The Java™ Language
Specification
Java SE 7 Edition

James Gosling
Bill Joy
Guy Steele
Gilad Bracha
Alex Buckley



Copyright © 1997, 2011, Oracle and/or its affiliates. All rights reserved.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may
be trademarks of their respective owners.

Dukelogo™ designed by Joe Palrang.
LIMITED LICENSE GRANTS

1. License for Evaluation Purposes. Oracle hereby grants you a fully-paid, non-exclusive,
non-transferable, worldwide, limited license (without the right to sublicense), under
Oracle's applicable intellectual property rights to view, download, use and reproduce the
Specification only for the purpose of internal evaluation. This includes (i) developing
applications intended to run on an implementation of the Specification, provided that
such applications do not themselves implement any portion(s) of the Specification, and
(i) discussing the Specification with any third party; and (iii) excerpting brief portions
of the Specification in oral or written communications which discuss the Specification
provided that such excerpts do not in the aggregate constitute a significant portion of the
Specification.

2. License for the Distribution of Compliant Implementations. Oracle also grants you a
perpetual, non-exclusive, non-transferable, worldwide, fully paid-up, royalty free, limited
license (without the right to sublicense) under any applicable copyrights or, subject to the
provisions of subsection 4 below, patent rights it may have covering the Specification to
create and/or distribute an Independent Implementation of the Specification that: (a) fully
implementsthe Specificationincluding all itsrequired interfaces and functionality; (b) does
not modify, subset, superset or otherwise extend the Licensor Name Space, or include any
public or protected packages, classes, Javainterfaces, fields or methods within the Licensor
Name Space other than those required/authorized by the Specification or Specifications
being implemented; and (c) passes the Technology Compatibility Kit (including satisfying
the requirements of the applicable TCK Users Guide) for such Specification ("Compliant
Implementation”). In addition, the foregoing license is expressly conditioned on your not
acting outside its scope.

No license is granted hereunder for any other purpose (including, for example, modifying
the Specification, other than to the extent of your fair use rights, or distributing the
Specificationtothird parties). Also, noright, title, or interest in or to any trademarks, service
marks, or trade names of Oracle or Oracle's licensorsis granted hereunder. Java, and Java-
related logos, marks and names are trademarks or registered trademarks of Oracle in the
U.S. and other countries.

3. Pass-through Conditions. You need not include limitations (&)-(c) from the previous
paragraph or any other particular "pass through" requirements in any license You grant
concerning the use of your Independent Implementation or products derived from it.
However, except with respect to I ndependent I mplementations (and products derived from
them) that satisfy limitations (a)-(c) from the previous paragraph, You may neither: (a)
grant or otherwise pass through to your licensees any licenses under Oracle's applicable
intellectual property rights; nor (b) authorize your licensees to make any claims concerning
their implementation’'s compliance with the Specification in question.

4. Reciprocity Concerning Patent Licenses.

a. With respect to any patent claims covered by the license granted under subparagraph
2 above that would be infringed by all technically feasible implementations of the



Specification, such license is conditioned upon your offering on fair, reasonable and non-
discriminatory terms, to any party seeking it from Y ou, a perpetual, non-exclusive, hon-
transferable, worldwide license under Y our patent rights which are or would be infringed
by all technically feasible implementations of the Specification to develop, distribute and
use a Compliant Implementation.

b. With respect to any patent claims owned by Oracle and covered by the license granted
under subparagraph 2, whether or not their infringement can be avoided in a technically
feasible manner when implementing the Specification, such license shall terminate with
respect to such claims if You initiate a claim against Oracle that it has, in the course of
performingitsresponsibilitiesasthe Specification L ead, induced any other entity to infringe
Y our patent rights.

c. Also with respect to any patent claims owned by Oracle and covered by the license
granted under subparagraph 2 above, where the infringement of such claims can be avoided
in atechnically feasible manner when implementing the Specification such license, with
respect to such claims, shall terminateif Y ou initiate aclaim against Oracle that its making,
having made, using, offering to sell, selling or importing a Compliant Implementation
infringes Y our patent rights.

5. Definitions. For the purposes of this Agreement: "Independent Implementation” shall
mean an implementation of the Specification that neither derives from any of Oracle's
source code or binary code materials nor, except with an appropriate and separate license
from Oracle, includes any of Oracl€e's source code or binary code materials; "Licensor
Name Space" shall mean the public class or interface declarations whose names begin
with "java', "javax", "com.sun" or their equivalents in any subsequent naming convention
adopted by Oracle through the Java Community Process, or any recoghized successors or
replacements thereof; and "Technology Compatibility Kit" or "TCK" shall mean the test
suite and accompanying TCK User's Guide provided by Oracle which corresponds to the
Specification and that was available either (i) from Oracle 120 days before the first release
of Your Independent Implementation that allows its use for commercial purposes, or (ii)
more recently than 120 days from such release but against which You elect to test Your
implementation of the Specification.

This Agreement will terminate immediately without notice from Oracle if you breach the
Agreement or act outside the scope of the licenses granted above.

DISCLAIMER OF WARRANTIES

THE SPECIFICATION IS PROVIDED "AS IS'. ORACLE MAKES NO
REPRESENTATIONS OR WARRANTIES, EITHER EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT (INCLUDING
AS A CONSEQUENCE OF ANY PRACTICE OR IMPLEMENTATION OF THE
SPECIFICATION), OR THAT THE CONTENTS OF THE SPECIFICATION ARE
SUITABLE FOR ANY PURPOSE. This document does not represent any commitment
to release or implement any portion of the Specification in any product. In addition, the
Specification could include technical inaccuracies or typographical errors.

LIMITATION OF LIABILITY

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ORACLE
OR ITS LICENSORS BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT
LIMITATION, LOST REVENUE, PROFITS OR DATA, OR FOR SPECIAL,



INDIRECT, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES,
HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY,
ARISING OUT OF OR RELATED IN ANY WAY TO YOUR HAVING,
IMPLEMENTING OR OTHERWISE USING THE SPECIFICATION, EVEN IF
ORACLE AND/OR ITSLICENSORS HAVE BEEN ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES.

Y ou will indemnify, hold harmless, and defend Oracle and its licensors from any claims
arising or resulting from: (i) your use of the Specification; (ii) the use or distribution of your
Java application, applet and/or implementation; and/or (iii) any claims that later versions
or releases of any Specification furnished to you are incompatible with the Specification
provided to you under this license.

RESTRICTED RIGHTS LEGEND

U.S. Government: If this Specification is being acquired by or on behalf of the U.S.
Government or by aU.S. Government prime contractor or subcontractor (at any tier), then
the Government's rights in the Software and accompanying documentation shall be only as
set forth in thislicense; thisisin accordance with 48 C.F.R. 227.7201 through 227.7202-4
(for Department of Defense (DoD) acquisitions) and with 48 C.F.R. 2.101 and 12.212 (for
non-DoD acquisitions).

REPORT

If you provide Oracle with any comments or suggestions concerning the Specification
("Feedback™), you hereby: (i) agree that such Feedback is provided on a non-proprietary
and non-confidential basis, and (ii) grant Oracle a perpetual, non-exclusive, worldwide,
fully paid-up, irrevocable license, with the right to sublicense through multiple levels of
sublicensees, to incorporate, disclose, and use without limitation the Feedback for any
purpose.

GENERAL TERMS

Any action related to this Agreement will be governed by California law and controlling
U.S. federal law. The U.N. Convention for the International Sale of Goods and the choice
of law rules of any jurisdiction will not apply.

The Specification is subject to U.S. export control laws and may be subject to export or
import regulationsin other countries. Licensee agreesto comply strictly with all such laws
and regulations and acknowledges that it has the responsibility to obtain such licenses to
export, re-export or import as may be required after delivery to Licensee.

This Agreement is the parties entire agreement relating to its subject matter. It supersedes
all prior or contemporaneous ora or written communications, proposals, conditions,
representations and warranties and prevails over any conflicting or additional terms of any
quote, order, acknowledgment, or other communication between the parties relating to its
subject matter during the term of this Agreement. No modification to this Agreement will
be binding, unlessin writing and signed by an authorized representative of each party.









Table of Contents

1 Introduction 1

1.1  ExamplePrograms 5

1.2  Notation 6

1.3  Relationship to Predefined Classes and Interfaces 6
14  References 7

2 Grammars 9

2.1 Context-Free Grammars 9
2.2 The Lexical Grammar 9
2.3  The Syntactic Grammar 10
24 Grammar Notation 10

3 Lexical Structure 13

3.1 Unicode 13

3.2 Lexical Trandations 14

3.3 Unicode Escapes 15

34  Line Terminators 16

3.5 Input Elementsand Tokens 17

3.6  White Space 18

3.7 Comments 18

3.8 Identifiers 20

39 Keywords 20

3.10 Literals 21
3.10.1 Integer Literals 21
3.10.2 Floating-Point Literals 24
3.10.3 Boolean Literals 26
3.10.4 Character Literals 26
3.105 String Literds 27
3.10.6 Escape Sequences for Character and String Literals 28
3.10.7 TheNull Litera 29

3.11 Separators 29

3.12 Operators 29

4 Types, Values, and Variables 31

41  TheKindsof Typesand Values 32
4.2  Primitive Typesand Values 32
421 Integral Typesand Values 33



4.3

4.4
4.5

4.6
4.7
4.8
4.9
4.10

411
4.12

The Java™ Language Specification

4.2.2  Integer Operations 34

4.2.3  Floating-Point Types, Formats, and Values 35
4.24  Floating-Point Operations 38

425 Theboolean Type and boolean Vaues 40
Reference Typesand Values 41

431 Objects 42

432 TheClassObject 43

433 TheClassString 44

434  When Reference Types Are the Same 44
Type Variables 44

Parameterized Types 45

451  TypeArguments and Wildcards 46

45.2  Membersand Constructors of Parameterized Types 48
Type Erasure 48

Reifiable Types 49

Raw Types 50

Intersection Types 51

Subtyping 51

4.10.1 Subtyping among Primitive Types 52

4.10.2 Subtyping among Class and Interface Types 52
4.10.3 Subtyping among Array Types 53

Where Types Are Used 53

Variables 54

412.1 Variablesof Primitive Type 54

4122 Variablesof Reference Type 54

4.12.3 Kindsof Variables 54

4.12.4 fina Variables 56

4125 |Initia Vauesof Variables 57

4126 Types, Classes, and Interfaces 57

Conversions and Promotions 59

51

52
5.3

Kinds of Conversion 61

5.1.1 Identity Conversions 61

512  Widening Primitive Conversion 61
5.1.3  Narrowing Primitive Conversions 62
5.14  Widening and Narrowing Primitive Conversions 63
515 Widening Reference Conversions 64
5.1.6  Narrowing Reference Conversions 64
5.1.7 Boxing Conversion 65

5.1.8  Unboxing Conversion 66

519  Unchecked Conversion 67

5.1.10 Capture Conversion 67

5111 String Conversions 68

5.1.12 Forbidden Conversions 69

5.1.13 Value Set Conversion 69

Assignment Conversion 70

Method Invocation Conversion 72



The Java™ Language Specification

54  String Conversion 73
5,5  Casting Conversion 73
55.1 Reference Type Casting 74
55.2  Checked Casts and Unchecked Casts 76
5,5.3  Checked Casts at Run-time 77
56  Numeric Promotions 78
5.6.1  Unary Numeric Promotion 78
5.6.2  Binary Numeric Promotion 79

6 Names 81

6.1 Declarations 82
6.2  Namesand Identifiers 83
6.3  Scopeof aDeclaration 84
6.4  Shadowing and Obscuring 86
6.4.1 Shadowing 86
6.4.2  Obscuring 87
6.5  Determining the Meaning of aName 88
6.5.1  Syntactic Classification of a Name According to Context 89
6.5.2 Reclassification of Contextually Ambiguous Names 91
6.5.3  Meaning of Package Names 92
6.5.3.1  Simple Package Names 92
6.5.3.2 Qualified Package Names 93
6.5.4  Meaning of PackageOrTypeNames 93
6.5.4.1 Simple PackageOrTypeNames 93
6.5.4.2 Qualified PackageOrTypeNames 93
6.5.5 Meaning of Type Names 93
6.5.5.1 Simple Type Names 93
6.5.5.2 Quadlified Type Names 93
6.5.6 Meaning of Expression Names 94
6.5.6.1  Simple Expression Names 94
6.5.6.2 Qualified Expression Names 94
6.5.7 Meaning of Method Names 96
6.5.71  Simple Method Names 96
6.5.7.2 Qualified Method Names 96
6.6  AccessControl 97
6.6.1 Determining Accessibility 97
6.6.2 Detailson protected Access 98
6.6.21 Accesstoaprotected Member 98
6.6.22 Qualified Accessto aprotected Constructor 98
6.7  Fully Qualified Names and Canonical Names 99

7 Packages 101

7.1  Package Members 101

7.2 Host Support for Packages 102

7.3  Compilation Units 102

74  Package Declarations 103
74.1 Named Packages 104



Vi

The Java™ Language Specification

7.4.2  Unnamed Packages 104
7.4.3  Observability of aPackage 104
75  Import Declarations 105
751 Single-Type-Import Declaration 105
752  Type-Import-on-Demand Declaration 106
75.3  Single Static Import Declaration 107
754  Static-lmport-on-Demand Declaration 107
7.6  TopLeve TypeDeclarations 108

Classes 111

8.1  ClassDeclaration 113
8.1.1 ClassMaodifiers 113
8111 abstract Classes 114
8112 final Classes 115
81.13 strictfp Classes 115
8.1.2  Generic Classes and Type Parameters 115
8.1.3  Inner Classes and Enclosing Instances 116
8.14  Superclasses and Subclasses 118
8.15 Superinterfaces 119
8.16 ClassBody and Member Declarations 120
8.2 ClassMembers 121
8.3  Field Declarations 122
8.3.1 FiedModifiers 124
83.11 staticFieds 124
83.1.2 final Fieds 124
8.3.1.3 transient Fields 125
8314 volatile Fields 125
8.3.2 Initialization of Fields 125
8.3.2.1 Initidizersfor Class Variables 125
8.3.22 Initidizersfor Instance Variables 125
8.3.23  Redtrictions on the use of Fields during
Initialization 126
84  Method Declarations 126
84.1 Forma Parameters 127
8.4.2 Method Signature 129
8.4.3 Method Modifiers 130
8431 abstract Methods 131
8432 static Methods 131
8433 final Methods 131
84.34 native Methods 132
8435 strictfp Methods 132
84.3.6 synchronized Methods 132
84.4  Generic Methods 132
845 Method Return Type 132
84.6 Method Throws 133
84.7 Method Body 134
8.4.8 Inheritance, Overriding, and Hiding 134



The Java™ Language Specification

8.5

8.6
8.7
8.8

8.9

8.4.8.1 Overriding (by Instance Methods) 135
8.4.8.2 Hiding (by Class Methods) 135
8.4.8.3 Requirementsin Overriding and Hiding 136
8.4.84 Inheriting Methods with Override-Equivalent
Signatures 136

849 Overloading 137

Member Type Declarations 138

85.1 AccessModifiers 138

852  Static Member Type Declarations 139

Instance Initializers 139

Static Initializers 139

Constructor Declarations 140

8.8.1 Formal Parameters and Type Parameters 141

8.8.2  Constructor Signature 141

8.8.3  Constructor Modifiers 141

8.8.4  Generic Congtructors 141

8.8.5  Constructor Throws 142

8.8.6  TheTypeof aConstructor 142

8.8.7 Constructor Body 142
8.8.7.1  Explicit Constructor Invocations 143

8.8.8  Constructor Overloading 145

8.8.9  Default Constructor 145

8.8.10 Preventing Instantiation of aClass 146

Enums 146

8.9.1 Enum Constants 146

8.9.2 Enum Body and Member Declarations 148

O Interfaces 151

9.1

9.2
9.3

9.4

9.5
9.6

Interface Declarations 152
9.1.1 Interface Modifiers 152
9.111 abstract Interfaces 153
9.1.12 strictfp Interfaces 153
9.1.2  Generic Interfaces and Type Parameters 153
9.1.3  Superinterfaces and Subinterfaces 154
9.1.4 Interface Body and Member Declarations 155
Interface Members 155
Field (Constant) Declarations 156
9.3.1 Initidlization of Fieldsin Interfaces 157
Abstract Method Declarations 158
9.4.1 Inheritance and Overriding 159
94.2 Overloading 160
Member Type Declarations 160
Annotation Types 161
9.6.1  Annotation Type Elements 162
9.6.2 Defaultsfor Annotation Type Elements 163
9.6.3  Predefined Annotation Types 163
9.6.31 Target 163

Vii



viii

10

11

12

9.7 Annotations 165

9.7.1
9.7.2
9.7.3

Arrays 171

10.1 Array Types 172

9.6.3.2
9.6.3.3
9.6.34
9.6.35
9.6.3.6

The Java™ Language Specification

Retention 163
Inherited 164
Override 164
SuppressWarnings 164
Deprecated 165

Norma Annotations 166
Marker Annotations 168
Single-Element Annotations 168

10.2 Array Variables 172
10.3 Array Creation 173

104 Array Access 173

10.5 Array Store Exception 174

10.6 Array Initidlizers 174

10.7 Array Members 175

10.8 Class Objectsfor Arrays 176

10.9 AnArray of CharactersisNot aString 176

Exceptions 177

11.1 TheKinds and Causes of Exceptions 178
11.1.1 TheKinds of Exceptions 178
11.1.2 The Causes of Exceptions 179
11.1.3 Asynchronous Exceptions 179

11.2 Compile-Time Checking of Exceptions 180
11.2.1 Exception Analysis of Expressions 180
11.2.2 Exception Analysisof Statements 181
11.2.3 Exception Checking 182

11.3 Run-Time Handling of an Exception 182

Execution 185

121 Javavirtua machine Start-Up 185
12.1.1 LoadtheClassTest 186
12.1.2 Link Test: Verify, Prepare, (Optionally) Resolve 186
Initialize Test: Execute Initializers 187
Invoke Test.main 188
12.2  Loading of Classes and Interfaces 188
12.21 ThelLoading Process 189
12.3 Linking of Classes and Interfaces 189
12.3.1 Veification of the Binary Representation 190
12.3.2 Preparation of aClass or Interface Type 190
12.3.3 Resolution of Symbolic References 191
12.4 Initiadization of Classes and Interfaces 192
1241 When Initialization Occurs 192

12.1.3
1214



The Java™ Language Specification

13

125
12.6

127
12.8

12.4.2 Detailed Initialization Procedure 193
Creation of New Class Instances 195
Finalization of Class Instances 197
12.6.1 Implementing Finaization 198
12.6.1.1 Interaction with the Memory Model 198
12.6.2 Findizer Invocations are Not Ordered 200
Unloading of Classes and Interfaces 200
Program Exit 200

Binary Compatibility 201

131
13.2
13.3
134

135

The Form of aBinary 202

What Binary Compatibility Isand IsNot 207
Evolution of Packages 207

Evolution of Classes 208

13.4.1 abstract Classes 208

13.4.2 final Classes 208

13.4.3 public Classes 208

13.4.4 Superclasses and Superinterfaces 209
1345 Class Type Parameters 209

13.4.6 ClassBody and Member Declarations 209
13.4.7 Accessto Members and Constructors 210
13.4.8 Field Declarations 210

1349 final Fiddsand Constants 211

13.4.10 static Fields 212

13.4.11 transient Fieds 212

13.4.12 Method and Constructor Declarations 213
13.4.13 Method and Constructor Type Parameters 213
13.4.14 Method and Constructor Formal Parameters 214
13.4.15 Method Result Type 214

13.4.16 abstract Methods 215

13.4.17 final Methods 215

13.4.18 native Methods 215

13.4.19 static Methods 216

13.4.20 synchronized Methods 216

13.4.21 Method and Constructor Throws 216
13.4.22 Method and Constructor Body 216
13.4.23 Method and Constructor Overloading 216
13.4.24 Method Overriding 217

13.4.25 Static Initidizers 217

13.4.26 Evolution of Enums 217

Evolution of Interfaces 217

1351 pubTic Interfaces 217

135.2 Superinterfaces 218

13.5.3 Thelnterface Members 218

13.5.4 Interface Type Parameters 218

13,55 Field Declarations 218

135.6 abstract Methods 218



The Java™ Language Specification

13.5.7 Evolution of Annotation Types 219

14 Blocksand Statements 221

15

141
14.2
14.3
14.4

145
14.6
14.7
14.8
14.9

14.10
1411
14.12

14.13

14.14

14.15
14.16
14.17
14.18
14.19
14.20

14.21

Normal and Abrupt Completion of Statements 221

Blocks 223

Local Class Declarations 223

Local Variable Declaration Statements 224

1441 Loca Variable Declarators and Types 224

14.4.2 Loca Variable Names 225

14.4.3 Execution of Local Variable Declarations 225

Statements 226

The Empty Statement 228

Labeled Statements 228

Expression Statements 229

The i f Statement 230

149.1 The1if-then Statement 230

14.9.2 Theif-then-else Statement 230

The assert Statement 231

The switch Statement 232

Thewhile Statement 235

14.12.1 Abrupt Completion 235

The do Statement 236

14.13.1 Abrupt Completion 237

The for Statement 237

14.14.1 Thebasic for Statement 238
14.14.1.1 Initialization of for statement 238
14.14.1.2 Iteration of for statement 239
14.14.1.3 Abrupt Completion of for statement 240

14.14.2 The enhanced for statement 240

Thebreak Statement 241

The continue Statement 242

The return Statement 243

The throw Statement 244

The synchronized Statement 246

The try statement 247

14.20.1 Execution of try-catch 248

14.20.2 Execution of try-finally and try-catch-finally 249

Unreachable Statements 250

Expressions 255

151
152
153
154
15.5
15.6

Evaluation, Denotation, and Result 255
Variablesas Values 256

Type of an Expression 256

FP-strict Expressions 257

Expressions and Run-Time Checks 257

Normal and Abrupt Completion of Evaluation 259



The Java™ Language Specification

15.7

158

159

Evaluation Order 261
15.7.1 Evaluate Left-Hand Operand First 261
15.7.2 Evaluate Operands before Operation 261
15.7.3 Evaluation Respects Parentheses and Precedence 261
15.7.4 Argument Lists are Evaluated Left-to-Right 262
15.7.5 Evaluation Order for Other Expressions 262
Primary Expressions 262
15.8.1 Lexical Literals 263
15.8.2 ClassLiterds 264
1583 this 264
15.8.4 Quadlified this 265
15.8.5 Parenthesized Expressions 265
Class Instance Creation Expressions 266
159.1 Determining the Class being Instantiated 267
15.9.2 Determining Enclosing Instances 268
15.9.3 Choosing the Constructor and its Arguments 270
15.9.4 Run-time Evaluation of Class Instance Creation
Expressions 270
15.9.5 Anonymous Class Declarations 271
15.95.1 Anonymous Constructors 271

15.10 Array Creation Expressions 273

1511

15.12

15.10.1 Run-time Evaluation of Array Creation Expressions 274
Field Access Expressions 275
15.11.1 Field AccessUsing aPrimary 275
15.11.2 Accessing Superclass Members using super 276
Method Invocation Expressions 277
15.12.1 Compile-Time Step 1: Determine Class or Interface to
Search 277
15.12.2 Compile-Time Step 2: Determine Method Signature 279
15.12.2.1 Identify Potentially Applicable Methods 280
15.12.2.2 Phase 1: Identify Matching Arity Methods Applicable
by Subtyping 281
15.12.2.3 Phase 2: Identify Matching Arity Methods Applicable
by Method Invocation Conversion 282
15.12.2.4 Phase 3: Identify Applicable Variable Arity
Methods 282
15.12.2.5 Choosing the Most Specific Method 283
15.12.2.6 Method Result and Throws Types 286
15.12.2.7 Inferring Type Arguments Based on Actual
Arguments 286
15.12.2.8 Inferring Unresolved Type Arguments 291
15.12.3 Compile-Time Step 3: Is the Chosen Method Appropriate? 293
15.12.4 Runtime Evauation of Method Invocation 294
15.12.4.1 Compute Target Reference (If Necessary) 295
15.12.4.2 Evauate Arguments 296
15.12.4.3 Check Accessibility of Type and Method 296
15.12.4.4 Locate Method to Invoke 297
15.12.4.5 Create Frame, Synchronize, Transfer Control 298

Xi



Xii

16

The Java™ Language Specification

15.13 Array Access Expressions 299
15.13.1 Runtime Evaluation of Array Access 300
15.14 Postfix Expressions 301
15.14.1 Expression Names 301
15.14.2 Postfix Increment Operator ++ 301
15.14.3 Postfix Decrement Operator -- 302
15.15 Unary Operators 302
15.15.1 Prefix Increment Operator ++ 303
15.15.2 Prefix Decrement Operator -- 304
15.15.3 Unary Plus Operator + 304
15.15.4 Unary Minus Operator - 305
15.15.5 Bitwise Complement Operator ~ 305
15.15.6 Logical Complement Operator ! 306
15.16 Cast Expressions 306
15.17 Multiplicative Operators 307
15.17.1 Multiplication Operator * 307
15.17.2 Division Operator / 308
15.17.3 Remainder Operator % 310
15.18 Additive Operators 311
15.18.1 String Concatenation Operator + 311
15.18.2 Additive Operators (+ and -) for Numeric Types 312
15.19 Shift Operators 314
15.20 Relational Operators 315
15.20.1 Numerical Comparison Operators <, <=, >, and >= 315
15.20.2 Type Comparison Operator instanceof 316
15.21 Equality Operators 317
15.21.1 Numerical Equality Operators==and != 317
15.21.2 Boolean Equality Operators==and != 318
15.21.3 Reference Equality Operators==and != 319
15.22 Bitwise and Logical Operators 319
15.22.1 Integer Bitwise Operators &, A, and | 320
15.22.2 Boolean Logical Operators &, A, and | 320
15.23 Conditional-And Operator && 321
15.24 Conditiona-Or Operator || 321
15.25 Conditional Operator ? : 322
15.26 Assignment Operators 324
15.26.1 Simple Assignment Operator = 325
15.26.2 Compound Assignment Operators 327
15.27 Expression 329
15.28 Constant Expression 329

Definite Assignment 331

16.1 Definite Assignment and Expressions 333
16.1.1 Boolean Constant Expressions 333
16.1.2 The Boolean Operator && 333
16.1.3 TheBoolean Operator | | 333
16.1.4 TheBoolean Operator ! 334



The Java™ Language Specification

17

16.2

16.3
16.4
16.5
16.6
16.7
16.8
16.9

16.1.5
16.1.6
16.1.7
16.1.8
16.1.9
16.1.10

The Boolean Operator ? : 334

The Conditional Operator ? : 334
Other Expressions of Type boolean 335
Assignment Expressions 335

Operators ++ and -- 335

Other Expressions 335

Definite Assignment and Statements 337

16.2.1
16.2.2
16.2.3
16.24
16.2.5
16.2.6
16.2.7
16.2.8
16.2.9
16.2.10
16.2.11
16.2.12

16.2.13
16.2.14
16.2.15

Empty Statements 337

Blocks 337

Local Class Declaration Statements 338
Local Variable Declaration Statements 338
Labeled Statements 338

Expression Statements 339

if Statements 339

assert Statements 339

switch Statements 339

while Statements 340

do Statements 341

for Statements 341

16.2.12.1 Initialization Part 342

16.2.12.2 Incrementation Part 342

break, continue, return, and throw Statements 343
synchronized Statements 343

try Statements 343

Definite Assignment and Parameters 345

Definite Assignment and Array Initializers 345

Definite Assignment and Enum Constants 345

Definite Assignment and Anonymous Classes 346

Definite Assignment and Member Types 346

Definite Assignment and Static Initializers 346

Definite Assignment, Constructors, and Instance Initializers 347

Threads and Locks 349

17.1  Synchronization 350
17.2 Wait Setsand Notification 350

17.3
174

1721
17.2.2
17.2.3
17.2.4

Wait 351

Notification 352

Interruptions 353

Interactions of Waits, Natification, and Interruption 353

Sleepand Yield 354
Memory Model 354

1741
174.2
1743
1744
1745
17.4.6

Shared Variables 355

Actions 355

Programs and Program Order 357
Synchronization Order 357
Happens-before Order 358
Executions 360

Xiii



The Java™ Language Specification

17.4.7 Well-Formed Executions 360

17.4.8 Executions and Causality Requirements 361

17.4.9 Observable Behavior and Nonterminating Executions 362
175 final Field Semantics 364

1751 Semanticsof final Fields 365

17.5.2 Reading final Fields During Construction 366

1753 Subseguent Modification of final Fields 366

17.5.4 Write-protected Fields 367
176 Word Tearing 367
17.7 Non-atomic Treatment of doubTle and Tong 367

18 Syntax 369

Xiv



CHAPTER 1

| ntroduction

T HE Java™ programming language is a general-purpose, concurrent, class-
based, object-oriented language. It is designed to be simple enough that many
programmers can achieve fluency inthelanguage. The Javaprogramming language
isrelated to C and C++ but isorganized rather differently, with anumber of aspects
of C and C++ omitted and afew ideas from other languagesincluded. It isintended
to be a production language, not a research language, and so, as C. A. R. Hoare
suggested in his classic paper on language design, the design has avoided including
new and untested features.

The Java programming language is strongly typed. This specification clearly
distinguishes between the compile-time errors that can and must be detected at
compile time, and those that occur at run time. Compile time normally consists
of translating programs into a machine-independent byte code representation.
Run-time activities include loading and linking of the classes needed to execute
a program, optional machine code generation and dynamic optimization of the
program, and actual program execution.

The Java programming language is arelatively high-level language, in that details
of the machine representation are not available through the language. It includes
automatic storage management, typically using a garbage collector, to avoid
the safety problems of explicit deallocation (as in C's free or C++'s delete).
High-performance garbage-collected implementations can have bounded pausesto
support systems programming and real-time applications. The language does not
include any unsafe constructs, such asarray accesseswithout index checking, since
such unsafe constructs would cause a program to behave in an unspecified way.

The Javaprogramming languageis normally compiled to the bytecoded instruction
set and binary format defined in The Java™ Virtual Machine Specification, Java
SE 7 Edition.

This specification is organized as follows:



INTRODUCTION

Chapter 2 describes grammars and the notation used to present the lexical and
syntactic grammars for the language.

Chapter 3 describesthelexical structure of the Java programming language, which
is based on C and C++. The language is written in the Unicode character set. It
supports the writing of Unicode characters on systems that support only ASCII.

Chapter 4 describes types, values, and variables. Types are subdivided into
primitive types and reference types.

The primitive types are defined to be the same on all machines and in al
implementations, and are various sizes of two's-complement integers, single- and
double-precision |EEE 754 standard floating-point numbers, aboolean type, and
aUnicode character char type. Values of the primitive types do not share state.

Reference types are the class types, the interface types, and the array types. The
reference types are implemented by dynamically created objects that are either
instances of classesor arrays. Many referencesto each object can exist. All objects
(including arrays) support the methods of the class Object, which is the (single)
root of the class hierarchy. A predefined String class supports Unicode character
strings. Classes exist for wrapping primitive values inside of objects. In many
cases, wrapping and unwrapping is performed automatically by the compiler (in
which case, wrapping is called boxing, and unwrapping is called unboxing). Class
and interface declarations may be generic, that is, they may be parameterized by
other reference types. Such declarations may then be invoked with specific type
arguments.

Variables are typed storage locations. A variable of aprimitive type holds avalue
of that exact primitive type. A variable of a class type can hold anull reference or
areference to an object whose type is that class type or any subclass of that class
type. A variable of an interface type can hold a null reference or areference to an
instance of any classthat implements theinterface. A variable of an array type can
hold anull reference or areferenceto an array. A variable of classtypeObject can
hold anull reference or areference to any object, whether classinstance or array.

Chapter 5 describes conversions and numeric promotions. Conversions change the
compile-time type and, sometimes, the value of an expression. These conversions
include the boxing and unboxing conversions between primitive types and
reference types. Numeric promotions are used to convert the operands of anumeric
operator to a common type where an operation can be performed. There are no
loopholesinthelanguage; castson referencetypesare checked at runtimeto ensure
type safety.



INTRODUCTION

Chapter 6 describes declarations and names, and how to determine what names
mean (denote). The language does not requiretypesor their membersto be declared
before they are used. Declaration order is significant only for local variables, local
classes, and the order of initializers of fieldsin aclass or interface.

The Java programming language provides control over the scope of names
and supports limitations on external access to members of packages, classes,
and interfaces. This helps in writing large programs by distinguishing the
implementation of a type from its users and those who extend it. Recommended
naming conventions that make for more readable programs are described here.

Chapter 7 describes the structure of a program, which is organized into packages
similar to themodules of Modula. The membersof apackage are classes, interfaces,
and subpackages. Packages are divided into compilation units. Compilation units
contain type declarations and can import types from other packages to give them
short names. Packages have names in a hierarchical name space, and the Internet
domain name system can usually be used to form unigue package names.

Chapter 8 describes classes. The members of classes are classes, interfaces, fields
(variables) and methods. Classvariablesexist once per class. Classmethodsoperate
without reference to a specific object. Instance variables are dynamically created
in objects that are instances of classes. Instance methods are invoked on instances
of classes; such instances become the current object this during their execution,
supporting the object-oriented programming style.

Classes support single implementation inheritance, in which the implementation
of each class is derived from that of a single superclass, and ultimately from the
classObject. Variables of a class type can reference an instance of that class or of
any subclass of that class, allowing new types to be used with existing methods,
polymorphically.

Classes support concurrent programming with synchronized methods. Methods
declare the checked exceptions that can arise from their execution, which allows
compile-time checking to ensure that exceptional conditions are handled. Objects
candeclareafinalize methodthat will beinvoked beforethe objectsarediscarded
by the garbage collector, allowing the objectsto clean up their state.

For simplicity, the language has neither declaration "headers' separate from the
implementation of a class nor separate type and class hierarchies.

A special form of classes, enums, support the definition of small sets of valuesand
their manipulation in atype safe manner. Unlike enumerations in other languages,
enums are objects and may have their own methods.



INTRODUCTION

Chapter 9 describes interface types, which declare a set of abstract methods,
member types, and constants. Classes that are otherwise unrelated can implement
the same interface type. A variable of an interface type can contain a reference
to any object that implements the interface. Multiple interface inheritance is
supported.

Annotation types are specialized interfaces used to annotate declarations. Such
annotations are not permitted to affect the semantics of programs in the Java
programming language in any way. However, they provide useful input to various
tools.

Chapter 10 describes arrays. Array accesses include bounds checking. Arrays are
dynamically created objects and may be assigned to variables of type Object. The
language supports arrays of arrays, rather than multidimensional arrays.

Chapter 11 describes exceptions, which are nonresuming and fully integrated with
the language semantics and concurrency mechanisms. There are three kinds of
exceptions: checked exceptions, run-time exceptions, and errors. The compiler
ensures that checked exceptions are properly handled by requiring that a method
or constructor can result in a checked exception only if the method or constructor
declaresit. This provides compile-time checking that exception handlers exist, and
aids programming in the large. Most user-defined exceptions should be checked
exceptions. Invalid operationsin the program detected by the Javavirtual machine
result in run-time exceptions, such asNul1PointerException. Errorsresult from
failures detected by the Java virtual machine, such as OutOfMemoryError. Most
simple programs do not try to handle errors.

Chapter 12 describes activities that occur during execution of a program. A
program is normally stored as binary files representing compiled classes and
interfaces. These binary files can be loaded into a Java virtual machine, linked to
other classes and interfaces, and initialized.

After initialization, class methods and class variables may be used. Some classes
may be instantiated to create new objects of the class type. Objects that are class
instances also contain an instance of each superclass of the class, and object
creation involves recursive creation of these superclass instances.

When an object is no longer referenced, it may be reclaimed by the garbage
collector. If an object declaresafinalizer, thefinalizer is executed before the object
is reclaimed to give the object alast chance to clean up resources that would not
otherwise be released. When a classis no longer needed, it may be unloaded.

Chapter 13 describes binary compatibility, specifying the impact of changes to
typeson other typesthat use the changed types but have not been recompiled. These



INTRODUCTION Example Programs

considerationsare of interest to devel opers of typesthat areto bewidely distributed,
in a continuing series of versions, often through the Internet. Good program
development environments automatically recompile dependent code whenever a
typeis changed, so most programmers need not be concerned about these details.

Chapter 14 describes blocks and statements, which are based on C and C++.
The language has no goto statement, but includes labeled break and continue
statements. Unlike C, the Java programming language requires boolean (or
Boolean) expressions in control-flow statements, and does not convert types to
boolean implicitly (except through unboxing), in the hope of catching more errors
a compile time. A synchronized statement provides basic object-level monitor
locking. A try statement caninclude catch and finally clausesto protect against
non-local control transfers.

Chapter 15 describes expressions. This document fully specifies the (apparent)
order of evaluation of expressions, for increased determinism and portability.
Overloaded methods and constructors are resolved at compile time by picking the
most specific method or constructor from those which are applicable.

Chapter 16 describes the precise way in which the language ensures that
local variables are definitely set before use. While all other variables are
automatically initialized to a default value, the Java programming language does
not automatically initialize local variablesin order to avoid masking programming
errors.

Chapter 17 describes the semantics of threads and locks, which are based on
the monitor-based concurrency originally introduced with the Mesa programming
language. The Java programming language specifies a memory model for shared-
memory multiprocessors that supports high-performance implementations.

Chapter 18 presents a syntactic grammar for the language.

1.1 Example Programs

Most of the example programs given in the text are ready to be executed and are
similar in form to:

class Test {
public static void main(String[] args) {
for (int i = 0; i < args.length; i++)
System.out.print(i == 0 ? args[i] :
System.out.println(Q);

+ args[il);

11



1.2

Notation INTRODUCTION

On a machine with Oracle's Java Development Kit installed, this class, stored in
thefile Test.java, can be compiled and executed by giving the commands:

javac Test.java
java Test Hello, world.

producing the output:

Hello, world.

1.2 Notation

Throughout this specification we refer to classes and interfaces drawn from the
Java SE API. Whenever we refer to a class or interface which is not defined in an
example in this specification using a single identifier N, the intended reference is
to the class or interface named N in the package java. Tang. We use the canonical
name (86.7) for classes or interfaces from packages other than java. lang.

Whenever we refer to The Java™ Virtual Machine Specification in this
specification, we mean the Java SE 7 Edition.

1.3 Relationship to Predefined Classes and I nterfaces

As noted above, this specification often refers to classes of the Java SE API. In
particular, some classes have a specia relationship with the Java programming
language. Examplesinclude classessuch asObject, Class, ClassLoader, String,
Thread, and the classes and interfaces in package java.lang.reflect, among
others. The language definition constrains the behavior of these classes and
interfaces, but this document does not provide a complete specification for them.
Thereader isreferred to other parts of the Java SE platform Specification for such
detailed API specifications.

Thus this document does not describe reflection in any detail. Many linguistic
constructs have analogues in the reflection API, but these are generaly not
discussed here. So, for example, when we list the ways in which an aobject can
be created, we generaly do not include the ways in which the reflective APl can
accomplish this. Readers should be aware of these additional mechanisms even
though they are not mentioned in this text.



INTRODUCTION References

1.4 References

Apple Computer. Dylan™ Reference Manual. Apple Computer Inc., Cupertino, California.
September 29, 1995.

Bobrow, Daniel G., LindaG. DeMichidl, Richard P. Gabriel, Sonya E. Keene, Gregor Kiczales,
and David A. Moon. Common Lisp Object System Specification, X3J13 Document
88-002R, June 1988; appears as Chapter 28 of Steele, Guy. Common Lisp: The Language,
2nd ed. Digital Press, 1990, ISBN 1-55558-041-6, 770-864.

Ellis, Margaret A., and Bjarne Stroustrup. The Annotated C++ Reference Manual. Addison-
Wesley, Reading, Massachusetts, 1990, reprinted with corrections October 1992, ISBN
0-201-51459-1.

Goldberg, Adele and Robson, David. Smalltalk-80: The Language. Addison-Wedley, Reading,
Massachusetts, 1989, ISBN 0-201-13688-0.

Harbison, Samuel. Modula-3. Prentice Hall, Englewood Cliffs, New Jersey, 1992, ISBN
0-13-596396.

Hoare, C. A. R. Hints on Programming Language Design. Stanford University Computer
Science Department Technical Report No. CS-73-403, December 1973. Reprinted in
SIGACT/SIGPLAN Symposium on Principles of Programming Languages. Association
for Computing Machinery, New Y ork, October 1973.

|IEEE Sandard for Binary Floating-Point Arithmetic. ANSI/IEEE Std. 754-1985. Available
from Global Engineering Documents, 15 Inverness Way East, Englewood, Colorado
80112-5704 USA; 800-854-7179.

Kernighan, Brian W., and Dennis M. Ritchie. The C Programming Language, 2nd ed. Prentice
Hall, Englewood Cliffs, New Jersey, 1988, ISBN 0-13-110362-8.

Madsen, Ole Lehrmann, Birger Mgdller-Pedersen, and Kristen Nygaard. Object-Oriented
Programming in the Beta Programming Language. Addison-Wesley, Reading,
Massachusetts, 1993, ISBN 0-201-62430-3.

Mitchell, James G., William Maybury, and Richard Sweet. The Mesa Programming Language,
Version 5.0. Xerox PARC, Palo Alto, California, CSL 79-3, April 1979.

Stroustrup, Bjarne. The C++ Progamming Language, 2nd ed. Addison-Wesley, Reading,
Massachusetts, 1991, reprinted with corrections January 1994, ISBN 0-201-53992-6.

Unicode Consortium, The. The Unicode Sandard, Version 6.0.0. Mountain View, CA, 2011,
ISBN 978-1-936213-01-6.

14



14 References INTRODUCTION



CHAPTER2

Grammars

T HIS chapter describes the context-free grammars used in this specification to
define the lexical and syntactic structure of a program.

2.1 Context-Free Grammars

A context-free grammar consists of a number of productions. Each production has
an abstract symbol called a nonterminal as its left-hand side, and a sequence of
one or more nonterminal and terminal symbols as its right-hand side. For each
grammar, the terminal symbols are drawn from a specified al phabet.

Starting from a sentence consisting of asingledistinguished nonterminal, called the
goal symbol, a given context-free grammar specifies alanguage, namely, the set of
possible sequences of terminal symbols that can result from repeatedly replacing
any nonterminal in the sequence with aright-hand side of a production for which
the nonterminal isthe left-hand side.

2.2 ThelLexical Grammar

A lexical grammar for the Java programming language is given in (Chapter 3,
Lexical Structure). This grammar has as its terminal symbols the characters of
the Unicode character set. It defines a set of productions, starting from the goal
symbol Input (83.5), that describe how sequences of Unicode characters (§3.1) are
tranglated into a sequence of input elements (83.5).

These input elements, with white space (83.6) and comments (83.7) discarded,
form the terminal symbols for the syntactic grammar for the Java programming
language and are called tokens (83.5). These tokens are the identifiers (83.8),



2.3

10

The Syntactic Grammar GRAMMARS

keywords (83.9), literals (83.10), separators (83.11), and operators (83.12) of the
Java programming language.

2.3 The Syntactic Grammar

A syntactic grammar for the Java programming language is given in Chapters
4, 6-10, 14, and 15. This grammar has tokens defined by the lexical grammar
as its terminal symbols. It defines a set of productions, starting from the goal
symbol CompilationUnit (87.3), that describe how sequences of tokens can form
syntactically correct programs.

2.4 Grammar Notation

Terminal symbols are shown in fixed width font in the productions of the lexical
and syntactic grammars, and throughout this specification whenever the text is
directly referring to such a terminal symbol. These are to appear in a program
exactly aswritten.

Nonterminal symbols are shown in italic type. The definition of a nonterminal is
introduced by the name of the nonterminal being defined followed by acolon. One
or more aternative right-hand sides for the nonterminal then follow on succeeding
lines.

The subscripted suffix "opt", which may appear after a terminal or nonterminal,
indicates an optional symbol. The alternative containing the optional symbol
actually specifiestwao right-hand sides, one that omitsthe optional element and one
that includesiit.

A very long right-hand side may be continued on a second line by substantially
indenting this second line.

When the words "one of" follow the colon in a grammar definition, they signify
that each of the terminal symbols on the following line or lines is an aternative
definition.

When an alternative in alexical production appearsto be atoken, it representsthe
sequence of characters that would make up such atoken.

Theright-hand side of alexical production may specify that certain expansionsare
not permitted by using the phrase "but not" and then indicating the expansions to
be excluded.



GRAMMARS Grammar Notation 2.4

Finally, afew nonterminal symbols are described by a descriptive phrasein roman
type in cases where it would be impractical to list al the alternatives.

11



2.4 Grammar Notation GRAMMARS

12



CHAPTER3

Lexical Structure

T HIS chapter specifies the lexical structure of the Java programming language.

Programs are written in Unicode (83.1), but lexical translations are provided (83.2)
so that Unicode escapes (83.3) can be used to include any Unicode character using
only ASCII characters. Line terminators are defined (83.4) to support the different
conventions of existing host systems while maintaining consistent line numbers.

The Unicode characters resulting from the lexical trandations are reduced to a
seguence of input elements (83.5), which are white space (83.6), comments (83.7),
and tokens. The tokens are the identifiers (83.8), keywords (83.9), literals (§83.10),
separators (83.11), and operators (83.12) of the syntactic grammar.

3.1 Unicode

Programs are written using the Unicode character set. Information about this
character set and its associated character encodings may be found at http://
www . unicode.org/.

The Java SE platform tracks the Unicode specification as it evolves. The precise
version of Unicode used by a given release is specified in the documentation of
the class Character.

The Unicode standard was originally designed as a fixed-width 16-bit character
encoding. It has since been changed to allow for characters whose representation
requires more than 16 bits. The range of legal code points is now U+0000
to U+10FFFF, using the hexadecimal U+n notation. Characters whose code
points are greater than U+FFFF are called supplementary characters. To represent
the complete range of characters using only 16-bit units, the Unicode standard
defines an encoding called UTF-16. In thisencoding, supplementary charactersare
represented as pairs of 16-bit code units, the first from the high-surrogates range,

13



3.2

14

Lexical Translations LEXICAL STRUCTURE

(U+D800 to U+DBFF), the second from the low-surrogates range (U+DCQ0 to U
+DFFF). For charactersin the range U+0000 to U+FFFF, the values of code points
and UTF-16 code units are the same.

The Java programming language represents text in sequences of 16-bit code units,
using the UTF-16 encoding. A few APIs, primarily in the Character class, use 32-
bit integers to represent code points as individual entities. The Java SE platform
provides methods to convert between the two representations.

This specification uses the terms code point and UTF-16 code unit where the
representation is relevant, and the generic term character where the representation
isirrelevant to the discussion.

Except for comments (83.7), identifiers, and the contents of character and string
literals (83.10.4, §83.10.5), al input elements (83.5) in a program are formed
only from ASCII characters (or Unicode escapes (83.3) which result in ASCI|
characters). ASCIl (ANSI X3.4) is the American Standard Code for Information
Interchange. The first 128 characters of the Unicode character encoding are the
ASCII characters.

3.2 Lexical Trandations

A raw Unicode character stream is trandated into a sequence of tokens, using the
following three lexical trandation steps, which are applied in turn:

1. Atrandation of Unicodeescapes(83.3) intheraw stream of Unicodecharacters
to the corresponding Unicode character. A Unicode escape of theform \uxxxx,
where xxxx is a hexadecimal value, represents the UTF-16 code unit whose
encoding is xxxx. This trandation step allows any program to be expressed
using only ASCII characters.

2. A trandation of the Unicode stream resulting from step 1 into astream of input
characters and line terminators (83.4).

3. A trandation of the stream of input characters and line terminators resulting
from step 2 into a sequence of input elements (83.5) which, after white space
(83.6) and comments (83.7) are discarded, comprise the tokens (§3.5) that are
the terminal symbols of the syntactic grammar (82.3).

The longest possible trandation is used at each step, even if the result does not
ultimately make a correct program while another lexical trandation would. Thus
the input characters a--b are tokenized (83.5) as a, --, b, which is not part of any



LEXICAL STRUCTURE Unicode Escapes

grammeatically correct program, even though the tokenization a, -, -, b could be
part of agrammatically correct program.

3.3 Unicode Escapes

A compiler for the Java programming language (" Java compiler") first recognizes
Unicode escapes in itsinput, trandating the ASCII characters \u followed by four
hexadecimal digits to the UTF-16 code unit (83.1) of the indicated hexadecimal
value, and passing al other characters unchanged. Representing supplementary
characters requires two consecutive Unicode escapes. This tranglation step results
in asequence of Unicode input characters.

Unicodel nputCharacter:
UnicodeEscape
Rawl nputCharacter

UnicodeEscape:
\ UnicodeMarker HexDigit HexDigit HexDigit HexDigit

UnicodeMarker:
u
UnicodeMarker u

Rawl nputCharacter:
any Unicode character

HexDigit: one of
0123456789abcdefABCDEF

The\, u, and hexadecimal digits here are all ASCII characters.

In addition to the processing implied by the grammar, for each raw input character
that is abackslash \, input processing must consider how many other \ characters
contiguously precedeit, separating it from anon-\ character or the start of theinput
stream. If this number is even, then the \ is eligible to begin a Unicode escape; if
the number is odd, then the \ is not eligible to begin a Unicode escape.

If an eligible \ is not followed by u, then it istreated as a Rawl nputCharacter and
remains part of the escaped Unicode stream.

3.3

15



3.4

16

Line Terminators LEXICAL STRUCTURE

If an eligible \ isfollowed by u, or more than one u, and the last u is not followed
by four hexadecimal digits, then a compile-time error occurs.

Thecharacter produced by aUnicode escape does not participatein further Unicode
€SCapes.

The Java programming language specifies a standard way of transforming a
program written in Unicode into ASCII that changes a program into a form that
can be processed by ASCII-based tools. The transformation involves converting
any Unicode escapes in the source text of the program to ASCI| by adding an extra
u - for example, \uxxxx becomes \uuxxxx - while simultaneously converting non-
ASCII charactersin the source text to Unicode escapes containing asingle u each.

This transformed version is equally acceptable to a Java compiler and represents
the exact same program. The exact Unicode source can later be restored from this
ASCII form by converting each escape sequence where multiple u'sare present to a
sequence of Unicode characterswith onefewer u, while simultaneously converting
each escape sequencewith asingleu to the corresponding single Unicode character.

3.4 LineTerminators

A Java compiler next divides the sequence of Unicode input charactersinto lines
by recognizing line terminators.

LineTerminator:
the ASCII LF character, also known as "newline"
the ASCII CR character, also known as "return”
the ASCII CR character followed by the ASCII LF character

InputCharacter:
Unicodel nputCharacter but not CR or LF

Lines are terminated by the ASCII characters CR, or LF, or CR LF. The two
characters CR immediately followed by LF are counted as one line terminator, not
two.

A line terminator specifies the termination of the // form of a comment (83.7).

The result is a sequence of line terminators and input characters, which are the
terminal symbols for the third step in the tokenization process.



LEXICAL STRUCTURE Input Elements and Tokens

3.5 Input Elementsand Tokens

Theinput characters and line terminators that result from escape processing (83.3)
and then input line recognition (83.4) are reduced to a sequence of input elements.
Thoseinput el ementsthat are not white space (83.6) or comments (83.7) aretokens.
The tokens are the terminal symbols of the syntactic grammar (82.3).

Input:
InputElementsgp: Subgpt

I nputElements:
I nputElement
InputElements | nputElement

InputElement:
WhiteSpace
Comment
Token

Token:
Identifier

Keyword
Literal

Separator

Operator

ub:
the ASCII SUB character, also known as "control-Z"

White space (83.6) and comments (83.7) can serve to separate tokens that, if
adjacent, might be tokenized in another manner. For example, the ASCII characters
- and = in the input can form the operator token -= (83.12) only if there is no
intervening white space or comment.

Asaspecial concession for compatibility with certain operating systems, the ASCI|
SUB character (\u001a, or control-Z) is ignored if it is the last character in the
escaped input stream.

Consider two tokens x and y in the resulting input stream. If x precedes y, then we
say that x isto the left of y and that y isto theright of x.

35

17



3.6

18

White Space LEXICAL STRUCTURE

3.6 White Space

White space is defined asthe ASCII space character, horizontal tab character, form
feed character, and line terminator characters (83.4).

WhiteSpace:
the ASCII SP character, aso known as "space”
the ASCII HT character, also known as "horizontal tab"
the ASCII FF character, also known as "form feed"
LineTerminator

3.7 Comments

There are two kinds of comments.

o [*text*/
A traditional comment: all the text from the ASCII characters /* to the ASCII
characters*/ isignored (asin C and C++).

o // text

An end-of-line comment: all the text from the ASCII characters // to the end of
thelineisignored (asin C++).



LEXICAL STRUCTURE Comments 3.7

Comment:
Traditional Comment
EndOfLineComment

Traditional Comment:
[ * CommentTail

EndOfLineComment:
/ | CharactersinLinegpy

CommentTail:
* CommentTailSar
NotSar CommentTail

CommentTailSar:
/
* CommentTailSar
NotStar NotSash CommentTail

NotStar:
InputCharacter but not *
LineTerminator

NotSarNotSash:
InputCharacter but not * or /
LineTerminator

CharactersinLine:
InputCharacter
CharactersinLine InputCharacter

These productionsimply all of the following properties:

* Comments do not nest.

* /* and */ have no special meaning in comments that begin with //.
* /I has no special meaning in comments that begin with /* or /**.

19



3.8

20

Identifiers LEXICAL STRUCTURE

3.8 Ildentifiers

An identifier is an unlimited-length sequence of Java letters and Java digits, the
first of which must be a Java letter.

An identifier cannot have the same spelling (Unicode character sequence) as a
keyword (83.9), boolean literal (§3.10.3), or the null literal (83.10.7).

Identifier:
I dentifier Chars but not a Keyword or BooleanLiteral or NullLiteral

IdentifierChars:
Javal etter
| dentifier Chars JavalLetter OrDigit

Javal etter:
any Unicode character that is a Java letter (see below)

Javal etter OrDigit:
any Unicode character that is a Java letter-or-digit (see below)

Letters and digits may be drawn from the entire Unicode character set, which
supports most writing scriptsin use in the world today, including the large sets for
Chinese, Japanese, and Korean. This allows programmersto useidentifiersin their
programs that are written in their native languages.

A "Java letter" is a character for which the method
Character.isJavaIdentifierStart(int) returns true. A "Java letter-or-digit"
is a character for which the method Character.isJavaldentifierPart(int)
returns true.

Two identifiers are the same only if they are identical, that is, have the same
Unicode character for each letter or digit. Identifiers that have the same external
appearance may yet be different.

3.9 Keywords

50 character sequences, formed from ASCII letters, are reserved for use as
keywords and cannot be used as identifiers (83.8).



LEXICAL STRUCTURE

Keyword: one of
abstract continue

assert default
boolean do
break double
byte else
case enum
catch extends
char final
class finally
const float
3.10 Literals

for

if

goto
implements
import
instanceof
int
interface
Tong
native

new
package
private
protected
public
return
short
static
strictfp
super

Literals

switch
synchronized
this

throw

throws
transient
try

void
volatile
while

A literal isthe source code representation of avalue of aprimitive type (84.2), the
String type (84.3.3), or the null type (84.1).

Literal:
IntegerLiteral
FloatingPointLiteral
BooleanLiteral
CharacterLiteral
SringLiteral
NullLiteral

3.10.1 Integer Literals

Aninteger literal may be expressed in decimal (base 10), hexadecimal (base 16),

or octal (base 8).

3.10

21



3.10.1 Integer Literals LEXICAL STRUCTURE

IntegerLiteral:
DecimallntegerLiteral
HexlntegerLiteral
OctallntegerLiteral

DecimalIntegerLiteral:
DecimalNumeral I nteger TypeSuffiXopt

HexlIntegerLiteral:
HexNumeral Integer TypeSuffixopt

OctallntegerLiteral:
OctalNumeral Integer TypeSuffiXqpt

Integer TypeSuffix: one of
TL

An integer literal is of type long if it is suffixed with an ASCI| letter L or 1 (ell);
otherwiseit isof type int (84.2.1).

A decimal numeral is either the single ASCI| character 0, representing the integer
zero, or consists of an ASCI| digit from 1 to 9, optionally followed by one or more
ASCII digitsfrom 0 to 9, representing a positive integer.

DecimalNumeral:
0
NonZeroDigit DigitSopt

Digits:
Digit
Digits Digit
Digit:
0
NonZeroDigit

NonZeroDigit: one of
123456789

A hexadecimal numeral consists of the leading ASCII characters 0x or 0x followed
by one or more ASCII hexadecimal digits and can represent a positive, zero, or
negative integer. Hexadecimal digits with values 10 through 15 are represented by

22



LEXICAL STRUCTURE Integer Literals

the ASCII letters a through f or A through F, respectively; each letter used as a
hexadecimal digit may be uppercase or lowercase.

HexNumeral:
0 x HexDigits
0 X HexDigits

HexDigits:
HexDigit
HexDigits HexDigit

HexDigit: one of
0123456789abcdefABCDEF

Anoctal numeral consistsof an ASCII digit 0 followed by one or more of the ASCI|
digits 0 through 7 and can represent a positive, zero, or negative integer.

OctalNumeral:
0 OctalDigits

OctalDigits:
OctalDigit
OctalDigits Octal Digit

OctalDigit: one of
01234567

The largest decimal literal of type int iS 2147483648 (231). All decimal literals
from 0 to 2147483647 may appear anywhere an int literal may appear, but the
literal 2147483648 may appear only as the operand of the unary negation operator

Thelargest positive hexadecimal and octal literals of typeint are ox7fffffff and
017777777777, respectively, which equal 2147483647 (231-1).

The most negative hexadecimal and octal literals of type int are 0x80000000
and 020000000000, respectively, each of which represents the decima value
2147483648 (-2°Y). The hexadecimal and octa literals Oxffffffff and
037777777777, respectively, represent the decimal value -1.

It isacompile-timeerror if adecimal literal of typeint islarger than 2147483648
(2%Y), or if the literal 2147483648 appears anywhere other than as the operand of
the unary - operator, or if ahexadecimal or octal int literal does not fit in 32 bits.

3.10.1

23



3.10.2

24

Floating-Point Literals LEXICAL STRUCTURE

The largest decimal literal of type Tong is 9223372036854775808L (2%). All
decimal literals from OL t0 9223372036854775807L may appear anywhere a long
literal may appear, but the literal 9223372036854775808L may appear only as the
operand of the unary negation operator -.

The largest positive hexadecimal and octal literals of type long are
Ox7FEFFEFFFEFFEFFFL and 0777777777777777777777L, respectively, which
equal 9223372036854775807L (25%-1).

The most negative hexadecima and octa literals literals of type long are
0x8000000000000000L and 01000000000000000000000L, respectively. Each has
the decimal value -9223372036854775808L (-2%%). The hexadecimal and octal
literals OxFFFFFFFFFFFFFFFFL and 01777777777777777777777L, respectively,
represent the decimal value -1L.

It is a compile-time error if a decimal literal of type Tong is larger than
9223372036854775808L (2%%), or if the literal 9223372036854775808L appears
anywhere other than as the operand of the unary - operator, or if a hexadecimal or
octal Tong literal does not fit in 64 bits.

3.10.2 Floating-Point Literals

A floating-point literal has the following parts: awhole-number part, adecimal or
hexadecimal point (represented by an ASCII period character), afractiona part, an
exponent, and a type suffix.

