarations

The considerations for changing field declarations in interfaces are the same as
those for static final fields in classes, as described in §13.4.8 and §13.4.9.

13.5.6 abstract Methods

The considerations for changing abstract method declarations in interfaces are the
same as those for abstract methods in classes, as described in §13.4.14, §13.4.15,
§13.4.21, and §13.4.23.
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13.5.7 Evolution of Annotation Types

Annotation types behave exactly like any other interface. Adding or removing an
element from an annotation type is analogous to adding or removing a method.
There are important considerations governing other changes to annotation types,
but these have no effect on the linkage of binaries by the Java virtual machine.
Rather, such changes affect the behavior of reflective APIs that manipulate
annotations. The documentation of these APIs specifies their behavior when
various changes are made to the underlying annotation types.

Adding or removing annotations has no effect on the correct linkage of the binary
representations of programs in the Java programming language.
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C H A P T E R 14
Blocks and Statements

THE sequence of execution of a program is controlled by statements, which are
executed for their effect and do not have values.

Some statements contain other statements as part of their structure; such other
statements are substatements of the statement. We say that statement S immediately
contains statement U if there is no statement T different from S and U such that
S contains T and T contains U. In the same manner, some statements contain
expressions (Chapter 15, Expressions) as part of their structure.

The first section of this chapter discusses the distinction between normal and
abrupt completion of statements (§14.1). Most of the remaining sections explain
the various kinds of statements, describing in detail both their normal behavior and
any special treatment of abrupt completion.

Blocks are explained first (§14.2), followed by local class declarations (§14.3) and
local variable declaration statements (§14.4).

Next a grammatical maneuver that sidesteps the familiar "dangling else" problem
(§14.5) is explained.

The last section (§14.21) of this chapter addresses the requirement that every
statement be reachable in a certain technical sense.

14.1 Normal and Abrupt Completion of Statements

Every statement has a normal mode of execution in which certain computational
steps are carried out. The following sections describe the normal mode of execution
for each kind of statement.
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If all the steps are carried out as described, with no indication of abrupt completion,
the statement is said to complete normally. However, certain events may prevent
a statement from completing normally:

• The break (§14.15), continue (§14.16), and return (§14.17) statements cause a
transfer of control that may prevent normal completion of statements that contain
them.

• Evaluation of certain expressions may throw exceptions from the Java virtual
machine; these expressions are summarized in §15.6. An explicit throw (§14.18)
statement also results in an exception. An exception causes a transfer of control
that may prevent normal completion of statements.

If such an event occurs, then execution of one or more statements may be
terminated before all steps of their normal mode of execution have completed; such
statements are said to complete abruptly.

An abrupt completion always has an associated reason, which is one of the
following:

• A break with no label

• A break with a given label

• A continue with no label

• A continue with a given label

• A return with no value

• A return with a given value

• A throw with a given value, including exceptions thrown by the Java virtual
machine

The terms "complete normally" and "complete abruptly" also apply to the
evaluation of expressions (§15.6). The only reason an expression can complete
abruptly is that an exception is thrown, because of either a throw with a given value
(§14.18) or a run-time exception or error (Chapter 11, Exceptions, §15.6).

If a statement evaluates an expression, abrupt completion of the expression always
causes the immediate abrupt completion of the statement, with the same reason.
All succeeding steps in the normal mode of execution are not performed.

Unless otherwise specified in this chapter, abrupt completion of a substatement
causes the immediate abrupt completion of the statement itself, with the same
reason, and all succeeding steps in the normal mode of execution of the statement
are not performed.
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Unless otherwise specified, a statement completes normally if all expressions it
evaluates and all substatements it executes complete normally.

14.2 Blocks

A block is a sequence of statements, local class declarations, and local variable
declaration statements within braces.

Block:
    { BlockStatementsopt }

BlockStatements:
    BlockStatement
    BlockStatements BlockStatement

BlockStatement:
    LocalVariableDeclarationStatement
    ClassDeclaration
    Statement

A block is executed by executing each of the local variable declaration statements
and other statements in order from first to last (left to right). If all of these block
statements complete normally, then the block completes normally. If any of these
block statements complete abruptly for any reason, then the block completes
abruptly for the same reason.

14.3 Local Class Declarations

A local class is a nested class (Chapter 8, Classes) that is not a member of any
class and that has a name.

All local classes are inner classes (§8.1.3).

Every local class declaration statement is immediately contained by a block.
Local class declaration statements may be intermixed freely with other kinds of
statements in the block.

The name of a local class C may not be redeclared as a local class of the directly
enclosing method, constructor, or initializer block within the scope of C, or a
compile-time error occurs.
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It is a compile-time error if a local class declaration contains any one of the
following access modifiers: public, protected, private, or static.

14.4 Local Variable Declaration Statements

A local variable declaration statement declares one or more local variable names.

LocalVariableDeclarationStatement:
    LocalVariableDeclaration ;

LocalVariableDeclaration:
    VariableModifiersopt Type VariableDeclarators

Every local variable declaration statement is immediately contained by a block.
Local variable declaration statements may be intermixed freely with other kinds of
statements in the block.

A local variable declaration can also appear in the header of a for statement
(§14.14). In this case it is executed in the same manner as if it were part of a local
variable declaration statement.

14.4.1 Local Variable Declarators and Types

Each declarator in a local variable declaration declares one local variable, whose
name is the Identifier that appears in the declarator.

If the optional keyword final appears at the start of the declarator, the variable
being declared is a final variable (§4.12.4).

If an annotation a on a local variable declaration corresponds to an
annotation type T, and T has a (meta-)annotation m that corresponds
to annotation.Target, then m must have an element whose value is
annotation.ElementType.LOCAL_VARIABLE, or a compile-time error occurs.
Annotation modifiers are described further in §9.7.

The declared type of a local variable is denoted by the Type that appears in the
local variable declaration, followed by any bracket pairs that follow the Identifier
in the declarator.

A local variable of type float always contains a value that is an element of the
float value set (§4.2.3); similarly, a local variable of type double always contains
a value that is an element of the double value set. It is not permitted for a local
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variable of type float to contain an element of the float-extended-exponent value
set that is not also an element of the float value set, nor for a local variable of type
double to contain an element of the double-extended-exponent value set that is not
also an element of the double value set.

14.4.2 Local Variable Names

A local variable can only be referred to using a simple name (§6.5.6.1, not a
qualified name.

The name of a local variable v may not be redeclared as a local variable of the
directly enclosing method, constructor, or initializer block within the scope of v,
or a compile-time error occurs.

The name of a local variable v may not be redeclared as an exception parameter of
a catch clause in a try statement of the directly enclosing method, constructor or
initializer block within the scope of v, or a compile-time error occurs.

If a declaration of an identifier as a local variable of a method, constructor, or
initializer block appears within the scope of a parameter or local variable of the
same name, a compile-time error occurs.

14.4.3 Execution of Local Variable Declarations

A local variable declaration statement is an executable statement. Every time it is
executed, the declarators are processed in order from left to right. If a declarator has
an initialization expression, the expression is evaluated and its value is assigned
to the variable. If a declarator does not have an initialization expression, then
a Java compiler must prove, using exactly the algorithm given in Chapter 16,
Definite Assignment, that every reference to the variable is necessarily preceded by
execution of an assignment to the variable. If this is not the case, then a compile-
time error occurs.

Each initialization (except the first) is executed only if evaluation of the preceding
initialization expression completes normally.

Execution of the local variable declaration completes normally only if evaluation
of the last initialization expression completes normally.

If the local variable declaration contains no initialization expressions, then
executing it always completes normally.
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14.5 Statements

There are many kinds of statements in the Java programming language. Most
correspond to statements in the C and C++ languages, but some are unique.

As in C and C++, the if statement of the Java programming language suffers from
the so-called "dangling else problem," illustrated by this misleadingly formatted
example:

if (door.isOpen())
    if (resident.isVisible())
        resident.greet("Hello!");
else door.bell.ring();  // A "dangling else"

The problem is that both the outer if statement and the inner if statement might
conceivably own the else clause. In this example, one might surmise that the
programmer intended the else clause to belong to the outer if statement.

The Java programming language, like C and C++ and many programming
languages before them, arbitrarily decree that an else clause belongs to the
innermost if to which it might possibly belong. This rule is captured by the
following grammar:

Statement:
    StatementWithoutTrailingSubstatement
    LabeledStatement
    IfThenStatement
    IfThenElseStatement
    WhileStatement
    ForStatement
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StatementWithoutTrailingSubstatement:
    Block
    EmptyStatement
    ExpressionStatement
    AssertStatement
    SwitchStatement
    DoStatement
    BreakStatement
    ContinueStatement
    ReturnStatement
    SynchronizedStatement
    ThrowStatement
    TryStatement

StatementNoShortIf:
    StatementWithoutTrailingSubstatement
    LabeledStatementNoShortIf
    IfThenElseStatementNoShortIf
    WhileStatementNoShortIf
    ForStatementNoShortIf

The following are repeated from §14.9 to make the presentation here clearer:

IfThenStatement:
    if ( Expression ) Statement

IfThenElseStatement:
    if ( Expression ) StatementNoShortIf else Statement

IfThenElseStatementNoShortIf:
    if ( Expression ) StatementNoShortIf else StatementNoShortIf

Statements are thus grammatically divided into two categories: those that might
end in an if statement that has no else clause (a "short if statement") and those
that definitely do not.

Only statements that definitely do not end in a short if statement may appear as
an immediate substatement before the keyword else in an if statement that does
have an else clause.

This simple rule prevents the "dangling else" problem. The execution behavior of
a statement with the "no short if" restriction is identical to the execution behavior
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of the same kind of statement without the "no short if" restriction; the distinction
is drawn purely to resolve the syntactic difficulty.

14.6 The Empty Statement

An empty statement does nothing.

EmptyStatement:
    ;

Execution of an empty statement always completes normally.

14.7 Labeled Statements

Statements may have label prefixes.

LabeledStatement:
    Identifier : Statement

LabeledStatementNoShortIf:
    Identifier : StatementNoShortIf

The Identifier is declared to be the label of the immediately contained Statement.

Unlike C and C++, the Java programming language has no goto statement;
identifier statement labels are used with break (§14.15) or continue (§14.16)
statements appearing anywhere within the labeled statement.

Let l be a label, and let m be the immediately enclosing method, constructor,
instance initializer or static initializer. It is a compile-time error if l shadows
(§6.4.1) the declaration of another label immediately enclosed in m.

There is no restriction against using the same identifier as a label and as the name
of a package, class, interface, method, field, parameter, or local variable. Use of an
identifier to label a statement does not obscure (§6.4.2) a package, class, interface,
method, field, parameter, or local variable with the same name. Use of an identifier
as a class, interface, method, field, local variable or as the parameter of an exception
handler (§14.20) does not obscure a statement label with the same name.

A labeled statement is executed by executing the immediately contained Statement.
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If the statement is labeled by an Identifier and the contained Statement completes
abruptly because of a break with the same Identifier, then the labeled statement
completes normally. In all other cases of abrupt completion of the Statement, the
labeled statement completes abruptly for the same reason.

14.8 Expression Statements

Certain kinds of expressions may be used as statements by following them with
semicolons:

ExpressionStatement:
    StatementExpression ;

StatementExpression:
    Assignment
    PreIncrementExpression
    PreDecrementExpression
    PostIncrementExpression
    PostDecrementExpression
    MethodInvocation
    ClassInstanceCreationExpression

An expression statement is executed by evaluating the expression; if the expression
has a value, the value is discarded.

Execution of the expression statement completes normally if and only if evaluation
of the expression completes normally.

Unlike C and C++, the Java programming language allows only certain forms of
expressions to be used as expression statements. Note that the Java programming
language does not allow a "cast to void" - void is not a type - so the traditional C
trick of writing an expression statement such as:

(void)... ;  // incorrect!

does not work. On the other hand, the language allows all the most useful kinds of
expressions in expressions statements, and it does not require a method invocation
used as an expression statement to invoke a void method, so such a trick is almost
never needed. If a trick is needed, either an assignment statement (§15.26) or a
local variable declaration statement (§14.4) can be used instead.
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14.9 The if Statement

The if statement allows conditional execution of a statement or a conditional
choice of two statements, executing one or the other but not both.

IfThenStatement:
    if ( Expression ) Statement

IfThenElseStatement:
    if ( Expression ) StatementNoShortIf else Statement

IfThenElseStatementNoShortIf:
    if ( Expression ) StatementNoShortIf else StatementNoShortIf

The Expression must have type boolean or Boolean, or a compile-time error
occurs.

14.9.1 The if-then Statement

An if-then statement is executed by first evaluating the Expression. If the result
is of type Boolean, it is subject to unboxing conversion (§5.1.8).

If evaluation of the Expression or the subsequent unboxing conversion (if any)
completes abruptly for some reason, the if-then statement completes abruptly for
the same reason. Otherwise, execution continues by making a choice based on the
resulting value:

• If the value is true, then the contained Statement is executed; the if-then
statement completes normally if and only if execution of the Statement completes
normally.

• If the value is false, no further action is taken and the if-then statement
completes normally.

14.9.2 The if-then-else Statement

An if-then-else statement is executed by first evaluating the Expression. If the
result is of type Boolean, it is subject to unboxing conversion (§5.1.8).

If evaluation of the Expression or the subsequent unboxing conversion (if any)
completes abruptly for some reason, then the if-then-else statement completes
abruptly for the same reason. Otherwise, execution continues by making a choice
based on the resulting value:
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• If the value is true, then the first contained Statement (the one before the else
keyword) is executed; the if-then-else statement completes normally if and
only if execution of that statement completes normally.

• If the value is false, then the second contained Statement (the one after the else
keyword) is executed; the if-then-else statement completes normally if and
only if execution of that statement completes normally.

14.10 The assert Statement

An assertion is an assert statement containing a boolean expression.

An assertion is either enabled or disabled. If the assertion is enabled, execution of
the assertion causes evaluation of the boolean expression and an error is reported
if the expression evaluates to false. If the assertion is disabled, execution of the
assertion has no effect whatsoever.

AssertStatement:
    assert Expression1 ;
    assert Expression1 : Expression2 ;

It is a compile-time error if Expression1 does not have type boolean or Boolean.

In the second form of the assert statement, it is a compile-time error if Expression2
is void (§15.1).

An assert statement that is executed after its class has completed initialization is
enabled if and only if the host system has determined that the top level class that
lexically contains the assert statement enables assertions.

Whether or not a top level class enables assertions is determined no later than the
earliest of the initialization of the top level class and the initialization of any class
nested in the top level class, and cannot be changed after it has been determined.

An assert statement that is executed before its class has completed initialization
is enabled.

A disabled assert statement does nothing. In particular, neither Expression1 nor
Expression2 (if it is present) are evaluated.

Execution of a disabled assert statement always completes normally.

An enabled assert statement is executed by first evaluating Expression1. If the
result is of type Boolean, it is subject to unboxing conversion (§5.1.8).
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If evaluation of Expression1 or the subsequent unboxing conversion (if any)
completes abruptly for some reason, the assert statement completes abruptly for
the same reason. Otherwise, execution continues by making a choice based on the
value of Expression1:

• If the value is true, no further action is taken and the assert statement completes
normally.

• If the value is false, the execution behavior depends on whether Expression2
is present:

◆ If Expression2 is present, it is evaluated.

❖ If the evaluation completes abruptly for some reason, the assert statement
completes abruptly for the same reason.

❖ If the evaluation completes normally, an AssertionError instance whose
"detail message" is the resulting value of Expression2 is created.

✦ If the instance creation completes abruptly for some reason, the assert
statement completes abruptly for the same reason.

✦ If the instance creation completes normally, the assert statement
completes abruptly by throwing the newly created AssertionError
object.

◆ If Expression2 is not present, an AssertionError instance with no "detail
message" is created.

❖ If the instance creation completes abruptly for some reason, the assert
statement completes abruptly for the same reason.

❖ If the instance creation completes normally, the assert statement completes
abruptly by throwing the newly created AssertionError object.

14.11 The switch Statement

The switch statement transfers control to one of several statements depending on
the value of an expression.
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SwitchStatement:
    switch ( Expression ) SwitchBlock

SwitchBlock:
    { SwitchBlockStatementGroupsopt SwitchLabelsopt }

SwitchBlockStatementGroups:
    SwitchBlockStatementGroup
    SwitchBlockStatementGroups SwitchBlockStatementGroup

SwitchBlockStatementGroup:
    SwitchLabels BlockStatements

SwitchLabels:
    SwitchLabel
    SwitchLabels SwitchLabel

SwitchLabel:
    case ConstantExpression :
    case EnumConstantName :
    default :

EnumConstantName:
    Identifier

The type of the Expression must be char, byte, short, int, Character, Byte,
Short, Integer, or an enum type (§8.9), or a compile-time error occurs.

The body of a switch statement is known as a switch block. Any statement
immediately contained by the switch block may be labeled with one or more switch
labels, which are case or default labels. These labels are said to be associated
with the switch statement, as are the values of the constant expressions (§15.28)
or enum constants (§8.9.1) in the case labels.

All of the following must be true, or a compile-time error will result:

• Every case constant expression associated with a switch statement must be
assignable (§5.2) to the type of the switch Expression.

• No switch label is null.

• No two of the case constant expressions associated with a switch statement may
have the same value.
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• At most one default label may be associated with the same switch statement.

When the switch statement is executed, first the Expression is evaluated. If the
Expression evaluates to null, a NullPointerException is thrown and the entire
switch statement completes abruptly for that reason. Otherwise, if the result is of
a reference type, it is subject to unboxing conversion (§5.1.8).

If evaluation of the Expression or the subsequent unboxing conversion (if any)
completes abruptly for some reason, the switch statement completes abruptly for
the same reason. Otherwise, execution continues by comparing the value of the
Expression with each case constant, as follows:

• If one of the case constants is equal to the value of the expression, then we say
that the case matches, and all statements after the matching case label in the
switch block, if any, are executed in sequence.

If all these statements complete normally, or if there are no statements after the
matching case label, then the entire switch statement completes normally.

• If no case matches but there is a default label, then all statements after the
matching default label in the switch block, if any, are executed in sequence.

If all these statements complete normally, or if there are no statements after the
default label, then the entire switch statement completes normally.

• If no case matches and there is no default label, then no further action is taken
and the switch statement completes normally.

If any statement immediately contained by the Block body of the switch statement
completes abruptly, it is handled as follows:

• If execution of the Statement completes abruptly because of a break with no
label, no further action is taken and the switch statement completes normally.

• If execution of the Statement completes abruptly for any other reason, the switch
statement completes abruptly for the same reason.

The case of abrupt completion because of a break with a label is handled by the
general rule for labeled statements (§14.7).

As in C and C++, execution of statements in a switch block "falls through labels."
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14.12 The while Statement

The while statement executes an Expression and a Statement repeatedly until the
value of the Expression is false.

WhileStatement:
    while ( Expression ) Statement

WhileStatementNoShortIf:
    while ( Expression ) StatementNoShortIf

The Expression must have type boolean or Boolean, or a compile-time error
occurs.

A while statement is executed by first evaluating the Expression. If the result is of
type Boolean, it is subject to unboxing conversion (§5.1.8).

If evaluation of the Expression or the subsequent unboxing conversion (if any)
completes abruptly for some reason, the while statement completes abruptly for
the same reason. Otherwise, execution continues by making a choice based on the
resulting value:

• If the value is true, then the contained Statement is executed. Then there is a
choice:

◆ If execution of the Statement completes normally, then the entire while
statement is executed again, beginning by re-evaluating the Expression.

◆ If execution of the Statement completes abruptly, see §14.12.1 below.

• If the (possibly unboxed) value of the Expression is false, no further action is
taken and the while statement completes normally.

If the (possibly unboxed) value of the Expression is false the first time it is
evaluated, then the Statement is not executed.

14.12.1 Abrupt Completion

Abrupt completion of the contained Statement is handled in the following manner:

• If execution of the Statement completes abruptly because of a break with no
label, no further action is taken and the while statement completes normally.

• If execution of the Statement completes abruptly because of a continue with no
label, then the entire while statement is executed again.
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• If execution of the Statement completes abruptly because of a continue with
label L, then there is a choice:

◆ If the while statement has label L, then the entire while statement is executed
again.

◆ If the while statement does not have label L, the while statement completes
abruptly because of a continue with label L.

• If execution of the Statement completes abruptly for any other reason, the while
statement completes abruptly for the same reason.

The case of abrupt completion because of a break with a label is handled by the
general rule for labeled statements (§14.7).

14.13 The do Statement

The do statement executes a Statement and an Expression repeatedly until the value
of the Expression is false.

DoStatement:
    do Statement while ( Expression ) ;

The Expression must have type boolean or Boolean, or a compile-time error
occurs.

A do statement is executed by first executing the Statement. Then there is a choice:

• If execution of the Statement completes normally, then the Expression is
evaluated. If the result is of type Boolean, it is subject to unboxing conversion
(§5.1.8).

If evaluation of the Expression or the subsequent unboxing conversion (if any)
completes abruptly for some reason, the do statement completes abruptly for the
same reason. Otherwise, there is a choice based on the resulting value:

◆ If the value is true, then the entire do statement is executed again.

◆ If the value is false, no further action is taken and the do statement completes
normally.

• If execution of the Statement completes abruptly, see §14.13.1 below.

Executing a do statement always executes the contained Statement at least once.
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14.13.1 Abrupt Completion

Abrupt completion of the contained Statement is handled in the following manner:

• If execution of the Statement completes abruptly because of a break with no
label, then no further action is taken and the do statement completes normally.

• If execution of the Statement completes abruptly because of a continue with
no label, then the Expression is evaluated. Then there is a choice based on the
resulting value:

◆ If the value is true, then the entire do statement is executed again.

◆ If the value is false, no further action is taken and the do statement completes
normally.

• If execution of the Statement completes abruptly because of a continue with
label L, then there is a choice:

◆ If the do statement has label L, then the Expression is evaluated. Then there
is a choice:

❖ If the value of the Expression is true, then the entire do statement is
executed again.

❖ If the value of the Expression is false, no further action is taken and the do
statement completes normally.

◆ If the do statement does not have label L, the do statement completes abruptly
because of a continue with label L.

• If execution of the Statement completes abruptly for any other reason, the do
statement completes abruptly for the same reason.

The case of abrupt completion because of a break with a label is handled by the
general rule for labeled statements (§14.7).

14.14 The for Statement

The for statement has two forms:

• The basic for statement.

• The enhanced for statement
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ForStatement:
    BasicForStatement
    EnhancedForStatement

14.14.1 The basic for Statement

The basic for statement executes some initialization code, then executes an
Expression, a Statement, and some update code repeatedly until the value of the
Expression is false.

BasicForStatement:
    for ( ForInitopt ; Expressionopt ; ForUpdateopt ) Statement

ForStatementNoShortIf:
    for ( ForInitopt ; Expressionopt ; ForUpdateopt ) StatementNoShortIf

ForInit:
    StatementExpressionList
    LocalVariableDeclaration

ForUpdate:
    StatementExpressionList

StatementExpressionList:
    StatementExpression
    StatementExpressionList , StatementExpression

The Expression must have type boolean or Boolean, or a compile-time error
occurs.

14.14.1.1 Initialization of for statement

A for statement is executed by first executing the ForInit code:

• If the ForInit code is a list of statement expressions (§14.8), the expressions are
evaluated in sequence from left to right; their values, if any, are discarded.

If evaluation of any expression completes abruptly for some reason, the for
statement completes abruptly for the same reason; any ForInit statement
expressions to the right of the one that completed abruptly are not evaluated.

• If the ForInit code is a local variable declaration, it is executed as if it were a
local variable declaration statement (§14.4) appearing in a block.
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If execution of the local variable declaration completes abruptly for any reason,
the for statement completes abruptly for the same reason.

• If the ForInit part is not present, no action is taken.

14.14.1.2 Iteration of for statement

Next, a for iteration step is performed, as follows:

• If the Expression is present, it is evaluated. If the result is of type Boolean, it is
subject to unboxing conversion (§5.1.8).

If evaluation of the Expression or the subsequent unboxing conversion (if any)
completes abruptly, the for statement completes abruptly for the same reason.
Otherwise, there is then a choice based on the presence or absence of the
Expression and the resulting value if the Expression is present; see next bullet.

• If the Expression is not present, or it is present and the value resulting from
its evaluation (including any possible unboxing) is true, then the contained
Statement is executed. Then there is a choice:

◆ If execution of the Statement completes normally, then the following two steps
are performed in sequence:

1. First, if the ForUpdate part is present, the expressions are evaluated
in sequence from left to right; their values, if any, are discarded. If
evaluation of any expression completes abruptly for some reason, the
for statement completes abruptly for the same reason; any ForUpdate
statement expressions to the right of the one that completed abruptly are
not evaluated.

If the ForUpdate part is not present, no action is taken.

2. Second, another for iteration step is performed.

◆ If execution of the Statement completes abruptly, see §14.14.1.3 below.

• If the Expression is present and the value resulting from its evaluation (including
any possible unboxing) is false, no further action is taken and the for statement
completes normally.

If the (possibly unboxed) value of the Expression is false the first time it is
evaluated, then the Statement is not executed.

If the Expression is not present, then the only way a for statement can complete
normally is by use of a break statement.
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14.14.1.3 Abrupt Completion of for statement

Abrupt completion of the contained Statement is handled in the following manner:

• If execution of the Statement completes abruptly because of a break with no
label, no further action is taken and the for statement completes normally.

• If execution of the Statement completes abruptly because of a continue with no
label, then the following two steps are performed in sequence:

1. First, if the ForUpdate part is present, the expressions are evaluated in
sequence from left to right; their values, if any, are discarded. If the
ForUpdate part is not present, no action is taken.

2. Second, another for iteration step is performed.

• If execution of the Statement completes abruptly because of a continue with
label L, then there is a choice:

◆ If the for statement has label L, then the following two steps are performed
in sequence:

1. First, if the ForUpdate part is present, the expressions are evaluated in
sequence from left to right; their values, if any, are discarded. If the
ForUpdate is not present, no action is taken.

2. Second, another for iteration step is performed.

◆ If the for statement does not have label L, the for statement completes
abruptly because of a continue with label L.

• If execution of the Statement completes abruptly for any other reason, the for
statement completes abruptly for the same reason.

The case of abrupt completion because of a break with a label is handled by the
general rule for labeled statements (§14.7).

14.14.2 The enhanced for statement

The enhanced for statement has the form:

EnhancedForStatement:

    for ( FormalParameter : Expression ) Statement

The Expression must either have type Iterable or else it must be of an array type
(§10.1), or a compile-time error occurs.
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The meaning of the enhanced for statement is given by translation into a basic for
statement, as follows:

• If the type of Expression is a subtype of Iterable, then let I be the type of the
expression Expression.iterator().

The enhanced for statement is equivalent to a basic for statement of the form:

for (I i = Expression.iterator(); i.hasNext(); ) {
    VariableModifiersopt Type Identifier = (TargetType) i.next();
    Statement
}

i is an automatically generated identifier that is distinct from any other
identifiers (automatically generated or otherwise) that are in scope (§6.3) at the
point where the enhanced for statement occurs.

If Type is a reference type, then TargetType is Type; otherwise, TargetType is
the upper bound of the capture conversion of the type argument of I, or Object
if I is raw.

• Otherwise, the Expression necessarily has an array type, T[]. Let L1 ... Lm
be the (possibly empty) sequence of labels immediately preceding the enhanced
for statement.

The enhanced for statement is equivalent to a basic for statement of the form:

T[] a = Expression;
L1: L2: ... Lm:
for (int i = 0; i < a.length; i++) {
    VariableModifiersopt TargetType Identifier = a[i];
    Statement
}

a and i are automatically generated identifiers that are distinct from any other
identifiers (automatically generated or otherwise) that are in scope at the point
where the enhanced for statement occurs.

TargetType is the type of the loop variable as denoted by the Type that appears
in the FormalParameter, followed by any bracket pairs that follow the Identifier
in the FormalParameter.

14.15 The break Statement

A break statement transfers control out of an enclosing statement.
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BreakStatement:
    break Identifieropt ;

A break statement with no label attempts to transfer control to the innermost
enclosing switch, while, do, or for statement of the immediately enclosing
method or initializer block; this statement, which is called the break target, then
immediately completes normally.

To be precise, a break statement with no label always completes abruptly, the
reason being a break with no label.

If no switch, while, do, or for statement in the immediately enclosing method,
constructor, or initializer encloses the break statement, a compile-time error
occurs.

A break statement with label Identifier attempts to transfer control to the enclosing
labeled statement (§14.7) that has the same Identifier as its label; this statement,
which is called the break target, then immediately completes normally. In this case,
the break target need not be a switch, while, do, or for statement.

A break statement must refer to a label within the immediately enclosing method
or initializer block. There are no non-local jumps.

If no labeled statement with Identifier as its label encloses the break statement, a
compile-time error occurs.

To be precise, a break statement with label Identifier always completes abruptly,
the reason being a break with label Identifier.

It can be seen, then, that a break statement always completes abruptly.

14.16 The continue Statement

A continue statement may occur only in a while, do, or for statement; statements
of these three kinds are called iteration statements. Control passes to the loop-
continuation point of an iteration statement.

ContinueStatement:
    continue Identifieropt ;

A continue statement with no label attempts to transfer control to the innermost
enclosing while, do, or for statement of the immediately enclosing method
or initializer block; this statement, which is called the continue target, then
immediately ends the current iteration and begins a new one.
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To be precise, such a continue statement always completes abruptly, the reason
being a continue with no label.