A floating point number may be written either as a decimal value or as a
hexadecimal value. For decimal literals, the exponent, if present, is indicated by
the ASCII letter e or E followed by an optionally signed integer. For hexadecimal
literals, the exponent is always required and is indicated by the ASCII letter p or
P followed by an optionally signed integer.

For decimal floating-point literals, at least one digit, in either the whole humber
or the fraction part, and either a decimal point, an exponent, or a float type suffix
arerequired. All other partsare optional . For hexadecimal floating-point literals, at
least one digit isrequired in either the whole number or fraction part, the exponent
is mandatory, and the float type suffix is optional.

A floating-point literal is of type float if it is suffixed with an ASCII letter F or
f; otherwise its type is double and it can optionally be suffixed with an ASCII
letter D or d.



LEXICAL STRUCTURE Floating-Point Literals  3.10.2

FloatingPointLiteral:
Decimal FloatingPointLiteral
Hexadecimal FloatingPointLiteral

DecimalFloatingPointLiteral:
Digits . Digitsyp: ExponentPartoy: FloatTypeSuffixopt
. Digits ExponentPartp: FloatTypeSuffixopt
Digits ExponentPart FloatTypeSuffiXopt
Digits ExponentPartq, FloatTypeSuffix

ExponentPart:
Exponentlndicator Sgnedinteger

Exponentindicator: one of
e E

Sgnedinteger:
Sgnept Digits

Sgn: one of
+ -

FloatTypeSuffix: one of
fFdD

Hexadecimal FloatingPointLiteral:
HexSgnificand BinaryExponent FloatTypeSuffixopt

HexSgnificand:
HexNumeral
HexNumeral .
0x HexDigitsyp . HexDigits
0X HexDigitsyp . HexDigits

BinaryExponent:
BinaryExponentIndicator Sgnedinteger

BinaryExponentl ndicator: one of
p P

25



3.10.3

26

Boolean Literals LEXICAL STRUCTURE

The elements of the types float and double are those values that can be
represented using the | EEE 754 32-bit single-precision and 64-bit double-precision
binary floating-point formats, respectively.

The largest positive finite literal of type float is 3.4028235e38f. The smallest
positive finite nonzero literal of type float is1.40e-45f.

Thelargest positivefiniteliteral of typedouble is1.7976931348623157e308. The
smallest positive finite nonzero literal of type double iS4.9e-324.

It isacompile-time error if a nonzero floating-point literal istoo large, so that on
rounded conversion to itsinternal representation, it becomes an |[EEE 754 infinity.

It isacompile-time error if anonzero floating-point literal istoo small, so that, on
rounded conversion to its internal representation, it becomes a zero.

Predefined constants representing Not-a-Number values are defined in the classes
Float and Double as Float.NaN and DoubTe.NaN.

3.10.3 Boolean Literals

The boolean type has two values, represented by the literals true and false,
formed from ASCII letters.

A boolean literal isaways of type boolean.

BooleanLiteral: one of
true false

3.10.4 Character Literals

A character literal is expressed as a character or an escape sequence (83.10.6),
enclosed in ASCII single quotes. (The single-quote, or apostrophe, character is
\u0027.)

Character literals can only represent UTF-16 code units (83.1), i.e., they arelimited
to values from \u0000 to \uffff. Supplementary characters must be represented
either as a surrogate pair within a char sequence, or as an integer, depending on
the API they are used with.

A character literal is always of type char.



LEXICAL STRUCTURE String Literals

CharacterLiteral:
' SngleCharacter '
' EscapeSequence !

SngleCharacter:
InputCharacter but not ' or \

As specified in §3.4, the characters CR and LF are never an InputCharacter; they
are recognized as constituting a LineTerminator.

It is a compile-time error for the character following the SngleCharacter or
EscapeSequence to be other thana .

It is a compile-time error for a line terminator to appear after the opening ' and
before the closing '.

In C and C++, a character literal may contain representations of more than one
character, but the value of such a character literal is implementation-defined. In
the Java programming language, a character literal always represents exactly one
character.

3.10.5 StringLiterals

A dtring literal consists of zero or more characters enclosed in double quotes.
Characters may be represented by escape sequences (83.10.6) - one escape
sequence for characters in the range U+0000 to U+FFFF, two escape sequences
for the UTF-16 surrogate code units of characters in the range U+010000 to U
+10FFFF.

A string literal is always of type String (84.3.3).
A string literal always refers to the same instance (84.3.1) of class String.

SringLiteral:
" SringCharactersyp "

SringCharacters.
SringCharacter
SringCharacters StringCharacter

SringCharacter:
InputCharacter but not " or \
EscapeSequence

3.10.5

27



3.10.6

28

Escape Sequences for Character and String Literals LEXICAL STRUCTURE

As specified in 83.4, neither of the characters CR and LF is ever considered to be
an InputCharacter; each is recognized as constituting a LineTerminator.

It is a compile-time error for a line terminator to appear after the opening " and
before the closing matching ". A long string literal can always be broken up into
shorter pieces and written as a (possibly parenthesized) expression using the string
concatenation operator + (815.18.1).

Each string literal isareference (84.3) toaninstance (84.3.1, 812.5) of classString
(84.3.3). String objects have a constant value. String literals - or, more generally,
strings that are the values of constant expressions (815.28) - are"interned” so asto
share unique instances, using the method String.intern.

3.10.6 Escape Sequencesfor Character and String Literals

The character and string escape sequences allow for the representation of some
nongraphic characters as well as the single quote, double quote, and backslash
charactersin character literals (§83.10.4) and string literals (§3.10.5).

EscapeSequence:
\ b /*\u0008: backspace BS */

\ t /*\u0009: horizontal tab HT */

n /* \u000a: linefeed LF */

f /*\u000c: form feed FF */

r[* \u000d: carriage return CR */

" [*\u0022: double quote " */

' [*\u0027: single quote ' */

\ O\ /* \u005c: backslash \ */

Octal Escape /* \u0000 to \u00ff: from octal value */

s s

Octal Escape:
\ OctalDigit
\ OctalDigit OctalDigit
\ ZeroToThree Octal Digit OctalDigit

OctalDigit: one of
01234567

ZeroToThree: one of
0123



LEXICAL STRUCTURE The Null Literal

It isacompile-time error if the character following a backslash in an escape is not
an ASCIl b, t,n, f,r, ", ',\,0,1, 2, 3,4, 5,6, or 7. The Unicode escape \u is
processed earlier (83.3). (Octal escapes are provided for compatibility with C, but
can express only Unicode values \u0000 through \u00FF, so Unicode escapes are
usually preferred.)

3.10.7 TheNull Literal

The null type has one value, the null reference, represented by the literal null,
which isformed from ASCII characters. A null literal is always of the null type.

NullLiteral:
null

3.11 Separators

Nine ASCII characters are the separators (punctuators).

Separator: one of
( ) { } [ ] ; ,

3.12 Operators

37 tokens are the operators, formed from ASCII characters.

Operator: one of
= > <

Il
&

A % << >> >>>
= A= %= <<= >>= >>>=

+

I
?\.—._
!ﬁ°Q°

3.10.7

29



312 Operators LEXICAL STRUCTURE

30



CHAPTER |

Types, Values, and Variables

T HE Java programming language is a strongly typed language, which means that
every variable and every expression hasatypethat isknown at compiletime. Types
limit the values that a variable (84.12) can hold or that an expression can produce,
limit the operations supported on those values, and determine the meaning of the
operations. Strong typing helps detect errors at compiletime.

The types of the Java programming language are divided into two categories:
primitive types and reference types. The primitive types (84.2) are the boolean
type and the numeric types. The numeric types are the integral typesbyte, short,
int, Tong, and char, and the floating-point types f1oat and double. Thereference
types (84.3) are classtypes, interface types, and array types. Thereisalso aspecial
null type. An abject (84.3.1) isadynamically created instance of a classtype or a
dynamically created array. The values of areference type are references to objects.
All objects, including arrays, support the methods of classObject (84.3.2). String
literals are represented by String objects (84.3.3).

Types exist at compile-time. Some types correspond to classes and interfaces,
which exist at run-time. The correspondence between types and classes or
interfaces isincomplete for two reasons.

1. Atrun-time, classesand interfaces areloaded by the Javavirtual machineusing
class loaders. Each class loader defines its own set of classes and interfaces.
Asaresult, it is possible for two loadersto load an identical class or interface
definition but produce distinct classes or interfaces at run-time.

Consequently, code that compiled correctly may fail at link time if the class
loaders that load it are inconsistent. See the paper Dynamic Class Loading in
theJava™ Virtual Machine, by Sheng Liang and Gilad Bracha, in Proceedings
of OOPSLA '98, published as ACM SIGPLAN Notices, Volume 33, Number
10, October 1998, pages 36-44, and The Java Virtual Machine Specification
for more details.



41

32

The Kinds of Types and Values TYPES VALUES, AND VARIABLES

2. Type variables (84.4) and type arguments (84.5.1) are not reified at run-
time. As a result, the same class or interface at run-time represents different
parameterized types (84.5) from compile-time. Specifically, all compile-time
invocations of a given generic type declaration (88.1.2, 89.1.2) share asingle
run-time representation.

4.1 TheKindsof Typesand Values

There are two kinds of types in the Java programming language: primitive types
(84.2) and reference types (84.3). There are, correspondingly, two kinds of data
values that can be stored in variables, passed as arguments, returned by methods,
and operated on: primitive values (84.2) and reference values (84.3).

Type:
PrimitiveType
ReferenceType
Thereisasoaspecial null type, thetype of the expression nu11, which hasno name.

Because the null type has no name, it isimpossible to declare a variabl e of the null
type or to cast to the null type.

The null reference is the only possible value of an expression of null type.

The null reference can aways be cast to any reference type.

4.2 Primitive Typesand Values

A primitive type is predefined by the Java programming language and named by
its reserved keyword (§3.9):



TYPES, VALUES, AND VARIABLES Integral Types and Values

PrimitiveType:
NumericType
boolean

NumericType:
Integral Type
FloatingPointType

Integral Type: one of
byte short int long char

FloatingPointType: one of
float double

Primitive values do not share state with other primitive values.

A variable whose type is a primitive type aways holds a primitive value of that
same type.

The value of a variable of primitive type can be changed only by assignment
operations on that variable (including increment (815.14.2, §15.15.1) and
decrement (815.14.3, 815.15.2) operators).

The numeric types are the integral types and the floating-point types.

The integral types are byte, short, int, and Tong, whose values are 8-hit, 16-hit,
32-bit and 64-bit signed twao's-complement integers, respectively, and char, whose
values are 16-bit unsigned integers representing UTF-16 code units (83.1).

The floating-point types are float, whose values include the 32-bit IEEE 754
floating-point numbers, and double, whose values include the 64-bit IEEE 754
floating-point numbers.

The boolean type has exactly two values: true and false.

4.2.1 Integral Typesand Values

The values of the integral types are integers in the following ranges:

e For byte, from-128 to 127, inclusive

* For short, from -32768 to 32767, inclusive

» For int, from -2147483648 to 2147483647, inclusive

* For Tong, from -9223372036854775808 to 9223372036854775807, inclusive

421

33



422

Integer Operations TYPES VALUES AND VARIABLES

e For char, from '\u0000' to "\uffff' inclusive, that is, from 0 to 65535

4.2.2 Integer Operations

The Java programming language provides anumber of operatorsthat act onintegral
values:

» The comparison operators, which result in avalue of type boolean:
o The numerical comparison operators <, <=, >, and >= (815.20.1)
o The numerical equality operators == and != (815.21.1)
» The numerical operators, which result in avalue of type int or Tong:
o The unary plus and minus operators + and - (815.15.3, §15.15.4)
The multiplicative operators *, /, and % (815.17)
The additive operators + and - (815.18)
The increment operator ++, both prefix (§15.15.1) and postfix (§15.14.2)
The decrement operator --, both prefix (815.15.2) and postfix (815.14.3)
The signed and unsigned shift operators <<, >>, and >>> (§15.19)

[m]

[}

O

O

]

O

The bitwise complement operator ~ (§15.15.5)
0 Theinteger bitwise operators &, |, and A (815.22.1)
» The conditional operator ? : (815.25)

» The cast operator, which can convert from an integral value to a value of any
specified numeric type (85.5, 815.16)

» The string concatenation operator + (815.18.1), which, when given a String
operand and an integral operand, will convert the integral operand to a String
representing itsvaluein decimal form, and then produce anewly created String
that is the concatenation of the two strings

Other useful constructors, methods, and constants are predefined in the classes
Byte, Short, Integer, Long, and Character.

If an integer operator other than a shift operator has at least one operand of type
Tong, then the operation is carried out using 64-bit precision, and the result of
the numerical operator is of type Tong. If the other operand is not Tong, it isfirst
widened (85.1.5) to type Tong by numeric promotion (85.6).



TYPES, VALUES, AND VARIABLES Floating-Point Types, Formats, and Values

Otherwise, the operation is carried out using 32-hit precision, and the result of the
numerical operator isof typeint. If either operand isnot an int, itisfirst widened
to type int by numeric promotion.

The built-in integer operators do not indicate overflow or underflow in any way.

Integer operators can throw a Null1PointerException if unboxing conversion
(85.1.8) of anull referenceis required.

Other than that, the only integer operatorsthat can throw an exception (Chapter 11,
Exceptions) are the integer divide operator / (815.17.2) and the integer remainder
operator % (815.17.3), which throw an ArithmeticException if the right-hand
operand iszero, and theincrement and decrement operators++ (815.15.1, §15.15.2)
and -- (815.14.3, 8§15.14.2), which can throw an OutOfMemoryError if boxing
conversion (85.1.7) is required and there is not sufficient memory available to
perform the conversion.

Any value of any integral type may be cast to or from any numeric type. There are
no casts between integral types and the type boolean.

4.2.3 Floating-Point Types, Formats, and Values

The floating-point types are f1oat and doub1e, which are conceptually associated
with the single-precision 32-bit and double-precision 64-bit format IEEE 754
values and operations as specified in IEEE Standard for Binary Floating-Point
Arithmetic, ANSI/IEEE Standard 754-1985 (IEEE, New Y ork).

Thel EEE 754 standard includes not only positive and negative numbersthat consist
of asign and magnitude, but also positive and negative zeros, positive and negative
infinities, and special Not-a-Number values (hereafter abbreviated NaN). A NaN
value is used to represent the result of certain invalid operations such as dividing
zero by zero. NaN constants of both float and double type are predefined as
Float.NaN and Double.NaN.

Every implementation of the Java programming languageisrequired to support two
standard sets of floating-point values, called the float val ue set and the double value
set. In addition, an implementation of the Java programming language may support
either or both of two extended-exponent floating-point value sets, called the float-
extended-exponent value set and the double-extended-exponent value set. These
extended-exponent value sets may, under certain circumstances, be used instead
of the standard value sets to represent the values of expressions of type float or
double (85.1.13, §15.4).

4.2.3

35



4.2.3

36

Floating-Point Types, Formats, and Values TYPES, VALUES AND VARIABLES

The finite nonzero values of any floating-point value set can all be expressed in
the forms - m - 2€-N*1 \where sis +1 or -1, mis a positive integer less than
2N and eis an integer between Epip = -(2-2) and Epux = 2€°-1, inclusive, and
where N and K are parameters that depend on the value set. Some values can
be represented in this form in more than one way; for example, supposing that a
value v in a value set might be represented in this form using certain values for
s, m, and e, then if it happened that m were even and e were less than 2%, one
could halve mand increase e by 1 to produce a second representation for the same
valuev. A representation in thisformis called normalized if m 2 2(N'1); otherwise
the representation is said to be denormalized. If a value in a value set cannot be
represented in such away that m= 2™, then the valueis said to be adenormalized
value, because it has no normalized representation.

The constraints on the parameters N and K (and on the derived parameters Ein
and Engy) for the two required and two optiona floating-point value sets are
summarized in Table 4.1.

Table4.1. Floating-point value set parameters

Par ameter float float- double double-
extended- extended-
exponent exponent

N 24 24 53 53

K 8 =11 =11 15

Erax +127 > +1023 +1023 > +16383

Enmin -126 <-1022 -1022 < -16382

Where one or both extended-exponent value sets are supported by an
implementation, then for each supported extended-exponent value set there is
a specific implementation-dependent constant K, whose value is constrained by
Table 4.1; thisvalue K in turn dictates the values for Eqin and Epax.

Each of the four value sets includes not only the finite nonzero values that are
ascribed to it above, but also NaN values and the four values positive zero, negative
zero, positive infinity, and negative infinity.

Note that the constraints in Table 4.1 are designed so that every element of the
float value set is necessarily also an element of the float-extended-exponent value
set, the double value set, and the double-extended-exponent value set. Likewise,
each element of the double value set is necessarily also an element of the double-
extended-exponent value set. Each extended-exponent value set has alarger range



TYPES, VALUES, AND VARIABLES Floating-Point Types, Formats, and Values

of exponent values than the corresponding standard value set, but does not have
more precision.

The elements of the float value set are exactly the values that can be represented
using the single floating-point format defined in the IEEE 754 standard. The
elements of the double value set are exactly the valuesthat can be represented using
the doubl e floating-point format defined in the |EEE 754 standard. Note, however,
that the elements of the float-extended-exponent and double-extended-exponent
value sets defined here do not correspond to the values that can be represented
using |EEE 754 single extended and double extended formats, respectively.

The float, float-extended-exponent, double, and double-extended-exponent value
sets are not types. It is always correct for an implementation of the Java
programming language to use an element of the float value set to represent avalue
of type float; however, it may be permissible in certain regions of code for an
implementation to use an element of the float-extended-exponent val ue set instead.
Similarly, itisaways correct for an implementation to use an element of the double
value set to represent a value of type double; however, it may be permissible in
certain regions of code for an implementation to use an element of the double-
extended-exponent value set instead.

Except for NaN, floating-point values are ordered; arranged from smallest to
largest, they are negative infinity, negative finite nonzero values, positive and
negative zero, positive finite nonzero values, and positive infinity.

IEEE 754 alows multiple distinct NaN values for each of its single and double
floating-point formats. While each hardware architecture returns a particular bit
pattern for NaN when a new NaN is generated, a programmer can also create
NaNs with different bit patterns to encode, for example, retrospective diagnostic
information.

For the most part, the Java SE platform treats NaN values of a given
type as though collapsed into a single canonical value (and hence this
specification normally refersto an arbitrary NaN as though to a canonical value).
However, version 1.3 of the Java SE platform introduced methods enabling the
programmer to distinguish between NaN values: the Float.floatToRawIntBits
and Double.doubleToRawLongBits methods. The interested reader is referred to
the specifications for the Float and Double classes for more information.

Positive zero and negative zero compare equal; thus the result of the expression
0.0==-0.0 is true and the result of 0.0>-0.0 is false. But other operations can
distinguish positive and negative zero; for example, 1.0/0.0 hasthe value positive
infinity, while the value of 1.0/-0.0 is negative infinity.

4.2.3

37



424

38

Floating-Point Operations TYPES, VALUES AND VARIABLES

NaN is unordered, so the numerical comparison operators <, <=, >, and >= return
false if either or both operands are NaN (815.20.1). The equality operator ==
returns false if either operand is NaN, and theinequality operator ! = returns true
if either operand is NaN (815.21.1). In particular, x!=x is true if and only if x is
NaN, and (x<y) == ! (x>=y) will be false if x or y is NaN.

Any value of afloating-point type may be cast to or from any numeric type. There
are no casts between floating-point types and the type boolean.

4.24 Floating-Point Operations

The Java programming language provides a number of operators that act on
floating-point values:

» The comparison operators, which result in avalue of type boolean:
o The numerical comparison operators <, <=, >, and >= (815.20.1)
o The numerical equality operators == and != (815.21.1)
» The numerical operators, which result in avalue of type float or double:
o The unary plus and minus operators + and - (815.15.3, §15.15.4)
o The multiplicative operators *, /, and % (815.17)
o The additive operators + and - (815.18.2)
o The increment operator ++, both prefix (815.15.1) and postfix (815.14.2)
o The decrement operator --, both prefix (§15.15.2) and postfix (815.14.3)
 The conditional operator ? : (815.25)

» The cast operator, which can convert from a floating-point value to a value of
any specified numeric type (85.5, §15.16)

* The string concatenation operator + (815.18.1), which, when given a String
operand and afloating-point operand, will convert the floating-point operand to
aString representing its value in decimal form (without information loss), and
then produce a newly created String by concatenating the two strings

Other useful constructors, methods, and constants are predefined in the classes
Float, Double, and Math.

If at least one of the operands to a binary operator is of floating-point type, then
the operation is a floating-point operation, even if the other isintegral.



TYPES, VALUES AND VARIABLES Floating-Point Operations

If at least one of the operands to a numerical operator is of type double, then the
operation is carried out using 64-bit floating-point arithmetic, and the result of the
numerical operator isavalue of type double. (If the other operandisnot adouble,
it is first widened to type double by numeric promotion (85.6).) Otherwise, the
operation is carried out using 32-bit floating-point arithmetic, and the result of the
numerical operator is avalue of type float. If the other operand is not a float, it
isfirst widened to type f1oat by numeric promotion.

Operators on floating-point numbers behave as specified by IEEE 754 (with
the exception of the remainder operator (815.17.3)). In particular, the Java
programming language requires support of |EEE 754 denormalized floating-point
numbers and gradual underflow, which make it easier to prove desirable properties
of particular numerical algorithms. Floating-point operations do not "flush to zero"
if the calculated result is a denormalized number.

The Java programming language requires that floating-point arithmetic behave
as if every floating-point operator rounded its floating-point result to the result
precision. Inexact results must be rounded to the representabl e value nearest to the
infinitely precise result; if the two nearest representable values are equally near,
the one with itsleast significant bit zero is chosen. Thisisthe IEEE 754 standard's
default rounding mode known as round to nearest.

Thelanguage usesround towar d zero when converting afloating value to an integer
(85.1.3), which acts, in this case, as though the number were truncated, discarding
the mantissa bits. Rounding toward zero chooses at its result the format's value
closest to and no greater in magnitude than the infinitely precise result.

Floating-point operators can throw a NullPointerException if unboxing
conversion (85.1.8) of a null reference is required. Other than that, the only
floating-point operators that can throw an exception (Chapter 11, Exceptions) are
the increment and decrement operators ++ (815.15.1, §15.15.2) and -- (§15.14.3,
§15.14.2), which can throw an OutOfMemoryError if boxing conversion (85.1.7)
isrequired and there is not sufficient memory available to perform the conversion.

An operation that overflows produces a signed infinity, an operation that
underflows produces a denormalized value or a signed zero, and an operation that
has no mathematically definite result produces NaN. All numeric operations with
NaN as an operand produce NaN as aresult. Ashas already been described, NaN is
unordered, so a numeric comparison operation involving one or two NaNs returns
false and any != comparison involving NaN returns true, including x!=x when
x isNaN.

424

39



4.2.5

40

The boolean Type and boolean Values TYPES, VALUES, AND VARIABLES

425 Theboolean Type and boolean Values

Theboolean type represents alogical quantity with two possible values, indicated
by the literals true and false (83.10.3). The boolean operators are:

» Therelational operators== and != (§15.21.2)

» Thelogical-complement operator ! (815.15.6)

» Thelogical operators &, A, and | (815.22.2)

» The conditional-and and conditional-or operators && (815.23) and | | (§15.24)
» The conditional operator ? : (815.25)

* The string concatenation operator + (815.18.1), which, when given a String
operand and a boolean operand, will convert the boolean operand to aString
(either "true" or "false"), and then produce anewly created String that isthe
concatenation of the two strings

Boolean expressions determine the control flow in several kinds of statements:
e Theif statement (814.9)

e Thewhile statement (814.12)

e The do statement (814.13)

* The for statement (814.14)

A boolean expression also determines which subexpression is evaluated in the
conditional ? : operator (815.25).

Only boolean and Boolean expressions can be used in control flow statements and
asthefirst operand of the conditional operator ? :.

Aninteger x can be converted to abooTlean, following the C language convention
that any nonzero valueis true, by the expression x!=0.

An object reference obj can be converted to aboolean, following the C language
convention that any reference other than nul1 is true, by the expression obj!
=null.

A cast of aboolean valuetotypeboolean or Boolean isallowed (85.1.1); no other
casts on type boolean are allowed.

A booTlean can be converted to a String by string conversion (85.4).



TYPES, VALUES, AND VARIABLES Reference Types and Values

4.3 Reference Typesand Values

There are four kinds of reference types. class types (Chapter 8, Classes), interface
types (Chapter 9, Interfaces), type variables (84.4), and array types (Chapter 10,
Arrays).

ReferenceType:
ClassOrlInterfaceType
TypeVariable
ArrayType

ClassOrlnterfaceType:
ClassType
InterfaceType

ClassType:
TypeDecl Specifier TypeArgumentsopt

InterfaceType:
TypeDecl Specifier TypeArgumentsypt

TypeDecl Specifier:
Identifier
ClassOrlInterfaceType . Identifier

TypeName:
Identifier
TypeName . Identifier

TypeVariable:
Identifier

ArrayType:
Type[ ]

A class or interface type consists of a type declaration specifier, optionally

followed by type arguments (84.5.1). If type arguments appear anywherein aclass
or interface type, it is a parameterized type (84.5).

A type declaration specifier may be either a type name (86.5.5), or a class or
interface type followed by "." and an identifier. In the latter case, the specifier has

4.3

41



43.1

42

Objects TYPES VALUES AND VARIABLES

theform T. id, where 7d must be the simple name of an accessible (86.6) member
type (88.5, 89.5) of T, or a compile-time error occurs. The specifier denotes that
member type.

4.3.1 Objects

An object isaclassinstance or an array.

The reference values (often just references) are pointers to these objects, and a
special null reference, which refers to no object.

A classinstanceisexplicitly created by aclassinstance creation expression (815.9).
An array is explicitly created by an array creation expression (§815.10).

A new classinstance isimplicitly created when the string concatenation operator +
(815.18.1) isused in anon-constant (815.28) expression, resulting in a new object
of type String (84.3.3).

A new array objectisimplicitly created when an array initializer expression (810.6)
is evaluated; this can occur when a class or interface is initialized (812.4), when
a new instance of aclass is created (815.9), or when alocal variable declaration
statement is executed (814.4).

New objectsof thetypesBoolean, Byte, Short, Character, Integer, Long, Float,
and Doub1e may be implicitly created by boxing conversion (85.1.7).

The operators on references to objects are:

» Field access, using either a qualified name (86.6) or a field access expression
(815.11)

» Method invocation (815.12)
» The cast operator (85.5, §15.16)

* The string concatenation operator + (815.18.1), which, when given a String
operand and areference, will convert the reference to a String by invoking the
toString method of the referenced object (using "nu11" if either the reference
or the result of toString is a null reference), and then will produce a newly
created String that is the concatenation of the two strings

* The instanceof operator (815.20.2)
» Thereference equality operators == and ! = (815.21.3)
» The conditional operator ? : (815.25).



TYPES VALUES AND VARIABLES The ClassObject

There may be many references to the same object. Most objects have state, stored
in the fields of objects that are instances of classes or in the variables that are the
components of an array object. If two variables contain references to the same
object, the state of the object can be modified using one variable's reference to the
object, and then the altered state can be observed through the referencein the other
variable.

Each object has an associated lock (817.1), which is used by synchronized
methods (88.4.3) and the synchronized statement (814.19) to provide control over
concurrent access to state by multiple threads (Chapter 17, Threads and Locks).

4.3.2 TheClassObject

The classObject isasuperclass (88.1) of all other classes.

All class and array types inherit the methods of class Object, which are
summarized as follows:

» The method clone is used to make a duplicate of an object.

» Themethod equals defines anotion of object equality, which isbased on value,
not reference, comparison.

» Themethod finalize isrun just before an object is destroyed (812.6).

» The method getClass returns the Class aobject that represents the class of the
object for reflection purposes. A Class abject exists for each reference type.

The type of a method invocation expression of getClass iSClass<? extends
|> where T isthe class or interface searched (815.12.1) for getClass.

A class method that is declared synchronized (88.4.3.6) synchronizes on the
lock associated with the Class object of the class.

» The method hashCode is very useful, together with the method equals, in
hashtables such as java.util.Hashmap.

» Themethodswait, notify, and notifyAl1l areused in concurrent programming
using threads (817.2).

* The method toString returns a String representation of the object.

A variableof typeObject can hold areferenceto the null reference or to any object,
whether it is an instance of a class or an array (Chapter 10, Arrays).

4.3.2

43



4.3.3

The Class String TYPES, VALUES AND VARIABLES

4.3.3 TheClassString

Instances of class String represent sequences of Unicode code points.
A String object has a constant (unchanging) value.
String literals (83.10.5) are references to instances of class String.

The string concatenation operator + (815.18.1) implicitly creates a new String
object when the result is not a compile-time constant expression (815.28).

4.3.4 When Reference Types Arethe Same

Two reference types are the same compile-time type if they have the same binary
name (813.1) and their type arguments, if any, arethe same, applying thisdefinition
recursively.

When two reference types are the same, they are sometimes said to be the same
class or the same interface.

At run time, several reference types with the same binary name may be loaded
simultaneously by different class loaders. These types may or may not represent
the same type declaration. Even if two such types do represent the same type
declaration, they are considered distinct.

Two reference types are the same run-time type if:

» They are both class or both interface types, are defined by the same class | oader,
and have the same binary name (813.1), in which case they are sometimes said
to be the same run-time class or the same run-time interface.

» They are both array types, and their component types are the same run-time type
(Chapter 10, Arrays).

4.4 TypeVariables

A type variable is an unqualified identifier.

A type variable is known as a type parameter when it is introduced by a generic
class declaration (88.1.2), generic interface declaration (89.1.2), generic method
declaration (88.4.4), or generic constructor declaration (88.8.4).



TYPES VALUES AND VARIABLES Parameterized Types

TypeParameter:
TypeVariable TypeBoundopt

TypeBound:
extends TypeVariable
extends ClassOrlInterfaceType Additional BoundListp

Additional BoundList:
Additional Bound Additional BoundList
Additional Bound

Additional Bound:
& InterfaceType

A type variable has an optional bound, T& I; & ... & I, The bound consists of
either a type variable, or a class or interface type T possibly followed by further
interfacetypes I, ..., I,. If noboundisgivenfor atypevariable, Object isassumed.

Itisacompile-timeerror if any of thetypes I; ... I, isaclasstype or type variable.

The erasures (84.6) of all constituent types of a bound must be pairwise different,
or acompile-time error occurs.

Theorder of typesinaboundisonly significant in that the erasure of atypevariable
is determined by the first type in its bound, and that a class type or type variable
may only appear in the first position.

A typevariable may not at the same time be a subtype of two interface types which
are different parameterizations of the same generic interface.

The members of atype variable X withbound T& 1; & ... & I, arethe members
of theintersection type (84.9) T& I; & ... & I, appearing at the point where the
type variable is declared.

45 Parameterized Types

A generic class or interface declaration ¢ (88.1.2, §9.1.2) with one or more type
parameters Aj,...,A, which have corresponding bounds Bj,...,B, defines a set of
parameterized types, onefor each possibleinvocation of thetype parameter section.

A parameterized type is written as a ClassType or InterfaceType that contains at
least one type declaration specifier immediately followed by atype argument list

4.5

45



451

46

Type Arguments and Wildcards TYPES, VALUES, AND VARIABLES

<T1, ..., Tp>. The type argument list denotes a particular invocation of the type
parameters of the generic type indicated by the type declaration specifier.

Given atype declaration specifier immediately followed by a type argument list,
let C bethefinal Identifier in the specifier.

It is a compile-time error if Cis not the name of a generic class or interface, or if
the number of type arguments in the type argument list differs from the number
of type parameters of C.

Let P = (<Ty,...,T,> be a parameterized type. It must be the case that, after P is
subjected to capture conversion (85.1.10) resulting in the type ¢<Xj,...,X>, for each
typeargument X; (L<i<n), X; <: Bi[A;:=Xq, .. .,As:=X,] (84.10), or acompile-
time error occurs.

In this specification, whenever we speak of aclassor interface type, weincludethe
generic version aswell, unless explicitly excluded.

Two parameterized types are provably distinct if either of the following conditions
hold:

» They areinvocations of distinct generic type declarations.

» Any of their type arguments are provably distinct.

451 TypeArgumentsand Wildcards

Type arguments may be either reference types or wildcards. Wildcards are useful
in situations where only partial knowledge about the type parameter is required.



TYPES, VALUES, AND VARIABLES Type Arguments and Wildcards 451

TypeArguments:
< TypeArgumentList >

TypeArgumentList:
TypeArgument
TypeArgumentList , TypeArgument

TypeArgument:
ReferenceType
Wildcard

Wildcard:
? WildcardBoundsgpt

WildcardBounds:
extends ReferenceType
super ReferenceType

Wildcards may be given explicit bounds, just like regular type variable
declarations. An upper bound is signified by the syntax:

? extends B

where B is the bound.

Unlike ordinary type variables declared in a method signature, no type inference
isrequired when using awildcard. Consequently, it is permissible to declare lower
bounds on awildcard, using the syntax:

? super B

where B is alower bound.
Two type arguments are provably distinct if one of the following istrue:

» Neither argument is atype variable or wildcard, and the two arguments are not
the same type.

e One type argument is a type variable or wildcard, with an upper bound (from
capture conversion, if necessary) of S; and the other type argument T is not a
type variable or wildcard; and neither |S| <: |7] nor |T] <: |9].

e Each type argument is a type variable or wildcard, with upper bounds (from
capture conversion, if necessary) of Sand T; and neither |S| <: || nor |T] <: |9].

47



4.5.2

48

Members and Constructors of Parameterized Types TYPES, VALUES, AND VARIABLES

A type argument T; is said to contain another type argument T, written T, <= Ty,
if the set of types denoted by T, is provably a subset of the set of types denoted
by T; under the reflexive and transitive closure of the following rules (where <:
denotes subtyping (84.10)):

e ? extends T <= ? extends SifT <: S

e ? super T <= ? super SifS <: T

<= T

<= 7?7 extends T

- =4 -

<= ?7 super T

452 Membersand Constructors of Parameterized Types

Let C be ageneric class or interface declaration with type parameters A;,...,A,, and
let <T3,...,T,> beaninvocation of C, where, for 1 <i < n, T; aretypes (rather than
wildcards). Then:

 Let mbe amember or constructor declaration (88.2, §8.8.6) in C, whose type as
declared is T. Thenthetype of min (<Ty,...,T,>, IS T[A7:=T1, ... ,Ap:=T,].

* Let m be a member or constructor declaration in D, where D is a class extended
by C or an interface implemented by C. Let D<Uj,...,U> be the supertype of
(<Ty,...,T,> that corresponds to D. Then the type of min (<Ty,...,T,> isthe type
of min D<Uj,...,U>.

If any of the type arguments in the invocation of ¢ are wildcards, then:
* Thetypes of the fields, methods, and constructorsin (<Ty,...,T,> are undefined.

* Let D be a(possibly generic) class or interface declaration in C. Then the type
of Din (<Ty,..., T,> isDwhere, if Disgeneric, al type arguments are unbounded
wildcards.

46 TypeErasure

Type erasureis a mapping from types (possibly including parameterized types and
type variables) to types (that are never parameterized types or type variables). We
write | 7] for the erasure of type T. The erasure mapping is defined as follows.

» The erasure of a parameterized type (84.5) ¢<T,...,T,>is|d].



TYPES, VALUES AND VARIABLES Reifiable Types 4.7

» Theerasure of anested type T. Cis|T|.C.

» The erasure of an array type T[] is|T][].

» Theerasure of atype variable (84.4) isthe erasure of its leftmost bound.
» The erasure of every other typeis the type itself.

Type erasure also maps the signature (88.4.2) of a constructor or method to a
signature that has no parameterized types or type variables. The erasure of a
constructor or method signature s is a signature consisting of the same name as s
and the erasures of all the formal parameter typesgivenin s.

The type parameters of a constructor or method (88.4.4), and the return type
(88.4.5) of amethod, also undergo erasure if the constructor or method's signature
is erased.

| The erasure of the signature of a generic method has no type parameters.

4.7 Reifiable Types

Because some type information is erased during compilation, not all types are
available at run time. Types that are completely available at run time are known
asreifiable types.

A typeisreifiableif and only if one of the following holds:
* It refersto anon-generic class or interface type declaration.

* It isaparameterized type in which all type arguments are unbounded wildcards
(84.5.2).

* ltisaraw type (84.8).
* Itisaprimitivetype (84.2).
* Itisan array type (810.1) whose element typeisreifiable.

* Itisanested type where, for each type T separated by a".", Titself isreifiable.

| An intersection type is not reifiable.

49



4.8

50

Raw Types TYPES, VALUES AND VARIABLES

4.8 Raw Types

Tofacilitateinterfacing with non-generic legacy code, it ispossibleto use asatype
the erasure (84.6) of a parameterized type (84.5). Such atypeiscalled araw type.

More precisely, araw typeis defined to be one of:

» The reference type that is formed by taking the name of a generic type
declaration without an accompanying type argument list.

e An array type whose element type is araw type.

A non-static type member of araw type R that is not inherited from a superclass
or superinterface of R.

A non-generic class or interface type is not araw type.

The superclasses (respectively, superinterfaces) of a raw type are the erasures of
the superclasses (superinterfaces) of any of its parameterized invocations.

The type of a constructor (88.8), instance method (88.4, 89.4), or non-static field
(88.3) mof araw type Cthat isnot inherited from its superclasses or superinterfaces
isthe raw type that corresponds to the erasure of itstype in the generic declaration
corresponding to C.

The type of a static method or static field of araw type Cisthe same asitstypein
the generic declaration corresponding to C.

It is acompile-time error to pass type arguments to a non-static type member of a
raw type that is not inherited from its superclasses or superinterfaces.

It isacompile-time error to attempt to use atype member of a parameterized type
asaraw type.

The use of raw types is alowed only as a concession to compatibility of legacy
code. The use of raw typesin code written after the introduction of genericity into
the Java programming language is strongly discouraged. It is possible that future
versions of the Java programming language will disallow the use of raw types.

To make sure that potential violations of the typing rules are aways flagged, some
accesses to members of araw type will result in compile-time warnings. The rules
for compile-time warnings when accessing members or constructors of raw types
are asfollows:

» At an assignment to afield: if the type of the left-hand operand is araw type,
then an unchecked warning occurs if erasure changes the field's type.



TYPES, VALUES AND VARIABLES Intersection Types

< At aninvocation of amethod or constructor: if the type of the class or interface
to search (815.12.1) isaraw type, then an unchecked warning occurs if erasure
changes any of the types of any of the arguments to the method or constructor.

» No unchecked warning isrequired for amethod call when the argument types do
not change under erasure (even if the result type and/or throws clause changes),
for reading from afield, or for a class instance creation of araw type.

The supertype of a class may be a raw type. Member accesses for the class are
treated as normal, and member accesses for the supertype are treated as for raw
types. In the constructor of the class, calsto super are treated as method calls on
araw type.

4.9 Intersection Types

An intersection type takestheform 7; & ... & T, (n>0), where 7; (1 <i < n)
are type expressions.

Intersection types arise in the processes of capture conversion (85.1.10) and type
inference (815.12.2.7). It is not possible to write an intersection type directly as
part of a program; no syntax supports this.

The values of an intersection type are those objects that are values of all of the
typesT;for1<i<n.

The members of anintersectiontype 7; & ... & T, are determined as follows:

e Foreach T; (1 <i < n), let ¢; be the most specific class or array type such that
T; <: C;. Then there must be some T, <: C, suchthat ¢, <: C;foranyi (1<i <
n), or a compile-time error occurs.

« Forl<j<n,if T;isatypevariable, then let 75 be an interface whose members
are the same as the public members of 7;; otherwisg, if T; is an interface, then
let le be Tj.

» Then the intersection type has the same members as a class type (Chapter 8,
Classes) with an empty body, direct superclass ¢, and direct superinterfaces
T4, ..., T, declared in the same package in which the intersection type appears.

410 Subtyping

The subtype and supertype relations are binary relations on types.

4.9

51



4.10.1

52

Subtyping among Primitive Types TYPES, VALUES, AND VARIABLES

The supertypes of atype are obtained by reflexive and transitive closure over the
direct supertype relation, written S >; 7, which is defined by rules given later in
this section. We write S :> T to indicate that the supertype relation holds between
Sand T.

Sisaproper supertypeof T, written S> T, if S:> Tand S+ T.

The subtypes of atype T are al types U such that T is a supertype of U, and the
null type. We write T <: S to indicate that that the subtype relation holds between
types Tand S.

Tisaproper subtype of S, written T< S, if T<: Sand S+ T.
Tisadirect subtype of S, written T<; S, if S>; T.

Subtyping does not extend through parameterized types. T <: S doesnot imply that
C<T> <: C<S>.

4.10.1 Subtyping among Primitive Types

Thefollowing rules define the direct supertype relation among the primitive types:
* double >; float

* float >; long

* Jong >1int

* int > char

* int >; short

* short >; byte

4.10.2 Subtyping among Class and I nterface Types

Given a generic type declaration C<F,...,F,>, the direct supertypes of the
parameterized type (<T,...,T,> are al of the following:

* thedirect superclasses of ¢

* the direct superinterfaces of C

» thetypeObject, if Cisan interface type with no direct superinterfaces.
» Theraw type C.

The direct supertypes of thetype C<Ty, ..., T,>, where T; (L <i < n) isatype, are
D<U; 8,...,U, 8>, where:



TYPES, VALUES, AND VARIABLES Subtyping among Array Types

* D<Uy,...,U> isadirect supertype of C<Fy, ..., F,> and 0 is the substitution
[F1:=Tl, . ,Fn:=Tn].

* (C<Sy,...,Sp>whereS; contains T; (84.5.1) for 1<i <n.

The direct supertypes of the type C<Ry, . . .,R,>, wWhere at least one of the R; (1

<i £ n)isawildcard type argument, are the direct supertypes of C<Xy, ..., X,>,

where C<Xy,...,X,> is the result of applying capture conversion (85.1.10) to

C<Ry,...,R>.

Thedirect supertypesof anintersectiontype(84.9) 7; & ... & T, aeT; (1<i<n).
The direct supertypes of atype variable are the typeslisted in its bound.
A type variableis adirect supertype of its lower bound.

The direct supertypes of the null type are all reference types other than the null
typeitself.

4.10.3 Subtyping among Array Types
The following rules define the direct subtype relation among array types:
 If sand T are both reference types, then S[] >, T[] iff S>; T.
* Object >1 Object[]
* Cloneable >; Object[]
* java.io.Serializable >; Object[]
* If Pisaprimitive type, then:
0 Object >1 P[]
0 Cloneable >; P[]

0 java.io.Serializable >1 P[]

4.11 Where TypesAreUsed

Types are used when they appear in declarations or in certain expressions.

Types are a so used as arguments to parameterized types.

4.10.3

53



412

Variables TYPES, VALUES, AND VARIABLES

412 Variables

A variable is a storage location and has an associated type, sometimes called its
compile-time type, that is either a primitive type (84.2) or areference type (84.3).

A variable's valueis changed by an assignment (815.26) or by aprefix or postfix +
+ (increment) or -- (decrement) operator (815.14.2, §15.14.3, §15.15.1, §15.15.2).

4.12.1 Variablesof Primitive Type

A variable of aprimitive type always holds a value of that exact primitive type.

4.12.2 Variablesof Reference Type

A variable of aclass type T can hold a null reference or areference to an instance
of class T or of any classthat is a subclass of T.

A variable of an interface type can hold a null reference or a reference to any
instance of any class that implements the interface.

If Tisaprimitivetype, then avariable of type"array of 7' can hold anull reference
or areference to any array of type "array of 7.

If Tisareferencetype, then avariable of type "array of 7' can hold anull reference
or areference to any array of type "array of S" such that type S is a subclass or
subinterface of type T.

A variable of type Object[] can hold an array of any reference type.

A variable of type Object can hold a null reference or a reference to any object,
whether class instance or array.

It is possible that a variable of a parameterized type will refer to an object that is
not of that parameterized type. This situation is known as heap pollution. Heap
pollution can only occur if the program performed some operation involving araw
type that would give rise to an unchecked warning at compile-time (84.9, 85.1.9).

The variable will aways refer to an object that is an instance of a class that
represents the parameterized type.

412.3 Kindsof Variables

There are seven kinds of variables;



TYPES, VALUES AND VARIABLES Kinds of Variables  4.12.3

1. A classvariableis afield declared using the keyword static within a class
declaration (88.3.1.1), or with or without the keyword static within an
interface declaration (89.3).

A classvariableis created when its class or interfaceis prepared (§12.3.2) and
isinitialized to a default value (84.12.5). The class variable effectively ceases
to exist whenits class or interface is unloaded (812.7).

2. Aninstancevariableisafield declared within aclass declaration without using
the keyword static (88.3.1.1).

If aclass Thasafield a that isan instance variable, then anew instance variable
a is created and initialized to a default value (84.12.5) as part of each newly
created object of class T or of any class that is a subclass of 7 (88.1.4). The
instancevariabl e effectively ceasesto exist when the object of whichitisafield
is no longer referenced, after any necessary finalization of the object (812.6)
has been compl eted.

3. Array components are unnamed variables that are created and initialized to
default values (84.12.5) whenever a new object that is an array is created
(Chapter 10, Arrays, 815.10). The array components effectively cease to exist
when the array is no longer referenced.

4. Method parameters (88.4.1) name argument val ues passed to a method.

For every parameter declared in amethod declaration, anew parameter variable
is created each time that method is invoked (815.12). The new variable is
initialized with the corresponding argument value from the method invocation.
The method parameter effectively ceases to exist when the execution of the
body of the method is complete.

5. Constructor parameters (88.8.1) name argument values passed to a
constructor.

For every parameter declared in a constructor declaration, a new parameter
variable is created each time a class instance creation expression (815.9) or
explicit constructor invocation (88.8.7) invokes that constructor. The new
variableisinitialized with the corresponding argument value from the creation
expression or constructor invocation. The constructor parameter effectively
ceases to exist when the execution of the body of the constructor is complete.

6. Anexception parameter iscreated each time an exception is caught by acatch
clause of a try statement (814.20).

55



4.124 final Variables TYPES VALUES AND VARIABLES

The new variable is initialized with the actual object associated with the
exception (811.3, 814.18). The exception parameter effectively ceasesto exist
when execution of the block associated with the catch clause is complete.

7. Local variables are declared by local variable declaration statements (814.4).

Whenever the flow of control entersablock (814.2) or for statement (§14.14),
a new variable is created for each local variable declared in alocal variable
declaration statement immediately contained within that block or for statement.

A local variable declaration statement may contain an expression which
initializes the variable. The local variable with an initializing expression is
not initialized, however, until the local variable declaration statement that
declaresit is executed. (Therules of definite assignment (Chapter 16, Definite
Assignment) prevent the value of alocal variable from being used beforeit has
been initialized or otherwise assigned avalue.) The local variable effectively
ceases to exist when the execution of the block or for statement is complete.

Were it not for one exceptiona situation, a local variable could aways be
regarded as being created when its local variable declaration statement is
executed. The exceptional situation involves the switch statement (814.11),
where it is possible for control to enter a block but bypass execution of a
local variable declaration statement. Because of the restrictionsimposed by the
rules of definite assignment (Chapter 16, Definite Assignment), however, the
local variable declared by such abypassed local variable declaration statement
cannot be used before it has been definitely assigned a value by an assignment
expression (815.26).

4124 final Variables

A variable can be declared final. A final variable may only be assigned to once.

It is a compile-time error if afinal variable is assigned to unless it is definitely
unassigned (Chapter 16, Definite Assignment) immediately prior to the assignment.

A blank final isafina variable whose declaration lacks an initializer.

Once a final variable has been assigned, it always contains the same value. If a
final variable holds a reference to an abject, then the state of the object may be
changed by operations on the object, but the variable will always refer to the same
object.

We call avariable, of primitive type or type String, that is final and initialized
with a compile-time constant expression (815.28) a constant variable.

56



TYPES VALUES AND VARIABLES Initial Values of Variables

4125 Initial Valuesof Variables

Every variable in a program must have a value before its value is used.

» Each class variable, instance variable, or array component is initialized with a
default value when it is created (815.9, §15.10):

o For type byte, the default valueis zero, that is, the value of (byte)O.

o For type short, the default value is zero, that is, the value of (short)0.
o For type int, the default valueis zero, that is, 0.

o For type Tong, the default value is zero, that is, OL.

o For type float, the default value is positive zero, that is, 0.0f.

o For type doubTe, the default valueis positive zero, that is, 0.0d.

o For type char, the default value isthe null character, that is, '\u0000".
o For type boolean, the default valueis false.

o For al reference types (84.3), the default value is nu11.

» Each method parameter (88.4.1) is initialized to the corresponding argument
value provided by the invoker of the method (815.12).

» Each constructor parameter (88.8.1) isinitialized to the corresponding argument
value provided by a class instance creation expression (815.9) or explicit
constructor invocation (88.8.7).

» An exception parameter (814.20) isinitialized to the thrown object representing
the exception (811.3, §14.18).

* A locd variable (814.4, 814.14) must be explicitly given a value before it is
used, by either initialization (814.4) or assignment (815.26), in away that can be
verified by the Javacompiler using the rulesfor definite assignment (Chapter 16,
Definite Assignment).

4.12.6 Types, Classes, and I nterfaces

In the Java programming language, every variable and every expression has atype
that can be determined at compile-time. The type may be a primitive type or a
reference type. Reference typesinclude class types and interface types. Reference
types are introduced by type declarations, which include class declarations (88.1)
and interface declarations (89.1). We often use the term type to refer to either a
class or an interface.

4125

57



4.12.6

58

Types, Classes, and Interfaces TYPES, VALUES AND VARIABLES

Every object belongs to some particular class: the class that was mentioned in the
creation expression that produced the object, the class whose Class object was
used to invoke a reflective method to produce the object, or the String class for
objects implicitly created by the string concatenation operator + (815.18.1). This
class is called the class of the object. (Arrays also have a class, as described at
the end of this section.) An object is said to be an instance of its class and of al
superclasses of its class.

Sometimes a variable or expression is said to have a "run-time type". This refers
to the class of the object referred to by the value of the variable or expression at
run time, assuming that the value is not nu11.

The compile-time type of avariable is aways declared, and the compile-time type
of an expression can be deduced at compile-time. The compile-timetype limitsthe
possiblevaluesthat the variable can hold or the expression can produce at run time.
If arun-time value is a reference that is not nu11, it refers to an object or array
that has a class, and that class will necessarily be compatible with the compile-
time type.

Even though a variable or expression may have a compile-time type that is an
interface type, there are no instances of interfaces. A variable or expression whose
typeisan interface type can reference any object whose class implements (88.1.5)
that interface.

Every array also has a class (810.8); the method getClass, when invoked for an
array object, will return a class object (of class Class) that represents the class of
the array.



CHAPTER5

Conversions and Promotions

EVERY expression written in the Java programming language has a type that
can be deduced from the structure of the expression and the types of the literals,
variables, and methods mentioned in the expression. It is possible, however, to
write an expression in acontext where the type of the expression is not appropriate.
In some cases, thisleadsto an error at compiletime. In other cases, the context may
beableto accept atypethat isrelated to thetype of the expression; asaconvenience,
rather than requiring the programmer to indicate a type conversion explicitly, the
language performs an implicit conversion from the type of the expression to atype
acceptable for its surrounding context.

A specific conversion from type S to type T allows an expression of type S to be
treated at compile time as if it had type T instead. In some cases this will require
a corresponding action at run time to check the validity of the conversion or to
translate the run-time value of the expression into a form appropriate for the new
type T.

In every conversion context, only certain specific conversions are permitted. For
convenience of description, the specific conversions that are possible in the Java
programming language are grouped into several broad categories.

* |dentity conversions

» Widening primitive conversions
» Narrowing primitive conversions
» Widening reference conversions
» Narrowing reference conversions
» Boxing conversions

» Unboxing conversions

» Unchecked conversions

59



60

CONVERS ONS AND PROMOTIONS

» Capture conversions
 String conversions
» Vaue set conversions

There are five conversion contexts in which conversion of expressions may occur.
Each context allows conversions in some of the categories named above but not
others. The term "conversion" is also used to describe the process of choosing a
specific conversion for such a context. For example, we say that an expression
that is an actual argument in amethod invocation is subject to "method invocation
conversion,” meaning that a specific conversion will be implicitly chosen for that
expression according to the rules for the method invocation argument context.

One conversion context is the operand of a numeric operator such as + or *. The
conversion process for such operands is called numeric promotion. Promotion is
special in that, in the case of binary operators, the conversion chosen for one
operand may depend in part on the type of the other operand expression.

This chapter first describes the eleven categories of conversions (85.1), including
the special conversionsto String alowed for the string concatenation operator +.
Then the five conversion contexts are described:

» Assignment conversion (85.2, 815.26) converts the type of an expression
to the type of a specified variable. Assignment converson may cause
a OutOfMemoryError (as a result of boxing conversion (85.1.7)), a
NullPointerException (as a result of unboxing conversion (85.1.8)), or a
ClassCastException (as aresult of an unchecked conversion (85.1.9)) to be
thrown at run time.

» Method invocation conversion (85.3, §15.9, §15.12) is applied to each argument
inamethod or constructor invocation and, except in one case, performsthe same
conversions that assignment conversion does. Method invocation conversion
may cause a OutOfMemoryError (as a result of boxing conversion (85.1.7)),
aNullPointerException (as a result of unboxing conversion (85.1.8)), or a
ClassCastException (as aresult of an unchecked conversion (85.1.9)) to be
thrown at run time.

* Casting conversion (85.5) converts the type of an expression to atype explicitly
specified by a cast operator (815.16). It is more inclusive than assignment or
method invocation conversion, allowing any specific conversion other than a
string conversion, but certain casts to a reference type may cause an exception
at run time.



CONVERS ONS AND PROMOTIONS Kinds of Conversion

» String conversion (85.4, 8§15.18.1) allows any type to be converted to type
String.

» Numeric promotion (85.6) brings the operands of a numeric operator to a
common type so that an operation can be performed.

5.1 Kindsof Conversion

Specific type conversions in the Java programming language are divided into 13
categories.

5.1.1 Identity Conversions

A conversion from atype to that same type is permitted for any type.

5.1.2 Widening Primitive Conversion

19 specific conversions on primitive types are caled the widening primitive
conversions.

* bytetoshort, int, lTong, float, Or double
* shorttoint, long, float, Or double

* chartoint, Tong, float, Or double

* int to long, float, Or double

* longto float Or double

* float to double

A widening primitive conversion does not lose information about the overall
magnitude of a numeric value, with the exception that awidening conversion from
float to double that is not strictfp may lose information about the overall
magnitude of the converted value.

A widening conversion from anintegral typeto another integral type, or from float
todouble inastrictfp expression, do not lose any information at al; the numeric
valueis preserved exactly.

A widening conversion of an int or a Tong value to float, or of a long vaueto
double, may result in loss of precision - that is, the result may lose some of the
least significant bits of the value. In this case, the resulting floating-point value

51

61



513

62

Narrowing Primitive Conversions CONVERS ONS AND PROMOTIONS

will be acorrectly rounded version of the integer value, using | EEE 754 round-to-
nearest mode (84.2.4).

A widening conversion of asigned integer valueto an integral type T simply sign-
extends the twao's-complement representation of the integer value to fill the wider
format.

A widening conversion of a char to an integral type T zero-extends the
representation of the char value to fill the wider format.

Despite the fact that loss of precision may occur, widening conversions among
primitive types never result in arun-time exception (Chapter 11, Exceptions).

5.1.3 Narrowing Primitive Conversions

22 specific conversions on primitive types are called the narrowing primitive
CONversions.

* short tobyte Or char

* char tobyte Or short

* int to byte, short, Or char

* long to byte, short, char, or int

* float to byte, short, char, int, or Tong

* double to byte, short, char, int, Tong, Or float

A narrowing primitive conversion may lose information about the overall
magnitude of a numeric value and may also lase precision and range.

A narrowing primitive conversion from double to float isgoverned by the IEEE
754 rounding rules (84.2.4). Thisconversion can lose precision, but also loserange,
resulting in a float zero from a nonzero double and a float infinity from a
finite doubTe. A double NaN is converted to a float NaN and a double infinity is
converted to the same-signed float infinity.

A narrowing conversion of a signed integer to an integral type T simply discards
all but the n lowest order bits, where n is the number of bits used to represent type
T. In addition to a possible loss of information about the magnitude of the numeric
value, this may cause the sign of the resulting value to differ from the sign of the
input value.

A narrowing conversion of a char to an integral type T likewise simply discards
all but the n lowest order bits, where n is the number of bits used to represent type
T. In addition to a possible loss of information about the magnitude of the numeric



CONVERS ONS AND PROMOTIONS Widening and Narrowing Primitive Conversions

value, this may cause the resulting value to be a negative number, even though

chars represent 16-bit unsigned integer values.

A narrowing conversion of afloating-point number to an integral type T takes two

steps:

1. Inthefirst step, the floating-point number is converted either to along, if Tis
Tong, or to anint, if Tisbyte, short, char, or int, asfollows:

* If the floating-point number isNaN (84.2.3), theresult of thefirst step of the
conversionisan int or Tong 0.

» Otherwise, if the floating-point number is not an infinity, the floating-point
valueisrounded to an integer value Vv, rounding toward zero using | EEE 754
round-toward-zero mode (84.2.3). Then there are two cases:

a. If Tislong, and thisinteger value can be represented asa 1ong, thenthe
result of the first step isthe Tong value V.

b. Otherwise, if this integer value can be represented as an int, then the
result of the first step isthe int value V.

» Otherwise, one of the following two cases must be true:

a. The value must be too small (a negative value of large magnitude
or negative infinity), and the result of the first step is the smallest
representable value of type int or Tong.

b. The value must be too large (a positive value of large magnitude
or positive infinity), and the result of the first step is the largest
representable value of type int or Tong.

2. Inthe second step:
e If Tisint or Tong, theresult of the conversion isthe result of the first step.

e If Tisbyte, char, or short, the result of the conversion is the result of a
narrowing conversion to type 7 (85.1.3) of the result of the first step.

Despite the fact that overflow, underflow, or other loss of information may occur,
narrowing conversions among primitive types never result in arun-time exception
(Chapter 11, Exceptions).

5.1.4 Widening and Narrowing Primitive Conversions

The following conversion combines both widening and narrowing primitive
conversions:

514

63



515

Widening Reference Conversions CONVERS ONS AND PROMOTIONS

* byte to char

First, the byte is converted to an int viawidening primitive conversion (85.1.2),
and then theresulting int isconverted to achar by narrowing primitive conversion
(85.1.3).

5.1.5 Widening Reference Conversions

A widening reference conversion exists from any reference type S to any reference
type T, provided S is a subtype (84.10) of T.

Widening reference conversions never require a special action at run time and
therefore never throw an exception at run time. They consist simply in regarding
a reference as having some other type in a manner that can be proved correct at
compiletime.

5.1.6 Narrowing Reference Conversions

Six kinds of conversions are called the narrowing reference conversions.

» From any reference type S to any reference type T, provided that S is a proper
supertype (84.10) of T.

An important special case is that there is a narrowing conversion from the class
type Object to any other reference type.

» From any class type C to any non-parameterized interface type K, provided that
cisnot final and does not implement K.

» Fromany interfacetype Jto any non-parameterized classtype Cthatisnot final.

» From any interface type J to any non-parameterized interface type K, provided
that J is not a subinterface of K.

» From the interface types Cloneable and java.io.Serializable to any array
type T[1.

» From any array type SC[] to any array type TC[], provided that SC and TC are
reference types and there is a narrowing reference conversion from scto 7C.

Such conversionsrequire atest at run time to find out whether the actual reference
value is alegitimate value of the new type. If not, then aClassCastException is
thrown.



CONVERS ONS AND PROMOTIONS Boxing Conversion

5.1.7 Boxing Conversion

Boxing conversion converts expressions of primitive type to corresponding
expressions of reference type. Specifically, the following eight conversions are
called the boxing conversions:

From type booleanto type Boolean
From type byte to type Byte

From type char to type Character
From type short to type Short
From type int to type Integer
From type Tong to type Long

From type float to type Float
From type double to type Double

The null type may undergo boxing conversion (815.25); the result is the null type.

At run time, boxing conversion proceeds as follows:

If pisavalueof typebooTlean, then boxing conversion converts p into areference
r of class and type Boolean, such that r.booleanvalue() == p

If pisavaue of type byte, then boxing conversion converts p into areference
r of class and type Byte, such that r.bytevalue() ==

If pisavaue of type char, then boxing conversion converts p into a reference
r of class and type Character, such that r.charvalue() == p

If pisavalue of type short, then boxing conversion converts p into areference
r of class and type Short, such that r.shortvalue() ==

If pisavalue of type int, then boxing conversion converts p into areference r
of class and type Integer, such that r.intvalue() == p

If pisavaue of type 1ong, then boxing conversion converts p into a reference
r of class and type Long, such that r.longvalue() ==

If pisavaue of type float then:

o If pisnot NaN, then boxing conversion converts p into areference r of class
and type Float, such that r.floatvalue() evaluatesto p

o Otherwise, boxing conversion converts p into a reference r of class and type
Float such that r.isNaN() evaluatesto true

517

65



5.1.8

66

Unboxing Conversion CONVERS ONS AND PROMOTIONS

* If pisavalue of type double, then:

o If pisnot NaN, boxing conversion converts p into areference r of class and
typeDouble, such that r.doublevalue() evaluatesto p

o Otherwise, boxing conversion converts p into a reference r of class and type
Double such that r.isNaN() evaluatesto true

 If pisavalue of any other type, boxing conversion is equivalent to an identity
conversion §5.1.1

If the value p being boxed is true, false, abyte, or achar in the range \u0000
to \u007f, or an int or short number between -128 and 127, thenlet r; and r; be
the results of any two boxing conversions of p. It isawaysthe case that r; == r».

A boxing conversion may result in an OutOfMemoryError if anew instance of one
of the wrapper classes (Boolean, Byte, Character, Short, Integer, Long, Float,
or Double) needsto be allocated and insufficient storage is available.

5.1.8 Unboxing Conversion

Unboxing conversion converts expressions of reference type to corresponding
expressions of primitive type. Specifically, the following eight conversions are
called the unboxing conversions:

* From type Boolean to type boolean

* From type Byte to type byte

* From type Character to type char

e From type Short to type short

* Fromtype Integer to typeint

* From type Long to type Tong

* From type Float to type float

* From type Double to type double

At run time, unboxing conversion proceeds as follows:

» If risareference of type Boolean, then unboxing conversion converts r into
r.booleanValue()

» If r is a reference of type Byte, then unboxing conversion converts r into
r.bytevValue(Q



CONVERS ONS AND PROMOTIONS Unchecked Conversion

» If risareference of type Character, then unboxing conversion converts rinto
r.charValue(Q

» If ris areference of type Short, then unboxing conversion converts r into
r.shortvValue(Q)

» If risareference of type Integer, then unboxing conversion converts r into
r.intValue(Q)

* If ris a reference of type Long, then unboxing conversion converts r into
r.longValue(Q)

* If r is a reference of type Float, unboxing conversion converts r into
r.floatValue()

» If ris areference of type Double, then unboxing conversion converts r into
r.doubleValue()

 If risnul1, unboxing conversion throws aNu11PointerException

A typeissaidto be convertibleto anumerictypeif itisanumerictype (84.2), oritis
areference type that may be converted to a numeric type by unboxing conversion.

A typeissaid to be convertible to an integral typeif itisan integral type, oritisa
reference type that may be converted to an integral type by unboxing conversion.

5.1.9 Unchecked Conversion

Let G name a generic type declaration with n type parameters.

There is an unchecked conversion from the raw class or interface type (84.8) G to
any parameterized type of the form G<T,...,T,>>.

Thereisan unchecked conversion fromtheraw array type G[ ] to any parameterized
type of theform G[1<T,...,T,>.

Use of an unchecked conversion generates a compile-time unchecked warning
unless the parameterized type G<...> is a parameterized type in which all type
arguments are unbounded wildcards (84.5.1), or the unchecked warning is
suppressed by the SuppressWarnings annotation (89.6.3.5).

5.1.10 Capture Conversion

Let G name a generic type declaration with n type parameters Aj,...,A, with
corresponding bounds Uy,...,U,. There exists a capture conversion from G<Ty,..., T>
to G<Sy,...,S>, where, for1<i<n:

5.1.9

67



5111

68

Sring Conversions CONVERSIONS AND PROMOTIONS

If T; isawildcard type argument (84.5.1) of the form 7, then S; is afresh type
variable whose upper bound is U;[A;:=Sy, . . . ,A,:=S,] and whose lower bound
isthe null type.

If T; isawildcard type argument of the form ? extends B;, then S; isafresh
type variable whose upper bound isglb(B;, U;i[A;:=S1, . . . ,As:=S,]) and whose
lower bound isthe null type.

glb(Vy,...,Vy) ISV1 & ... &V, Itisacompile-time error if, for any two classes
(not interfaces) v; and Vv;, v; isnot asubclass of v; or vice versa

If T; isawildcard type argument of theform ? super B, then S; isafresh type
variable whose upper bound is U;[A;:=S5, . . . ,A,:=S,] and whose lower bound
is B;.

Otherwise, S; = T;.

Capture conversion on any type other than a parameterized type (84.5) acts as an
identity conversion (85.1.1). Capture conversion never requires a special action at
run time and therefore never throws an exception at run time.

Capture conversion is not applied recursively.

5.1.11 String Conversions

Any type may be converted to type String by string conversion.

A value x of primitive type Tisfirst converted to areference value as if by giving
it as an argument to an appropriate class instance creation expression:

If Tisboolean, then use new Boolean(x).

If Tischar, thenusenew Character(x).

If Tisbyte, short, or int, thenuse new Integer(x).
If Tislong, thenusenew Long(x).

If Tisfloat, then use new Float(x).

If Tisdouble, then use new Double(x).

This reference value is then converted to type String by string conversion.

Now only reference values need to be considered:

If thereferenceisnul1, itisconvertedtothestring "nu11" (four ASCII characters
n,u, 1, 7).



CONVERS ONS AND PROMOTIONS Forbidden Conversions

» Otherwise, the conversion is performed as if by an invocation of the toString
method of the referenced object with no arguments; but if the result of invoking
the toString method isnu11, then the string "nu11" is used instead.

The toString method is defined by the primordial class Object; many classes
override it, notably Boolean, Character, Integer, Long, Float, Double, and
String.

See §85.4 for details of the string conversion context.

5.1.12 Forbidden Conversions

Any conversion that is not explicitly allowed is forbidden.

5.1.13 Value Set Conversion

Value set conversion is the process of mapping a floating-point value from one
value set to another without changing its type.

Within an expression that is not FP-strict (815.4), value set conversion provides
choices to an implementation of the Java programming language:

« If the value is an element of the float-extended-exponent value set, then the
implementation may, at its option, map the value to the nearest element of the
float value set. This conversion may result in overflow (in which case the value
isreplaced by aninfinity of the same sign) or underflow (in which case the value
may lose precision because it is replaced by a denormalized number or zero of
the same sign).

* If the value is an element of the double-extended-exponent value set, then the
implementation may, at its option, map the value to the nearest element of the
doublevalue set. Thisconversion may resultin overflow (in which casethevalue
isreplaced by aninfinity of the same sign) or underflow (in which case the value
may lose precision because it is replaced by a denormalized number or zero of
the same sign).

Within an FP-strict expression (815.4), value set conversion does not provide any
choices; every implementation must behave in the same way:

« If thevalueisof type float and isnot an element of the float value set, then the
implementation must map the value to the nearest element of the float value set.
This conversion may result in overflow or underflow.

5112

69



5.2

70

Assignment Conversion CONVERS ONS AND PROMOTIONS

* If thevalueisof type double and is not an element of the double value set, then
theimplementation must map the value to the nearest element of the doublevalue
set. This conversion may result in overflow or underflow.

Within an FP-strict expression, mapping values from the float-extended-exponent
value set or double-extended-exponent value set is necessary only when amethod
isinvoked whose declaration is not FP-strict and the implementation has chosen to
represent the result of the method invocation asan element of an extended-exponent
value set.

Whether in FP-strict code or code that is not FP-strict, value set conversion aways
leaves unchanged any value whose type is neither float nor double.

5.2 Assignment Conversion

Assignment conver sion occurs when the value of an expression isassigned (§15.26)
to a variable: the type of the expression must be converted to the type of the
variable.

Assignment contexts allow the use of one of the following:
* anidentity conversion (85.1.1)

» awidening primitive conversion (85.1.2)

 awidening reference conversion (85.1.5)

» a boxing conversion (85.1.7) optionally followed by a widening reference
conversion

* an unboxing conversion (85.1.8) optionally followed by a widening primitive
conversion.

If, after the conversions listed above have been applied, the resulting typeisaraw
type (84.8), unchecked conversion (85.1.9) may then be applied.

It is a compile-time error if the chain of conversions contains two parameterized
types that are not in the subtype relation.

In addition, if the expression isaconstant expression (§15.28) of typebyte, short,
char, Or int:

» A narrowing primitive conversion may be used if thetype of thevariableisbyte,
short, or char, and the value of the constant expression is representable in the
type of the variable.



CONVERSIONS AND PROMOTIONS Assignment Conversion

* A narrowing primitive conversion followed by aboxing conversion may be used
if the type of the variableis:

0 Byte and thevalue of the constant expression isrepresentableinthetypebyte.

o Short and the value of the constant expression is representable in the type
short.

0 Character and thevalue of the constant expression isrepresentablein thetype
char.

If the type of the expression cannot be converted to the type of the variable by a
conversion permitted in an assignment context, then a compile-time error occurs.

If the type of the variableis f1oat or double, then value set conversion is applied
to the value v that is the result of the type conversion:

» If visof type float and is an element of the float-extended-exponent value set,
then the implementation must map v to the nearest element of the float value set.
This conversion may result in overflow or underflow.

 If visof type double and isan element of the double-extended-exponent value
set, then the implementation must map v to the nearest element of the double
value set. This conversion may result in overflow or underflow.

If thetype of an expression can be converted to the type of avariable by assignment
conversion, we say the expression (or its value) is assignable to the variable or,
equivalently, that the type of the expression is assignment compatible with the type
of the variable.

If, after the type conversions above have been applied, the resulting value is an
object which is not an instance of a subclass or subinterface of the erasure of the
type of the variable, then aClassCastException isthrown.,

The only exceptions that an assignment conversion may cause are:
* AnoOutOfMemoryError asaresult of aboxing conversion.
» A (ClassCastException inthe specia circumstances indicated above.

* A NullPointerException as a result of an unboxing conversion on a null
reference.

(Note, however, that an assignment may result in an exception in special cases
involving array elements or field access - see 810.5 and 8§15.26.1.)

A value of the null type (the null referenceis the only such value) may be assigned
to any reference type, resulting in anull reference of that type.

5.2

71



5.3

72

Method Invocation Conversion CONVERS ONS AND PROMOTIONS

5.3 Method Invocation Conver sion

Method invocation conversion is applied to each argument value in a method
or constructor invocation (88.8.7.1, §815.9, §15.12): the type of the argument
expression must be converted to the type of the corresponding parameter.

Method invocation contexts allow the use of one of the following:
 anidentity conversion (85.1.1)

» awidening primitive conversion (85.1.2)

» awidening reference conversion (85.1.5)

* a boxing conversion (85.1.7) optionaly followed by widening reference
conversion

 an unboxing conversion (85.1.8) optionally followed by a widening primitive
conversion.

If, after the conversions listed above have been applied, the resulting typeisaraw
type (84.8), an unchecked conversion (85.1.9) may then be applied.

It is a compile-time error if the chain of conversions contains two parameterized
typesthat are not in the subtype relation.

If the type of an argument expression is either float or double, then value set
conversion (85.1.13) is applied after the type conversion:

* If an argument value of type float isan element of the float-extended-exponent
value set, then the implementation must map the value to the nearest element of
the float value set. This conversion may result in overflow or underflow.

 If an argument value of type double is an element of the double-extended-
exponent value set, then the implementation must map the value to the nearest
element of the double value set. This conversion may result in overflow or
underflow.

If, after the type conversions above have been applied, the resulting value is an
object which is not an instance of a subclass or subinterface of the erasure of the
corresponding formal parameter type, then aClassCastException isthrown.



CONVERS ONS AND PROMOTIONS String Conversion

5.4 String Conversion

String conversion applies only to the operands of the binary + operator when one
of the argumentsisaString.

In thissingle specia case, the other argument to the + undergoes string conversion
(85.1.11) to aString, and anew String which is the concatenation (815.18.1) of
the two stringsis the result of the +.

5.5 Casting Conversion

Casting conversion is applied to the operand of a cast operator (815.16): the type
of the operand expression must be converted to the type explicitly named by the
cast operator.

Casting contexts allow the use of one of:

 anidentity conversion (85.1.1)

* awidening primitive conversion (85.1.2)

* anarrowing primitive conversion (85.1.3)

» awidening and narrowing primitive conversion (85.1.4)

e a widening reference conversion (85.1.5) optionally followed by either an
unboxing conversion (85.1.8) or an unchecked conversion (85.1.9)

e a narrowing reference conversion (85.1.6) optionally followed by either an
unboxing conversion (85.1.8) or an unchecked conversion

* a boxing conversion (85.1.7) optionaly followed by a widening reference
conversion (85.1.5)

 an unboxing conversion (85.1.8) optionally followed by a widening primitive
conversion (85.1.2).

Value set conversion (85.1.13) is applied after the type conversion.
The compile-time legality of acasting conversion is asfollows:

* An expression of a primitive type can always undergo casting conversion to
another primitive type without error, by identity conversion (if the types are
the same) or by a widening primitive conversion or by a narrowing primitive
conversion or by awidening and narrowing primitive conversion.

5.4

73



551

74

Reference Type Casting CONVERS ONS AND PROMOTIONS

* An expression of a primitive type can aways be undergo casting conversion to
areference type without error, by boxing conversion.

» An expression of a reference type can always undergo casting conversion to a
primitive type without error, by unboxing conversion.

» An expression of a reference type can undergo casting conversion to another
reference type if no compile-time error occurs given therulesin 85.5.1.

55.1 Reference Type Casting

Given a compile-time reference type S (source) and a compile-time reference type
T (target), a casting conversion exists from S to T if no compile-time errors occur
due to the following rules.

If Sisaclasstype:

» If Tisaclasstype, then either |S] <: |T], or |T] <: |S]. Otherwise, a compile-time
error occurs.

Furthermore, if there exists a supertype x of T, and a supertype Y of S, such
that both X and Y are provably distinct parameterized types (84.5), and that the
erasures of X and Y are the same, a compile-time error occurs.

* If Tisaninterface type:

o If Sisnot afinal class (88.1.1), then, if there exists a supertype x of T, and
asupertype Y of S, such that both x and Y are provably distinct parameterized
types, and that the erasures of xand Y arethe same, acompile-timeerror occurs.

Otherwise, the cast isalways|egal at compiletime (because evenif S does not
implement T, a subclass of S might).

o If Sisafinal class(88.1.1), then S must implement T, or acompile-time error
occurs.

 If Tisatype variable, then this algorithm is applied recursively, using the upper
bound of Tin placeof T.

» If Tisan array type, then S must be the class Object, or a compile-time error
occurs.

If Sisaninterfacetype:

e If Tis an array type, then S must be the type java.io.Serializable or
CloneabTe (the only interfacesimplemented by arrays), or acompile-time error
occurs.



CONVERS ONS AND PROMOTIONS Reference Type Casting

* If Tisatypethatisnot final (88.1.1), thenif there existsasupertype x of T, and
a supertype Y of S, such that both x and Y are provably distinct parameterized
types, and that the erasures of X and Y are the same, a compile-time error occurs.

Otherwise, the cast is always legal at compile time (because even if T does not
implement S, asubclass of T might).

e If Tisatypethatisfinal, then:

o If Sisnot aparameterized type or araw type, then T must implement S, or a
compile-time error occurs.

o Otherwise, S is either a parameterized type that is an invocation of some
generic type declaration G, or a raw type corresponding to a generic type
declaration G. Then there must exist a supertype X of T, such that X is an
invocation of G, or acompile-time error occurs.

Furthermore, if S and X are provably distinct parameterized types then a
compile-time error occurs.

If Sisatype variable, then this algorithm is applied recursively, using the upper
bound of S in place of S.

If Sisanintersectiontype A; & ... & A, thenit is acompile-time error if there
exists an A; (1 <1 < n) such that S cannot be cast to A; by this agorithm. That
is, the success of the cast is determined by the most restrictive component of the
intersection type.

If Sisan array type SC[1, that is, an array of components of type SC:

» If Tisaclasstype, then if Tis not Object, then a compile-time error occurs
(because Object isthe only class type to which arrays can be assigned).

o If T is an interface type, then a compile-time error occurs unless T is
the type java.io.Serializable or the type Cloneable (the only interfaces
implemented by arrays).

 If Tisatype variable, then:

o If the upper bound of TisObject or java.io.Serializable oOr Cloneable,
or atype variable that S could undergo casting conversion to, then the cast is
legal (though unchecked).

o If the upper bound of Tisan array type TC[ 1, then acompile-time error occurs
unless the type SC[] can undergo casting conversion to 7C[].

o Otherwise, a compile-time error occurs.

551

75



55.2

76

Checked Casts and Unchecked Casts CONVERS ONS AND PROMOTIONS

* If Tisan array type TC[1, that is, an array of components of type TC, then a
compile-time error occurs unless one of the following is true:

o TCand SC are the same primitive type.

o TCand SCarereferencetypesand type SC can undergo casting conversionto TC.

5.5.2 Checked Castsand Unchecked Casts

A cast from atype S to atype T is statically known to be correct if and only if S
<: T(84.10).

A cast from atype S to a parameterized type (84.5) T is unchecked unless at |east
one of the following conditions holds:

e S<: T
 All of the type arguments (84.5.1) of T are unbounded wildcards

e T<: Sand S has no subtype X other than T where the type arguments of x are
not contained in the type arguments of T.

A cast from atype S to atype variable Tisunchecked unless S <: T.

An unchecked cast from S to Tis completely unchecked if the cast from [S|to |T]is
statically known to be correct. Otherwise, it is partially unchecked.

An unchecked cast causes an unchecked warning to occur, unlessit is suppressed
using the Suppresswarnings annotation (89.6.3.5).

A cast is a checked cast if it is not statically known to be correct and it is not
unchecked.

If acast to areferencetypeisnot acompile-time error, there are several cases:

» The cast is statically known to be correct. No run time action is performed for
such acast.

* The cast is a completely unchecked cast. No run time action is performed for
such a cast.

» The cast is a partially unchecked cast. Such a cast requires a run-time validity
check. The check is performed as if the cast had been a checked cast between
|S| and |7}, as described below.

» The cast is a checked cast. Such a cast requires arun-time validity check. If the
valueat runtimeisnul1, then the cast isallowed. Otherwise, let R be the class of
the object referred to by the run-time reference value, and let T be the erasure of
the type named in the cast operator. A cast conversion must check, at run time,



CONVERS ONS AND PROMOTIONS Checked Casts at Run-time

that the class R is assignment compatible with the type T, via the algorithm in
§5.5.3.

55.3 Checked Castsat Run-time

Here is the algorithm to check whether the run-time type R of an object is
assignment compatible with the type T which is the erasure of the type named in
the cast operator. If arun-time exception isthrown, itisaClassCastException.

If Risan ordinary class (not an array class):

« If Tisaclasstype, then R must be either the same class (84.3.4) as T or asubclass
of T, or arun-time exception is thrown.

» If Tisan interface type, then R must implement (88.1.5) interface T, or a run-
time exception is thrown.

 If Tisan array type, then arun-time exception is thrown.
If Risan interface:

 If Tisaclasstype, then T must be Object (84.3.2), or a run-time exception is
thrown.

* If Tis an interface type, then R must be either the same interface as T or a
subinterface of T, or arun-time exception is thrown.

 If Tisan array type, then arun-time exception is thrown.

If Risaclassrepresenting an array type RC[1, that is, an array of components of
type RC:

» If Tisaclasstype, then T must be Object (84.3.2), or a run-time exception is
thrown.

* If T is an interface type, then a run-time exception is thrown unless T is
the type java.io.Serializable or the type Cloneable (the only interfaces
implemented by arrays).

 If Tisan array type TC[], that is, an array of components of type T¢, then arun-
time exception is thrown unless one of the following is true:

o TCand RC are the same primitive type.

0 TC and RC are reference types and type RC can be cast to TC by a recursive
application of these run-time rules for casting.

55.3

77



5.6

78

Numeric Promotions CONVERS ONS AND PROMOTIONS

5.6 Numeric Promotions

Numeric promotion is applied to the operands of an arithmetic operator.
Numeric promation contexts allow the use of

 anidentity conversion (85.1.1)

» awidening primitive conversion (85.1.2)

 an unboxing conversion (85.1.8)

Numeric promotions are used to convert the operands of a numeric operator to a
common type so that an operation can be performed. The two kinds of numeric
promotion are unary numeric promotion (85.6.1) and binary numeric promotion
(85.6.2).

5.6.1 Unary Numeric Promotion

Some operators apply unary numeric promotion to a single operand, which must
produce a value of anumeric type:

« If the operand is of compile-timetypeByte, Short, Character, Or Integer, itis
subjected to unboxing conversion. The result isthen promoted to avalue of type
int by awidening primitive conversion or an identity conversion.

» Otherwise, if the operand is of compile-time type Long, Float, Of Double it is
subjected to unboxing conversion.

» Otherwise, if the operand is of compile-time type byte, short, or char, unary
numeric promotion promotes it to a value of type int by a widening primitive
conversion.

» Otherwise, aunary numeric operand remains asis and is not converted.

In any case, value set conversion (85.1.13) is then applied.

Unary numeric promotion is performed on expressions in the following situations:
 Each dimension expression in an array creation expression (§15.10)

» Theindex expression in an array access expression (815.13)

» The operand of aunary plus operator + (815.15.3)

The operand of a unary minus operator - (815.15.4)
» The operand of a bitwise complement operator ~ (§15.15.5)



CONVERS ONS AND PROMOTIONS Binary Numeric Promotion

» Each operand, separately, of a shift operator >>, >>>, or << (§15.19).

A Tong shift distance (right operand) does not promote the value being shifted
(left operand) to 1ong.

5.6.2 Binary Numeric Promotion

When an operator applies binary numeric promotion to a pair of operands, each
of which must denote a value that is convertible to a numeric type, the following
rules apply, in order:

1. If any operand is of areferencetype, it is subjected to unboxing conversion.

2. Widening primitive conversion is applied to convert either or both operands,
asfollows:

* If either operand is of type doub1e, the other is converted to doube.

» Otherwise, if either operandisof type float, theother isconvertedto float.
» Otherwise, if either operand is of type Tong, the other is converted to Tong.
» Otherwise, both operands are converted to type int.

After the type conversion, if any, value set conversion (85.1.13) is applied to each
operand.

Binary numeric promotion is performed on the operands of certain operators:
» The multiplicative operators *, / and % (815.17)

» The addition and subtraction operators for numeric types + and - (§15.18.2)
¢ The numerical comparison operators <, <=, >, and >= (8§15.20.1)

e The numerical equality operators == and != (§15.21.1)

The integer bitwise operators &, A, and | (815.22.1)
* In certain cases, the conditional operator ? : (815.25)

5.6.2

79



56.2 Binary Numeric Promotion CONVERS ONS AND PROMOTIONS

80



CHAPTER6

Names

NAM ES are used to refer to entities declared in a program. A declared entity
(86.1) is a package, class type (normal or enum), interface type (normal or
annotation type), member (class, interface, field, or method) of a reference type,
type parameter (of a class, interface, method or constructor), parameter (to a
method, constructor, or exception handler), or local variable.

Names in programs are either simple, consisting of asingle identifier, or qualified,
consisting of a sequence of identifiers separated by "." tokens (86.2).

Every declaration that i ntroduces aname has a scope (86.3), which isthe part of the
program text within which the declared entity can be referred to by asimple name.

A qualified name N. x may be used to refer to amember of a package or reference
type, where N is a simple or qualified name and x is an identifier. If N names a
package, then x is a member of that package, which is either a class or interface
type or a subpackage. If N names areference type or avariable of areference type,
then x names a member of that type, which is either a class, an interface, afield,
or amethod.

In determining the meaning of aname (86.5), the context of the occurrenceis used
to disambiguate among packages, types, variables, and methods with the same
name.

Access control (86.6) can be specified in a class, interface, method, or field
declaration to control when access to a member is allowed. Access is a different
concept from scope. Access specifies the part of the program text within which the
declared entity can be referred to by a qualified name, a field access expression
(815.11), or amethod invocation expression (815.12) in which the method is not
specified by a simple name. The default access is that a member can be accessed
anywhere within the package that contains its declaration; other possibilities are
public, protected, and private.

Fully qualified and canonical names (86.7) are also discussed in this chapter.

81



6.1 Declarations NAMES

6.1 Declarations

A declaration introduces an entity into aprogram and includes an identifier (§3.8)
that can be used in aname to refer to this entity.

A declared entity is one of the following:
» A package, declared in apackage declaration (§7.4)

* Animported type, declared in asingle-type-import declaration (87.5.1) or atype-
import-on-demand declaration (87.5.2)

A class, declared in a class type declaration (88.1)

» Aninterface, declared in an interface type declaration (89.1)

A type variable (84.4), declared as a type parameter of a generic class (88.1.2),
interface (89.1.2), method (88.4.4) or constructor (88.8.1).

A member of areference type (88.2, §9.2, 810.7), one of the following:
A member class (88.5, 89.5)
A member interface (88.5, §9.5)

o An enum constant (88.9)

[}

O

]

A field, one of the following:

o A field declared in a class type (88.3)

o A field declared in an interface type (89.3)

o Thefield Tength, which isimplicitly amember of every array type (810.7)

O

A method, one of the following:
o A method (abstract or otherwise) declared in a class type (88.4)
o A method (always abstract) declared in an interface type (89.4)
A parameter, one of the following:

o A parameter of a method or constructor of aclass (88.4.1, §8.8.1)

o A parameter of an abstract method of an interface (89.4)

o A parameter of an exception handler declared in a catch clause of a try
statement (814.20)

» A local variable, one of the following:
o A local variable declared in ablock (814.4)

82



NAMES Names and Identifiers

o A loca variable declared in afor statement (814.14)

Constructors (88.8) are also introduced by declarations, but use the name of the
classin which they are declared rather than introducing a new name.

6.2 Namesand |dentifiers

A nameis used to refer to an entity declared in a program.

There are two forms of hames: simple names and qualified names.
A simple nameisasingleidentifier.

A qualified name consists of aname, a"." token, and an identifier.

In determining the meaning of aname (86.5), the context in which the name appears
istaken into account. The rules of §6.5 distinguish among contexts where a name
must denote (refer to) a package (86.5.3), atype (86.5.5), avariable or valuein an
expression (86.5.6), or amethod (86.5.7).

Not all identifiersin a program are a part of a name. ldentifiers are also used in
the following situations:

* In declarations (86.1), where an identifier may occur to specify the name by
which the declared entity will be known.

» Aslabelsin labeled statements (814.7) and in break and continue statements
(814.15, §14.16) that refer to statement labels.

 Infield access expressions (815.11), where an identifier occurs after a"." token
toindicateamember of an object that isthe value of an expression or thekeyword
super that appears beforethe"." token

* In some method invocation expressions (8§15.12), where an identifier may occur
after a"." token and before a" (" token to indicate a method to be invoked for
an object that is the value of an expression or the keyword super that appears
beforethe™." token

* In qualified class instance creation expressions (815.9), where an identifier
occurs immediately to the right of the leftmost new token to indicate a type that
must be amember of the compile-time type of the primary expression preceding
the"." preceding the leftmost new token.

Theidentifiersused in labeled statements and their associated break and continue
statements are compl etely separate from those used in declarations.

6.2

83



6.3

Scope of a Declaration NAMES

6.3 Scope of a Declaration

The scope of a declaration is the region of the program within which the entity
declared by the declaration can be referred to using a simple name, provided it is
visible (86.4.1).

A declaration is said to be in scope at a particular point in a program if and only
if the declaration's scope includes that point.

The scope of the declaration of an observable (87.4.3) top level package is al
observable compilation units (87.3).

The declaration of a package that is not observable is never in scope.
The declaration of a subpackage is never in scope.
The package java isawaysin scope.

The scope of a type imported by a single-type-import declaration (87.5.1) or
a type-import-on-demand declaration (87.5.2) is al the class and interface type
declarations (87.6) in the compilation unit in which the import declaration appears,
as well as any annotations on the package declaration (if any) of the compilation
unit .

The scope of a member imported by a single-static-import declaration (87.5.3) or
a static-import-on-demand declaration (87.5.4) is al the class and interface type
declarations (87.6) in the compilation unit in which the import declaration appears,
as well as any annotations on the package declaration (if any) of the compilation
unit .

The scope of atop level type (87.6) isall type declarationsin the package in which
the top level typeis declared.

The scope of amember m declared in or inherited by a class type € (§88.1.6) is the
entire body of C, including any nested type declarations.

The scope of amember m declared in or inherited by an interface type 1 (89.1.4) is
the entire body of I, including any nested type declarations.

The scope of a parameter of a method (88.4.1) or constructor (88.8.1) isthe entire
body of the method or constructor.

The scope of an class's type parameter (88.1.2) isthe type parameter section of the
class declaration, the type parameter section of any superclass or superinterface of
the class declaration, and the class body.



NAMES Scope of a Declaration

The scope of an interface's type parameter (89.1.2) is the type parameter section
of the interface declaration, the type parameter section of any superinterface of the
interface declaration, and the interface body.

The scope of a method's type parameter (88.4.4) is the entire declaration of the
method, including the type parameter section, but excluding the method modifiers.

The scope of a constructor's type parameter (88.8.4) is the entire declaration of
the constructor, including the type parameter section, but excluding the constructor
modifiers.

The scope of alocal class immediately enclosed by a block (814.2) is the rest of
the immediately enclosing block, including its own class declaration.

The scope of alocal classin aswitch block statement group (814.11) isthe rest of
the immediately enclosing switch block statement group, including its own class
declaration.

The scope of a loca variable declaration in a block (814.4.2) is the rest of the
block in which the declaration appears, starting with its own initializer (814.4)
and including any further declarators to the right in the local variable declaration
Statement.

The scope of alocal variable declared in the Forlnit part of abasic for statement
(814.14.1) includes all of the following:

* Itsowninitializer

» Any further declarators to the right in the ForInit part of the for statement
» The Expression and ForUpdate parts of the for statement

* The contained Statement

The scope of alocal variable declared in the Formal Parameter part of an enhanced
for statement (814.14.2) is the contained Statement.

The scope of aparameter of an exception handler that isdeclared in acatch clause
of atry statement (814.20) isthe entire block associated with the catch.

The scope of an enum constant € declared in an enum type T isthe body of 7, and
any case label of a switch statement whose expression is of enum type T.

These rules imply that declarations of class and interface types need not appear
before uses of the types.

6.3

85



6.4

86

Shadowing and Obscuring NAMES

6.4 Shadowing and Obscuring

6.4.1 Shadowing

Some declarations may be shadowed in part of their scope by another declaration of
the same name, in which case a simple name cannot be used to refer to the declared
entity.

A declaration d of a type named n shadows the declarations of any other types
named n that are in scope at the point where d occurs throughout the scope of d.

A declaration d of afield, method parameter, constructor parameter, or exception
handler parameter named n shadows the declarations of any other fields, method
parameters, constructor parameters, or exception handler parameters named n that
are in scope at the point where d occurs throughout the scope of d.

A declaration d of alocal variable named n shadows the declarations of any fields
named n that are in scope at the point where d occurs throughout the scope of d
(814.4.3).

A declaration d of amethod named n shadowsthe declarations of any other methods
named n that are in an enclosing scope at the point where d occurs throughout the
scope of d.

A package declaration never shadows any other declaration.

A type-import-on-demand declaration never causes any other declaration to be
shadowed.

A static-import-on-demand declaration never causes any other declaration to be
shadowed.

A single-type-import declaration din acompilation unit c of package p that imports
atype named n shadows, throughout ¢, the declarations of:

* any top level type named n declared in another compilation unit of p
* any type named n imported by a type-import-on-demand declaration in ¢
* any type named n imported by a static-import-on-demand declaration in ¢

A single-static-import declaration d in a compilation unit ¢ of package p that
imports a field named n shadows the declaration of any static field named n
imported by a static-import-on-demand declaration in ¢, throughout c.

A single-static-import declaration d in a compilation unit ¢ of package p that
imports a method named n with signature s shadows the declaration of any



NAMES Obscuring

static method named n with signature s imported by a static-import-on-demand
declaration in ¢, throughout c.

A single-static-import declaration d in a compilation unit ¢ of package p that
imports atype named n shadows, throughout c, the declarations of:

* any static type named nimported by a static-import-on-demand declarationin c;

 any top level type (87.6) named n declared in another compilation unit (87.3)
of p;

* any type named n imported by atype-import-on-demand declaration (87.5.2) in
C.

A declaration dissaid to bevisibleat point p in a programif the scope of dincludes
p, and d is not shadowed by any other declaration at p.

When the program point we are discussing is clear from context, we will often
simply say that adeclaration isvisible.

6.4.2 Obscuring

A simple name may occur in contexts where it may potentially be interpreted as
the name of a variable, atype, or a package. In these situations, the rules of 86.5
specify that a variable will be chosen in preference to atype, and that a type will
be chosen in preference to a package. Thus, it is may sometimes be impossible to
refer to avisible type or package declaration viaits simple name. We say that such
adeclaration is obscured.

6.4.2

87



6.5

88

Determining the Meaning of a Name NAMES

6.5 Determining the Meaning of a Name

The meaning of a name depends on the context in which it is used. The
determination of the meaning of a name requires three steps:

1. First, context causes a name syntactically to fall into one of six
categories. PackageName, TypeName, ExpressonName, MethodName,
PackageOr TypeName, or AmbiguousName.

2. Second, anamethat isinitially classified by its context as an AmbiguousName
or as a PackageOrTypeName is then reclassified to be a PackageName,
TypeName, or ExpressionName.

3. Third, the resulting category then dictates the final determination of the
meaning of the name (or a compilation error if the name has no meaning).

PackageName:
Identifier
PackageName . Identifier

TypeName:
Identifier
PackageOr TypeName . Identifier

ExpressionName:
Identifier
AmbiguousName . Identifier

MethodName:
Identifier
AmbiguousName . Identifier

PackageOr TypeName:
Identifier
PackageOr TypeName . Identifier

AmbiguousName:
Identifier
AmbiguousName . Identifier

The name of afield, parameter, or local variable may be used as an expression
(815.14.1).



NAMES Syntactic Classification of a Name According to Context

The name of a method may appear in an expression only as part of a method
invocation expression (815.12).

The name of a class or interface type may appear in an expression only as
part of a class literal (815.8.2), a quaified this expression (§15.8.4), a class
instance creation expression (815.9), an array creation expression (815.10), a
cast expression (815.16), an instanceof expression (§15.20.2), an enum constant
(88.9), or as part of aqualified name for afield or method.

The name of a package may appear in an expression only as part of a qualified
name for aclass or interface type.

6.5.1 Syntactic Classification of a Name According to Context

A nameis syntactically classified as a PackageName in these contexts:

* In apackage declaration (87.4)

» Totheleft of the"." in aqualified PackageName

A nameis syntactically classified as a TypeName in these contexts:

» Inasingle-type-import declaration (87.5.1)

» Totheleft of the"." in asingle static import (87.5.3) declaration

» Totheleft of the"." in a static import-on-demand (§7.5.4) declaration
» Totheleft of the"<" in a parameterized type (84.5)

* Inatype argument list of a parameterized type

 Inan explicit type argument list in amethod or constructor invocation
* Inan extends clause in atype variable declaration (88.1.2)

* Inan extends clause of awildcard type argument (84.5.1)

* Inasuper clause of awildcard type argument (84.5.1)

* Inan extends clause in aclass declaration (88.1.4)

e Inanimplements clausein aclass declaration (88.1.5)

 Inan extends clause in an interface declaration (89.1.3)

» After the"@" signin an annotation (89.7)

» Asa Type (or the part of a Type that remains after all brackets are deleted) in
any of the following contexts:

6.5.1

89



6.5.1 Syntactic Classification of a Name According to Context NAMES

o Inafield declaration (88.3, §89.3)
o Astheresult type of a method (88.4, §9.4)

o Asthetype of aforma parameter of a method or constructor (88.4.1, 88.8.1,
89.4)

o As the type of an exception that can be thrown by a method or constructor
(88.4.6, 88.8.5, 89.4)

o Asthetype of alocal variable (814.4)

o Asthe type of an exception parameter in a catch clause of a try statement
(814.20)

o Asthetypeinaclasslitera (815.8.2)
o Asthe qualifying type of aqualified this expression (§815.8.4).

o As the class type which is to be instantiated in an unqualified class instance
creation expression (815.9)

o As the direct superclass or direct superinterface of an anonymous class
(815.9.5) which is to be instantiated in an unqualified class instance creation
expression (815.9)

o Asthe element type of an array to be created in an array creation expression
(815.10)

o Asthe qualifying type of field access using the keyword super (815.11.2)

o As the qualifying type of a method invocation using the keyword super
(815.12)

o Asthe type mentioned in the cast operator of a cast expression (815.16)
o Asthetype that follows the instanceof relational operator (815.20.2)
A nameis syntactically classified as an ExpressionName in these contexts:

» As the qualifying expression in a qualified superclass constructor invocation

(88.8.7.1)
» As the qualifying expression in a qualified class instance creation expression
(815.9)

» Asthe array reference expression in an array access expression (815.13)
» AsaPostfixExpression (815.14)
» Astheleft-hand operand of an assignment operator (815.26)

90



NAMES Reclassification of Contextually Ambiguous Names

A nameis syntactically classified as a MethodName in these contexts;

» Beforethe" (" in amethod invocation expression (§15.12)

» Totheleft of the"=" sign in an annotation's element value pair (89.7)

A nameis syntacticaly classified as a PackageOr TypeName in these contexts:
» Totheleft of the"." inaqualified TypeName

* |n atype-import-on-demand declaration (§7.5.2)

A nameis syntactically classified as an AmbiguousName in these contexts:

* Totheleft of the"." inaqualified ExpressionName

Totheleft of the™"." in aqualified MethodName

To theleft of the"." in aqualified AmbiguousName

In the default value clause of an annotation type element declaration (89.6)

To theright of an"=" in an an element value pair (89.7)

6.5.2 Reclassification of Contextually Ambiguous Names

An AmbiguousName is then reclassified as follows.
If the AmbiguousName is a simple name, consisting of asingle Identifier:

* If the Identifier appears within the scope (86.3) of alocal variable declaration
(814.4) or parameter declaration (88.4.1, §88.8.1, 814.20) or field declaration
(88.3) with that name, then the AmbiguousName is reclassified as an
ExpressionName.

e Otherwise, if a field of that name is declared in the compilation unit (87.3)
containing the Identifier by a single-static-import declaration (87.5.3), or by
a static-import-on-demand declaration (87.5.4) then the AmbiguousName is
reclassified as an ExpressionName.

» Otherwise, if the Identifier appears within the scope (86.3) of atop level class
(Chapter 8, Classes) or interface type declaration (Chapter 9, Interfaces), alocal
classdeclaration (8§14.3) or member type declaration (88.5, §9.5) with that name,
then the AmbiguousName is reclassified as a TypeName.

» Otherwise, if a type of that name is declared in the compilation unit (87.3)
containing the Identifier, either by a single-type-import declaration (87.5.1), or
by a type-import-on-demand declaration (87.5.2), or by a single-static-import

6.5.2

91



6.5.3

92

Meaning of Package Names NAMES

declaration (87.5.3), or by a static-import-on-demand declaration (87.5.4), then
the AmbiguousName is reclassified as a TypeName.

» Otherwise, the AmbiguousName is reclassified as a PackageName. A later step
determines whether or not a package of that name actually exists.

If the AmbiguousName is a qualified name, consisting of a name, a".", and an

Identifier, then the name to the left of the"." isfirst reclassified, for it isitself an
AmbiguousName. There isthen achoice:

« If the name to the left of the "." isreclassified as a PackageName, then if there
is a package whose name is the name to the left of the "." and that package
contains a declaration of a type whose name is the same as the Identifier, then

this AmbiguousName is reclassified as a TypeName.

Otherwise, this AmbiguousName is reclassified as a PackageName. A later step
determines whether or not a package of that name actually exists.

 If the name to the left of the "." is reclassified as a TypeName, then if the
Identifier isthe name of amethod or field of the type denoted by TypeName, this
AmbiguousName is reclassified as an ExpressionName.

Otherwisg, if the Identifier is the name of a member type of the type denoted
by TypeName, this AmbiguousName is reclassified as a TypeName. Otherwise,
acompile-time error occurs.

« If the name to the left of the "." is reclassified as an ExpressionName, then let
T be the type of the expression denoted by ExpressionName. If the Identifier is
the name of amethod or field of the type denoted by T, this AmbiguousName is
reclassified as an ExpressionName.

Otherwisg, if the Identifier is the name of a member type (88.5, §9.5) of the
type denoted by T, then this AmbiguousName is reclassified as a TypeName.
Otherwise, a compile-time error occurs.

6.5.3 Meaning of Package Names

The meaning of a name classified as a PackageName is determined as follows.

6.5.3.1 Smple Package Names

If a package name consists of a single Identifier, then thisidentifier denotes a top
level package named by that identifier. If no top level package of that nameisin
scope (86.3), then a compile-time error occurs.



NAMES Meaning of PackageOr TypeNames

6.5.3.2 Qualified Package Names

If a package name is of the form Q. Id, then Q must also be a package name. The
package name Q. Id names a package that is the member named Id within the
package named by Q.

If @ does not name an observable package (87.4.3), or Idisnot the simple name of
an observable subpackage of that package, then a compile-time error occurs.

6.5.4 Meaning of PackageOrTypeNames

6.5.4.1 Smple PackageOr TypeNames

If the PackageOrTypeName, @, occurs in the scope of a type named Q, then the
PackageOr TypeName is reclassified as a TypeName.

Otherwise, the PackageOrTypeName is reclassified as a PackageName. The
meaning of the PackageOr TypeName is the meaning of the reclassified name.
6.5.4.2 Qualified PackageOr TypeNames

Given a qualified PackageOrTypeName of the form Q. Id, if the type or package
denoted by @ hasamember type named Id, thenthe qualified PackageOr TypeName
nameisreclassified as a TypeName.

Otherwisg, it is reclassified as a PackageName. The meaning of the qualified
PackageOr TypeName is the meaning of the reclassified name.

6.5.5 Meaning of Type Names

The meaning of aname classified as a TypeName is determined as follows.

6.5.5.1 Smple Type Names

If atype name consists of a single Identifier, then the identifier must occur in the
scope of exactly onevisible declaration of atypewith this name, or acompile-time
error occurs. The meaning of the type name is that type.

6.5.5.2 Qualified Type Names

If atype nameis of theform Q. Id, then Q must be either atype name or a package
name.

6.5.4

93



6.5.6

94

Meaning of Expression Names NAMES

If Id names exactly one accessible (86.6) type that is a member of the type or
package denoted by qQ, then the qualified type name denotes that type.

If Id does not name amember type (88.5, 89.5) within @, or thereisnot exactly one
accessible (86.6) member type named Id within Q, or Id names a static member
type (88.5.2) within @ and Q is parameterized, then a compile-time error occurs.

6.5.6 Meaning of Expression Names

The meaning of aname classified as an ExpressionName is determined as follows.

6.5.6.1 Smple Expression Names

If an expression name consists of asingle Identifier, then there must be exactly one
visible declaration denoting either alocal variable, parameter, or field in scope at
the point at which the the Identifier occurs. Otherwise, acompile-time error occurs.

If the declaration declares a final variable which is definitely assigned before the
simple expression, the meaning of the nameisthevalue of that variable. Otherwise,
the meaning of the expression name is the variable declared by the declaration.

If thefield is an instance variable (88.3), the expression name must appear within
the declaration of an instance method (88.4), constructor (88.8), instance initializer
(88.6), or instance variableinitializer (88.3.2.2). If it appears within astatic method
(88.4.3.2), datic initidizer (88.7), or initidizer for a static variable (§8.3.2.1,
§12.4.2), then a compile-time error occurs.

If the expression name appears in a context where it is subject to assignment
conversion or method invocation conversion or casting conversion, then the type
of the expression nameisthe declared type of thefield, local variable, or parameter
after capture conversion (85.1.10). Otherwise, the type of the expression name is
the declared type of thefield, local variable or parameter.

6.5.6.2 Qualified Expression Names

If an expression name is of the form Q. Id, then Q has already been classified as a
package name, a type name, or an expression name.

If Qisapackage name, then a compile-time error occurs.
If Qisatype name that names a class type (Chapter 8, Classes), then:

« If there is not exactly one accessible (86.6) member of the class type that is a
field named Id, then a compile-time error occurs.



NAMES Meaning of Expression Names

» Otherwise, if the single accessible member field is not aclass variable (that is, it
isnot declared static), then a compile-time error occurs.

» Otherwise, if the class variable is declared final, then Q. Id denotes the value
of the class variable. The type of the expression Q. Id isthe declared type of the
class variable after capture conversion (85.1.10).

If Q.Id appears in a context that requires a variable and not a value, then a
compile-time error occurs.

» Otherwise, Q. Id denotes the class variable. The type of the expression Q. Id is
the declared type of the class variable after capture conversion (85.1.10).

If Qisatype name that names an interface type (Chapter 9, Interfaces), then:

* If thereis not exactly one accessible (86.6) member of the interface type that is
afield named 1d, then acompile-time error occurs.

» Otherwise, Q. Id denotes the value of the field. The type of the expression Q. Id
is the declared type of the field after capture conversion (85.1.10).

If Q.Id appearsin a context that requires a variable and not a value, then a
compile-time error occurs.

If Qisan expression name, let T be the type of the expression Q:
« If Tisnot areference type, a compile-time error occurs.

* If there is not exactly one accessible (86.6) member of the type T that isafield
named Id, then acompile-time error occurs.

» Otherwise, if thisfield is any of the following:
o A field of an interface type

o A final field of a class type (which may be either a class variable or an
instance variable)

0 The final field Tength of an array type

then Q. Id denotes the value of the field, unless it appears in a context that
requires avariable and the field is a definitely unassigned blank final field, in
which case it yields a variable. The type of the expression Q. Id is the declared
type of the field after capture conversion (85.1.10).

If Q. Id appearsin acontext that requiresavariable and not avalue, and thefield
denoted by Q. Idisdefinitely assigned, then a compile-time error occurs.

6.5.6

95



6.5.7

96

Meaning of Method Names NAMES

e Otherwise, Q. Id denotes avariable, the field 1d of class T, which may be either
aclass variable or an instance variable. The type of the expression Q. Id is the
type of the field member after capture conversion (85.1.10).

Note that expression names may be qualified by type names, but not by typesin
general. A consequenceisthat it isnot possible to access a class variable through
a parameterized type.

6.5.7 Meaning of Method Names

A MethodName can appear only in a method invocation expression (815.12) or as
an element namein an element-value pair (89.7). The meaning of aname classified
as a MethodName is determined as follows.

6.5.7.1 Smple Method Names

A simple method name may appear as the element name in an element-value
pair. The Identifier in an ElementValuePair must be the simple name of one of
the elements of the annotation type identified by TypeName in the containing
annotation. Otherwise, a compile-time error occurs. (In other words, the identifier
in an element-value pair must also be a method name in the interface identified
by TypeName.)

Otherwise, a simple method name necessarily appears in the context of a method
invocation expression. Inthat case, if amethod name consists of asingle Identifier,
then Identifier isthe method name to be used for method invocation. The Identifier
must name at least one visible (86.4.1) method that is in scope at the point where
the Identifier appears or a method imported by a single-static-import declaration
(87.5.3) or static-import-on-demand declaration (87.5.4) within the compilation
unit within which the Identifier appears.

6.5.7.2 Qualified Method Names

A qualified method name can only appear in the context of a method invocation
expression.

If amethod nameisof theform Q. Id, then Qhasalready been classified asapackage
name, a type name, or an expression name.

If Q is a package name, then a compile-time error occurs. Otherwise, Id is the
method name to be used for method invocation.

If Qisatype name, then Id must name at least one static method of the type q.



NAMES Access Control

If Qisan expression name, then let T be the type of the expression Q. Id must name
at least one method of the type T.

Like expression hames, method names may be qualified by type names, but not
by typesin genera. The implications are similar to those for expression names as
discussed in §6.5.6.2.

6.6 Access Control

The Java programming language provides mechanisms for access control, to
prevent the users of apackage or classfrom depending on unnecessary detailsof the
implementation of that package or class. If access is permitted, then the accessed
entity is said to be accessible.

Quadlified names are a means of access to members of packages and reference
types. When the name of such amember is classified from its context (86.5.1) asa
qualified type name (denoting a member of a package or reference type, 86.5.5.2)
or aqualified expression name (denoting a member of areference type, 86.5.6.2),
access control is applied.

6.6.1 Determining Accessibility
» A packageisaways accessible.

 If a class or interface type is declared public, then it may be accessed by
any code, provided that the compilation unit (87.3) in which it is declared is
observable. If atop level class or interface type is not declared public, then it
may be accessed only from within the package in which it is declared.

» Anarray typeisaccessibleif and only if its element type is accessible.

* A member (class, interface, field, or method) of a reference (class, interface,
or array) type or a constructor of a class type is accessible only if the type is
accessi ble and the member or constructor is declared to permit access:

o If the member or constructor is declared pub1i ¢, then accessis permitted. All
members of interfaces are implicitly public.

o Otherwise, if the member or constructor isdeclared protected, then accessis
permitted only when one of the following is true:

6.6

97



6.6.2 Details on protected Access NAMES

o Access to the member or constructor occurs from within the package
containing the class in which the protected member or constructor is
declared.

o Accessis correct as described in §6.6.2.

o Otherwise, if the member or constructor is declared private, then accessis
permitted if and only if it occurs within the body of the top level class (§7.6)
that encloses the declaration of the member or constructor.

o Otherwise, we say there is default access, which is permitted only when the
access occurs from within the package in which the type is declared.

6.6.2 Detailson protected Access

A protected member or constructor of an object may be accessed from outside
the package in which it is declared only by code that is responsible for the
implementation of that object.

6.6.2.1 Accessto a protected Member

Let C bethe classin which aprotected member is declared. Access is permitted
only within the body of a subclass S of C.

In addition, if 1d denotes an instance field or instance method, then:

* If the access is by a qualified name Q. Id, where Q is an ExpressionName, then
the accessispermitted if and only if the type of the expression Qis S or asubclass
of S.

» |If the access is by a field access expression E.Id, where E is a Primary
expression, or by a method invocation expression £.Id(. . .), where Eisa
Primary expression, then the access is permitted if and only if the type of Eis
Sorasubclassof S.

6.6.2.2 Qualified Accessto a protected Constructor

Let ¢ be the class in which a protected constructor is declared and let S be the
innermost class in whose declaration the use of the protected constructor occurs.

Then:
* If the access is by a superclass constructor invocation super(. . .) or by a
qualified superclass constructor invocation of theform E.super(. . .), where

EisaPrimary expression, then the accessis permitted.

98



NAMES Fully Qualified Names and Canonical Names

* If the access is by an anonymous class instance creation expression of the form

new C(. . .){...}orbyaqualified classinstance creation expression of the
form E.new C(. . .){...}, where EisaPrimary expression, then the access
is permitted.

» Otherwise, if the accessis by a simple class instance creation expression of the
formnew C(. . .) or by aqualified class instance creation expression of the
form E.new C(. . .),where EisaPrimary expression, then the accessis not
permitted.

A protected constructor can be accessed by aclassinstance creation expression
(that does not declare an anonymous class) only from within the package in
which it is defined.

6.7 Fully Qualified Names and Canonical Names

Every named package, top level class, top level interface, and primitive type has
afully qualified name.

* The fully qualified name of a primitive type is the keyword for that primitive
type, namely boolean, char, byte, short, int, Tong, float, Or double.

» Thefully qualified name of anamed packagethat is not a subpackage of anamed
package isits simple name.

» The fully qualified name of a named package that is a subpackage of another
named package consists of the fully qualified name of the containing package,
followed by ".", followed by the simple (member) name of the subpackage.

» Thefully qualified name of atop level classor top level interface that is declared
in an unnamed package is the simple name of the class or interface.

» Thefully qualified name of atop level classor top level interface that is declared
in anamed package consists of the fully qualified name of the package, followed

by ".", followed by the simple name of the class or interface.

Each member class, member interface, and array type may have a fully qualified
name.

» A member class or member interface m of another class C has a fully qualified
nameif and only if C hasafully qualified name.

In that case, the fully qualified name of M consists of the fully qualified name of
C, followed by ".", followed by the simple name of M.



6.7

100

Fully Qualified Names and Canonical Names NAMES

* An array type has a fully qualified name if and only if its element type has a
fully qualified name.

In that case, the fully qualified name of an array type consists of the fully
qualified name of the component type of the array type followed by "[]1".

A locadl class does not have afully qualified name.

Every named package, top level class, top level interface, and primitive type has
acanonical name.

For every named package, top level class, top level interface, and primitive type,
the canonical name is the same as the fully qualified name.

Each member class, member interface, and array type may have acanonical name.

* A member classor member interface M declared in another class ¢ hasacanonical
name if and only if ¢ has acanonica name.

Inthat case, the canonical name of Mconsistsof the canonical name of ¢, followed
by ".", followed by the simple name of m.

* Anarray type hasacanonical nameif and only if its element type has acanonical
name.

In that case, the canonical name of the array type consists of the canonical name
of the component type of the array type followed by "[]1".

A local class does not have a canonical name.



CHAPTER ;

Packages

PROGRAMS are organized as sets of packages. Each package has its own set
of names for types, which helps to prevent name conflicts. A top level type is
accessible (86.6) outside the package that declares it only if the type is declared
public.

Thenaming structurefor packagesishierarchical (87.1). The membersof apackage
are class and interface types (87.6), which are declared in compilation units of the
package, and subpackages, which may contain compilation units and subpackages
of their own.

A package can be stored in afile system or in a database (87.2). Packages that are
stored in a file system may have certain constraints on the organization of their
compilation units to allow a simple implementation to find classes easily.

A package consists of a number of compilation units (87.3). A compilation unit
automatically has accessto all types declared in its package and al so automatically
imports all of the pub1i c types declared in the predefined package java. Tang.

For small programs and casual development, a package can be unnamed (87.4.2) or
have asimple name, but if codeisto be widdly distributed, unigue package names
should be chosen using qualified names. This can prevent the conflicts that would
otherwise occur if two development groups happened to pick the same package
name and these packages were later to be used in a single program.

7.1 Package Members

The members of a package are its subpackages and all the top level class types
(87.6, Chapter 8, Classes) and top level interface types (Chapter 9, Interfaces)
declared in al the compilation units (87.3) of the package.

101



7.2

102

Host Support for Packages PACKAGES

If the fully qualified name (86.7) of a package is P, and Q is a subpackage of P,
then p.Q is the fully qualified name of the subpackage, and furthermore denotes
apackage.

A package may not contain two members of the same name, or a compile-time
error results.

The hierarchical naming structure for packages is intended to be convenient for
organizing related packages in a conventional manner, but has no significance in
itself other than the prohibition against a package having a subpackage with the
same simple name as atop level type (87.6) declared in that package.

There is no special access relationship between a package named oliver and
another package named oliver. twist, or between packages named evelyn.wood
and evelyn.waugh. That is, the code in a package named oliver.twist has no
better access to the types declared within package o1iver than code in any other
package.

7.2 Host Support for Packages

Each host system determines how packages and compilation units are created and
stored.

In simpleimplementations of the Java SE platform, packages and compilation units
may be stored in alocal file system. Other implementations may store them using
adistributed file system or some form of database.

If a host system stores packages and compilation units in a database, then the
database must not impose the optiona restrictions (87.6) on compilation units
permissible in file-based implementations.

Systems that use a database must, however, provide an option to convert a
program to a form that obeys the restrictions, for purposes of export to file-based
implementations.

7.3 Compilation Units

CompilationUnit isthe goal symbol (82.1) for the syntactic grammar (82.3) of Java
programs. It is defined by the following productions:



PACKAGES Package Declarations

CompilationUnit:
PackageDeclarationg, |mportDeclarationsy,: TypeDeclarationsgp

ImportDeclarations:
ImportDeclaration
ImportDeclarations ImportDeclaration

TypeDeclarations:
TypeDeclaration
TypeDeclarations TypeDeclaration

A compilation unit consists of three parts, each of which is optional:

* A package declaration (87.4), giving the fully qualified name (86.7) of the
package to which the compilation unit belongs.

A compilation unit that has no package declaration is part of an unnamed
package (87.4.2).

* import declarations (87.5) that alow types from other packages and static
members of types to be referred to using their simple names

» Top level type declarations (87.6) of class and interface types

Every compilation unit implicitly imports every public type name declared in
the predefined package java.lang, as if the declaration import java.lang.*;
appeared at the beginning of each compilation unit immediately after any package
statement. As aresult, the names of all those types are available as simple names
in every compilation unit.

Typesdeclared in different compilation units can depend on each other, circularly.
A Java compiler must arrange to compile al such types at the same time.

All the compilation units of the predefined package java and its subpackages Tang
and io are aways observable.

For all other packages, the host system determines which compilation units are
observable.

7.4 Package Declarations

A package declaration appears within a compilation unit to indicate the package
to which the compilation unit belongs.

7.4

103



74.1

104

Named Packages PACKAGES

7.4.1 Named Packages

A package declaration in a compilation unit specifies the name (86.2) of the
package to which the compilation unit belongs.

PackageDeclaration:
Annotationsyy package PackageName ;

The package nhame mentioned in a package declaration must be the fully qualified
name (86.7) of the package.

The PackageNamein a package declaration ensuresthereis an observable package
with the supplied canonical name, and that it is not subject to the rules in 86.5.3
for determining the meaning of a package name.

The keyword package may optionally be preceded by annotation modifiers. If an
annotation a (89.7) on a package declaration corresponds to an annotation type T
(89.6), and T has a (meta-)annotation m that corresponds to annotation.Target,
then m must have an e ement whose valueis annotation.ElementType.PACKAGE,
or acompile-time error occurs.

At most one annotated package declaration is permitted for a given package.

7.4.2 Unnamed Packages

A compilation unit that has no package declaration is part of an unnamed package.

Unnamed packages are provided by the Java SE platform principally for
convenience when developing small or temporary applications or when just
beginning devel opment.