If no while, do, or for statement of the immediately enclosing method or initializer
block encloses the continue statement, a compile-time error occurs.

A continue statement with label Identifier attempts to transfer control to the
enclosing labeled statement (§14.7) that has the same Identifier as its label; that
statement, which is called the continue target, then immediately ends the current
iteration and begins a new one.

The continue target must be a while, do, or for statement, or a compile-time error
occurs.

A continue statement must refer to a label within the immediately enclosing
method or initializer block. There are no non-local jumps.

If no labeled statement with Identifier as its label contains the continue statement,
a compile-time error occurs.

To be precise, a continue statement with label Identifier always completes
abruptly, the reason being a continue with label Identifier.

It can be seen, then, that a continue statement always completes abruptly.

14.17 The return Statement

A return statement returns control to the invoker of a method (§8.4, §15.12) or
constructor (§8.8, §15.9).

ReturnStatement:
    return Expressionopt ;

A return statement is contained in the innermost constructor, method, or initializer
whose body encloses the return statement.

It is a compile-time error if a return statement is contained in an instance initializer
(§8.6) or a static initializer (§8.7).

A return statement with no Expression must be contained in a method that is
declared, using the keyword void, not to return any value (§8.4), or in a constructor
(§8.8), or a compile-time error occurs.
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A return statement with no Expression attempts to transfer control to the invoker
of the method or constructor that contains it. To be precise, a return statement with
no Expression always completes abruptly, the reason being a return with no value.

A return statement with an Expression must be contained in a method declaration
that is declared to return a value (§8.4), or a compile-time error occurs.

The Expression must denote a variable or value of some type T, or a compile-time
error occurs.

The type T must be assignable (§5.2) to the declared result type of the method, or
a compile-time error occurs.

A return statement with an Expression attempts to transfer control to the invoker
of the method that contains it; the value of the Expression becomes the value of
the method invocation. More precisely, execution of such a return statement first
evaluates the Expression. If the evaluation of the Expression completes abruptly
for some reason, then the return statement completes abruptly for that reason. If
evaluation of the Expression completes normally, producing a value V, then the
return statement completes abruptly, the reason being a return with value V.

If the expression is of type float and is not FP-strict (§15.4), then the value may
be an element of either the float value set or the float-extended-exponent value set
(§4.2.3). If the expression is of type double and is not FP-strict, then the value
may be an element of either the double value set or the double-extended-exponent
value set.

It can be seen, then, that a return statement always completes abruptly.

14.18 The throw Statement

A throw statement causes an exception (Chapter 11, Exceptions) to be thrown. The
result is an immediate transfer of control (§11.3) that may exit multiple statements
and multiple constructor, instance initializer, static initializer and field initializer
evaluations, and method invocations until a try statement (§14.20) is found that
catches the thrown value. If no such try statement is found, then execution of
the thread (Chapter 17, Threads and Locks) that executed the throw is terminated
(§11.3) after invocation of the uncaughtException method for the thread group
to which the thread belongs.

ThrowStatement:
    throw Expression ;



BLOCKS AND STATEMENTS The throw Statement 14.18

245

The Expression in a throw statement must denote either 1) a variable or value of
a reference type which is assignable (§5.2) to the type Throwable, or 2) the null
reference, or a compile-time error occurs.

At least one of the following three conditions must be true, or a compile-time error
occurs:

• The type of the Expression is an unchecked exception class (§11.1.1).

• The throw statement is contained in the try block of a try statement (§14.20)
and it is not the case that the try statement can throw an exception of the type
of the Expression. (In this case we say the thrown value is caught by the try
statement.)

• The throw statement is contained in a method or constructor declaration and
the type of the Expression is assignable (§5.2) to at least one type listed in the
throws clause (§8.4.6, §8.8.5) of the declaration.

A throw statement first evaluates the Expression. Then:

• If evaluation of the Expression completes abruptly for some reason, then the
throw completes abruptly for that reason.

• If evaluation of the Expression completes normally, producing a non-null value
V, then the throw statement completes abruptly, the reason being a throw with
value V.

• If evaluation of the Expression completes normally, producing a null value, then
an instance V' of class NullPointerException is created and thrown instead of
null. The throw statement then completes abruptly, the reason being a throw
with value V'.

If there are any enclosing try statements (§14.20) whose try blocks contain the
throw statement, then any finally clauses of those try statements are executed
as control is transferred outward, until the thrown value is caught. Note that abrupt
completion of a finally clause can disrupt the transfer of control initiated by a
throw statement.

If a throw statement is contained in a method declaration, but its value is not caught
by some try statement that contains it, then the invocation of the method completes
abruptly because of the throw.

If a throw statement is contained in a constructor declaration, but its value is not
caught by some try statement that contains it, then the class instance creation
expression that invoked the constructor will complete abruptly because of the
throw.
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If a throw statement is contained in a static initializer (§8.7), then a compile-time
check (§11.2.3) ensures that either its value is always an unchecked exception or
its value is always caught by some try statement that contains it. If at run-time,
despite this check, the value is not caught by some try statement that contains the
throw statement, then the value is rethrown if it is an instance of class Error or one
of its subclasses; otherwise, it is wrapped in an ExceptionInInitializerError
object, which is then thrown (§12.4.2).

If a throw statement is contained in an instance initializer (§8.6), then a compile-
time check (§11.2.3) ensures that either its value is always an unchecked exception
or its value is always caught by some try statement that contains it, or the type
of the thrown exception (or one of its superclasses) occurs in the throws clause of
every constructor of the class.

14.19 The synchronized Statement

A synchronized statement acquires a mutual-exclusion lock (§17.1) on behalf of
the executing thread, executes a block, then releases the lock. While the executing
thread owns the lock, no other thread may acquire the lock.

SynchronizedStatement:
    synchronized ( Expression ) Block

The type of Expression must be a reference type, or a compile-time error occurs.

A synchronized statement is executed by first evaluating the Expression. Then:

• If evaluation of the Expression completes abruptly for some reason, then the
synchronized statement completes abruptly for the same reason.

• Otherwise, if the value of the Expression is null, a NullPointerException is
thrown.

• Otherwise, let the non-null value of the Expression be V. The executing thread
locks the lock associated with V. Then the Block is executed. If execution of
the Block completes normally, then the lock is unlocked and the synchronized
statement completes normally. If execution of the Block completes abruptly for
any reason, then the lock is unlocked and the synchronized statement completes
abruptly for the same reason.

The locks acquired by synchronized statements are the same as the locks that are
acquired implicitly by synchronized methods (§8.4.3.6). A single thread may hold
a lock more than once.
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Acquiring the lock associated with an object does not in itself prevent other threads
from accessing fields of the object or invoking un-synchronized methods on the
object. Other threads can also use synchronized methods or the synchronized
statement in a conventional manner to achieve mutual exclusion.

14.20 The try statement

A try statement executes a block. If a value is thrown and the try statement has
one or more catch clauses that can catch it, then control will be transferred to the
first such catch clause. If the try statement has a finally clause, then another
block of code is executed, no matter whether the try block completes normally or
abruptly, and no matter whether a catch clause is first given control.

TryStatement:
    try Block Catches
    try Block Catchesopt Finally

Catches:
    CatchClause
    Catches CatchClause

CatchClause:
    catch ( FormalParameter ) Block

Finally:
    finally Block

The Block immediately after the keyword try is called the try block of the try
statement.

The Block immediately after the keyword finally is called the finally block of
the try statement.

A try statement may have catch clauses, also called exception handlers.

A catch clause must have exactly one parameter, which is called an exception
parameter.

The declared type of the exception parameter must be the class Throwable or a
subclass (not just a subtype) of Throwable, or a compile-time error occurs.
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It is a compile-time error if an exception parameter that is declared final is
assigned to within the body of the catch clause.

An exception parameter can only be referred to by a simple name (§6.5.6.1), not
a qualified name.

An exception parameter of a catch clause must not have the same name as a local
variable or parameter of the method or initializer block immediately enclosing the
catch clause, or a compile-time error occurs.

Within the Block of the catch clause, the name of the parameter may not be
redeclared as a local variable of the directly enclosing method or initializer block,
nor may it be redeclared as an exception parameter of a catch clause in a try
statement of the directly enclosing method or initializer block, or a compile-time
error occurs.

Exception handlers are considered in left-to-right order: the earliest possible catch
clause accepts the exception, receiving as its actual argument the thrown exception
object.

A finally clause ensures that the finally block is executed after the try block
and any catch block that might be executed, no matter how control leaves the try
block or catch block.

Handling of the finally block is rather complex, so the two cases of a try
statement with and without a finally block are described separately.

14.20.1 Execution of try-catch

A try statement without a finally block is executed by first executing the try
block. Then there is a choice:

• If execution of the try block completes normally, then no further action is taken
and the try statement completes normally.

• If execution of the try block completes abruptly because of a throw of a value
V, then there is a choice:

◆ If the run-time type of V is assignable (§5.2) to the Parameter of any catch
clause of the try statement, then the first (leftmost) such catch clause is
selected. The value V is assigned to the parameter of the selected catch clause,
and the Block of that catch clause is executed.

If that block completes normally, then the try statement completes normally;
if that block completes abruptly for any reason, then the try statement
completes abruptly for the same reason.
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◆ If the run-time type of V is not assignable to the parameter of any catch clause
of the try statement, then the try statement completes abruptly because of a
throw of the value V.

• If execution of the try block completes abruptly for any other reason, then the
try statement completes abruptly for the same reason.

14.20.2 Execution of try-finally and try-catch-finally

A try statement with a finally block is executed by first executing the try block.
Then there is a choice:

• If execution of the try block completes normally, then the finally block is
executed, and then there is a choice:

◆ If the finally block completes normally, then the try statement completes
normally.

◆ If the finally block completes abruptly for reason S, then the try statement
completes abruptly for reason S.

• If execution of the try block completes abruptly because of a throw of a value
V, then there is a choice:

◆ If the run-time type of V is assignable to the parameter of any catch clause
of the try statement, then the first (leftmost) such catch clause is selected.
The value V is assigned to the parameter of the selected catch clause, and the
Block of that catch clause is executed. Then there is a choice:

❖ If the catch block completes normally, then the finally block is executed.
Then there is a choice:

✦ If the finally block completes normally, then the try statement
completes normally.

✦ If the finally block completes abruptly for any reason, then the try
statement completes abruptly for the same reason.

❖ If the catch block completes abruptly for reason R, then the finally block
is executed. Then there is a choice:

✦ If the finally block completes normally, then the try statement
completes abruptly for reason R.

✦ If the finally block completes abruptly for reason S, then the try
statement completes abruptly for reason S (and reason R is discarded).
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◆ If the run-time type of V is not assignable to the parameter of any catch clause
of the try statement, then the finally block is executed. Then there is a
choice:

❖ If the finally block completes normally, then the try statement completes
abruptly because of a throw of the value V.

❖ If the finally block completes abruptly for reason S, then the try statement
completes abruptly for reason S (and the throw of value V is discarded and
forgotten).

• If execution of the try block completes abruptly for any other reason R, then the
finally block is executed. Then there is a choice:

◆ If the finally block completes normally, then the try statement completes
abruptly for reason R.

◆ If the finally block completes abruptly for reason S, then the try statement
completes abruptly for reason S (and reason R is discarded).

14.21 Unreachable Statements

It is a compile-time error if a statement cannot be executed because it is
unreachable.

The rules in this section define two technical terms:

• whether a statement is reachable

• whether a statement can complete normally

The definitions here allow a statement to complete normally only if it is reachable.

A reachable break statement exits a statement if, within the break target, either
there are no try statements whose try blocks contain the break statement, or there
are try statements whose try blocks contain the break statement and all finally
clauses of those try statements can complete normally.

A continue statement continues a do statement if, within the do statement, either
there are no try statements whose try blocks contain the continue statement, or
there are try statements whose try blocks contain the continue statement and all
finally clauses of those try statements can complete normally.

The rules are as follows:
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• The block that is the body of a constructor, method, instance initializer, or static
initializer is reachable.

• An empty block that is not a switch block can complete normally iff it is
reachable.

A non-empty block that is not a switch block can complete normally iff the last
statement in it can complete normally.

The first statement in a non-empty block that is not a switch block is reachable
iff the block is reachable.

Every other statement S in a non-empty block that is not a switch block is
reachable iff the statement preceding S can complete normally.

• A local class declaration statement can complete normally iff it is reachable.

• A local variable declaration statement can complete normally iff it is reachable.

• An empty statement can complete normally iff it is reachable.

• A labeled statement can complete normally if at least one of the following is true:

◆ The contained statement can complete normally.

◆ There is a reachable break statement that exits the labeled statement.

The contained statement is reachable iff the labeled statement is reachable.

• An expression statement can complete normally iff it is reachable.

• The if statement, whether or not it has an else part, is handled in an unusual
manner. For this reason, it is discussed separately at the end of this section.

• An assert statement can complete normally iff it is reachable.

• A switch statement can complete normally iff at least one of the following is
true:

◆ The switch block is empty or contains only switch labels.

◆ The last statement in the switch block can complete normally.

◆ There is at least one switch label after the last switch block statement group.

◆ The switch block does not contain a default label.

◆ There is a reachable break statement that exits the switch statement.

• A switch block is reachable iff its switch statement is reachable.
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• A statement in a switch block is reachable iff its switch statement is reachable
and at least one of the following is true:

◆ It bears a case or default label.

◆ There is a statement preceding it in the switch block and that preceding
statement can complete normally.

• A while statement can complete normally iff at least one of the following is true:

◆ The while statement is reachable and the condition expression is not a
constant expression with value true.

◆ There is a reachable break statement that exits the while statement.

The contained statement is reachable iff the while statement is reachable and
the condition expression is not a constant expression whose value is false.

• A do statement can complete normally iff at least one of the following is true:

◆ The contained statement can complete normally and the condition expression
is not a constant expression with value true.

◆ The do statement contains a reachable continue statement with no label, and
the do statement is the innermost while, do, or for statement that contains that
continue statement, and the continue statement continues that do statement,
and the condition expression is not a constant expression with value true.

◆ The do statement contains a reachable continue statement with a label L, and
the do statement has label L, and the continue statement continues that do
statement, and the condition expression is not a constant expression with value
true.

◆ There is a reachable break statement that exits the do statement.

The contained statement is reachable iff the do statement is reachable.

• A basic for statement can complete normally iff at least one of the following
is true:

◆ The for statement is reachable, there is a condition expression, and the
condition expression is not a constant expression with value true.

◆ There is a reachable break statement that exits the for statement.

The contained statement is reachable iff the for statement is reachable and the
condition expression is not a constant expression whose value is false.

• An enhanced for statement can complete normally iff it is reachable.
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• A break, continue, return, or throw statement cannot complete normally.

• A synchronized statement can complete normally iff the contained statement
can complete normally.

The contained statement is reachable iff the synchronized statement is
reachable.

• A try statement can complete normally iff both of the following are true:

◆ The try block can complete normally or any catch block can complete
normally.

◆ If the try statement has a finally block, then the finally block can
complete normally.

• The try block is reachable iff the try statement is reachable.

• A catch block C is reachable iff both of the following are true:

◆ Either the type of C's parameter is an unchecked exception type or Throwable;
or some expression or throw statement in the try block is reachable and can
throw a checked exception whose type is assignable to the parameter of the
catch clause C.

An expression is reachable iff the innermost statement containing it is
reachable.

◆ There is no earlier catch block A in the try statement such that the type of C's
parameter is the same as or a subclass of the type of A's parameter.

• The Block of a catch block is reachable iff the catch block is reachable.

• If a finally block is present, it is reachable iff the try statement is reachable.

The rules for the if statement are as follows:

• An if-then statement can complete normally iff it is reachable.

The then-statement is reachable iff the if-then statement is reachable.

• An if-then-else statement can complete normally iff the then-statement can
complete normally or the else-statement can complete normally.

The then-statement is reachable iff the if-then-else statement is reachable.

The else-statement is reachable iff the if-then-else statement is reachable.
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C H A P T E R 15
Expressions

MUCH of the work in a program is done by evaluating expressions, either for
their side effects, such as assignments to variables, or for their values, which can
be used as arguments or operands in larger expressions, or to affect the execution
sequence in statements, or both.

This chapter specifies the meanings of expressions and the rules for their
evaluation.

15.1 Evaluation, Denotation, and Result

When an expression in a program is evaluated (executed), the result denotes one
of three things:

• A variable (§4.12) (in C, this would be called an lvalue)

• A value (§4.2, §4.3)

• Nothing (the expression is said to be void)

Evaluation of an expression can also produce side effects, because expressions
may contain embedded assignments, increment operators, decrement operators,
and method invocations.

An expression denotes nothing if and only if it is a method invocation (§15.12)
that invokes a method that does not return a value, that is, a method declared
void (§8.4). Such an expression can be used only as an expression statement
(§14.8), because every other context in which an expression can appear requires
the expression to denote something. An expression statement that is a method
invocation may also invoke a method that produces a result; in this case the value
returned by the method is quietly discarded.
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Value set conversion (§5.1.13) is applied to the result of every expression that
produces a value.

Each expression occurs in either:

• The declaration of some (class or interface) type that is being declared: in a
field initializer, in a static initializer, in an instance initializer, in a constructor
declaration, in an annotation, or in the code for a method.

• An annotation of a package or of a top-level type declaration.

15.2 Variables as Values

If an expression denotes a variable, and a value is required for use in further
evaluation, then the value of that variable is used. In this context, if the expression
denotes a variable or a value, we may speak simply of the value of the expression.

If the value of a variable of type float or double is used in this manner, then value
set conversion (§5.1.13) is applied to the value of the variable.

15.3 Type of an Expression

If an expression denotes a variable or a value, then the expression has a type known
at compile time. The rules for determining the type of an expression are explained
separately below for each kind of expression.

The value of an expression is assignment compatible (§5.2) with the type of the
expression, unless heap pollution (§4.12.2) occurs.

Likewise, the value stored in a variable is always compatible with the type of the
variable, unless heap pollution occurs.

In other words, the value of an expression whose type is T is always suitable for
assignment to a variable of type T.

Note that an expression whose type is a class type F that is declared final is
guaranteed to have a value that is either a null reference or an object whose class
is F itself, because final types have no subclasses.
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15.4 FP-strict Expressions

If the type of an expression is float or double, then there is a question as to what
value set (§4.2.3) the value of the expression is drawn from. This is governed by
the rules of value set conversion (§5.1.13); these rules in turn depend on whether
or not the expression is FP-strict.

Every compile-time constant expression (§15.28) is FP-strict.

If an expression is not a compile-time constant expression, then consider all the
class declarations, interface declarations, and method declarations that contain
the expression. If any such declaration bears the strictfp modifier, then the
expression is FP-strict.

If a class, interface, or method, X, is declared strictfp, then X and any class,
interface, method, constructor, instance initializer, static initializer or variable
initializer within X is said to be FP-strict.

It follows that an expression is not FP-strict if and only if it is not a compile-
time constant expression and it does not appear within any declaration that has the
strictfp modifier.

Within an FP-strict expression, all intermediate values must be elements of the
float value set or the double value set, implying that the results of all FP-
strict expressions must be those predicted by IEEE 754 arithmetic on operands
represented using single and double formats.

Within an expression that is not FP-strict, some leeway is granted for an
implementation to use an extended exponent range to represent intermediate
results; the net effect, roughly speaking, is that a calculation might produce "the
correct answer" in situations where exclusive use of the float value set or double
value set might result in overflow or underflow.

15.5 Expressions and Run-Time Checks

If the type of an expression is a primitive type, then the value of the expression is
of that same primitive type.

If the type of an expression is a reference type, then the class of the referenced
object, or even whether the value is a reference to an object rather than null, is not
necessarily known at compile time. There are a few places in the Java programming
language where the actual class of a referenced object affects program execution
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in a manner that cannot be deduced from the type of the expression. They are as
follows:

• Method invocation (§15.12). The particular method used for an invocation
o.m(...) is chosen based on the methods that are part of the class or interface
that is the type of o. For instance methods, the class of the object referenced by
the run-time value of o participates because a subclass may override a specific
method already declared in a parent class so that this overriding method is
invoked. (The overriding method may or may not choose to further invoke the
original overridden m method.)

• The instanceof operator (§15.20.2). An expression whose type is a reference
type may be tested using instanceof to find out whether the class of the object
referenced by the run-time value of the expression is assignment compatible
(§5.2) with some other reference type.

• Casting (§5.5, §15.16). The class of the object referenced by the run-time value
of the operand expression might not be compatible with the type specified by
the cast. For reference types, this may require a run-time check that throws an
exception if the class of the referenced object, as determined at run time, is not
assignment compatible (§5.2) with the target type.

• Assignment to an array component of reference type (§10.5, §15.13, §15.26.1).
The type-checking rules allow the array type S[] to be treated as a subtype of
T[] if S is a subtype of T, but this requires a run-time check for assignment to an
array component, similar to the check performed for a cast.

• Exception handling (§14.20). An exception is caught by a catch clause only if
the class of the thrown exception object is an instanceof the type of the formal
parameter of the catch clause.

Situations where the class of an object is not statically known may lead to run-time
type errors.

In addition, there are situations where the statically known type may not be
accurate at run-time. Such situations can arise in a program that gives rise to
unchecked warnings. Such warnings are given in response to operations that cannot
be statically guaranteed to be safe, and cannot immediately be subjected to dynamic
checking because they involve non-reifiable (§4.7) types. As a result, dynamic
checks later in the course of program execution may detect inconsistencies and
result in run-time type errors.

A run-time type error can occur only in these situations:
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• In a cast, when the actual class of the object referenced by the value of the
operand expression is not compatible with the target type specified by the cast
operator (§5.5, §15.16); in this case a ClassCastException is thrown.

• In an automatically generated cast introduced to ensure the validity of an
operation on a non-reifiable type (§4.7).

• In an assignment to an array component of reference type, when the actual class
of the object referenced by the value to be assigned is not compatible with the
actual run-time component type of the array (§10.5, §15.13, §15.26.1); in this
case an ArrayStoreException is thrown.

• When an exception is not caught by any catch clause of a try statement
(§14.20); in this case the thread of control that encountered the exception first
attempts to invoke an uncaught exception handler (§11.3) and then terminates.

15.6 Normal and Abrupt Completion of Evaluation

Every expression has a normal mode of evaluation in which certain computational
steps are carried out. The following sections describe the normal mode of
evaluation for each kind of expression.

If all the steps are carried out without an exception being thrown, the expression
is said to complete normally. If, however, evaluation of an expression throws an
exception, then the expression is said to complete abruptly. An abrupt completion
always has an associated reason, which is always a throw with a given value.

Run-time exceptions are thrown by the predefined operators as follows:

• A class instance creation expression (§15.9), array creation expression (§15.10),
array initializer expression (§10.6), or string concatenation operator expression
(§15.18.1) throws an OutOfMemoryError if there is insufficient memory
available.

• An array creation expression (§15.10) throws a NegativeArraySizeException
if the value of any dimension expression is less than zero.

• A field access expression (§15.11) throws a NullPointerException if the value
of the object reference expression is null.

• A method invocation expression (§15.12) that invokes an instance method
throws a NullPointerException if the target reference is null.
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• An array access expression (§15.13) throws a NullPointerException if the
value of the array reference expression is null.

• An array access expression (§15.13) throws an
ArrayIndexOutOfBoundsException if the value of the array index expression
is negative or greater than or equal to the length of the array.

• A cast expression (§15.16) throws a ClassCastException if a cast is found to
be impermissible at run time.

• An integer division (§15.17.2) or integer remainder (§15.17.3) operator throws
an ArithmeticException if the value of the right-hand operand expression is
zero.

• An assignment to an array component of reference type (§15.26.1), a method
invocation expression (§15.12), or a prefix or postfix increment (§15.14.2,
§15.15.1) or decrement operator (§15.14.3, §15.15.2) may all throw an
OutOfMemoryError as a result of boxing conversion (§5.1.7).

• An assignment to an array component of reference type (§15.26.1) throws an
ArrayStoreException when the value to be assigned is not compatible with the
component type of the array (§10.5).

A method invocation expression can also result in an exception being thrown if an
exception occurs that causes execution of the method body to complete abruptly.
A class instance creation expression can also result in an exception being thrown if
an exception occurs that causes execution of the constructor to complete abruptly.
Various linkage and virtual machine errors may also occur during the evaluation
of an expression. By their nature, such errors are difficult to predict and difficult
to handle.

If an exception occurs, then evaluation of one or more expressions may be
terminated before all steps of their normal mode of evaluation are complete; such
expressions are said to complete abruptly.

The terms "complete normally" and "complete abruptly" are also applied to the
execution of statements (§14.1). A statement may complete abruptly for a variety
of reasons, not just because an exception is thrown.

If evaluation of an expression requires evaluation of a subexpression, then abrupt
completion of the subexpression always causes the immediate abrupt completion
of the expression itself, with the same reason, and all succeeding steps in the normal
mode of evaluation are not performed.
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15.7 Evaluation Order

The Java programming language guarantees that the operands of operators appear
to be evaluated in a specific evaluation order, namely, from left to right.

It is recommended that code not rely crucially on this specification. Code is usually
clearer when each expression contains at most one side effect, as its outermost
operation, and when code does not depend on exactly which exception arises as a
consequence of the left-to-right evaluation of expressions.

15.7.1 Evaluate Left-Hand Operand First

The left-hand operand of a binary operator appears to be fully evaluated before any
part of the right-hand operand is evaluated.

If the operator is a compound-assignment operator (§15.26.2), then evaluation of
the left-hand operand includes both remembering the variable that the left-hand
operand denotes and fetching and saving that variable's value for use in the implied
combining operation.

If evaluation of the left-hand operand of a binary operator completes abruptly, no
part of the right-hand operand appears to have been evaluated.

15.7.2 Evaluate Operands before Operation

The Java programming language guarantees that every operand of an operator
(except the conditional operators &&, ||, and ? :) appears to be fully evaluated
before any part of the operation itself is performed.

If the binary operator is an integer division / (§15.17.2) or integer remainder
% (§15.17.3), then its execution may raise an ArithmeticException, but this
exception is thrown only after both operands of the binary operator have been
evaluated and only if these evaluations completed normally.

15.7.3 Evaluation Respects Parentheses and Precedence

The Java programming language respects the order of evaluation indicated
explicitly by parentheses and implicitly by operator precedence.

In the case of floating-point calculations, this rule applies also for infinity and not-
a-number (NaN) values.
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Specifically, floating-point calculations that appear to be mathematically
associative are unlikely to be computationally associative. Such computations must
not be naively reordered.

In contrast, integer addition and multiplication are provably associative in the Java
programming language.

15.7.4 Argument Lists are Evaluated Left-to-Right

In a method or constructor invocation or class instance creation expression,
argument expressions may appear within the parentheses, separated by commas.
Each argument expression appears to be fully evaluated before any part of any
argument expression to its right.

If evaluation of an argument expression completes abruptly, no part of any
argument expression to its right appears to have been evaluated.

15.7.5 Evaluation Order for Other Expressions

The order of evaluation for some expressions is not completely covered by these
general rules, because these expressions may raise exceptional conditions at times
that must be specified.

See, specifically, the detailed explanations of evaluation order for the following
kinds of expressions:

• class instance creation expressions (§15.9.4)

• array creation expressions (§15.10.1)

• method invocation expressions (§15.12.4)

• array access expressions (§15.13.1)

• assignments involving array components (§15.26)

15.8 Primary Expressions

Primary expressions include most of the simplest kinds of expressions, from which
all others are constructed: literals, class literals, field accesses, method invocations,
and array accesses. A parenthesized expression is also treated syntactically as a
primary expression.
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Primary:
    PrimaryNoNewArray
    ArrayCreationExpression

PrimaryNoNewArray:
    Literal
    Type . class 
    void . class 
    this
    ClassName . this
    ( Expression )
    ClassInstanceCreationExpression
    FieldAccess
    MethodInvocation
    ArrayAccess

15.8.1 Lexical Literals

A literal (§3.10) denotes a fixed, unchanging value.

The following production from §3.10 is repeated here for convenience:

Literal:
    IntegerLiteral
    FloatingPointLiteral
    BooleanLiteral
    CharacterLiteral
    StringLiteral
    NullLiteral

The type of a literal is determined as follows:

• The type of an integer literal that ends with L or l is long.

The type of any other integer literal is int.

• The type of a floating-point literal that ends with F or f is float and its value
must be an element of the float value set (§4.2.3).

The type of any other floating-point literal is double and its value must be an
element of the double value set.

• The type of a boolean literal is boolean.

• The type of a character literal is char.
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• The type of a string literal is String.

• The type of the null literal null is the null type; its value is the null reference.

Evaluation of a lexical literal always completes normally.

15.8.2 Class Literals

A class literal is an expression consisting of the name of a class, interface, array,
or primitive type, or the pseudo-type void, followed by a '.' and the token class.

The type of a class literal, C.class, where C is the name of a class, interface, or
array type, is Class<C>.

If p is the name of a primitive type, let B be the type of an expression of type p after
boxing conversion (§5.1.7). Then the type of p..class is Class<B>.

The type of void.class is Class<Void>.

A class literal evaluates to the Class object for the named type (or for void) as
defined by the defining class loader of the class of the current instance.

It is a compile-time error if any of the following occur:

• The named type is a type variable (§4.4) or a parameterized type (§4.5) or an
array whose element type is a type variable or parameterized type.

• The named type does not denote a type that is accessible (§6.6) and in scope
(§6.3) at the point where the class literal appears.

15.8.3 this

The keyword this may be used only in the body of an instance method, instance
initializer, or constructor, or in the initializer of an instance variable of a class. If
it appears anywhere else, a compile-time error occurs.

When used as a primary expression, the keyword this denotes a value that is a
reference to the object for which the instance method was invoked (§15.12), or to
the object being constructed.

The type of this is the class C within which the keyword this occurs.

At run time, the class of the actual object referred to may be the class C or any
subclass of C.

The keyword this is also used in a special explicit constructor invocation
statement, which can appear at the beginning of a constructor body (§8.8.7).
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15.8.4 Qualified this

Any lexically enclosing instance can be referred to by explicitly qualifying the
keyword this.

Let C be the class denoted by ClassName. Let n be an integer such that C is the n'th
lexically enclosing class (§8.1.3) of the class in which the qualified this expression
appears.

The value of an expression of the form ClassName.this is the n'th lexically
enclosing instance of this.

The type of the expression is C.

It is a compile-time error if the current class is not an inner class of class C or C itself.

15.8.5 Parenthesized Expressions

A parenthesized expression is a primary expression whose type is the type of the
contained expression and whose value at run time is the value of the contained
expression. If the contained expression denotes a variable then the parenthesized
expression also denotes that variable.

The use of parentheses affects only the order of evaluation, with one fascinating
exception.

Consider the case of the smallest possible negative value of type long. This value,
9223372036854775808L, is allowed only as an operand of the unary minus operator
(§3.10.1). Therefore, enclosing it in parentheses, as in -(9223372036854775808L)
causes a compile-time error.

In particular, the presence or absence of parentheses around an expression does not
(except for the case noted above) affect in any way:

• the choice of value set (§4.2.3) for the value of an expression of type float or
double

• whether a variable is definitely assigned, definitely assigned when true,
definitely assigned when false, definitely unassigned, definitely unassigned
when true, or definitely unassigned when false (Chapter 16, Definite
Assignment)
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15.9 Class Instance Creation Expressions

A class instance creation expression is used to create new objects that are instances
of classes.

ClassInstanceCreationExpression:
    new TypeArgumentsopt ClassOrInterfaceType
                                                            ( ArgumentListopt ) ClassBodyopt
    Primary . new TypeArgumentsopt Identifier TypeArgumentsopt
                                                            ( ArgumentListopt ) ClassBodyopt

ArgumentList:
    Expression
    ArgumentList , Expression

A class instance creation expression specifies a class to be instantiated, possibly
followed by type arguments (if the class being instantiated is generic (§8.1.2)),
followed by (a possibly empty) list of actual value arguments to the constructor.

It is also possible to pass explicit type arguments to the constructor itself (if it is a
generic constructor (§8.8.4)). The type arguments to the constructor immediately
follow the keyword new.

It is a compile-time error if any of the type arguments used in a class instance
creation expression are wildcard type arguments (§4.5.1).

Class instance creation expressions have two forms:

• Unqualified class instance creation expressions begin with the keyword new.

An unqualified class instance creation expression may be used to create an
instance of a class, regardless of whether the class is a top-level (§7.6), member
(§8.5, §9.5), local (§14.3) or anonymous class (§15.9.5).

• Qualified class instance creation expressions begin with a Primary.

A qualified class instance creation expression enables the creation of instances
of inner member classes and their anonymous subclasses.

Both unqualified and qualified class instance creation expressions may optionally
end with a class body. Such a class instance creation expression declares an
anonymous class (§15.9.5) and creates an instance of it.

We say that a class is instantiated when an instance of the class is created by a
class instance creation expression. Class instantiation involves determining what
class is to be instantiated, what the enclosing instances (if any) of the newly created
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instance are, what constructor should be invoked to create the new instance, and
what arguments should be passed to that constructor.

15.9.1 Determining the Class being Instantiated

If the class instance creation expression ends in a class body, then the class being
instantiated is an anonymous class. Then:

• If the class instance creation expression is an unqualified class instance creation
expression, then let T be the ClassOrInterfaceType after the new token.

It is a compile-time error if the class or interface named by T is not accessible
(§6.6) or if T is an enum type (§8.9).

If T denotes a class, then an anonymous direct subclass of the class named by T
is declared. It is a compile-time error if the class denoted by T is a final class.

If T denotes an interface, then an anonymous direct subclass of Object that
implements the interface named by T is declared.

In either case, the body of the subclass is the ClassBody given in the class instance
creation expression.

The class being instantiated is the anonymous subclass.

• Otherwise, the class instance creation expression is a qualified class instance
creation expression. Let T be the name of the Identifier after the new token.

It is a compile-time error if T is not the simple name (§6.2) of an accessible (§6.6)
non-final inner class (§8.1.3) that is a member of the compile-time type of the
Primary.

It is a compile-time error if T is ambiguous (§8.5) or if T denotes an enum type.

An anonymous direct subclass of the class named by T is declared. The body of
the subclass is the ClassBody given in the class instance creation expression.

The class being instantiated is the anonymous subclass.

If a class instance creation expression does not declare an anonymous class, then:

• If the class instance creation expression is an unqualified class instance creation
expression, then the ClassOrInterfaceType must denote a class that is accessible
(§6.6) and is not an enum type and not abstract, or a compile-time error occurs.

In this case, the class being instantiated is the class denoted by
ClassOrInterfaceType.
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• Otherwise, the class instance creation expression is a qualified class instance
creation expression.

It is a compile-time error if Identifier is not the simple name (§6.2) of an
accessible (§6.6) non-abstract inner class (§8.1.3) T that is a member of the
compile-time type of the Primary.

It is a compile-time error if Identifier is ambiguous (§8.5), or if Identifier denotes
an enum type (§8.9).

The class being instantiated is the class denoted by Identifier.

The type of the class instance creation expression is the class type being
instantiated.

15.9.2 Determining Enclosing Instances

Let C be the class being instantiated, and let i be the instance being created. If C is an
inner class then i may have an immediately enclosing instance. The immediately
enclosing instance of i (§8.1.3) is determined as follows.

If C is an anonymous class, then:

• If the class instance creation expression occurs in a static context (§8.1.3), then
i has no immediately enclosing instance.

• Otherwise, the immediately enclosing instance of i is this.

If C is a local class (§14.3), then let O be the innermost lexically enclosing class of
C. Let n be an integer such that O is the n'th lexically enclosing class of the class in
which the class instance creation expression appears. Then:

• If C occurs in a static context, then i has no immediately enclosing instance.

• Otherwise, if the class instance creation expression occurs in a static context,
then a compile-time error occurs.

• Otherwise, the immediately enclosing instance of i is the n'th lexically enclosing
instance of this (§8.1.3).

Otherwise, C is an inner member class (§8.5), and then:

• If the class instance creation expression is an unqualified class instance creation
expression, then:

◆ If the class instance creation expression occurs in a static context, then a
compile-time error occurs.
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◆ Otherwise, if C is a member of an enclosing class then let O be the innermost
lexically enclosing class of which C is a member, and let n be an integer such
that O is the n'th lexically enclosing class of the class in which the class instance
creation expression appears.

The immediately enclosing instance of i is the n'th lexically enclosing instance
of this.

◆ Otherwise, a compile-time error occurs.

• Otherwise, the class instance creation expression is a qualified class instance
creation expression.

The immediately enclosing instance of i is the object that is the value of the
Primary expression.

In addition, if C is an anonymous class, and the direct superclass of C, S, is an inner
class, then i may have an immediately enclosing instance with respect to S. It is
determined as follows.

If S is a local class (§14.3), then let O be the innermost lexically enclosing class of
S. Let n be an integer such that O is the n'th lexically enclosing class of the class in
which the class instance creation expression appears. Then:

• If S occurs within a static context, then i has no immediately enclosing instance
with respect to S.

• Otherwise, if the class instance creation expression occurs in a static context,
then a compile-time error occurs.

• Otherwise, the immediately enclosing instance of i with respect to S is the n'th
lexically enclosing instance of this.

Otherwise, S is an inner member class (§8.5), and then:

• If the class instance creation expression is an unqualified class instance creation
expression, then:

◆ If the class instance creation expression occurs in a static context, then a
compile-time error occurs.

◆ Otherwise, if S is a member of an enclosing class then let O be the innermost
lexically enclosing class of which S is a member, and let n be an integer such
that O is the n'th lexically enclosing class of the class in which the class instance
creation expression appears.

The immediately enclosing instance of i with respect to S is the n'th lexically
enclosing instance of this.
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◆ Otherwise, a compile-time error occurs.

• Otherwise, the class instance creation expression is a qualified class instance
creation expression.

The immediately enclosing instance of i with respect to S is the object that is the
value of the Primary expression.

15.9.3 Choosing the Constructor and its Arguments

Let C be the class type being instantiated. To create an instance of C, i, a constructor
of C is chosen at compile-time by the following rules.

First, the actual arguments to the constructor invocation are determined:

• If C is an anonymous class, and the direct superclass of C, S, is an inner class, then:

◆ If S is a local class and S occurs in a static context, then the arguments in the
argument list, if any, are the arguments to the constructor, in the order they
appear in the expression.

◆ Otherwise, the immediately enclosing instance of i with respect to S is the
first argument to the constructor, followed by the arguments in the argument
list of the class instance creation expression, if any, in the order they appear
in the expression.

• Otherwise the arguments in the argument list, if any, are the arguments to the
constructor, in the order they appear in the expression.

Once the actual arguments have been determined, they are used to select a
constructor of C, using the same rules as for method invocations (§15.12).

As in method invocations, a compile-time method matching error occurs if there is
no unique most-specific constructor that is both applicable and accessible.

Note that the type of the class instance creation expression may be an anonymous
class type, in which case the constructor being invoked is an anonymous
constructor (§15.9.5.1.

15.9.4 Run-time Evaluation of Class Instance Creation Expressions

At run time, evaluation of a class instance creation expression is as follows.

First, if the class instance creation expression is a qualified class instance creation
expression, the qualifying primary expression is evaluated. If the qualifying
expression evaluates to null, a NullPointerException is raised, and the class
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instance creation expression completes abruptly. If the qualifying expression
completes abruptly, the class instance creation expression completes abruptly for
the same reason.

Next, space is allocated for the new class instance. If there is insufficient space to
allocate the object, evaluation of the class instance creation expression completes
abruptly by throwing an OutOfMemoryError.

The new object contains new instances of all the fields declared in the specified
class type and all its superclasses. As each new field instance is created, it is
initialized to its default value (§4.12.5).

Next, the actual arguments to the constructor are evaluated, left-to-right. If any of
the argument evaluations completes abruptly, any argument expressions to its right
are not evaluated, and the class instance creation expression completes abruptly for
the same reason.

Next, the selected constructor of the specified class type is invoked. This results in
invoking at least one constructor for each superclass of the class type. This process
can be directed by explicit constructor invocation statements (§8.8) and is described
in detail in §12.5.

The value of a class instance creation expression is a reference to the newly created
object of the specified class. Every time the expression is evaluated, a fresh object
is created.

15.9.5 Anonymous Class Declarations

An anonymous class declaration is automatically derived from a class instance
creation expression by the Java compiler.

An anonymous class is never abstract (§8.1.1.1).

An anonymous class is always an inner class (§8.1.3); it is never static (§8.1.1,
§8.5.2).

An anonymous class is always implicitly final (§8.1.1.2).

15.9.5.1 Anonymous Constructors

An anonymous class cannot have an explicitly declared constructor. Instead,
the Java compiler must automatically provide an anonymous constructor for the
anonymous class. The form of the anonymous constructor of an anonymous class
C with direct superclass S is as follows:
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• If S is not an inner class, or if S is a local class that occurs in a static context, then
the anonymous constructor has one formal parameter for each actual argument
to the class instance creation expression in which C is declared.

The actual arguments to the class instance creation expression are used to
determine a constructor cs of S, using the same rules as for method invocations
(§15.12).

The type of each formal parameter of the anonymous constructor must be
identical to the corresponding formal parameter of cs.

The body of the constructor consists of an explicit constructor invocation
(§8.8.7.1) of the form super(...), where the actual arguments are the formal
parameters of the constructor, in the order they were declared.

• Otherwise, the first formal parameter of the constructor of C represents the value
of the immediately enclosing instance of i with respect to S. The type of this
parameter is the class type that immediately encloses the declaration of S.

The constructor has an additional formal parameter for each actual argument to
the class instance creation expression that declared the anonymous class. The
n'th formal parameter e corresponds to the n-1'th actual argument.

The actual arguments to the class instance creation expression are used to
determine a constructor cs of S, using the same rules as for method invocations
(§15.12).

The type of each formal parameter of the anonymous constructor must be
identical to the corresponding formal parameter of cs.

The body of the constructor consists of an explicit constructor invocation
(§8.8.7.1) of the form o.super(...), where o is the first formal parameter of
the constructor, and the actual arguments are the subsequent formal parameters
of the constructor, in the order they were declared.

In all cases, the throws clause of an anonymous constructor must list all the
checked exceptions thrown by the explicit superclass constructor invocation
statement contained within the anonymous constructor, and all checked exceptions
thrown by any instance initializers or instance variable initializers of the
anonymous class.

Note that it is possible for the signature of the anonymous constructor to refer
to an inaccessible type (for example, if such a type occurred in the signature of
the superclass constructor cs). This does not, in itself, cause any errors at either
compile time or run time.
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15.10 Array Creation Expressions

An array creation expression is used to create new arrays (Chapter 10, Arrays).

ArrayCreationExpression:
    new PrimitiveType DimExprs Dimsopt
    new ClassOrInterfaceType DimExprs Dimsopt
    new PrimitiveType Dims ArrayInitializer 
    new ClassOrInterfaceType Dims ArrayInitializer

DimExprs:
    DimExpr
    DimExprs DimExpr

DimExpr:
    [ Expression ]

Dims:
    [ ]
    Dims [ ]

An array creation expression creates an object that is a new array whose elements
are of the type specified by the PrimitiveType or ClassOrInterfaceType.

It is a compile-time error if the ClassOrInterfaceType does not denote a type that
is reifiable (§4.7). Otherwise, the ClassOrInterfaceType may name any named
reference type, even an abstract class type (§8.1.1.1) or an interface type
(Chapter 9, Interfaces).

The type of the creation expression is an array type that can denoted by a copy of the
creation expression from which the new keyword and every DimExpr expression
and array initializer have been deleted.

The type of each dimension expression within a DimExpr must be a type that is
convertible (§5.1.8) to an integral type, or a compile-time error occurs.

Each expression undergoes unary numeric promotion (§5.6.1). The promoted type
must be int, or a compile-time error occurs.

If an array initializer is provided, the newly allocated array will be initialized with
the values provided by the array initializer as described in §10.6.
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15.10.1 Run-time Evaluation of Array Creation Expressions

At run time, evaluation of an array creation expression behaves as follows.

If there are no dimension expressions, then there must be an array initializer. The
value of the array initializer is the value of the array creation expression. Otherwise:

First, the dimension expressions are evaluated, left-to-right. If any of the expression
evaluations completes abruptly, the expressions to the right of it are not evaluated.

Next, the values of the dimension expressions are checked. If the value of any
DimExpr expression is less than zero, then an NegativeArraySizeException is
thrown.

Next, space is allocated for the new array. If there is insufficient space to allocate
the array, evaluation of the array creation expression completes abruptly by
throwing an OutOfMemoryError.

Then, if a single DimExpr appears, a one-dimensional array is created of the
specified length, and each component of the array is initialized to its default value
(§4.12.5).

If an array creation expression contains n DimExpr expressions, then it effectively
executes a set of nested loops of depth n-1 to create the implied arrays of arrays.

A multidimensional array need not have arrays of the same length at each level.

In an array creation expression (§15.10), there may be one or more dimension
expressions, each within brackets. Each dimension expression is fully evaluated
before any part of any dimension expression to its right.

If evaluation of a dimension expression completes abruptly, no part of any
dimension expression to its right will appear to have been evaluated.

If evaluation of an array creation expression finds there is insufficient memory to
perform the creation operation, then an OutOfMemoryError is thrown. If the array
creation expression does not have an array initializer, then this check occurs only
after evaluation of all dimension expressions has completed normally. If the array
creation expression does have an array initializer, then an OutOfMemoryError can
occur when an object of reference type is allocated during evaluation of a variable
initializer expression, or when space is allocated for an array to hold the values of
a (possibly nested) array initializer.
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15.11 Field Access Expressions

A field access expression may access a field of an object or array, a reference to
which is the value of either an expression or the special keyword super.

FieldAccess: 
    Primary . Identifier
    super . Identifier
    ClassName . super . Identifier

The meaning of a field access expression is determined using the same rules as for
qualified names (§6.5.6.2), but limited by the fact that an expression cannot denote
a package, class type, or interface type.

15.11.1 Field Access Using a Primary

The type of the Primary must be a reference type T, or a compile-time error occurs.

The meaning of the field access expression is determined as follows:

• If the identifier names several accessible (§6.6) member fields of type T, then
the field access is ambiguous and a compile-time error occurs.

• If the identifier does not name an accessible member field of type T, then the
field access is undefined and a compile-time error occurs.

• Otherwise, the identifier names a single accessible member field of type T and
the type of the field access expression is the type of the member field after
capture conversion (§5.1.10).

At run-time, the result of the field access expression is computed as follows:
(assuming that the program is correct with respect to definite assignment
analysis, i.e. every blank final variable is definitely assigned before access)

◆ If the field is static:

❖ The Primary expression is evaluated, and the result is discarded. If
evaluation of the Primary expression completes abruptly, the field access
expression completes abruptly for the same reason.

❖ If the field is a non-blank final, then the result is the value of the specified
class variable in the class or interface that is the type of the Primary
expression.
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❖ If the field is not final, or is a blank final and the field access occurs in a
constructor, then the result is a variable, namely, the specified class variable
in the class that is the type of the Primary expression.

◆ If the field is not static:

❖ The Primary expression is evaluated. If evaluation of the Primary
expression completes abruptly, the field access expression completes
abruptly for the same reason.

❖ If the value of the Primary is null, then a NullPointerException is
thrown.

❖ If the field is a non-blank final, then the result is the value of the specified
instance variable in the object referenced by the value of the Primary.

❖ If the field is not final, or is a blank final and the field access occurs in
a constructor, then the result is a variable, namely, the specified instance
variable in the object referenced by the value of the Primary.

Note, specifically, that only the type of the Primary expression, not the class of the
actual object referred to at run time, is used in determining which field to use.

15.11.2 Accessing Superclass Members using super

The form super.Identifier refers to the field named Identifier of the current object,
but with the current object viewed as an instance of the superclass of the current
class. The form T.super.Identifier refers to the field named Identifier of the
lexically enclosing instance corresponding to T, but with that instance viewed as
an instance of the superclass of T.

The forms using the keyword super are valid only in an instance method, instance
initializer or constructor, or in the initializer of an instance variable of a class. These
are exactly the same situations in which the keyword this may be used (§15.8.3).

It is a compile-time error if the forms using the keyword super appear in the
declaration of class Object, since Object has no superclass.

If a field access expression super.name appears within class C, and the immediate
superclass of C is class S, then super.name is treated exactly as if it had been the
expression this.name in the body of class S. Thus it can access the field name that
is visible in class S, even if that field is hidden by a declaration of a field name in
class C.
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If a field access expression T.super.name appears within class C, and the
immediate superclass of the class denoted by T is a class whose fully qualified
name is S, then T.super.name is treated exactly as if it had been the expression
this.name in the body of class S. Thus it can access the field name that is visible
in class S, even if that field is hidden by a declaration of a field name in class T.

It is a compile-time error if the current class is not an inner class of class T or T itself.

15.12 Method Invocation Expressions

A method invocation expression is used to invoke a class or instance method.

MethodInvocation:
    MethodName ( ArgumentListopt )
    Primary . NonWildTypeArgumentsopt Identifier ( ArgumentListopt )
    super . NonWildTypeArgumentsopt Identifier ( ArgumentListopt )
    ClassName . super . NonWildTypeArgumentsopt Identifier ( ArgumentListopt )
    TypeName . NonWildTypeArguments Identifier ( ArgumentListopt )

The definition of ArgumentList from §15.9 is repeated here for convenience:

ArgumentList:
    Expression
    ArgumentList , Expression

Resolving a method name at compile time is more complicated than resolving a
field name because of the possibility of method overloading. Invoking a method at
run time is also more complicated than accessing a field because of the possibility
of instance method overriding.

Determining the method that will be invoked by a method invocation expression
involves several steps. The following three sections describe the compile-time
processing of a method invocation; the determination of the type of the method
invocation expression is described in §15.12.3.

15.12.1 Compile-Time Step 1: Determine Class or Interface to Search

The first step in processing a method invocation at compile time is to figure out
the name of the method to be invoked and which class or interface to check for
definitions of methods of that name. There are several cases to consider, depending
on the form that precedes the left parenthesis, as follows.
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• If the form is MethodName, then there are three subcases:

◆ If it is a simple name, that is, just an Identifier, then the name of the method
is the Identifier.

If the Identifier appears within the scope (§6.3) of a visible method declaration
with that name, then:

❖ If there is an enclosing type declaration of which that method is a member,
let T be the innermost such type declaration. The class or interface to search
is T.

❖ Otherwise, the visible method declaration may be in scope due to one
or more single-static-import (§7.5.3) or static-import-on-demand (§7.5.4)
declarations. There is no class or interface to search, as the method to be
invoked is determined later (§15.12.2).

◆ If it is a qualified name of the form TypeName . Identifier, then the name of
the method is the Identifier and the class to search is the one named by the
TypeName.

If TypeName is the name of an interface rather than a class, then a compile-
time error occurs, because this form can invoke only static methods and
interfaces have no static methods.

◆ In all other cases, the qualified name has the form FieldName . Identifier.

The name of the method is the Identifier and the class or interface to search
is the declared type T of the field named by the FieldName, if T is a class or
interface type, or the upper bound of T if T is a type variable.

• If the form is Primary . NonWildTypeArgumentsopt Identifier, then the name of
the method is the Identifier.

Let T be the type of the Primary expression. The class or interface to be searched
is T if T is a class or interface type, or the upper bound of T if T is a type variable.

It is a compile-time error if T is not a reference type.

• If the form is super . NonWildTypeArgumentsopt Identifier, then the name of the
method is the Identifier and the class to be searched is the superclass of the class
whose declaration contains the method invocation.

Let T be the type declaration immediately enclosing the method invocation. It is
a compile-time error if T is the class Object or T is an interface.
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• If the form is ClassName . super . NonWildTypeArgumentsopt Identifier, then
the name of the method is the Identifier and the class to be searched is the
superclass of the class C denoted by ClassName.

It is a compile-time error if C is not a lexically enclosing class of the current class.

It is a compile-time error if C is the class Object.

Let T be the type declaration immediately enclosing the method invocation. It is
a compile-time error if T is the class Object or T is an interface.

• If the form is TypeName . NonWildTypeArguments Identifier, then the name of
the method is the Identifier and the class to be searched is the class C denoted
by TypeName.

If TypeName is the name of an interface rather than a class, then a compile-time
error occurs, because this form can invoke only static methods and interfaces
have no static methods.

15.12.2 Compile-Time Step 2: Determine Method Signature

The second step searches the type determined in the previous step for member
methods. This step uses the name of the method and the types of the argument
expressions to locate methods that are both accessible and applicable, that is,
declarations that can be correctly invoked on the given arguments.

There may be more than one such method, in which case the most specific one is
chosen. The descriptor (signature plus return type) of the most specific method is
one used at run time to perform the method dispatch.

A method is applicable if it is either applicable by subtyping (§15.12.2.2),
applicable by method invocation conversion (§15.12.2.3), or it is an applicable
variable arity method (§15.12.2.4).

The process of determining applicability begins by determining the potentially
applicable methods (§15.12.2.1).

The remainder of the process is split into three phases, to ensure compatibility with
versions of the Java programming language prior to Java SE 5.0. The phases are:

1. The first phase (§15.12.2.2) performs overload resolution without permitting
boxing or unboxing conversion, or the use of variable arity method invocation.
If no applicable method is found during this phase then processing continues
to the second phase.
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2. The second phase (§15.12.2.3) performs overload resolution while allowing
boxing and unboxing, but still precludes the use of variable arity method
invocation. If no applicable method is found during this phase then processing
continues to the third phase.

3. The third phase (§15.12.2.4) allows overloading to be combined with variable
arity methods, boxing, and unboxing.

Deciding whether a method is applicable will, in the case of generic methods
(§8.4.4), require that type arguments be determined. Type arguments may be
passed explicitly or implicitly. If they are passed implicitly, they must be inferred
(§15.12.2.7) from the types of the argument expressions.

If several applicable methods have been identified during one of the three phases
of applicability testing, then the most specific one is chosen, as specified in section
§15.12.2.5.

15.12.2.1 Identify Potentially Applicable Methods

The class or interface determined by compile-time step 1 (§15.12.1) is searched
for all member methods that are potentially applicable to this method invocation;
members inherited from superclasses and superinterfaces are included in this
search.

In addition, if the method invocation has, before the left parenthesis, a MethodName
of the form Identifier, then the search process also examines all member methods
that are (a) imported by single-static-import declarations (§7.5.3) and static-import-
on-demand declarations (§7.5.4) within the compilation unit (§7.3) within which
the method invocation occurs, and (b) not shadowed (§6.4.1) at the place where the
method invocation appears, to determine if they are potentially applicable.

A member method is potentially applicable to a method invocation if and only if
all of the following are true:

• The name of the member is identical to the name of the method in the method
invocation.

• The member is accessible (§6.6) to the class or interface in which the method
invocation appears.

• If the member is a variable arity method with arity n, the arity of the method
invocation is greater or equal to n-1.

• If the member is a fixed arity method with arity n, the arity of the method
invocation is equal to n.
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• If the method invocation includes explicit type arguments, and the member is a
generic method, then the number of type arguments is equal to the number of
type parameters of the method.

If the search does not yield at least one method that is potentially applicable, then
a compile-time error occurs.

15.12.2.2 Phase 1: Identify Matching Arity Methods Applicable by Subtyping

Let m be a potentially applicable method (§15.12.2.1), let e1, ..., en be the actual
argument expressions of the method invocation, and let Ai be the type of ei (1 ≤
i ≤ n). Then:

• If m is a generic method, then let F1 ... Fn be the types of the formal parameters of
m, and let R1 ... Rp (p ≥ 1) be the type parameters of m, and let Bl be the declared
bound of Rl (1 ≤ l ≤ p). Then:

◆ If the method invocation does not provide explicit type arguments, then let U1
... Up be the type arguments inferred (§15.12.2.7) for this invocation of m, using
a set of initial constraints consisting of the constraints Ai << Fi (1 ≤ i ≤ n) for
each actual argument expression ei whose type is a reference type.

◆ Otherwise, let U1 ... Up be the explicit type arguments given in the method
invocation.

Then let Si = Fi[R1=U1,...,Rp=Up] (1 ≤ i ≤ n) be the types inferred for the formal
parameters of m.

• Otherwise, let S1 ... Sn be the types of the formal parameters of m.

The method m is applicable by subtyping if and only if both of the following
conditions hold:

• For 1 ≤ i ≤ n, either:

◆ Ai <: Si (§4.10), or

◆ Ai is convertible to some type Ci by unchecked conversion (§5.1.9), and Ci
<: Si.

• If m is a generic method as described above, then Ul <: Bl[R1=U1,...,Rp=Up] (1
≤ l ≤ p).

If no method applicable by subtyping is found, the search for applicable
methods continues with phase 2 (§15.12.2.3). Otherwise, the most specific method
(§15.12.2.5) is chosen among the methods that are applicable by subtyping.
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15.12.2.3 Phase 2: Identify Matching Arity Methods Applicable by Method
Invocation Conversion

Let m be a potentially applicable method (§15.12.2.1), let e1, ..., en be the actual
argument expressions of the method invocation, and let Ai be the type of ei (1 ≤
i ≤ n). Then:

• If m is a generic method, then let F1 ... Fn be the types of the formal parameters of
m, and let R1 ... Rp (p ≥ 1) be the type parameters of m, and let Bl be the declared
bound of Rl (1 ≤ l ≤ p). Then:

◆ If the method invocation does not provide explicit type arguments, then let U1
... Up be the type arguments inferred (§15.12.2.7) for this invocation of m, using
a set of initial constraints consisting of the constraints Ai << Fi (1 ≤ i ≤ n).

◆ Otherwise, let U1 ... Up be the explicit type arguments given in the method
invocation.

Then let Si = Fi[R1=U1,...,Rp=Up] (1 ≤ i ≤ n) be the types inferred for the formal
parameters of m.

• Otherwise, let S1 ... Sn be the types of the formal parameters of m.

The method m is applicable by method invocation conversion if and only if both of
the following conditions hold:

• For 1 ≤ i ≤ n, the type of ei, Ai, can be converted by method invocation conversion
(§5.3) to Si.

• If m is a generic method as described above, then Ul <: Bl[R1=U1,...,Rp=Up] (1
≤ l ≤ p).

If no method applicable by method invocation conversion is found, the search
for applicable methods continues with phase 3 (§15.12.2.4). Otherwise, the most
specific method (§15.12.2.5) is chosen among the methods that are applicable by
method invocation conversion.