Note that an unnamed package cannot have subpackages, since the syntax of a
package declaration always includes a reference to a named top level package.

An implementation of the Java SE platform must support at least one unnamed
package; it may support more than one unnamed package but is not required to do
s0. Which compilation units are in each unnamed package is determined by the
host system.

7.4.3 Observability of a Package
A package is observableif and only if either:
» A compilation unit containing a declaration of the package is observable.

A subpackage of the package is observable.



PACKAGES Import Declarations

The packages java, java.lang, and java.io are always observable.

7.5 Import Declarations

Animport declaration alows a named type or a static member to be referred to by
asimple name (86.2) that consists of asingle identifier.

Without the use of an appropriate import declaration, the only way to refer to a
type declared in another package, or a static member of another type, isto use a
fully qualified name (86.7).

ImportDeclaration:
SngleTypelmportDeclaration
Typel mportOnDemandDeclaration
SingleSaticlmportDeclaration
SaticlmportOnDemandDeclaration

A single-type-import declaration (87.5.1) imports a single named type, by
mentioning its canonical name (86.7).

A type-import-on-demand declaration (87.5.2) imports all the accessible (86.6)
types of a named type or named package as needed, by mentioning the canonical
name of atype or package.

A single static import declaration (87.5.3) imports all accessible static members
with a given name from atype, by giving its canonical name.

A static-import-on-demand declaration (87.5.4) imports all accessible static
members of a named type as needed, by mentioning the canonical name of atype.

An import declaration makes types or members available by their simple names
only within the compilation unit that actually contains the import declaration.
The scope of the type(s) or member(s) introduced by an import declaration
specifically does not include the PackageName of a package declaration, other
import declarations in the current compilation unit, or other compilation unitsin
the same package.

7.5.1 Single-Type-Import Declaration

A single-type-import declaration imports a single type by giving its canonical
name (86.7), making it available under a simple name in the class and interface

7.5

105



7.5.2

106

Type-Import-on-Demand Declaration PACKAGES

declarations of the compilation unit in which the single-type-import declaration
appears.

SngleTypelmportDeclaration:
import TypeName ;

The TypeName must be the canonical name of a class type, interface type, enum
type, or annotation type.

It isacompile-time error if the named typeis not accessible (86.6).

If two single-type-import declarations in the same compilation unit attempt to
import types with the same simple name, then a compile-time error occurs, unless
the two types are the same type, in which case the duplicate declaration isignored.

If the type imported by the the single-type-import declaration is declared in the
compilation unit that contains the import declaration, the import declaration is
ignored.

If a compilation unit contains both a single-static-import declaration (87.5.3) that
imports a type whose simple name is n, and a single-type-import declaration
(87.5.1) that imports a type whose simple name is n, a compile-time error occurs.

If another top level type with the same simple name is otherwise declared in the
current compilation unit except by atype-import-on-demand declaration (87.5.2) or
a static-import-on-demand declaration (87.5.4), then a compile-time error occurs.

7.5.2 Type-lmport-on-Demand Declaration

A type-import-on-demand declaration allows all accessible (86.6) types declared
in the type or package named by a canonical name to be imported as needed.

Typel mportOnDemandDecl ar ation:
import PackageOrTypeName . * ;

The PackageOr TypeName must be the canonical name of a package, a class type,
an interface type, an enum type, or an annotation type.

It isacompile-time error if the named package or type is not accessible (86.6).

Two or more type-import-on-demand declarations in the same compilation unit
may name the same type or package. All but one of these declarations are
considered redundant; the effect is asif that type was imported only once.



PACKAGES Sngle Satic Import Declaration

If a compilation unit contains both a static-import-on-demand declaration and a
type-import-on-demand (87.5.2) declaration that name the same type, the effect is
asif the static member types of that type were imported only once.

It is not a compile-time error to name the current package or java.lang in atype-
import-on-demand declaration. The type-import-on-demand declaration isignored
in such cases.

7.5.3 Single Static Import Declar ation

A single-static-import declaration imports all accessible (86.6) static members
with agiven simple namefrom atype. Thismakesthese static membersavailable
under their simple name in the class and interface declarations of the compilation
unit in which the single-static import declaration appears.

SngleStaticlmportDeclaration:
import static TypeName . |dentifier ;

The TypeName must be the canonical name (86.7) of a class type, interface type,
enum type, or annotation type.

It isacompile-time error if the named typeis not accessible (86.6).

The Identifier must name at least one static member of the named type. It is a
compile-timeerror if thereisno static member of that name, or if al of the named
members are not accessible.

It is permissible for one single-static-import declaration to import several fields or
types with the same name, or several methods with the same name and signature.

If a compilation unit contains both a single-static-import (87.5.3) declaration that
imports a type whose simple name is n, and a single-type-import declaration
(87.5.1) that imports a type whose simple name is n, a compile-time error occurs.

If a single-static-import declaration imports a type whose simple name is n, and
the compilation unit also declares atop leve type (87.6) whose simple nameis n,
a compile-time error occurs.

754 Static-lmport-on-Demand Declaration

A static-import-on-demand declaration alowsall accessible (86.6) static members
of the type named by a canonical name to be imported as needed.

SaticlmportOnDemandDeclaration:
import static TypeName. * ;

7.5.3

107



7.6

108

Top Level Type Declarations PACKAGES

The TypeName must be the canonical hame of a class type, interface type, enum
type, or annotation type.

It isacompile-time error if the named type is not accessible.

Two or more static-import-on-demand declarations in the same compilation unit
may name the sametype ; the effect isasif there was exactly one such declaration.

Two or more static-import-on-demand declarations in the same compilation unit
may name the same member; the effect is as if the member was imported exactly
once.

Note that it is permissible for one static-import-on-demand declaration to import
several fields or types with the same name, or several methods with the same name
and signature.

If a compilation unit contains both a static-import-on-demand declaration and a
type-import-on-demand (87.5.2) declaration that name the same type, the effect is
asif the static member types of that type were imported only once.

A static-import-on-demand declaration never causes any other declaration to be
shadowed.

7.6 Top Level TypeDeclarations

A top level type declaration declares atop level classtype (Chapter 8, Classes) or
atop level interface type (Chapter 9, Interfaces).

TypeDeclaration:
ClassDeclaration
InterfaceDeclaration

By default, the top level types declared in a package are accessible only within the
compilation units of that package, but atype may be declared to be pub1ic to grant
access to the type from code in other packages (86.6, §8.1.1, §9.1.1).

It is a compile-time error if atop level type declaration contains any one of the
following access modifiers. protected, private, Or static.

If atop level type named T is declared in a compilation unit of a package whose
fully qualified nameis P, then the fully qualified name of the typeis P. T.



PACKAGES Top Level Type Declarations

If the type is declared in an unnamed package (87.4.2), then the type has the fully
qualified name T.

An implementation of the Java SE platform must keep track of types within
packages by their binary names (813.1). Multiple ways of naming a type must be
expanded to binary namesto make surethat such names are understood asreferring
to the same type.

If and only if packages are stored in a file system (87.2), the host system may
choose to enforce the restriction that it isacompile-time error if atypeisnot found
in afile under aname composed of the type name plus an extension (such as . java
or .jav) if either of thefollowing istrue:

» Thetypeisreferredto by codein other compilation units of the packageinwhich
the typeis declared.

* Thetypeisdeclared public (and therefore is potentially accessible from code
in other packages).

Itisacompile-timeerror if the name of atop level type appears asthe name of any

other top level class or interface type declared in the same package.

Itisacompile-timeerror if the name of atop level typeisalso declared asatype by
asingle-type-import declaration (87.5.1) in the compilation unit (§7.3) containing
the type declaration.

7.6

109



7.6 Top Level Type Declarations PACKAGES

110



CHAPTER8

Classes

CLASS declarations define new reference types and describe how they are
implemented (88.1).

A top level classisaclassthat is hot a nested class.

A nested class is any class whose declaration occurs within the body of another
class or interface.

This chapter discusses the common semantics of all classes - top level (8§7.6)
and nested (including member classes (88.5, §9.5), local classes (§14.3) and
anonymousclasses (815.9.5)). Detail sthat are specific to particular kinds of classes
are discussed in the sections dedicated to these constructs.

A named class may be declared abstract (88.1.1.1) and must be declared abstract
if it isincompletely implemented; such a class cannot be instantiated, but can be
extended by subclasses. A class may be declared final (88.1.1.2), in which caseit
cannot have subclasses. If aclassisdeclared pub1ic, thenit can bereferred to from
other packages. Each class except Object is an extension of (that is, a subclass
of) asingle existing class (88.1.4) and may implement interfaces (88.1.5). Classes
may be generic, that is, they may declare type variables whose bindings may differ
among different instances of the class.

Classes may be decorated with annotations (89.7) just like any other kind of
declaration.

The body of a class declares members (fields and methods and nested classes
and interfaces), instance and static initializers, and constructors (88.1.6). The
scope (86.3) of a member (88.2) is the entire body of the declaration of the class
to which the member belongs. Field, method, member class, member interface,
and constructor declarations may include the access modifiers (86.6) public,
protected, Or private. The members of a class include both declared and
inherited members (88.2). Newly declared fields can hide fields declared in a
superclassor superinterface. Newly declared class membersand interface members

111



112

CLASSES

can hide class or interface members declared in a superclass or superinterface.
Newly declared methods can hide, implement, or override methods declared in a
superclass or superinterface.

Field declarations (88.3) describe class variables, which are incarnated once, and
instance variables, which are freshly incarnated for each instance of the class. A
field may be declared final (88.3.1.2), in which case it can be assigned to only
once. Any field declaration may include an initializer.

Member class declarations (88.5) describe nested classes that are members of the
surrounding class. Member classes may be static, in which case they have no
access to the instance variables of the surrounding class; or they may be inner
classes (88.1.3).

Member interface declarations (88.5) describe nested interfaces that are members
of the surrounding class.

Method declarations (88.4) describe code that may be invoked by method
invocation expressions (815.12). A class method is invoked relative to the class
type; an instance method is invoked with respect to some particular object that is
an instance of a class type. A method whose declaration does not indicate how
it isimplemented must be declared abstract. A method may be declared final
(88.4.3.3), in which case it cannot be hidden or overridden. A method may be
implemented by platform-dependent native code (88.4.3.4). A synchronized
method (88.4.3.6) automatically locks an object before executing its body and
automatically unlocks the object on return, as if by use of a synchronized
statement (814.19), thus alowing its activities to be synchronized with those of
other threads (Chapter 17, Threads and Locks).

Method hames may be overloaded (§8.4.9).

Instance initializers (88.6) are blocks of executable code that may be used to help
initialize an instance when it is created (815.9).

Static initializers (88.7) are blocks of executable code that may be used to help
initialize a class.

Constructors (88.8) are similar to methods, but cannot be invoked directly by a
method call; they are used to initialize new classinstances. Like methods, they may
be overloaded (§8.8.8).



CLASSES Class Declaration

8.1 ClassDeclaration

A class declaration specifies anew named reference type.

There are two kinds of class declarations; normal class declarations and enum
declarations.

ClassDeclaration:
Normal ClassDeclaration
EnumDeclaration

Normal ClassDeclaration:
ClassModifiersoyp class Identifier TypeParameter sypt
Super opt I nterfacesyy: ClassBody

The rules in this section apply to al class declarations unless this specification
explicitly states otherwise. In many cases, specia restrictions apply to enum
declarations. Enum declarations are described in detail in §8.9.

The Identifier in a class declaration specifies the name of the class.

Itisacompile-timeerror if aclass hasthe same simple name as any of itsenclosing
classes or interfaces.

8.1.1 ClassModifiers

A class declaration may include class modifiers.

ClassModifiers:
ClassModifier
ClassModifiers ClassModifier

ClassModifier: one of
Annotation public protected private
abstract static final strictfp

If an annotation a (89.7) on a class declaration corresponds to an annotation type
T(89.6), and T has a (meta-)annotation m that correspondsto annotation.Target,
then m must have an element whose value is annotation.ElementType.TYPE, Or
a compile-time error occurs.

The access modifier publ1ic (86.6) pertains only to top level classes (8§7.6) and to
member classes (88.5), not to local or anonymous classes.

8.1

113



8.11

114

Class Modifiers CLASSES

The access modifiers protected and private (86.6) pertain only to member
classes within a directly enclosing class or enum declaration (88.5.1).

The modifier static pertains only to member classes (88.5.2), not to top level or
local or anonymous classes.

It is a compile-time error if the same modifier appears more than once in a class
declaration.

8.1.1.1 abstract Classes
An abstract classisaclassthat isincomplete, or to be considered incomplete.

Normal classes may have abstract methods (88.4.3.1, §9.4), that is, methods that
are declared but not yet implemented, only if they areabstract classes. If anormal
classthat isnot abstract containsan abstract method, then acompile-time error
occurs.

Enum types (88.9) must not be declared abstract; doing so will result in a
compile-time error.

It is a compile-time error for an enum type E to have an abstract method m as a
member unless E has one or more enum constants, and all of £'s enum constants
have class bodies that provide concrete implementations of m.

It is a compile-time error for the class body of an enum constant to declare an
abstract method.

A class C has abstract methods if any of the following istrue:
+ Cexplicitly contains a declaration of an abstract method (§8.4.3).

» Any of Cs superclasses has an abstract method and C neither declares nor
inherits a method that implements (88.4.8.1) it.

* A direct superinterface (88.1.5) of C declares or inherits a method (which is
therefore necessarily abstract) and € neither declares nor inherits amethod that
implementsiit.

Itisacompile-timeerror if an attempt ismade to create an instance of an abstract
class using a class instance creation expression (815.9).

A subclass of an abstract class that is not itself abstract may be instantiated,
resulting in the execution of a constructor for the abstract class and, therefore,
the execution of the field initializers for instance variables of that class.

It is a compile-time error to declare an abstract class type such that it is not
possible to create a subclass that implements all of its abstract methods.



CLASSES Generic Classes and Type Parameters

8.1.1.2 final Classes

A class can be declared final if its definition is complete and no subclasses are
desired or required.

Itisacompile-timeerror if thenameof afinal classappearsinthe extends clause
(88.1.4) of another class declaration; this implies that a final class cannot have
any subclasses.

It isacompile-time error if aclassis declared both final and abstract, because
the implementation of such a class could never be completed (88.1.1.1).

Because a final class never has any subclasses, the methods of a final class are
never overridden (§8.4.8.1).

8.1.1.3 strictfp Classes

The effect of the strictfp modifier isto make al float or double expressions
withinthe classdeclaration (including withininstance variableinitializers, instance
initializers, static initializers, and constructors) be explicitly FP-strict (815.4).

Thisimpliesthat all methods declared in the class, and al nested types declared in
the class, are implicitly strictfp.

8.1.2 Generic Classesand Type Parameters

A classisgenericif it declares one or more type variables (84.4).

These type variables are known as the type parameters of the class. The type
parameter section follows the class name and is delimited by angle brackets.

TypeParameters:
< TypeParameterList >

TypeParameterList:
TypeParameterList , TypeParameter
TypeParameter

In a class's type parameter section, a type variable T directly depends on a type
variable Sif Sisthebound of T, while T dependson S if either Tdirectly dependson
Sor Tdirectly depends on atype variable v that depends on S (using this definition
recursively). It isacompile-time error if atype variablein aclassstype parameter
section depends on itself.

8.1.2

115



8.13

116

Inner Classes and Enclosing Instances CLASSES

A generic class declaration defines a set of parameterized types, one for each
possibleinvocation of the type parameter section. All of these parameterized types
share the same class at runtime.

It is a compile-time error if a generic class is a direct or indirect subclass of
ThrowabTe.

It is a compile-time error to refer to atype parameter of aclass € anywhere in the
declaration of a static member of C or the declaration of a static member of any
type declaration nested within C.

It is a compile-time error to refer to atype parameter of a class € within the static
initializer of C or any class nested within C.

Parameterized class declarations can be nested inside other declarations.

8.1.3 Inner Classes and Enclosing I nstances

Aninner classisanested classthat is not explicitly or implicitly declared static.

Inner classes include local (814.3), anonymous (815.9.5) and non-static member
classes (88.5).

Inner classes may not declare static initializers (88.7) or member interfaces.

Inner classes may not declare static members, unless they are constant variables
(84.12.4).

Inner classes may inherit static members that are not compile-time constants even
though they may not declare them. Nested classes that are not inner classes may
declare static members freely, in accordance with the usual rules of the Java
programming language.

Member interfaces (88.5) areimplicitly static so they are never considered to be
inner classes.

A statement or expression occurs in a static context if and only if the innermost
method, constructor, instance initializer, static initializer, field initializer, or
explicit constructor invocation statement enclosing the statement or expression is
astatic method, a static initializer, the variable initializer of a static variable, or an
explicit constructor invocation statement (§8.8.7).

Aninner class Cisadirect inner class of a class 0 if 0istheimmediately lexically
enclosing class of ¢ and the declaration of € does not occur in a static context.

A class Cis an inner class of class 0 if it is either a direct inner class of 0 or an
inner class of an inner class of 0.



CLASSES Inner Classes and Enclosing Instances

A class 0isthe zeroth lexically enclosing class of itself.

A class 0 isthe n'th lexically enclosing class of a class Cif it is the immediately
enclosing class of the n-1'th lexically enclosing class of C.

Aninstance 7 of adirect inner class C of aclass 0 is associated with an instance of
0, known as the immediately enclosing instance of 7. The immediately enclosing
instance of an object, if any, is determined when the object is created (815.9.2).

An object o isthe zeroth lexically enclosing instance of itself.

An object o is the n'th lexically enclosing instance of an instance 7 if it is the
immediately enclosing instance of the n-1'th lexically enclosing instance of 1.

When an inner class refers to an instance variable that is a member of alexically
enclosing class, the variable of the corresponding lexically enclosing instance is
used.

A blank final (84.12.4) field of alexically enclosing class may not be assigned
within an inner class.

An instance of an inner class I whose declaration occurs in a static context has
no lexically enclosing instances. However, if T isimmediately declared within a
static method or static initializer then 1 does have an enclosing block, which isthe
innermost block statement lexically enclosing the declaration of I.

For every superclass S of Cwhichisitself adirect inner class of aclass S0, thereis
an instance of SO associated with 7, known as the immediately enclosing instance
of 7 with respect to S. Theimmediately enclosing instance of an object with respect
toitsclass direct superclass, if any, is determined when the superclass constructor
isinvoked viaan explicit constructor invocation statement.

Any local variable, formal method parameter, or exception handler parameter used
but not declared in an inner class must be declared final.

Any local variable used but not declared in an inner class must be definitely
assigned (Chapter 16, Definite Assignment) before the body of the inner class.

Inner classes whose declarations do not occur in a static context may freely refer
to the instance variables of their enclosing class. An instance variable is always
defined with respect to an instance. In the case of instance variables of an enclosing
class, the instance variable must be defined with respect to an enclosing instance
of that class.

8.13

117



8.14

118

Superclasses and Subclasses CLASSES

8.1.4 Superclasses and Subclasses

The optional extends clause in a normal class declaration specifies the direct
superclass of the current class.

Super:
extends ClassType

A classissaid to be adirect subclass of its direct superclass. The direct superclass
is the class from whose implementation the implementation of the current classis
derived.

The direct superclass of an enum type E iS Enum<E>.

The extends clause must not appear in the definition of the classObject, because
itisthe primordial class and has no direct superclass.

Given a(possibly generic) classdeclaration for C<Fy, ..., F,> (N2 0, C* Object),
the direct superclass of the classtype (84.5) C<F, . . ., F,> isthetypegivenin the
extends clause of the declaration of Cif an extends clauseis present, or Object
otherwise.

Let C<Fy, ..., F,> (n> 0) be ageneric class declaration. The direct superclass of
the parameterized classtype C<T;, ..., T,>, Where T; (1 < i < n) isatype, is D<U;
8,....Ux 8>, where D<Uy, ..., U isthedirect superclass of C<F;,...,F,> and B is
the substitution [F;:=T7, ..., F:=T,].

The ClassType must name an accessible (86.6) class type, or a compile-time error
occurs.

If the specified ClassType names a class that is final (88.1.1.2), then a compile-
time error occurs, as final classes are not allowed to have subclasses.

It isa compile-time error if the ClassType names the class Enum or any invocation
of it.

If the TypeNameisfollowed by any type arguments, it must be a correct invocation
of the type declaration denoted by TypeName, and none of the type arguments may
be wildcard type arguments, or a compile-time error occurs.

Thesubclassrelationship isthetransitive closure of the direct subclassrelationship.
A class Aisasubclass of class Cif either of the following istrue:

e Aisthedirect subclass of ¢

» There exists a class B such that A is a subclass of B, and B is a subclass of C,
applying this definition recursively.



CLASSES Superinterfaces

Class Cissaid to be a superclass of class A whenever A isa subclass of C.

A class C directly depends on a type T if T is mentioned in the extends or
implements clause of C either asasuperclass or superinterface, or asaqualifier of
a superclass or superinterface name.

A class C depends on areference type T if any of the following conditions hold:
e Cdirectly dependson T.
» Cdirectly depends on an interface I that depends (89.1.3) on T.

» C directly depends on a class D that depends on T (using this definition
recursively).

Itisacompile-time error if a class depends on itself.

If circularly declared classes are detected at run time, as classes are loaded (812.2),
then aClassCircularityError isthrown.

8.1.5 Superinterfaces

The optional implements clausein aclass declaration lists the names of interfaces
that are direct superinterfaces of the class being declared.

Interfaces:
implements InterfaceTypelist

InterfaceTypelist:
InterfaceType
InterfaceTypeList , InterfaceType

Given a(possibly generic) classdeclaration for C<Fy, ..., F,> (N2 0, C* Object),
the direct superinterfaces of the classtype (84.5) C<F1, . . ., F,> arethetypesgiven
intheimplements clauseof thedeclaration of ¢, if animplements clauseispresent.

Let C<F;, ..., F,> (N> 0) beageneric class declaration. The direct superinterfaces
of the parameterized class type C<Ty,...,T,> Where T; (1L < i < n) is atype,
are al types I<U; ,..Ux 6>, where I<Uy,...,U,> is adirect superinterface of
C<Fy,...,F,> and @ isthesubstitution [F;:=T7, ..., F:=T,].

Each InterfaceType must name an accessible (86.6) interface type, or a compile-
time error occurs.

8.15

119



8.1.6

120

Class Body and Member Declarations CLASSES

If the TypeName isfollowed by any type arguments, it must be a correct invocation
of the type declaration denoted by TypeName, and none of the type arguments may
be wildcard type arguments, or a compile-time error occurs.

It is a compile-time error if the same interface is mentioned as a direct
superinterface two or more times in a single implements clause's names. Thisis
true even if the interface is named in different ways.

Aninterfacetype I isasuperinterface of classtype Cif any of thefollowingistrue:
» Iisadirect superinterface of C.

* (C has some direct superinterface J for which I is a superinterface, using the
definition of "superinterface of an interface” givenin §9.1.3.

» TIisasuperinterface of the direct superclass of C.
A classissaid to implement all its superinterfaces.
A class can have a superinterface in more than one way.

Unless the class being declared is abstract, the declarations of al the method
members of each direct superinterface must beimplemented either by adeclaration
in this class or by an existing method declaration inherited from the direct
superclass, because a class that is not abstract is not permitted to have abstract
methods (88.1.1.1).

It is permitted for a single method declaration in a class to implement methods of
more than one superinterface.

A class may not at the same time be a subtype of two interface types which are
different invocations of the same generic interface (89.1.2), or an invocation of a
generic interface and a raw type naming that same generic interface.

8.1.6 ClassBody and Member Declarations

A classbody may contain declarations of membersof theclass, that is, fields(88.3),
methods (88.4), classes (88.5), and interfaces (88.5).

A class body may also contain instance initializers (88.6), static initializers (88.7),
and declarations of constructors (88.8) for the class.



CLASSES Class Members

ClassBody:
{ ClassBodyDeclarationsyp }

ClassBodyDeclarations:
ClassBodyDeclaration
ClassBodyDeclarations ClassBodyDeclaration

ClassBodyDeclaration:
ClassMember Declaration
Instancel nitializer
Saticlnitializer
ConstructorDeclaration

ClassMember Declaration:
FieldDeclaration
MethodDeclaration
ClassDeclaration
InterfaceDeclaration

8.2 ClassMembers

The members of aclasstype are al of the following:

» Members inherited from its direct superclass (88.1.4), except in class Object,
which has no direct superclass

» Membersinherited from any direct superinterfaces (88.1.5)
» Members declared in the body of the class (88.1.6)

Members of a class that are declared private are not inherited by subclasses of
that class.

Only members of a class that are declared protected or public are inherited by
subclasses declared in a package other than the one in which the classis declared.

Constructors, static initializers, and instance initializers are not members and
therefore are not inherited.

We use the phrase the type of a member to denote:
» For afield, itstype.

8.2

121



8.3

122

Field Declarations CLASSES

» For amethod, an ordered 3-tuple consisting of:
o argument types: alist of the types of the arguments to the method member.
o return type: the return type of the method member.

o throws clause: exception types declared in the throws clause of the method
member.

Fields, methods, and member types of a class type may have the same name,
since they are used in different contexts and are disambiguated by different lookup
procedures (86.5). However, thisis discouraged as a matter of style.

8.3 Fidld Declarations

The variables of a class type are introduced by field declarations.

FieldDeclaration:
FieldModifiersypt Type VariableDeclarators ;

VariableDeclarators:
VariableDeclarator
VariableDeclarators , VariableDeclarator

VariableDeclarator:
VariableDeclaratorld
VariableDeclaratorld = Variablelnitializer

VariableDeclaratorld:
| dentifier
VariableDeclaratorid [ ]

Variablelnitializer:
Expression
Arraylnitializer

The Identifier in a FieldDeclarator may be used in anameto refer to the field.

More than one field may be declared in a single field declaration by using more
than one declarator; the FieldModifiers and Type apply to al the declaratorsin the
declaration.



CLASSES Field Declarations

The declared type of a field is denoted by the Type that appears in the field
declaration, followed by any bracket pairs that follow the Identifier in the
declarator.

It is a compile-time error for the body of a class declaration to declare two fields
with the same name.

If the class declares a field with a certain name, then the declaration of that field
is said to hide any and all accessible declarations of fields with the same namein
superclasses, and superinterfaces of the class.

If afield declaration hides the declaration of another field, the two fields need not
have the same type.

A class inherits from its direct superclass and direct superinterfaces al the non-
private fields of the superclass and superinterfaces that are both accessible to code
in the class and not hidden by a declaration in the class.

Note that a private field of a superclass might be accessible to a subclass (for
example, if both classes are members of the same class). Nevertheless, aprivate
field is never inherited by a subclass.

It is possible for a class to inherit more than one field with the same name. Such a
situation doesnot initself cause acompile-time error. However, any attempt within
the body of the class to refer to any such field by its simple name will result in a
compile-time error, because such areference is ambiguous.

Theremight be several paths by which the samefield declaration might beinherited
from an interface. In such a situation, the field is considered to be inherited only
once, and it may be referred to by its simple name without ambiguity.

A value stored in afield of type float is aways an element of the float value set
(84.2.3); similarly, a value stored in afield of type double is aways an element
of the double value set. It is not permitted for afield of type float to contain an
element of the float-extended-exponent value set that is not also an element of the
float value set, nor for afield of type double to contain an element of the double-
extended-exponent value set that is not also an element of the double value set.

8.3

123



8.3.1

124

Field Modifiers CLASSES

8.3.1 Fidd Modifiers

FieldModifiers:
FieldModifier
FieldModifiers FieldModifier

FieldModifier: one of
Annotation public protected private
static final transient volatile

If an annotation a (89.7) on afield declaration corresponds to an annotation type
T7(89.6), and T has a (meta-)annotation m that correspondsto annotation.Target,
then m must have an element whose valueis annotation.ElementType.FIELD, Or
a compile-time error occurs.

It is a compile-time error if the same modifier appears more than once in afield
declaration, or if a field declaration has more than one of the access modifiers
public, protected, and private.

83.1.1 static Fields

If afield is declared static, there exists exactly one incarnation of the field, no
matter how many instances (possibly zero) of the class may eventually be created.
A static field, sometimes called a class variable, is incarnated when the class is
initialized (812.4).

A field that is not declared static (sometimes called anon-static field) iscalled
an instance variable. Whenever anew instance of aclassis created (812.5), anew
variable associated with that instanceis created for every instance variable declared
in that class or any of its superclasses.

8.3.1.2 final Fidds

A field can be declared final (84.12.4). Both classand instance variables (static
and non-static fields) may be declared final.

It isacompile-time error if ablank final (84.12.4) class variable is not definitely
assigned (816.8) by a static initializer (88.7) of the classin which it is declared.

A blank final instance variable must be definitely assigned (816.9) at the end of
every constructor (88.8) of the class in which it is declared; otherwise a compile-
time error occurs.



CLASSES Initialization of Fields

8.3.1.3 transient Fields

Variables may be marked transient to indicate that they are not part of the
persistent state of an object.

83.1.4 volatile Fields

A field may be declared volatile, in which case the Java Memory Maodel (817.4)
ensures that al threads see a consistent value for the variable.

It isacompile-time error if afinal variableisalso declared volatile.

8.3.2 Initialization of Fields

If afield declarator contains a variable initializer, then it has the semantics of an
assignment (815.26) to the declared variable, and:

« |f the declarator isfor aclassvariable (that is, astatic field), then the variable
initializer is evaluated and the assignment performed exactly once, when the
classisinitialized (§812.4).

« If the declarator is for an instance variable (that is, afield that is not static),
then the variable initializer is evaluated and the assignment performed each time
an instance of the classis created (§812.5).

8.3.2.1 |Initializersfor Class Variables

If areference by simple name to any instance variable occurs in an initialization
expression for a class variable, then a compile-time error occurs.

If the keyword this (815.8.3) or the keyword super (8§15.11.2, 815.12) occursin
an initialization expression for a class variable, then a compile-time error occurs.

8.3.2.2 Initializersfor Instance Variables

Initialization expressions for instance variables may use the simple name of any
static variable declared in or inherited by the class, even one whose declaration
occurs textually later.

Initialization expressions for instance variables are permitted to refer to the current
object this (815.8.3) and to use the keyword super (815.11.2, §15.12).

8.3.2

125



8.4

126

Method Declarations CLASSES

8.3.2.3 Restrictions on the use of Fields during Initialization

The declaration of a member needs to appear textually before it is used only if the
member is an instance (respectively static) field of aclass or interface ¢ and all
of the following conditions hold:

» Theusage occursin an instance (respectively static) variableinitializer of Cor
in an instance (respectively static) initializer of C.

» The usageis not on the left hand side of an assignment.

» The usageisviaasimple name.

» Cistheinnermost class or interface enclosing the usage.

It isacompile-time error if any of the four requirements above are not met.

These restrictions are designed to catch, at compile time, circular or otherwise
malformed initializations.

8.4 Method Declarations

A method declares executable code that can be invoked, passing a fixed humber
of values as arguments.

MethodDeclar ation:
MethodHeader MethodBody

MethodHeader :
MethodModifier sy TypeParameter sy Result MethodDeclarator Throwsgp

Result:
Type

void

MethodDeclarator:
Identifier ( FormalParameterListop )

Theldentifier inaMethodDeclarator may be used in anameto refer to the method.

The Result of amethod declaration either declaresthe type of value that the method
returns, or uses the keyword void to indicate that the method does not return a
value.



CLASSES Formal Parameters

For compatibility with older versions of the Java SE platform, the declaration of a
method that returns an array is allowed to place (some or all of) the empty bracket
pairs that form the declaration of the array type after the parameter list. Thisis
supported by the obsolescent production:

MethodDeclarator:
MethodDeclarator [ ]

but should not be used in new code.

Itisacompile-timeerror for the body of aclassto declare as memberstwo methods
with override-equivalent signatures (88.4.2).

8.4.1 Formal Parameters

The formal parameters of a method or constructor, if any, are specified by a list
of comma-separated parameter specifiers. Each parameter specifier consists of a
type (optionally preceded by the final modifier and/or one or more annotations
(89.7)) and an identifier (optionally followed by brackets) that specifies the name
of the parameter.

Thelast formal parameter in alist is special: it may be avariable arity parameter,
indicated by an ellipsis following the type.

8.4.1

127



8.4.1

128

Formal Parameters CLASSES

Formal ParameterList:
LastFormal Parameter
Formal Parameters , LastFormal Parameter

Formal Parameters:
Formal Parameter
Formal Parameters , Formal Parameter

Formal Parameter:
VariableModifiersyy Type VariableDeclaratorld

VariableModifiers:
VariableModifier
VariableModifiers VariableModifier

VariableModifier: one of
Annotation final

LastFormal Parameter:
VariableModifiersyy Type. .. VariableDeclaratorld
Formal Parameter

If a method or constructor has no formal parameters, only an empty pair of
parentheses appearsin the declaration of the method or constructor.

If an annotation a (89.7) on a forma parameter corresponds to an
annotation type T (89.6), and T has a (meta-)annotation m that corresponds
to annotation.Target, then m must have an element whose value is
annotation.ElementType.PARAMETER, Or a compile-time error occurs.

The declared type of aformal parameter is denoted by the Type that appearsin its
parameter specifier, followed by any bracket pairs that follow the Identifier in the
declarator, except for a variable arity parameter, whose declared type is the Type
that appearsin its parameter specifier.

It is a compile-time error to use mixed array notation (810.2) for a variable arity
parameter.

It is a compile-time error if two formal parameters of the same method or
constructor are declared to have the same name (that is, their declarations mention
the same Identifier).

A formal parameter can only be referred to using a ssimple name (86.5.6.1), not a
gualified name.



CLASSES Method Signature

It isacompile-time error if the name of aformal parameter isredeclared asalocal
variable of the method or constructor, or as an exception parameter of a catch
clausein a try statement in the body of the method or constructor.

It is a compile-time error if aformal parameter that is declared final is assigned
to within the body of the method or constructor.

When the method or constructor is invoked (815.12), the values of the actua
argument expressions initialize newly created parameter variables, each of the
declared Type, before execution of the body of the method or constructor. The
Identifier that appears in the Declaratorld may be used as a simple name in the
body of the method or constructor to refer to the formal parameter.

If thelast formal parameter isavariable arity parameter of type T, it isconsidered to
define aformal parameter of type T[]1. The method isthen avariable arity method.
Otherwise, it is afixed arity method.

Invocations of a variable arity method may contain more actual argument
expressions than formal parameters. All the actual argument expressions that do
not correspond to the formal parameters preceding the variable arity parameter will
be evaluated and the results stored into an array that will be passed to the method
invocation (815.12.4.2).

A method or constructor parameter of type float always contains an element of
the float value set (84.2.3); similarly, a method or constructor parameter of type
doub1e always contains an element of the double value set. It is not permitted for a
method or constructor parameter of type float to contain an element of the float-
extended-exponent value set that isnot al so an element of thefloat value set, nor for
amethod parameter of type double to contain an e ement of the double-extended-
exponent value set that is not also an element of the double value set.

Where an actual argument expression corresponding to a parameter variable is
not FP-strict (815.4), evaluation of that actual argument expression is permitted to
use intermediate values drawn from the appropriate extended-exponent val ue sets.
Prior to being stored in the parameter variable, the result of such an expression
is mapped to the nearest value in the corresponding standard value set by method
invocation conversion (85.3).

8.4.2 Method Signature

It is a compile-time error to declare two methods with override-equivalent
signaturesin aclass.

8.4.2

129



8.4.3

130

Method Modifiers CLASSES

Two methods have the same signature if they have the same name and argument
types.

Two method or constructor declarations M and N have the same argument types if
all of the following conditions hold:

» They have the same number of formal parameters (possibly zero)
» They have the same number of type parameters (possibly zero)

* Let Ay, ..., A, bethetype parameters of Mand let B4, ..., B, be the type parameters
of N. After renaming each occurrence of a B; in N's type to A;, the bounds of
corresponding type variables are the same, and the formal parameter types of M
and N are the same.

The signature of a method m; is a subsignature of the signature of a method m; if
either:

* m, hasthe same signature as m;, or
* the signature of m; isthe same as the erasure of the signature of m,.

Two method signatures m; and m, are override-equivalent iff either m; is a
subsignature of m, or m, is a subsignature of m;.

8.4.3 Method Modifiers

MethodModifiers:
MethodModifier
MethodModifiers MethodModifier

MethodModifier: one of
Annotation public protected private abstract
static final synchronized native strictfp

If an annotation a (89.7) on amethod declaration correspondsto an annotation type
7(89.6), and T has a (meta-)annotation m that correspondsto annotation.Target,
then m must have an element whose value is annotation.ElementType.METHOD,
or acompile-time error occurs.

It isacompile-time error if the same modifier appears more than once in a method
declaration, or if a method declaration has more than one of the access modifiers
public, protected, and private.



CLASSES Method Modifiers

It is a compile-time error if a method declaration that contains the keyword
abstract also containsany one of thekeywordsprivate, static, final, native,
strictfp, Or synchronized.

It isacompile-timeerror if amethod declaration that containsthe keyword native
also contains strictfp.

84.3.1 abstract Methods

An abstract method declaration introduces the method as a member, providing
its signature (88.4.2), return type, and throws clause (if any), but does not provide
an implementation.

Thedeclaration of an abstract method m must appear directly withinan abstract
class (cal it A) unless it occurs within an enum (88.9); otherwise a compile-time
€rror occurs.

Every subclassof Athatisnot abstract (88.1.1.1) must provide animplementation
for m, or a compile-time error occurs.

An abstract class can override an abstract method by providing another
abstract method declaration.

An instance method that is not abstract can be overridden by an abstract
method.

8.4.3.2 static Methods
A method that is declared static is called a class method.

It is a compile-time to use the name of a type parameter of any surrounding
declaration in the header or body of a class method.

A class method is aways invoked without reference to a particular object. Itisa
compile-time error to attempt to reference the current object using the keyword
this or the keyword super.

A method that is not declared static iscalled an instance method, and sometimes
cdled anon-static method.

An instance method is always invoked with respect to an object, which becomes
the current object to which the keywords this and super refer during execution
of the method body.

8.4.3.3 final Methods

A method can be declared final to prevent subclassesfrom overriding or hiding it.

8.4.3

131



8.4.4

132

Generic Methods CLASSES

It isacompile-time error to attempt to override or hide a final method.

A private method and al methods declared immediately within a final class
(88.1.1.2) behave asiif they are final, sinceit isimpossible to override them.

8.4.3.4 native Methods

A method that is native is implemented in platform-dependent code, typically
written in another programming language such as C, C++, FORTRAN,or assembly
language. The body of a native method is given as a semicolon only, indicating
that the implementation is omitted, instead of a block.

8.4.3.5 strictfp Methods

The effect of the strictfp modifier isto make al float or double expressions
within the method body be explicitly FP-strict (815.4).

8.4.3.6 synchronized Methods
A synchronized method acquires a monitor (817.1) before it executes.

For aclass (static) method, the monitor associated with the C1ass object for the
method's class is used. For an instance method, the monitor associated with this
(the object for which the method was invoked) is used.

These are the same monitors that can be used by the synchronized statement
(814.19).

84.4 Generic Methods

A method is generic if it declares one or more type variables (84.4).

These type variables are known as the type parameter s of the method. The form of
the type parameter section of a generic method is identical to the type parameter
section of ageneric class (§88.1.2).

8.4.5 Method Return Type

Thereturntype of amethod declaresthetype of value amethod returns, if it returns
avalue, or states that the method is void.

A method declaration d; with return type R; isreturn-type-substitutabl e for another
method d, with return type R,, if and only if the following conditions hold:

e |f R;isvoidthen R, isvoid.



CLASSES Method Throws

» If R;isaprimitive type, then R, isidentical to R;.
 If R;isareferencetype then:

0 R; is either a subtype of R, or R; can be converted to a subtype of R, by
unchecked conversion (85.1.9), or

7 R1 =R,

8.4.6 Method Throws

A throws clause is used to declare any checked exception classes (811.1.1) that
the statementsin amethod or constructor body can throw.

Throws:
throws ExceptionTypeList

ExceptionTypeList:
ExceptionType
ExceptionTypelList , ExceptionType

ExceptionType:
ClassType
TypeVariable

It is a compile-time error if any ExceptionType mentioned in a throws clause is
not a subtype (84.10) of ThrowabTe.

It is permitted but not required to mention unchecked exception classes (811.1.1)
inathrows clause.

A method that overrides or hides another method (88.4.8), including methods that
implement abstract methods defined in interfaces, may not be declared to throw
more checked exceptions than the overridden or hidden method.

More precisely, suppose that B is a class or interface, and A is a superclass or
superinterface of B, and a method declaration n in B overrides or hides a method
declaration min A. If n has a throws clause that mentions any checked exception
types, then m must have a throws clause, and for every checked exception type
listed in the throws clause of n, that same exception class or one of its supertypes
must occur in the erasure of the throws clause of m; otherwise, acompile-timeerror
occurs.

If the unerased throws clause of m does not contain a supertype of each exception
typeinthe throws clause of n, an unchecked warning must be issued.

8.4.6

133



8.4.7

134

Method Body CLASSES

Type variables are allowed in a throws clause even though they are not allowed
inacatch clause.

8.4.7 Method Body

A method body is either a block of code that implements the method or simply a
semicolon, indicating the lack of an implementation.

The body of a method must be a semicolon if and only if the method is either
abstract (88.4.3.1) or native (88.4.3.4).

MethodBody:
Block

Itisacompile-time error if amethod declaration iseither abstract or native and
has a block for its body.

It is a compile-time error if a method declaration is neither abstract nor native
and has a semicolon for its body.

If amethod is declared void, then its body must not contain any return statement
(814.17) that has an Expression.

If amethod is declared to have areturn type, then every return statement (814.17)
in its body must have an Expression.

If amethod is declared to have areturn type, then a compile-time error occurs if
the body of the method can complete normally (§14.1).

8.4.8 Inheritance, Overriding, and Hiding

A class C inherits from its direct superclass and direct superinterfaces al non-
private methods (whether abstract or not) of the superclass and superinterfaces
that are public, protected, or declared with default access in the same package
as C and are neither overridden (88.4.8.1) nor hidden (88.4.8.2) by a declaration
in the class.

If the method not inherited is declared in a class, or the method not inherited
is declared in an interface and the new declaration is abstract, then the new
declaration is said to override it.

If the method not inherited is abstract and the new declaration is not abstract,
then the new declaration is said to implement it.



CLASSES Inheritance, Overriding, and Hiding

8.4.8.1 Overriding (by Instance Methods)

An instance method m1 declared in aclass € overrides another instance method, m2,
declared in class A iff all of the following are true:

» Cisasubclass of A.
» The signature of m; is a subsignature (88.4.2) of the signature of m,.
* Either:

0 m,iSpublic, protected, or declared with default accessin the same package
as ¢, or

o m; overrides amethod ms, m; distinct from m;, m; distinct from m,, such that m;
overrides m,.

Moreover, if m1 is not abstract, then m1 is said to implement any and al
declarations of abstract methodsthat it overrides.

It isacompile-time error if an instance method overrides a static method.

An overridden method can be accessed by using a method invocation expression
(815.12) that contains the keyword super. Note that a qualified name or a cast to
asuperclass type is not effective in attempting to access an overridden method; in
thisrespect, overriding of methods differsfrom hiding of fields. See §15.12.4.4 for
discussion and examples of this point.

The presence or absence of the strictfp modifier has absolutely no effect on the
rules for overriding methods and implementing abstract methods. For example, it
is permitted for a method that is not FP-strict to override an FP-strict method and
it is permitted for an FP-strict method to override a method that is not FP-strict.

8.4.8.2 Hiding (by Class Methods)

If aclass declares a static method m, then the declaration m is said to hide any
method m ', where the signature of m is a subsignature (88.4.2) of the signature of
m', in the superclasses and superinterfaces of the class that would otherwise be
accessible to code in the class.

Itisacompile-time error if astatic method hides an instance method.

A hidden method can be accessed by using a qualified name or by using amethod
invocation expression (815.12) that contains the keyword super or a cast to a
superclass type. In this respect, hiding of methodsis similar to hiding of fields.

8.4.8

135



8.4.8

136

Inheritance, Overriding, and Hiding CLASSES

8.4.8.3 Requirementsin Overriding and Hiding

If amethod declaration d; with return type R; overrides or hides the declaration of
another method d, with return type R,, then d; must be return-type-substitutable
(88.4.5) for d,, or acompile-time error occurs.

Furthermore, if R; is not a subtype of R, an unchecked warning must be issued
(unless suppressed (89.6.3.5)).

A method declaration must not have a throws clause that conflicts (88.4.6) with
that of any method that it overridesor hides; otherwise, acompile-timeerror occurs.

Itisacompile-timeerror if atype declaration Thas amember method m; and there
exists amethod m, declared in T or a supertype of T such that all of the following
conditions hold:

* m; and m, have the same name.
* m,isaccessible from T.
» The signature of m; is not a subsignature (88.4.2) of the signature of m,.

» The signature of m; or some method m; overrides (directly or indirectly) has the
same erasure as the signature of m, or some method m, overrides (directly or
indirectly).

The access modifier (86.6) of an overriding or hiding method must provide at |east
as much access asthe overridden or hidden method, or acompile-timeerror occurs.

« |If the overridden or hidden method is public, then the overriding or hiding
method must be pub1ic; otherwise, a compile-time error occurs.

* If the overridden or hidden method is protected, then the overriding or hiding
method must be protected or publi c; otherwise, a compile-time error occurs.

 If the overridden or hidden method has default (package) access, then the
overriding or hiding method must not be private; otherwise, a compile-time
Error occurs.

8.4.8.4 Inheriting Methods with Override-Equivalent Sgnatures

It is possible for a class to inherit multiple methods with override-equivalent
(88.4.2) signatures.

It isacompile-time error if aclass Cinherits a concrete method whose signatureis
asubsignature of another concrete method inherited by C.

Otherwise, there are two possible cases:



CLASSES Overloading

 |f one of the inherited methods is not abstract, then there are two subcases;
o If the method that is not abstract is static, acompile-time error occurs.

o Otherwise, the method that is not abstract is considered to override, and
thereforetoimplement, all the other methods on behalf of the classthat inherits
it.

If the signature of the non-abstract method is not a subsignature of each

of the other inherited methods, an unchecked warning must be issued (unless
suppressed (89.6.3.5)).

If the return type of the non-abstract method is not a subtype of the return
type of any of the other inherited methods, an unchecked warning must be
issued.

A compile-time error occursif the return type of the non-abstract methodis
not return-type-substitutable (88.4.5) for each of the other inherited methods.

A compile-time error occurs if the inherited method that is not abstract has
a throws clause that conflicts (88.4.6) with that of any other of the inherited
methods.

 If al the inherited methods are abstract, then the class is necessarily an
abstract classand is considered to inherit all the abstract methods.

One of the inherited methods must be return-type-substitutable for any other
inherited method; otherwise, a compile-time error occurs. (The throws clauses
do not cause errorsin this case.)

There might be severa paths by which the same method declaration might be
inherited from an interface. Thisfact causesno difficulty and never, of itself, results
in acompile-time error.

8.4.9 Overloading

If two methods of aclass (whether both declared in the same class, or both inherited
by aclass, or one declared and one inherited) have the same name but signatures
that are not override-equivalent, then the method name is said to be overloaded.

This fact causes no difficulty and never of itself results in a compile-time error.
There is no required relationship between the return types or between the throws
clauses of two methods with the same name, unless their signatures are override-
equivalent.

Methods are overridden on a signature-by-signature basis.

8.4.9

137



8.5

138

Member Type Declarations CLASSES

When a method is invoked (815.12), the number of actual arguments (and any
explicit type arguments) and the compile-time types of the arguments are used,
at compile time, to determine the signature of the method that will be invoked
(815.12.2). If the method that is to be invoked is an instance method, the actual
method to beinvoked will be determined at run time, using dynamic method lookup
(815.12.4).

8.5 Member Type Declarations

A member classis a class whose declaration is directly enclosed in another class
or interface declaration.

A member interfaceisan interface whose declaration isdirectly enclosed in another
class or interface declaration.

If the class declares amember type with a certain name, then the declaration of that
type is said to hide any and all accessible declarations of member types with the
same name in superclasses and superinterfaces of the class.

A class inherits from its direct superclass and direct superinterfaces all the
non-private member types of the superclass and superinterfaces that are both
accessible to code in the class and not hidden by a declaration in the class.

A class may inherit two or more type declarations with the same name, either from
two interfaces or from its superclass and an interface. It is a compile-time error to
attempt to refer to any ambiguously inherited class or interface by its simple name.

If the same type declaration is inherited from an interface by multiple paths, the
class or interface is considered to be inherited only once. It may be referred to by
its simple name without ambiguity.

85.1 Access Modifiers

It is a compile-time error if a member type declaration has more than one of the
access modifiers public, protected, and private (86.6).

A member interface in a class declaration is implicitly pub1ic unless an access
modifier is specified.

Member type declarations may have annotation modifiers(89.7) like any other type
or member declaration.



CLASSES Satic Member Type Declarations

8.5.2 Static Member Type Declarations

The static keyword may modify the declaration of a member type C within the
body of anon-inner classor interface T. Its effect isto declare that Cisnot an inner
class. Just as a static method of T has no current instance of Tinitsbody, Caso
has no current instance of T, nor doesit have any lexically enclosing instances.

It is a compile-time error if a static class contains a usage of a non-static
member of an enclosing class.

Member interfaces are dways implicitly static.

It is permitted but not required for the declaration of a member interface to
explicitly list the static modifier.

8.6 Instancelnitializers

Aninstanceinitializer declared in aclassis executed when an instance of the class
is created (815.9), §88.8.7.1).

Instancel nitializer:
Block

It is a compile-time error if an instance initializer cannot complete normally
(814.21).

Itisacompile-time error if areturn statement (814.17) appears anywhere within
an instance initializer.

Instance initializers are permitted to refer to the current object via the keyword
this (815.8.3), to use the keyword super (815.11.2, 815.12), and to use any type
variablesin scope.

8.7 Static Initializers

Any static initializers declared in a class are executed when the classis initialized
(812.4). Together with any field initializers for class variables (88.3.2), static
initializers may be used to initialize the class variables of the class.

Saticlnitializer:
static Block

8.5.2

139



8.8

140

Constructor Declarations CLASSES

It isacompile-time error if astatic initializer cannot complete normally (814.21).
Itisacompile-timeerror if areturn statement (814.17) appears anywhere within
adtatic initializer.

It is a compile-time error if the keyword this (815.8.3) or the keyword super

(815.11, 815.12) or any type variable declared outside the static initializer, appears
anywhere within a static initializer.

The staticinitializersand class variableinitializers of aclassare executed in textual
order (812.4.2).

8.8 Constructor Declarations

A constructor is used in the creation of an abject that is an instance of aclass.

ConstructorDeclaration:
ConstructorModifier sy Constructor Declarator
Throwsgpt Constructor Body

Constructor Declarator:
TypeParameter sop: SmpleTypeName ( Formal Parameter Listopt )

The SmpleTypeName in the Constructor Declarator must be the smple name of
the class that contains the constructor declaration; otherwise a compile-time error
occurs.

Inall other respects, the constructor declaration looksjust like amethod declaration
that has no result type.

Constructors are invoked by class instance creation expressions (§15.9), by
the conversions and concatenations caused by the string concatenation operator
+ (815.18.1), and by explicit constructor invocations from other constructors
(88.8.7).

Constructors are never invoked by method invocation expressions (815.12).
Access to constructors is governed by access modifiers (86.6).

Constructor declarations are not members. They are never inherited and therefore
are not subject to hiding or overriding.



CLASSES Formal Parameters and Type Parameters

8.8.1 Formal Parametersand Type Parameters

Theformal parameters and type parameters of a constructor areidentical in syntax
and semantics to those of amethod (88.4.1).

8.8.2 Constructor Signature

It is a compile-time error to declare two constructors with override-equivalent
(88.4.2) signaturesin aclass.

It is a compile-time error to declare two constructors whose signatures have the
same erasure (84.6) in aclass.

8.8.3 Constructor Modifiers

ConstructorModifiers:
ConstructorModifier
Constructor Modifiers Constructor Modifier

ConstructorModifier: one of
Annotation public protected private

If an annotation a (89.7) onaconstructor correspondsto an annotation type 7(89.6),
and T has a (meta-)annotation m that corresponds to annotation.Target, then m
must have an element whosevalueisannotation.ElementType.CONSTRUCTOR, Or
a compile-time error occurs.

It is a compile-time error if the same modifier appears more than once in a
constructor declaration, or if a constructor declaration has more than one of the
access modifiers public, protected, and private.

It is a compile-time error if the constructor of an enum type (88.9) is declared
public Or protected.

If no access modifier is specified for the constructor of a normal class, the
constructor has default access.

If no access modifier is specified for the constructor of an enum type, the
constructor isprivate.

8.8.4 Generic Constructors

Itispossible for aconstructor to be declared generic, independently of whether the
class the constructor isdeclared in isitself generic.

8.8.1

141



8.85

142

Constructor Throws CLASSES

A constructor isgeneric if it declares one or more type variables (84.4).

These type variables are known as the type parameters of the constructor. The
form of the type parameter section of a generic constructor is identical to the type
parameter section of a generic class (88.1.2).

8.8.5 Constructor Throws

The throws clause for a constructor is identical in structure and behavior to the
throws clause for amethod (88.4.6).

8.8.6 The Typeof aConstructor

The type of a constructor consists of its signature and the exception types given
its throws clause.

8.8.7 Constructor Body

The first statement of a constructor body may be an explicit invocation of another
constructor of the same class or of the direct superclass (§8.8.7.1).

ConstructorBody:
{ ExplicitConstructorInvocationgy BlockStatementsyp }

It is a compile-time error for a constructor to directly or indirectly invoke itself
through a series of one or more explicit constructor invocationsinvolving this.

If the constructor isaconstructor for an enum type (88.9), itisacompile-time error
for it to invoke the superclass constructor explicitly.

If a constructor body does not begin with an explicit constructor invocation and
the constructor being declared is not part of the primordia class Object, then
the constructor body is implicitly assumed by the Java compiler to begin with a
superclass constructor invocation "super () ;", an invocation of the constructor of
its direct superclass that takes no arguments.

Except for the possibility of explicit constructor invocations, the body of a
constructor is like the body of amethod (§8.4.7).

A return statement (814.17) may be used in the body of a constructor if it does
not include an expression.



CLASSES Constructor Body 8.8.7

8.8.7.1 Explicit Constructor Invocations

ExplicitConstructor I nvocation:
NonWildTypeArgumentsop: this ( ArgumentListop) ;
NonWildTypeArgumentsop: super ( ArgumentListop ) ;
Primary . NonWildTypeArgumentsgp: super ( ArgumentListop: ) 5

NonWildTypeArguments:
< ReferenceTypelList >

ReferenceTypelist:
ReferenceType
ReferenceTypelist , ReferenceType

Explicit constructor invocation statements can be divided into two kinds:

» Alternate constructor invocations begin with the keyword this (possibly
prefaced with explicit type arguments). They are used to invoke an alternate
constructor of the same class.

e Superclass constructor invocations begin with either the keyword super
(possibly prefaced with explicit type arguments) or a Primary expression. They
are used to invoke a constructor of the direct superclass.

Superclass constructor invocations may be subdivided:

o Unqualified super class constructor invocati ons begin with the keyword super
(possibly prefaced with explicit type arguments).

o Qualified superclass constructor invocationsbegin with aPrimary expression.

They allow a subclass constructor to explicitly specify the newly created
object's immediately enclosing instance with respect to the direct superclass
(88.1.3). This may be necessary when the superclassis an inner class.

An explicit constructor invocation statement in a constructor body may not refer
to any instance variables or instance methods or inner classes declared in this class
or any superclass, or use this oOr super in any expression; otherwise, a compile-
time error occurs.

Let C bethe class being instantiated, and let S be the direct superclass of C.
| Itisacompiletimeerror if Sisnot accessible (§6.6).

If a superclass constructor invocation statement is qualified, then:

143



8.8.7

144

Constructor Body CLASSES

e If Sisnot aninner class, or if the declaration of S occursin astatic context, then
acompile-time error occurs.

» Otherwise, let p bethe Primary expressionimmediately preceding” . super”. Let
0 betheinnermost lexically enclosing class of S. It isacompile-time error if the
type of pisnot 0 or asubclass of 0, or if the type of p is not accessible (86.6).

If a superclass constructor invocation statement is unqualified, and if Sisaninner
member class, then it is a compile-time error if S isnot a member of alexically
enclosing class of € by declaration or inheritance .

Evauation of an aternate constructor invocation statement proceeds by first
evaluating the arguments to the constructor, |eft-to-right, asin an ordinary method
invocation; and then invoking the constructor.

Evaluation of a superclass constructor invocation statement is more complicated.
Let C bethe class being instantiated, let S be the direct superclass of ¢, and let 7 be
the instance being created. The immediately enclosing instance of 7 with respect
to S (if any) must be determined, as follows:

« If Sisnot aninner class, or if the declaration of S occurs in a static context, no
immediately enclosing instance of 7 with respect to S exists.

« |If the superclass constructor invocation is qualified, then the Primary expression
p immediately preceding " . super” is evaluated.

If p evaluatesto nu11, aNullPointerException israised, and the superclass
constructor invocation completes abruptly.

Otherwise, the result of this evaluation is theimmediately enclosing instance of
7 with respect to S.

« If the superclass constructor invocation is not qualified, then:

o If Sisalocal class (§814.3), then let 0 betheinnermost lexically enclosing class
of S. Let n be an integer such that 0 isthe n'th lexically enclosing class of C.

The immediately enclosing instance of 7 with respect to Sisthe n'th lexically
enclosing instance of this.

o Otherwise, S isan inner member class (88.5).

Let 0 be the innermost lexically enclosing class of S, and let n be an integer
such that 0isthe n'th lexically enclosing class of C.

The immediately enclosing instance of 7 with respect to S isthe n'th lexically
enclosing instance of this.



CLASSES Constructor Overloading

After determining the immediately enclosing instance of 7 with respect to S (if
any), evaluation of the superclass constructor invocation statement proceeds by
evaluating the arguments to the constructor, |eft-to-right, asin an ordinary method
invocation; and then invoking the constructor.

Finally, if the superclass constructor invocation statement completesnormally, then
all instance variable initializers of ¢ and all instance initializers of C are executed.
If aninstanceinitializer or instance variableinitializer T textually precedes another
instance initializer or instance variable initializer 7, then I is executed before J.

Execution of instance variable initializers and instance initializers is performed
regardless of whether the superclass constructor invocation actually appears as an
explicit constructor invocation statement or is provided automatically. An alternate
constructor invocation does not perform this additional implicit execution.

8.8.8 Constructor Overloading

Overloading of constructorsisidentical in behavior to overloading of methods. The
overloading is resolved at compile time by each classinstance creation expression
(815.9).

8.8.9 Default Constructor

If a class contains no constructor declarations, then a default constructor with no
parametersis automatically provided.

If the class being declared is the primordia class Object, then the default
constructor has an empty body. Otherwise, the default constructor simply invokes
the superclass constructor with no arguments.

It isacompile-time error if a default constructor is provided by the Java compiler
but the superclass does not have an accessible constructor (86.6) that takes no
arguments.

A default constructor has no throws clause.

In a class type, if the class is declared public, then the default constructor
is implicitly given the access modifier public (86.6); if the class is declared
protected, then the default constructor is implicitly given the access modifier
protected (86.6); if the class is declared private, then the default constructor
is implicitly given the access modifier private (86.6); otherwise, the default
constructor has the default access implied by no access modifier.