15.12.2.4 Phase 3: Identify Applicable Variable Arity Methods

Let m be a potentially applicable method (§15.12.2.1) with variable arity, let e1, ...,
ek be the actual argument expressions of the method invocation, and let Ai be the
type of ei (1 ≤ i ≤ k). Then:

• If m is a generic method, then let F1 ... Fn (1 ≤ n ≤ k+1) be the types of the formal
parameters of m, where Fn=T[] for some type T, and let R1 ... Rp (p ≥ 1) be the
type parameters of m, and let Bl be the declared bound of Rl (1 ≤ l ≤ p). Then:
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◆ If the method invocation does not provide explicit type arguments then let U1
... Up be the type arguments inferred (§15.12.2.7) for this invocation of m, using
a set of initial constraints consisting of the constraints Ai << Fi (1 ≤ i < n) and
the constraints Aj << T (n ≤ j ≤ k).

◆ Otherwise let U1 ... Up be the explicit type arguments given in the method
invocation.

Then let Si = Fi[R1=U1,...,Rp=Up] (1 ≤ i ≤ n) be the types inferred for the formal
parameters of m.

• Otherwise, let S1 ... Sn (where n ≤ k+1) be the types of the formal parameters of m.

The method m is an applicable variable-arity method if and only if all of the
following conditions hold:

• For 1 ≤ i < n, the type of ei, Ai, can be converted by method invocation conversion
to Si.

• If k ≥ n, then for n ≤ i ≤ k, the type of ei, Ai, can be converted by method
invocation conversion to the component type of Sn.

• If k != n, or if k = n and An cannot be converted by method invocation conversion
to Sn[], then the type which is the erasure of Sn is accessible at the point of
invocation.

• If m is a generic method as described above, then Ul <: Bl[R1=U1...,Rp=Up] (1 ≤
l ≤ p).

If no applicable variable arity method is found, a compile-time error occurs.

Otherwise, the most specific method (§15.12.2.5) is chosen among the applicable
variable-arity methods.

15.12.2.5 Choosing the Most Specific Method

If more than one member method is both accessible and applicable to a method
invocation, it is necessary to choose one to provide the descriptor for the run-
time method dispatch. The Java programming language uses the rule that the most
specific method is chosen.

The informal intuition is that one method is more specific than another if any
invocation handled by the first method could be passed on to the other one without
a compile-time type error.

One fixed-arity member method named m is more specific than another member
method of the same name and arity if all of the following conditions hold:
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• The declared types of the parameters of the first member method are T1, ..., Tn.

• The declared types of the parameters of the other method are U1, ..., Un.

• If the second method is generic, then let R1 ... Rp (p ≥ 1) be its type parameters,
let Bl be the declared bound of Rl (1 ≤ l ≤ p), let A1 ... Ap be the type arguments
inferred (§15.12.2.7) for this invocation under the initial constraints Ti << Ui (1
≤ i ≤ n), and let Si = Ui[R1=A1,...,Rp=Ap] (1 ≤ i ≤ n).

Otherwise, let Si = Ui (1 ≤ i ≤ n).

• For all j from 1 to n, Tj <: Sj.

• If the second method is a generic method as described above, then Al <:
Bl[R1=A1,...,Rp=Ap] (1 ≤ l ≤ p).

In addition, one variable arity member method named m is more specific than
another variable arity member method of the same name if either:

1. One member method has n parameters and the other has k parameters, where
n ≥ k, and:

• The types of the parameters of the first member method are T1, ..., Tn-1, Tn[].

• The types of the parameters of the other method are U1, ..., Uk-1, Uk[].

• If the second method is generic then let R1 ... Rp (p ≥ 1) be its type parameters,
let Bl be the declared bound of Rl (1 ≤ l ≤ p), let A1 ... Ap be the type arguments
inferred (§15.12.2.7) for this invocation under the initial constraints Ti <<
Ui (1 ≤ i ≤ k-1) and Ti << Uk (k ≤ i ≤ n), and let Si = Ui[R1=A1,...,Rp=Ap]
(1 ≤ i ≤ k).

Otherwise, let Si = Ui (1 ≤ i ≤ k).

• For all j from 1 to k-1, Tj <: Sj, and,

• For all j from k to n, Tj <: Sk, and,

• If the second method is a generic method as described above, then Al <:
Bl[R1=A1,...,Rp=Ap] (1 ≤ l ≤ p).

2. One member method has k parameters and the other has n parameters, where
n ≥ k, and:

• The types of the parameters of the first method are U1, ..., Uk-1, Uk[].

• The types of the parameters of the other method are T1, ..., Tn-1, Tn[].

• If the second method is generic, then let R1 ... Rp (p ≥ 1) be its type parameters,
let Bl be the declared bound of Rl (1 ≤ l ≤ p), let A1 ... Ap be the type arguments
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inferred (§15.12.2.7) for this invocation under the initial constraints Ui <<
Ti (1 ≤ i ≤ k-1) and Uk << Ti (k ≤ i ≤ n), and let Si = Ti[R1=A1,...,Rp=Ap] (1
≤ i ≤ n).

Otherwise, let Si = Ti (1 ≤ i ≤ n).

• For all j from 1 to k-1, Uj <: Sj, and,

• For all j from k to n, Uk <: Sj, and,

• If the second method is a generic method as described above, then Al <:
Bl[R1=A1,...,Rp=Ap] (1 ≤ l ≤ p).

The above conditions are the only circumstances under which one method may be
more specific than another.

A method m1 is strictly more specific than another method m2 if and only if m1 is
more specific than m2 and m2 is not more specific than m1.

A method is said to be maximally specific for a method invocation if it is accessible
and applicable and there is no other method that is applicable and accessible that
is strictly more specific.

If there is exactly one maximally specific method, then that method is in fact
the most specific method; it is necessarily more specific than any other accessible
method that is applicable. It is then subjected to some further compile-time checks
as described in §15.12.3.

It is possible that no method is the most specific, because there are two or more
methods that are maximally specific. In this case:

• If all the maximally specific methods have override-equivalent (§8.4.2)
signatures, then:

◆ If exactly one of the maximally specific methods is not declared abstract, it
is the most specific method.

◆ Otherwise, if all the maximally specific methods are declared abstract, and
the signatures of all of the maximally specific methods have the same erasure
(§4.6), then the most specific method is chosen arbitrarily among the subset
of the maximally specific methods that have the most specific return type.

However, the most specific method is considered to throw a checked exception
if and only if that exception or its erasure is declared in the throws clauses of
each of the maximally specific methods.

• Otherwise, we say that the method invocation is ambiguous, and a compile-time
error occurs.
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15.12.2.6 Method Result and Throws Types

The result type of the chosen method is determined as follows:

• If the chosen method is declared with a return type of void, then the result is
void.

• Otherwise, if unchecked conversion was necessary for the method to be
applicable, then the result type is the erasure (§4.6) of the method's declared
return type.

• Otherwise, if the chosen method is generic, then for 1 ≤ i ≤ n, let Fi be the formal
type parameters of the method, let Ai be the actual type arguments inferred for
the method invocation, and let R be the return type of the chosen method.

The result type is obtained by applying capture conversion (§5.1.10) to
R[F1=A1,...,Fn=An].

• Otherwise, the result type is obtained by applying capture conversion (§5.1.10)
to the return type of the chosen method .

The exception types of the throws clause of the chosen method are determined as
follows:

• If unchecked conversion was necessary for the method to be applicable, then the
throws clause is composed of the erasure (§4.6) of the types in the method's
declared throws clause.

• Otherwise, if the method being invoked is generic, then for 1 ≤ i ≤ n, let Fi be
the type parameters of the method, let Ai be the type arguments inferred for the
method invocation, and let Ej (1 ≤ j ≤ m) be the exception types declared in the
throws clause of the method being invoked.

The throws clause consists of the types Ej[F1=A1,...,Fn=An].

• Otherwise, the type of the throws clause is the type given in the method
declaration.

15.12.2.7 Inferring Type Arguments Based on Actual Arguments

In this section, we describe the process of inferring type arguments for method and
constructor invocations. This process is invoked as a subroutine when testing for
method (or constructor) applicability (§15.12.2.2 - §15.12.2.4).

We use the following notational conventions in this section:
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• Type expressions are represented using the letters A, F, U, V, and W. The letter A is
only used to denote the type of an actual argument, and F is only used to denote
the type of a formal parameter.

• Type parameters are represented using the letters S and T

• Arguments to parameterized types are represented using the letters X and Y.

• Generic type declarations are represented using the letters G and H.

Inference begins with a set of initial constraints of the form A << F, A = F, or A >>
F, where U << V indicates that type U is convertible to type V by method invocation
conversion (§5.3), and U >> V indicates that type V is convertible to type U by method
invocation conversion.

These constraints are then reduced to a set of simpler constraints of the forms T :>
X, T = X, or T <: X, where T is a type parameter of the method. This reduction is
achieved by the procedure given below.

Given a constraint of the form A << F, A = F, or A >> F:

If F does not involve a type parameter Tj then no constraint is implied on Tj.

Otherwise, F involves a type parameter Tj.

If A is the type of null, no constraint is implied on Tj.

Otherwise, if the constraint has the form A << F:

• If A is a primitive type, then A is converted to a reference type U via boxing
conversion and this algorithm is applied recursively to the constraint U << F.

• Otherwise, if F = Tj, then the constraint Tj :> A is implied.

• If F = U[], where the type U involves Tj, then if A is an array type V[], or a type
variable with an upper bound that is an array type V[], where V is a reference
type, this algorithm is applied recursively to the constraint V << U.

• If F has the form G<..., Yk-1, U, Yk+1, ...>, where U is a type expression that involves
Tj, then if A has a supertype of the form G<..., Xk-1, V, Xk+1, ...> where V is a type
expression, this algorithm is applied recursively to the constraint V = U.

• If F has the form G<..., Yk-1, ? extends U, Yk+1, ...>, where U involves Tj, then
if A has a supertype that is one of:

◆ G<..., Xk-1, V, Xk+1, ...>, where V is a type expression. Then this algorithm is
applied recursively to the constraint V << U.

◆ G<..., Xk-1, ? extends V, Xk+1, ...>. Then this algorithm is applied recursively
to the constraint V << U.
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◆ Otherwise, no constraint is implied on Tj.

• If F has the form G<..., Yk-1, ? super U, Yk+1, ...>, where U involves Tj, then if
A has a supertype that is one of:

◆ G<..., Xk-1, V, Xk+1, ...>. Then this algorithm is applied recursively to the
constraint V >> U.

◆ G<..., Xk-1, ? super V, Xk+1, ...>. Then this algorithm is applied recursively to
the constraint V >> U.

◆ Otherwise, no constraint is implied on Tj.

• Otherwise, no constraint is implied on Tj.

Otherwise, if the constraint has the form A = F:

• If F = Tj, then the constraint Tj = A is implied.

• If F = U[] where the type U involves Tj, then if A is an array type V[], or a type
variable with an upper bound that is an array type V[], where V is a reference
type, this algorithm is applied recursively to the constraint V = U.

• If F has the form G<..., Yk-1, U, Yk+1, ...>, where U is type expression that involves
Tj, then if A is of the form G<..., Xk-1, V, Xk+1,...> where V is a type expression,
this algorithm is applied recursively to the constraint V = U.

• If F has the form G<..., Yk-1, ? extends U, Yk+1, ...>, where U involves Tj, then
if A is one of:

◆ G<..., Xk-1, ? extends V, Xk+1, ...>. Then this algorithm is applied recursively
to the constraint V = U.

◆ Otherwise, no constraint is implied on Tj.

• If F has the form G<..., Yk-1, ? super U, Yk+1 ,...>, where U involves Tj, then if
A is one of:

◆ G<..., Xk-1, ? super V, Xk+1, ...>. Then this algorithm is applied recursively to
the constraint V = U.

◆ Otherwise, no constraint is implied on Tj.

• Otherwise, no constraint is implied on Tj.

Otherwise, if the constraint has the form A >> F:

• If F = Tj, then the constraint Tj <: A is implied.
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• If F = U[], where the type U involves Tj, then if A is an array type V[], or a type
variable with an upper bound that is an array type V[], where V is a reference
type, this algorithm is applied recursively to the constraint V >> U. Otherwise,
no constraint is implied on Tj.

• If F has the form G<..., Yk-1, U, Yk+1, ...>, where U is a type expression that involves
Tj, then:

◆ If A is an instance of a non-generic type, then no constraint is implied on Tj.

◆ If A is an invocation of a generic type declaration H, where H is either G or
superclass or superinterface of G, then:

❖ If H ≠ G, then let S1, ..., Sn be the type parameters of G, and let H<U1, ..., Ul>
be the unique invocation of H that is a supertype of G<S1, ..., Sn>, and let V
= H<U1, ..., Ul>[Sk=U]. Then, if V :> F this algorithm is applied recursively
to the constraint A >> V.

❖ Otherwise, if A is of the form G<..., Xk-1, W, Xk+1, ...>, where W is a type
expression, this algorithm is applied recursively to the constraint W = U.

❖ Otherwise, if A is of the form G<..., Xk-1, ? extends W, Xk+1, ...>, this
algorithm is applied recursively to the constraint W >> U.

❖ Otherwise, if A is of the form G<..., Xk-1, ? super W, Xk+1, ...>, this algorithm
is applied recursively to the constraint W << U.

❖ Otherwise, no constraint is implied on Tj.

• If F has the form G<..., Yk-1, ? extends U, Yk+1, ...>, where U is a type expression
that involves Tj, then:

◆ If A is an instance of a non-generic type, then no constraint is implied on Tj.

◆ If A is an invocation of a generic type declaration H, where H is either G or
superclass or superinterface of G, then:

❖ If H ≠ G, then let S1, ..., Sn be the type parameters of G, and let H<U1, ..., Ul>
be the unique invocation of H that is a supertype of G<S1, ..., Sn>, and let V =
H<? extends U1, ..., ? extends Ul>[Sk=U]. Then this algorithm is applied
recursively to the constraint A >> V.

❖ Otherwise, if A is of the form G<..., Xk-1, ? extends W, Xk+1, ...>, this
algorithm is applied recursively to the constraint W >> U.

❖ Otherwise, no constraint is implied on Tj.

• If F has the form G<..., Yk-1, ? super U, Yk+1, ...>, where U is a type expression
that involves Tj, then A is either:
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◆ If A is an instance of a non-generic type, then no constraint is implied on Tj.

◆ If A is an invocation of a generic type declaration H, where H is either G or
superclass or superinterface of G, then:

❖ If H ≠ G, then let S1, ..., Sn be the type parameters of G, and let H<U1, ..., Ul>
be the unique invocation of H that is a supertype of G<S1, ..., Sn>, and let
V = H<? super U1, ..., ? super Ul>[Sk=U]. Then this algorithm is applied
recursively to the constraint A >> V.

❖ Otherwise, if A is of the form G<..., Xk-1, ? super W, ..., Xk+1, ...>, this
algorithm is applied recursively to the constraint W << U.

❖ Otherwise, no constraint is implied on Tj.

Next, for each type variable Tj (1 ≤ j ≤ n), the implied equality constraints are
resolved as follows.

For each implied equality constraint Tj = U or U = Tj:

• If U is not one of the type parameters of the method, then U is the type inferred
for Tj. Then all remaining constraints involving Tj are rewritten such that Tj is
replaced with U. There are necessarily no further equality constraints involving
Tj, and processing continues with the next type parameter, if any.

• Otherwise, if U is Tj, then this constraint carries no information and may be
discarded.

• Otherwise, the constraint is of the form Tj = Tk for j ≠ k. Then all constraints
involving Tj are rewritten such that Tj is replaced with Tk, and processing
continues with the next type variable.

Then, for each remaining type variable Tj, the constraints Tj :> U are considered.
Given that these constraints are Tj :> U1 ... Tj :> Uk, the type of Tj is inferred as
lub(U1 ... Uk), computed as follows:

For a type U, we write ST(U) for the set of supertypes of U, and define the erased
supertype set of U:

EST(U) = { V | W in ST(U) and V = |W| } where |W| is the erasure of W.

The erased candidate set for type parameter Tj, EC, is the intersection of all the
sets EST(U) for each U in U1 ... Uk.

The minimal erased candidate set for Tj is:

MEC = { V | V in EC, and for all W ≠ V in EC, it is not the case that W <: V }
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For any element G of MEC that is a generic type declaration, define the relevant
invocations of G, Inv(G), to be:

Inv(G) = { V | 1 ≤ i ≤ k: V in ST(Ui), V = G<...> }

Define CandidateInvocation(G) = lci(Inv(G)), where lci, the least containing
invocation, is defined:

• lci(S) = lci(e1, ..., en) where ei (1 ≤ i ≤ n) in S

• lci(e1, ..., en) = lci(lci(e1, e2), e3, ..., en)

• lci(G<X1, ..., Xn>, G<Y1, ..., Yn>) = G<lcta(X1, Y1), ..., lcta(Xn, Yn)>

• lci(G<X1, ..., Xn>) = G<lcta(X1), ..., lcta(Xn)>

where lcta() is the the least containing type argument function defined (assuming
U and V are type expressions) as:

• lcta(U, V) = U if U = V, otherwise ? extends lub(U, V)

• lcta(U, ? extends V) = ? extends lub(U, V)

• lcta(U, ? super V) = ? super glb(U, V)

• lcta(? extends U, ? extends V) = ? extends lub(U, V)

• lcta(? extends U, ? super V) = U if U = V, otherwise ?

• lcta(? super U, ? super V) = ? super glb(U, V)

• lcta(U) = ? if U's upper bound is Object, otherwise ? extends lub(U,Object)

where glb() is as defined in (§5.1.10).

Define Candidate(W) = CandidateInvocation(W) if W is generic, W otherwise.

The inferred type for Tj, lub(U1 ... Uk), is Candidate(W1) & ... & Candidate(Wr),
where Wi (1 ≤ i ≤ r) are the elements of MEC.

It is possible that the process above yields an infinite type. This is permissible, and
a Java compiler must recognize such situations and represent them appropriately
using cyclic data structures.

15.12.2.8 Inferring Unresolved Type Arguments

If any of the method's type arguments were not inferred from the types of the actual
arguments, they are now inferred as follows.
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First, if a type parameter T has been inferred as type C, and T's bound includes an
uninferred type variable X, then X may be inferred by unifying T's bound with C's
type arguments. Then:

• If the method result occurs in a context where it will be subject to assignment
conversion (§5.2) to a type S, then let R be the declared result type of the method,
and let R' = R[T1=B(T1) ... Tn=B(Tn)], where B(Ti) is the type inferred for Ti in
the previous section or Ti if no type was inferred.

If S is a reference type, then let S' be S. Otherwise, if S is a primitive type, then
let S' be the result of applying boxing conversion (§5.1.7) to S.

Then, a set of initial constraints consisting of:

◆ the constraint S' >> R', provided R is not void; and

◆ additional constraints Bi[T1=B(T1) ... Tn=B(Tn)] >> Ti, where Bi is the declared
bound of Ti,

◆ additional constraints B(Ti) << Bi[T1=B(T1) ... Tn=B(Tn)], where Bi is the
declared bound of Ti,

◆ for any constraint of the form V >> Ti generated in §15.12.2.7: a constraint
V[T1=B(T1) ... Tn=B(Tn)] >> Ti.

◆ for any constraint of the form Ti = V generated in §15.12.2.7: a constraint Ti
= V[T1=B(T1) ... Tn=B(Tn)].

is created and used to infer constraints on the type arguments using the algorithm
of §15.12.2.7.

Any equality constraints are resolved, and then, for each remaining constraint of
the form Ti <: Uk, the argument Ti is inferred to be glb(U1, ..., Uk) (§5.1.10).

If Ti appears as a type argument in any Uk, then Ti is inferred to be a type variable
X whose upper bound is the parameterized type given by glb(U1[Ti=X], ...,
Uk[Ti=X]) and whose lower bound is the null type.

Any remaining type variable T that has not yet been inferred is then inferred
to have type Object. If a previously inferred type variable P uses T, then P is
inferred to be P[T=Object].

• Otherwise, the unresolved type arguments are inferred by invoking the procedure
described in this section under the assumption that the method result was
assigned to a variable of type Object.
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15.12.3 Compile-Time Step 3: Is the Chosen Method Appropriate?

If there is a most specific method declaration for a method invocation, it is called
the compile-time declaration for the method invocation. Further checks must be
made on the compile-time declaration:

• If the method invocation has, before the left parenthesis, a MethodName of the
form Identifier, and the method is an instance method, then:

◆ If the invocation appears within a static context (§8.1.3), then a compile-time
error occurs. (The reason is that a method invocation of this form cannot
be used to invoke an instance method in places where this (§15.8.3) is not
defined.)

◆ Otherwise, let C be the innermost enclosing class of which the method is a
member. If the invocation is not directly enclosed by C or an inner class of C,
then a compile-time error occurs.

• If the method invocation has, before the left parenthesis, a MethodName of
the form TypeName . Identifier, or if the method invocation, before the left
parenthesis, has the form TypeName . NonWildTypeArguments Identifier, then
the compile-time declaration should be static.

If the compile-time declaration for the method invocation is for an instance
method, then a compile-time error occurs. (The reason is that a method
invocation of this form does not specify a reference to an object that can serve
as this within the instance method.)

• If the method invocation has, before the left parenthesis, the form super .
NonWildTypeArgumentsopt Identifier, then:

◆ If the method is abstract, a compile-time error occurs.

◆ If the method invocation occurs in a static context, a compile-time error occurs.

• If the method invocation has, before the left parenthesis, the form ClassName .
super . NonWildTypeArgumentsopt Identifier, then:

◆ If the method is abstract, a compile-time error occurs.

◆ If the method invocation occurs in a static context, a compile-time error occurs.

◆ Otherwise, let C be the class denoted by ClassName. If the invocation is not
directly enclosed by C or an inner class of C, then a compile-time error occurs.

• If the compile-time declaration for the method invocation is void, then the
method invocation must be a top-level expression, that is, the Expression in
an expression statement (§14.8) or in the ForInit or ForUpdate part of a for
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statement (§14.14), or a compile-time error occurs. (The reason is that such a
method invocation produces no value and so must be used only in a situation
where a value is not needed.)

The following compile-time information is then associated with the method
invocation for use at run time:

• The name of the method.

• The qualifying type of the method invocation (§13.1).

• The number of parameters and the types of the parameters, in order.

• The result type, or void.

• The invocation mode, computed as follows:

◆ If the compile-time declaration has the static modifier, then the invocation
mode is static.

◆ Otherwise, if the compile-time declaration has the private modifier, then the
invocation mode is nonvirtual.

◆ Otherwise, if the part of the method invocation before the left parenthesis is of
the form super . Identifier or of the form ClassName . super . Identifier,
then the invocation mode is super.

◆ Otherwise, if the compile-time declaration is in an interface, then the
invocation mode is interface.

◆ Otherwise, the invocation mode is virtual.

If the compile-time declaration for the method invocation is not void, then the type
of the method invocation expression is the result type specified in the compile-time
declaration.

15.12.4 Runtime Evaluation of Method Invocation

At run time, method invocation requires five steps. First, a target reference may be
computed. Second, the argument expressions are evaluated. Third, the accessibility
of the method to be invoked is checked. Fourth, the actual code for the method to
be executed is located. Fifth, a new activation frame is created, synchronization is
performed if necessary, and control is transferred to the method code.
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15.12.4.1 Compute Target Reference (If Necessary)

There are several cases to consider, depending on which of the five productions for
MethodInvocation (§15.12) is involved:

1. If the first production for MethodInvocation, which includes a MethodName,
is involved, then there are three subcases:

• If the MethodName is a simple name, that is, just an Identifier, then there
are two subcases:

◆ If the invocation mode is static, then there is no target reference.

◆ Otherwise, let T be the enclosing type declaration of which the method is
a member, and let n be an integer such that T is the n'th lexically enclosing
type declaration (§8.1.3) of the class whose declaration immediately
contains the method invocation. Then the target reference is the n'th
lexically enclosing instance (§8.1.3) of this.

It is a compile-time error if the n'th lexically enclosing instance (§8.1.3)
of this does not exist.

• If the MethodName is a qualified name of the form TypeName . Identifier,
then there is no target reference.

• If the MethodName is a qualified name of the form FieldName . Identifier,
then there are two subcases:

◆ If the invocation mode is static, then there is no target reference. The
expression FieldName is evaluated, but the result is then discarded.

◆ Otherwise, the target reference is the value of the expression FieldName.

2. If the second production for MethodInvocation, which includes a Primary, is
involved, then there are two subcases:

• If the invocation mode is static, then there is no target reference. The
expression Primary is evaluated, but the result is then discarded.

• Otherwise, the expression Primary is evaluated and the result is used as the
target reference.

In either case, if the evaluation of the Primary expression completes abruptly,
then no part of any argument expression appears to have been evaluated, and
the method invocation completes abruptly for the same reason.

3. If the third production for MethodInvocation, which includes the keyword
super, is involved, then the target reference is the value of this.
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4. If the fourth production for MethodInvocation, ClassName . super, is
involved, then the target reference is the value of ClassName.this.

5. If the fifth production for MethodInvocation, beginning with TypeName .
NonWildTypeArguments, is involved, then there is no target reference.

15.12.4.2 Evaluate Arguments

The process of evaluating of the argument list differs, depending on whether the
method being invoked is a fixed arity method or a variable arity method (§8.4.1).

If the method being invoked is a variable arity method m, it necessarily has n > 0
formal parameters. The final formal parameter of m necessarily has type T[] for
some T, and m is necessarily being invoked with k ≥ 0 actual argument expressions.

If m is being invoked with k ≠ n actual argument expressions, or, if m is being
invoked with k = n actual argument expressions and the type of the k'th argument
expression is not assignment compatible with T[], then the argument list (e1, ...,
en-1, en, ..., ek) is evaluated as if it were written as (e1, ..., en-1, new T[] { en, ..., ek }).

The argument expressions (possibly rewritten as described above) are now
evaluated to yield argument values. Each argument value corresponds to exactly
one of the method's n formal parameters.

The argument expressions, if any, are evaluated in order, from left to right. If the
evaluation of any argument expression completes abruptly, then no part of any
argument expression to its right appears to have been evaluated, and the method
invocation completes abruptly for the same reason. The result of evaluating the
j'th argument expression is the j'th argument value, for 1 ≤ j ≤ n. Evaluation then
continues, using the argument values, as described below.

15.12.4.3 Check Accessibility of Type and Method

Let C be the class containing the method invocation, and let T be the qualifying
type of the method invocation (§13.1), and let m be the name of the method as
determined at compile time (§15.12.3).

An implementation of the Java programming language must ensure, as part of
linkage, that the method m still exists in the type T. If this is not true, then a
NoSuchMethodError (which is a subclass of IncompatibleClassChangeError)
occurs.

If the invocation mode is interface, then the implementation must also
check that the target reference type still implements the specified interface.
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If the target reference type does not still implement the interface, then an
IncompatibleClassChangeError occurs.

The implementation must also ensure, during linkage, that the type T and the
method m are accessible. For the type T:

• If T is in the same package as C, then T is accessible.

• If T is in a different package than C, and T is public, then T is accessible.

• If T is in a different package than C, and T is protected, then T is accessible if
and only if C is a subclass of T.

For the method m:

• If m is public, then m is accessible. (All members of interfaces are public (§9.2).)

• If m is protected, then m is accessible if and only if either T is in the same package
as C, or C is T or a subclass of T.

• If m has default (package) access, then m is accessible if and only if T is in the
same package as C.

• If m is private, then m is accessible if and only if C is T, or C encloses T, or T
encloses C, or T and C are both enclosed by a third class.

If either T or m is not accessible, then an IllegalAccessError occurs (§12.3).

15.12.4.4 Locate Method to Invoke

The strategy for method lookup depends on the invocation mode.

If the invocation mode is static, no target reference is needed and overriding is
not allowed. Method m of class T is the one to be invoked.

Otherwise, an instance method is to be invoked and there is a target reference.
If the target reference is null, a NullPointerException is thrown at this point.
Otherwise, the target reference is said to refer to a target object and will be used as
the value of the keyword this in the invoked method. The other four possibilities
for the invocation mode are then considered.

If the invocation mode is nonvirtual, overriding is not allowed. Method m of class
T is the one to be invoked.

Otherwise, the invocation mode is interface, virtual, or super, and overriding
may occur. A dynamic method lookup is used. The dynamic lookup process starts
from a class S, determined as follows:
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• If the invocation mode is interface or virtual, then S is initially the actual
run-time class R of the target object.

• If the invocation mode is super, then S is initially the qualifying type (§13.1)
of the method invocation.

The dynamic method lookup uses the following procedure to search class S, and
then the superclasses of class S, as necessary, for method m.

Let X be the compile-time type of the target reference of the method invocation.
Then:

1. If class S contains a declaration for a non-abstract method named m with
the same descriptor (same number of parameters, the same parameter types,
and the same return type) required by the method invocation as determined at
compile time (§15.12.3), then:

• If the invocation mode is super or interface, then this is the method to be
invoked, and the procedure terminates.

• If the invocation mode is virtual, and the declaration in S overrides
(§8.4.8.1) X.m, then the method declared in S is the method to be invoked,
and the procedure terminates.

• If the invocation mode is virtual, and the declaration in S does
not override X.m, and moreover X.m is declared abstract, then an
AbstractMethodError is thrown.

2. Otherwise, if S has a superclass, this same lookup procedure is performed
recursively using the direct superclass of S in place of S; the method to be
invoked is the result of the recursive invocation of this lookup procedure.