In an enum type, the default constructor isimplicitly private (88.9.2).

8.8.8

145



8.8.10

146

Preventing Instantiation of a Class CLASSES

8.8.10 Preventing Instantiation of a Class

A class can be designed to prevent code outside the class declaration from creating
instances of the class by declaring at |east one constructor, to prevent the creation
of animplicit constructor, and by declaring all constructorsto be private.

A pubTic class can likewise prevent the creation of instances outside its package
by declaring at least one constructor, to prevent creation of a default constructor
with public access, and by declaring no constructor that is pubTic.

8.9 Enums

An enum declaration specifies a new enum type.

EnumDeclaration:
ClassModifiersyp: enum Identifier Interfacesyy: EnumBody

EnumBody:
{ EnumConstantsyp , opt EnumBodyDeclarationsyyt }

Enum types (88.9) must not be declared abstract; doing so will result in a
compile-time error.

Anenum typeisimplicitly final unlessit contains at |east one enum constant that
has a class body.

It isacompile-time error to explicitly declare an enum type to be final.

Nested enum types are implicitly static. It is permissible to explicitly declare a
nested enum type to be static.

The direct superclass of an enum type named E iS Enum<E>.
An enum type has no instances other than those defined by its enum constants.

Itisacompile-timeerror to attempt to explicitly instantiate an enum type (§15.9.1).

8.9.1 Enum Constants

The body of an enum type may contain enum constants. An enum constant defines
an instance of the enum type.



CLASSES Enum Constants

EnumConstants:
EnumConstant
EnumConstants , EnumConstant

EnumConstant:
Annotationsyy Identifier Argumentsyp: ClassBodyopt

Arguments:
C ArgumentListopt )

EnumBodyDeclarations:
; ClassBodyDeclarationsgpt

An enum constant may optionally be preceded by annotation modifiers. If an
annotation a (89.7) on an enum constant correspondsto an annotation type 7(89.6),
and T has a (meta-)annotation m that corresponds to annotation.Target, then
m must have an element whose value is annotation.ElementType.FIELD, Or a
compile-time error occurs.

The Identifier in a EnumConstant may be used in a name to refer to the enum
constant.

An enum constant may be followed by arguments, which are passed to the
constructor of the enum type when the constant is created during classinitialization
as described later in this section. The constructor to be invoked is chosen using
the normal overloading rules (815.12.2). If the arguments are omitted, an empty
argument list is assumed.

Theoptional classbody of an enum constant implicitly defines an anonymous class
declaration (815.9.5) that extends the immediately enclosing enum type. The class
body is governed by the usual rules of anonymous classes; in particular it cannot
contain any constructors.

It is a compile-time error for the class body of an enum constant to declare an
abstract method.

Becausethereisonly oneinstance of each enum constant, it ispermissibleto usethe
== operator in place of the equals method when comparing two object references
if it isknown that at least one of them refers to an enum constant.

8.9.1

147



8.9.2

148

Enum Body and Member Declarations CLASSES

8.9.2 Enum Body and Member Declarations

Any constructor or member declarations within an enum declaration apply to the
enum type exactly as if they had been present in the class body of a normal class
declaration, unless explicitly stated otherwise.

It is a compile-time error if a constructor declaration of an enum typeis public
Or protected.

If an enum type has no constructor declarations, then a private constructor that
takes no parameters (to match the implicit empty argument list) is automatically
provided.

It isacompile-time error for an enum declaration to declare afinalizer.
An instance of an enum type may never be finalized.

It is a compile-time error for an enum type E to have an abstract method m as a
member unless E has one or more enum constants, and all of £'s enum constants
have class bodies that provide concrete implementations of m.

In addition to the members that an enum type E inherits from Enum<E>, for each
declared enum constant with the name n, the enum type has an implicitly declared
public static final field named n of type E. These fields are considered to be
declaredinthe same order asthe corresponding enum constants, beforeany static
fieldsexplicitly declared in the enum type. Each suchfieldisinitialized to theenum
constant that corresponds to it. Each such field is aso considered to be annotated
by the same annotations as the corresponding enum constant. The enum constant
is said to be created when the corresponding field isinitialized.

In addition, if E is the name of an enum type, then that type has the following
implicitly declared static methods:

/:':*
* Returns an array containing the constants of this enum
* type, in the order they're declared. This method may be
* used to iterate over the constants as follows:
for(E c : E.valuesQ)
System.out.println(c);

o
%

*

* @return an array containing the constants of this enum
* type, in the order they're declared

*

public static E[] values();

/7'::":
* Returns the enum constant of this type with the specified
* name.



CLASSES Enum Body and Member Declarations

The string must match exactly an identifier used to declare
an enum constant in this type. (Extraneous whitespace
characters are not permitted.)

* @return the enum constant with the specified name

’

*

p

* @throws IllegalArgumentException if this enum type has no

constant with the specified name

ubTlic static E valueOf(String name);

It is a compile-time error to reference a static field of an enum type that is not
a compile-time constant (815.28) from constructors, instance initializer blocks, or
instance variable initializer expressions of that type.

Itisacompile-timeerror for the constructors, instanceinitializer blocks, or instance
variableinitializer expressions of an enum constant e to refer toitself or to an enum
constant of the same type that is declared to the right of e.

8.9.2

149



8.9.2 Enum Body and Member Declarations CLASSES

150



CHAPTER9

| nterfaces

AN interface declaration introduces a new reference type whose members
are classes, interfaces, constants, and abstract methods. This type has no
implementation, but otherwise unrelated classes can implement it by providing
implementations for its abstract methods.

A nested interface is any interface whose declaration occurs within the body of
another class or interface.

A top-level interfaceis an interface that is not a nested interface.

We distinguish between two kinds of interfaces - normal interfaces and annotation
types.

This chapter discusses the common semantics of al interfaces - normal interfaces,
both top-level (87.6) and nested (88.5, §9.5), and annotation types (89.6). Details
that are specific to particular kinds of interfaces are discussed in the sections
dedicated to these constructs.

Programs can use interfaces to make it unnecessary for related classes to share a
common abstract superclass or to add methods to Object.

An interface may be declared to be a direct extension of one or more other
interfaces, meaning that it implicitly specifies al the member types, abstract
methods, and constants of the interfaces it extends, except for any member types
and constants that it may hide.

A class may be declared to directly implement one or more interfaces, meaning
that any instance of the class implements all the abstract methods specified
by the interface or interfaces. A class necessarily implements al the interfaces
that its direct superclasses and direct superinterfaces do. This (multiple) interface
inheritance alows objectsto support (multiple) common behaviorswithout sharing
any implementation.

151



9.1

152

Interface Declarations INTERFACES

A variable whose declared type is an interface type may have as its value a
reference to any instance of a class which implements the specified interface. It is
not sufficient that the class happen to implement all the abstract methods of the
interface; the class or one of itssuperclasses must actually be declared toimplement
the interface, or else the classis not considered to implement the interface.

9.1 Interface Declarations

An interface declaration specifies a new named reference type. There are two
kinds of interface declarations - normal interface declarations and annotation type
declarations.

InterfaceDeclaration:
Normal I nterfaceDeclaration
AnnotationTypeDeclaration

Annotation types are described further in §9.6.

NormallnterfaceDeclaration:
InterfaceModifier syt interface Identifier TypeParameter Sop
Extendsl nterfacesyy | nterfaceBody

The Identifier in an interface declaration specifies the name of the interface.

It is a compile-time error if an interface has the same simple hame as any of its
enclosing classes or interfaces.

9.1.1 Interface Modifiers

An interface declaration may include interface modifiers.

InterfaceModifiers:
InterfaceModifier
InterfaceModifiers InterfaceModifier

InterfaceModifier: one of
Annotation public protected private
abstract static strictfp

If an annotation a (89.7) on an interface declaration corresponds to an
annotation type T (89.6), and T has a (meta-)annotation m that corresponds



INTERFACES Generic Interfaces and Type Parameters

to annotation.Target, then m must have an eement whose value is
annotation.ElementType.TYPE, Or acompile-time error occurs.

The access modifiers protected and private pertain only to member interfaces
within adirectly enclosing class or enum declaration (88.5.1).

The modifier static pertains only to member interfaces (88.5, §9.5), not to top
level interfaces.

It is a compile-time error if the same modifier appears more than once in an
interface declaration.

9.1.1.1 abstract Interfaces

Every interfaceisimplicitly abstract.

9.1.1.2 strictfp Interfaces

The effect of the strictfp modifier isto make all float or double expressions
within the interface declaration be explicitly FP-strict (815.4).

Thisimpliesthat al nested types declared in the interface areimplicitly strictfp.

9.1.2 GenericInterfacesand Type Parameters

Aninterfaceis generic if it declares one or more type variables (§84.4).

These type variables are known as the type parameters of the interface. The type
parameter section follows the interface name and is delimited by angle brackets.

In ainterface's type parameter section, a type variable T directly depends on a
type variable S if S isthe bound of T, while T depends on S if either T directly
dependson S or Tdirectly dependson atype variable Uthat dependson S (using this
definition recursively). It is a compile-time error if atype variable in ainterface's
type parameter section depends on itself.

A generic interface declaration defines a set of types, one for each possible
invocation of the type parameter section. All parameterized types share the same
interface at runtime.

It isacompile-time error to refer to atype parameter of an interface I anywherein
the declaration of afield or type member of I.

9.1.2

153



9.13

154

Superinterfaces and Subinterfaces INTERFACES

9.1.3 Superinterfaces and Subinterfaces

If an extends clauseis provided, then the interface being declared extends each of
the other named interfaces and therefore inherits the member types, methods, and
constants of each of the other named interfaces.

These other named interfaces are the direct superinterfaces of the interface being
declared.

Any classthat implements the declared interface is also considered to implement
all the interfaces that thisinterface extends.

Extendsl nterfaces:
extends InterfaceTypeList

Givena(possibly generic) interfacedeclarationfor I<F, . .., F,> (N2 0), thedirect
superinterfaces of theinterfacetype (84.5) I<Fy, . . ., F,> arethetypesgiveninthe
extends clause of the declaration of I if an extends clauseis present.

Let 1<F;,...,F> (n > 0), be a generic interface declaration. The direct
superinterfaces of the parameterized interface type 1<74, ..., T,>, Where T; (1 <
i <n)isatype are al types J<U; ,..,Uc 0>, where J<Uy,...,U> is adirect
superinterface of I<Fy, ..., F,>, and 8 isthe substitution [F;:=T;, ..., Fy:=T,].

Each InterfaceType in the extends clause of an interface declaration must name
an accessible (86.6) interface type; otherwise a compile-time error occurs.

Aninterface I directly dependson atype Tif Tismentioned inthe extends clause
of I either as a superinterface or as aqualifier within a superinterface name.

Aninterface T dependson areferencetype Tif any of thefollowing conditionshold:
 Idirectly dependson T.
 Idirectly dependson aclass C that depends (88.1.5) on T.

I directly depends on an interface J that depends on T (using this definition
recursively).

It isacompile-time error if an interface depends on itself.

While every class is an extension of class Object, there is no single interface of
which al interfaces are extensions.

The superinterface relationship is the transitive closure of the direct superinterface
relationship. An interface K is a superinterface of interface I if either of the
following istrue:

» Kisadirect superinterface of I.



INTERFACES Interface Body and Member Declarations 9.14

» There exists an interface J such that K is a superinterface of J, and J is a
superinterface of I,applying this definition recursively.

Interface I issaid to be asubinterface of interface kK whenever K is asuperinterface
of I.

9.1.4 Interface Body and Member Declarations

Thebody of aninterface may declare members of theinterface, that is, fields(89.3),
methods (89.4), classes (89.5), and interfaces (89.5).

InterfaceBody:
{ InterfaceMember Declarationsgp: }

InterfaceMember Declarations:
InterfaceMember Declaration
I nterfaceMember Declar ations | nterfaceMember Declar ation

InterfaceMember Declaration:
ConstantDeclaration
AbstractMethodDeclar ation
ClassDeclaration
InterfaceDeclaration

9.2 Interface Members

The members of an interface are;
* Those members declared in the interface.
» Those members inherited from direct superinterfaces.

« If aninterface hasno direct superinterfaces, then theinterfaceimplicitly declares
apublic abstract member method mwith signature s, returntype r, and throws
clause t corresponding to each pub11 c instance method mwith signature s, return
type r, and throws clause t declared in Object, unless a method with the same
signature, samereturntype, and acompatible throws clauseisexplicitly declared
by the interface.

It is a compile-time error if the interface explicitly declares such a method min
the case where m is declared to be final in Object.

155



9.3

156

Field (Constant) Declarations INTERFACES

It follows that is a compile-time error if the interface declares a method with a
signature that is override-equivalent (88.4.2) to apub1ic method of Object, but
has a different return type or incompatible throws clause.

The interface inherits, from the interfaces it extends, all members of those
interfaces, except for fields, classes, and interfaces that it hides and methods that
it overrides.

Fields, methods, and member types of an interface type may have the same name,
since they are used in different contexts and are disambiguated by different lookup
procedures (86.5). However, thisis discouraged as a matter of style.

9.3 Fidld (Constant) Declarations

ConstantDeclaration:
ConstantModifiersoe Type VariableDeclarators ;

ConstantModifiers:
ConstantModifier
ConstantModifier ConstantModifers

ConstantModifier: one of
Annotation public static final

If an annotation a (89.7) on afield declaration corresponds to an annotation type
T(89.6), and T has a (meta-)annotation m that correspondsto annotation.Target,
then m must have an element whose valueis annotation.ElementType.FIELD, Or
a compile-time error occurs.

Every field declaration in the body of an interface is implicitly public, static,
and final. It is permitted to redundantly specify any or al of these modifiers for
such fields.

It is a compile-time error if the same modifier appears more than once in afield
declaration.

The declared type of a field is denoted by the Type that appears in the field
declaration, followed by any bracket pairs that follow the Identifier in the
declarator.



INTERFACES Initialization of Fields in Interfaces

If theinterface declares afield with acertain name, then the declaration of that field
issaid to hide any and all accessible declarations of fields with the same name in
superinterfaces of the interface.

It is a compile-time error for the body of an interface declaration to declare two
fields with the same name.

It is possible for an interface to inherit more than one field with the same name.
Such asituation doesnot initself cause acompile-timeerror. However, any attempt
within the body of the interface to refer to any such field by its simple name will
result in a compile-time error, because such areference is ambiguous.

Theremight be several paths by which the samefield declaration might beinherited
from an interface. In such a situation, the field is considered to be inherited only
once, and it may be referred to by its simple name without ambiguity.

9.3.1 Initialization of Fieldsin Interfaces

Every field in the body of aninterface must have aninitialization expression, which
need not be a constant expression.

The variable initializer is evaluated and the assignment performed exactly once,
when the interface isinitialized (§12.4).

It is a compile-time error if an initialization expression for an interface field
contains a reference by simple name to the same field or to another field whose
declaration occurs textually later in the same interface.

One subtlety hereisthat, at run time, fields that are initialized with compile-time
constant values are initialized first. This applies also to static final fieldsin
classes(88.3.2.1). Thismeans, in particular, that these fieldswill never be observed
to havetheir default initial values(84.12.5), even by deviousprograms. See 812.4.2
and 813.4.9 for more discussion.

If the keyword this (815.8.3) or the keyword super (815.11.2, §15.12) occursin
an initialization expression for afield of an interface, then unless the occurrenceis
within the body of an anonymous class (815.9.5), a compile-time error occurs.

931

157



9.4

158

Abstract Method Declarations INTERFACES

9.4 Abstract Method Declarations

AbstractMethodDeclaration:
AbstractMethodModifier sy, TypeParameter sy, Result
MethodDeclarator Throwsgp ;

AbstractMethodModifiers:;
AbstractMethodModifier
AbstractMethodModifiers AbstractMethodModifier

AbstractMethodModifier: one of
Annotation public abstract

If an annotation a (89.7) on amethod declaration corresponds to an annotation type
T(89.6), and T has a (meta-)annotation m that correspondsto annotation.Target,
then m must have an element whose value is annotation.ETementType.METHOD,
or acompile-time error occurs.

Every method declaration in the body of an interface isimplicitly pub1ic (86.6).

Every method declaration in the body of an interfaceisimplicitly abstract, soits
body is always represented by a semicolon, not a block.

It is permitted, but discouraged as a matter of style, to redundantly specify the
pub1ic and/or abstract modifier for amethod declared in an interface.

Itisacompile-timeerror if the same modifier appears more than once on a method
declared in an interface.

It isacompile-time error if amethod declared in an interface is declared static,
because static methods cannot be abstract.

Itisacompile-timeerror if amethod declared inaninterfaceisstrictfp ornative
or synchronized, because those keywords describe implementation properties
rather than interface properties.

However, amethod declared in an interface may be implemented by a method that
is declared strictfp or native Or synchronized in a class that implements the
interface.

It isacompile-time error if amethod declared in an interface is declared final.

However, amethod declared in an interface may be implemented by a method that
isdeclared final in aclass that implements the interface.



INTERFACES Inheritance and Overriding 94.1

It is a compile-time error for the body of an interface to declare, explicitly or
implicitly, two methods with override-equivalent signatures (88.4.2).

However, an interface may inherit several methods with such signatures (89.4.1).

A method in aninterface may be generic. Therulesfor type parameters of ageneric
method in an interface are the same as for a generic method in aclass (88.4.4).

9.4.1 Inheritanceand Overriding

Aninstance method m; declared in aninterface I overridesanother instance method,
my, declared in interface J iff both of the following are true:

» Iisasubinterface of J.
» The signature of m; is a subsignature (88.4.2) of the signature of m,.

If amethod declaration d; with return type R; overrides or hides the declaration of
another method d, with return type R,, then d; must be return-type-substitutable
(88.4.5) for d,, or acompile-time error occurs.

Furthermore, if R; is not a subtype of R,, an unchecked warning must be issued.

Moreover, a method declaration must not have a throws clause that conflicts
(88.4.6) with that of any method that it overrides; otherwise, a compile-time error
occurs.

Itisacompile-timeerror if atype declaration Thas amember method m; and there
exists amethod m, declared in T or a supertype of T such that all of the following
conditions hold:

» m; and m, have the same name.
* m,isaccessiblefrom T.
» The signature of m; is not a subsignature (88.4.2) of the signature of m,.

» The signature of m; or some method m; overrides (directly or indirectly) has the
same erasure as the signature of m, or some method m, overrides (directly or
indirectly).

Methods are overridden on a signature-by-signature basis. If, for example, an
interface declares two pub1ic methods with the same name, and a subinterface
overrides one of them, the subinterface still inherits the other method.

An interface inherits from its direct superinterfaces all methods of the
superinterfaces that are not overridden by a declaration in the interface.

159



9.4.2

160

Overloading INTERFACES

It is possible for an interface to inherit several methods with override-equivalent
signatures (88.4.2). Such a situation does not in itself cause a compile-time error.
The interface is considered to inherit all the methods.

However, one of the inherited methods must be return-type-substitutable for any
other inherited method; otherwise, a compile-time error occurs. (The throws
clauses do not cause errorsin this case.)

There might be several paths by which the same method declaration is inherited
from an interface. This fact causes no difficulty and never, of itself, resultsin a
compile-time error.

9.4.2 Overloading

If two methods of aninterface (whether both declared in the sameinterface, or both
inherited by an interface, or one declared and one inherited) have the same name
but different signatures that are not override-equivaent (88.4.2), then the method
nameis said to be overloaded.

This fact causes no difficulty and never of itself results in a compile-time error.
There is no required relationship between the return types or between the throws
clauses of two methods with the same name but different signatures that are not
override-equivalent.

9.5 Member Type Declarations

Interfaces may contain member type declarations (88.5).

A member type declaration in an interface is implicitly static and public. It is
permitted to redundantly specify either or both of these modifiers.

It isacompile-time error if the same modifier appears more than oncein amember
type declaration in an interface.

If a member type declared with simple name C is directly enclosed within the
declaration of an interface with fully qualified name n, then the member type has
the fully qualified name N. C.

If the interface declares amember type with a certain name, then the declaration of
that type is said to hide any and all accessible declarations of member types with
the same name in superinterfaces of the interface.



INTERFACES Annotation Types

An interface inherits from its direct superinterfaces all the non-private member
types of the superinterfaces that are both accessible to code in the interface and not
hidden by a declaration in the interface.

An interface may inherit two or more type declarations with the same name. It
is a compile-time error to attempt to refer to any ambiguously inherited class or
interface by its simple name.

If the same type declaration is inherited from an interface by multiple paths, the
class or interface is considered to be inherited only once; it may be referred to by
its simple name without ambiguity.

9.6 Annotation Types

An annotation type declaration is a special kind of interface declaration. To
distinguish an annotation type declaration from an ordinary interface declaration,
the keyword interface is preceded by an at-sign (@).

AnnotationTypeDeclaration:
InterfaceModifiersy: @ interface Identifier AnnotationTypeBody

AnnotationTypeBody:
{ AnnotationTypeElementDeclarationsyp

AnnotationTypeElementDeclarations:
AnnotationTypeElementDeclaration
AnnotationTypeElementDeclarations AnnotationTypeElementDeclaration

If an annotation a on an annotation type declaration corresponds to an
annotation type 7, and T has a (meta)annotation m that corresponds to
annotation.Target, then m must have either an element whose vaue is
annotation.ElementType.ANNOTATION_TYPE, or an element whose value is
annotation.ElementType.TYPE, Or acompile-time error occurs.

Theldentifier in an annotation type declaration specifiesthe name of the annotation
type.

It is a compile-time error if an annotation type has the same simple name as any
of its enclosing classes or interfaces.

The direct superinterfface of an annotation type is aways
annotation.Annotation.

9.6

161



9.6.1

162

Annotation Type Elements INTERFACES

An annotation type declaration inherits several members from
annotation.Annotation, including the implicitly declared methods
corresponding to the instance methods in Object, yet these methods do not define
elements (89.6.1) of the annotation typeand itisillegal to use them in annotations.

Unless explicitly modified herein, all of the rules that apply to ordinary interface
declarations apply to annotation type declarations.

9.6.1 Annotation Type Elements

Each method declaration in an annotation type declaration defines an element of
the annotation type.

Annotation types can have zero or more elements. An annotation type has no
elements other than those defined by the methods it explicitly declares.

AnnotationTypeElementDeclaration:
AbstractMethodModifiersyy Type Identifier ( ) Dimsgy DefaultValuegy ;
ConstantDeclaration
ClassDeclaration
InterfaceDeclaration
EnumDeclaration
AnnotationTypeDeclaration

DefaultValue:
default ElementValue

It is a compile-time error if the return type of a method declared in an annotation
typeisnot oneof thefollowing: aprimitivetype, String, Class, any parameterized
invocation of Class, an enum type (88.9), an annotation type, or an array type
(Chapter 10, Arrays) whose element type is one of the preceding types.

It is a compile-time error if any method declared in an annotation type has a
signature that is override-equivalent to that of any public or protected method
declared in classObject or in the interface annotation.Annotation.

It is a compile-time error if an annotation type declaration T contains an element
of type T, either directly or indirectly.

By convention, the name of the sole element in a single-element annotation type
isvalue. Linguistic support for this convention is provided by the single element
annotation construct (89.7.3); one must obey the convention in order to take
advantage of the construct.



INTERFACES Defaults for Annotation Type Elements

9.6.2 Defaultsfor Annotation Type Elements

An annotation type element may have a default value specified for it. Thisis done
by following its (empty) parameter list with the keyword default and the default
value of the element.

Defaultsare applied dynamically at thetime annotationsareread; default valuesare
not compiled into annotations. Thus, changing a default value affects annotations
even in classes that were compiled before the change was made (presuming these
annotations lack an explicit value for the defaulted element).

An ElementValue (89.7) is used to specify adefault value.

Itisacompile-timeerror if thetype of the element isnot commensurate (89.7) with
the default value specified.

9.6.3 Predefined Annotation Types

Several annotation types are predefined in the libraries of the Java SE platform.
Some of these predefined annotation types have special semantics. These semantics
are specified in this section. This section does not provide a complete specification
for the predefined annotations contained herein; that is the role of the appropriate
API specifications. Only those semantics that require specia behavior on the part
of aJava compiler or Java virtual machine implementation are specified here.

9.6.3.1 Target

The annotation type annotation.Target is intended to be used in meta
annotations that indicate the kind of program element that an annotation type is
applicable to.

annotation.Target has one element, of type annotation.ElementType[].

It is a compile-time error if a given enum constant appears more than once in an
annotation whose corresponding typeis annotation.Target.

9.6.3.2 Retention

Annotations may be present only in source code, or they may be present in the
binary form of aclass or interface. An annotation that is present in the binary form
may or may not be available at run-time viathe reflection libraries of the Java SE
platform. The annotation type annotation.Retention is used to choose among
these possihilities.

9.6.2

163



9.6.3

164

Predefined Annotation Types INTERFACES

If an annotation a corresponds to a type T, and T has a (meta-)annotation m that
correspondsto annotation.Retention, then:

 |f mhasan element whosevalueisannotation.RetentionPol1icy.SOURCE, then
aJava compiler must ensure that a is not present in the binary representation of
the class or interface in which a appears.

» |f m has an element whose value is annotation.RetentionPolicy.CLASS, or
annotation.RetentionPolicy.RUNTIME, thenaJavacompiler must ensurethat
a is represented in the binary representation of the class or interface in which a
appears, unless m annotates alocal variable declaration.

An annotation on a local variable declaration is never retained in the binary
representation.

In addition, if m has an edement whose value s
annotation.RetentionPolicy.RUNTIME, thereflection libraries of the Java SE
platform must make a available at run-time.

If T does not have a (meta)annotation m that corresponds to
annotation.Retention, then a Java compiler must treat T as if it
does have such a meta-annotation m with an element whose value is
annotation.RetentionPolicy.CLASS.

9.6.3.3 Inherited

Theannotationtypeannotation.Inheritedisused toindicatethat annotationson
aclass C corresponding to agiven annotation type are inherited by subclasses of C.

9.6.3.4 Override

Programmers occasionally overload a method declaration when they mean to
override it, leading to subtle problems. The annotation type Override supports
early detection of such problems.

If amethod declaration isannotated with the annotation @override, but the method
doesnot infact override or implement amethod of asupertype, or apub1ic method
of Object, acompile-time error will occur.

9.6.3.5 SuppressWarnings

The annotation type SuppressWarnings supports programmer control over
warnings otherwise issued by a Java compiler. It contains a single element that is
an array of String.



INTERFACES Annotations

If a program declaration is annotated with the annotation
@SuppressWarnings(value = {S;, ..., S¢3), then aJava compiler must not
report any warning identified by one of S; ... Sy if that warning would have been
generated as aresult of the annotated declaration or any of its parts.

Unchecked warnings are identified by the string "unchecked".

9.6.3.6 Deprecated

A program element annotated @Deprecated iS one that programmers are
discouraged from using, typically because it is dangerous, or because a better
alternative exists.

A Java compiler must produce a warning when a deprecated type, method, field,
or constructor is used (overridden, invoked, or referenced by name) unless:

* The use is within an entity that itself is is annotated with the annotation
@Deprecated; Or

» The declaration and use are both within the same outermost class; or

» Theusesiteiswithin an entity that is annotated to suppress the warning with the
annotation @SuppressWarnings (""deprecation').

Use of the annotation @Deprecated on a local variable declaration or on a
parameter declaration has no effect.

9.7 Annotations

An annotationisamodifier consisting of the name of an annotation type (89.6) and
zero or more element-value pairs, each of which associates avalue with adifferent
element of the annotation type.

The purpose of an annotation is simply to associate information with the annotated
program element.

Annotations must contain an element-value pair for every element of the
corresponding annotation type, except for those elements with default values, or a
compile-time error occurs.

Annotations may, but are not required to, contain element-value pairs for elements
with default values.

Annotations may be used asmodifiersin any declaration, whether package (§7.4.1),
class (88.1.1) (including enums (88.9)), interface (89.1.1) (including annotation

9.7

165



9.71

166

Normal Annotations INTERFACES

types(89.6)), field (88.3.1, §9.3), method (88.4.3, §9.4), formal parameter (§8.4.1),
constructor (88.8.3), or local variable (§814.4.1).

Annotations may also be used on enum constants. Such annotations are placed
immediately before the enum constant they annotate.

Itisacompile-timeerror if adeclaration isannotated with morethan one annotation
for agiven annotation type.

Annotations:
Annotation
Annotations Annotation

Annotation:
Normal Annotation
Marker Annotation
SngleElementAnnotation

There are three kinds of annotations. The first (norma annotation) is fully
general. The others (marker annotation and single-element annotation) are merely
shorthands.

9.7.1 Normal Annotations

A normal annotation is used to annotate a program element.



INTERFACES Normal Annotations

Normal Annotation:
@ TypeName ( ElementValuePairsyy )

ElementVal uePairs;
ElementValuePair
ElementValuePairs , ElementValuePair

ElementValuePair:
Identifier = ElementValue

ElementValue:
Conditional Expression
Annotation
ElementValueArraylnitializer

ElementValueArraylnitializer:
{ ElementValuesypt , opt }

ElementVal ues:
ElementValue
ElementValues , ElementValue

The TypeName names the annotation type corresponding to the annotation.

It is a compile-time error if TypeName does not name an annotation type that is
accessible (86.6) at the point where the annotation is used.

The Identifier in an ElementValuePair must be the simple name of one of the
elements (i.e. methods) of the annotation type identified by TypeName; otherwise,
a compile-time error occurs.

The return type of this method defines the element type of the element-value pair.

An element type T is commensurate with an element value v if and only if one of
the following conditionsis true:

e Tisanarray type E[] and either:

o Visan ElementValueArraylnitializer and each ElementValue (analogousto a
Variablelnitializer in an array initializer) in v is commensurate with E; or

o visan ElementValue that is commensurate with E.
* Thetype of Vvisassignment compatible (85.2) with T, and furthermore:

o If Tisaprimitive type or String, and v isa constant expression (815.28).

9.7.1

167



9.7.2

168

Marker Annotations INTERFACES

0 visnot null.
o If TisClass, or aninvocation of Class, and vVisaclasslitera (815.8.2).
o If Tisan enum type, and Vis an enum constant.

It is a compile-time error if the element type is not commensurate with the
ElementValue.

If the element type is not an annotation type or an array type, ElementValue must
be a Conditional Expression (815.25).

If the element type is an array type and the corresponding ElementValue is not
an ElementValueArraylnitializer, then an array value whose sole element is the
value represented by the ElementValue is associated with the element. Otherwise,
if the corresponding ElementValue is an ElementValueArraylnitializer, then the
array value represented by the ElementValueArraylnitializer is associated with the
element.

An ElementValue is aways FP-strict (815.4).
An annotation on an annotation type declaration is known as a meta-annotation.

An annotation type may be used to annotate its own declaration. More generally,
circularitiesin the transitive closure of the "annotates' relation are permitted.

9.7.2 Marker Annotations

The second form of annotation, marker annotation, isashorthand designed for use
with marker annotation types.

Marker Annotation:
@ ldentifier

It is shorthand for the normal annotation:

@Identifier(Q)
Note that it is legal to use the marker annotation form for annotation types with
elements, so long as al the elements have default values.

9.7.3 Single-Element Annotations

The third form of annotation, single-element annotation, is a shorthand designed
for use with single-element annotation types.



INTERFACES Sngle-Element Annotations 9.7.3

SngleElementAnnotation:
@ ldentifier ( ElementValue)

It is shorthand for the normal annotation:
@Identifier(value = ElementValue)

Note that it is legal to use single-element annotations for annotation types with
multiple elements, so long as one element is named value, and all other elements
have default values.

169



9.7.3 Sngle-Element Annotations INTERFACES

170



CHAPTER 10

Arrays

I N the Java programming language, arrays are objects (84.3.1), are dynamically
created, and may be assigned to variables of type Object (84.3.2). All methods of
class Object may beinvoked on an array.

An array object contains a number of variables. The number of variables may be
zero, in which case the array is said to be empty. The variables contained in an
array have no names; instead they are referenced by array access expressions that
use non-negative integer index values. These variables are called the components
of the array. If an array has n components, we say n is the length of the array;
the components of the array are referenced using integer indicesfromOton - 1,
inclusive.

All the components of an array have the same type, called the component type of
the array. If the component type of an array is T, then the type of the array itself
iswritten T[].

The value of an array component of type float is aways an element of the float
value set (84.2.3); similarly, the value of an array component of type double is
always an element of the double value set. It is not permitted for the value of an
array component of type float to be an element of the float-extended-exponent
value set that is not also an element of the float value set, nor for the value of an
array component of type doub1e to be an element of the doubl e-extended-exponent
value set that is not also an element of the double value set.

The component type of an array may itself be an array type. The components
of such an array may contain references to subarrays. If, starting from any array
type, one considers its component type, and then (if that is also an array type) the
component type of that type, and so on, eventually one must reach a component
type that is not an array type; thisis called the element type of the origina array,
and the components at thislevel of the data structure are called the elements of the
original array.

171



10.1

172

Array Types ARRAYS

There are some situations in which an element of an array can be an array: if the
element typeisObject or Cloneable Or java.io.Serializable, then someor all
of the elements may be arrays, because any array object can be assigned to any
variable of these types.

10.1 Array Types

Array types are used in declarations and in cast expressions (815.16).

An array type is written as the name of an element type followed by some number
of empty pairs of square brackets [1. The number of bracket pairs indicates the
depth of array nesting.

An array'slength is not part of itstype.

The element type of an array may be any type, whether primitive or reference. In
particular:

« Arrays with an interface type as the element type are alowed. An element of
such an array may have as its value a null reference or an instance of any type
that implements the interface.

» Arrayswith an abstract classtype asthe element type are allowed. An element
of such an array may have as its value a null reference or an instance of any
subclass of the abstract classthat isnot itself abstract.

The direct superclass of an array typeisObject.

Every aray type implements the interfaces Cloneable and
java.io.Serializable.

10.2 Array Variables

A variable of array type holds areferenceto an object. Declaring avariable of array
type does not create an array object or alocate any space for array components. It
creates only the variable itself, which can contain areference to an array.

However, the initializer part of a declarator (88.3, §9.3, §14.4.1) may create an
array, areference to which then becomes theinitial value of the variable.

The [1 may appear as part of the type at the beginning of the declaration, or as part
of the declarator for a particular variable, or both.



ARRAYS Array Creation

In avariable declaration (88.3, 88.4.1, 89.3, 814.14, 814.20) except for avariable
arity parameter or , the array type of avariable is denoted by the array type that
appears at the beginning of the declaration, followed by any bracket pairs that
follow the variable's Identifier in the declarator.

We do not recommend "mixed notation” in an array variable declaration, where
brackets appear on both the type and in declarators.

Oncean array object iscreated, itslength never changes. To make an array variable
refer to an array of different length, areferenceto adifferent array must be assigned
to the variable.

A singlevariableof array type may contain referencesto arrays of different lengths,
because an array's length is not part of its type.

If an array variable v has type A[1, where A is areference type, then v can hold a
referenceto an instance of any array type B[], provided B can be assigned to A. This
may result in arun-time exception on alater assignment; see 810.5 for adiscussion.

10.3 Array Creation

An array is created by an array creation expression (815.10) or an array initializer
(810.6).

An array creation expression specifies the element type, the number of levels of
nested arrays, and the length of the array for at least one of the levels of nesting.
The array'slength is available as a final instance variable Tength.

It isacompile-time error if the element type is not areifiable type (84.7)

An array initializer creates an array and provides initial values for al its
components.

10.4 Array Access

A component of an array is accessed by an array access expression (§15.13) that
consists of an expression whosevalueisan array referencefollowed by anindexing
expression enclosed by [ and 1, asin A[i]. All arrays are 0-origin. An array with
length n can be indexed by theintegerso ton - 1.

10.3

173



10.5

174

Array Store Exception ARRAYS

Arrays must be indexed by int values, short, byte, or char values may aso
be used as index values because they are subjected to unary numeric promotion
(85.6.1) and become int values.

An attempt to access an array component with a Tong index value results in a
compile-time error.

All array accesses are checked at run time; an attempt to use an index that
is less than zero or greater than or equal to the length of the array causes an
ArrayIndexOutOfBoundsException to be thrown.

10.5 Array Store Exception

An assignment to an element of an array whose typeis A[], where Aisareference
type, is checked at run-time to ensure that the value assigned can be assigned to
the actual element type of the array, where the actual element type may be any
reference type that is assignable to A.

If the value assigned to the element is not assignment-compatible (85.2) with the
actual element type, an ArrayStoreException isthrown.

10.6 Array Initializers

Anarray initializer may be specified in adeclaration (88.3, 89.3, 814.4), or as part
of an array creation expression (815.10), to create an array and provide someinitial
values.

Arraylnitializer:
{ Variablelnitializersopt , opt }

Variablelnitializers:
Variablelnitializer
Variablelnitializers , Variablelnitializer

An array initializer is written as a comma-separated list of expressions, enclosed
by braces { and }.

A trailing comma may appear after the last expression in an array initializer and
isignored.



ARRAYS Array Members

The length of the array to be constructed is equal to the number of variable
initializers immediately enclosed by the braces of the array initializer. Space is
alocated for a new array of that length. If there is insufficient space to allocate
the array, evaluation of the array initializer completes abruptly by throwing an
OutOfMemoryError. Otherwise, aone-dimensional array is created of the specified
length, and each component of the array isinitialized to its default value (84.12.5).

Thevariableinitializersimmediately enclosed by the braces of the array initializer
are then executed from left to right in the textual order they occur in the source
code. Then'th variableinitializer specifiesthe value of the n-1'th array component.
If execution of avariableinitializer completes abruptly, then execution of the array
initializer completes abruptly for the same reason. If al the variable initializer
expressions complete normally, the array initializer completes normally, with the
value of the newly initialized array.

Each variable initializer must be assignment-compatible (85.2) with the array's
component type, or a compile-time error occurs.

It isacompile-time error if the component type of the array being initialized is not
reifiable (84.7).

If the component type is an array type, then the variable initializer specifying a
component may itself bean array initializer; that is, array initializers may be nested.
In this case, execution of the nested array initializer constructs and initializes
an array object by recursive application of this algorithm, and assigns it to the
component.

10.7 Array Members

The members of an array type are all of the following:

e Thepublic final field Tength, which contains the number of components of
the array. Tength may be positive or zero.

e The pub1ic method clone, which overrides the method of the same name in
class Object and throws no checked exceptions. The return type of the clone
method of an array type T[] is T[].

* All the members inherited from class Object; the only method of Object thatis
not inherited isits c1one method.

A clone of amultidimensional array is shallow, which isto say that it creates only
asingle new array. Subarrays are shared.

10.7

175



10.8

176

Class Objects for Arrays ARRAYS

10.8 ci1ass Objectsfor Arrays

Every array has an associated Class object, shared with all other arrays with the
same component type.

10.9 An Array of CharactersisNot a string

In the Java programming language, unlike C, an array of char is not a String,
and neither a String nor an array of char is terminated by "\u0000' (the NUL
character).

A String object isimmutable, that is, its contents never change, while an array of
char has mutable elements. The method toCharArray in class String returns an
array of characters containing the same character sequence asa String. The class
StringBuffer implements useful methods on mutable arrays of characters.



CHAPTER 11

Exceptions

WHEN a program violates the semantic constraints of the Java programming
language, the Javavirtual machine signalsthiserror to the program as an exception.
Anexampleof such aviolationisan attempt to index outside the bounds of an array.

Some programming languages and their implementations react to such errors by
peremptorily terminating the program; other programming languages alow an
implementation to react in an arbitrary or unpredictable way. Neither of these
approachesis compatible with the design goal s of the Java SE platform: to provide
portability and robustness.

Instead, the Java programming language specifies that an exception will be thrown
when semantic constraintsare violated and will causeanon-local transfer of control
from the point where the exception occurred to a point that can be specified by the
programmer. An exception is said to be thrown from the point where it occurred
and is said to be caught at the point to which control istransferred.

Programs can also throw exceptions explicitly, using throw statements (814.18).

Explicit use of throw statements provides an aternative to the old-fashioned style
of handling error conditions by returning funny values, such as the integer value
-1 where a negative value would not normally be expected. Experience shows that
too often such funny values are ignored or not checked for by callers, leading to
programs that are not robust, exhibit undesirable behavior, or both.

Every exception is represented by an instance of the class Throwable or one
of its subclasses; such an object can be used to carry information from the
point at which an exception occurs to the handler that catches it. Handlers are
established by catch clauses of try statements (814.20). During the process of
throwing an exception, the Java virtual machine abruptly completes, one by one,
any expressions, statements, method and constructor invocations, initializers, and
field initialization expressions that have begun but not completed execution in
the current thread. This process continues until a handler is found that indicates

177



111

178

The Kinds and Causes of Exceptions EXCEPTIONS

that it handles that particular exception by naming the class of the exception or
a superclass of the class of the exception. If no such handler is found, then the
exception may be handled by the current thread's uncaught exception handler, or
€l se by the uncaught exception handler of the ThreadGroup that isthe parent of the
current thread, or else by the global uncaught exception handler - thus every effort
is made to avoid letting an exception go unhandled.

The exception mechanism of the Java SE platform is integrated with its
synchronization model (817.1), so that locks are released as synchronized
statements (814.19) and invocations of synchronized methods (88.4.3.6, 815.12)
complete abruptly.

This chapter describesthe hierarchy of classes, rooted at Throwab1e, that represent
exceptions, and gives an overview of the causes of exceptions (811.1). It details
how exceptions are checked at compile-time (811.2) and processed at run-time
(811.3).

11.1 TheKindsand Causes of Exceptions

11.1.1 TheKinds of Exceptions

An exception isrepresented by an instance of theclassThrowab1e (adirect subclass
of Object) or one of its subclasses.

Throwable and al its subclasses are, collectively, the exception classes.
The classes Exception and Error are direct subclasses of ThrowabTe.

Exception isthe superclass of al the exceptionsthat ordinary programs may wish
to recover from.

Error and all itssubclassesare, collectively, theerror classes. They are exceptions
from which ordinary programs are not ordinarily expected to recover.

The class RuntimeException is a direct subclass of Exception.
RuntimeException and all its subclasses are, collectively, the runtime exception
classes. They are exceptions which may be thrown for many reasons during
expression evaluation, but from which recovery may still be possible.

The unchecked exception classes are the runtime exception classes and the error
classes.



EXCEPTIONS The Causes of Exceptions

The checked exception classes are all exception classes other than the unchecked
exception classes. That is, the checked exception classes are al subclasses of
Exception other than RuntimeException and its subclasses.

11.1.2 The Causes of Exceptions

An exception is thrown for one of three reasons:
* A throw Statement (814.18) was executed.

» Anabnormal execution condition was synchronously detected by the Javavirtual
machine.

Such conditions arise because:

0 evaluation of an expression violates the normal semantics of the language
(815.6), such as an integer divide by zero.

o an error occurs while loading, linking, or initializing part of the program
(812.2, 812.3, 812.4); in this case, an instance of a subclass of LinkageError
is thrown.

0 aninternal error or resource limitation prevents the Javavirtual machine from
implementing the semantics of the Java programming language; in this case,
an instance of a subclass of VirtualMachineError isthrown.

These exceptions are not thrown at an arbitrary point in the program, but rather at
apoint where they are specified as a possible result of an expression evaluation
or statement execution.

» An asynchronous exception occurred (811.1.3).

11.1.3 Asynchronous Exceptions

M ost exceptions occur synchronously asaresult of an action by thethread in which
they occur, and at a point in the program that is specified to possibly result in such
an exception. An asynchronous exception is, by contrast, an exception that can
potentially occur at any point in the execution of a program.

Asynchronous exceptions occur only as aresult of:
* Aninvocation of the (deprecated) stop method of classThread or ThreadGroup.

e An interna error in the Java virtual machine; in this case, the asynchronous
exception that is thrown is an instance of a subclass of InternalError or
UnknownError.

11.1.2

179



11.2

180

Compile-Time Checking of Exceptions EXCEPTIONS

The Java SE platform permits a small but bounded amount of execution to occur
before an asynchronous exception is thrown.

11.2 Compile-Time Checking of Exceptions

A Java compiler checks, at compile time, that a program contains handlers for
checked exceptions, by analyzing which checked exception types can result from
execution of amethod or constructor.

For each checked exception which is a possible result, the throws clause for the
method (88.4.6) or constructor (88.8.5) must mention the class of that exception
or one of the superclasses of the class of that exception. This compile-time
checking for the presence of exception handlersis designed to reduce the number
of exceptions which are not properly handled.

The checked exception classes (§11.1.1) named in the throws clause are part of
the contract between the implementor and user of the method or constructor. The
throws clause of an overriding method may not specify that this method will result
in throwing any checked exception which the overridden method is not permitted,
by its throws clause, to throw (88.4.8.3).

When interfaces are involved, more than one method declaration may be
overridden by a single overriding declaration. In this case, the overriding
declaration must have a throws clause that is compatible with all the overridden
declarations (89.4.1).

The unchecked exception classes (811.1.1) are exempted from compile-time
checking.

We say that a statement or expression can throw a checked exception type E if,
according to the rules given below, the execution of the statement or expression
can result in an exception of type E being thrown.

11.2.1 Exception Analysis of Expressions

A class instance creation expression (815.9) can throw an exception type E iff
either:

e The expression is a qualified class instance creation expression and the
qualifying expression can throw E; or

* Some expression of the argument list can throw E; or



EXCEPTIONS Exception Analysis of Satements

* Eisdetermined to be an exception type of the throws clause of the constructor
that is invoked (815.12.2.6); or

» Theclassinstance creation expression includes a ClassBody, and some instance
initializer block or instance variableinitializer expression in the ClassBody can
throw E.

A method invocation expression (815.12) can throw an exception type E iff either:

e The method to be invoked is of the form Primary.ldentifier and the Primary
expression can throw E; or

* Some expression of the argument list can throw E; or

» Eisdetermined to be an exception type of the throws clause of the method that
isinvoked (815.12.2.6).

For every other kind of expression, the expression can throw an exception type £
iff one of itsimmediate subexpressions can throw E.

11.2.2 Exception Analysis of Statements

A throw statement (814.18) whaose thrown expression has static type E can throw
E, or any exception type thrown by the thrown expression.

A try statement (814.20) can throw an exception type E iff either:

» The try block can throw E and E is not assignable to any catch parameter of
the try statement and either no finally block is present or the finally block
can complete normally; or

» Some catch block of the try statement can throw E and either no finally block
is present or the finally block can complete normally; or

» A finally block is present and can throw E.

Anexplicit constructor invocation statement (88.8.7.1) can throw an exceptiontype
E iff either:

» Some subexpression of the constructor invocation's parameter list can throw E;
or

* Eisdetermined to be an exception type of the throws clause of the constructor
that is invoked (815.12.2.6).

Any other statement S can throw an exception type E iff an expression or statement
immediately contained in Scan throw E.

11.2.2

181



11.2.3

182

Exception Checking EXCEPTIONS

11.2.3 Exception Checking

Itisacompile-timeerror if amethod or constructor body can throw some exception
type E when E is a checked exception type and E is hot a subtype of some type
declared in the throws clause of the method or constructor.

It is acompile-time error if aclass variable initializer (88.3.2) or static initializer
(88.7) of anamed class or interface can throw a checked exception type.

Itisacompile-time error if an instance variableinitializer or instance initializer of
a named class can throw a checked exception type unless that exception type or
one of its supertypesisexplicitly declared in the throws clause of each constructor
of its class and the class has at |east one explicitly declared constructor.

Itisacompile-timeerror if acatch clause catches checked exception type £; when
the try block corresponding tothe catch clause canthrow E, and £, isnot asubtype
of E;, unless E; is asupertype of Exception.

It isacompile-time error if acatch clause catches checked exception type £; and
apreceding catch block of the immediately enclosing try statement catches E; or
asupertype of E;.

11.3 Run-TimeHandling of an Exception

When an exception is thrown, control is transferred from the code that caused
the exception to the nearest dynamically-enclosing catch clause, if any, of atry
statement (814.20) that can handle the exception.

A statement or expression is dynamically enclosed by a catch clauseif it appears
within the try block of the try statement of which the catch clauseis a part, or
if the caller of the statement or expression is dynamically enclosed by the catch
clause.

The caller of a statement or expression depends on where it occurs:

* If within amethod, then the caller is the method invocation expression (815.12)
that was executed to cause the method to be invoked.

« If within a constructor or an instance initializer or the initializer for an instance
variable, then the caller is the class instance creation expression (815.9) or the
method invocation of newInstance that was executed to cause an object to be
created.



EXCEPTIONS Run-Time Handling of an Exception

e |f within astatic initializer or aninitializer for astatic variable, then the caller
isthe expression that used the class or interface so asto causeit to beinitialized
(812.4).

Whether a particular catch clause can handle an exception is determined by
comparing the class of the object that was thrown to the declared type of the
parameter of the catch clause. The catch clause can handle the exception if the
type of its parameter is the class of the exception or a superclass of the class of
the exception.

The control transfer that occurs when an exception is thrown causes abrupt
completion of expressions (815.6) and statements (814.1) until a catch clauseis
encountered that can handle the exception; execution then continues by executing
theblock of that catch clause. The codethat caused the exceptionisnever resumed.

All exceptions (synchronous and asynchronous) are precise: when the transfer of
control takes place, all effects of the statements executed and expressions eval uated
before the point from which the exception is thrown must appear to have taken
place. No expressions, statements, or parts thereof that occur after the point from
which the exception is thrown may appear to have been eval uated.

If no catch clausethat can handle an exception can befound, then the current thread
(the thread that encountered the exception) is terminated. Before termination, all
finally clauses are executed and the uncaught exception is handled according to
the following rules:

« If the current thread has an uncaught exception handler set, then that handler is
executed.

» Otherwise, the method uncaughtException is invoked for the ThreadGroup
that is the parent of the current thread. If the ThreadGroup and its parent
ThreadGroups do not override uncaughtException, then the default handler's
uncaughtException method isinvoked.

11.3

183



11.3 Run-Time Handling of an Exception EXCEPTIONS

184



CHAPTER 12

Execution

THIS chapter specifies activities that occur during execution of a program. It
is organized around the life cycle of the Java virtual machine and of the classes,
interfaces, and objects that form a program.

TheJavavirtual machine startsup by loading aspecified classand theninvoking the
method main inthisspecified class. Section 812.1 outlinestheloading, linking, and
initialization stepsinvolved in executing main, asan introduction to the conceptsin
this chapter. Further sections specify the details of loading (812.2), linking (812.3),
and initialization (812.4).

The chapter continues with a specification of the procedures for creation of new
classinstances (§812.5); and finalization of class instances (§12.6). It concludes by
describing the unloading of classes (812.7) and the procedure followed when a
program exits (812.8).

12.1 Javavirtual machine Start-Up

A Java virtual machine starts execution by invoking the method main of some
specified class, passing it a single argument, which is an array of strings. In the
examplesin this specification, thisfirst classistypicaly called Test.

The precise semantics of Javavirtual machine start-up are given in chapter 5 of The
Java Virtual Machine Specification. Here we present an overview of the process
from the viewpoint of the Java programming language.

The manner in which the initial classis specified to the Java virtual machine is
beyond the scope of this specification, but it is typical, in host environments that
use command lines, for the fully-qualified name of the class to be specified as a
command-line argument and for following command-line arguments to be used as
strings to be provided as the argument to the method main.

185



1211

186

Load the Class Test EXECUTION

We now outline the steps the Java virtual machine may take to execute Test, as
an example of the loading, linking, and initialization processes that are described
further in later sections.

12.1.1 LoadtheClassTest

Theinitial attempt to execute the method main of classTest discoversthat the class
Test isnot loaded - that is, that the Javavirtual machine does not currently contain
a binary representation for this class. The Java virtual machine then uses a class
loader to attempt to find such abinary representation. If this processfails, then an
error isthrown. Thisloading processis described further in §12.2.

12.1.2 Link Test: Verify, Prepare, (Optionally) Resolve

After Test isloaded, it must be initialized before main can beinvoked. And Test,
like al (class or interface) types, must be linked before it is initialized. Linking
involvesverification, preparation, and (optionally) resolution. Linking is described
further in 812.3.

Verification checks that the loaded representation of Test is well-formed, with a
proper symbol table. Verification also checks that the code that implements Test
obeys the semantic requirements of the Java programming language and the Java
virtual machine. If aproblemisdetected during verification, then an error isthrown.
Verification is described further in §12.3.1.

Preparation involves allocation of static storage and any data structures that are
used internally by the implementation of the Java virtual machine, such as method
tables. Preparation is described further in 812.3.2.

Resolution is the process of checking symbolic references from Test to other
classesand interfaces, by |oading the other classes and interfacesthat are mentioned
and checking that the references are correct.

Theresolution stepisoptional at thetimeof initial linkage. Animplementation may
resolve symbolic referencesfrom aclass or interface that isbeing linked very early,
eventothe point of resolving all symbolic referencesfrom the classesand interfaces
that are further referenced, recursively. (This resolution may result in errors from
these further loading and linking steps.) Thisimplementation choice representsone
extreme and is similar to the kind of "static" linkage that has been done for many
years in simple implementations of the C language. (In these implementations,
a compiled program is typicaly represented as an "a.out" file that contains a
fully-linked version of the program, including completely resolved linksto library



EXECUTION Initialize Test: Execute Initializers

routines used by the program. Copies of these library routines are included in the
"a.out" file)

An implementation may instead choose to resolve a symbolic reference only when
it isactively used; consistent use of this strategy for al symbolic references would
represent the "laziest" form of resolution. Inthiscase, if Test had several symbolic
references to another class, then the references might be resolved one at a time,
as they are used, or perhaps not at all, if these references were never used during
execution of the program.

The only requirement on when resolution is performed is that any errors detected
during resolution must be thrown at a point in the program where some action
is taken by the program that might, directly or indirectly, require linkage to the
classor interface involved in the error. Using the "static" example implementation
choice described above, loading and linkage errors could occur before the program
is executed if they involved a class or interface mentioned in the class Test or
any of the further, recursively referenced, classes and interfaces. In a system that
implemented the "laziest" resolution, these errors would be thrown only when an
incorrect symboalic referenceis actively used.

The resolution processis described further in §12.3.3.

12.1.3 Initialize Test: Execute I nitializers

In our continuing example, the Java virtual machine is still trying to execute the
method main of class Test. Thisis permitted only if the class has been initialized
(812.4.1).

Initialization consists of execution of any class variable initidizers and static
initializers of the class Test, in textua order. But before Test can be initialized,
itsdirect superclass must be initialized, aswell asthe direct superclass of its direct
superclass, and so on, recursively. In the simplest case, Test has Object as its
implicit direct superclass; if class Object has not yet been initialized, then it must
be initialized before Test is initialized. Class Object has no superclass, so the
recursion terminates here.

If class Test has another class Super as its superclass, then Super must be
initialized before Test. This requires loading, verifying, and preparing Super if
this has not aready been done and, depending on the implementation, may also
involve resolving the symbolic references from Super and so on, recursively.

Initialization may thus cause loading, linking, and initialization errors, including
such errorsinvolving other types.

12.1.3

187



12.1.4

188

Invoke Test.main EXECUTION

Theinitialization process is described further in §12.4.

12.1.4 InvokeTest.main

Finally, after completion of the initialization for class Test (during which other
consequential loading, linking, and initializing may have occurred), the method
main of Test isinvoked.

The method main must be declared public, static, and void. It must accept a
single argument that is an array of String. This method can be declared as either:

public static void main(String[] args)
or

public static void main(String... args)

12.2 Loading of Classes and I nterfaces

Loading refersto the process of finding the binary form of aclass or interface type
with a particular name, perhaps by computing it on the fly, but more typically by
retrieving a binary representation previously computed from source code by a Java
compiler, and constructing, from that binary form, aClass object to represent the
class or interface.

Theprecise semanticsof loading aregivenin chapter 5 of The Java Virtual Machine
Soecification. Here we present an overview of the process from the viewpoint of
the Java programming language.

Thebinary format of aclassor interfaceisnormally the c1ass fileformat described
in The Java Virtual Machine Specification cited above, but other formats are
possible, provided they meet the requirements specified in §13.1. The method
defineClass oOf class ClassLoader may be used to construct Class objects from
binary representationsin the class file format.

Well-behaved class |oaders maintain these properties:

» Given the same name, a good class loader should always return the same class
object.

 If aclassloader L1 delegates loading of a class C to another loader L2, then for
any type T that occurs as the direct superclass or a direct superinterface of ¢, or
as the type of afield in C, or as the type of aformal parameter of a method or



EXECUTION The Loading Process

constructor in ¢, or as areturn type of amethod in C, L1 and L2 should return
the same Class object.

A malicious class loader could violate these properties. However, it could not
undermine the security of the type system, because the Javavirtual machine guards
against this.

12.2.1 ThelL oading Process

The loading process is implemented by the class ClassLoader and its subclasses.
Different subclasses of ClasslLoader may implement different loading policies. In
particular, aclassloader may cache binary representations of classesand interfaces,
prefetch them based on expected usage, or load agroup of related classestogether.
These activities may not be completely transparent to a running application if, for
example, anewly compiled version of aclassisnot found because an older version
is cached by a class loader. It is the responsibility of a class loader, however, to
reflect loading errors only at points in the program where they could have arisen
without prefetching or group loading.

If an error occurs during class loading, then an instance of one of the following
subclasses of class LinkageError will be thrown at any point in the program that
(directly or indirectly) uses the type:

* ClassCircularityError: A class or interface could not be loaded because it
would be its own superclass or superinterface (813.4.4).

* ClassFormatError: The binary data that purports to specify a requested
compiled class or interface is malformed.

* NoClassDefFoundError: No definition for a requested class or interface could
be found by the relevant class |oader.

Because loading involves the allocation of new data structures, it may fail with an
OutOfMemoryError.

12.3 Linking of Classes and I nterfaces

Linking is the process of taking a binary form of a class or interface type and
combining it into the runtime state of the Java virtual machine, so that it can be
executed. A class or interface type is always loaded before it islinked.

Three different activities are involved in linking: verification, preparation, and
resolution of symbolic references.

1221

189



1231

190

Verification of the Binary Representation EXECUTION

The precise semanticsof linking are givenin chapter 5 of The Java Virtual Machine
Soecification. Here we present an overview of the process from the viewpoint of
the Java programming language.

This specification allows an implementation flexibility asto when linking activities
(and, because of recursion, loading) take place, provided that the semantics of the
language are respected, that aclass or interface is completely verified and prepared
beforeit isinitialized, and that errors detected during linkage are thrown at a point
in the program where some action is taken by the program that might require
linkage to the class or interface involved in the error.

For example, an implementation may choose to resolve each symbolic reference
inaclass or interface individually, only when it is used (lazy or late resolution), or
to resolve them all at once while the classis being verified (static resolution). This
means that the resolution process may continue, in some implementations, after a
class or interface has been initialized.

Because linking involves the allocation of new data structures, it may fail with an
OutOfMemoryError.

12.3.1 Verification of the Binary Representation

Verification ensures that the binary representation of a class or interface is
structuraly correct. For example, it checks that every instruction has a valid
operation code; that every branch instruction branches to the start of some other
instruction, rather than into the middle of an instruction; that every method is
provided with a structurally correct signature; and that every instruction obeys the
type discipline of the Java virtual machine language.