The above procedure (if it terminates without error) will find a non-abstract,
accessible method to invoke, provided that all classes and interfaces in the program
have been consistently compiled. However, if this is not the case, then various
errors may occur. The specification of the behavior of a Java virtual machine under
these circumstances is given by The Java Virtual Machine Specification.

15.12.4.5 Create Frame, Synchronize, Transfer Control

A method m in some class S has been identified as the one to be invoked.

Now a new activation frame is created, containing the target reference (if any) and
the argument values (if any), as well as enough space for the local variables and
stack for the method to be invoked and any other bookkeeping information that may
be required by the implementation (stack pointer, program counter, reference to
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previous activation frame, and the like). If there is not sufficient memory available
to create such an activation frame, a StackOverflowError is thrown.

The newly created activation frame becomes the current activation frame. The
effect of this is to assign the argument values to corresponding freshly created
parameter variables of the method, and to make the target reference available as
this, if there is a target reference. Before each argument value is assigned to its
corresponding parameter variable, it is subjected to method invocation conversion
(§5.3), which includes any required value set conversion (§5.1.13).

If the erasure of the type of the method being invoked differs in its signature
from the erasure of the type of the compile-time declaration for the method
invocation (§15.12.3), then if any of the argument values is an object which is not
an instance of a subclass or subinterface of the erasure of the corresponding formal
parameter type in the compile-time declaration for the method invocation, then a
ClassCastException is thrown.

If the method m is a native method but the necessary native, implementation-
dependent binary code has not been loaded or otherwise cannot be dynamically
linked, then an UnsatisfiedLinkError is thrown.

If the method m is not synchronized, control is transferred to the body of the
method m to be invoked.

If the method m is synchronized, then an object must be locked before the transfer
of control. No further progress can be made until the current thread can obtain
the lock. If there is a target reference, then the target object must be locked;
otherwise the Class object for class S, the class of the method m, must be locked.
Control is then transferred to the body of the method m to be invoked. The object is
automatically unlocked when execution of the body of the method has completed,
whether normally or abruptly. The locking and unlocking behavior is exactly as if
the body of the method were embedded in a synchronized statement (§14.19).

15.13 Array Access Expressions

An array access expression refers to a variable that is a component of an array.

ArrayAccess:
    ExpressionName [ Expression ]
    PrimaryNoNewArray [ Expression ]
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An array access expression contains two subexpressions, the array reference
expression (before the left bracket) and the index expression (within the brackets).
Note that the array reference expression may be a name or any primary expression
that is not an array creation expression (§15.10).

The type of the array reference expression must be an array type (call it T[], an
array whose components are of type T), or a compile-time error occurs.

The type of the array access expression is the result of applying capture conversion
(§5.1.10) to T.

The index expression undergoes unary numeric promotion (§5.6.1); the promoted
type must be int.

The result of an array reference is a variable of type T, namely the variable within
the array selected by the value of the index expression.

This resulting variable, which is a component of the array, is never considered
final, even if the array reference was obtained from a final variable.

15.13.1 Runtime Evaluation of Array Access

An array access expression is evaluated using the following procedure:

• First, the array reference expression is evaluated. If this evaluation completes
abruptly, then the array access completes abruptly for the same reason and the
index expression is not evaluated.

• Otherwise, the index expression is evaluated. If this evaluation completes
abruptly, then the array access completes abruptly for the same reason.

• Otherwise, if the value of the array reference expression is null, then a
NullPointerException is thrown.

• Otherwise, the value of the array reference expression indeed refers to an array.
If the value of the index expression is less than zero, or greater than or equal to
the array's length, then an ArrayIndexOutOfBoundsException is thrown.

• Otherwise, the result of the array access is the variable of type T, within the array,
selected by the value of the index expression.

Note that this resulting variable, which is a component of the array, is never
considered final, even if the array reference expression is a final variable.
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15.14 Postfix Expressions

Postfix expressions include uses of the postfix ++ and -- operators. Also, as
discussed in §15.8, names are not considered to be primary expressions, but are
handled separately in the grammar to avoid certain ambiguities. They become
interchangeable only here, at the level of precedence of postfix expressions.

PostfixExpression:
    Primary
    ExpressionName
    PostIncrementExpression
    PostDecrementExpression

15.14.1 Expression Names

The rules for evaluating expression names are given in §6.5.6.

15.14.2 Postfix Increment Operator ++

PostIncrementExpression:
    PostfixExpression ++

A postfix expression followed by a ++ operator is a postfix increment expression.

The result of the postfix expression must be a variable of a type that is convertible
(§5.1.8) to a numeric type, or a compile-time error occurs.

The type of the postfix increment expression is the type of the variable. The result
of the postfix increment expression is not a variable, but a value.

At run time, if evaluation of the operand expression completes abruptly, then
the postfix increment expression completes abruptly for the same reason and no
incrementation occurs. Otherwise, the value 1 is added to the value of the variable
and the sum is stored back into the variable. Before the addition, binary numeric
promotion (§5.6.2) is performed on the value 1 and the value of the variable. If
necessary, the sum is narrowed by a narrowing primitive conversion (§5.1.3) and/
or subjected to boxing conversion (§5.1.7) to the type of the variable before it is
stored. The value of the postfix increment expression is the value of the variable
before the new value is stored.

Note that the binary numeric promotion mentioned above may include unboxing
conversion (§5.1.8) and value set conversion (§5.1.13). If necessary, value set
conversion is applied to the sum prior to its being stored in the variable.
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A variable that is declared final cannot be incremented because when an access of
such a final variable is used as an expression, the result is a value, not a variable.
Thus, it cannot be used as the operand of a postfix increment operator.

15.14.3 Postfix Decrement Operator --

PostDecrementExpression:
    PostfixExpression --

A postfix expression followed by a -- operator is a postfix decrement expression.

The result of the postfix expression must be a variable of a type that is convertible
(§5.1.8) to a numeric type, or a compile-time error occurs.

The type of the postfix decrement expression is the type of the variable. The result
of the postfix decrement expression is not a variable, but a value.

At run time, if evaluation of the operand expression completes abruptly, then
the postfix decrement expression completes abruptly for the same reason and no
decrementation occurs. Otherwise, the value 1 is subtracted from the value of the
variable and the difference is stored back into the variable. Before the subtraction,
binary numeric promotion (§5.6.2) is performed on the value 1 and the value of
the variable. If necessary, the difference is narrowed by a narrowing primitive
conversion (§5.1.3) and/or subjected to boxing conversion (§5.1.7) to the type of
the variable before it is stored. The value of the postfix decrement expression is the
value of the variable before the new value is stored.

Note that the binary numeric promotion mentioned above may include unboxing
conversion (§5.1.8) and value set conversion (§5.1.13). If necessary, value set
conversion is applied to the difference prior to its being stored in the variable.

A variable that is declared final cannot be decremented because when an access of
such a final variable is used as an expression, the result is a value, not a variable.
Thus, it cannot be used as the operand of a postfix decrement operator.

15.15 Unary Operators

The unary operators include +, -, ++, --, ~, !, and cast operators.

Expressions with unary operators group right-to-left, so that -~x means the same
as -(~x).
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UnaryExpression:
    PreIncrementExpression
    PreDecrementExpression
    + UnaryExpression
    - UnaryExpression
    UnaryExpressionNotPlusMinus

PreIncrementExpression:
    ++ UnaryExpression

PreDecrementExpression:
    -- UnaryExpression

UnaryExpressionNotPlusMinus:
    PostfixExpression
    ~ UnaryExpression
    ! UnaryExpression
    CastExpression

15.15.1 Prefix Increment Operator ++

A unary expression preceded by a ++ operator is a prefix increment expression.

The result of the unary expression must be a variable of a type that is convertible
(§5.1.8) to a numeric type, or a compile-time error occurs.

The type of the prefix increment expression is the type of the variable. The result
of the prefix increment expression is not a variable, but a value.

At run time, if evaluation of the operand expression completes abruptly, then
the prefix increment expression completes abruptly for the same reason and no
incrementation occurs. Otherwise, the value 1 is added to the value of the variable
and the sum is stored back into the variable. Before the addition, binary numeric
promotion (§5.6.2) is performed on the value 1 and the value of the variable. If
necessary, the sum is narrowed by a narrowing primitive conversion (§5.1.3) and/
or subjected to boxing conversion (§5.1.7) to the type of the variable before it is
stored. The value of the prefix increment expression is the value of the variable
after the new value is stored.

Note that the binary numeric promotion mentioned above may include unboxing
conversion (§5.1.8) and value set conversion (§5.1.13). If necessary, value set
conversion is applied to the sum prior to its being stored in the variable.



15.15.2 Prefix Decrement Operator -- EXPRESSIONS

304

A variable that is declared final cannot be incremented because when an access of
such a final variable is used as an expression, the result is a value, not a variable.
Thus, it cannot be used as the operand of a prefix increment operator.

15.15.2 Prefix Decrement Operator --

A unary expression preceded by a -- operator is a prefix decrement expression.

The result of the unary expression must be a variable of a type that is convertible
(§5.1.8) to a numeric type, or a compile-time error occurs.

The type of the prefix decrement expression is the type of the variable. The result
of the prefix decrement expression is not a variable, but a value.

At run time, if evaluation of the operand expression completes abruptly, then
the prefix decrement expression completes abruptly for the same reason and no
decrementation occurs. Otherwise, the value 1 is subtracted from the value of the
variable and the difference is stored back into the variable. Before the subtraction,
binary numeric promotion (§5.6.2) is performed on the value 1 and the value of
the variable. If necessary, the difference is narrowed by a narrowing primitive
conversion (§5.1.3) and/or subjected to boxing conversion (§5.1.7) to the type of
the variable before it is stored. The value of the prefix decrement expression is the
value of the variable after the new value is stored.

Note that the binary numeric promotion mentioned above may include unboxing
conversion (§5.1.8) and value set conversion (§5.1.13). If necessary, format
conversion is applied to the difference prior to its being stored in the variable.

A variable that is declared final cannot be decremented because when an access of
such a final variable is used as an expression, the result is a value, not a variable.
Thus, it cannot be used as the operand of a prefix decrement operator.

15.15.3 Unary Plus Operator +

The type of the operand expression of the unary + operator must be a type that is
convertible (§5.1.8) to a primitive numeric type, or a compile-time error occurs.

Unary numeric promotion (§5.6.1) is performed on the operand. The type of the
unary plus expression is the promoted type of the operand. The result of the unary
plus expression is not a variable, but a value, even if the result of the operand
expression is a variable.

At run time, the value of the unary plus expression is the promoted value of the
operand.
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15.15.4 Unary Minus Operator -

The type of the operand expression of the unary - operator must be a type that is
convertible (§5.1.8) to a primitive numeric type, or a compile-time error occurs.

Unary numeric promotion (§5.6.1) is performed on the operand. The type of the
unary minus expression is the promoted type of the operand.

Note that unary numeric promotion performs value set conversion (§5.1.13).
Whatever value set the promoted operand value is drawn from, the unary negation
operation is carried out and the result is drawn from that same value set. That result
is then subject to further value set conversion.

At run time, the value of the unary minus expression is the arithmetic negation of
the promoted value of the operand.

For integer values, negation is the same as subtraction from zero. The Java
programming language uses two's-complement representation for integers, and the
range of two's-complement values is not symmetric, so negation of the maximum
negative int or long results in that same maximum negative number. Overflow
occurs in this case, but no exception is thrown. For all integer values x, -x equals
(~x)+1.

For floating-point values, negation is not the same as subtraction from zero, because
if x is +0.0, then 0.0-x is +0.0, but -x is -0.0. Unary minus merely inverts the
sign of a floating-point number. Special cases of interest:

• If the operand is NaN, the result is NaN (recall that NaN has no sign).

• If the operand is an infinity, the result is the infinity of opposite sign.

• If the operand is a zero, the result is the zero of opposite sign.

15.15.5 Bitwise Complement Operator ~

The type of the operand expression of the unary ~ operator must be a type that is
convertible (§5.1.8) to a primitive integral type, or a compile-time error occurs.

Unary numeric promotion (§5.6.1) is performed on the operand. The type of the
unary bitwise complement expression is the promoted type of the operand.

At run time, the value of the unary bitwise complement expression is the bitwise
complement of the promoted value of the operand; note that, in all cases, ~x equals
(-x)-1.
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15.15.6 Logical Complement Operator !

The type of the operand expression of the unary ! operator must be boolean or
Boolean, or a compile-time error occurs.

The type of the unary logical complement expression is boolean.

At run time, the operand is subject to unboxing conversion (§5.1.8) if necessary;
the value of the unary logical complement expression is true if the (possibly
converted) operand value is false, and false if the (possibly converted) operand
value is true.

15.16 Cast Expressions

A cast expression converts, at run time, a value of one numeric type to a similar
value of another numeric type; or confirms, at compile time, that the type of an
expression is boolean; or checks, at run time, that a reference value refers to an
object whose class is compatible with a specified reference type.

CastExpression:
    ( PrimitiveType  ) UnaryExpression
    ( ReferenceType ) UnaryExpressionNotPlusMinus

The type of a cast expression is the result of applying capture conversion (§5.1.10)
to the type whose name appears within the parentheses. (The parentheses and the
type they contain are sometimes called the cast operator.)

The result of a cast expression is not a variable, but a value, even if the result of
the operand expression is a variable.

A cast operator has no effect on the choice of value set (§4.2.3) for a value of type
float or type double. Consequently, a cast to type float within an expression that
is not FP-strict (§15.4) does not necessarily cause its value to be converted to an
element of the float value set, and a cast to type double within an expression that
is not FP-strict does not necessarily cause its value to be converted to an element
of the double value set.

It is a compile-time error if the compile-time type of the operand may never be cast
to the type specified by the cast operator according to the rules of casting conversion
(§5.5). Otherwise, at run-time, the operand value is converted (if necessary) by
casting conversion to the type specified by the cast operator.

A ClassCastException is thrown if a cast is found at run time to be impermissible.
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15.17 Multiplicative Operators

The operators *, /, and % are called the multiplicative operators. They have the
same precedence and are syntactically left-associative (they group left-to-right).

MultiplicativeExpression:
    UnaryExpression
    MultiplicativeExpression * UnaryExpression
    MultiplicativeExpression / UnaryExpression
    MultiplicativeExpression % UnaryExpression

The type of each of the operands of a multiplicative operator must be a type that is
convertible (§5.1.8) to a primitive numeric type, or a compile-time error occurs.

Binary numeric promotion is performed on the operands (§5.6.2).

The type of a multiplicative expression is the promoted type of its operands.

If the promoted type is int or long, then integer arithmetic is performed.

If the promoted type is float or double, then floating-point arithmetic is
performed.

15.17.1 Multiplication Operator *

The binary * operator performs multiplication, producing the product of its
operands.

Multiplication is a commutative operation if the operand expressions have no side
effects.

Integer multiplication is associative when the operands are all of the same type, but
floating-point multiplication is not associative.

If an integer multiplication overflows, then the result is the low-order bits of the
mathematical product as represented in some sufficiently large two's-complement
format. As a result, if overflow occurs, then the sign of the result may not be the
same as the sign of the mathematical product of the two operand values.

The result of a floating-point multiplication is determined by the rules of IEEE 754
arithmetic:

• If either operand is NaN, the result is NaN.

• If the result is not NaN, the sign of the result is positive if both operands have
the same sign, and negative if the operands have different signs.
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• Multiplication of an infinity by a zero results in NaN.

• Multiplication of an infinity by a finite value results in a signed infinity. The sign
is determined by the rule stated above.

• In the remaining cases, where neither an infinity nor NaN is involved, the exact
mathematical product is computed. A floating-point value set is then chosen:

◆ If the multiplication expression is FP-strict (§15.4):

❖ If the type of the multiplication expression is float, then the float value set
must be chosen.

❖ If the type of the multiplication expression is double, then the double value
set must be chosen.

◆ If the multiplication expression is not FP-strict:

❖ If the type of the multiplication expression is float, then either the float
value set or the float-extended-exponent value set may be chosen, at the
whim of the implementation.

❖ If the type of the multiplication expression is double, then either the double
value set or the double-extended-exponent value set may be chosen, at the
whim of the implementation.

Next, a value must be chosen from the chosen value set to represent the product.

If the magnitude of the product is too large to represent, we say the operation
overflows; the result is then an infinity of appropriate sign.

Otherwise, the product is rounded to the nearest value in the chosen value
set using IEEE 754 round-to-nearest mode. The Java programming language
requires support of gradual underflow as defined by IEEE 754 (§4.2.4).

Despite the fact that overflow, underflow, or loss of information may occur,
evaluation of a multiplication operator * never throws a run-time exception.

15.17.2 Division Operator /

The binary / operator performs division, producing the quotient of its operands.
The left-hand operand is the dividend and the right-hand operand is the divisor.

Integer division rounds toward 0. That is, the quotient produced for operands n and
d that are integers after binary numeric promotion (§5.6.2) is an integer value q
whose magnitude is as large as possible while satisfying |d · q| ≤ |n|. Moreover, q
is positive when |n| ≥ |d| and n and d have the same sign, but q is negative when
|n| ≥ |d| and n and d have opposite signs.
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There is one special case that does not satisfy this rule: if the dividend is the negative
integer of largest possible magnitude for its type, and the divisor is -1, then integer
overflow occurs and the result is equal to the dividend. Despite the overflow, no
exception is thrown in this case. On the other hand, if the value of the divisor in an
integer division is 0, then an ArithmeticException is thrown.

The result of a floating-point division is determined by the rules of IEEE 754
arithmetic:

• If either operand is NaN, the result is NaN.

• If the result is not NaN, the sign of the result is positive if both operands have
the same sign, and negative if the operands have different signs.

• Division of an infinity by an infinity results in NaN.

• Division of an infinity by a finite value results in a signed infinity. The sign is
determined by the rule stated above.

• Division of a finite value by an infinity results in a signed zero. The sign is
determined by the rule stated above.

• Division of a zero by a zero results in NaN; division of zero by any other finite
value results in a signed zero. The sign is determined by the rule stated above.

• Division of a nonzero finite value by a zero results in a signed infinity. The sign
is determined by the rule stated above.

• In the remaining cases, where neither an infinity nor NaN is involved, the exact
mathematical quotient is computed. A floating-point value set is then chosen:

◆ If the division expression is FP-strict (§15.4):

❖ If the type of the division expression is float, then the float value set must
be chosen.

❖ If the type of the division expression is double, then the double value set
must be chosen.

◆ If the division expression is not FP-strict:

❖ If the type of the division expression is float, then either the float value
set or the float-extended-exponent value set may be chosen, at the whim of
the implementation.

❖ If the type of the division expression is double, then either the double value
set or the double-extended-exponent value set may be chosen, at the whim
of the implementation.
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Next, a value must be chosen from the chosen value set to represent the quotient.

If the magnitude of the quotient is too large to represent, we say the operation
overflows; the result is then an infinity of appropriate sign.

Otherwise, the quotient is rounded to the nearest value in the chosen value
set using IEEE 754 round-to-nearest mode. The Java programming language
requires support of gradual underflow as defined by IEEE 754 (§4.2.4).

Despite the fact that overflow, underflow, division by zero, or loss of information
may occur, evaluation of a floating-point division operator / never throws a run-
time exception.

15.17.3 Remainder Operator %

The binary % operator is said to yield the remainder of its operands from an implied
division; the left-hand operand is the dividend and the right-hand operand is the
divisor.

In C and C++, the remainder operator accepts only integral operands, but in the
Java programming language, it also accepts floating-point operands.

The remainder operation for operands that are integers after binary numeric
promotion (§5.6.2) produces a result value such that (a/b)*b+(a%b) is equal to a.

If the value of the divisor for an integer remainder operator is 0, then an
ArithmeticException is thrown.

The result of a floating-point remainder operation as computed by the % operator
is not the same as that produced by the remainder operation defined by IEEE
754. The IEEE 754 remainder operation computes the remainder from a rounding
division, not a truncating division, and so its behavior is not analogous to that
of the usual integer remainder operator. Instead, the Java programming language
defines % on floating-point operations to behave in a manner analogous to that of
the integer remainder operator; this may be compared with the C library function
fmod. The IEEE 754 remainder operation may be computed by the library routine
Math.IEEEremainder.

The result of a floating-point remainder operation is determined by the rules of
IEEE 754 arithmetic:

• If either operand is NaN, the result is NaN.

• If the result is not NaN, the sign of the result equals the sign of the dividend.

• If the dividend is an infinity, or the divisor is a zero, or both, the result is NaN.



EXPRESSIONS Additive Operators 15.18

311

• If the dividend is finite and the divisor is an infinity, the result equals the
dividend.

• If the dividend is a zero and the divisor is finite, the result equals the dividend.

• In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved,
the floating-point remainder r from the division of a dividend n by a divisor d
is defined by the mathematical relation r = n - (d · q) where q is an integer that
is negative only if n/d is negative and positive only if n/d is positive, and whose
magnitude is as large as possible without exceeding the magnitude of the true
mathematical quotient of n and d.

Evaluation of a floating-point remainder operator % never throws a run-time
exception, even if the right-hand operand is zero. Overflow, underflow, or loss of
precision cannot occur.

15.18 Additive Operators

The operators + and - are called the additive operators. They have the same
precedence and are syntactically left-associative (they group left-to-right).

AdditiveExpression:
    MultiplicativeExpression
    AdditiveExpression + MultiplicativeExpression
    AdditiveExpression - MultiplicativeExpression

If the type of either operand of a + operator is String, then the operation is string
concatenation.

Otherwise, the type of each of the operands of the + operator must be a type that is
convertible (§5.1.8) to a primitive numeric type, or a compile-time error occurs.

In every case, the type of each of the operands of the binary - operator must be
a type that is convertible (§5.1.8) to a primitive numeric type, or a compile-time
error occurs.

15.18.1 String Concatenation Operator +

If only one operand expression is of type String, then string conversion (§5.1.11)
is performed on the other operand to produce a string at run time. The result is a
reference to a String object (newly created, unless the expression is a compile-
time constant expression (§15.28)) that is the concatenation of the two operand
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strings. The characters of the left-hand operand precede the characters of the right-
hand operand in the newly created string.

If an operand of type String is null, then the string "null" is used instead of that
operand.

15.18.2 Additive Operators (+ and -) for Numeric Types

The binary + operator performs addition when applied to two operands of numeric
type, producing the sum of the operands.

The binary - operator performs subtraction, producing the difference of two
numeric operands.

Binary numeric promotion is performed on the operands (§5.6.2).

The type of an additive expression on numeric operands is the promoted type of
its operands:

• If this promoted type is int or long, then integer arithmetic is performed.

• If this promoted type is float or double, then floating-point arithmetic is
performed.

Addition is a commutative operation if the operand expressions have no side
effects.

Integer addition is associative when the operands are all of the same type, but
floating-point addition is not associative.

If an integer addition overflows, then the result is the low-order bits of the
mathematical sum as represented in some sufficiently large two's-complement
format. If overflow occurs, then the sign of the result is not the same as the sign of
the mathematical sum of the two operand values.

The result of a floating-point addition is determined using the following rules of
IEEE 754 arithmetic:

• If either operand is NaN, the result is NaN.

• The sum of two infinities of opposite sign is NaN.

• The sum of two infinities of the same sign is the infinity of that sign.

• The sum of an infinity and a finite value is equal to the infinite operand.

• The sum of two zeros of opposite sign is positive zero.

• The sum of two zeros of the same sign is the zero of that sign.
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• The sum of a zero and a nonzero finite value is equal to the nonzero operand.

• The sum of two nonzero finite values of the same magnitude and opposite sign
is positive zero.

• In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved,
and the operands have the same sign or have different magnitudes, the exact
mathematical sum is computed. A floating-point value set is then chosen:

◆ If the addition expression is FP-strict (§15.4):

❖ If the type of the addition expression is float, then the float value set must
be chosen.

❖ If the type of the addition expression is double, then the double value set
must be chosen.

◆ If the addition expression is not FP-strict:

❖ If the type of the addition expression is float, then either the float value
set or the float-extended-exponent value set may be chosen, at the whim of
the implementation.

❖ If the type of the addition expression is double, then either the double value
set or the double-extended-exponent value set may be chosen, at the whim
of the implementation.

Next, a value must be chosen from the chosen value set to represent the sum.

If the magnitude of the sum is too large to represent, we say the operation
overflows; the result is then an infinity of appropriate sign.

Otherwise, the sum is rounded to the nearest value in the chosen value set using
IEEE 754 round-to-nearest mode. The Java programming language requires
support of gradual underflow as defined by IEEE 754 (§4.2.4).

The binary - operator performs subtraction when applied to two operands of
numeric type, producing the difference of its operands; the left-hand operand is the
minuend and the right-hand operand is the subtrahend.

For both integer and floating-point subtraction, it is always the case that a-b
produces the same result as a+(-b).

Note that, for integer values, subtraction from zero is the same as negation.
However, for floating-point operands, subtraction from zero is not the same as
negation, because if x is +0.0, then 0.0-x is +0.0, but -x is -0.0.

Despite the fact that overflow, underflow, or loss of information may occur,
evaluation of a numeric additive operator never throws a run-time exception.
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15.19 Shift Operators

The shift operators include left shift <<, signed right shift >>, and unsigned right
shift >>>; they are syntactically left-associative (they group left-to-right). The left-
hand operand of a shift operator is the value to be shifted; the right-hand operand
specifies the shift distance.

ShiftExpression:
    AdditiveExpression
    ShiftExpression << AdditiveExpression
    ShiftExpression >> AdditiveExpression
    ShiftExpression >>> AdditiveExpression

The type of each of the operands of a shift operator must be a type that is convertible
(§5.1.8) to a primitive integral type, or a compile-time error occurs.

Binary numeric promotion (§5.6.2) is not performed on the operands; rather, unary
numeric promotion (§5.6.1) is performed on each operand separately.

The type of the shift expression is the promoted type of the left-hand operand.

If the promoted type of the left-hand operand is int, only the five lowest-order bits
of the right-hand operand are used as the shift distance.

It is as if the right-hand operand were subjected to a bitwise logical AND operator
& (§15.22.1) with the mask value 0x1f. The shift distance actually used is therefore
always in the range 0 to 31, inclusive.

If the promoted type of the left-hand operand is long, then only the six lowest-
order bits of the right-hand operand are used as the shift distance.

It is as if the right-hand operand were subjected to a bitwise logical AND operator
& (§15.22.1) with the mask value 0x3f. The shift distance actually used is therefore
always in the range 0 to 63, inclusive.

At run time, shift operations are performed on the two's-complement integer
representation of the value of the left operand.

The value of n << s is n left-shifted s bit positions; this is equivalent (even if
overflow occurs) to multiplication by two to the power s.

The value of n >> s is n right-shifted s bit positions with sign-extension. The
resulting value is ⌊ n / 2s ⌋. For non-negative values of n, this is equivalent to
truncating integer division, as computed by the integer division operator /, by two
to the power s.
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The value of n >>> s is n right-shifted s bit positions with zero-extension.

• If n is positive, then the result is the same as that of n >> s.

• If n is negative and the type of the left-hand operand is int, then the result is
equal to that of the expression (n >> s)+(2 << ~s).

• If n is negative and the type of the left-hand operand is long, then the result is
equal to that of the expression (n >> s)+(2L << ~s).

15.20 Relational Operators

The relational operators are syntactically left-associative (they group left-to-right),
but this fact is not useful. For example, a<b<c parses as (a<b)<c, which is always
a compile-time error, because the type of a<b is always boolean and < is not an
operator on boolean values.

RelationalExpression:
    ShiftExpression
    RelationalExpression < ShiftExpression
    RelationalExpression > ShiftExpression
    RelationalExpression <= ShiftExpression
    RelationalExpression >= ShiftExpression
    RelationalExpression instanceof ReferenceType

The type of a relational expression is always boolean.

15.20.1 Numerical Comparison Operators <, <=, >, and >=

The type of each of the operands of a numerical comparison operator must be a
type that is convertible (§5.1.8) to a primitive numeric type, or a compile-time error
occurs.

Binary numeric promotion is performed on the operands (§5.6.2).

If the promoted type of the operands is int or long, then signed integer comparison
is performed.

If the promoted type is float or double, then floating-point comparison is
performed.

Comparison is carried out accurately on floating-point values, no matter what value
sets their representing values were drawn from.
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The result of a floating-point comparison, as determined by the specification of the
IEEE 754 standard, is:

• If either operand is NaN, then the result is false.

• All values other than NaN are ordered, with negative infinity less than all finite
values, and positive infinity greater than all finite values.

• Positive zero and negative zero are considered equal.

Subject to these considerations for floating-point numbers, the following rules then
hold for integer operands or for floating-point operands other than NaN:

• The value produced by the < operator is true if the value of the left-hand operand
is less than the value of the right-hand operand, and otherwise is false.

• The value produced by the <= operator is true if the value of the left-hand
operand is less than or equal to the value of the right-hand operand, and otherwise
is false.

• The value produced by the > operator is true if the value of the left-hand operand
is greater than the value of the right-hand operand, and otherwise is false.

• The value produced by the >= operator is true if the value of the left-hand
operand is greater than or equal to the value of the right-hand operand, and
otherwise is false.

15.20.2 Type Comparison Operator instanceof

The type of a RelationalExpression operand of the instanceof operator must be
a reference type or the null type; otherwise, a compile-time error occurs.

It is a compile-time error if the ReferenceType mentioned after the instanceof
operator does not denote a reference type that is reifiable (§4.7).

At run time, the result of the instanceof operator is true if the value of the
RelationalExpression is not null and the reference could be cast (§15.16) to the
ReferenceType without raising a ClassCastException. Otherwise the result is
false.

If a cast of the RelationalExpression to the ReferenceType would be rejected as a
compile-time error, then the instanceof relational expression likewise produces
a compile-time error. In such a situation, the result of the instanceof expression
could never be true.
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15.21 Equality Operators

The equality operators are syntactically left-associative (they group left-to-right),
but this fact is essentially never useful. For example, a==b==c parses as (a==b)==c.
The result type of a==b is always boolean, and c must therefore be of type boolean
or a compile-time error occurs. Thus, a==b==c does not test to see whether a, b,
and c are all equal.

EqualityExpression:
    RelationalExpression
    EqualityExpression == RelationalExpression
    EqualityExpression != RelationalExpression

The == (equal to) and the != (not equal to) operators are analogous to the relational
operators except for their lower precedence. Thus, a<b==c<d is true whenever a<b
and c<d have the same truth value.

The equality operators may be used to compare two operands that are convertible
(§5.1.8) to numeric type, or two operands of type boolean or Boolean, or two
operands that are each of either reference type or the null type. All other cases result
in a compile-time error.

The type of an equality expression is always boolean.

In all cases, a!=b produces the same result as !(a==b).

The equality operators are commutative if the operand expressions have no side
effects.

15.21.1 Numerical Equality Operators == and !=

If the operands of an equality operator are both of numeric type, or one is of
numeric type and the other is convertible (§5.1.8) to numeric type, binary numeric
promotion is performed on the operands (§5.6.2).

If the promoted type of the operands is int or long, then an integer equality test
is performed.

If the promoted type is float or double, then a floating-point equality test is
performed.

Comparison is carried out accurately on floating-point values, no matter what value
sets their representing values were drawn from.
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Floating-point equality testing is performed in accordance with the rules of the
IEEE 754 standard:

• If either operand is NaN, then the result of == is false but the result of != is true.

Indeed, the test x!=x is true if and only if the value of x is NaN.

• Positive zero and negative zero are considered equal.

• Otherwise, two distinct floating-point values are considered unequal by the
equality operators.

In particular, there is one value representing positive infinity and one value
representing negative infinity; each compares equal only to itself, and each
compares unequal to all other values.

Subject to these considerations for floating-point numbers, the following rules then
hold for integer operands or for floating-point operands other than NaN:

• The value produced by the == operator is true if the value of the left-hand
operand is equal to the value of the right-hand operand; otherwise, the result is
false.

• The value produced by the != operator is true if the value of the left-hand
operand is not equal to the value of the right-hand operand; otherwise, the result
is false.

15.21.2 Boolean Equality Operators == and !=

If the operands of an equality operator are both of type boolean, or if one operand
is of type boolean and the other is of type Boolean, then the operation is boolean
equality.

The boolean equality operators are associative.

If one of the operands is of type Boolean, it is subjected to unboxing conversion
(§5.1.8).

The result of == is true if the operands (after any required unboxing conversion)
are both true or both false; otherwise, the result is false.

The result of != is false if the operands are both true or both false; otherwise,
the result is true.
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15.21.3 Reference Equality Operators == and !=

If the operands of an equality operator are both of either reference type or the null
type, then the operation is object equality.

A compile-time error occurs if it is impossible to convert the type of either operand
to the type of the other by a casting conversion (§5.5). The run-time values of the
two operands would necessarily be unequal.

At run time, the result of == is true if the operand values are both null or both
refer to the same object or array; otherwise, the result is false.

The result of != is false if the operand values are both null or both refer to the
same object or array; otherwise, the result is true.

While == may be used to compare references of type String, such an equality test
determines whether or not the two operands refer to the same String object. The
result is false if the operands are distinct String objects, even if they contain the
same sequence of characters. The contents of two strings s and t can be tested for
equality by the method invocation s.equals(t). See also §3.10.5.

15.22 Bitwise and Logical Operators

The bitwise operators and logical operators include the AND operator &, exclusive
OR operator ^, and inclusive OR operator |. These operators have different
precedence, with & having the highest precedence and | the lowest precedence.

Each of these operators is syntactically left-associative (each groups left-to-right).

Each operator is commutative if the operand expressions have no side effects.

Each operator is associative.
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AndExpression:
    EqualityExpression
    AndExpression & EqualityExpression

ExclusiveOrExpression:
    AndExpression
    ExclusiveOrExpression ^ AndExpression

InclusiveOrExpression:
    ExclusiveOrExpression
    InclusiveOrExpression | ExclusiveOrExpression

The bitwise and logical operators may be used to compare two operands of numeric
type or two operands of type boolean. All other cases result in a compile-time error.

15.22.1 Integer Bitwise Operators &, ^, and |

When both operands of an operator &, ̂ , or | are of a type that is convertible (§5.1.8)
to a primitive integral type, binary numeric promotion is first performed on the
operands (§5.6.2).

The type of the bitwise operator expression is the promoted type of the operands.

For &, the result value is the bitwise AND of the operand values.

For ^, the result value is the bitwise exclusive OR of the operand values.

For |, the result value is the bitwise inclusive OR of the operand values.

15.22.2 Boolean Logical Operators &, ^, and |

When both operands of a &, ^, or | operator are of type boolean or Boolean, then
the type of the bitwise operator expression is boolean. In all cases, the operands
are subject to unboxing conversion (§5.1.8) as necessary.

For &, the result value is true if both operand values are true; otherwise, the result
is false.

For ^, the result value is true if the operand values are different; otherwise, the
result is false.

For |, the result value is false if both operand values are false; otherwise, the
result is true.
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15.23 Conditional-And Operator &&

The && operator is like & (§15.22.2), but evaluates its right-hand operand only if
the value of its left-hand operand is true.

It is syntactically left-associative (it groups left-to-right).

It is fully associative with respect to both side effects and result value; that is, for
any expressions a, b, and c, evaluation of the expression ((a) && (b)) && (c)
produces the same result, with the same side effects occurring in the same order,
as evaluation of the expression (a) && ((b) && (c)).

ConditionalAndExpression:
    InclusiveOrExpression
    ConditionalAndExpression && InclusiveOrExpression

Each operand of && must be of type boolean or Boolean, or a compile-time error
occurs.

The type of a conditional-and expression is always boolean.

At run time, the left-hand operand expression is evaluated first; if the result has
type Boolean, it is subjected to unboxing conversion (§5.1.8).

If the resulting value is false, the value of the conditional-and expression is false
and the right-hand operand expression is not evaluated.

If the value of the left-hand operand is true, then the right-hand expression is
evaluated; if the result has type Boolean, it is subjected to unboxing conversion
(§5.1.8). The resulting value becomes the value of the conditional-and expression.

Thus, && computes the same result as & on boolean operands. It differs only in that
the right-hand operand expression is evaluated conditionally rather than always.

15.24 Conditional-Or Operator ||

The || operator is like | (§15.22.2), but evaluates its right-hand operand only if
the value of its left-hand operand is false.

It is syntactically left-associative (it groups left-to-right).

It is fully associative with respect to both side effects and result value; that is, for
any expressions a, b, and c, evaluation of the expression ((a) || (b)) || (c)
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produces the same result, with the same side effects occurring in the same order,
as evaluation of the expression (a) || ((b) || (c)).

ConditionalOrExpression:
    ConditionalAndExpression
    ConditionalOrExpression || ConditionalAndExpression

Each operand of || must be of type boolean or Boolean, or a compile-time error
occurs.

The type of a conditional-or expression is always boolean.

At run time, the left-hand operand expression is evaluated first; if the result has
type Boolean, it is subjected to unboxing conversion (§5.1.8).

If the resulting value is true, the value of the conditional-or expression is true and
the right-hand operand expression is not evaluated.

If the value of the left-hand operand is false, then the right-hand expression is
evaluated; if the result has type Boolean, it is subjected to unboxing conversion
(§5.1.8). The resulting value becomes the value of the conditional-or expression.

Thus, || compures the same result as | on boolean or Boolean operands. It differs
only in that the right-hand operand expression is evaluated conditionally rather than
always.

15.25 Conditional Operator ? :

The conditional operator ? : uses the boolean value of one expression to decide
which of two other expressions should be evaluated.

The conditional operator is syntactically right-associative (it groups right-to-left),
so that a?b:c?d:e?f:g means the same as a?b:(c?d:(e?f:g)).

ConditionalExpression:
    ConditionalOrExpression
    ConditionalOrExpression ? Expression : ConditionalExpression

The conditional operator has three operand expressions; ? appears between the first
and second expressions, and : appears between the second and third expressions.

The first expression must be of type boolean or Boolean, or a compile-time error
occurs.
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It is a compile-time error for either the second or the third operand expression to
be an invocation of a void method.

The type of a conditional expression is determined as follows:

• If the second and third operands have the same type (which may be the null type),
then that is the type of the conditional expression.

• If one of the second and third operands is of primitive type T, and the type of the
other is the result of applying boxing conversion (§5.1.7) to T, then the type of
the conditional expression is T.

• If one of the second and third operands is of the null type and the type of the other
is a reference type, then the type of the conditional expression is that reference
type.

• Otherwise, if the second and third operands have types that are convertible
(§5.1.8) to numeric types, then there are several cases:

◆ If one of the operands is of type byte or Byte and the other is of type short
or Short, then the type of the conditional expression is short.

◆ If one of the operands is of type T where T is byte, short, or char, and the
other operand is a constant expression of type int whose value is representable
in type T, then the type of the conditional expression is T.

◆ If one of the operands is of type T, where T is Byte, Short, or Character,
and the other operand is a constant expression of type int whose value is
representable in the type U which is the result of applying unboxing conversion
to T, then the type of the conditional expression is U.

◆ Otherwise, binary numeric promotion (§5.6.2) is applied to the operand types,
and the type of the conditional expression is the promoted type of the second
and third operands.

• Otherwise, the second and third operands are of types S1 and S2 respectively. Let
T1 be the type that results from applying boxing conversion to S1, and let T2 be
the type that results from applying boxing conversion to S2.

The type of the conditional expression is the result of applying capture
conversion (§5.1.10) to lub(T1, T2) (§15.12.2.7).

At run time, the first operand expression of the conditional expression is evaluated
first; if necessary, unboxing conversion is performed on the result. The resulting
boolean value is then used to choose either the second or the third operand
expression:
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• If the value of the first operand is true, then the second operand expression is
chosen.

• If the value of the first operand is false, then the third operand expression is
chosen.

The chosen operand expression is then evaluated and the resulting value is
converted to the type of the conditional expression as determined by the rules stated
above.

This conversion may include boxing (§5.1.7) or unboxing (§5.1.8) conversion.

The operand expression not chosen is not evaluated for that particular evaluation
of the conditional expression.

15.26 Assignment Operators

There are 12 assignment operators; all are syntactically right-associative (they
group right-to-left). Thus, a=b=c means a=(b=c), which assigns the value of c to
b and then assigns the value of b to a.

AssignmentExpression:
    ConditionalExpression
    Assignment

Assignment:
    LeftHandSide AssignmentOperator AssignmentExpression

LeftHandSide:
    ExpressionName
    FieldAccess
    ArrayAccess

AssignmentOperator: one of
    = *= /= %= += -= <<= >>= >>>= &= ^= |=

The result of the first operand of an assignment operator must be a variable, or a
compile-time error occurs.

This operand may be a named variable, such as a local variable or a field of the
current object or class, or it may be a computed variable, as can result from a field
access (§15.11) or an array access (§15.13).
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The type of the assignment expression is the type of the variable after capture
conversion (§5.1.10).

At run time, the result of the assignment expression is the value of the variable
after the assignment has occurred. The result of an assignment expression is not
itself a variable.

A variable that is declared final cannot be assigned to (unless it is definitely
unassigned (Chapter 16, Definite Assignment)), because when an access of such a
final variable is used as an expression, the result is a value, not a variable, and so
it cannot be used as the first operand of an assignment operator.

15.26.1 Simple Assignment Operator =

A compile-time error occurs if the type of the right-hand operand cannot be
converted to the type of the variable by assignment conversion (§5.2).

At run time, the expression is evaluated in one of three ways.

If the left-hand operand expression is a field access expression (§15.11) e.f,
possibly enclosed in one or more pairs of parentheses, then:

• First, the expression e is evaluated. If evaluation of e completes abruptly, the
assignment expression completes abruptly for the same reason.

• Next, the right hand operand is evaluated. If evaluation of the right hand
expression completes abruptly, the assignment expression completes abruptly
for the same reason.

• Then, if the field denoted by e.f is not static and the result of the evaluation
of e above is null, then a NullPointerException is thrown.

• Otherwise, the variable denoted by e.f is assigned the value of the right hand
operand as computed above.

If the left-hand operand is an array access expression (§15.13), possibly enclosed
in one or more pairs of parentheses, then:

• First, the array reference subexpression of the left-hand operand array access
expression is evaluated. If this evaluation completes abruptly, then the
assignment expression completes abruptly for the same reason; the index
subexpression (of the left-hand operand array access expression) and the right-
hand operand are not evaluated and no assignment occurs.

• Otherwise, the index subexpression of the left-hand operand array access
expression is evaluated. If this evaluation completes abruptly, then the
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assignment expression completes abruptly for the same reason and the right-hand
operand is not evaluated and no assignment occurs.

• Otherwise, the right-hand operand is evaluated. If this evaluation completes
abruptly, then the assignment expression completes abruptly for the same reason
and no assignment occurs.

• Otherwise, if the value of the array reference subexpression is null, then no
assignment occurs and a NullPointerException is thrown.

• Otherwise, the value of the array reference subexpression indeed refers to an
array. If the value of the index subexpression is less than zero, or greater
than or equal to the length of the array, then no assignment occurs and an
ArrayIndexOutOfBoundsException is thrown.

• Otherwise, the value of the index subexpression is used to select a component of
the array referred to by the value of the array reference subexpression.

This component is a variable; call its type SC. Also, let TC be the type of the left-
hand operand of the assignment operator as determined at compile time. Then
there are two possibilities:

◆ If TC is a primitive type, then SC is necessarily the same as TC.

The value of the right-hand operand is converted to the type of the selected
array component, is subjected to value set conversion (§5.1.13) to the
appropriate standard value set (not an extended-exponent value set), and the
result of the conversion is stored into the array component.

◆ If TC is a reference type, then SC may not be the same as TC, but rather a type
that extends or implements TC.

Let RC be the class of the object referred to by the value of the right-hand
operand at run time.

A Java compiler may be able to prove at compile time that the array component
will be of type TC exactly (for example, TC might be final). But if a Java
compiler cannot prove at compile time that the array component will be of
type TC exactly, then a check must be performed at run time to ensure that the
class RC is assignment compatible (§5.2) with the actual type SC of the array
component.

If class RC is not assignable to type SC, then no assignment occurs and an
ArrayStoreException is thrown.

Otherwise, the reference value of the right-hand operand is stored into the
selected array component.
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Otherwise, three steps are required:

• First, the left-hand operand is evaluated to produce a variable. If this evaluation
completes abruptly, then the assignment expression completes abruptly for the
same reason; the right-hand operand is not evaluated and no assignment occurs.

• Otherwise, the right-hand operand is evaluated. If this evaluation completes
abruptly, then the assignment expression completes abruptly for the same reason
and no assignment occurs.

• Otherwise, the value of the right-hand operand is converted to the type of the left-
hand variable, is subjected to value set conversion (§5.1.13) to the appropriate
standard value set (not an extended-exponent value set), and the result of the
conversion is stored into the variable.

15.26.2 Compound Assignment Operators

A compound assignment expression of the form E1 op= E2 is equivalent to E1
= (T) ((E1) op (E2)), where T is the type of E1, except that E1 is evaluated
only once.

At run time, the expression is evaluated in one of two ways.

If the left-hand operand expression is not an array access expression, then:

• First, the left-hand operand is evaluated to produce a variable. If this evaluation
completes abruptly, then the assignment expression completes abruptly for the
same reason; the right-hand operand is not evaluated and no assignment occurs.

• Otherwise, the value of the left-hand operand is saved and then the right-hand
operand is evaluated. If this evaluation completes abruptly, then the assignment
expression completes abruptly for the same reason and no assignment occurs.

• Otherwise, the saved value of the left-hand variable and the value of the
right-hand operand are used to perform the binary operation indicated by
the compound assignment operator. If this operation completes abruptly, then
the assignment expression completes abruptly for the same reason and no
assignment occurs.

• Otherwise, the result of the binary operation is converted to the type of the left-
hand variable, subjected to value set conversion (§5.1.13) to the appropriate
standard value set (not an extended-exponent value set), and the result of the
conversion is stored into the variable.

If the left-hand operand expression is an array access expression (§15.13), then:
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• First, the array reference subexpression of the left-hand operand array access
expression is evaluated. If this evaluation completes abruptly, then the
assignment expression completes abruptly for the same reason; the index
subexpression (of the left-hand operand array access expression) and the right-
hand operand are not evaluated and no assignment occurs.

• Otherwise, the index subexpression of the left-hand operand array access
expression is evaluated. If this evaluation completes abruptly, then the
assignment expression completes abruptly for the same reason and the right-hand
operand is not evaluated and no assignment occurs.

• Otherwise, if the value of the array reference subexpression is null, then no
assignment occurs and a NullPointerException is thrown.

• Otherwise, the value of the array reference subexpression indeed refers to an
array. If the value of the index subexpression is less than zero, or greater
than or equal to the length of the array, then no assignment occurs and an
ArrayIndexOutOfBoundsException is thrown.

• Otherwise, the value of the index subexpression is used to select a component
of the array referred to by the value of the array reference subexpression. The
value of this component is saved and then the right-hand operand is evaluated.
If this evaluation completes abruptly, then the assignment expression completes
abruptly for the same reason and no assignment occurs.

• Otherwise, consider the array component selected in the previous step, whose
value was saved. This component is a variable; call its type S. Also, let T be
the type of the left-hand operand of the assignment operator as determined at
compile time.

◆ If T is a primitive type, then S is necessarily the same as T.

The saved value of the array component and the value of the right-hand
operand are used to perform the binary operation indicated by the compound
assignment operator.

If this operation completes abruptly (the only possibility is an integer division
by zero - see §15.17.2), then the assignment expression completes abruptly for
the same reason and no assignment occurs.

Otherwise, the result of the binary operation is converted to the type of the
selected array component, subjected to value set conversion (§5.1.13) to the
appropriate standard value set (not an extended-exponent value set), and the
result of the conversion is stored into the array component.
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◆ If T is a reference type, then it must be String. Because class String is a
final class, S must also be String.

The saved value of the array component and the value of the right-hand
operand are used to perform the binary operation (string concatenation)
indicated by the compound assignment operator (which is necessarily +=). If
this operation completes abruptly, then the assignment expression completes
abruptly for the same reason and no assignment occurs.

Otherwise, the String result of the binary operation is stored into the array
component.

15.27 Expression

An Expression is any assignment expression:

Expression:
    AssignmentExpression

Unlike C and C++, the Java programming language has no comma operator.

15.28 Constant Expression

ConstantExpression:
    Expression

A compile-time constant expression is an expression denoting a value of primitive
type or a String that does not complete abruptly and is composed using only the
following:

• Literals of primitive type and literals of type String (§3.10.5)

• Casts to primitive types and casts to type String

• The unary operators +, -, ~, and ! (but not ++ or --)

• The multiplicative operators *, /, and %

• The additive operators + and -

• The shift operators <<, >>, and >>>

• The relational operators <, <=, >, and >= (but not instanceof)
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• The equality operators == and !=

• The bitwise and logical operators &, ^, and |

• The conditional-and operator && and the conditional-or operator ||

• The ternary conditional operator ? :

• Parenthesized expressions whose contained expression is a constant expression.

• Simple names that refer to constant variables (§4.12.4).

• Qualified names of the form TypeName . Identifier that refer to constant
variables (§4.12.4).

Compile-time constant expressions of type String are always "interned" so as to
share unique instances, using the method String.intern.

A compile-time constant expression is always treated as FP-strict (§15.4), even if
it occurs in a context where a non-constant expression would not be considered to
be FP-strict.
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C H A P T E R 16
Definite Assignment

EACH local variable (§14.4) and every blank final (§4.12.4) field (§8.3.1.2)
must have a definitely assigned value when any access of its value occurs. An
access to its value consists of the simple name of the variable (or, for a field, the
simple name of the field qualified by this) occurring anywhere in an expression
except as the left-hand operand of the simple assignment operator =.

For every access of a local variable or blank final field f, f must be definitely
assigned before the access, or a compile-time error occurs.

Similarly, every blank final variable must be assigned at most once; it must
be definitely unassigned when an assignment to it occurs. Such an assignment is
defined to occur if and only if either the simple name of the variable (or, for a field,
its simple name qualified by this) occurs on the left hand side of an assignment
operator.

For every assignment to a blank final variable, the variable must be definitely
unassigned before the assignment, or a compile-time error occurs.

The remainder of this chapter is devoted to a precise explanation of the words
"definitely assigned before" and "definitely unassigned before".

The idea behind definite assignment is that an assignment to the local variable
or blank final field must occur on every possible execution path to the access.
Similarly, the idea behind definite unassignment is that no other assignment to the
blank final variable is permitted to occur on any possible execution path to an
assignment.

The analysis takes into account the structure of statements and expressions; it also
provides a special treatment of the expression operators !, &&, ||, and ? :, and of
boolean-valued constant expressions.



DEFINITE ASSIGNMENT

332

Except for the special treatment of the conditional boolean operators &&, ||, and
? : and of boolean-valued constant expressions, the values of expressions are not
taken into account in the flow analysis.

In order to precisely specify all the cases of definite assignment, the rules in this
section define several technical terms:

• whether a variable is definitely assigned before a statement or expression;

• whether a variable is definitely unassigned before a statement or expression;

• whether a variable is definitely assigned after a statement or expression; and

• whether a variable is definitely unassigned after a statement or expression.

For boolean-valued expressions, the last two are refined into four cases:

• whether a variable is definitely assigned after the expression when true;

• whether a variable is definitely unassigned after the expression when true;

• whether a variable is definitely assigned after the expression when false; and

• whether a variable is definitely unassigned after the expression when false.

Here when true and when false refer to the value of the expression.

The phrase "V is definitely assigned after X" (where V is a local variable and X is
a statement or expression) means "V is definitely assigned after X if X completes
normally". If X completes abruptly, the assignment need not have occurred, and the
rules stated here take this into account.

The statement "V is definitely unassigned after X" (where V is a variable and X is a
statement or expression) means "V is definitely unassigned after X if X completes
normally".

In all, there are four possibilities for a variable V after a statement or expression
has been executed:

• V is definitely assigned and is not definitely unassigned.

(The flow analysis rules prove that an assignment to V has occurred.)

• V is definitely unassigned and is not definitely assigned.

(The flow analysis rules prove that an assignment to V has not occurred.)

• V is not definitely assigned and is not definitely unassigned.

(The rules cannot prove whether or not an assignment to V has occurred.)

• V is definitely assigned and is definitely unassigned.
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(It is impossible for the statement or expression to complete normally.)

16.1 Definite Assignment and Expressions

16.1.1 Boolean Constant Expressions

• V is [un]assigned after any constant expression whose value is true when false.

• V is [un]assigned after any constant expression whose value is false when true.

• V is [un]assigned after any constant expression whose value is true when true
iff V is [un]assigned before the constant expression.

• V is [un]assigned after any constant expression whose value is false when false
iff V is [un]assigned before the constant expression.

• V is [un]assigned after a boolean-valued constant expression e iff V is
[un]assigned after e when true and V is [un]assigned after e when false.

16.1.2 The Boolean Operator &&

• V is [un]assigned after a && b when true iff V is [un]assigned after b when true.

• V is [un]assigned after a && b when false iff V is [un]assigned after a when false
and V is [un]assigned after b when false.

• V is [un]assigned before a iff V is [un]assigned before a && b.

• V is [un]assigned before b iff V is [un]assigned after a when true.

• V is [un]assigned after a && b iff V is [un]assigned after a && b when true and V
is [un]assigned after a && b when false.

16.1.3 The Boolean Operator ||

• V is [un]assigned after a || b when true iff V is [un]assigned after a when true
and V is [un]assigned after b when true.

• V is [un]assigned after a || b when false iff V is [un]assigned after b when false.

• V is [un]assigned before a iff V is [un]assigned before a || b.

• V is [un]assigned before b iff V is [un]assigned after a when false.
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• V is [un]assigned after a || b iff V is [un]assigned after a || b when true and V
is [un]assigned after a || b when false.

16.1.4 The Boolean Operator !

• V is [un]assigned after !a when true iff V is [un]assigned after a when false.

• V is [un]assigned after !a when false iff V is [un]assigned after a when true.

• V is [un]assigned before a iff V is [un]assigned before !a.

• V is [un]assigned after !a iff V is [un]assigned after !a when true and V is
[un]assigned after !a when false.

16.1.5 The Boolean Operator ? :

Suppose that b and c are boolean-valued expressions.

• V is [un]assigned after a ? b : c when true iff V is [un]assigned after b when true
and V is [un]assigned after c when true.

• V is [un]assigned after a ? b : c when false iff V is [un]assigned after b when
false and V is [un]assigned after c when false.

• V is [un]assigned before a iff V is [un]assigned before a ? b : c.

• V is [un]assigned before b iff V is [un]assigned after a when true.

• V is [un]assigned before c iff V is [un]assigned after a when false.

• V is [un]assigned after a ? b : c iff V is [un]assigned after a ? b : c when true
and V is [un]assigned after a ? b : c when false.

16.1.6 The Conditional Operator ? :

Suppose that b and c are expressions that are not boolean-valued.

• V is [un]assigned after a ? b : c iff V is [un]assigned after b and V is [un]assigned
after c.

• V is [un]assigned before a iff V is [un]assigned before a ? b : c.

• V is [un]assigned before b iff V is [un]assigned after a when true.

• V is [un]assigned before c iff V is [un]assigned after a when false.
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16.1.7 Other Expressions of Type boolean

Suppose that e is an expression of type boolean and is not a boolean constant
expression, logical completment expression !a, conditional-and expression a && b,
conditional-or expression a || b, or conditional expression a ? b : c.

• V is [un]assigned after e when true iff V is [un]assigned after e.

• V is [un]assigned after e when false iff V is [un]assigned after e.

16.1.8 Assignment Expressions

Consider an assignment expression a = b, a += b, a -= b, a *= b, a /= b, a %= b, a
<<= b, a >>= b, a >>>= b, a &= b, a |= b, or a ^= b.

• V is definitely assigned after the assignment expression iff either:

◆ a is V, or

◆ V is definitely assigned after b.

• V is definitely unassigned after the assignment expression iff a is not V and V is
definitely unassigned after b.

• V is [un]assigned before a iff V is [un]assigned before the assignment expression.

• V is [un]assigned before b iff V is [un]assigned after a.

16.1.9 Operators ++ and --

• V is definitely assigned after ++a, --a, a++, or a-- iff either a is V or V is definitely
assigned after the operand expression.

• V is definitely unassigned after ++a, --a, a++, or a-- iff a is not V and V is
definitely unassigned after the operand expression.

• V is [un]assigned before a iff V is [un]assigned before ++a, --a, a++, or a--.

16.1.10 Other Expressions

If an expression is not a boolean constant expression, and is not a preincrement
expression ++a, predecrement expression --a, postincrement expression a++,
postdecrement expression a--, logical complement expression !a, conditional-and
expression a && b, conditional-or expression a || b, conditional expression a ? b :
c, or assignment expression, then the following rules apply:



16.1.10 Other Expressions DEFINITE ASSIGNMENT

336

• If the expression has no subexpressions, V is [un]assigned after the expression
iff V is [un]assigned before the expression.

This case applies to literals, names, this (both qualified and unqualified),
unqualified class instance creation expressions with no arguments, initialized
array creation expressions whose initializers contain no expressions, unqualified
superclass field access expressions, named method invocations with no
arguments, and unqualified superclass method invocations with no arguments.

• If the expression has subexpressions, V is [un]assigned after the expression iff V
is [un]assigned after its rightmost immediate subexpression.

For any immediate subexpression y of an expression x, V is [un]assigned before y
iff one of the following situations is true:

• y is the leftmost immediate subexpression of x and V is [un]assigned before x.

• y is the right-hand operand of a binary operator and V is [un]assigned after the
left-hand operand.

• x is an array access, y is the subexpression within the brackets, and V is
[un]assigned after the subexpression before the brackets.

• x is a primary method invocation expression, y is the first argument expression
in the method invocation expression, and V is [un]assigned after the primary
expression that computes the target object.

• x is a method invocation expression or a class instance creation expression; y is
an argument expression, but not the first; and V is [un]assigned after the argument
expression to the left of y.

• x is a qualified class instance creation expression, y is the first argument
expression in the class instance creation expression, and V is [un]assigned after
the primary expression that computes the qualifying object.

• x is an array instance creation expression; y is a dimension expression, but not
the first; and V is [un]assigned after the dimension expression to the left of y.

• x is an array instance creation expression initialized via an array initializer; y is
the array initializer in x; and V is [un]assigned after the dimension expression
to the left of y.
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16.2 Definite Assignment and Statements

16.2.1 Empty Statements

• V is [un]assigned after an empty statement iff it is [un]assigned before the empty
statement.

16.2.2 Blocks

• A blank final member field V is definitely assigned (and moreover is not
definitely unassigned) before the block that is the body of any method in the
scope of V and before the declaration of any class declared within the scope of V.