If an error occurs during verification, then an instance of the following subclass
of class LinkageError will be thrown at the point in the program that caused the
classto be verified:

» VerifyError: Thebinary definition for aclass or interface failed to pass a set of
required checks to verify that it obeys the semantics of the Java virtual machine
language and that it cannot violate the integrity of the Javavirtual machine. (See
§13.4.2, 813.4.4, 813.4.9, and 813.4.17 for some examples.)

12.3.2 Preparation of aClassor Interface Type

Preparation involves creating the static fields (class variables and constants) for
aclass or interface and initializing such fields to the default values (84.12.5). This



EXECUTION Resolution of Symbolic References

does not require the execution of any source code; explicit initializers for static
fields are executed as part of initialization (812.4), not preparation.

12.3.3 Resolution of Symbolic References

The binary representation of a class or interface references other classes and
interfacesand their fields, methods, and constructors symbolically, using the binary
names (813.1) of the other classes and interfaces (813.1). For fields and methods,
these symbolic references include the name of the class or interface type of which
the field or method is a member, as well as the name of the field or method itself,
together with appropriate type information.

Before a symbolic reference can be used it must undergo resolution, wherein a
symbolic reference is checked to be correct and, typicaly, replaced with a direct
reference that can be more efficiently processed if the referenceis used repeatedly.

If an error occurs during resolution, then an error will be thrown. Most
typically, this will be an instance of one of the following subclasses of the class
IncompatibleClassChangeError, but it may also be an instance of some other
subclass of IncompatibleClassChangeError or even an instance of the class
IncompatibleClassChangeError itself. Thiserror may be thrown at any point in
the program that uses a symbolic reference to the type, directly or indirectly:

* ITlegalAccessError: A symbolic reference hasbeen encountered that specifies
a use or assignment of a field, or invocation of a method, or creation of an
instance of a class, to which the code containing the reference does not have
access because the field or method was declared with private, protected, or
default access (not pub1ic), or because the class was not declared pubTic.

This can occur, for example, if a field that is originally declared public is
changed to be private after another class that refers to the field has been
compiled (813.4.7).

e InstantiationError: A symbolic reference has been encountered that is used
in class instance creation expression, but an instance cannot be created because
the reference turns out to refer to an interface or to an abstract class.

This can occur, for example, if aclassthat isoriginally not abstract is changed
to be abstract after another class that refers to the class in question has been
compiled (813.4.1).

* NoSuchFieldError: A symbolic reference has been encountered that refersto a
specific field of a specific class or interface, but the class or interface does not
contain afield of that name.

12.3.3

191



12.4

192

Initialization of Classes and Interfaces EXECUTION

This can occur, for example, if afield declaration was deleted from a class after
another class that refersto the field was compiled (813.4.8).

* NoSuchMethodError: A symbolic reference has been encountered that refersto
a specific method of a specific class or interface, but the class or interface does
not contain a method of that signature.

This can occur, for example, if a method declaration was deleted from a class
after another class that refers to the method was compiled (813.4.12).

Additionally, an UnsatisfiedLinkError (a subclass of LinkageError) may be
thrown if a class declares a native method for which no implementation can be
found. The error will occur if the method is used, or earlier, depending on what
kind of resolution strategy is being used by an implementation of the Java virtual
machine (812.3).

12.4 Initialization of Classes and I nterfaces

Initialization of a class consists of executing itsstatic initializersand theinitializers
for static fields (class variables) declared in the class.

Initialization of an interface consists of executing the initializers for fields
(constants) declared in the interface.

Before aclassisinitialized, its direct superclass must beinitialized, but interfaces
implemented by the class are not initialized. Similarly, the superinterfaces of an
interface are not initialized before the interface is initialized.

12.4.1 When Initialization Occurs

A classor interfacetype Twill beinitialized immediately beforethefirst occurrence
of any one of the following:

» Tisaclassand aninstance of Tis created.
» Tisaclassand astatic method declared by Tisinvoked.
» A static field declared by Tisassigned.

» A static field declared by T is used and the field is not a constant variable
(84.12.4).

» Tisatop-level class, and an assert statement (814.10) lexically nested within
T is executed.



EXECUTION Detailed Initialization Procedure

Invocation of certain reflective methods in class Class and in package
java.lang.reflect also causes class or interface initialization. A class or
interface will not be initialized under any other circumstance.

Theintent hereisthat aclass or interface type hasaset of initializersthat putitina
consistent state, and that this state isthe first state that is observed by other classes.
The static initializers and class variable initializers are executed in textual order,
and may not refer to class variables declared in the class whose declarations appear
textually after the use, even though these class variables are in scope (88.3.2.3).
This restriction is designed to detect, at compile time, most circular or otherwise
malformed initializations.

The fact that initialization code is unrestricted allows examples to be constructed
(88.3.2.3) where the value of a class variable can be observed when it still has
its initial default value, before its initializing expression is evaluated, but such
examples are rarein practice. (Such examples can be also constructed for instance
variable initialization; see the example at the end of §12.5). The full power of the
language is available in these initializers; programmers must exercise some care.
This power places an extra burden on code generators, but this burden would arise
in any case because the language is concurrent (§12.4.2).

Before a class is initialized, its superclasses are initialized, if they have not
previously been initialized.

A reference to a class field causes initialization of only the class or interface that
actually declares it, even though it might be referred to through the name of a
subclass, a subinterface, or a class that implements an interface.

Initialization of an interface does not, of itself, cause initiaization of any of its
superinterfaces.

12.4.2 Detailed Initialization Procedure

Because the Java programming language is multithreaded, initialization of aclass
or interface requires careful synchronization, since some other thread may betrying
toinitializethe sameclassor interface at the sametime. Thereisalso the possibility
that initialization of aclass or interface may be requested recursively as part of the
initialization of that class or interface; for example, avariableinitializer in class A
might invoke amethod of an unrelated class 8, which might inturn invoke amethod
of class A. The implementation of the Java virtual machine is responsible for
taking care of synchronization and recursive initialization by using the following
procedure. It assumesthat the C1ass object hasalready been verified and prepared,
and that the C1ass object contains state that indicates one of four situations:

124.2

193



12.4.2

194

Detailed Initialization Procedure EXECUTION

ThisClass object is verified and prepared but not initialized.
ThisClass object isbeing initialized by some particular thread T.
ThisClass object isfully initialized and ready for use.

This Class object isin an erroneous state, perhaps because initiaization was
attempted and failed.

For each class or interface C, thereisauniqueinitialization lock LC. The mapping
from C to LCis |eft to the discretion of the Java virtual machine implementation.
The procedure for initializing Cisthen asfollows:

1

Synchronize on theinitialization lock, LC, for C. Thisinvolveswaiting until the
current thread can acquire LC.

If theClass object for Cindicatesthat initialization isin progressfor C by some
other thread, then release L¢ and block the current thread until informed that
the in-progress initialization has completed, at which time repeat this step.

If the Class object for Cindicates that initialization isin progress for C by the
current thread, then this must be a recursive request for initialization. Release
LC and complete normally.

If the Class object for Cindicates that € has already been initialized, then no
further action is required. Release LC and complete normally.

If the Class object for C is in an erroneous state, then initialization is not
possible. Release LC and throw aNoClassDefFoundError.

Otherwise, record the fact that initialization of the Class object for Cisin
progress by the current thread, and release LC.

Then, initialize the final class variables and fields of interfaces whose values
are compile-time constants (88.3.2.1, §9.3.1, §13.4.9).

Next, if C is a class rather than an interface, and its superclass SC has not
yet been initialized, then recursively perform this entire procedure for SC. If
necessary, verify and prepare SC first. If the initialization of SC completes
abruptly because of athrown exception, then acquire LC, label the C1ass object
for caserroneous, notify all waiting threads, release L ¢, and compl ete abruptly,
throwing the same exception that resulted from initializing SC.

Next, determine whether assertions are enabled (814.10) for C by querying its
defining class loader.



EXECUTION Creation of New Class Instances

10.

11.

12.

Next, execute either the class variable initidlizers and static initializers of the
class, or the field initiaizers of the interface, in textual order, as though they
were a single block.

If the execution of the initializers completes normally, then acquire L, label
theClass object for Casfully initialized, notify all waiting threads, release LC,
and complete this procedure normally.

Otherwise, the initializers must have completed abruptly by throwing some
exception E. If the class of Eisnot Error or one of its subclasses, then create
a new instance of the class ExceptionInInitializerError, with E as the
argument, and use this object in place of E in the following step. But if a
new instance of ExceptionInInitializerError cannot be created because
an OutOfMemoryError occurs, then instead use an OutOfMemoryError object
in place of £in the following step.

Acquire LC, label the Class object for C as erroneous, notify all waiting
threads, release LC, and complete this procedure abruptly with reason E or its
replacement as determined in the previous step.

12.5 Creation of New Class I nstances

A new class instance is explicitly created when evaluation of a class instance
creation expression (815.9) causes a class to be instantiated.

A new class instance may be implicitly created in the following situations:

» Loading of aclassor interfacethat containsaString literal (83.10.5) may create
anew String object to represent that literal. (This might not occur if the same
String has previously been interned (83.10.5).)

» Execution of an operation that causes boxing conversion (85.1.7). Boxing
conversion may create a new object of a wrapper class associated with one of
the primitive types.

Execution of a string concatenation operator (815.18.1) that is not part of a

constant expression sometimes creates a new String object to represent the
result. String concatenation operators may also create temporary wrapper objects
for avalue of a primitive type.

Each of these situations identifies a particular constructor (88.8) to be called with
specified arguments (possibly none) as part of the class instance creation process.

12.5

195



125

196

Creation of New Class Instances EXECUTION

Whenever a new class instance is created, memory space is allocated for it with
room for all the instance variables declared in the class type and al the instance
variables declared in each superclass of the class type, including al the instance
variables that may be hidden (§8.3).

If there is not sufficient space available to allocate memory for the object, then
creation of the class instance completes abruptly with an OutOfMemoryError.
Otherwise, al the instance variables in the new object, including those declared in
superclasses, are initialized to their default values (84.12.5).

Just before a reference to the newly created object is returned as the result, the
indicated constructor is processed to initialize the new object using the following
procedure:

1. Assign the arguments for the constructor to newly created parameter variables
for this constructor invocation.

2. If this constructor begins with an explicit constructor invocation (88.8.7.1) of
another constructor in the sameclass (using this), then evaluate the arguments
and process that constructor invocation recursively using these same five
steps. If that constructor invocation completes abruptly, then this procedure
completes abruptly for the same reason; otherwise, continue with step 5.

3. This constructor does not begin with an explicit constructor invocation of
another constructor in the same class (using this). If this constructor is for
a class other than Object, then this constructor will begin with an explicit
or implicit invocation of a superclass constructor (using super). Evaluate the
arguments and processthat superclass constructor invocation recursively using
these same five steps. If that constructor invocation completes abruptly, then
this procedure completes abruptly for the same reason. Otherwise, continue
with step 4.

4. Executetheinstanceinitializers and instance variableinitializersfor thisclass,
assigning the values of instance variable initializers to the corresponding
instance variables, in the left-to-right order in which they appear textualy in
the source code for the class. If execution of any of these initializers results
in an exception, then no further initializers are processed and this procedure
completes abruptly with that same exception. Otherwise, continue with step 5.

5. Execute the rest of the body of this constructor. If that execution completes
abruptly, then this procedure completes abruptly for the same reason.
Otherwise, this procedure completes normally.

Unlike C++, the Java programming language does not specify altered rules for
method dispatch during the creation of a new class instance. If methods are



EXECUTION Finalization of Class Instances

invoked that are overridden in subclasses in the object being initialized, then these
overriding methods are used, even before the new object is completely initialized.

12.6 Finalization of Class | nstances

The class Object has a protected method called finalize; this method can be
overridden by other classes. The particular definition of finalize that can be
invoked for an object is called the finalizer of that object. Before the storage for an
object is reclaimed by the garbage collector, the Java virtual machine will invoke
the finalizer of that object.

Finalizers provide a chance to free up resources that cannot be freed automatically
by an automatic storage manager. In such situations, simply reclaiming the memory
used by an object would not guaranteethat the resourcesit held would bereclaimed.

The Java programming language does not specify how soon a finalizer will be
invoked, except to say that it will happen before the storage for the object isreused.
Also, the language does not specify which thread will invoke the finalizer for any
given object.

It is guaranteed that the thread that invokes the finalizer will not be holding any
user-visible synchronization locks when the finalizer is invoked.

If an uncaught exception isthrown during the finalization, the exception isignored
and finalization of that object terminates.

The completion of an object's constructor happens-before (817.4.5) the execution
of its finalize method (in the formal sense of happens-before).

The finalize method declared in class Object takes no action. Thefact that class
Object declaresafinalize method meansthat the finalize method for any class
can always invoke the finalize method for its superclass. This should always
be done, unless it is the programmer's intent to nullify the actions of the finalizer
in the superclass. (Unlike constructors, finalizers do not automatically invoke the
finalizer for the superclass; such an invocation must be coded explicitly.)

A finalizer may be invoked explicitly, just like any other method.

The package java.lang.ref describes weak references, which interact with
garbage collection and finalization. As with any API that has special interactions
with the language, implementors must be cognizant of any requirements imposed
by the java.lang. ref API. This specification does not discussweak referencesin
any way. Readers are referred to the APl documentation for details.

12.6

197



126.1

198

Implementing Finalization EXECUTION

12.6.1 Implementing Finalization

Every object can be characterized by two attributes: it may be reachable, finalizer-
reachable, or unreachable, and it may also be unfinalized, finalizable, or finalized.

A reachable object is any object that can be accessed in any potential continuing
computation from any live thread.

A finalizer-reachable object can be reached from some finalizable object through
some chain of references, but not from any live thread.

An unreachable object cannot be reached by either means.
An unfinalized object has never had its finalizer automatically invoked.
A finalized object has had its finalizer automatically invoked.

A finalizable object has never had its finalizer automatically invoked, but the Java
virtual machine may eventually automatically invoke its finalizer.

An object o is not finalizable until its constructor has invoked the constructor
for Object on o and that invocation has completed successfully (that is, without
throwing an exception). Every pre-finalization writeto afield of an object must be
visible to the finalization of that object. Furthermore, none of the pre-finalization
reads of fields of that object may see writes that occur after finalization of that
object isinitiated.

12.6.1.1 Interaction with the Memory Model

It must be possible for the memory model (817.4) to decide when it can commit
actions that take place in a finalizer. This section describes the interaction of
finalization with the memory model.

Each execution has a number of reachability decision points, labeled di. Each
action either comes-before di or comes-after di. Other than as explicitly mentioned,
the comes-before ordering described in this section is unrelated to all other
orderings in the memory model.

If risaread that seesawritew and r comes-before di, then w must come-before di.

If x and y are synchronization actions on the same variable or monitor such that
so(X, y) (817.4.4) and y comes-before di, then x must come-before di.

At each reachability decision point, some set of objects are marked as unreachable,
and some subset of those objects are marked as finalizable. These reachability
decision points are also the points at which references are checked, enqueued, and



EXECUTION Implementing Finalization

cleared according to the rules provided in the APl documentation for the package
java.lang.ref.

The only objectsthat are considered definitely reachable at a point di are those that
can be shown to be reachable by the application of these rules:

» Anobject Bisdefinitely reachable at di from static fieldsif there existsawrite
wltoastaticfield v of aclass C suchthat the value written by wl isareference
to B, the class C is loaded by a reachable classloader, and there does not exist a
writew2 to v such that hb(w2, wl) isnot true and both w1l and w2 come-before di.

* Anobject Bisdefinitely reachablefrom Aat di if thereisawrite w1 to an el ement
v of A such that the value written by w1 is a reference to B and there does not
exist awrite w2 to v such that hb(w2, wl) is not true and both w1l and w2 come-
before di.

 If an object Cis definitely reachable from an object B, and object B is definitely
reachable from an object A, then Cis definitely reachable from A.

Anactionaisanactiveuseof xif and only if at |east one of thefollowing conditions
holds:

* areads or writes an element of X

» a locks or unlocks x and there is a lock action on X that happens-after the
invocation of the finalizer for x

* awritesareferenceto X

* aisan active use of an object Y, and X is definitely reachable from v
If an object X is marked as unreachable at di, then:

e Xmust not be definitely reachable at di from static fields; and

» All active uses of X in thread t that come-after di must occur in the finalizer
invocation for X or as aresult of thread t performing a read that comes-after di
of areferenceto x; and

« All reads that come-after di that see areference to X must see writes to elements
of objectsthat were unreachable at di, or see writes that came-after di.

If an object X is marked asfinalizable at di, then:
* X must be marked as unreachable at di; and
* di must be the only place where X is marked as finalizable; and

* actions that happen-after the finalizer invocation must come-after di.

126.1

199



12.6.2

200

Finalizer Invocations are Not Ordered EXECUTION

12.6.2 Finalizer Invocations are Not Ordered

The Java programming language imposes ho ordering on finalize method cals.
Finalizers may be called in any order, or even concurrently.

12.7 Unloading of Classes and Interfaces

An implementation of the Java programming language may unload classes.

A class or interface may be unloaded if and only if its defining class loader may be
reclaimed by the garbage collector as discussed in 812.6.

Classes and interfaces |oaded by the bootstrap loader may not be unloaded.

12.8 Program Exit

A program terminates all its activity and exits when one of two things happens:
* All the threads that are not daemon threads terminate.

» Some thread invokesthe exit method of classRuntime or class System, and the
exit operation is not forbidden by the security manager.



CHAPTER 13

Binary Compatibility

DEVELOPM ENT tools for the Java programming language should support
automatic recompil ation as hecessary whenever source codeisavailable. Particular
implementations may also store the source and binary of types in a versioning
database and implement a ClasslLoader that uses integrity mechanisms of the
databaseto prevent linkage errorsby providing binary-compatible versions of types
to clients.

Developers of packages and classes that are to be widely distributed face a
different set of problems. In the Internet, which is our favorite example of awidely
distributed system, it is often impractical or impossible to automatically recompile
the pre-existing binaries that directly or indirectly depend on a type that is to be
changed. Instead, this specification defines a set of changes that developers are
permitted to make to a package or to a class or interface type while preserving (not
breaking) compatibility with pre-existing binaries.

The paper quoted above appearsin Proceedings of OOPSLA '95, published as ACM
S GPLAN Notices, Volume 30, Number 10, October 1995, pages 426-438. Within
the framework of that paper, Java programming language binaries are binary
compatible under al relevant transformations that the authors identify (with some
caveats with respect to the addition of instance variables). Using their scheme, here
isalist of some important binary compatible changes that the Java programming
language supports:

» Reimplementing existing methods, constructors, and initializers to improve
performance.

» Changing methods or constructors to return values on inputs for which they
previoudly either threw exceptions that normally should not occur or failed by
going into an infinite loop or causing a deadlock.

» Adding new fields, methods, or constructors to an existing class or interface.

» Deleting private fields, methods, or constructors of aclass.

201



13.1

202

The Form of a Binary BINARY COMPATIBILITY

* When an entire packageisupdated, del eting default (package-only) accessfields,
methods, or constructors of classes and interfaces in the package.

» Reordering the fields, methods, or constructorsin an existing type declaration.
» Moving amethod upward in the class hierarchy.

» Reordering thelist of direct superinterfaces of aclass or interface.

* Inserting new class or interface types in the type hierarchy.

This chapter specifies minimum standards for binary compatibility guaranteed by
all implementations. The Java programming language guarantees compatibility
when binaries of classes and interfaces are mixed that are not known to be from
compatible sources, but whose sources have been modified in the compatible ways
described here. Note that we are discussing compatibility between releases of an
application. A discussion of compatibility among releases of the Java SE platform
is beyond the scope of this chapter.

We encourage development systems to provide facilities that alert developers to
the impact of changes on pre-existing binaries that cannot be recompiled.

This chapter first specifies some properties that any binary format for the Java
programming language must have (813.1). It next defines binary compatibility,
explaining what it is and what it is not (813.2). It finally enumerates a large set
of possible changes to packages (813.3), classes (813.4), and interfaces (813.5),
specifying which of these changes are guaranteed to preserve binary compatibility
and which are not.

13.1 TheForm of aBinary

Programs must be compiled either into the cl1ass file format specified by the The
Java Virtual Machine Specification, or into a representation that can be mapped
into that format by a class loader written in the Java programming language.
Furthermore, the resulting class file must have certain properties. A number of
these properties are specifically chosen to support source code transformations that
preserve binary compatibility.

The required properties are:

1. Theclassor interface must be named by its binary name, which must meet the
following constraints:

» The binary name of atop-level typeisits canonical name (86.7).



BINARY COMPATIBILITY The Form of a Binary

2.

The binary name of a member type consists of the binary name of its
immediately enclosing type, followed by $, followed by the simple name of
the member.

The binary name of a local class (814.3) consists of the binary name of
its immediately enclosing type, followed by $, followed by a non-empty
sequence of digits, followed by the simple name of the local class.

The binary name of an anonymous class (815.9.5) consists of the binary
name of itsimmediately enclosing type, followed by $, followed by a non-
empty sequence of digits.

The binary name of atype variable declared by ageneric classor interfaceis
the binary name of itsimmediately enclosing type, followed by $, followed
by the simple name of the type variable.

The binary name of a type variable declared by a generic method is the
binary name of the type declaring the method, followed by $, followed
by the descriptor of the method as defined in The Java Virtual Machine
Soecification, followed by $, followed by the smple name of the type
variable.

The binary name of atype variable declared by a generic constructor is the
binary name of the type declaring the constructor, followed by $, followed
by the descriptor of the constructor as defined in The Java Virtual Machine
Soecification, followed by $, followed by the smple name of the type
variable.

A reference to another class or interface type must be symboalic, using the
binary name of the type.

References to fields that are constant variables (84.12.4) are resolved at
compiletimeto the constant value that is denoted. No reference to such afield
should be present in the code in a binary file (except in the class or interface
containing the field, which will have code to initialize it). Such a field must
always appear to have been initialized (812.4.2); the default initial value for
the type of such afield must never be observed. See §13.4.9 for adiscussion.

Given a legal expression denoting a field access in a class C, referencing a
non-constant (813.4.9) field named f declared in a (possibly distinct) class or
interface D, we define the qualifying type of the field reference as follows:

* If the expression is of the form Primary. f then:

o If the compile-time type of Primary is an intersection type (84.9) v; & ...
& V,, then the qualifying type of the referenceis v;.

13.1

203



13.1

204

The Form of a Binary BINARY COMPATIBILITY

o Otherwise, the compile-time type of Primary isthe qualifying type of the
reference.

* If the expression is of the form super. f then the superclass of C is the
qualifying type of the reference.

* If the expression is of the form X. super. f then the superclass of X is the
qualifying type of the reference.

« |f thereferenceis of theform X. f, where x denotes aclass or interface, then
the class or interface denoted by X is the qualifying type of the reference.

* If theexpression isreferenced by asimple name, thenif fisamember of the
current classor interface, C, thenlet T be C. Otherwise, let T betheinnermost
lexically enclosing class of which £ is a member. In either case, T is the
qualifying type of the reference.

The reference to £ must be compiled into a symbolic reference to the erasure
(84.6) of the qualifying type of the reference, plus the simple name of the
field, . The reference must aso include a symbolic reference to the erasure
of the declared type of the field so that the verifier can check that the typeis
as expected.

Given a method invocation expression in a class or interface C referencing a
method named m declared (or implicitly declared (89.2)) in a(possibly distinct)
class or interface D, we define the qualifying type of the method invocation as
follows:

If DisObject then the qualifying type of the expression isObject. Otherwise:
* If the expression is of the form Primary. m then:

o If the compile-time type of Primary is an intersection type (84.9) v; & ...
& V,, then the qualifying type of the method invocation is V;.

o Otherwise, the compile-time type of Primary isthe qualifying type of the
method invocation.

* If the expression is of the form super.m then the superclass of C is the
qualifying type of the method invocation.

* If the expression is of the form X.super.m then the superclass of X is the
qualifying type of the method invocation.

* If the reference is of the form X.m, where X denotes a class or interface,
then the class or interface denoted by X is the qualifying type of the method
invocation.



BINARY COMPATIBILITY The Form of a Binary 13.1

* If the method is referenced by a simple name, then if mis a member of the
current class or interface, C, thenlet Tbe C. Otherwise, let T be the innermost
lexically enclosing class of which m is a member. In either case, T is the
qualifying type of the method invocation.

A reference to a method must be resolved at compile time to a symbolic
reference to the erasure (84.6) of the qualifying type of the invocation, plus
the erasure of the signature of the method (88.4.2). A reference to a method
must also include either a symbolic reference to the erasure of the return type
of the denoted method or an indication that the denoted method is declared
void and does not return avalue. The signature of a method must include all
of the following:

» The simple name of the method
» The number of formal parameters of the method
» A symbolic reference to the type of each formal parameter

6. Given aclassinstance creation expression (815.9) or a constructor invocation
statement (88.8.7.1) in a class or interface C referencing a constructor m
declared in a (possibly distinct) class or interface D, we define the qualifying
type of the constructor invocation as follows:

* If the expression is of the form new D(...) or X.new D(...), then the
qualifying type of the invocation is D.

* If the expression is of the form new DC...){...} or X.new D(...){...},
then the qualifying type of the expression is the compile-time type of the
expression.

* If the expression is of the form super(...) or Primary.super(...) then
the qualifying type of the expression is the direct superclass of C.

* If the expression is of the form this(...), then the qualifying type of the
expression is C.

A reference to a constructor must be resolved at compile time to a symbolic
reference to the erasure (84.6) of the qualifying type of the invocation, plus
the signature of the constructor (88.8.2). The signature of a constructor must
include both:

» The number of parameters of the constructor

» A symbolic reference to the type of each formal parameter

205



13.1

206

The Form of a Binary BINARY COMPATIBILITY

In addition, the constructor of a non-private inner member class must be
compiled such that it has asitsfirst parameter, an additional implicit parameter
representing the immediately enclosing instance (88.1.3).

Any constructsintroduced by a Javacompiler that do not have a corresponding
construct in the source code must be marked as synthetic, except for default
constructors, the class initialization method, and the values and valueOf
methods of the Enum class.

A binary representation for a class or interface must also contain all of the
following:

1

10.

If itisaclassand ishot class Object, then a symbolic reference to the erasure
of the direct superclass of this class.

A symbolic reference to the erasure of each direct superinterface, if any.

A specification of each field declared in the class or interface, given as the
simple name of the field and a symbolic reference to the erasure of the type
of thefield.

If itisaclass, then the erased signature of each constructor, asdescribed above.

For each method declared in the class or interface (excluding, for an interface,
itsimplicitly declared methods (89.2)), its erased signature and return type, as
described above.

The code needed to implement the class or interface:
» For aninterface, code for the field initializers

» For aclass, code for the field initializers, the instance and static initializers,
and the implementation of each method or constructor

Every type must contain sufficient information to recover its canonical name
(86.7).

Every member type must have sufficient information to recover its source level
access modifier.

Every nested classmust have asymbolic referenceto itsimmediately enclosing
class.

Every classthat contains anested class must contain symbolic referencesto all
of its member classes, and to al local and anonymous classes that appear in its
methods, constructors, and static or instance initializers.



BINARY COMPATIBILITY What Binary Compatibility Is and Is Not

Thefollowing sections discuss changesthat may be madeto classand interfacetype
declarations without breaking compatibility with pre-existing binaries. Under the
translation reguirements given above, the Java virtual machine and its class file
format support these changes. Any other valid binary format, such as acompressed
or encrypted representation that is mapped back into class files by a class |oader
under the above requirements, will necessarily support these changes as well.

13.2 What Binary Compatibility Isand Is Not

A change to atype is binary compatible with (equivalently, does not break binary
compatibility with) pre-existing binaries if pre-existing binaries that previously
linked without error will continue to link without error.

Binaries are compiled to rely on the accessible members and constructors of other
classes and interfaces. To preserve binary compatibility, aclass or interface should
treat its accessible members and constructors, their existence and behavior, as a
contract with its users.

The Java programming language is designed to prevent additions to contracts
and accidental name collisions from breaking binary compatibility. Specificaly,
addition of more methods overloading a particular method name does not break
compatibility with pre-existing binaries. The method signature that the pre-existing
binary will use for method lookup is chosen by the method overload resolution
algorithm at compile time (815.12.2).

Binary compatibility is not the same as source compatibility. In particular, the
example in §13.4.6 shows that a set of compatible binaries can be produced from
sourcesthat will not compileall together. Thisexampleistypical: anew declaration
isadded, changing the meaning of aname in an unchanged part of the source code,
while the pre-existing binary for that unchanged part of the source code retainsthe
fully-qualified, previous meaning of the name. Producing a consistent set of source
code requires providing aqualified name or field access expression corresponding
to the previous meaning.

13.3 Evolution of Packages

A new top-level classor interface type may be added to a package without breaking
compatibility with pre-existing binaries, provided the new type does not reuse a
name previously given to an unrelated type.

13.2

207



13.4

208

Evolution of Classes BINARY COMPATIBILITY

If anew type reuses a name previously given to an unrelated type, then a conflict
may result, since binaries for both types could not be loaded by the same class
loader.

Changesin top-level classand interface typesthat are not pub11c and that are not a
superclassor superinterface, respectively, of apub1ic type, affect only typeswithin
the package in which they are declared. Such types may be deleted or otherwise
changed, even if incompatibilities are otherwise described here, provided that the
affected binaries of that package are updated together.

13.4 Evolution of Classes

This section describes the effects of changes to the declaration of a class and its
members and constructors on pre-existing binaries.

13.4.1 abstract Classes

If a class that was not declared abstract is changed to be declared abstract,
then pre-existing binaries that attempt to create new instances of that class will
throw either an InstantiationError at link time, or (if a reflective method is
used) an InstantiationException at run time; such a change is therefore not
recommended for widely distributed classes.

Changing aclassthat isdeclared abstract to nolonger be declared abstract does
not break compatibility with pre-existing binaries.

13.4.2 final Classes

If a class that was not declared final is changed to be declared final, then a
VerifyError isthrownif abinary of apre-existing subclass of thisclassisloaded,
because final classes can have no subclasses; such a changeis not recommended
for widely distributed classes.

Changing a class that is declared final to no longer be declared final does not
break compatibility with pre-existing binaries.
13.4.3 public Classes

Changing aclassthat is not declared pub11c to be declared pub1ic does not break
compatibility with pre-existing binaries.



BINARY COMPATIBILITY Superclasses and Superinterfaces

If aclass that was declared pub1ic is changed to not be declared pub1ic, then an
I1legalAccessError isthrown if apre-existing binary islinked that needs but no
longer has access to the class type; such a change is not recommended for widely
distributed classes.

13.4.4 Superclasses and Superinterfaces

A ClassCircularityError isthrown at load timeif a class would be a superclass
of itself. Changes to the class hierarchy that could result in such a circularity
when newly compiled binaries are loaded with pre-existing binaries are not
recommended for widdly distributed classes.

Changing the direct superclass or the set of direct superinterfaces of a class type
will not break compatibility with pre-existing binaries, provided that the total set of
superclasses or superinterfaces, respectively, of the class type loses no members.

If achangeto the direct superclass or the set of direct superinterfacesresultsin any
class or interface no longer being a superclass or superinterface, respectively, then
linkage errors may result if pre-existing binaries are loaded with the binary of the
modified class. Such changes are not recommended for widely distributed classes.

13.45 ClassType Parameters

Adding or removing a type parameter of a class does not, in itsdlf, have any
implications for binary compatibility.

If such atype parameter is used in the type of afield or method, that may have the
normal implications of changing the af orementioned type.

Renaming a type parameter of a class has no effect with respect to pre-existing
binaries.

Changing the first bound of a type parameter of a class may change the erasure
(84.6) of any member that uses that type parameter in its own type, and this may
affect binary compatibility. The change of such abound isanalogous to the change
of the first bound of atype parameter of a method or constructor (813.4.13).

Changing any other bound has no effect on binary compatibility.

13.4.6 ClassBody and Member Declarations

No incompatibility with pre-existing binaries is caused by adding an instance
(respectively static) member that has the same name and accessibility (for fields),
or same name and accessibility and signature and return type (for methods), as an

13.4.4

209



13.4.7

210

Access to Members and Constructors BINARY COMPATIBILITY

instance (respectively static) member of asuperclassor subclass. No error occurs
even if the set of classes being linked would encounter a compile-time error.

Deleting a class member or constructor that is not declared private may cause a
linkage error if the member or constructor is used by a pre-existing binary.

The super keyword can be used to access a method declared in a
superclass, bypassing any methods declared in the current class. The expression
super.ldentifier isresolved, at compile time, to a method min the superclass S. If
the method M is an instance method, then the method MR invoked at run-timeisthe
method with the same signature as M that is a member of the direct superclass of
the class containing the expression involving super.

13.4.7 Accessto Membersand Constructors

Changing the declared access of amember or constructor to permit less access may
break compatibility with pre-existing binaries, causing alinkage error to be thrown
when these binaries are resolved. Less access is permitted if the access modifier is
changed from default accessto private access; from protected accessto default
or private access, or from public access to protected, default, or private
access. Changing a member or constructor to permit less access is therefore not
recommended for widely distributed classes.

Perhaps surprisingly, the binary format is defined so that changing a member or
constructor to be more accessible does not cause a linkage error when a subclass
(already) defines a method to have less access.

Allowing superclasses to change protected methods to be public without
breaking binaries of pre-existing subclasses helps make binaries less fragile.
The aternative, where such a change would cause a linkage error, would create
additional binary incompatibilities.

13.4.8 Field Declarations

Widely distributed programs should not expose any fields to their clients. Apart
from the binary compatibility issues discussed below, this is generaly good
software engineering practice. Adding a field to a class may break compatibility
with pre-existing binaries that are not recompiled.

Assume a reference to a field £ with qualifying type 7. Assume further that fis
in fact an instance (respectively static) field declared in asuperclassof T, S, and
that the type of FisX.



BINARY COMPATIBILITY final Fields and Constants

If anew field of type x with the same name as 7 isadded to asubclass of Sthatisa
superclassof Tor Titself, then alinkage error may occur. Such alinkage error will
occur only if, in addition to the above, either one of the following conditions hold:

» The new field isless accessible than the old one.
» Thenew fieldisastatic (respectively instance) fied.

In particular, no linkage error will occur in the case where a class could no longer
be recompiled because a field access previously referenced afield of a superclass
with an incompatible type. The previously compiled class with such a reference
will continue to reference the field declared in a superclass.

Deleting afield from aclasswill break compatibility with any pre-existing binaries
that reference this field, and a NoSuchFieldError will be thrown when such a
reference from a pre-existing binary islinked. Only private fields may be safely
deleted from awidely distributed class.

For purposes of binary compatibility, adding or removing a field £ whose type
involves type variables (84.4) or parameterized types (84.5) is equivalent to the
addition (respectively, removal) of a field of the same name whose type is the
erasure (84.6) of the type of .

13.4.9 final Fieldsand Constants

If afield that was not declared final is changed to be declared final, then it can
break compatibility with pre-existing binaries that attempt to assign new valuesto
the field.

Deleting the keyword final or changing the value to which afield is initialized
does not break compatibility with existing binaries.

If afield is a constant variable (84.12.4), then deleting the keyword final or
changing its value will not break compatibility with pre-existing binaries by
causing them not to run, but they will not see any new value for the usage of the
field unlessthey arerecompiled. Thisistrueevenif the usageitself isnot acompile-
time constant expression (815.28).

This result is a side-effect of the decision to support conditional compilation, as
discussed at the end of §14.21.

The best way to avoid problems with "inconstant constants" in widely-distributed
code is to declare as compile time constants only values which truly are unlikely
ever to change. Other than for true mathematical constants, we recommend that
source code make very sparing use of class variablesthat are declared static and

13.4.9

211



13.4.10 static Fidds BINARY COMPATIBILITY

212

final. If the read-only nature of final isrequired, a better choice isto declare a
private static variable and a suitable accessor method to get its value.

Thus we recommend:

private static int N;
public static int getN() { return N; }

rather than:

public static final int N = ...;
Thereis no problem with:

public static int N = ...;

if N need not be read-only. We also recommend, as a general rule, that only truly
constant values be declared in interfaces.

We note, but do not recommend, that if afield of primitive type of an interface may
change, its value may be expressed idiomatically asin:

interface Flags {
boolean debug = new Boolean(true).booleanValue();
}

ensuring that thisvalueisnot aconstant. Similar idiomsexist for the other primitive
types.

One other thing to note is that static final fields that have constant values
(whether of primitive or String type) must never appear to have the default initial
valuefor their type (84.12.5). Thismeansthat all such fieldsappear to beinitialized
first during classinitialization (88.3.2.1, §9.3.1, §12.4.2).

13.4.10 static Fields

If afield that is not declared private was not declared static and is changed
to be declared static, or vice versa, then a linkage error, specifically an
IncompatibleClassChangeError, will result if the field is used by a pre-existing
binary which expected afield of the other kind. Such changes are not recommended
in code that has been widely distributed.

13.4.11 +transient Fidds

Adding or deleting a transient modifier of afield does not break compatibility
with pre-existing binaries.



BINARY COMPATIBILITY Method and Constructor Declarations 13.4.12

13.4.12 Method and Constructor Declar ations

Adding amethod or constructor declaration to a class will not break compatibility
with any pre-existing binaries, even in the case where a type could no longer be
recompiled because an invocation previously referenced a method or constructor
of a superclass with an incompatible type. The previously compiled class with
such a reference will continue to reference the method or constructor declared in
asuperclass.

Assume areference to amethod m with qualifying type 7. Assume further that mis
in fact an instance (respectively static) method declared in asuperclass of T, S.

If anew method of type X with the same signature and return type as m is added to
asubclass of S that isasuperclass of Tor Titself, then alinkage error may occur.
Such a linkage error will occur only if, in addition to the above, either one of the
following conditions hold:

» The new method is less accessible than the old one.
» The new method isa static (respectively instance) method.

Deleting a method or constructor from a class may break compatibility
with any pre-existing binary that referenced this method or constructor; a
NoSuchMethodError may be thrown when such a reference from a pre-existing
binary is linked. Such an error will occur only if no method with a matching
signature and return typeis declared in a superclass.

13.4.13 Method and Constructor Type Parameters

Adding or removing atype parameter of amethod or constructor does not, in itself,
have any implications for binary compatibility.

If such atype parameter is used in the type of the method or constructor, that may
have the normal implications of changing the aforementioned type.

Renaming a type parameter of a method or constructor has no effect with respect
to pre-existing binaries.

Changingthefirst bound of atype parameter of amethod or constructor may change
the erasure (84.6) of any member that uses that type parameter in its own type, and
this may affect binary compatibility. Specificaly:

« If thetype parameter is used asthe type of afield, the effect isasif the field was
removed and afield with the same name, whose type is the new erasure of the
type variable, was added.

213



13.4.14 Method and Constructor Formal Parameters BINARY COMPATIBILITY

214

* If thetype parameter is used asthe type of any formal parameter of amethod, but
not as the return type, the effect isasif that method were removed, and replaced
with a new method that is identical except for the types of the af orementioned
formal parameters, which now have the new erasure of the type parameter as
their type.

« If the type parameter is used as areturn type of a method, but not as the type of
any formal parameter of the method, the effect isasif that method were removed,
and replaced with anew method that isidentical except for the return type, which
is now the new erasure of the type parameter.

« If the type parameter is used as a return type of a method and as the type of one
or more formal parameters of the method, the effect is as if that method were
removed, and replaced with a new method that isidentical except for the return
type, which is now the new erasure of the type parameter, and except for the
types of the aforementioned formal parameters, which now have the new erasure
of the type parameter as their types.

Changing any other bound has no effect on binary compatibility.

13.4.14 Method and Constructor Formal Parameters

Changing the name of a formal parameter of a method or constructor does not
impact pre-existing binaries.

Changing the name of a method, or the type of a formal parameter to a method
or constructor, or adding a parameter to or deleting a parameter from a method or
constructor declaration creates a method or constructor with a new signature, and
has the combined effect of deleting the method or constructor with the old signature
and adding a method or constructor with the new signature (§13.4.12).

Changing the type of the last formal parameter of amethod from T[] to avariable
arity parameter (88.4.1) of type T (i.e. to T...), and vice versa, does not impact
pre-existing binaries.

For purposes of binary compatibility, adding or removing a method or constructor
m whose signature involves type variables (84.4) or parameterized types (84.5)
is equivalent to the addition (respectively, removal) of an otherwise equivalent
method whose signature is the erasure (84.6) of the signature of m.

13.4.15 Method Result Type

Changing the result type of a method, or replacing a result type with void, or
replacing void with a result type, has the combined effect of deleting the old



BINARY COMPATIBILITY abstract Methods 13.4.16

method and adding a new method with the new result type or newly void result
(see §13.4.12).

For purposes of binary compatibility, adding or removing a method or constructor
m whose return type involves type variables (84.4) or parameterized types (84.5)
is equivalent to the addition (respectively, removal) of the an otherwise equivalent
method whose return type is the erasure (84.6) of the return type of m.

13.4.16 abstract Methods

Changing a method that is declared abstract to no longer be declared abstract
does not break compatibility with pre-existing binaries.

Changing a method that is not declared abstract to be declared abstract will
break compatibility with pre-existing binariesthat previously invoked the method,
causing an AbstractMethodError.

13.4.17 final Methods

Changing amethod that is declared final to no longer be declared final does not
break compatibility with pre-existing binaries.

Changing an instance method that is not declared final to be declared final may
break compatibility with existing binaries that depend on the ability to override the
method.

Changing aclass (static) method that is not declared final to be declared final
does not break compatibility with existing binaries, because the method could not
have been overridden.

13.4.18 native Methods

Adding or deleting a native modifier of a method does not break compatibility
with pre-existing binaries.

The impact of changes to types on pre-existing native methods that are not
recompiled is beyond the scope of this specification and should be provided with
the description of an implementation. Implementations are encouraged, but not
required, to implement native methodsin away that limits such impact.

215



13.4.19 static Methods BINARY COMPATIBILITY

216

13.4.19 static Methods

If a method that is not declared private is dso declared static (that is, aclass
method) and is changed to not be declared static (that is, to an instance method),
or vice versa, then compatibility with pre-existing binaries may be broken, resulting
in a linkage time error, namely an IncompatibleClassChangeError, if these
methods are used by the pre-existing binaries. Such changes are not recommended
in code that has been widely distributed.

13.4.20 synchronized Methods

Adding or deleting a synchronized modifier of a method does not break
compatibility with pre-existing binaries.

13.4.21 Method and Constructor Throws

Changesto the throws clause of methods or constructorsdo not break compatibility
with pre-existing binaries; these clauses are checked only at compile time.

13.4.22 Method and Constructor Body

Changes to the body of a method or constructor do not break compatibility with
pre-existing binaries.

The keyword final on a method does not mean that the method can be safely
inlined; it means only that the method cannot be overridden. It isstill possiblethat a
new version of that method will be provided at link time. Furthermore, the structure
of the original program must be preserved for purposes of reflection.

Therefore, we note that a Java compiler cannot expand amethod inline at compile
time. In general we suggest that implementations use late-bound (run-time) code
generation and optimization.

13.4.23 Method and Constructor Overloading

Adding new methodsor constructorsthat overload existing methods or constructors
does not break compatibility with pre-existing binaries. The signature to be used
for each invocation was determined when these existing binaries were compiled;
therefore newly added methods or constructors will not be used, even if their
signatures are both applicable and more specific than the signature originally
chosen.



BINARY COMPATIBILITY Method Overriding 13.4.24

While adding a new overloaded method or constructor may cause a compile-time
error the next time a class or interface is compiled because there is no method or
constructor that ismost specific (815.12.2.5), no such error occurs when aprogram
is executed, because no overload resolution is done at execution time.

13.4.24 Method Overriding

If an instance method is added to a subclass and it overrides a method in a
superclass, then the subclass method will be found by method invocations in pre-
existing binaries, and these binaries are not impacted.

If aclass method is added to a class, then this method will not be found unless the
qualifying type of the reference is the subclass type.

13.4.25 StaticInitializers

Adding, deleting, or changing a static initializer (88.7) of a class does not impact
pre-existing binaries.

13.4.26 Evolution of Enums

Adding or reordering constants in an enum type will not break compatibility with
pre-existing binaries.

If apre-existing binary attempts to access an enum constant that no longer exists,
the client will fail at run-time with aNoSuchFieldError. Therefore such achange
is not recommended for widely distributed enums.

In all other respects, the binary compatibility rules for enums are identical to those
for classes.

13.5 Evolution of Interfaces

This section describes the impact of changes to the declaration of an interface and
its members on pre-existing binaries.

13.5.1 public Interfaces

Changing an interface that is not declared pub1i c to be declared pub11ic does not
break compatibility with pre-existing binaries.

217



135.2

218

Superinterfaces BINARY COMPATIBILITY

If an interface that is declared pub1ic is changed to not be declared pub1ic, then
anI1legalAccessError isthrown if apre-existing binary islinked that needs but
no longer has access to the interface type, so such a change is not recommended
for widely distributed interfaces.

13.5.2 Superinterfaces

Changes to the interface hierarchy cause errors in the same way that changes to
the class hierarchy do, as described in 813.4.4. In particular, changes that result in
any previous superinterface of a class no longer being a superinterface can break
compatibility with pre-existing binaries, resulting in averifyError.

13.5.3 Thelnterface Members

Adding a method to an interface does not break compatibility with pre-existing
binaries.

A field added to a superinterface of ¢ may hide a field inherited from
a superclass of C. If the origina reference was to an instance field, an
IncompatibleClassChangeError will result. If the original reference was an
assignment, an I11egalAccessError will result.

Deleting a member from an interface may cause linkage errors in pre-existing
binaries.
13.5.4 Interface Type Parameters

The effects of changes to the type parameters of an interface are the same as those
of analogous changes to the type parameters of aclass.

13.5.5 Fidd Declarations

The considerations for changing field declarations in interfaces are the same as
thosefor static final fieldsin classes, as described in 813.4.8 and §13.4.9.

13.5.6 abstract Methods

Theconsiderationsfor changing abstract method declarationsininterfacesarethe
same asthose for abstract methodsin classes, asdescribed in §13.4.14, §13.4.15,
813.4.21, and 813.4.23.



BINARY COMPATIBILITY Evolution of Annotation Types

13.5.7 Evolution of Annotation Types

Annotation types behave exactly like any other interface. Adding or removing an
element from an annotation type is analogous to adding or removing a method.
There are important considerations governing other changes to annotation types,
but these have no effect on the linkage of binaries by the Java virtual machine.
Rather, such changes affect the behavior of reflective APIs that manipulate
annotations. The documentation of these APIs specifies their behavior when
various changes are made to the underlying annotation types.

Adding or removing annotations has no effect on the correct linkage of the binary
representations of programs in the Java programming language.

13.5.7

219



13.5.7  Evolution of Annotation Types BINARY COMPATIBILITY

220



CHAPTER 1 |

Blocks and Statements

T HE sequence of execution of aprogram is controlled by statements, which are
executed for their effect and do not have values.

Some statements contain other statements as part of their structure; such other
statements are substatements of the statement. We say that statement Simmediately
contains statement U if there is no statement T different from S and v such that
S contains T and T contains U. In the same manner, some statements contain
expressions (Chapter 15, Expressions) as part of their structure.

The first section of this chapter discusses the distinction between norma and
abrupt completion of statements (814.1). Most of the remaining sections explain
the various kinds of statements, describing in detail both their normal behavior and
any special treatment of abrupt completion.

Blocks are explained first (814.2), followed by local class declarations (§14.3) and
local variable declaration statements (§14.4).

Next a grammatical maneuver that sidesteps the familiar "dangling else”" problem
(814.5) is explained.

The last section (814.21) of this chapter addresses the requirement that every
statement be reachable in a certain technical sense.

14.1 Normal and Abrupt Completion of Statements

Every statement has a normal mode of execution in which certain computational
stepsare carried out. Thefollowing sections describe the normal mode of execution
for each kind of statement.

221



14.1

222

Normal and Abrupt Completion of Statements BLOCKS AND STATEMENTS

If all the stepsare carried out as described, with no indication of abrupt completion,
the statement is said to complete normally. However, certain events may prevent
a statement from completing normally:

» Thebreak (814.15), continue (814.16), and return (814.17) statements cause a
transfer of control that may prevent normal completion of statementsthat contain
them.

» Evaluation of certain expressions may throw exceptions from the Java virtual
machine; these expressionsare summarized in §15.6. An explicit throw (814.18)
statement also results in an exception. An exception causes atransfer of control
that may prevent normal completion of statements.

If such an event occurs, then execution of one or more statements may be
terminated before all steps of their normal mode of execution have completed; such
statements are said to complete abruptly.

An abrupt completion always has an associated reason, which is one of the
following:

* A break with no label

* A break with agiven label

* A continue with no label

* A continue with agiven |label
* A return with no value

* A return with agiven value

* A throw with a given value, including exceptions thrown by the Java virtual
machine

The terms "complete normally” and "complete abruptly" also apply to the
evaluation of expressions (815.6). The only reason an expression can complete
abruptly isthat an exception isthrown, because of either athrow with agivenvalue
(814.18) or arun-time exception or error (Chapter 11, Exceptions, 815.6).

If a statement evaluates an expression, abrupt completion of the expression aways
causes the immediate abrupt completion of the statement, with the same reason.
All succeeding steps in the normal mode of execution are not performed.

Unless otherwise specified in this chapter, abrupt completion of a substatement
causes the immediate abrupt completion of the statement itself, with the same
reason, and all succeeding stepsin the normal mode of execution of the statement
are not performed.



BLOCKS AND STATEMENTS Blocks

Unless otherwise specified, a statement completes normally if all expressions it
evaluates and all substatements it executes complete normally.

14.2 Blocks

A block is a sequence of statements, local class declarations, and local variable
declaration statements within braces.

Block:
{ BlockStatementsyt }

BlockSatements:
BlockSatement
BlockSatements BlockSatement

BlockStatement:
Local VariableDeclarationSatement
ClassDeclaration
Satement

A block is executed by executing each of the local variable declaration statements
and other statements in order from first to last (left to right). If al of these block
statements complete normally, then the block completes normally. If any of these
block statements complete abruptly for any reason, then the block completes
abruptly for the same reason.

14.3 Local Class Declarations

A local class is a nested class (Chapter 8, Classes) that is not a member of any
class and that has a name.

All local classes are inner classes (88.1.3).

Every loca class declaration statement is immediately contained by a block.
Local class declaration statements may be intermixed freely with other kinds of
statements in the block.

The name of alocal class ¢ may not be redeclared as alocal class of the directly
enclosing method, constructor, or initializer block within the scope of C, or a
compile-time error occurs.

14.2

223



14.4

224

Local Variable Declaration Statements BLOCKS AND STATEMENTS

It is a compile-time error if a local class declaration contains any one of the
following access modifiers: public, protected, private, Or static.

14.4 Local Variable Declaration Statements

A local variable declaration statement declares one or more local variable names.

Local VariableDeclarationStatement:
LocalVariableDeclaration ;

LocalVariableDeclaration:
VariableModifiersyy Type VariableDeclarators

Every local variable declaration statement is immediately contained by a block.
Local variable declaration statements may be intermixed freely with other kinds of
statements in the block.

A local variable declaration can also appear in the header of a for statement
(814.14). Inthis caseit is executed in the same manner asiif it were part of alocal
variable declaration statement.

14.4.1 Local Variable Declaratorsand Types

Each declarator in aloca variable declaration declares one local variable, whose
name isthe Identifier that appears in the declarator.

If the optional keyword final appears at the start of the declarator, the variable
being declared isafinal variable (84.12.4).

If an annotation a on a local variable declaration corresponds to an
annotation type 7, and T has a (meta)annotation m that corresponds
to annotation.Target, then m must have an element whose value is
annotation.ElementType.LOCAL_VARIABLE, or a compile-time error occurs.
Annotation modifiers are described further in §89.7.

The declared type of alocal variable is denoted by the Type that appears in the
local variable declaration, followed by any bracket pairs that follow the Identifier
in the declarator.

A local variable of type float aways contains a value that is an element of the
float value set (84.2.3); similarly, alocal variable of type double aways contains
a value that is an element of the double value set. It is not permitted for a local



BLOCKS AND STATEMENTS Local Variable Names

variable of type float to contain an element of the float-extended-exponent value
set that is not al'so an element of the float value set, nor for alocal variable of type
double to contain an element of the double-extended-exponent val ue set that is not
also an element of the double value set.

14.4.2 Local Variable Names

A local variable can only be referred to using a simple name (86.5.6.1, not a
gualified name.

The name of alocal variable v may not be redeclared as a local variable of the
directly enclosing method, constructor, or initializer block within the scope of v,
or acompile-time error occurs.

The name of alocal variable v may not be redeclared as an exception parameter of
acatch clausein a try statement of the directly enclosing method, constructor or
initializer block within the scope of v, or a compile-time error occurs.

If a declaration of an identifier as a local variable of a method, constructor, or
initializer block appears within the scope of a parameter or local variable of the
same name, a compile-time error occurs.

14.4.3 Execution of Local Variable Declarations

A local variable declaration statement is an executable statement. Every timeitis
executed, the declaratorsare processed in order from left toright. If adeclarator has
an initialization expression, the expression is evaluated and its value is assigned
to the variable. If a declarator does not have an initialization expression, then
a Java compiler must prove, using exactly the algorithm given in Chapter 16,
Definite Assignment, that every referenceto the variable is necessarily preceded by
execution of an assignment to the variable. If thisis not the case, then a compile-
time error occurs.

Each initialization (except the first) is executed only if evaluation of the preceding
initialization expression completes normally.

Execution of the local variable declaration completes normally only if evaluation
of the last initialization expression completes normally.

If the local variable declaration contains no initialization expressions, then
executing it always completes normally.

14.4.2

225



145

226

Satements BLOCKS AND STATEMENTS

145 Statements

There are many kinds of statements in the Java programming language. Most
correspond to statements in the C and C++ languages, but some are unique.

Asin C and C++, theif statement of the Java programming language suffers from
the so-called "dangling el1se problem," illustrated by this misleadingly formatted
example:

if (door.isOpen())
if (resident.isVisible())
resident.greet("Hello!");
else door.bell.ring(); // A "dangling else"

The problem is that both the outer i f statement and the inner i f statement might
conceivably own the else clause. In this example, one might surmise that the
programmer intended the e1se clause to belong to the outer 1 £ statement.

The Java programming language, like C and C++ and many programming
languages before them, arbitrarily decree that an else clause belongs to the
innermost if to which it might possibly belong. This rule is captured by the
following grammar:

Satement:
SatementWithoutTrailingSubstatement
LabeledSatement
IfThenSatement
| fThenElseSatement
WhileStatement
For Satement



BLOCKS AND STATEMENTS Satements

SatementWithoutTrailingSubstatement:
Block
EmptyStatement
ExpressionSatement
AssertSatement
SwitchSatement
DoSatement
BreakSatement
ContinueStatement
ReturnStatement
SynchronizedSatement
ThrowSatement
TrySatement

SatementNoShortlf:
SatementWithoutTrailingSubstatement
LabeledSatementNoShort! f
[fThenElseSatementNoShortl f
WhileSatementNoShortl f
For SatementNoShortl f

The following are repeated from §14.9 to make the presentation here clearer:

IfThenStatement:
if ( Expression) Satement

[fThenEl seStatement:
if ( Expression) SatementNoShortlf else Satement

IfThenElseStatementNoShort! f:
if ( Expression) SatementNoShortlf e1se SatementNoShort!f

Statements are thus grammatically divided into two categories: those that might
end in an if statement that has no e1se clause (a"short i f statement™) and those
that definitely do not.

Only statements that definitely do not end in a short i f statement may appear as
an immediate substatement before the keyword el1se in an i f statement that does
have an else clause.

Thissimplerule preventsthe "dangling e1se" problem. The execution behavior of
a statement with the "no short i " restriction isidentical to the execution behavior

14.5

227



14.6 The Empty Statement BLOCKS AND STATEMENTS

of the same kind of statement without the "no short i f" restriction; the distinction
is drawn purely to resolve the syntactic difficulty.

14.6 The Empty Statement

An empty statement does nothing.

EmptyStatement:

Execution of an empty statement always completes normally.

14.7 Labeled Statements

Statements may have labdl prefixes.

LabeledSatement:
Identifier : Satement

LabeledSatementNoShortlf:
Identifier : SatementNoShort!f

The Identifier is declared to be the label of the immediately contained Satement.

Unlike C and C++, the Java programming language has no goto Statement;
identifier statement labels are used with break (814.15) or continue (§14.16)
statements appearing anywhere within the label ed statement.

Let 7 be a label, and let m be the immediately enclosing method, constructor,
instance initializer or static initiaizer. It is a compile-time error if 7 shadows
(86.4.1) the declaration of another label immediately enclosed in m.

Thereis no restriction against using the same identifier as alabel and as the name
of apackage, class, interface, method, field, parameter, or local variable. Use of an
identifier to label a statement does not obscure (86.4.2) a package, class, interface,
method, field, parameter, or local variable with the same name. Use of anidentifier
asaclass, interface, method, field, local variable or asthe parameter of an exception
handler (814.20) does not obscure a statement label with the same name.

A labeled statement is executed by executing theimmediately contained Satement.

228



BLOCKS AND STATEMENTS Expression Satements

If the statement is labeled by an Identifier and the contained Statement completes
abruptly because of a break with the same Identifier, then the labeled statement
completes normally. In al other cases of abrupt completion of the Statement, the
labeled statement completes abruptly for the same reason.

14.8 Expression Statements

Certain kinds of expressions may be used as statements by following them with
semicolons:

ExpressionStatement:
SatementExpression ;

SatementExpression:
Assignment
PrelncrementExpression
PreDecrementExpression
PostlncrementExpression
PostDecrementExpression
Methodlnvocation
Classl nstanceCreationExpression

An expression statement is executed by evaluating the expression; if the expression
has avalue, the value is discarded.

Execution of the expression statement completes normally if and only if evaluation
of the expression completes normally.

Unlike C and C++, the Java programming language allows only certain forms of
expressions to be used as expression statements. Note that the Java programming
language does not allow a"cast to void" - void is not atype - so the traditional C
trick of writing an expression statement such as:

(void)... ; // incorrect!

does not work. On the other hand, the language alows all the most useful kinds of
expressions in expressions statements, and it does not require a method invocation
used as an expression statement to invoke avoid method, so such atrick isalmost
never needed. If atrick is needed, either an assignment statement (815.26) or a
local variable declaration statement (814.4) can be used instead.

14.8

229



14.9

230

The if Satement BLOCKS AND STATEMENTS

149 Theif Statement

The if statement alows conditional execution of a statement or a conditional
choice of two statements, executing one or the other but not both.

IfThenSatement:
if ( Expression) Satement

[fThenElseStatement:
if ( Expression) StatementNoShortlf e1se Satement

IfThenElseSatementNoShortl! f:
if ( Expression) SatementNoShortlf e1se SatementNoShortlf

The Expression must have type boolean or Boolean, or a compile-time error
occurs.

14.9.1 Theif-then Statement

An if-then statement is executed by first evaluating the Expression. If the result
is of type Boolean, it is subject to unboxing conversion (85.1.8).

If evaluation of the Expression or the subsequent unboxing conversion (if any)
completes abruptly for some reason, the i f-then statement completes abruptly for
the same reason. Otherwise, execution continues by making a choice based on the
resulting value:

 If the value is true, then the contained Statement is executed; the 1if-then
statement completesnormally if and only if execution of the Satement compl etes
normally.

e |If the value is false, no further action is taken and the if-then statement
completes normally.