• A local variable V is definitely unassigned (and moreover is not definitely
assigned) before the block that is the body of the constructor, method, instance
initializer or static initializer that declares V.

• Let C be a class declared within the scope of V. Then V is definitely assigned
before the block that is the body of any constructor, method, instance initializer,
or static initializer declared in C iff V is definitely assigned before the declaration
of C.

• V is [un]assigned after an empty block iff V is [un]assigned before the empty
block.

• V is [un]assigned after a non-empty block iff V is [un]assigned after the last
statement in the block.

• V is [un]assigned before the first statement of the block iff V is [un]assigned
before the block.

• V is [un]assigned before any other statement S of the block iff V is [un]assigned
after the statement immediately preceding S in the block.

We say that V is definitely unassigned everywhere in a block B iff:

• V is definitely unassigned before B.

• V is definitely assigned after e in every assignment expression V = e, V += e, V
-= e, V *= e, V /= e, V %= e, V <<= e, V >>= e, V >>>= e, V &= e, V |= e, or V ^=
e that occurs in B.

• V is definitely assigned before every expression ++V, --V, V++, or V--. that occurs
in B.
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16.2.3 Local Class Declaration Statements

• V is [un]assigned after a local class declaration statement iff V is [un]assigned
before the local class declaration statement.

16.2.4 Local Variable Declaration Statements

• V is [un]assigned after a local variable declaration statement that contains no
variable initializers iff V is [un]assigned before the local variable declaration
statement.

• V is definitely assigned after a local variable declaration statement that contains
at least one variable initializer iff either V is definitely assigned after the last
variable initializer in the local variable declaration statement or the last variable
initializer in the declaration is in the declarator that declares V.

• V is definitely unassigned after a local variable declaration statement that
contains at least one variable initializer iff V is definitely unassigned after the last
variable initializer in the local variable declaration statement and the last variable
initializer in the declaration is not in the declarator that declares V.

• V is [un]assigned before the first variable initializer in a local variable declaration
statement iff V is [un]assigned before the local variable declaration statement.

• V is definitely assigned before any variable initializer e other than the first one
in the local variable declaration statement iff either V is definitely assigned after
the variable initializer to the left of e or the initializer expression to the left of e
is in the declarator that declares V.

• V is definitely unassigned before any variable initializer e other than the first one
in the local variable declaration statement iff V is definitely unassigned after the
variable initializer to the left of e and the initializer expression to the left of e is
not in the declarator that declares V.

16.2.5 Labeled Statements

• V is [un]assigned after a labeled statement L : S (where L is a label) iff V is
[un]assigned after S and V is [un]assigned before every break statement that may
exit the labeled statement L : S.

• V is [un]assigned before S iff V is [un]assigned before L : S.
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16.2.6 Expression Statements

• V is [un]assigned after an expression statement e; iff it is [un]assigned after e.

• V is [un]assigned before e iff it is [un]assigned before e;.

16.2.7 if Statements

The following rules apply to a statement if (e) S :

• V is [un]assigned after if (e) S iff V is [un]assigned after S and V is [un]assigned
after e when false.

• V is [un]assigned before e iff V is [un]assigned before if (e) S.

• V is [un]assigned before S iff V is [un]assigned after e when true.

The following rules apply to a statement if (e) S else T :

• V is [un]assigned after if (e) S else T iff V is [un]assigned after S and V is
[un]assigned after T.

• V is [un]assigned before e iff V is [un]assigned before if (e) S else T.

• V is [un]assigned before S iff V is [un]assigned after e when true.

• V is [un]assigned before T iff V is [un]assigned after e when false.

16.2.8 assert Statements

The following rules apply both to a statement assert e1 and to a statement assert
e1 : e2 :

• V is [un]assigned before e1 iff V is [un]assigned before the assert statement.

• V is definitely assigned after the assert statement iff V is definitely assigned
before the assert statement.

• V is definitely unassigned after the assert statement iff V is definitely unassigned
before the assert statement and V is definitely unassigned after e1 when true.

The following rule applies to a statement assert e1 : e2 :

• V is [un]assigned before e2 iff V is [un]assigned after e1 when false.

16.2.9 switch Statements

• V is [un]assigned after a switch statement iff all of the following are true:
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◆ Either there is a default label in the switch block and the type of the switch
expression is not an enum type; or the type of the switch expression is an enum
type and the case labels include all the enum constants of the enum type; or
V is [un]assigned after the switch expression.

◆ Either there are no switch labels in the switch block that do not begin a block-
statement-group (that is, there are no switch labels immediately before the "}"
that ends the switch block) or V is [un]assigned after the switch expression.

◆ Either the switch block contains no block-statement-groups or V is
[un]assigned after the last block-statement of the last block-statement-group.

◆ V is [un]assigned before every break statement that may exit the switch
statement.

• V is [un]assigned before the switch expression iff V is [un]assigned before the
switch statement.

If a switch block contains at least one block-statement-group, then the following
rules also apply:

• V is [un]assigned before the first block-statement of the first block-statement-
group in the switch block iff V is [un]assigned after the switch expression.

• V is [un]assigned before the first block-statement of any block-statement-group
other than the first iff V is [un]assigned after the switch expression and V is
[un]assigned after the preceding block-statement.

16.2.10 while Statements

• V is [un]assigned after while (e) S iff V is [un]assigned after e when false and
V is [un]assigned before every break statement for which the while statement
is the break target.

• V is definitely assigned before e iff V is definitely assigned before the while
statement.

• V is definitely unassigned before e iff all of the following conditions hold:

◆ V is definitely unassigned before the while statement.

◆ Assuming V is definitely unassigned before e, V is definitely unassigned after S.

◆ Assuming V is definitely unassigned before e, V is definitely unassigned before
every continue statement for which the while statement is the continue target.

• V is [un]assigned before S iff V is [un]assigned after e when true.
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16.2.11 do Statements

• V is [un]assigned after do S while (e); iff V is [un]assigned after e when false
and V is [un]assigned before every break statement for which the do statement
is the break target.

• V is definitely assigned before S iff V is definitely assigned before the do
statement.

• V is definitely unassigned before S iff all of the following conditions hold:

◆ V is definitely unassigned before the do statement.

◆ Assuming V is definitely unassigned before S, V is definitely unassigned after
e when true.

• V is [un]assigned before e iff V is [un]assigned after S and V is [un]assigned before
every continue statement for which the do statement is the continue target.

16.2.12 for Statements

The rules herein cover the basic for statement (§14.14.1). Since the enhanced for
(§14.14.2) statement is defined by translation to a basic for statement, no special
rules need to be provided for it.

• V is [un]assigned after a for statement iff both of the following are true:

◆ Either a condition expression is not present or V is [un]assigned after the
condition expression when false.

◆ V is [un]assigned before every break statement for which the for statement
is the break target.

• V is [un]assigned before the initialization part of the for statement iff V is
[un]assigned before the for statement.

• V is definitely assigned before the condition part of the for statement iff V is
definitely assigned after the initialization part of the for statement.

• V is definitely unassigned before the condition part of the for statement iff all
of the following conditions hold:

◆ V is definitely unassigned after the initialization part of the for statement.

◆ Assuming V is definitely unassigned before the condition part of the for
statement, V is definitely unassigned after the contained statement.
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◆ Assuming V is definitely unassigned before the contained statement, V is
definitely unassigned before every continue statement for which the for
statement is the continue target.

• V is [un]assigned before the contained statement iff either of the following is true:

◆ A condition expression is present and V is [un]assigned after the condition
expression when true.

◆ No condition expression is present and V is [un]assigned after the initialization
part of the for statement.

• V is [un]assigned before the incrementation part of the for statement iff V is
[un]assigned after the contained statement and V is [un]assigned before every
continue statement for which the for statement is the continue target.

16.2.12.1 Initialization Part

• If the initialization part of the for statement is a local variable declaration
statement, the rules of §16.2.4 apply.

• Otherwise, if the initialization part is empty, then V is [un]assigned after the
initialization part iff V is [un]assigned before the initialization part.

• Otherwise, three rules apply:

◆ V is [un]assigned after the initialization part iff V is [un]assigned after the last
expression statement in the initialization part.

◆ V is [un]assigned before the first expression statement in the initialization part
iff V is [un]assigned before the initialization part.

◆ V is [un]assigned before an expression statement S other than the first in
the initialization part iff V is [un]assigned after the expression statement
immediately preceding S.

16.2.12.2 Incrementation Part

• If the incrementation part of the for statement is empty, then V is [un]assigned
after the incrementation part iff V is [un]assigned before the incrementation part.

• Otherwise, three rules apply:

◆ V is [un]assigned after the incrementation part iff V is [un]assigned after the
last expression statement in the incrementation part.
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◆ V is [un]assigned before the first expression statement in the incrementation
part iff V is [un]assigned before the incrementation part.

◆ V is [un]assigned before an expression statement S other than the first in
the incrementation part iff V is [un]assigned after the expression statement
immediately preceding S.

16.2.13 break, continue, return, and throw Statements

• By convention, we say that V is [un]assigned after any break, continue, return,
or throw statement.

The notion that a variable is "[un]assigned after" a statement or expression really
means "is [un]assigned after the statement or expression completes normally".
Because a break, continue, return, or throw statement never completes
normally, it vacuously satisfies this notion.

• In a return statement with an expression e or a throw statement with an
expression e, V is [un]assigned before e iff V is [un]assigned before the return
or throw statement.

16.2.14 synchronized Statements

• V is [un]assigned after synchronized (e) S iff V is [un]assigned after S.

• V is [un]assigned before e iff V is [un]assigned before the statement
synchronized (e) S.

• V is [un]assigned before S iff V is [un]assigned after e.

16.2.15 try Statements

These rules apply to every try statement, whether or not it has a finally block:

• V is [un]assigned before the try block iff V is [un]assigned before the try
statement.

• V is definitely assigned before a catch block iff V is definitely assigned before
the try block.

• V is definitely unassigned before a catch block iff all of the following conditions
hold:

◆ V is definitely unassigned after the try block.
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◆ V is definitely unassigned before every return statement that belongs to the
try block.

◆ V is definitely unassigned after e in every statement of the form throw e that
belongs to the try block.

◆ V is definitely unassigned after every assert statement that occurs in the try
block.

◆ V is definitely unassigned before every break statement that belongs to the
try block and whose break target contains (or is) the try statement.

◆ V is definitely unassigned before every continue statement that belongs to the
try block and whose continue target contains the try statement.

If a try statement does not have a finally block, then this rule also applies:

• V is [un]assigned after the try statement iff V is [un]assigned after the try block
and V is [un]assigned after every catch block in the try statement.

If a try statement does have a finally block, then these rules also apply:

• V is definitely assigned after the try statement iff at least one of the following
is true:

◆ V is definitely assigned after the try block and V is definitely assigned after
every catch block in the try statement.

◆ V is definitely assigned after the finally block.

◆ V is definitely unassigned after a try statement iff V is definitely unassigned
after the finally block.

• V is definitely assigned before the finally block iff V is definitely assigned
before the try statement.

• V is definitely unassigned before the finally block iff all of the following
conditions hold:

◆ V is definitely unassigned after the try block.

◆ V is definitely unassigned before every return statement that belongs to the
try block.

◆ V is definitely unassigned after e in every statement of the form throw e that
belongs to the try block.

◆ V is definitely unassigned after every assert statement that occurs in the try
block.
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◆ V is definitely unassigned before every break statement that belongs to the
try block and whose break target contains (or is) the try statement.

◆ V is definitely unassigned before every continue statement that belongs to the
try block and whose continue target contains the try statement.

◆ V is definitely unassigned after every catch block of the try statement.

16.3 Definite Assignment and Parameters

• A formal parameter V of a method or constructor is definitely assigned (and
moreover is not definitely unassigned) before the body of the method or
constructor.

• An exception parameter V of a catch clause is definitely assigned (and moreover
is not definitely unassigned) before the body of the catch clause.

16.4 Definite Assignment and Array Initializers

• V is [un]assigned after an empty array initializer iff V is [un]assigned before the
empty array initializer.

• V is [un]assigned after a non-empty array initializer iff V is [un]assigned after the
last variable initializer in the array initializer.

• V is [un]assigned before the first variable initializer of the array initializer iff V
is [un]assigned before the array initializer.

• V is [un]assigned before any other variable initializer e of the array initializer iff V
is [un]assigned after the variable initializer to the left of e in the array initializer.

16.5 Definite Assignment and Enum Constants

The rules determining when a variable is definitely assigned or definitely
unassigned before an enum constant are given in §16.8.

• V is definitely assigned before the declaration of a class body of an enum constant
with no arguments that is declared within the scope of V iff V is definitely assigned
before the enum constant.
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• V is definitely assigned before the declaration of a class body of an enum constant
with arguments that is declared within the scope of V iff V is definitely assigned
after the last argument expression of the enum constant

The definite assignment/unassignment status of any construct within the class body
of an enum constant is governed by the usual rules for classes.

Let y be an argument of an enum constant, but not the first. Then:

• V is [un]assigned before y iff V is [un]assigned after the argument to the left of y.

Otherwise:

• V is [un]assigned before the first argument to an enum constant iff it is
[un]assigned before the enum constant.

16.6 Definite Assignment and Anonymous Classes

• V is definitely assigned before an anonymous class declaration (§15.9.5) that is
declared within the scope of V iff V is definitely assigned after the class instance
creation expression that declares the anonymous class.

16.7 Definite Assignment and Member Types

Let C be a class, and let V be a blank final member field of C. Then:

• V is definitely assigned (and moreover, not definitely unassigned) before the
declaration of any member type of C.

Let C be a class declared within the scope of V. Then:

• V is definitely assigned before a member type (§8.5, §9.5) declaration of C iff V
is definitely assigned before the declaration of C.

16.8 Definite Assignment and Static Initializers

Let C be a class declared within the scope of V. Then:

• V is definitely assigned before an enum constant or static variable initializer of C
iff V is definitely assigned before the declaration of C.
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Note that there are no rules that would allow us to conclude that V is
definitely unassigned before a static variable initializer or enum constant. We can
informally conclude that V is not definitely unassigned before any static variable
initializer of C, but there is no need for such a rule to be stated explicitly.

Let C be a class, and let V be a blank static final member field of C, declared
in C. Then:

• V is definitely unassigned (and moreover is not definitely assigned) before the
leftmost enum constant, static initializer, or static variable initializer of C.

• V is [un]assigned before an enum constant, static initializer, or static variable
initializer of C other than the leftmost iff V is [un]assigned after the preceding
enum constant, static initializer, or static variable initializer of C.

Let C be a class, and let V be a blank static final member field of C, declared
in a superclass of C. Then:

• V is definitely assigned (and moreover is not definitely unassigned) before every
enum constant of C.

• V is definitely assigned (and moreover is not definitely unassigned) before the
block that is the body of a static initializer of C.

• V is definitely assigned (and moreover is not definitely unassigned) before every
static variable initializer of C.

16.9 Definite Assignment, Constructors, and Instance
Initializers

Let C be a class declared within the scope of V. Then:

• V is definitely assigned before an instance variable initializer of C iff V is
definitely assigned before the declaration of C.

Note that there are no rules that would allow us to conclude that V is definitely
unassigned before an instance variable initializer. We can informally conclude
that V is not definitely unassigned before any instance variable initializer of C,
but there is no need for such a rule to be stated explicitly.

Let C be a class, and let V be a blank final non-static member field of C, declared
in C. Then:
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• V is definitely unassigned (and moreover is not definitely assigned) before the
leftmost instance initializer or instance variable initializer of C.

• V is [un]assigned before an instance initializer or instance variable initializer of C
other than the leftmost iff V is [un]assigned after the preceding instance initializer
or instance variable initializer of C.

The following rules hold within the constructors of class C:

• V is definitely assigned (and moreover is not definitely unassigned) after an
alternate constructor invocation (§8.8.7.1).

• V is definitely unassigned (and moreover is not definitely assigned) before an
explicit or implicit superclass constructor invocation (§8.8.7.1).

• If C has no instance initializers or instance variable initializers, then V is not
definitely assigned (and moreover is definitely unassigned) after an explicit or
implicit superclass constructor invocation.

• If C has at least one instance initializer or instance variable initializer then V is
[un]assigned after an explicit or implicit superclass constructor invocation iff V is
[un]assigned after the rightmost instance initializer or instance variable initializer
of C.

Let C be a class, and let V be a blank final member field of C, declared in a
superclass of C. Then:

• V is definitely assigned (and moreover is not definitely unassigned) before the
block that is the body of a constructor or instance initializer of C.

• V is definitely assigned (and moreover is not definitely unassigned) before every
instance variable initializer of C.
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C H A P T E R 17
Threads and Locks

WHILE most of the discussion in the preceding chapters is concerned only with
the behavior of code as executed a single statement or expression at a time, that is,
by a single thread, each Java virtual machine can support many threads of execution
at once. These threads independently execute code that operates on values and
objects residing in a shared main memory. Threads may be supported by having
many hardware processors, by time-slicing a single hardware processor, or by time-
slicing many hardware processors.

Threads are represented by the Thread class. The only way for a user to create
a thread is to create an object of this class; each thread is associated with such
an object. A thread will start when the start() method is invoked on the
corresponding Thread object.

The behavior of threads, particularly when not correctly synchronized, can
be confusing and counterintuitive. This chapter describes the semantics of
multithreaded programs; it includes rules for which values may be seen by a read of
shared memory that is updated by multiple threads. As the specification is similar to
the memory models for different hardware architectures, these semantics are known
as the Java programming language memory model. When no confusion can arise,
we will simply refer to these rules as "the memory model".

These semantics do not prescribe how a multithreaded program should be executed.
Rather, they describe the behaviors that multithreaded programs are allowed
to exhibit. Any execution strategy that generates only allowed behaviors is an
acceptable execution strategy.
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17.1 Synchronization

The Java programming language provides multiple mechanisms for
communicating between threads. The most basic of these methods is
synchronization, which is implemented using monitors. Each object in Java is
associated with a monitor, which a thread can lock or unlock. Only one thread at
a time may hold a lock on a monitor. Any other threads attempting to lock that
monitor are blocked until they can obtain a lock on that monitor. A thread t may
lock a particular monitor multiple times; each unlock reverses the effect of one
lock operation.

The synchronized statement (§14.19) computes a reference to an object; it then
attempts to perform a lock action on that object's monitor and does not proceed
further until the lock action has successfully completed. After the lock action has
been performed, the body of the synchronized statement is executed. If execution
of the body is ever completed, either normally or abruptly, an unlock action is
automatically performed on that same monitor.

A synchronized method (§8.4.3.6) automatically performs a lock action when it is
invoked; its body is not executed until the lock action has successfully completed. If
the method is an instance method, it locks the monitor associated with the instance
for which it was invoked (that is, the object that will be known as this during
execution of the body of the method). If the method is static, it locks the monitor
associated with the Class object that represents the class in which the method is
defined. If execution of the method's body is ever completed, either normally or
abruptly, an unlock action is automatically performed on that same monitor.

The Java programming language neither prevents nor requires detection of
deadlock conditions. Programs where threads hold (directly or indirectly) locks
on multiple objects should use conventional techniques for deadlock avoidance,
creating higher-level locking primitives that do not deadlock, if necessary.

Other mechanisms, such as reads and writes of volatile variables and the use
of classes in the java.util.concurrent package, provide alternative ways of
synchronization.

17.2 Wait Sets and Notification

Every object, in addition to having an associated monitor, has an associated wait
set. A wait set is a set of threads.
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When an object is first created, its wait set is empty. Elementary actions that
add threads to and remove threads from wait sets are atomic. Wait sets are
manipulated solely through the methods Object.wait, Object.notify, and
Object.notifyAll.

Wait set manipulations can also be affected by the interruption status of a thread,
and by the Thread class's methods dealing with interruption. Additionally, the
Thread class's methods for sleeping and joining other threads have properties
derived from those of wait and notification actions.

17.2.1 Wait

Wait actions occur upon invocation of wait(), or the timed forms wait(long
millisecs) and wait(long millisecs, int nanosecs).

A thread returns normally from a wait if it returns without throwing an
InterruptedException.

Let thread t be the thread executing the wait method on object m, and let n be the
number of lock actions by t on m that have not been matched by unlock actions.
One of the following actions occurs:

• If n is zero, then an IllegalMonitorStateException is thrown.

This is the case where thread t does not already possess the lock for target m.

• If this is a timed wait and the nanosecs argument is not in the range of 0-999999
or the millisecs argument is negative, then an IllegalArgumentException is
thrown.

• If thread t is interrupted, then an InterruptedException is thrown and t's
interruption status is set to false.

• Otherwise, the following sequence occurs:

1. Thread t is added to the wait set of object m, and performs n unlock actions
on m.

Thread t does not execute any further instructions until it has been removed
from m's wait set. The thread may be removed from the wait set due to any
one of the following actions, and will resume sometime afterward:

◆ A notify action being performed on m in which t is selected for removal
from the wait set.

◆ A notifyAll action being performed on m.

◆ An interrupt action being performed on t.
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◆ If this is a timed wait, an internal action removing t from m's wait set that
occurs after at least millisecs milliseconds plus nanosecs nanoseconds
elapse since the beginning of this wait action.

◆ An internal action by the implementation. Implementations are permitted,
although not encouraged, to perform "spurious wake-ups", that is, to
remove threads from wait sets and thus enable resumption without explicit
instructions to do so.

Each thread must determine an order over the events that could cause it to
be removed from a wait set. That order does not have to be consistent with
other orderings, but the thread must behave as though those events occurred
in that order.

For example, if a thread t is in the wait set for m, and then both an interrupt
of t and a notification of m occur, there must be an order over these events.
If the interrupt is deemed to have occurred first, then t will eventually return
from wait by throwing InterruptedException, and some other thread in
the wait set for m (if any exist at the time of the notification) must receive
the notification. If the notification is deemed to have occurred first, then t
will eventually return normally from wait with an interrupt still pending.

2. Thread t performs n lock actions on m.

3. If thread t was removed from m's wait set in step 2 due to an interrupt,
then t's interruption status is set to false and the wait method throws
InterruptedException.

17.2.2 Notification

Notification actions occur upon invocation of methods notify and notifyAll. Let
thread t be the thread executing either of these methods on object m, and let n be
the number of lock actions by t on m that have not been matched by unlock actions.
One of the following actions occurs:

• If n is zero, then an IllegalMonitorStateException is thrown.

This is the case where thread t does not already possess the lock for target m.

• If n is greater than zero and this is a notify action, then if m's wait set is not
empty, a thread u that is a member of m's current wait set is selected and removed
from the wait set.

There is no guarantee about which thread in the wait set is selected. This removal
from the wait set enables u's resumption in a wait action. Notice, however, that
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u's lock actions upon resumption cannot succeed until some time after t fully
unlocks the monitor for m.

• If n is greater than zero and this is a notifyAll action, then all threads are
removed from m's wait set, and thus resume.

Notice, however, that only one of them at a time will lock the monitor required
during the resumption of wait.

17.2.3 Interruptions

Interruption actions occur upon invocation of Thread.interrupt, as well as
methods defined to invoke it in turn, such as ThreadGroup.interrupt.

Let t be the thread invoking u.interrupt, for some thread u, where t and u may
be the same. This action causes u's interruption status to be set to true.

Additionally, if there exists some object m whose wait set contains u, then u is
removed from m's wait set. This enables u to resume in a wait action, in which case
this wait will, after re-locking m's monitor, throw InterruptedException.

Invocations of Thread.isInterrupted can determine a thread's interruption
status. The static method Thread.interrupted may be invoked by a thread to
observe and clear its own interruption status.

17.2.4 Interactions of Waits, Notification, and Interruption

The above specifications allow us to determine several properties having to do with
the interaction of waits, notification, and interruption.

If a thread is both notified and interrupted while waiting, it may either:

• return normally from wait, while still having a pending interrupt (in other words,
a call to Thread.interrupted would return true)

• return from wait by throwing an InterruptedException

The thread may not reset its interrupt status and return normally from the call to
wait.

Similarly, notifications cannot be lost due to interrupts. Assume that a set s of
threads is in the wait set of an object m, and another thread performs a notify on
m. Then either:

• at least one thread in s must return normally from wait, or

• all of the threads in s must exit wait by throwing InterruptedException
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Note that if a thread is both interrupted and woken via notify, and that thread
returns from wait by throwing an InterruptedException, then some other thread
in the wait set must be notified.

17.3 Sleep and Yield

Thread.sleep causes the currently executing thread to sleep (temporarily cease
execution) for the specified duration, subject to the precision and accuracy of
system timers and schedulers. The thread does not lose ownership of any monitors,
and resumption of execution will depend on scheduling and the availability of
processors on which to execute the thread.

It is important to note that neither Thread.sleep nor Thread.yield have any
synchronization semantics. In particular, the compiler does not have to flush
writes cached in registers out to shared memory before a call to Thread.sleep
or Thread.yield, nor does the compiler have to reload values cached in registers
after a call to Thread.sleep or Thread.yield.

17.4 Memory Model

A memory model describes, given a program and an execution trace of that
program, whether the execution trace is a legal execution of the program. The
Java programming language memory model works by examining each read in an
execution trace and checking that the write observed by that read is valid according
to certain rules.

The memory model describes possible behaviors of a program. An implementation
is free to produce any code it likes, as long as all resulting executions of a program
produce a result that can be predicted by the memory model.

The memory model determines what values can be read at every point in the
program. The actions of each thread in isolation must behave as governed by the
semantics of that thread, with the exception that the values seen by each read are
determined by the memory model. When we refer to this, we say that the program
obeys intra-thread semantics. Intra-thread semantics are the semantics for single-
threaded programs, and allow the complete prediction of the behavior of a thread
based on the values seen by read actions within the thread. To determine if the
actions of thread t in an execution are legal, we simply evaluate the implementation
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of thread t as it would be performed in a single-threaded context, as defined in the
rest of this specification.

Each time the evaluation of thread t generates an inter-thread action, it must match
the inter-thread action a of t that comes next in program order. If a is a read, then
further evaluation of t uses the value seen by a as determined by the memory model.

This section provides the specification of the Java programming language memory
model except for issues dealing with final fields, which are described in §17.5.

17.4.1 Shared Variables

Memory that can be shared between threads is called shared memory or heap
memory.

All instance fields, static fields, and array elements are stored in heap memory.
In this chapter, we use the term variable to refer to both fields and array elements.

Local variables (§14.4), formal method parameters (§8.4.1), and exception handler
parameters (§14.20) are never shared between threads and are unaffected by the
memory model.

Two accesses to (reads of or writes to) the same variable are said to be conflicting
if at least one of the accesses is a write.

17.4.2 Actions

An inter-thread action is an action performed by one thread that can be detected or
directly influenced by another thread. There are several kinds of inter-thread action
that a program may perform:

• Read (normal, or non-volatile). Reading a variable.

• Write (normal, or non-volatile). Writing a variable.

• Synchronization actions, which are:

◆ Volatile read. A volatile read of a variable.

◆ Volatile write. A volatile write of a variable.

◆ Lock. Locking a monitor

◆ Unlock. Unlocking a monitor.

◆ The (synthetic) first and last action of a thread.

◆ Actions that start a thread or detect that a thread has terminated (§17.4.4).
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• External Actions. An external action is an action that may be observable outside
of an execution, and has a result based on an environment external to the
execution.

• Thread divergence actions (§17.4.9). A thread divergence action is only
performed by a thread that is in an infinite loop in which no memory,
synchronization, or external actions are performed. If a thread performs a thread
divergence action, it will be followed by an infinite number of thread divergence
actions.

This specification is only concerned with inter-thread actions. We do not need to
concern ourselves with intra-thread actions (e.g., adding two local variables and
storing the result in a third local variable). As previously mentioned, all threads
need to obey the correct intra-thread semantics for Java programs. We will usually
refere to inter-thread actions more succinctly as simply actions.

An action a is described by a tuple < t, k, v, u >, comprising:

• t - the thread performing the action

• k - the kind of action

• v - the variable or monitor involved in the action.

For lock actions, v is the monitor being locked; for unlock actions, v is the
monitor being unlocked.

If the action is a (volatile or non-volatile) read, v is the variable being read.

If the action is a (volatile or non-volatile) write, v is the variable being written.

• u - an arbitrary unique identifier for the action

An external action tuple contains an additional component, which contains the
results of the external action as perceived by the thread performing the action. This
may be information as to the success or failure of the action, and any values read
by the action.

Parameters to the external action (e.g., which bytes are written to which socket) are
not part of the external action tuple. These parameters are set up by other actions
within the thread and can be determined by examining the intra-thread semantics.
They are not explicitly discussed in the memory model.

In non-terminating executions, not all external actions are observable. Non-
terminating executions and observable actions are discussed in §17.4.9.



THREADS AND LOCKS Programs and Program Order 17.4.3

357

17.4.3 Programs and Program Order

Among all the inter-thread actions performed by each thread t, the program order
of t is a total order that reflects the order in which these actions would be performed
according to the intra-thread semantics of t.

A set of actions is sequentially consistent if all actions occur in a total order (the
execution order) that is consistent with program order, and furthermore, each read
r of a variable v sees the value written by the write w to v such that:

• w comes before r in the execution order, and

• there is no other write w' such that w comes before w' and w' comes before r in
the execution order.

Sequential consistency is a very strong guarantee that is made about visibility and
ordering in an execution of a program. Within a sequentially consistent execution,
there is a total order over all individual actions (such as reads and writes) which is
consistent with the order of the program, and each individual action is atomic and
is immediately visible to every thread.