14.9.2 Theif-then-else Statement

Anif-then-else statement is executed by first evaluating the Expression. If the
result is of type Boolean, it is subject to unboxing conversion (85.1.8).

If evaluation of the Expression or the subsequent unboxing conversion (if any)
completes abruptly for some reason, then the i f-then-else statement completes
abruptly for the same reason. Otherwise, execution continues by making a choice
based on the resulting value:



BLOCKS AND STATEMENTS The assert Satement

« |f thevalueis true, then the first contained Satement (the one before the el1se
keyword) is executed; the i f-then-else statement completes normally if and
only if execution of that statement completes normally.

« If thevalueisfalse, then the second contained Satement (the one after theelse
keyword) is executed; the if-then-else statement completes normally if and
only if execution of that statement completes normally.

14.10 Theassert Statement

An assertion isan assert statement containing a boolean expression.

An assertion is either enabled or disabled. If the assertion is enabled, execution of
the assertion causes evaluation of the boolean expression and an error is reported
if the expression evaluates to false. If the assertion is disabled, execution of the
assertion has no effect whatsoever.

AssertSatement:
assert Expressionl ;
assert Expressionl : Expression? ;

It isacompile-time error if Expression1 does not have type boolean or Boolean.

Inthe second form of theassert statement, itisacompile-timeerror if Expression2
isvoid (815.1).

An assert statement that is executed after its class has completed initialization is
enabled if and only if the host system has determined that the top level class that
lexically containsthe assert statement enables assertions.

Whether or not atop level class enables assertions is determined no later than the
earliest of theinitialization of the top level class and the initialization of any class
nested in the top level class, and cannot be changed after it has been determined.

An assert statement that is executed before its class has completed initialization
is enabled.

A disabled assert statement does nothing. In particular, neither Expressionl nor
Expression2 (if it is present) are evaluated.

Execution of adisabled assert statement always completes normally.

An enabled assert statement is executed by first evaluating Expressionl. If the
result is of type Boolean, it is subject to unboxing conversion (85.1.8).

14.10

231



14.11

232

The switch Satement BLOCKS AND STATEMENTS

If evaluation of Expressionl or the subsequent unboxing conversion (if any)
completes abruptly for some reason, the assert statement completes abruptly for
the same reason. Otherwise, execution continues by making a choice based on the
value of Expressionl:

« Ifthevalueistrue, nofurther actionistaken andtheassert statement completes
normally.

 If the value is false, the execution behavior depends on whether Expression2
IS present:

o If Expression2 is present, it is evaluated.

o If the evaluation completes abruptly for some reason, the assert statement
completes abruptly for the same reason.

o If the evaluation completes normally, an AssertionError instance whose
"detail message” isthe resulting value of Expression2 is created.

o If the instance creation completes abruptly for some reason, the assert
statement compl etes abruptly for the same reason.

o If the instance creation completes normally, the assert statement
completes abruptly by throwing the newly created AssertionError
object.

o If Expression2 is not present, an AssertionError instance with no "detail
message” is created.

o If the instance creation completes abruptly for some reason, the assert
statement compl etes abruptly for the same reason.

o If the instance creation completes normally, the assert statement completes
abruptly by throwing the newly created AssertionError object.

14.11 The switch Statement

The switch statement transfers control to one of several statements depending on
the value of an expression.



BLOCKS AND STATEMENTS The switch Satement

SwitchStatement:
switch ( Expression) SwitchBlock

SwitchBlock:
{ SwitchBlockSatementGroupsype SwitchLabel sopt

SwitchBlockStatementGroups:
SwitchBlockStatementGroup
SwitchBlockStatementGroups SwitchBlockStatementGroup

SwitchBlockStatementGroup:
SwitchLabels BlockStatements

SwitchLabels;
SwitchLabel
SwitchLabels SwitchLabel

SwitchLabel:
case ConstantExpression :
case EnumConstantName :
default :

EnumConstantName:
Identifier

The type of the Expression must be char, byte, short, int, Character, Byte,
Short, Integer, Or an enum type (88.9), or acompile-time error occurs.

The body of a switch statement is known as a switch block. Any statement
immediately contained by the switch block may belabeled with one or more switch
|abels, which are case or default labels. These labels are said to be associated
with the switch statement, as are the values of the constant expressions (§15.28)
or enum constants (88.9.1) in the case labels.

All of the following must be true, or a compile-time error will result:

» Every case constant expression associated with a switch statement must be
assignable (85.2) to the type of the switch Expression.

* No switch label isnu11.

» Notwo of the case constant expressions associated with aswi tch statement may
have the same value.

14.11

233



14.11

234

The switch Satement BLOCKS AND STATEMENTS

» At most one default label may be associated with the same swi tch statement.

When the switch statement is executed, first the Expression is evaluated. If the
Expression evaluates to nu11, aNul1PointerException isthrown and the entire
switch statement completes abruptly for that reason. Otherwise, if the result is of
areference type, it is subject to unboxing conversion (85.1.8).

If evaluation of the Expression or the subsequent unboxing conversion (if any)
completes abruptly for some reason, the switch statement completes abruptly for
the same reason. Otherwise, execution continues by comparing the value of the
Expression with each case constant, as follows:

« If one of the case constantsis equal to the value of the expression, then we say
that the case matches, and all statements after the matching case label in the
switch block, if any, are executed in sequence.

If al these statements complete normally, or if there are no statements after the
matching case label, then the entire switch statement completes normally.

* If no case matches but there is a default label, then all statements after the
matching default label in the switch block, if any, are executed in sequence.

If al these statements complete normally, or if there are no statements after the
default labdl, then the entire switch statement completes normally.

* |f no case matches and thereisno default label, then no further action istaken
and the swi tch statement completes normally.

If any statement immediately contained by the Block body of the switch statement
completes abruptly, it is handled as follows:

« If execution of the Satement completes abruptly because of a break with no
label, no further action istaken and the switch statement completes normally.

* If execution of the Statement compl etes abruptly for any other reason, the switch
statement completes abruptly for the same reason.

The case of abrupt completion because of abreak with alabel ishandled by the
general rule for labeled statements (814.7).

Asin C and C++, execution of statementsin a switch block "fallsthrough labels."



BLOCKS AND STATEMENTS The whiTe Satement

14.12 Thewhile Statement

Thewhile statement executes an Expression and a Satement repeatedly until the
value of the Expressionis false.

WhileStatement:
while ( Expression) Satement

WhileStatementNoShor ti f:
while ( Expression) SatementNoShortlf

The Expression must have type boolean or Boolean, or a compile-time error
occurs.

A while statement is executed by first evaluating the Expression. If theresult is of
type Boolean, it is subject to unboxing conversion (85.1.8).

If evaluation of the Expression or the subsequent unboxing conversion (if any)
completes abruptly for some reason, the while statement completes abruptly for
the same reason. Otherwise, execution continues by making a choice based on the
resulting value:

 |f the valueis true, then the contained Satement is executed. Then there is a
choice:

o If execution of the Satement completes normally, then the entire while
statement is executed again, beginning by re-evaluating the Expression.

o If execution of the Statement completes abruptly, see 814.12.1 below.

* If the (possibly unboxed) value of the Expression is false, no further action is
taken and the whi Te statement completes normally.

If the (possibly unboxed) value of the Expression is false the first time it is
evaluated, then the Satement is not executed.

14.12.1 Abrupt Completion

Abrupt completion of the contained Satement is handled in the following manner:

* If execution of the Satement completes abruptly because of a break with no
label, no further action is taken and the whi1e statement completes normally.

* If execution of the Satement completes abruptly because of a continue with no
label, then the entire while statement is executed again.

14.12

235



14.13

236

The do Satement BLOCKS AND STATEMENTS

* If execution of the Statement completes abruptly because of a continue with
label L, then thereisachoice:

o If thewhile statement haslabel L, then the entirewhi 1e statement is executed
again.

o If the while statement does not have label L, the while statement completes
abruptly because of a continue with label L.

* If execution of the Statement completes abruptly for any other reason, thewhile
statement completes abruptly for the same reason.

The case of abrupt completion because of abreak with alabel ishandled by the
general rule for labeled statements (814.7).

14.13 Thedo Statement

Thedo statement executes a Satement and an Expression repeatedly until the value
of the Expression is false.

DoSatement:
do Satement while ( Expression) ;

The Expression must have type boolean or Boolean, or a compile-time error
OCCUrs.
A do statement is executed by first executing the Satement. Then thereisachoice:

» If execution of the Statement completes normally, then the Expression is
evaluated. If the result is of type Boolean, it is subject to unboxing conversion
(85.1.8).

If evaluation of the Expression or the subsequent unboxing conversion (if any)
compl etes abruptly for some reason, the do statement compl etes abruptly for the
same reason. Otherwise, there is a choice based on the resulting value:

o If thevalueis true, then the entire do statement is executed again.

o If thevalueis false, no further action istaken and the do statement compl etes
normally.

* If execution of the Statement completes abruptly, see §14.13.1 below.
Executing a do statement always executes the contained Statement at |east once.



BLOCKS AND STATEMENTS Abrupt Completion 14.13.1

14.13.1 Abrupt Completion

Abrupt completion of the contained Satement is handled in the following manner:

« If execution of the Satement completes abruptly because of a break with no

label, then no further action is taken and the do statement completes normally.

* If execution of the Statement completes abruptly because of a continue with
no label, then the Expression is evaluated. Then there is a choice based on the

resulting value:

o If thevalueis true, then the entire do statement is executed again.

o If thevalueis false, no further action istaken and the do statement compl etes

normally.

* If execution of the Statement completes abruptly because of a continue with

label L, then thereis achoice;

o If the do statement has label L, then the Expression is evaluated. Then there

isachoice:

o If the value of the Expression is true, then the entire do statement is

executed again.

o If the value of the Expression is false, no further action istaken and the do
statement completes normally.

o If the do statement does not have label L, the do statement completes abruptly

because of a continue with label L.

« If execution of the Satement completes abruptly for any other reason, the do
statement compl etes abruptly for the same reason.

The case of abrupt completion because of abreak with alabel is handled by the

general rule for labeled statements (814.7).

14.14 The for Statement

The for statement has two forms;
e Thebasic for statement.

* The enhanced for statement

237



14141 The basic for Satement BLOCKS AND STATEMENTS

238

ForSatement:
BasicFor Satement
EnhancedFor Satement

14.14.1 Thebasic for Statement

The basic for statement executes some initialization code, then executes an
Expression, a Satement, and some update code repeatedly until the value of the
Expressionis false.

BasicFor Satement:
for ( Forlnitopy ; EXpressiongy ; ForUpdatey, ) Satement

For SatementNoShortlf:
for ( Forlnitgy ; Expressiong ; ForUpdatey, ) SatementNoShortl f

Forlnit:
SatementExpressionList
Local VariableDeclaration

ForUpdate:
SatementExpressionList

SatementExpressionList:
SatementExpression
SatementExpressionList , SatementExpression

The Expression must have type boolean or Boolean, or a compile-time error
occurs.

14.14.1.1 Initialization of for statement
A for statement is executed by first executing the Forlnit code:

« If the Forlnit codeisalist of statement expressions (§14.8), the expressions are
evaluated in sequence from left to right; their values, if any, are discarded.

If evaluation of any expression completes abruptly for some reason, the for
statement completes abruptly for the same reason; any Forlnit statement
expressions to the right of the one that completed abruptly are not evaluated.

« |f the Forlnit code is alocal variable declaration, it is executed asif it were a
local variable declaration statement (814.4) appearing in a block.



BLOCKS AND STATEMENTS The basic for Satement 14.14.1

If execution of the local variable declaration completes abruptly for any reason,
the for statement completes abruptly for the same reason.

* If the Forlnit part is not present, no action is taken.

14.14.1.2 lteration of for statement

Next, a for iteration step is performed, as follows:

* |f the Expression is present, it is evaluated. If theresult is of type Boolean, it is

subject to unboxing conversion (85.1.8).

If evaluation of the Expression or the subsequent unboxing conversion (if any)
completes abruptly, the for statement completes abruptly for the same reason.

Otherwise, there is then a choice based on the presence or absence of the

Expression and the resulting value if the Expression is present; see next bullet.

 |f the Expression is not present, or it is present and the value resulting from
its evaluation (including any possible unboxing) is true, then the contained
Satement is executed. Then thereisachoice:

o If execution of the Satement completes normally, then the foll owing two steps

are performed in sequence:

1. First, if the ForUpdate part is present, the expressions are evaluated
in sequence from left to right; their values, if any, are discarded. If

evaluation of any expression completes abruptly for some reason, the
for statement completes abruptly for the same reason; any ForUpdate
statement expressions to the right of the one that completed abruptly are

not evaluated.
If the ForUpdate part is not present, no action is taken.
2. Second, another for iteration step is performed.
o If execution of the Statement completes abruptly, see 814.14.1.3 below.

* If the Expression is present and the value resulting from its evaluation (including
any possible unboxing) is false, no further action istaken and the for statement
completes normally.

If the (possibly unboxed) value of the Expression is false the first time it is

evaluated, then the Satement is not executed.

If the Expression is not present, then the only way a for statement can complete

normally is by use of abreak statement.

239



14.14.2 The enhanced for statement BLOCKS AND STATEMENTS

240

14.14.1.3 Abrupt Completion of for statement
Abrupt completion of the contained Statement is handled in the following manner:

 If execution of the Statement completes abruptly because of a break with no
label, no further action is taken and the for statement completes normally.

* If execution of the Satement completes abruptly because of a continue with no
label, then the following two steps are performed in sequence:

1. First, if the ForUpdate part is present, the expressions are evaluated in
sequence from left to right; their values, if any, are discarded. If the
ForUpdate part is not present, no action is taken.

2. Second, another for iteration step is performed.

* If execution of the Statement completes abruptly because of a continue with
label L, then thereisachoice:

o If the for statement has label L, then the following two steps are performed
in sequence:

1. First, if the ForUpdate part is present, the expressions are evaluated in
sequence from left to right; their values, if any, are discarded. If the
ForUpdate is not present, no action is taken.

2. Second, another for iteration step is performed.

o If the for statement does not have label L, the for statement completes
abruptly because of a continue with label L.

* If execution of the Statement completes abruptly for any other reason, the for
statement compl etes abruptly for the same reason.

The case of abrupt completion because of abreak with alabel is handled by the
general rule for labeled statements (8§14.7).

14.14.2 Theenhanced for statement
The enhanced for statement has the form:
EnhancedFor Satement:

for ( FormalParameter : Expression ) Statement

The Expression must either havetype Iterable or elseit must be of an array type
(810.1), or acompile-time error occurs.



BLOCKS AND STATEMENTS The break Satement  14.15

The meaning of the enhanced for statement is given by translation into abasic for
statement, as follows:

* If thetype of Expression isasubtype of Iterable, thenlet I be the type of the
expression Expression. iterator().

The enhanced for statement is equivalent to abasic for statement of the form:

for (I i = Expression.iterator(); 7.hasNext(Q); ) {
VariableModifiersy,,: Type Identifier = (TargetType) i.next();
Statement

}

i is an automatically generated identifier that is distinct from any other
identifiers (automatically generated or otherwise) that are in scope (86.3) at the
point where the enhanced for statement occurs.

If Type is areference type, then TargetType is Type; otherwise, TargetTypeis
the upper bound of the capture conversion of the type argument of I, or Object
if Tisraw.

» Otherwise, the Expression necessarily has an array type, 7[1. Let L; ... L,
be the (possibly empty) sequence of 1abelsimmediately preceding the enhanced
for statement.

The enhanced for statement is equivalent to abasic for statement of the form:

T[] a = Expression;

Lz Ly: ... Ly

for (int i = 0; 7 < a.length; 7++) {
VariableModifiers,,: TargetType Identifier = a[i];
Statement

}

a and 7 are automatically generated identifiers that are distinct from any other
identifiers (automatically generated or otherwise) that are in scope at the point
where the enhanced for statement occurs.

TargetType is the type of the loop variable as denoted by the Type that appears
inthe Formal Parameter, followed by any bracket pairsthat follow the Identifier
in the Formal Parameter.

14.15 Thebreak Statement

A break statement transfers control out of an enclosing statement.

241



14.16

242

The continue Statement BLOCKS AND STATEMENTS

BreakStatement:
break ldentifierqyy ;

A break statement with no label attempts to transfer control to the innermost
enclosing switch, while, do, or for statement of the immediately enclosing
method or initializer block; this statement, which is called the break target, then
immediately completes normally.

To be precise, a break statement with no label aways completes abruptly, the
reason being abreak with no label.

If no switch, while, do, or for statement in the immediately enclosing method,
constructor, or initializer encloses the break statement, a compile-time error
OCCUrsS.

A break statement with label Identifier attemptsto transfer control to the enclosing
labeled statement (814.7) that has the same Identifier as its label; this statement,
whichiscalled the break target, thenimmediately completesnormally. Inthiscase,
the break target need not be a switch, while, do, or for statement.

A break statement must refer to alabel within the immediately enclosing method
or initializer block. There are no non-local jumps.

If no labeled statement with Identifier asits label encloses the break statement, a
compile-time error occurs.

To be precise, abreak statement with label Identifier always completes abruptly,
the reason being abreak with label Identifier.

It can be seen, then, that abreak statement always completes abruptly.

14.16 The continue Statement

A continue statement may occur only in awhile, do, or for statement; statements
of these three kinds are called iteration statements. Control passes to the loop-
continuation point of an iteration statement.

ContinueStatement:
continue Identifierqp ;

A continue statement with no label attempts to transfer control to the innermost
enclosing while, do, or for statement of the immediately enclosing method
or initializer block; this statement, which is called the continue target, then
immediately ends the current iteration and begins a new one.



BLOCKS AND STATEMENTS The return Satement

To be precise, such a continue statement always completes abruptly, the reason
being a continue with no label.

If nowhile, do, or for statement of theimmediately enclosing method or initializer
block encloses the continue statement, a compile-time error occurs.

A continue statement with label Identifier attempts to transfer control to the
enclosing labeled statement (814.7) that has the same Identifier as its label; that
statement, which is called the continue target, then immediately ends the current
iteration and begins a new one.

The continue target must be awhile, do, or for statement, or acompile-time error
occurs.

A continue statement must refer to a label within the immediately enclosing
method or initializer block. There are no non-local jumps.

If no labeled statement with |dentifier asitslabel containsthe continue statement,
a compile-time error occurs.

To be precise, a continue statement with label Identifier aways completes
abruptly, the reason being a continue with label Identifier.

It can be seen, then, that a continue statement always completes abruptly.

14.17 The return Statement

A return statement returns control to the invoker of a method (88.4, §15.12) or
constructor (88.8, §15.9).

ReturnSatement:
return EXpressiong ;

A return statement iscontained in theinnermost constructor, method, or initializer
whose body encloses the return statement.

Itisacompile-timeerror if areturn statement iscontained inaninstanceinitializer
(88.6) or astatic initializer (88.7).

A return statement with no Expression must be contained in a method that is
declared, using the keyword vo1id, not to return any value (88.4), or in aconstructor
(88.8), or acompile-time error occurs.

14.17

243



14.18

244

The throw Satement BLOCKS AND STATEMENTS

A return statement with no Expression attempts to transfer control to the invoker
of themethod or constructor that containsit. To be precise, areturn statement with
no Expression always completes abruptly, the reason being areturn with no value.

A return statement with an Expression must be contained in amethod declaration
that is declared to return avalue (88.4), or acompile-time error occurs.

The Expression must denote a variable or value of sometype T, or acompile-time
€rror occurs.

The type T must be assignable (85.2) to the declared result type of the method, or
a compile-time error occurs.

A return statement with an Expression attemptsto transfer control to the invoker
of the method that contains it; the value of the Expression becomes the value of
the method invocation. More precisely, execution of such a return statement first
evaluates the Expression. If the evaluation of the Expression completes abruptly
for some reason, then the return statement completes abruptly for that reason. If
evaluation of the Expression completes normally, producing a value v, then the
return statement completes abruptly, the reason being a return with value v.

If the expression is of type float and is not FP-strict (§15.4), then the value may
be an element of either the float value set or the float-extended-exponent value set
(84.2.3). If the expression is of type double and is not FP-strict, then the value
may be an element of either the double value set or the double-extended-exponent
value set.

It can be seen, then, that a return statement always completes abruptly.

14.18 The throw Statement

A throw statement causes an exception (Chapter 11, Exceptions) to bethrown. The
result isan immediate transfer of control (811.3) that may exit multiple statements
and multiple constructor, instance initializer, static initializer and field initializer
evaluations, and method invocations until a try statement (814.20) is found that
catches the thrown value. If no such try statement is found, then execution of
the thread (Chapter 17, Threads and Locks) that executed the throw is terminated
(811.3) after invocation of the uncaughtException method for the thread group
to which the thread belongs.

ThrowSatement:
throw Expression ;



BLOCKS AND STATEMENTS The throw Satement

The Expression in a throw statement must denote either 1) a variable or value of
a reference type which is assignable (85.2) to the type Throwable, or 2) the null
reference, or a compile-time error occurs.

At least one of the following three conditions must be true, or acompile-time error
occurs:

* Thetype of the Expression is an unchecked exception class (§811.1.1).

e The throw statement is contained in the try block of a try statement (814.20)
and it is not the case that the try statement can throw an exception of the type
of the Expression. (In this case we say the thrown value is caught by the try
statement.)

e The throw statement is contained in a method or constructor declaration and
the type of the Expression is assignable (85.2) to at least one type listed in the
throws clause (88.4.6, 88.8.5) of the declaration.

A throw statement first evaluates the Expression. Then:

* If evaluation of the Expression completes abruptly for some reason, then the
throw completes abruptly for that reason.

« |If evaluation of the Expression completes normally, producing anon-nu11 value
v, then the throw statement compl etes abruptly, the reason being a throw with
value V.

* If evaluation of the Expression completesnormally, producing anu11 value, then
aninstance V' of classNulT1PointerException iscreated and thrown instead of
null. The throw statement then completes abruptly, the reason being a throw
withvalue v'.

If there are any enclosing try statements (814.20) whose try blocks contain the
throw statement, then any finally clauses of those try statements are executed
as control istransferred outward, until the thrown valueis caught. Note that abrupt
completion of a finally clause can disrupt the transfer of control initiated by a
throw statement.

If athrow statement iscontained in amethod declaration, but itsvalueis not caught
by some try statement that containsit, then theinvocation of the method completes
abruptly because of the throw.

If athrow statement is contained in a constructor declaration, but its value is not
caught by some try statement that contains it, then the class instance creation
expression that invoked the constructor will complete abruptly because of the
throw.

14.18

245



14.19

246

The synchronized Satement BLOCKS AND STATEMENTS

If athrow statement is contained in a static initializer (88.7), then a compile-time
check (811.2.3) ensures that either its value is always an unchecked exception or
its value is dways caught by some try statement that contains it. If at run-time,
despite this check, the valueis not caught by some try statement that contains the
throw statement, then the valueisrethrown if it isan instance of classError or one
of its subclasses; otherwise, it iswrapped in an ExceptionInInitializerError
object, which isthen thrown (812.4.2).

If athrow statement is contained in an instance initializer (88.6), then a compile-
time check (811.2.3) ensuresthat either itsvalue is always an unchecked exception
or its value is aways caught by some try statement that contains it, or the type
of the thrown exception (or one of its superclasses) occursin the throws clause of
every constructor of the class.

14.19 The synchronized Statement

A synchronized statement acquires a mutual-exclusion lock (817.1) on behalf of
the executing thread, executes a block, then releases the lock. While the executing
thread owns the lock, no other thread may acquire the lock.

SynchronizedSatement:
synchronized ( Expression) Block

The type of Expression must be areference type, or a compile-time error occurs.
A synchronized statement is executed by first evaluating the Expression. Then:

 If evaluation of the Expression completes abruptly for some reason, then the
synchronized statement completes abruptly for the same reason.

» Otherwise, if the value of the Expression isnul11, aNul1PointerException iS
thrown.

» Otherwise, let the non-nu11 value of the Expression be V. The executing thread
locks the lock associated with V. Then the Block is executed. If execution of
the Block completes normally, then the lock is unlocked and the synchronized
statement completes normally. If execution of the Block completes abruptly for
any reason, then thelock isunlocked and the synchronized statement completes
abruptly for the same reason.

The locks acquired by synchronized statements are the same as the locks that are
acquired implicitly by synchronized methods(88.4.3.6). A singlethread may hold
alock more than once.



BLOCKS AND STATEMENTS The try statement

Acquiring the lock associated with an object doesnot initself prevent other threads
from accessing fields of the object or invoking un-synchronized methods on the
object. Other threads can also use synchronized methods or the synchronized
statement in a conventional manner to achieve mutua exclusion.

14.20 Thetry Statement

A try statement executes a block. If avalue is thrown and the try statement has
onhe or more catch clauses that can catch it, then control will be transferred to the
first such catch clause. If the try statement has a finally clause, then another
block of codeis executed, no matter whether the try block completes normally or
abruptly, and no matter whether a catch clause isfirst given control.

TrySatement:
try Block Catches
try Block Catchesyy Finally

Catches:
CatchClause
Catches CatchClause

CatchClause:
catch ( FormalParameter ) Block

Finally:
finally Block

The Block immediately after the keyword try is called the try block of the try
statement.

The Block immediately after the keyword finally is called the final1y block of
the try statement.

A try statement may have catch clauses, aso called exception handlers.

A catch clause must have exactly one parameter, which is called an exception
parameter.

The declared type of the exception parameter must be the class Throwable or a
subclass (not just a subtype) of Throwable, or a compile-time error occurs.

14.20

247



14.20.1 Execution of try-catch BLOCKS AND STATEMENTS

248

It is a compile-time error if an exception parameter that is declared final is
assigned to within the body of the catch clause.

An exception parameter can only be referred to by a simple name (86.5.6.1), not
aqualified name.

An exception parameter of a catch clause must not have the same name asaloca
variable or parameter of the method or initializer block immediately enclosing the
catch clause, or acompile-time error occurs.

Within the Block of the catch clause, the name of the parameter may not be
redeclared as alocal variable of the directly enclosing method or initializer block,
nor may it be redeclared as an exception parameter of a catch clause in a try
statement of the directly enclosing method or initializer block, or a compile-time
€rror occurs.

Exception handlers are considered in left-to-right order: the earliest possible catch
clause acceptsthe exception, receiving asits actual argument the thrown exception
object.

A finally clause ensures that the finally block is executed after the try block
and any catch block that might be executed, no matter how control leavesthe try
block or catch block.

Handling of the finally block is rather complex, so the two cases of a try
statement with and without a final1y block are described separately.

14.20.1 Execution of try-catch

A try statement without a finally block is executed by first executing the try
block. Then thereis achoice:

* If execution of the try block completes normally, then no further action istaken
and the try statement completes normally.

« |If execution of the try block completes abruptly because of a throw of avalue
Vv, then thereis a choice:

o If the run-time type of v is assignable (85.2) to the Parameter of any catch
clause of the try statement, then the first (Ieftmost) such catch clause is
selected. Thevalue visassigned to the parameter of the selected catch clause,
and the Block of that catch clause is executed.

If that block completes normally, then the try statement completes normally;
if that block completes abruptly for any reason, then the try statement
completes abruptly for the same reason.



BLOCKSAND STATEMENTS Execution of try-finally and try-catch-finally 14.20.2

o If therun-timetype of visnot assignableto the parameter of any catch clause
of the try statement, then the try statement completes abruptly because of a
throw of the value V.

« If execution of the try block completes abruptly for any other reason, then the
try statement completes abruptly for the same reason.

14.20.2 Execution of try-finally and try-catch-finally

A try statement with afinally block isexecuted by first executing the try block.
Then thereis achoice:

« If execution of the try block completes normally, then the finally block is
executed, and then there is a choice:

o If the finally block completes normally, then the try statement completes
normally.

o If the final1y block completes abruptly for reason s, then the try statement
completes abruptly for reason S.

« |If execution of the try block completes abruptly because of a throw of avalue
Vv, then thereis achoice:

o If the run-time type of Vv is assignable to the parameter of any catch clause
of the try statement, then the first (leftmost) such catch clause is selected.
The vaue Vis assigned to the parameter of the selected catch clause, and the
Block of that catch clause is executed. Then there is a choice:

o If the catch block completes normally, thenthe finally block is executed.
Then thereis a choice:

o If the finally block completes normally, then the try statement
completes normally.

o If the finally block completes abruptly for any reason, then the try
statement compl etes abruptly for the same reason.

o If the catch block completes abruptly for reason R, then the finally block
is executed. Then thereisachoice:

o If the finally block completes normally, then the try statement
completes abruptly for reason R.

o If the finally block completes abruptly for reason S, then the try
statement compl etes abruptly for reason S (and reason R is discarded).

249



14.21 Unreachable Satements BLOCKS AND STATEMENTS

o If therun-timetype of visnot assignableto the parameter of any catch clause
of the try statement, then the finally block is executed. Then there is a
choice:

o If the finally block completes normally, then the try statement completes
abruptly because of a throw of the value V.

o If the finally block completesabruptly for reason S, then the try statement
completes abruptly for reason S (and the throw of value vis discarded and
forgotten).

* If execution of the try block completes abruptly for any other reason Rr, then the
finally block is executed. Then there is achoice:

o If the finally block completes normally, then the try statement completes
abruptly for reason R.

o If the finally block completes abruptly for reason S, then the try statement
completes abruptly for reason S (and reason R is discarded).

14.21 Unreachable Statements

It is a compile-time error if a statement cannot be executed because it is
unreachable.

The rulesin this section define two technical terms:

» whether a statement is reachable

» whether a statement can complete normally

The definitions here allow a statement to complete normally only if it isreachable.

A reachable break statement exits a statement if, within the break target, either
thereare no try statementswhose try blocks contain the break statement, or there
are try statements whose try blocks contain the break statement and all finally
clauses of those try statements can complete normally.

A continue Sstatement continues a do statement if, within the do statement, either
there are no try statements whose try blocks contain the continue Statement, or
there are try statements whose try blocks contain the continue statement and all
finally clauses of those try statements can complete normally.

The rules are as follows;

250



BLOCKS AND STATEMENTS Unreachable Statements  14.21

» Theblock that isthe body of aconstructor, method, instance initializer, or static
initializer is reachable.

* An empty block that is not a switch block can complete normally iff it is
reachable.

A non-empty block that is not a switch block can complete normally iff the last
statement in it can complete normally.

The first statement in a non-empty block that is not a switch block is reachable
iff the block is reachable.

Every other statement S in a non-empty block that is not a switch block is
reachable iff the statement preceding S can complete normally.

e A local class declaration statement can complete normally iff it is reachable.
» A local variable declaration statement can complete normally iff it is reachable.
* An empty statement can complete normally iff it is reachable.
A labeled statement can complete normally if at least one of thefollowingistrue:
o The contained statement can complete normally.
o Thereisareachable break statement that exits the labeled statement.
The contained statement is reachable iff the labeled statement is reachable.
» An expression statement can complete normally iff it is reachable.

e The if statement, whether or not it has an el1se part, is handled in an unusual
manner. For thisreason, it is discussed separately at the end of this section.

* Anassert statement can complete normally iff it is reachable.

* A switch statement can complete normally iff at least one of the following is
true:

o The switch block is empty or contains only switch labels.

o The last statement in the switch block can complete normally.

0 Thereisat least one switch label after the last switch block statement group.
o The switch block does not contain adefault label.

o Thereisareachable break statement that exits the switch statement.

* A switch block is reachable iff its switch statement is reachable.

251



14.21

252

Unreachable Satements BLOCKS AND STATEMENTS

* A statement in aswitch block is reachable iff its switch statement is reachable

and at least one of the following istrue:
0 It bearsacase or default label.

o There is a statement preceding it in the switch block and that preceding
statement can complete normally.

* A while statement can completenormally iff at |east one of thefollowing istrue:

o The while statement is reachable and the condition expression is not a
constant expression with value true.

0 Thereisareachable break statement that exits the while statement.

The contained statement is reachable iff the while statement is reachable and
the condition expression is not a constant expression whose value is false.

* A do statement can complete normally iff at least one of the following istrue:

o The contained statement can complete normally and the condition expression
is not a constant expression with value true.

o The do statement contains areachable continue statement with no label, and
the do statement istheinnermost whi 1e, do, or for statement that contai nsthat
continue statement, and the continue statement continues that do statement,
and the condition expression is not a constant expression with value true.

0 The do statement contains areachable continue statement with alabel L, and
the do statement has label L, and the continue statement continues that do
statement, and the condition expression isnot aconstant expression with value
true.

0 Thereisareachable break statement that exits the do statement.
The contained statement is reachable iff the do statement is reachable.

A basic for statement can complete normally iff at least one of the following
istrue:

0 The for statement is reachable, there is a condition expression, and the
condition expression is not a constant expression with value true.

0 Thereisareachable break statement that exits the for statement.

The contained statement is reachable iff the for statement is reachable and the
condition expression is not a constant expression whose valueis false.

* An enhanced for statement can complete normally iff it isreachable.



BLOCKS AND STATEMENTS Unreachable Satements

* A break, continue, return, or throw Statement cannot complete normally.

e A synchronized statement can complete normally iff the contained statement
can complete normally.

The contained statement is reachable iff the synchronized statement is
reachable.

* A try statement can complete normally iff both of the following are true:

o The try block can complete normally or any catch block can complete
normally.

o If the try statement has a finally block, then the finally block can
complete normally.

* The try block isreachable iff the try statement is reachable.
» A catch block Cisreachableiff both of the following are true:

o Either thetype of C's parameter isan unchecked exception typeor Throwable;
Or some expression or throw statement in the try block is reachable and can
throw a checked exception whose type is assignable to the parameter of the
catch clause C.

An expression is reachable iff the innermost statement containing it is
reachable.

o Thereisno earlier catch block Ainthe try statement such that the type of C's
parameter isthe same as or a subclass of the type of A's parameter.

» The Block of acatch block isreachableiff the catch block is reachable.
» If afinally block is present, it isreachable iff the try statement is reachable.
Therulesfor the i f statement are as follows:
* Anif-then statement can complete normally iff it is reachable.
The then-statement is reachable iff the i f-then statement is reachable.

* Anif-then-else statement can complete normally iff the then-statement can
complete normally or the el1se-statement can complete normally.

The then-statement is reachable iff the i f-then-else statement is reachable.

The else-statement is reachable iff the i f-then-else statement is reachable.

14.21

253



14.21 Unreachable Satements BLOCKS AND STATEMENTS

254



CHAPTER 15

Expressions

M UCH of the work in a program is done by evaluating expressions, either for
their side effects, such as assignments to variables, or for their values, which can
be used as arguments or operands in larger expressions, or to affect the execution
sequence in statements, or both.

This chapter specifies the meanings of expressions and the rules for their
evaluation.

15.1 Evaluation, Denotation, and Result

When an expression in a program is evaluated (executed), the result denotes one
of three things:

» A variable (84.12) (in C, thiswould be called an Ivalue)
* Avaue(84.2, 84.3)
» Nothing (the expression is said to be void)

Evaluation of an expression can also produce side effects, because expressions
may contain embedded assignments, increment operators, decrement operators,
and method invocations.

An expression denotes nothing if and only if it is a method invocation (§15.12)
that invokes a method that does not return a value, that is, a method declared
void (88.4). Such an expression can be used only as an expression statement
(814.8), because every other context in which an expression can appear requires
the expression to denote something. An expression statement that is a method
invocation may also invoke a method that produces a result; in this case the value
returned by the method is quietly discarded.

255



15.2

256

Variables as Values EXPRESS ONS

Value set conversion (85.1.13) is applied to the result of every expression that
produces a value.

Each expression occursin either:

» The declaration of some (class or interface) type that is being declared: in a
field initializer, in a static initializer, in an instance initializer, in a constructor
declaration, in an annotation, or in the code for a method.

* Anannotation of a package or of atop-level type declaration.

15.2 VariablesasValues

If an expression denotes a variable, and a value is required for use in further
evaluation, then the value of that variable is used. In this context, if the expression
denotes avariable or avalue, we may speak smply of the value of the expression.

If thevalue of avariable of type float or double isused in this manner, then value
set conversion (85.1.13) is applied to the value of the variable.

15.3 Typeof an Expression

If an expression denotes avariable or avalue, then the expression has atype known
at compiletime. The rulesfor determining the type of an expression are explained
separately below for each kind of expression.

The value of an expression is assignment compatible (85.2) with the type of the
expression, unless heap pollution (84.12.2) occurs.

Likewise, the value stored in a variable is always compatible with the type of the
variable, unless heap pollution occurs.

In other words, the value of an expression whose type is T is always suitable for
assignment to avariable of type T.

Note that an expression whose type is a class type F that is declared final is
guaranteed to have a value that is either a null reference or an object whose class
is Fitself, because final types have no subclasses.



EXPRESS ONS FP-strict Expressions

15.4 FP-strict Expressions

If the type of an expression is float or double, then thereis a question as to what
value set (84.2.3) the value of the expression is drawn from. This is governed by
the rules of value set conversion (85.1.13); these rules in turn depend on whether
or not the expression is FP-dtrict.

Every compile-time constant expression (815.28) is FP-strict.

If an expression is not a compile-time constant expression, then consider al the
class declarations, interface declarations, and method declarations that contain
the expression. If any such declaration bears the strictfp modifier, then the
expression is FP-strict.

If aclass, interface, or method, X, is declared strictfp, then X and any class,
interface, method, constructor, instance initializer, static initializer or variable
initializer within X is said to be FP-strict.

It follows that an expression is not FP-strict if and only if it is not a compile-
time constant expression and it does not appear within any declaration that hasthe
strictfp modifier.

Within an FP-strict expression, all intermediate values must be elements of the
float value set or the double value set, implying that the results of all FP-
strict expressions must be those predicted by |IEEE 754 arithmetic on operands
represented using single and double formats.

Within an expression that is not FP-strict, some leeway is granted for an
implementation to use an extended exponent range to represent intermediate
results; the net effect, roughly speaking, is that a calculation might produce "the
correct answer" in situations where exclusive use of the float value set or double
value set might result in overflow or underflow.

15.5 Expressionsand Run-Time Checks

If the type of an expression is a primitive type, then the value of the expression is
of that same primitive type.

If the type of an expression is a reference type, then the class of the referenced
object, or even whether the value is areference to an object rather than nu11, isnot
necessarily known at compiletime. Thereare afew placesin the Javaprogramming
language where the actual class of areferenced object affects program execution

15.4

257



155

258

Expressions and Run-Time Checks EXPRESSONS

in a manner that cannot be deduced from the type of the expression. They are as
follows:

» Method invocation (815.12). The particular method used for an invocation
o.m(...) ischosen based on the methods that are part of the class or interface
that is the type of o. For instance methods, the class of the object referenced by
the run-time value of o participates because a subclass may override a specific
method already declared in a parent class so that this overriding method is
invoked. (The overriding method may or may not choose to further invoke the
original overridden m method.)

» The instanceof operator (§15.20.2). An expression whose type is a reference
type may betested using instanceof to find out whether the class of the object
referenced by the run-time value of the expression is assignment compatible
(85.2) with some other reference type.

 Casting (85.5, 815.16). The class of the object referenced by the run-time value
of the operand expression might not be compatible with the type specified by
the cast. For reference types, this may require a run-time check that throws an
exception if the class of the referenced object, as determined at run time, is not
assignment compatible (85.2) with the target type.

» Assignment to an array component of reference type (810.5, 815.13, §15.26.1).
The type-checking rules allow the array type S[] to be treated as a subtype of
T[] if Sisasubtypeof T, but thisrequires arun-time check for assignment to an
array component, similar to the check performed for a cast.

 Exception handling (814.20). An exception is caught by a catch clause only if
the class of the thrown exception object isan instanceof the type of the formal
parameter of the catch clause.

Situations where the class of an object is not statically known may lead to run-time
type errors.

In addition, there are situations where the statically known type may not be
accurate at run-time. Such situations can arise in a program that gives rise to
unchecked warnings. Such warningsare given in response to operationsthat cannot
be statically guaranteed to be safe, and cannot immediately be subjected to dynamic
checking because they involve non-reifiable (84.7) types. As a result, dynamic
checks later in the course of program execution may detect inconsistencies and
result in run-time type errors.

A run-timetype error can occur only in these situations:



EXPRESSONS Normal and Abrupt Completion of Evaluation

* In a cast, when the actual class of the object referenced by the value of the
operand expression is not compatible with the target type specified by the cast
operator (85.5, 815.16); in this case aClassCastException isthrown.

* In an automatically generated cast introduced to ensure the validity of an
operation on a non-reifiable type (84.7).

* |nan assignment to an array component of reference type, when the actual class
of the object referenced by the value to be assigned is not compatible with the
actual run-time component type of the array (810.5, §15.13, 815.26.1); in this
case an ArrayStoreException isthrown.

* When an exception is not caught by any catch clause of a try statement
(814.20); in this case the thread of control that encountered the exception first
attempts to invoke an uncaught exception handler (811.3) and then terminates.

15.6 Normal and Abrupt Completion of Evaluation

Every expression has a normal mode of evaluation in which certain computational
steps are carried out. The following sections describe the norma mode of
evaluation for each kind of expression.

If all the steps are carried out without an exception being thrown, the expression
is said to complete normally. If, however, evaluation of an expression throws an
exception, then the expression is said to complete abruptly. An abrupt completion
aways has an associated reason, which is always a throw with a given value.

Run-time exceptions are thrown by the predefined operators as follows:

* A classinstance creation expression (815.9), array creation expression (§15.10),
array initializer expression (810.6), or string concatenation operator expression
(815.18.1) throws an OutOfMemoryError if there is insufficient memory
available.

* Anarray creation expression (815.10) throws aNegativeArraySizeException
if the value of any dimension expression is less than zero.

» Afield accessexpression (815.11) throwsaNul1PointerException if thevaue
of the object reference expression isnull.

« A method invocation expression (815.12) that invokes an instance method
throws aNull1PointerException if thetarget referenceisnull.

15.6

259



15.6

260

Normal and Abrupt Completion of Evaluation EXPRESS ONS

* An array access expression (815.13) throws a Nul1PointerException if the
value of the array reference expressionisnull.

* An array access expression (815.13) throws an
ArrayIndexOutOfBoundsException if the value of the array index expression
is negative or greater than or equal to the Tength of the array.

» A cast expression (815.16) throws a ClassCastException if acast isfound to
be impermissible at run time.

* Aninteger division (815.17.2) or integer remainder (815.17.3) operator throws
an ArithmeticException if the value of the right-hand operand expression is
zero.

« An assignment to an array component of reference type (815.26.1), a method
invocation expression (815.12), or a prefix or postfix increment (815.14.2,
§15.15.1) or decrement operator (815.14.3, 815.15.2) may all throw an
OutOfMemoryError asaresult of boxing conversion (85.1.7).

» An assignment to an array component of reference type (815.26.1) throws an
ArrayStoreException when the valueto be assigned is not compatible with the
component type of the array (810.5).

A method invocation expression can also result in an exception being thrown if an
exception occurs that causes execution of the method body to complete abruptly.
A classinstance creation expression can also result in an exception being thrown if
an exception occurs that causes execution of the constructor to complete abruptly.
Various linkage and virtual machine errors may also occur during the evaluation
of an expression. By their nature, such errors are difficult to predict and difficult
to handle.

If an exception occurs, then evaluation of one or more expressions may be
terminated before all steps of their normal mode of evaluation are complete; such
expressions are said to compl ete abruptly.

The terms "complete normally" and "complete abruptly" are also applied to the
execution of statements (814.1). A statement may complete abruptly for a variety
of reasons, not just because an exception is thrown.

If evaluation of an expression requires evaluation of a subexpression, then abrupt
completion of the subexpression always causes the immediate abrupt completion
of theexpressionitself, with the samereason, and all succeeding stepsin thenormal
mode of evaluation are not performed.



EXPRESS ONS Evaluation Order

15.7 Evaluation Order

The Java programming language guarantees that the operands of operators appear
to be evaluated in a specific evaluation order, namely, from left to right.

It isrecommended that code not rely crucially on this specification. Codeisusually
clearer when each expression contains at most one side effect, as its outermost
operation, and when code does not depend on exactly which exception arises as a
consequence of the left-to-right evaluation of expressions.

15.7.1 Evaluate Left-Hand Operand First

Theleft-hand operand of abinary operator appearsto be fully evaluated before any
part of the right-hand operand is evaluated.

If the operator is a compound-assignment operator (815.26.2), then evauation of
the left-hand operand includes both remembering the variable that the left-hand
operand denotes and fetching and saving that variable'svalue for usein theimplied
combining operation.

If evaluation of the left-hand operand of a binary operator completes abruptly, no
part of the right-hand operand appears to have been evaluated.

15.7.2 Evaluate Operands before Operation

The Java programming language guarantees that every operand of an operator
(except the conditional operators &&, ||, and ? :) appears to be fully evaluated
before any part of the operation itself is performed.

If the binary operator is an integer division / (815.17.2) or integer remainder
% (815.17.3), then its execution may raise an ArithmeticException, but this
exception is thrown only after both operands of the binary operator have been
evaluated and only if these evaluations completed normally.

15.7.3 Evaluation Respects Parentheses and Precedence

The Java programming language respects the order of evaluation indicated
explicitly by parentheses and implicitly by operator precedence.

In the case of floating-point calculations, this rule applies also for infinity and not-
a-number (NaN) values.

15.7

261



15.7.4

262

Argument Lists are Evaluated Left-to-Right EXPRESSONS

Specifically, floating-point calculations that appear to be mathematically
associative are unlikely to be computationally associative. Such computations must
not be naively reordered.

In contrast, integer addition and multiplication are provably associative in the Java
programming language.

15.7.4 Argument Listsare Evaluated L eft-to-Right

In a method or constructor invocation or class instance creation expression,
argument expressions may appear within the parentheses, separated by commas.
Each argument expression appears to be fully evaluated before any part of any
argument expression to itsright.

If evaluation of an argument expression completes abruptly, no part of any
argument expression to its right appears to have been evaluated.

15.7.5 Evaluation Order for Other Expressions

The order of evaluation for some expressions is not completely covered by these
general rules, because these expressions may raise exceptional conditions at times
that must be specified.

See, specifically, the detailed explanations of evaluation order for the following
kinds of expressions:

* classinstance creation expressions (815.9.4)
* array creation expressions (815.10.1)

* method invocation expressions (§15.12.4)

* array access expressions (815.13.1)

 assignments involving array components (815.26)

15.8 Primary Expressions

Primary expressionsinclude most of the simplest kinds of expressions, from which
al othersare constructed: literals, classliterals, field accesses, method invocations,
and array accesses. A parenthesized expression is also treated syntactically as a
primary expression.



EXPRESS ONS Lexical Literals 15.8.1

Primary:
PrimaryNoNewArray
ArrayCreationExpression

PrimaryNoNewArray:

Literal
Type . class
void . class
this

ClassName . this

( Expression )

Classl nstanceCr eati onExpression
FieldAccess

MethodI nvocation

ArrayAccess

15.8.1 Lexical Literals

A literal (83.10) denotes a fixed, unchanging value.
The following production from 83.10 is repeated here for convenience:
Literal:
IntegerLiteral
FloatingPointLiteral
BooleanLiteral
CharacterLiteral
SringLiteral
NullLiteral
Thetype of aliteral is determined as follows:
» Thetype of aninteger literal that endswith L or 1 is1ong.
The type of any other integer literal isint.

* The type of afloating-point literal that ends with F or f is float and its value
must be an element of the float value set (84.2.3).

The type of any other floating-point literal is double and its value must be an
element of the double value set.

» Thetype of aboolean literal isboolean.

» Thetype of acharacter literal is char.

263



15.8.2

264

Class Literals EXPRESS ONS

» Thetype of astring literal isString.
» Thetype of the null literal nu11 isthe null type; its value is the null reference.

Evaluation of alexica literal always completes normally.

15.8.2 ClassLiterals

A classliteral is an expression consisting of the name of a class, interface, array,
or primitive type, or the pseudo-type void, followed by a'." and the token c1ass.

The type of a class literal, C.class, where C is the name of a class, interface, or
array type, isClass<G.

If pisthe name of aprimitivetype, let B be the type of an expression of type p after
boxing conversion (85.1.7). Then thetype of p..class isClass<B>.

Thetype of void.class isClass<Void>.

A class literal evaluates to the Class object for the named type (or for void) as
defined by the defining class loader of the class of the current instance.

It isacompile-time error if any of the following occur:

» The named type is a type variable (84.4) or a parameterized type (84.5) or an
array whose element type is atype variable or parameterized type.

» The named type does not denote a type that is accessible (86.6) and in scope
(86.3) at the point where the class literal appears.

15.8.3 this

The keyword this may be used only in the body of an instance method, instance
initializer, or constructor, or in the initializer of an instance variable of aclass. If
it appears anywhere else, a compile-time error occurs.

When used as a primary expression, the keyword this denotes a value that is a
reference to the object for which the instance method was invoked (815.12), or to
the object being constructed.

Thetype of this isthe class € within which the keyword th1is occurs.

At run time, the class of the actual object referred to may be the class € or any
subclass of C.

The keyword this is also used in a special explicit constructor invocation
statement, which can appear at the beginning of a constructor body (88.8.7).



EXPRESSONS Qualified this

15.8.4 Qualified this

Any lexically enclosing instance can be referred to by explicitly qualifying the
keyword this.

Let C be the class denoted by ClassName. Let n be aninteger such that Cisthen'th
lexically enclosing class(88.1.3) of theclassinwhichthequalified this expression

appears.

The value of an expression of the form ClassName. this is the n'th lexically
enclosing instance of this.

The type of the expressionis C.

Itisacompile-timeerror if thecurrent classisnot aninner classof class Cor Citself.

15.8.5 Parenthesized Expressions

A parenthesized expression is a primary expression whose type is the type of the
contained expression and whose value at run time is the value of the contained
expression. If the contained expression denotes a variable then the parenthesized
expression also denotes that variable.

The use of parentheses affects only the order of evaluation, with one fascinating
exception.

Consider the case of the smallest possible negative value of type Tong. Thisvalue,
9223372036854775808L, isallowed only asan operand of the unary minusoperator
(83.10.1). Therefore, enclosing it in parentheses, asin - (9223372036854775808L)
causes a compile-time error.

In particular, the presence or absence of parentheses around an expression does not
(except for the case noted above) affect in any way:

* the choice of value set (84.2.3) for the value of an expression of type float or
double

» whether a variable is definitely assigned, definitely assigned when true,
definitely assigned when false, definitely unassigned, definitely unassigned
when true, or definitely unassigned when false (Chapter 16, Definite
Assignment)

15.84

265



15.9

266

Class Instance Creation Expressions EXPRESSONS

15.9 Classlnstance Creation Expressions

A classinstance creation expression is used to create new objectsthat areinstances
of classes.

ClasslnstanceCreationExpression:
new TypeArgumentsyp: ClassOrInterfaceType
( ArgumentListoy ) ClassBodyopt
Primary . new TypeArgumentsyp Identifier TypeArgumentsoyp
( ArgumentListop ) ClassBodyop

ArgumentList:
Expression
ArgumentList , Expression

A class instance creation expression specifies a class to be instantiated, possibly
followed by type arguments (if the class being instantiated is generic (88.1.2)),
followed by (apossibly empty) list of actual value arguments to the constructor.

It isalso possible to pass explicit type arguments to the constructor itself (if itisa
generic constructor (88.8.4)). The type arguments to the constructor immediately
follow the keyword new.

It is a compile-time error if any of the type arguments used in a class instance
creation expression are wildcard type arguments (84.5.1).

Class instance creation expressions have two forms:
» Ungualified class instance creation expressions begin with the keyword new.

An unqualified class instance creation expression may be used to create an
instance of aclass, regardless of whether the classis atop-level (87.6), member
(88.5, 89.5), local (814.3) or anonymous class (§15.9.5).

 Qualified class instance creation expressions begin with a Primary.

A qualified class instance creation expression enables the creation of instances
of inner member classes and their anonymous subclasses.

Both unqualified and qualified class instance creation expressions may optionally
end with a class body. Such a class instance creation expression declares an
anonymous class (815.9.5) and creates an instance of it.

We say that a class is instantiated when an instance of the class is created by a
class instance creation expression. Class instantiation involves determining what
classisto beinstantiated, what the enclosing instances (if any) of the newly created



EXPRESSONS Determining the Class being Instantiated

instance are, what constructor should be invoked to create the new instance, and
what arguments should be passed to that constructor.

15.9.1 Determiningthe Class being I nstantiated

If the class instance creation expression ends in a class body, then the class being
instantiated is an anonymous class. Then:

* If the classinstance creation expression is an unqualified class instance creation
expression, then let T be the ClassOr|nterfaceType after the new token.

It is a compile-time error if the class or interface named by T is not accessible
(86.6) or if Tisan enum type (88.9).

If T denotes a class, then an anonymous direct subclass of the class named by T
is declared. It isacompile-time error if the class denoted by Tisafinal class.

If T denotes an interface, then an anonymous direct subclass of Object that
implements the interface named by T is declared.

In either case, the body of the subclassisthe ClassBody givenintheclassinstance
creation expression.

The class being instantiated is the anonymous subclass.

» Otherwise, the class instance creation expression is a qualified class instance
creation expression. Let T be the name of the Identifier after the new token.

Itisacompile-timeerror if Tisnot thesimplename (86.2) of an accessible (86.6)
non-final inner class (88.1.3) that is a member of the compile-time type of the
Primary.

It isacompile-time error if Tisambiguous (88.5) or if T denotes an enum type.

An anonymous direct subclass of the class named by T is declared. The body of
the subclassis the ClassBody given in the class instance creation expression.

The class being instantiated is the anonymous subcl ass.
If aclassinstance creation expression does not declare an anonymous class, then:

« If the classinstance creation expression is an unqualified class instance creation
expression, then the ClassOr I nterfaceType must denote aclassthat isaccessible
(86.6) and isnot an enum type and not abstract, or acompile-time error occurs.

In this case, the class being instantiated is the class denoted by
ClassOrInterfaceType.

1591

267



15.9.2 Determining Enclosing Instances EXPRESS ONS

» Otherwise, the class instance creation expression is a qualified class instance
creation expression.

It is a compile-time error if Identifier is not the simple name (86.2) of an
accessible (86.6) non-abstract inner class (88.1.3) T that is a member of the
compile-time type of the Primary.

Itisacompile-timeerror if Identifier isambiguous (88.5), or if Identifier denotes
an enum type (88.9).

The class being instantiated is the class denoted by Identifier.

The type of the class instance creation expression is the class type being
instanti ated.

15.9.2 Determining Enclosing I nstances

Let Cbetheclassbeing instantiated, and | et 7 betheinstance being created. If Cisan
inner class then 7 may have an immediately enclosing instance. The immediately
enclosing instance of 7 (88.1.3) is determined as follows.

If Cisan anonymous class, then:

* If the class instance creation expression occursin a static context (88.1.3), then
i has no immediately enclosing instance.

» Otherwise, theimmediately enclosing instance of 7 iSthis.

If Cisalocal class (814.3), then let 0 be the innermost lexically enclosing class of
C. Let nbe aninteger such that 0 isthe n'th lexically enclosing class of the classin
which the class instance creation expression appears. Then:

 If Coccursin astatic context, then 7 has no immediately enclosing instance.

» Otherwise, if the class instance creation expression occurs in a static context,
then a compile-time error occurs.

» Otherwise, theimmediately enclosing instance of 7isthen'thlexically enclosing
instance of this (88.1.3).

Otherwise, Cisaninner member class (88.5), and then:

« If the classinstance creation expression is an unqualified class instance creation
expression, then:

o If the class instance creation expression occurs in a static context, then a
compile-time error occurs.

268



EXPRESS ONS Determining Enclosing Instances

o Otherwise, if Cisamember of an enclosing class then let 0 be the innermost
lexically enclosing class of which Cisamember, and let n be an integer such
that oisthen'th lexically enclosing class of the classin which the classinstance
creation expression appears.

Theimmediately enclosing instance of 7 isthen'thlexically enclosing instance
of this.

o Otherwise, a compile-time error occurs.

» Otherwise, the class instance creation expression is a qualified class instance
creation expression.

The immediately enclosing instance of 7 is the object that is the value of the
Primary expression.

In addition, if Cisananonymous class, and the direct superclassof ¢, S, isaninner
class, then 7 may have an immediately enclosing instance with respect to S. It is
determined as follows.

If Sisalocal class (814.3), then let 0 be the innermost lexically enclosing class of
S. Let n be aninteger such that 0isthe n'th lexically enclosing class of the classin
which the class instance creation expression appears. Then:

« If S occurswithin astatic context, then 7 has no immediately enclosing instance
with respect to S.

» Otherwise, if the class instance creation expression occurs in a static context,
then a compile-time error occurs.

» Otherwise, the immediately enclosing instance of 7 with respect to S isthe n'th
lexically enclosing instance of this.

Otherwise, S isaninner member class (88.5), and then:
* If the classinstance creation expression is an unqualified class instance creation
expression, then:
o If the class instance creation expression occurs in a static context, then a
compile-time error occurs.

o Otherwise, if Sisamember of an enclosing class then let 0 be the innermost
lexically enclosing class of which S isamember, and let n be an integer such
that oisthen'thlexically enclosing class of the classin which the classinstance
Creation expression appears.

The immediately enclosing instance of 7 with respect to Sisthe n'th lexically
enclosing instance of this.

15.9.2

269



15.9.3

270

Choosing the Constructor and its Arguments EXPRESS ONS

o Otherwise, a compile-time error occurs.

» Otherwise, the class instance creation expression is a qualified class instance
creation expression.

Theimmediately enclosing instance of 7 with respect to S isthe object that isthe
value of the Primary expression.

15.9.3 Choosing the Constructor and its Arguments

Let Cbetheclasstypebeing instantiated. To create an instance of C, 7, aconstructor
of Cischosen at compile-time by the following rules.

First, the actual arguments to the constructor invocation are determined:
* If Cisananonymousclass, and thedirect superclassof ¢, S, isaninner class, then:

o If Sisalocal classand S occurs in a static context, then the argumentsin the
argument ligt, if any, are the arguments to the constructor, in the order they
appear in the expression.

o Otherwise, the immediately enclosing instance of 7 with respect to S is the
first argument to the constructor, followed by the arguments in the argument
list of the class instance creation expression, if any, in the order they appear
in the expression.

» Otherwise the arguments in the argument list, if any, are the arguments to the
constructor, in the order they appear in the expression.

Once the actual arguments have been determined, they are used to select a
constructor of ¢, using the same rules as for method invocations (§15.12).

Asin method invocations, a compile-time method matching error occursif thereis
no unique most-specific constructor that is both applicable and accessible.

Note that the type of the class instance creation expression may be an anonymous
class type, in which case the constructor being invoked is an anonymous
constructor (815.9.5.1.

15.9.4 Run-time Evaluation of Class I nstance Creation Expressions

At run time, evaluation of a class instance creation expression is as follows.

First, if the class instance creation expression is aqualified class instance creation
expression, the qualifying primary expression is evauated. If the qualifying
expression evaluates to nu11, a NuTl1PointerException is raised, and the class



EXPRESSONS Anonymous Class Declarations  15.9.5

instance creation expression completes abruptly. If the qualifying expression
completes abruptly, the class instance creation expression completes abruptly for
the same reason.

Next, space is allocated for the new class instance. If there is insufficient space to
allocate the object, evaluation of the class instance creation expression completes
abruptly by throwing an OutOfMemoryError.

The new object contains new instances of all the fields declared in the specified
class type and all its superclasses. As each new field instance is created, it is
initialized to its default value (84.12.5).