If a program has no data races, then all executions of the program will appear to
be sequentially consistent.

Sequential consistency and/or freedom from data races still allows errors arising
from groups of operations that need to be perceived atomically and are not.

17.4.4 Synchronization Order

Every execution has a synchronization order. A synchronization order is a total
order over all of the synchronization actions of an execution. For each thread t,
the synchronization order of the synchronization actions (§17.4.2) in t is consistent
with the program order (§17.4.3) of t.

Synchronization actions induce the synchronized-with relation on actions, defined
as follows:

• An unlock action on monitor m synchronizes-with all subsequent lock actions on
m (where "subsequent" is defined according to the synchronization order).

• A write to a volatile variable v (§8.3.1.4) synchronizes-with all subsequent
reads of v by any thread (where "subsequent" is defined according to the
synchronization order).

• An action that starts a thread synchronizes-with the first action in the thread it
starts.
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• The write of the default value (zero, false, or null) to each variable
synchronizes-with the first action in every thread.

• The final action in a thread T1 synchronizes-with any action in another thread T2
that detects that T1 has terminated.

T2 may accomplish this by calling T1.isAlive() or T1.join().

• If thread T1 interrupts thread T2, the interrupt by T1 synchronizes-with any point
where any other thread (including T2) determines that T2 has been interrupted (by
having an InterruptedException thrown or by invoking Thread.interrupted
or Thread.isInterrupted).

The source of a synchronizes-with edge is called a release, and the destination is
called an acquire.

17.4.5 Happens-before Order

Two actions can be ordered by a happens-before relationship. If one action
happens-before another, then the first is visible to and ordered before the second.

If we have two actions x and y, we write hb(x, y) to indicate that x happens-before y.

• If x and y are actions of the same thread and x comes before y in program order,
then hb(x, y).

• There is a happens-before edge from the end of a constructor of an object to the
start of a finalizer (§12.6) for that object.

• If an action x synchronizes-with a following action y, then we also have hb(x, y).

• If hb(x, y) and hb(y, z), then hb(x, z).

It should be noted that the presence of a happens-before relationship between
two actions does not necessarily imply that they have to take place in that order
in an implementation. If the reordering produces results consistent with a legal
execution, it is not illegal.

More specifically, if two actions share a happens-before relationship, they do not
necessarily have to appear to have happened in that order to any code with which
they do not share a happens-before relationship. Writes in one thread that are in
a data race with reads in another thread may, for example, appear to occur out of
order to those reads.

The wait methods of class Object (§17.2.1) have lock and unlock actions
associated with them; their happens-before relationships are defined by these
associated actions.
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The happens-before relation defines when data races take place.

A set of synchronization edges, S, is sufficient if it is the minimal set such that the
transitive closure of S with the program order determines all of the happens-before
edges in the execution. This set is unique.

It follows from the above definitions that:

• An unlock on a monitor happens-before every subsequent lock on that monitor.

• A write to a volatile field (§8.3.1.4) happens-before every subsequent read of
that field.

• A call to start() on a thread happens-before any actions in the started thread.

• All actions in a thread happen-before any other thread successfully returns from
a join() on that thread.

• The default initialization of any object happens-before any other actions (other
than default-writes) of a program.

When a program contains two conflicting accesses (§17.4.1) that are not ordered
by a happens-before relationship, it is said to contain a data race.

The semantics of operations other than inter-thread actions, such as reads of array
lengths (§10.7), executions of checked casts (§5.5, §15.16), and invocations of
virtual methods (§15.12), are not directly affected by data races.

A program is correctly synchronized if and only if all sequentially consistent
executions are free of data races.

If a program is correctly synchronized, then all executions of the program will
appear to be sequentially consistent (§17.4.3).

We say that a read r of a variable v is allowed to observe a write w to v if, in the
happens-before partial order of the execution trace:

• r is not ordered before w (i.e., it is not the case that hb(r, w)), and

• there is no intervening write w' to v (i.e. no write w' to v such that hb(w, w') and
hb(w', r)).

Informally, a read r is allowed to see the result of a write w if there is no happens-
before ordering to prevent that read.

A set of actions A is happens-before consistent if for all reads r in A, where W(r)
is the write action seen by r, it is not the case that either hb(r, W(r)) or that there
exists a write w in A such that w.v = r.v and hb(W(r), w) and hb(w, r).
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In a happens-before consistent set of actions, each read sees a write that it is allowed
to see by the happens-before ordering.

17.4.6 Executions

An execution E is described by a tuple < P, A, po, so, W, V, sw, hb >, comprising:

• P - a program

• A - a set of actions

• po - program order, which for each thread t, is a total order over all actions
performed by t in A

• so - synchronization order, which is a total order over all synchronization actions
in A

• W - a write-seen function, which for each read r in A, gives W(r), the write action
seen by r in E.

• V - a value-written function, which for each write w in A, gives V(w), the value
written by w in E.

• sw - synchronizes-with, a partial order over synchronization actions

• hb - happens-before, a partial order over actions

Note that the synchronizes-with and happens-before elements are uniquely
determined by the other components of an execution and the rules for well-formed
executions (§17.4.7).

An execution is happens-before consistent if its set of actions is happens-before
consistent (§17.4.5).

17.4.7 Well-Formed Executions

We only consider well-formed executions. An execution E = < P, A, po, so, W, V,
sw, hb > is well formed if the following conditions are true:

1. Each read sees a write to the same variable in the execution.

All reads and writes of volatile variables are volatile actions. For all reads r
in A, we have W(r) in A and W(r).v = r.v. The variable r.v is volatile if and
only if r is a volatile read, and the variable w.v is volatile if and only if w is
a volatile write.

2. The happens-before order is a partial order.
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The happens-before order is given by the transitive closure of synchronizes-
with edges and program order. It must be a valid partial order: reflexive,
transitive and antisymmetric.

3. The execution obeys intra-thread consistency.

For each thread t, the actions performed by t in A are the same as would
be generated by that thread in program-order in isolation, with each write w
writing the value V(w), given that each read r sees the value V(W(r)). Values
seen by each read are determined by the memory model. The program order
given must reflect the program order in which the actions would be performed
according to the intra-thread semantics of P.

4. The execution is happens-before consistent (§17.4.6).

5. The execution obeys synchronization-order consistency.

For all volatile reads r in A, it is not the case that either so(r, W(r)) or that there
exists a write w in A such that w.v = r.v and so(W(r), w) and so(w, r).

17.4.8 Executions and Causality Requirements

A well-formed execution E = < P, A, po, so, W, V, sw, hb > is validated by
committing actions from A. If all of the actions in A can be committed, then the
execution satisfies the causality requirements of the Java programming language
memory model.

Starting with the empty set as C0, we perform a sequence of steps where we take
actions from the set of actions A and add them to a set of committed actions Ci to
get a new set of committed actions Ci+1. To demonstrate that this is reasonable,
for each Ci we need to demonstrate an execution E containing Ci that meets certain
conditions.

Formally, an execution E satisfies the causality requirements of the Java
programming language memory model if and only if there exist:

• Sets of actions C0, C1, ... such that:

◆ C0 is the empty set

◆ Ci is a proper subset of Ci+1

◆ A = ∪ (C0, C1, ...)

If A is finite, then the sequence C0, C1, ... will be finite, ending in a set Cn = A.
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If A is infinite, then the sequence C0, C1, ... may be infinite, and it must be the
case that the union of all elements of this infinite sequence is equal to A.

• Well-formed executions E1, ..., where Ei = < P, Ai, poi, soi, Wi, Vi, swi, hbi >.

Given these sets of actions C0, ... and executions E1, ... , every action in Ci must
be one of the actions in Ei. All actions in Ci must share the same relative happens-
before order and synchronization order in both Ei and E. Formally:

1. Ci is a subset of Ai

2. hbi |Ci = hb |Ci

3. soi |Ci = so |Ci

The values written by the writes in Ci must be the same in both Ei and E. Only the
reads in Ci-1 need to see the same writes in Ei as in E. Formally:

4. Vi |Ci = V |Ci

5. Wi |Ci-1 = W |Ci-1

All reads in Ei that are not in Ci-1 must see writes that happen-before them. Each
read r in Ci - Ci-1 must see writes in Ci-1 in both Ei and E, but may see a different
write in Ei from the one it sees in E. Formally:

6. For any read r in Ai - Ci-1, we have hbi(Wi(r), r)

7. For any read r in (Ci - Ci-1), we have Wi(r) in Ci-1 and W(r) in Ci-1

Given a set of sufficient synchronizes-with edges for Ei, if there is a release-acquire
pair that happens-before (§17.4.5) an action you are committing, then that pair must
be present in all Ej, where j ≥ i. Formally:

8. Let sswi be the swi edges that are also in the transitive reduction of hbi but not
in po. We call sswi the sufficient synchronizes-with edges for Ei. If sswi(x, y) and
hbi(y, z) and z in Ci, then swj(x, y) for all j ≥ i.

If an action y is committed, all external actions that happen-before y are also
committed.

9. If y is in Ci, x is an external action and hbi(x, y), then x in Ci.

17.4.9 Observable Behavior and Nonterminating Executions

For programs that always terminate in some bounded finite period of time,
their behavior can be understood (informally) simply in terms of their allowable
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executions. For programs that can fail to terminate in a bounded amount of time,
more subtle issues arise.

The observable behavior of a program is defined by the finite sets of external
actions that the program may perform. A program that, for example, simply prints
"Hello" forever is described by a set of behaviors that for any non-negative integer
i, includes the behavior of printing "Hello" i times.

Termination is not explicitly modeled as a behavior, but a program can easily
be extended to generate an additional external action executionTermination that
occurs when all threads have terminated.

We also define a special hang action. If behavior is described by a set of external
actions including a hang action, it indicates a behavior where after the external
actions are observed, the program can run for an unbounded amount of time without
performing any additional external actions or terminating. Programs can hang if all
threads are blocked or if the program can perform an unbounded number of actions
without performing any external actions.

A thread can be blocked in a variety of circumstances, such as when it is attempting
to acquire a lock or perform an external action (such as a read) that depends on
external data.

An execution may result in a thread being blocked indefinitely and the execution's
not terminating. In such cases, the actions generated by the blocked thread must
consist of all actions generated by that thread up to and including the action that
caused the thread to be blocked, and no actions that would be generated by the
thread after that action.

To reason about observable behaviors, we need to talk about sets of observable
actions.

If O is a set of observable actions for an execution E, then set O must be a subset of
E's actions, A, and must contain only a finite number of actions, even if A contains
an infinite number of actions. Furthermore, if an action y is in O, and either hb(x,
y) or so(x, y), then x is in O.

Note that a set of observable actions are not restricted to external actions. Rather,
only external actions that are in a set of observable actions are deemed to be
observable external actions.

A behavior B is an allowable behavior of a program P if and only if B is a finite
set of external actions and either:
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• There exists an execution E of P, and a set O of observable actions for E, and B
is the set of external actions in O (If any threads in E end in a blocked state and
O contains all actions in E, then B may also contain a hang action); or

• There exists a set O of actions such that B consists of a hang action plus all the
external actions in O and for all k ≥ | O |, there exists an execution E of P with
actions A, and there exists a set of actions O' such that:

◆ Both O and O' are subsets of A that fulfill the requirements for sets of
observable actions.

◆ O ⊆ O' ⊆ A

◆ | O' | ≥ k

◆ O' - O contains no external actions

17.5 final Field Semantics

Fields declared final are initialized once, but never changed under normal
circumstances. The detailed semantics of final fields are somewhat different from
those of normal fields. In particular, compilers have a great deal of freedom to
move reads of final fields across synchronization barriers and calls to arbitrary or
unknown methods. Correspondingly, compilers are allowed to keep the value of a
final field cached in a register and not reload it from memory in situations where
a non-final field would have to be reloaded.

final fields also allow programmers to implement thread-safe immutable objects
without synchronization. A thread-safe immutable object is seen as immutable
by all threads, even if a data race is used to pass references to the immutable
object between threads. This can provide safety guarantees against misuse of an
immutable class by incorrect or malicious code. final fields must be used correctly
to provide a guarantee of immutability.

An object is considered to be completely initialized when its constructor finishes. A
thread that can only see a reference to an object after that object has been completely
initialized is guaranteed to see the correctly initialized values for that object's final
fields.

The usage model for final fields is a simple one: Set the final fields for an
object in that object's constructor; and do not write a reference to the object being
constructed in a place where another thread can see it before the object's constructor
is finished. If this is followed, then when the object is seen by another thread, that
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thread will always see the correctly constructed version of that object's final fields.
It will also see versions of any object or array referenced by those final fields that
are at least as up-to-date as the final fields are.

17.5.1 Semantics of final Fields

The semantics for final fields are as follows. Let o be an object, and c be a
constructor for o in which a final field f is written. A freeze action on final field
f of o takes place when c exits, either normally or abruptly.

Note that if one constructor invokes another constructor, and the invoked
constructor sets a final field, the freeze for the final field takes place at the end
of the invoked constructor.

For each execution, the behavior of reads is influenced by two additional partial
orders, the dereference chain dereferences() and the memory chain mc(), which are
considered to be part of the execution (and thus, fixed for any particular execution).
These partial orders must satisfy the following constraints (which need not have
a unique solution):

• Dereference Chain: If an action a is a read or write of a field or element of an
object o by a thread t that did not initialize o, then there must exist some read r
by thread t that sees the address of o such that r dereferences(r, a).

• Memory Chain: There are several constraints on the memory chain ordering:

◆ If r is a read that sees a write w, then it must be the case that mc(w, r).

◆ If r and a are actions such that dereferences(r, a), then it must be the case that
mc(r, a).

◆ If w is a write of the address of an object o by a thread t that did not initialize
o, then there must exist some read r by thread t that sees the address of o such
that mc(r, w).

Given a write w, a freeze f, an action a (that is not a read of a final field), a read
r1 of the final field frozen by f, and a read r2 such that hb(w, f), hb(f, a), mc(a, r1),
and dereferences(r1, r2), then when determining which values can be seen by r2,
we consider hb(w, r2). (This happens-before ordering does not transitively close
with other happens-before orderings.)

Note that the dereferences order is reflexive, and r1 can be the same as r2.

For reads of final fields, the only writes that are deemed to come before the read
of the final field are the ones derived through the final field semantics.
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17.5.2 Reading final Fields During Construction

A read of a final field of an object within the thread that constructs that object is
ordered with respect to the initialization of that field within the constructor by the
usual happens-before rules. If the read occurs after the field is set in the constructor,
it sees the value the final field is assigned, otherwise it sees the default value.

17.5.3 Subsequent Modification of final Fields

In some cases, such as deserialization, the system will need to change the final
fields of an object after construction. final fields can be changed via reflection
and other implementation-dependent means. The only pattern in which this has
reasonable semantics is one in which an object is constructed and then the final
fields of the object are updated. The object should not be made visible to other
threads, nor should the final fields be read, until all updates to the final fields
of the object are complete. Freezes of a final field occur both at the end of the
constructor in which the final field is set, and immediately after each modification
of a final field via reflection or other special mechanism.

Even then, there are a number of complications. If a final field is initialized to a
compile-time constant in the field declaration, changes to the final field may not
be observed, since uses of that final field are replaced at compile time with the
compile-time constant.

Another problem is that the specification allows aggressive optimization of final
fields. Within a thread, it is permissible to reorder reads of a final field with those
modifications of a final field that do not take place in the constructor.

An implementation may provide a way to execute a block of code in a final-field-
safe context. If an object is constructed within a final-field-safe context, the reads
of a final field of that object will not be reordered with modifications of that final
field that occur within that final-field-safe context.

A final-field-safe context has additional protections. If a thread has seen an
incorrectly published reference to an object that allows the thread to see the default
value of a final field, and then, within a final-field-safe context, reads a properly
published reference to the object, it will be guaranteed to see the correct value of
the final field. In the formalism, code executed within a final-field-safe context
is treated as a separate thread (for the purposes of final field semantics only).

In an implementation, a compiler should not move an access to a final field into
or out of a final-field-safe context (although it can be moved around the execution
of such a context, so long as the object is not constructed within that context).
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17.5.4 Write-protected Fields

Normally, a field that is final and static may not be modified. However,
System.in, System.out, and System.err are static final fields that, for
legacy reasons, must be allowed to be changed by the methods System.setIn,
System.setOut, and System.setErr. We refer to these fields as being write-
protected to distinguish them from ordinary final fields.

The compiler needs to treat these fields differently from other final fields. For
example, a read of an ordinary final field is "immune" to synchronization: the
barrier involved in a lock or volatile read does not have to affect what value is read
from a final field. Since the value of write-protected fields may be seen to change,
synchronization events should have an effect on them. Therefore, the semantics
dictate that these fields be treated as normal fields that cannot be changed by user
code, unless that user code is in the System class.

17.6 Word Tearing

One consideration for implementations of the Java virtual machine is that every
field and array element is considered distinct; updates to one field or element must
not interact with reads or updates of any other field or element. In particular, two
threads that update adjacent elements of a byte array separately must not interfere
or interact and do not need synchronization to ensure sequential consistency.

Some processors do not provide the ability to write to a single byte. It would be
illegal to implement byte array updates on such a processor by simply reading an
entire word, updating the appropriate byte, and then writing the entire word back to
memory. This problem is sometimes known as word tearing, and on processors that
cannot easily update a single byte in isolation some other approach will be required.

17.7 Non-atomic Treatment of double and long

For the purposes of the Java programming language memory model, a single write
to a non-volatile long or double value is treated as two separate writes: one to each
32-bit half. This can result in a situation where a thread sees the first 32 bits of a
64-bit value from one write, and the second 32 bits from another write.
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Writes and reads of volatile long and double values are always atomic. Writes
to and reads of references are always atomic, regardless of whether they are
implemented as 32-bit or 64-bit values.
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C H A P T E R 18
Syntax

THIS chapter presents a grammar for the Java programming language.

The grammar presented piecemeal in the preceding chapters is much better for
exposition, but it is not well suited as a basis for a parser. The grammar presented
in this chapter is the basis for the reference implementation. Note that it is not an
LL(1) grammar, though in many cases it minimizes the necessary look ahead.

The grammar below uses the following BNF-style conventions:

• [x] denotes zero or one occurrences of x.

• {x} denotes zero or more occurrences of x.

• x | y means one of either x or y.

Identifier:
    IDENTIFIER

QualifiedIdentifier:
    Identifier { . Identifier }

QualifiedIdentifierList: 
    QualifiedIdentifier { , QualifiedIdentifier }
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CompilationUnit: 
    [ [Annotations] package QualifiedIdentifier ; ]
                                     {ImportDeclaration} {TypeDeclaration}

ImportDeclaration: 
    import [static] Identifier { . Identifier } [. *] ;

TypeDeclaration: 
    ClassOrInterfaceDeclaration
    ;

ClassOrInterfaceDeclaration: 
    {Modifier} (ClassDeclaration | InterfaceDeclaration)

ClassDeclaration: 
    NormalClassDeclaration
    EnumDeclaration

InterfaceDeclaration: 
    NormalInterfaceDeclaration
    AnnotationTypeDeclaration

NormalClassDeclaration: 
    class Identifier [TypeParameters] [extends Type] [implements TypeList] ClassBody

EnumDeclaration:
    enum Identifier [implements TypeList] EnumBody

NormalInterfaceDeclaration: 
    interface Identifier [TypeParameters] [extends TypeList] InterfaceBody

AnnotationTypeDeclaration:
    @ interface Identifier AnnotationTypeBody
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Type:
    ReferenceType  {[]}
    BasicType {[]}

ReferenceType:
    Identifier [TypeArguments] { . Identifier [TypeArguments] }

TypeArguments: 
    < TypeArgument { , TypeArgument } >

TypeArgument:  
    ReferenceType
    ? [ ( extends | super ) ReferenceType ]

BasicType: 
    byte
    short
    char
    int
    long
    float
    double
    boolean

TypeParameters:
    < TypeParameter { , TypeParameter } >

TypeParameter:
    Identifier [extends Bound]

Bound:  
    ReferenceType { & ReferenceType }

NonWildcardTypeArguments:
    < TypeList >

TypeList:  
    ReferenceType { , ReferenceType }
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Modifier: 
    Annotation
    public 
    protected 
    private 
    static 
    abstract 
    final 
    native 
    synchronized 
    transient 
    volatile
    strictfp

Annotations:
    Annotation {Annotation}

Annotation:
    @ QualifiedIdentifier [ ( [AnnotationElement] ) ]

AnnotationElement:
    ElementValuePairs
    ElementValue

ElementValuePairs:
    ElementValuePair { , ElementValuePair }

ElementValuePair:
    Identifer = ElementValue
    
ElementValue:
    Annotation
    Expression1 
    ElementValueArrayInitializer

ElementValueArrayInitializer:
    { [ElementValues] [,] }

ElementValues:
    ElementValue { , ElementValue }
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ClassBody: 
    { { ClassBodyDeclaration } }

ClassBodyDeclaration:
    ; 
    {Modifier} MemberDecl
    [static] Block

MemberDecl:
    MethodOrFieldDecl
    void Identifier VoidMethodDeclaratorRest
    Identifier ConstructorDeclaratorRest
    GenericMethodOrConstructorDecl
    ClassDeclaration
    InterfaceDeclaration

MethodOrFieldDecl:
    Type Identifier MethodOrFieldRest

MethodOrFieldRest:
    VariableDeclaratorsRest ;
    MethodDeclaratorRest

MethodDeclaratorRest:
    FormalParameters {[]} [throws QualifiedIdentifierList] (Block | ;)

VoidMethodDeclaratorRest:
    FormalParameters [throws QualifiedIdentifierList] (Block | ;)

ConstructorDeclaratorRest:
    FormalParameters [throws QualifiedIdentifierList] Block

GenericMethodOrConstructorDecl:
    TypeParameters GenericMethodOrConstructorRest

GenericMethodOrConstructorRest:
    (Type | void) Identifier MethodDeclaratorRest
    Identifier ConstructorDeclaratorRest
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InterfaceBody: 
    { { InterfaceBodyDeclaration } }

InterfaceBodyDeclaration:
    ; 
    {Modifier} InterfaceMemberDecl

InterfaceMemberDecl:
    InterfaceMethodOrFieldDecl
    void Identifier VoidInterfaceMethodDeclaratorRest
    InterfaceGenericMethodDecl
    ClassDeclaration
    InterfaceDeclaration

InterfaceMethodOrFieldDecl:
    Type Identifier InterfaceMethodOrFieldRest

InterfaceMethodOrFieldRest:
    ConstantDeclaratorsRest ;
    InterfaceMethodDeclaratorRest

ConstantDeclaratorsRest: 
    ConstantDeclaratorRest { , ConstantDeclarator }

ConstantDeclaratorRest: 
    {[]} = VariableInitializer

ConstantDeclarator: 
    Identifier ConstantDeclaratorRest

InterfaceMethodDeclaratorRest:
    FormalParameters {[]} [throws QualifiedIdentifierList] ; 

VoidInterfaceMethodDeclaratorRest:
    FormalParameters [throws QualifiedIdentifierList] ;  

InterfaceGenericMethodDecl:
    TypeParameters (Type | void) Identifier InterfaceMethodDeclaratorRest
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FormalParameters: 
    ( [FormalParameterDecls] )

FormalParameterDecls: 
    {VariableModifier}  Type FormalParameterDeclsRest

VariableModifier:
    final
    Annotation

FormalParameterDeclsRest: 
    VariableDeclaratorId [ , FormalParameterDecls ]
    ... VariableDeclaratorId

VariableDeclaratorId: 
    Identifier {[]}

VariableDeclarators: 
    VariableDeclarator { , VariableDeclarator }

VariableDeclarator:
    Identifier VariableDeclaratorRest

VariableDeclaratorRest: 
    {[]} [ = VariableInitializer ]

VariableInitializer: 
    ArrayInitializer
    Expression

ArrayInitializer: 
    { [ VariableInitializer { , VariableInitializer } [,] ] }

VariableDeclaratorsRest:
    VariableDeclaratorRest { , VariableDeclarator }
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Block: 
    { BlockStatements }

BlockStatements: 
    { BlockStatement }

BlockStatement:
    LocalVariableDeclarationStatement
    ClassOrInterfaceDeclaration
    [Identifier :] Statement

LocalVariableDeclarationStatement:
    { VariableModifier }  Type VariableDeclarators ;

Statement:
    Block
    assert Expression [: Expression] ;
    if ParExpression Statement [else Statement]
    while ParExpression Statement
    do Statement while ParExpression ;
    synchronized ParExpression Block
    return [Expression] ;
    throw Expression ;
    break [Identifier] ;
    continue [Identifier] ;
    try Block ( Catches | [Catches] finally Block )
    switch ParExpression { SwitchBlockStatementGroups }
    for ( ForControl ) Statement
    ; 
    StatementExpression ;
    Identifier : Statement

StatementExpression: 
    Expression

Catches:
    CatchClause { CatchClause }

CatchClause: 
    catch ( {VariableModifier} Type Identifier ) Block
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SwitchBlockStatementGroups: 
    { SwitchBlockStatementGroup }

SwitchBlockStatementGroup: 
    SwitchLabels BlockStatements

SwitchLabels:
    SwitchLabel { SwitchLabel }

SwitchLabel: 
    case Expression :
    case EnumConstantName :
    default :

EnumConstantName:
    Identifier

ForControl:
    ForVarControl
    ForInit ; [Expression] ; [ForUpdate]

ForVarControl:
    {VariableModifier} Type VariableDeclaratorId  ForVarControlRest

ForVarControlRest:
    ForVariableDeclaratorsRest ; [Expression] ; [ForUpdate]
    : Expression

ForVariableDeclaratorsRest:
    [ = VariableInitializer ] { , VariableDeclarator }

ForInit: 
ForUpdate:
    StatementExpression { , StatementExpression }
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Expression: 
    Expression1 [ AssignmentOperator Expression1 ]

AssignmentOperator: 
    = 
    +=
    -= 
    *=
    /=
    &=
    |=
    ^=
    %=
    <<=
    >>=
    >>>=

Expression1: 
    Expression2 [ Expression1Rest ]

Expression1Rest: 
    ? Expression : Expression1

Expression2:
    Expression3 [ Expression2Rest ]

Expression2Rest:
    { InfixOp Expression3 }
    instanceof Type
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InfixOp: 
    || 
    &&
    |
    ^
    &
    ==
    !=
    <
    >
    <=
    >=
    <<
    >>
    >>>
    +
    -
    *
    /
    %

Expression3: 
    PrefixOp Expression3
    ( Expression | Type ) Expression3
    Primary { Selector } { PostfixOp }

PrefixOp: 
    ++
    --
    !
    ~
    +
    -

PostfixOp: 
    ++
    --
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Primary: 
    Literal
    ParExpression
    this [Arguments]
    super SuperSuffix
    new Creator
    NonWildcardTypeArguments ( ExplicitGenericInvocationSuffix | this Arguments )
    Identifier { . Identifier } [IdentifierSuffix]
    BasicType {[]} . class
    void . class

Literal:
    IntegerLiteral
    FloatingPointLiteral
    CharacterLiteral  
    StringLiteral  
    BooleanLiteral
    NullLiteral

ParExpression: 
    ( Expression )

Arguments:
    ( [ Expression { , Expression } ] )

SuperSuffix: 
    Arguments 
    . Identifier [Arguments]

ExplicitGenericInvocationSuffix: 
    super SuperSuffix
    Identifier Arguments
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Creator:  
    NonWildcardTypeArguments CreatedName ClassCreatorRest
    CreatedName ( ClassCreatorRest | ArrayCreatorRest )

CreatedName: 
    Identifier [TypeArguments] { . Identifier [TypeArguments] }

ClassCreatorRest: 
    Arguments [ClassBody]

ArrayCreatorRest:
    [
      ( ] {[]} ArrayInitializer |
        Expression ] {[ Expression ]} {[]} )
      ]

IdentifierSuffix:
    [ ( {[]} . class | Expression ) ]
    Arguments 
    . ( class | ExplicitGenericInvocation | this | super Arguments |
           new [NonWildcardTypeArguments] InnerCreator )

ExplicitGenericInvocation:
    NonWildcardTypeArguments ExplicitGenericInvocationSuffix

InnerCreator: 
    Identifier ClassCreatorRest

Selector:
    . Identifier [Arguments]
    . ExplicitGenericInvocation
    . this
    . super SuperSuffix
    . new [NonWildcardTypeArguments] InnerCreator
    [ Expression ]
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EnumBody:
    { [EnumConstants] [,] [EnumBodyDeclarations] }

EnumConstants:
    EnumConstant
    EnumConstants , EnumConstant

EnumConstant:
    [Annotations] Identifier [Arguments] [ClassBody]

EnumBodyDeclarations:
    ; {ClassBodyDeclaration}

AnnotationTypeBody:
    { [AnnotationTypeElementDeclarations] }

AnnotationTypeElementDeclarations:
    AnnotationTypeElementDeclaration
    AnnotationTypeElementDeclarations AnnotationTypeElementDeclaration

AnnotationTypeElementDeclaration:
    {Modifier} AnnotationTypeElementRest

AnnotationTypeElementRest:
    Type Identifier AnnotationMethodOrConstantRest ;
    ClassDeclaration
    InterfaceDeclaration
    EnumDeclaration  
    AnnotationTypeDeclaration

AnnotationMethodOrConstantRest:
    AnnotationMethodRest
    ConstantDeclaratorsRest  

AnnotationMethodRest:
    ( ) [[]] [default ElementValue]
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