Next, the actual arguments to the constructor are evaluated, left-to-right. If any of
the argument eval uations completes abruptly, any argument expressionsto itsright
are not evaluated, and the class instance creation expression compl etes abruptly for
the same reason.

Next, the selected constructor of the specified classtypeisinvoked. Thisresultsin
invoking at least one constructor for each superclass of the classtype. This process
can bedirected by explicit constructor invocation statements (88.8) and isdescribed
in detail in 812.5.

Thevalue of aclassinstance creation expression isareference to the newly created
object of the specified class. Every time the expression is evaluated, a fresh object
is created.

15.9.5 Anonymous Class Declar ations

An anonymous class declaration is automatically derived from a class instance
creation expression by the Java compiler.

An anonymous classis never abstract (88.1.1.1).

An anonymous class is dways an inner class (88.1.3); it is never static (88.1.1,
§88.5.2).

An anonymous classis always implicitly final (88.1.1.2).

15.9.5.1 Anonymous Constructors

An anonymous class cannot have an explicitly declared constructor. Instead,
the Java compiler must automatically provide an anonymous constructor for the
anonymous class. The form of the anonymous constructor of an anonymous class
Cwith direct superclass S is as follows:

271



15.9.5  Anonymous Class Declarations EXPRESSONS

e If Sisnotaninner class, or if Sisalocal classthat occursin astatic context, then
the anonymous constructor has one formal parameter for each actual argument
to the class instance creation expression in which Cis declared.

The actual arguments to the class instance creation expression are used to
determine a constructor cs of S, using the same rules as for method invocations
(815.12).

The type of each formal parameter of the anonymous constructor must be
identical to the corresponding formal parameter of cs.

The body of the constructor consists of an explicit constructor invocation
(88.8.7.1) of the form super(...), where the actual arguments are the formal
parameters of the constructor, in the order they were declared.

» Otherwise, thefirst formal parameter of the constructor of C representsthe value
of the immediately enclosing instance of 7 with respect to S. The type of this
parameter is the class type that immediately encloses the declaration of S.

The constructor has an additional formal parameter for each actual argument to
the class instance creation expression that declared the anonymous class. The
n'th formal parameter e corresponds to the n-1'th actual argument.

The actual arguments to the class instance creation expression are used to
determine a constructor cs of S, using the same rules as for method invocations
(815.12).

The type of each formal parameter of the anonymous constructor must be
identical to the corresponding formal parameter of cs.

The body of the constructor consists of an explicit constructor invocation
(88.8.7.1) of the form o.super(...), where o is the first formal parameter of
the constructor, and the actual arguments are the subsequent formal parameters
of the constructor, in the order they were declared.

In al cases, the throws clause of an anonymous constructor must list all the
checked exceptions thrown by the explicit superclass constructor invocation
statement contai ned within the anonymous constructor, and all checked exceptions
thrown by any instance initializers or instance variable initializers of the
anonymous class.

Note that it is possible for the signature of the anonymous constructor to refer
to an inaccessible type (for example, if such atype occurred in the signature of
the superclass constructor cs). This does not, in itself, cause any errors at either
compile time or run time.

272



EXPRESS ONS Array Creation Expressions

15.10 Array Creation Expressions

An array creation expression is used to create new arrays (Chapter 10, Arrays).

ArrayCreationExpression:
new PrimitiveType DimExprs Dimsyp
new ClassOrInterfaceType DimExprs Dimsgp
new PrimitiveType Dims Arraylnitializer
new ClassOr|nterfaceType Dims Arraylnitializer

DimExprs:
DimExpr
DimExprs DimExpr

DimExpr:
[ Expression ]

Dims:
[1]
Dims[ ]

An array creation expression creates an object that is a new array whose elements
are of the type specified by the PrimitiveType or ClassOr|nterfaceType.

It is a compile-time error if the ClassOrInterfaceType does not denote a type that
is reifiable (84.7). Otherwise, the ClassOrlnterfaceType may name any named
reference type, even an abstract class type (88.1.1.1) or an interface type
(Chapter 9, Interfaces).

Thetype of the creation expressionisan array typethat can denoted by acopy of the
creation expression from which the new keyword and every DimExpr expression
and array initializer have been deleted.

The type of each dimension expression within a DimExpr must be a type that is
convertible (85.1.8) to an integral type, or acompile-time error occurs.

Each expression undergoes unary numeric promotion (85.6.1). The promoted type
must be int, or acompile-time error occurs.

If an array initializer is provided, the newly allocated array will beinitialized with
the values provided by the array initializer as described in §810.6.

15.10

273



15.10.1 Run-time Evaluation of Array Creation Expressions EXPRESS ONS

274

15.10.1 Run-time Evaluation of Array Creation Expressions

At run time, evaluation of an array creation expression behaves as follows.

If there are no dimension expressions, then there must be an array initializer. The
valueof thearray initializer isthevalue of the array creation expression. Otherwise:

First, thedimension expressionsare evaluated, left-to-right. If any of the expression
evaluations completes abruptly, the expressions to the right of it are not eval uated.

Next, the values of the dimension expressions are checked. If the value of any
DimExpr expression is less than zero, then an NegativeArraySizeException iS
thrown.

Next, spaceis allocated for the new array. If there is insufficient space to allocate
the array, evaluation of the array creation expression completes abruptly by
throwing an OutOfMemoryError.

Then, if a single DimExpr appears, a one-dimensional array is created of the
specified length, and each component of the array isinitialized to its default value
(84.125).

If an array creation expression contains n DimExpr expressions, then it effectively
executes a set of nested loops of depth n-1 to create the implied arrays of arrays.

A multidimensional array need not have arrays of the same length at each level.

In an array creation expression (815.10), there may be one or more dimension
expressions, each within brackets. Each dimension expression is fully evaluated
before any part of any dimension expression to itsright.

If evaluation of a dimension expression completes abruptly, no part of any
dimension expression to its right will appear to have been evaluated.

If evaluation of an array creation expression finds there is insufficient memory to
perform the creation operation, then an OutOfMemoryError isthrown. If the array
creation expression does not have an array initializer, then this check occurs only
after evaluation of all dimension expressions has completed normally. If the array
creation expression does have an array initiaizer, then an OutOfMemoryError can
occur when an object of reference type is allocated during evaluation of avariable
initializer expression, or when space is alocated for an array to hold the values of
a(possibly nested) array initializer.



EXPRESSONS Field Access Expressions

15.11 Field Access Expressions

A field access expression may access a field of an object or array, a reference to
which isthe value of either an expression or the special keyword super.

FieldAccess.
Primary . ldentifier
super . ldentifier
ClassName . super . Identifier

The meaning of afield access expression is determined using the samerulesasfor
qualified names (86.5.6.2), but limited by the fact that an expression cannot denote
apackage, classtype, or interface type.

15.11.1 Field AccessUsingaPrimary

Thetype of the Primary must be areferencetype T, or acompile-time error occurs.
The meaning of the field access expression is determined as follows:

« If the identifier names several accessible (86.6) member fields of type T, then
the field access is ambiguous and a compile-time error occurs.

« If the identifier does not hame an accessible member field of type T, then the
field access is undefined and a compile-time error occurs.

» Otherwise, the identifier names a single accessible member field of type T and
the type of the field access expression is the type of the member field after
capture conversion (85.1.10).

At run-time, the result of the field access expression is computed as follows:
(assuming that the program is correct with respect to definite assignment
analysis, i.e. every blank final variableis definitely assigned before access)

o If thefieldisstatic:

0 The Primary expression is evauated, and the result is discarded. If
evaluation of the Primary expression completes abruptly, the field access
expression completes abruptly for the same reason.

o If thefieldisanon-blank final, then the result is the value of the specified
class variable in the class or interface that is the type of the Primary
expression.

15.11

275



15.11.2  Accessing Superclass Members using super EXPRESSONS

276

o If thefieldisnot final, orisablank final and the field access occursin a
constructor, then theresult isavariable, namely, the specified classvariable
in the classthat is the type of the Primary expression.

o If thefieldisnot static:

0 The Primary expression is evaluated. If evauation of the Primary
expression completes abruptly, the field access expression completes
abruptly for the same reason.

o If the value of the Primary is nul11, then a Nul1PointerException is
thrown.

o If thefieldisanon-blank final, then the result is the value of the specified
instance variable in the object referenced by the value of the Primary.

o If thefieldisnot final, or isablank final and the field access occursin
a constructor, then the result is a variable, namely, the specified instance
variable in the object referenced by the value of the Primary.

Note, specifically, that only the type of the Primary expression, not the class of the
actual object referred to at run time, is used in determining which field to use.

15.11.2 Accessing Superclass Members using super

Theform super. |dentifier refersto the field named I dentifier of the current object,
but with the current object viewed as an instance of the superclass of the current
class. The form T.super.ldentifier refers to the field named Identifier of the
lexically enclosing instance corresponding to T, but with that instance viewed as
an instance of the superclass of T.

The forms using the keyword super are valid only in an instance method, instance
initializer or constructor, or intheinitiaizer of aninstance variable of aclass. These
are exactly the same situations in which the keyword this may be used (815.8.3).

It is a compile-time error if the forms using the keyword super appear in the
declaration of classObject, since Object has no superclass.

If afield access expression super . name appears within class ¢, and the immediate
superclass of Cisclass S, then super. name is treated exactly asif it had been the
expression this. name in the body of class S. Thusit can accessthefield name that
isvisiblein class S, even if that field is hidden by a declaration of afield name in
class C.



EXPRESSONS Method Invocation Expressions

If a field access expression T.super.name appears within class ¢, and the
immediate superclass of the class denoted by T is a class whose fully qualified
nameis S, then T.super. name is treated exactly as if it had been the expression
this.name in the body of class S. Thus it can access the field name that is visible
inclass s, even if that field is hidden by a declaration of afield name in class T.

Itisacompile-timeerror if thecurrent classisnot aninner classof class Tor Titself.

15.12 Method Invocation Expressions

A method invocation expression is used to invoke a class or instance method.

Methodlnvocation:
MethodName ( ArgumentListop: )
Primary . NonWildTypeArgumentsy; Identifier ¢ ArgumentListop )
super . NonWildTypeArgumentsyy Identifier ¢ ArgumentListop: )

15.12

ClassName . super . NonWildTypeArgumentsy, Identifier ¢ ArgumentListop: )

TypeName . NonWildTypeArguments Identifier ( ArgumentListop )

The definition of ArgumentList from 815.9 is repeated here for convenience:

ArgumentList:
Expression
ArgumentList , Expression

Resolving a method name at compile time is more complicated than resolving a
field name because of the possibility of method overloading. Invoking amethod at
runtimeis also more complicated than accessing afield because of the possibility
of instance method overriding.

Determining the method that will be invoked by a method invocation expression
involves severa steps. The following three sections describe the compile-time
processing of a method invocation; the determination of the type of the method
invocation expression is described in 815.12.3.

15.12.1 Compile-Time Step 1: Determine Classor Interfaceto Search

The first step in processing a method invocation at compile time is to figure out
the name of the method to be invoked and which class or interface to check for
definitions of methods of that name. There are several casesto consider, depending
on the form that precedes the left parenthesis, as follows.

277



15.12.1 Compile-Time Step 1: Determine Class or Interface to Search EXPRESS ONS

278

« |f the form is MethodName, then there are three subcases;

o If itisasimple name, that is, just an Identifier, then the name of the method

isthe Identifier.

If the Identifier appearswithin the scope (86.3) of avisible method declaration
with that name, then:

o If thereis an enclosing type declaration of which that method is a member,
let T bethe innermost such type declaration. The class or interface to search
iST.

o Otherwise, the visible method declaration may be in scope due to one
or more single-static-import (87.5.3) or static-import-on-demand (87.5.4)
declarations. There is no class or interface to search, as the method to be
invoked is determined later (815.12.2).

o If it isaqualified name of the form TypeName . Identifier, then the name of
the method is the Identifier and the class to search is the one named by the
TypeName.

If TypeName is the name of an interface rather than a class, then a compile-
time error occurs, because this form can invoke only static methods and
interfaces have no static methods.

o Inall other cases, the qualified name has the form FieldName . Identifier.

The name of the method is the Identifier and the class or interface to search
is the declared type T of the field named by the FieldName, if Tisaclass or
interface type, or the upper bound of Tif Tisatype variable.

If the formis Primary . NonWildTypeArgumentsy, I dentifier, then the name of

the method is the Identifier.

Let Tbhethetype of the Primary expression. The class or interface to be searched
isTif Tisaclassor interface type, or the upper bound of Tif Tisatypevariable.

It isacompile-time error if Tisnot areference type.

If theformissuper . NonWildTypeArgumentsyy Identifier, then the name of the
method isthe Identifier and the classto be searched is the superclass of the class

whose declaration contains the method invocation.

Let T be the type declaration immediately enclosing the method invocation. Itis
acompile-time error if Tisthe classObject or Tisan interface.



EXPRESSONS Compile-Time Sep 2: Determine Method Signature  15.12.2

* If the formis ClassName . super . NonWildTypeArgumentsyy Identifier, then
the name of the method is the Identifier and the class to be searched is the
superclass of the class ¢ denoted by ClassName.

Itisacompile-timeerror if Cisnot alexicaly enclosing class of the current class.
It isacompile-time error if Cisthe classObject.

Let T bethe type declaration immediately enclosing the method invocation. Itis
acompile-time error if TistheclassObject or Tisan interface.

* If theform is TypeName . NonWildTypeArguments Identifier, then the name of
the method is the Identifier and the class to be searched is the class ¢ denoted
by TypeName.

If TypeName is the name of an interface rather than a class, then a compile-time
error aoccurs, because this form can invoke only static methods and interfaces
have no static methods.

15.12.2 Compile-Time Step 2: Determine Method Signature

The second step searches the type determined in the previous step for member
methods. This step uses the name of the method and the types of the argument
expressions to locate methods that are both accessible and applicable, that is,
declarations that can be correctly invoked on the given arguments.

There may be more than one such method, in which case the most specific oneis
chosen. The descriptor (signature plus return type) of the most specific method is
one used at run time to perform the method dispatch.

A method is applicable if it is either applicable by subtyping (815.12.2.2),
applicable by method invocation conversion (815.12.2.3), or it is an applicable
variable arity method (§15.12.2.4).

The process of determining applicability begins by determining the potentially
applicable methods (815.12.2.1).

Theremainder of the processis split into three phases, to ensure compatibility with
versions of the Java programming language prior to Java SE 5.0. The phases are:

1. Thefirst phase (815.12.2.2) performs overload resolution without permitting
boxing or unboxing conversion, or the use of variable arity method invocation.
If no applicable method is found during this phase then processing continues
to the second phase.

279



15.12.2 Compile-Time Step 2: Determine Method Sgnature EXPRESS ONS

280

2. The second phase (8§15.12.2.3) performs overload resolution while allowing
boxing and unboxing, but till precludes the use of variable arity method
invocation. If no applicable method isfound during this phase then processing
continues to the third phase.

3. Thethird phase (§15.12.2.4) allows overloading to be combined with variable
arity methods, boxing, and unboxing.

Deciding whether a method is applicable will, in the case of generic methods
(88.4.4), require that type arguments be determined. Type arguments may be
passed explicitly or implicitly. If they are passed implicitly, they must be inferred
(815.12.2.7) from the types of the argument expressions.

If several applicable methods have been identified during one of the three phases
of applicability testing, then the most specific oneis chosen, as specified in section
§15.12.2.5.

15.12.2.1 Identify Potentially Applicable Methods

The class or interface determined by compile-time step 1 (8§15.12.1) is searched
for all member methods that are potentially applicable to this method invocation;
members inherited from superclasses and superinterfaces are included in this
search.

Inaddition, if themethod invocation has, beforetheleft parenthesis, aMethodName
of the form Identifier, then the search process a'so examines al member methods
that are (a) imported by single-static-import declarations (87.5.3) and static-import-
on-demand declarations (87.5.4) within the compilation unit (§7.3) within which
the method invocation occurs, and (b) not shadowed (86.4.1) at the place wherethe
method invocation appears, to determine if they are potentially applicable.

A member method is potentially applicable to a method invocation if and only if
al of thefollowing are true:

* The name of the member is identical to the name of the method in the method
invocation.

» The member is accessible (86.6) to the class or interface in which the method
invocation appears.

* If the member is a variable arity method with arity n, the arity of the method
invocation is greater or equal to n-1.

 If the member is a fixed arity method with arity n, the arity of the method
invocation isequal to n.



EXPRESSONS Compile-Time Sep 2: Determine Method Signature  15.12.2

« If the method invocation includes explicit type arguments, and the member isa
generic method, then the number of type arguments is equal to the number of
type parameters of the method.

If the search does not yield at least one method that is potentially applicable, then
a compile-time error occurs.

15.12.2.2 Phase 1: Identify Matching Arity Methods Applicable by Subtyping

Let m be a potentially applicable method (815.12.2.1), let e, ..., e, be the actua
argument expressions of the method invocation, and let A; be the type of e; (1 <
i <n). Then:

« If misageneric method, thenlet F; ... F, bethetypes of the formal parameters of
m, and let R; ... R, (p = 1) be the type parameters of m, and let B; be the declared
bound of R; (1 <1 < p). Then:

o If the method invocation does not provide explicit type arguments, then let uU;
... Up bethetypeargumentsinferred (815.12.2.7) for thisinvocation of m, using
aset of initial constraints consisting of the constraints A; << F; (1 <i < n) for
each actual argument expression e; whose type is a reference type.

o Otherwise, let U; ... U, be the explicit type arguments given in the method
invocation.

Thenlet S; = F;[R=U3,...,R=Up] (1 =i < n) bethetypesinferred for the formal
parameters of m.

» Otherwise, let S; ... S, bethe types of the formal parameters of m.

The method m is applicable by subtyping if and only if both of the following
conditions hold:

e For1<i<n,either:
0 Aj<: S; (§410), or

0 A; is convertible to some type C; by unchecked conversion (85.1.9), and C;
<: S;.

* If mis ageneric method as described above, then U; <: B;[R=U3,...,R=Up] (1
<l<p).

If no method applicable by subtyping is found, the search for applicable

methods continues with phase 2 (§15.12.2.3). Otherwise, the most specific method
(815.12.2.5) is chosen among the methods that are applicable by subtyping.

281



15.12.2 Compile-Time Step 2: Determine Method Sgnature EXPRESS ONS

282

15.12.2.3 Phase 2: Identify Matching Arity Methods Applicable by Method
Invocation Conversion

Let m be a potentially applicable method (815.12.2.1), let ey, ..., e, be the actua
argument expressions of the method invocation, and let A; be the type of e; (1 <
i <n). Then:

« If misageneric method, thenlet F; ... F, bethetypes of the formal parameters of
m, and let R; ... R, (p = 1) be the type parameters of m, and let B; be the declared
bound of R; (1 <1 < p). Then:

o If the method invocation does not provide explicit type arguments, then let U,
... Up bethetypeargumentsinferred (815.12.2.7) for thisinvocation of m, using
aset of initial constraints consisting of the constraints A; << F; (L <i < n).

o Otherwise, let U; ... U, be the explicit type arguments given in the method
invocation.

Thenlet S; = F;[R=U3,...,R=Up] (1 =i < n) bethetypesinferred for the formal
parameters of m.

» Otherwise, let S; ... S, bethe types of the formal parameters of m.

The method m is applicable by method invocation conversion if and only if both of
the following conditions hold:

» Forl<is<n,thetypeof e;, A;, can beconverted by method invocation conversion

* If mis ageneric method as described above, then U; <: Bj[R=U3,...,R=Up] (1
<l<p).

If no method applicable by method invocation conversion is found, the search
for applicable methods continues with phase 3 (815.12.2.4). Otherwise, the most
specific method (815.12.2.5) is chosen among the methods that are applicable by
method invocation conversion.

15.12.2.4 Phase 3: Identify Applicable Variable Arity Methods

Let m be a potentially applicable method (815.12.2.1) with variable arity, let ey, ...,
e be the actual argument expressions of the method invocation, and let A; be the
type of e; (1 <i <K). Then:

* If misageneric method, thenlet F; ... F, (1 < n < k+1) be the types of the formal
parameters of m, where F,=T[] for sometype T, and let R; ... R, (p = 1) be the
type parameters of m, and let B; be the declared bound of R; (1 < | < p). Then:



EXPRESSONS Compile-Time Sep 2: Determine Method Signature  15.12.2

o If the method invocation does not provide explicit type arguments then let u;
... Up bethetypeargumentsinferred (815.12.2.7) for thisinvocation of m, using
aset of initial constraints consisting of the constraints A; << F; (1 <i <n)and
the constraints A; << T(n<j < k).

o Otherwise let U; ... U, be the explicit type arguments given in the method
invocation.

Thenlet S; = F;[R=U3,...,R=Up] (1 =i < n) bethetypesinferred for the formal
parameters of m.

» Otherwise, let S; ... S, (Wheren < k+1) bethetypes of theformal parameters of m.

The method m is an applicable variable-arity method if and only if all of the
following conditions hold:

» Forl<i<n,thetypeof e;, A;, can beconverted by method invocation conversion
to S;.

e If k2 n, then for n <i < k, the type of e;, A;, can be converted by method
invocation conversion to the component type of S,,.

» If k!=n, orif k=nand A, cannot be converted by method invocation conversion
to S,[1, then the type which is the erasure of S, is accessible at the point of
invocation.

* If misageneric method as described above, then U; <: Bj[R;=Us...,R=Up] (1 <
[ <p).
If no applicable variable arity method is found, a compile-time error occurs.

Otherwise, the most specific method (815.12.2.5) is chosen among the applicable
variable-arity methods.

15.12.25 Choosing the Most Specific Method

If more than one member method is both accessible and applicable to a method
invocation, it is necessary to choose one to provide the descriptor for the run-
time method dispatch. The Java programming language uses the rule that the most
specific method is chosen.

The informal intuition is that one method is more specific than another if any
invocation handled by the first method could be passed on to the other one without
acompile-time type error.

One fixed-arity member method named m is more specific than another member
method of the same name and arity if all of the following conditions hold:

283



15122

284

Compile-Time Step 2: Determine Method Signature EXPRESS ONS

The declared types of the parameters of the first member method are 75, ..., T,.
The declared types of the parameters of the other method are vy, ..., Up,.

If the second method is generic, then let R; ... R, (p = 1) be its type parameters,
let B; be the declared bound of R; (1 <1 < p), let A; ... A, bethe type arguments
inferred (815.12.2.7) for thisinvocation under the initial constraints 7; << U; (1
<i<n),andlet S; = U;[R=Az,....Rp=Ap] (1 =i ).

Otherwise, let S; = U; (L <i <n).
Foraljfromlton, T;<: S;.

If the second method is a generic method as described above, then A; <:
B1[R1=As,....R,=A,] (L1 < ).

In addition, one variable arity member method named m is more specific than
another variable arity member method of the same name if either:

1

One member method has n parameters and the other has k parameters, where
n =k, and:

» Thetypesof the parameters of thefirst member method are 74, ..., T,_1, To[1.
» Thetypes of the parameters of the other method are Uy, ..., Uz, Ucl].

+ If thesecond method isgeneric thenlet R; ... R, (p 2 1) beitstype parameters,
let B; bethe declared bound of R; (1< 1< p), let A; ... A, bethetypearguments
inferred (815.12.2.7) for this invocation under the initial constraints T; <<
Ui (1 <is< k-l) and T; << Uy (k <is< n), and let S; = U-i[Rlel,...,Rp:Ap]
1<i<Kk).

Otherwise, let S; = U; (1 <i<K).
» Forall jfrom1tok-1, T;<: Sy and,
« Forall jfromkton, T; <: S, and,

« |f the second method is a generic method as described above, then A; <:
B1[R=As,....,Rp=A,] (11 < p).

One member method has k parameters and the other has n parameters, where
n =k, and:

» Thetypes of the parameters of the first method are Uy, ..., Ux_1, Ucl].
» Thetypes of the parameters of the other method are 7, ..., T_1, Tol].

« If thesecond methodisgeneric, thenlet R; ... R, (p = 1) beitstype parameters,
let B; bethedeclared bound of R; (1<1<p), let A; ... A, bethetypearguments



EXPRESSONS Compile-Time Sep 2: Determine Method Signature  15.12.2

inferred (815.12.2.7) for this invocation under the initial constraints U; <<
Ti(1giskl)and U << T; (k<i<n)andlet S; = T;[R1=As,...,R=A,] (1
<i<n.

Otherwise, let S; = T; (L <i<n).
» Forall jfrom1tok-1, U; <: Sy, and,
» Forall jfromkton, Uy, <: S5, and,

« |f the second method is a generic method as described above, then A; <:
B1[R=A1,....,Rp=A,] (11 < p).

The above conditions are the only circumstances under which one method may be
more specific than another.

A method m; is strictly more specific than another method m, if and only if m; is
more specific than m, and m, is not more specific than m;.

A method is said to be maximally specific for amethod invocationiif itisaccessible
and applicable and there is no other method that is applicable and accessible that
is strictly more specific.

If there is exactly one maximally specific method, then that method is in fact
the most specific method; it is necessarily more specific than any other accessible
method that is applicable. It isthen subjected to some further compile-time checks
asdescribed in §15.12.3.

It is possible that no method is the most specific, because there are two or more
methods that are maximally specific. In this case:

o If al the maximaly specific methods have override-equivalent (§8.4.2)
signatures, then:

o If exactly one of the maximally specific methodsis not declared abstract, it
is the most specific method.

o Otherwise, if al the maximally specific methods are declared abstract, and
the signatures of all of the maximally specific methods have the same erasure
(84.6), then the most specific method is chosen arbitrarily among the subset
of the maximally specific methods that have the most specific return type.

However, the most specific method is considered to throw achecked exception
if and only if that exception or its erasure is declared in the throws clauses of
each of the maximally specific methods.

» Otherwise, we say that the method invocation is ambiguous, and a compile-time
error occurs.

285



15.12.2 Compile-Time Step 2: Determine Method Sgnature EXPRESS ONS

286

15.12.2.6 Method Result and Throws Types
The result type of the chosen method is determined as follows:

* If the chosen method is declared with a return type of void, then the result is
void.

» Otherwise, if unchecked conversion was necessary for the method to be
applicable, then the result type is the erasure (84.6) of the method's declared
return type.

» Otherwise, if the chosen method isgeneric, thenfor 1 <i <n, let F; bethe formal
type parameters of the method, let A; be the actual type arguments inferred for
the method invocation, and let R be the return type of the chosen method.

The result type is obtained by applying capture conversion (85.1.10) to
R[F1=A1,...,Fn=An].

» Otherwise, the result type is obtained by applying capture conversion (85.1.10)
to the return type of the chosen method .

The exception types of the throws clause of the chosen method are determined as
follows:

* If unchecked conversion was necessary for the method to be applicable, then the
throws clause is composed of the erasure (84.6) of the types in the method's
declared throws clause.

» Otherwise, if the method being invoked is generic, thenfor 1 <i < n, let F; be
the type parameters of the method, let A; be the type arguments inferred for the
method invocation, and let £ (1 < j < m) be the exception types declared in the
throws clause of the method being invoked.

The throws clause consists of the types E;[ F1=A1,...,F=Aq].

» Otherwise, the type of the throws clause is the type given in the method
declaration.

15.12.2.7 Inferring Type Arguments Based on Actual Arguments

In this section, we describe the process of inferring type arguments for method and
constructor invocations. This process is invoked as a subroutine when testing for
method (or constructor) applicability (§15.12.2.2 - §15.12.2.4).

We use the following notational conventionsin this section:



EXPRESSONS Compile-Time Sep 2: Determine Method Signature  15.12.2

» Typeexpressionsarerepresented using theletters A, F, U, v, and . Theletter Ais
only used to denote the type of an actual argument, and Fis only used to denote
the type of aformal parameter.

» Type parameters are represented using the letters Sand T
» Arguments to parameterized types are represented using the letters x and V.
» Generic type declarations are represented using the letters G and H.

Inference begins with a set of initial constraints of theform A<< F, A= F, or A>>
F, where U << vindicates that type U is convertible to type v by method invocation
conversion (85.3), and U>> vindicatesthat type visconvertibleto type U by method
invocation conversion.

These constraints are then reduced to a set of simpler constraints of theforms 7 :>
X, T=X, or T<: X, where T is atype parameter of the method. This reduction is
achieved by the procedure given below.

Given aconstraint of theformA<< F,A=F,o0r A>> F.

If Fdoesnot involve atype parameter T then no constraint isimplied on T;.
Otherwise, Finvolves atype parameter T;.

If Aisthetypeof nu11, no constraint isimplied on T;.

Otherwise, if the constraint has the form A << F:

* If Alis aprimitive type, then A is converted to a reference type U via boxing
conversion and this algorithm is applied recursively to the constraint U << F.

» Otherwise, if F= Tj, then the constraint T7; :> Aisimplied.

 If F=U[], wherethetype uvinvolves T;, thenif Aisan array type v[], or atype
variable with an upper bound that is an array type V[1, where V is a reference
type, this algorithm is applied recursively to the constraint v << u.

* If Fhastheform ¢<..., Yx_1, U, Yy, 1, ...>, Where visatype expression that involves
T;, then if A has a supertype of the form G<..., Xi_3, V, Xk.1, ...> Where Visatype
expression, this algorithm is applied recursively to the constraint v = u.

* If Fhastheform ¢<..,, Yy_1, ? extends U, Yi,1, ...>, Where U involves T;, then
if A has asupertype that isone of:

0 G<..., Xe-1, Vs Xiu1, -, Where Vis a type expression. Then this algorithm is
applied recursively to the constraint v << u.

0 G<..., Xg_1, ? extends V, Xi.1, ...>. Then thisagorithm is applied recursively
to the constraint v << U.

287



15.12.2 Compile-Time Step 2: Determine Method Sgnature EXPRESS ONS

288

o Otherwise, no constraint isimplied on T;.

If Fhastheform ¢<..., Y1, ? super U, Yi,1, ...>, Where U involves T;, then if
A has a supertype that is one of

0 G<..., Xk, V, Xewn, --->. Then this agorithm is applied recursively to the
constraint v >> U.

0 G<..., X¢e_1, ? super V, Xi,1, ...>. Then thisagorithm is applied recursively to
the constraint v >> .

o Otherwise, no constraint isimplied on Tj.

Otherwise, no constraint isimplied on Tj;.

Otherwiseg, if the constraint hastheform A= F:

If F=T;, thenthe constraint 7; = Aisimplied.

If F=ul] where the type U involves T;, thenif Aisan array type v[], or atype
variable with an upper bound that is an array type v[1, where V is a reference
type, thisagorithm is applied recursively to the constraint v = v.

If Fhastheform ¢<..., Yx_1, U, Y, 1, ...>, Where Uistype expression that involves
T; then if Aisof the form ¢<..., Xi_1, V, Xk.1,...> Where Vv is a type expression,
thisalgorithm is applied recursively to the constraint vV = u.

If Fhasthe form G<..., Y1, ? extends U, Yk, ...>, Where U involves T;, then
if Aisoneof:

0 G<..., Xg_1, ? extends V, Xi.1, ...>. Then thisagorithm is applied recursively
to the constraint v = u.

5 Otherwise, no constraint isimplied on T;.

If Fhasthe form G<..., Yx_1, ? super U, Yi,1 ,...>, Where U involves Tj, then if
Aisoneof:

0 G<..., X¢_1, ? super V, Xi,1, ...>. Then thisagorithm is applied recursively to
the constraint v = U.

5 Otherwise, no constraint isimplied on T;.

Otherwise, no constraint isimplied on T;.

Otherwise, if the constraint has the form A >> F:

If F=T;, thenthe constraint 7; <: Aisimplied.



EXPRESSONS Compile-Time Sep 2: Determine Method Signature  15.12.2

 If F=u[], where the type v involves T;, then if Aisan array type v[], or atype
variable with an upper bound that is an array type v[1, where V is a reference
type, this algorithm is applied recursively to the constraint v >> u. Otherwise,
no constraint isimplied on 7;.

 If Fhastheform ¢<..., Yi_1, U, Y, 1, ...>, Where Uisatype expression that involves
T;, then:

o If Aisaninstance of a non-generic type, then no constraint isimplied on 7;.

o If Aisan invocation of a generic type declaration H, where H is either G or
superclass or superinterface of G, then:

o If H% G, thenlet Sy, ..., S, be the type parameters of G, and let H<Uy, ..., U;>
be the unique invocation of H that is a supertype of G<S;, ..., S,>, and let v
= H<Uy, ..., Ui>[S,=U]. Then, if v :> Fthisalgorithm is applied recursively
to the constraint A >> V.

o Otherwise, if A is of the form G<..., Xi_1, W, Xi,1, -..>, Where w is a type
expression, this algorithm is applied recursively to the constraint w = U.

o Otherwise, if A is of the form G<..., X(_1, ? extends W, Xi,7, ...>, this
algorithm is applied recursively to the constraint w>> U.

o Otherwise, if Aisof theform G<..., X,_1, ? super W, X1, ...>, thisalgorithm
is applied recursively to the constraint i << u.

1 Otherwise, no constraint isimplied on Tj.

* If Fhastheform ¢<..., Yx-1, ? extends U, Yk, ...>, Where Uis atype expression
that involves T, then:

o If Aisan instance of anon-generic type, then no constraint isimplied on Tj;.

o If Aisan invocation of a generic type declaration H, where H is either G or
superclass or superinterface of G, then:

o If H% G, thenlet Sy, ..., S, be the type parameters of G, and let H<Uy, ..., U;>
be the unique invocation of H that isasupertype of ¢<Sy, ..., S,>, and let v=
H<? extends Uy, ..., ? extends U;>[S,=U]. Then thisalgorithm is applied
recursively to the constraint A >> V.

o Otherwise, if A is of the form G<..., X(_1, ? extends W, Xi,7, ...>, this
algorithm is applied recursively to the constraint w>> v.

1 Otherwise, no constraint isimplied on 7.

» If Fhastheform ¢<..., Yi_1, ? super U, Yi,1, ...>, Where U is atype expression
that involves T;, then Ais either:

289



15.12.2 Compile-Time Step 2: Determine Method Sgnature EXPRESS ONS

290

o If Aisaninstance of a non-generic type, then no constraint isimplied on 7;.

o If Aisan invocation of a generic type declaration H, where H is either G or
superclass or superinterface of G, then:

o If H% G, thenlet Sy, ..., S, be the type parameters of G, and let H<Uy, ..., U;>
be the unique invocation of H that is a supertype of G<Sj, ..., S,>, and let
V= H<? super Uy ..., ? super U;>[S,=U]. Then this agorithm is applied
recursively to the constraint A >> V.

o Otherwise, if A is of the form G<..., X,_1, ? super W, ..., Xcs1, ...>, this
algorithm is applied recursively to the constraint w << U.

5 Otherwise, no constraint isimplied on T;.

Next, for each type variable 7; (1 < j < n), the implied equality constraints are
resolved as follows.
For each implied equality constraint 7; = vor U= T;:

* If Uisnot one of the type parameters of the method, then v is the type inferred
for 7;. Then all remaining constraints involving T; are rewritten such that T; is
replaced with u. There are necessarily no further equality constraints involving
T;, and processing continues with the next type parameter, if any.

+ Otherwise, if U is T;, then this constraint carries no information and may be
discarded.

 Otherwise, the constraint is of the form T; = T for j # k. Then all constraints
involving T; are rewritten such that T; is replaced with T, and processing
continues with the next type variable.

Then, for each remaining type variable T;, the constraints 7; :> U are considered.
Given that these constraints are T; :> U; ... Tj :> Uy, the type of T; isinferred as
lub(u; ... Uy), computed as follows:

For a type u, we write ST(U) for the set of supertypes of U, and define the erased
supertype set of U

EST(U) ={ v|win ST(U) and V= | } where |W isthe erasure of W.

The erased candidate set for type parameter T;, EC, is the intersection of al the
sets EST(U) for each Uin Uy ... Uy.

The minimal erased candidate set for 7; is:
MEC={ v|VvinEC, andfor al w= vin EC, it isnot the case that w <: v}



EXPRESSONS Compile-Time Sep 2: Determine Method Signature  15.12.2

For any element G of MEC that is a generic type declaration, define the relevant
invocations of G, Inv(G), to be:

Inv(c) ={ v|1<i<k vinST(U;), V=C<..>}

Define Candidatelnvocation(c) = Ici(Inv(G)), where Ici, the least containing
invocation, is defined:

* Ici(S) =Ici(ey, ..., ep) Wheree; (1<i<n)ins

* Ici(ey, ..., €,) =Ici(Ici(ey, €,), €3, ..., ep)

o lci(G<Xq, ..., Xp>, G<Y7, ..., Yp>) = &<lcta(Xy, Y7), ..., Icta(X,, Y,)>
* lci(G<Xy, ..., Xp>) = <lcta(Xy), ..., lcta(X,)>

where Icta() is the the least containing type argument function defined (assuming
Uand v aretype expressions) as.

* Icta(u, V) = Uif U=V, otherwise ? extends lub(U, V)

* Icta(u, ? extends V) =7 extends lub(U, V)

 Icta(u, ? super V) =7 super glb(y, V)

 Icta(? extends U, ? extends V) =? extends lub(u, V)

 Icta(? extends U, ? super V) = Uif U=V, otherwise ?

* Icta(? super U, ? super V) =7 super glb(u, V)

e Icta(V) = ? if U'supper bound isObject, otherwise ? extends lub(U,0bject)
where glb() is as defined in (85.1.10).

Define Candidate(w) = Candidatel nvocation(w) if wis generic, i otherwise.

The inferred type for 75, lub(U; ... Uy), is Candidate(w;) & ... & Candidate(w,),
where w; (1 <i <r) are the elements of MEC.

Itis possible that the process above yields an infinite type. Thisis permissible, and
a Java compiler must recognize such situations and represent them appropriately
using cyclic data structures.

15.12.2.8 Inferring Unresolved Type Arguments

If any of the method's type arguments were not inferred from the types of the actual
arguments, they are now inferred as follows.

291



15.12.2 Compile-Time Step 2: Determine Method Sgnature EXPRESS ONS

292

First, if atype parameter T has been inferred as type ¢, and T's bound includes an
uninferred type variable X, then x may be inferred by unifying T's bound with C's
type arguments. Then:

« If the method result occurs in a context where it will be subject to assignment
conversion (85.2) to atype S, then let R be the declared result type of the method,
and let R' = R[T=B(Ty) ... T,=B(T,)1, where B(T;) isthe type inferred for T; in
the previous section or T; if no type wasinferred.

If Sisareferencetype, then let S' be S. Otherwise, if Sisaprimitive type, then
let S' be the result of applying boxing conversion (85.1.7) to S.

Then, aset of initial constraints consisting of:

o the constraint S' >> R', provided R is not void; and

O

additional constraints 8, [ T,=B(T,) ... T,=B(T,)] >> T;, where B; isthedeclared
bound of T,

[}

additional constraints B(T;) << B;[T=B(Ty) ... T,=B(7,)], where B, is the
declared bound of T,

o for any constraint of the form v >> T; generated in §15.12.2.7: a constraint
UT=B(Ty) ... T,=B(T,)] >> T;.

o for any constraint of the form T; = v generated in §15.12.2.7: a constraint T;
=V T=B(Ty) ... T,=B(T,)].

iscreated and used to infer constraints on the type arguments using the algorithm

of §15.12.2.7.

Any equality constraints are resolved, and then, for each remaining constraint of
theform T; <: Uy, the argument T; isinferred to be glb(uy, ..., Uy) (85.1.10).

If T; appearsasatypeargument inany Uy, then T; isinferred to be atype variable
X whose upper bound is the parameterized type given by glb(u;[T;=X], ...,
U T7=X]) and whose lower bound is the null type.

Any remaining type variable T that has not yet been inferred is then inferred
to have type Object. If a previously inferred type variable P uses T, then Pis

inferred to be P[ T=0bject].

» Otherwise, theunresolved type argumentsareinferred by invoking the procedure
described in this section under the assumption that the method result was
assigned to avariable of type Object.



EXPRESS ONS

15.12.3 Compile-Time Step 3: Isthe Chosen Method Appropriate?

If there is a most specific method declaration for a method invocation, it is called
the compile-time declaration for the method invocation. Further checks must be
made on the compile-time declaration:

If the method invocation has, before the left parenthesis, a MethodName of the
form Identifier, and the method is an instance method, then:

o If theinvocation appears within a static context (88.1.3), then a compile-time
error occurs. (The reason is that a method invocation of this form cannot
be used to invoke an instance method in places where this (815.8.3) is not
defined.)

o Otherwise, let C be the innermost enclosing class of which the method is a
member. If the invocation is not directly enclosed by C or an inner class of C,
then a compile-time error occurs.

If the method invocation has, before the left parenthesis, a MethodName of
the form TypeName . ldentifier, or if the method invocation, before the left
parenthesis, has the form TypeName . NonWildTypeArguments Identifier, then
the compile-time declaration should be static.

If the compile-time declaration for the method invocation is for an instance
method, then a compile-time error occurs. (The reason is that a method
invocation of this form does not specify a reference to an object that can serve
as this within the instance method.)

If the method invocation has, before the left parenthesis, the form super
NonWildTypeArgumentsyyy: Identifier, then:

o If the method is abstract, acompile-time error occurs.
o If themethod invocation occursin astatic context, acompil e-time error occurs.

If the method invocation has, before the left parenthesis, the form ClassName .
super . NonWildTypeArgumentsy, Identifier, then:

o If the method is abstract, acompile-time error occurs.
o If themethod invocation occursin astatic context, acompile-time error occurs.

o Otherwise, let C be the class denoted by ClassName. If the invocation is not
directly enclosed by C or aninner class of C, then acompile-time error occurs.

If the compile-time declaration for the method invocation is void, then the
method invocation must be a top-level expression, that is, the Expression in
an expression statement (814.8) or in the Forlnit or ForUpdate part of a for

Compile-Time Sep 3: Is the Chosen Method Appropriate? 15.12.3

293



15.12.4 Runtime Evaluation of Method I nvocation EXPRESS ONS

294

statement (814.14), or a compile-time error occurs. (The reason is that such a
method invocation produces no value and so must be used only in a situation
where avalueis not needed.)

The following compile-time information is then associated with the method
invocation for use at run time:

» The name of the method.
The qualifying type of the method invocation (813.1).

» The number of parameters and the types of the parameters, in order.

The result type, or void.
» Theinvocation mode, computed as follows:

o If the compile-time declaration has the static modifier, then the invocation
modeisstatic.

o Otherwise, if the compile-time declaration hasthe private modifier, then the
invocation modeis nonvirtual.

o Otherwise, if the part of the method invocation before the left parenthesisis of
the form super . Identifier or of the form ClassName . super . ldentifier,
then the invocation modeis super.

o Otherwise, if the compile-time declaration is in an interface, then the
invocation modeis interface.

o Otherwise, the invocation modeis virtual.

If the compile-time declaration for the method invocation is not void, then the type
of the method invocation expression isthe result type specified in the compile-time
declaration.

15.12.4 Runtime Evaluation of M ethod | nvocation

At runtime, method invocation requiresfive steps. First, atarget reference may be
computed. Second, the argument expressions are evaluated. Third, the accessibility
of the method to be invoked is checked. Fourth, the actual code for the method to
be executed islocated. Fifth, a new activation frame is created, synchronization is
performed if necessary, and control is transferred to the method code.



EXPRESS ONS Runtime Evaluation of Method Invocation 15.12.4

15.12.4.1 Compute Target Reference (If Necessary)

There are several casesto consider, depending on which of the five productionsfor
MethodInvocation (815.12) isinvolved:

1. If thefirst production for Methodlnvocation, which includes a MethodName,
isinvolved, then there are three subcases:

« If the MethodName is a ssimple name, that is, just an Identifier, then there
are two subcases:

o If the invocation modeis static, then there is no target reference.

o Otherwise, let T be the enclosing type declaration of which the method is
amember, and let n be an integer such that Tisthe n'th lexically enclosing
type declaration (88.1.3) of the class whose declaration immediately
contains the method invocation. Then the target reference is the n'th
lexically enclosing instance (88.1.3) of this.

It is a compile-time error if the n'th lexically enclosing instance (88.1.3)
of this does not exist.

* If the MethodName is a qualified name of the form TypeName . Identifier,
then there is no target reference.

« If the MethodName is a qualified name of the form FieldName . Identifier,
then there are two subcases:

o If the invocation mode is static, then there is no target reference. The
expression FieldName is evaluated, but the result is then discarded.

o Otherwise, the target reference is the value of the expression FieldName.

2. If the second production for Methodlnvocation, which includes a Primary, is
involved, then there are two subcases:

« If the invocation mode is static, then there is no target reference. The
expression Primary is evaluated, but the result is then discarded.

» Otherwise, the expression Primary is evaluated and the result is used as the
target reference.

In either casg, if the evaluation of the Primary expression completes abruptly,
then no part of any argument expression appears to have been evaluated, and
the method invocation compl etes abruptly for the same reason.

3. If the third production for Methodlnvocation, which includes the keyword
super, isinvolved, then the target reference isthe value of this.

295



15.12.4 Runtime Evaluation of Method I nvocation EXPRESS ONS

296

4. If the fourth production for Methodinvocation, ClassName . super, is
involved, then the target reference is the value of ClassName. this.

5. If the fifth production for Methodinvocation, beginning with TypeName .
NonWildTypeArguments, isinvolved, then thereis no target reference.

15.12.4.2 Evaluate Arguments

The process of evaluating of the argument list differs, depending on whether the
method being invoked is afixed arity method or a variable arity method (88.4.1).

If the method being invoked is a variable arity method m, it necessarily hasn > 0
forma parameters. The final formal parameter of m necessarily has type T[] for
some T, and mis necessarily being invoked with k = 0 actual argument expressions.

If mis being invoked with k + n actual argument expressions, or, if m is being
invoked with k = n actual argument expressions and the type of the k'th argument
expression is not assignment compatible with T[], then the argument list (ey, ...,
€n-1, €m ---, €) iSevaluated asif it werewrittenas(ey, ..., €,_7, new T[1 { ep, ..., €x 3).

The argument expressions (possibly rewritten as described above) are now
evaluated to yield argument values. Each argument value corresponds to exactly
one of the method's n formal parameters.

The argument expressions, if any, are evaluated in order, from left to right. If the
evaluation of any argument expression completes abruptly, then no part of any
argument expression to its right appears to have been evaluated, and the method
invocation completes abruptly for the same reason. The result of evaluating the
j'th argument expression is the j'th argument value, for 1 < j < n. Evaluation then
continues, using the argument values, as described below.

15.12.4.3 Check Accessihility of Type and Method

Let C be the class containing the method invocation, and let T be the qualifying
type of the method invocation (813.1), and let m be the name of the method as
determined at compile time (815.12.3).

An implementation of the Java programming language must ensure, as part of
linkage, that the method m still exists in the type T. If this is not true, then a
NoSuchMethodError (which is a subclass of IncompatibleClassChangeError)
occurs.

If the invocation mode is interface, then the implementation must also
check that the target reference type still implements the specified interface.



EXPRESS ONS Runtime Evaluation of Method Invocation 15.12.4

If the target reference type does not ill implement the interface, then an
IncompatibleClassChangeError Ooccurs.

The implementation must also ensure, during linkage, that the type T and the
method m are accessible. For thetype T

« If Tisinthe same package as C, then T is accessible.
 If Tisinadifferent package than ¢, and Tis public, then Tisaccessible.

o If Tisin adifferent package than C, and Tis protected, then Tis accessible if
and only if Cisasubclassof T.

For the method m:
 If mispublic,then misaccessible. (All membersof interfacesarepubl1ic (89.2).)

» If misprotected, then misaccessibleif and only if either Tisinthe same package
as C, or CisTor asubclassof T.

* If m has default (package) access, then m is accessible if and only if Tisin the
same package as C.

» If misprivate, then mis accessible if and only if Cis T, or Cencloses 7, or T
encloses C, or T and C are both enclosed by athird class.

If either Tor mis not accessible, then an I17egalAccessError occurs (812.3).

15.12.4.4 Locate Method to Invoke
The strategy for method lookup depends on the invocation mode.

If the invocation mode is static, no target reference is needed and overriding is
not allowed. Method m of class Tis the one to be invoked.

Otherwise, an instance method is to be invoked and there is a target reference.
If the target reference is nu11, aNul1PointerException isthrown at this point.
Otherwise, the target referenceis said to refer to atarget object and will be used as
the value of the keyword this in the invoked method. The other four possibilities
for the invocation mode are then considered.

If theinvocation modeisnonvirtual, overriding is not allowed. Method m of class
T isthe one to be invoked.

Otherwise, the invocation modeisinterface, virtual, or super, and overriding
may occur. A dynamic method lookup is used. The dynamic lookup process starts
from aclass S, determined as follows:

297



15.12.4 Runtime Evaluation of Method I nvocation EXPRESS ONS

298

« |If the invocation mode is interface or virtual, then S isinitialy the actual
run-time class R of the target object.

* If the invocation mode is super, then S is initially the qualifying type (813.1)
of the method invocation.

The dynamic method lookup uses the following procedure to search class S, and
then the superclasses of class S, as necessary, for method m.

Let X be the compile-time type of the target reference of the method invocation.
Then:

1. If class S contains a declaration for a non-abstract method named m with
the same descriptor (same number of parameters, the same parameter types,
and the same return type) required by the method invocation as determined at
compile time (815.12.3), then:

« |f theinvocation modeis super or interface, then thisisthe method to be
invoked, and the procedure terminates.

 If the invocation mode is virtual, and the declaration in S overrides
(88.4.8.1) Xx.m, then the method declared in S is the method to be invoked,
and the procedure terminates.

« If the invocation mode is virtual, and the declaration in S does
not override X.m, and moreover X.m is declared abstract, then an
AbstractMethodError isthrown.

2. Otherwise, if S has a superclass, this same lookup procedure is performed
recursively using the direct superclass of S in place of S; the method to be
invoked is the result of the recursive invocation of this lookup procedure.

The above procedure (if it terminates without error) will find a non-abstract,
accessible method to invoke, provided that al classes and interfacesin the program
have been consistently compiled. However, if this is not the case, then various
errorsmay occur. The specification of the behavior of aJavavirtual machine under
these circumstancesis given by The Java Virtual Machine Specification.

15.12.4.5 Create Frame, Synchronize, Transfer Control
A method m in some class S has been identified as the one to be invoked.

Now anew activation frame is created, containing the target reference (if any) and
the argument values (if any), as well as enough space for the local variables and
stack for the method to beinvoked and any other bookkeeping information that may
be required by the implementation (stack pointer, program counter, reference to



EXPRESSONS Array Access Expressions

previous activation frame, and thelike). If thereis not sufficient memory available
to create such an activation frame, aStackOverflowError isthrown.

The newly created activation frame becomes the current activation frame. The
effect of this is to assign the argument values to corresponding freshly created
parameter variables of the method, and to make the target reference available as
this, if there is atarget reference. Before each argument value is assigned to its
corresponding parameter variable, it is subjected to method invocation conversion
(85.3), which includes any required value set conversion (85.1.13).

If the erasure of the type of the method being invoked differs in its signature
from the erasure of the type of the compile-time declaration for the method
invocation (815.12.3), then if any of the argument valuesis an object which is not
an instance of asubclass or subinterface of the erasure of the corresponding formal
parameter type in the compile-time declaration for the method invocation, then a
ClassCastException isthrown.

If the method m is a native method but the necessary native, implementation-
dependent binary code has not been loaded or otherwise cannot be dynamically
linked, then an UnsatisfiedLinkError isthrown.

If the method m is not synchronized, control is transferred to the body of the
method m to be invoked.

If the method mis synchronized, then an object must be locked before the transfer
of control. No further progress can be made until the current thread can obtain
the lock. If there is a target reference, then the target object must be locked;
otherwise the Class object for class S, the class of the method m, must be locked.
Control isthen transferred to the body of the method m to be invoked. The object is
automatically unlocked when execution of the body of the method has compl eted,
whether normally or abruptly. The locking and unlocking behavior is exactly as if
the body of the method were embedded in a synchronized statement (814.19).

15.13 Array Access Expressions

An array access expression refersto a variable that is a component of an array.

ArrayAccess.
ExpressionName [ Expression ]
PrimaryNoNewArray [ Expression ]

15.13

299



15.13.1 Runtime Evaluation of Array Access EXPRESS ONS

300

An array access expression contains two subexpressions, the array reference
expression (before the left bracket) and the index expression (within the brackets).
Note that the array reference expression may be aname or any primary expression
that is not an array creation expression (815.10).

The type of the array reference expression must be an array type (cal it T[], an
array whose components are of type T), or a compile-time error occurs.

Thetype of the array access expression isthe result of applying capture conversion
(85.1.10)to T.

The index expression undergoes unary numeric promotion (85.6.1); the promoted
type must be int.

Theresult of an array referenceis avariable of type T, namely the variable within
the array selected by the value of the index expression.

This resulting variable, which is a component of the array, is never considered
final, evenif the array reference was obtained from a final variable.

15.13.1 Runtime Evaluation of Array Access

An array access expression is evaluated using the following procedure:

* First, the array reference expression is evaluated. If this evaluation completes
abruptly, then the array access completes abruptly for the same reason and the
index expression is not evaluated.

» Otherwise, the index expression is evaluated. If this evaluation completes
abruptly, then the array access compl etes abruptly for the same reason.

» Otherwise, if the value of the array reference expression is null, then a
Nul1PointerException isthrown.

» Otherwise, the value of the array reference expression indeed refers to an array.
If the value of the index expression is less than zero, or greater than or equal to
the array's Tength, then an ArrayIndexOutOfBoundsException isthrown.

» Otherwise, theresult of thearray accessisthevariable of type T, withinthe array,
selected by the value of the index expression.

Note that this resulting variable, which is a component of the array, is never
considered final, even if the array reference expressionisa final variable.



EXPRESS ONS Postfix Expressions

15.14 Postfix Expressions

Postfix expressions include uses of the postfix ++ and -- operators. Also, as
discussed in §15.8, names are not considered to be primary expressions, but are
handled separately in the grammar to avoid certain ambiguities. They become
interchangeable only here, at the level of precedence of postfix expressions.

PostfixExpression:
Primary
ExpressionName
Postl ncrementExpression
PostDecrementExpression

15.14.1 Expression Names

The rules for evaluating expression names are given in 86.5.6.

15.14.2 Postfix Increment Operator ++

Postl ncrementExpression:
PostfixExpression ++

A postfix expression followed by a ++ operator is a postfix increment expression.

The result of the postfix expression must be avariable of atype that is convertible
(85.1.8) to anumeric type, or a compile-time error occurs.

The type of the postfix increment expression is the type of the variable. The result
of the postfix increment expression is not avariable, but avalue.

At run time, if evaluation of the operand expression completes abruptly, then
the postfix increment expression completes abruptly for the same reason and no
incrementation occurs. Otherwise, the value 1 is added to the value of the variable
and the sum is stored back into the variable. Before the addition, binary numeric
promotion (85.6.2) is performed on the value 1 and the value of the variable. If
necessary, the sum is narrowed by a narrowing primitive conversion (85.1.3) and/
or subjected to boxing conversion (85.1.7) to the type of the variable before it is
stored. The value of the postfix increment expression is the value of the variable
before the new value is stored.

Note that the binary numeric promotion mentioned above may include unboxing
conversion (85.1.8) and value set conversion (85.1.13). If necessary, value set
conversion is applied to the sum prior to its being stored in the variable.

15.14

301



15.14.3 Postfix Decrement Operator —- EXPRESSONS

302

A variablethat isdeclared final cannot be incremented because when an access of
such afinal variable is used as an expression, the result isavalue, not avariable.
Thus, it cannot be used as the operand of a postfix increment operator.

15.14.3 Postfix Decrement Operator --

PostDecrementExpression:
PostfixExpression --

A postfix expression followed by a -- operator is a postfix decrement expression.

The result of the postfix expression must be a variable of atype that is convertible
(85.1.8) to anumeric type, or a compile-time error occurs.

The type of the postfix decrement expression is the type of the variable. The result
of the postfix decrement expression is not avariable, but avalue.

At run time, if evaluation of the operand expression completes abruptly, then
the postfix decrement expression completes abruptly for the same reason and no
decrementation occurs. Otherwise, the value 1 is subtracted from the value of the
variable and the difference is stored back into the variable. Before the subtraction,
binary numeric promotion (85.6.2) is performed on the value 1 and the value of
the variable. If necessary, the difference is narrowed by a narrowing primitive
conversion (85.1.3) and/or subjected to boxing conversion (85.1.7) to the type of
thevariable beforeit is stored. The value of the postfix decrement expression isthe
value of the variable before the new valueis stored.

Note that the binary numeric promotion mentioned above may include unboxing
conversion (85.1.8) and value set conversion (85.1.13). If necessary, value set
conversion is applied to the difference prior to its being stored in the variable.

A variablethat isdeclared final cannot be decremented because when an access of
such afinal variableis used as an expression, the result isavalue, not avariable.
Thus, it cannot be used as the operand of a postfix decrement operator.

15.15 Unary Operators

The unary operatorsinclude +, -, ++, --, ~, !, and cast operators.

Expressions with unary operators group right-to-left, so that -~x means the same
as - (~x).



EXPRESI ONS Prefix Increment Operator ++ 15.15.1

UnaryExpression:
PrelncrementExpression
PreDecrementExpression
+ UnaryExpression
- UnaryExpression
UnaryExpressionNotPlusMinus

PrelncrementExpression:
++ UnaryExpression

PreDecrementExpression:
-- UnaryExpression

UnaryExpressionNotPlusMinus:
PostfixExpression
~ UnaryExpression
! UnaryExpression
CastExpression

15.15.1 Prefix Increment Operator ++

A unary expression preceded by a ++ operator is a prefix increment expression.

The result of the unary expression must be a variable of atype that is convertible
(85.1.8) to anumeric type, or a compile-time error occurs.

The type of the prefix increment expression is the type of the variable. The result
of the prefix increment expression is not avariable, but avalue.

At run time, if evaluation of the operand expression completes abruptly, then
the prefix increment expression completes abruptly for the same reason and no
incrementation occurs. Otherwise, the value 1 is added to the value of the variable
and the sum is stored back into the variable. Before the addition, binary numeric
promotion (85.6.2) is performed on the value 1 and the value of the variable. If
necessary, the sum is narrowed by a narrowing primitive conversion (85.1.3) and/
or subjected to boxing conversion (85.1.7) to the type of the variable before it is
stored. The value of the prefix increment expression is the value of the variable
after the new valueis stored.

Note that the binary numeric promotion mentioned above may include unboxing
conversion (85.1.8) and value set conversion (85.1.13). If necessary, value set
conversion is applied to the sum prior to its being stored in the variable.

303



15.15.2 Prefix Decrement Operator -- EXPRESSONS

304

A variablethat isdeclared final cannot be incremented because when an access of
such afinal variable is used as an expression, the result isavalue, not avariable.
Thus, it cannot be used as the operand of a prefix increment operator.

15.15.2 Prefix Decrement Operator --

A unary expression preceded by a -- operator is a prefix decrement expression.

The result of the unary expression must be a variable of atype that is convertible
(85.1.8) to anumeric type, or a compile-time error occurs.

The type of the prefix decrement expression is the type of the variable. The result
of the prefix decrement expression is not a variable, but a value.

At run time, if evaluation of the operand expression completes abruptly, then
the prefix decrement expression completes abruptly for the same reason and no
decrementation occurs. Otherwise, the value 1 is subtracted from the value of the
variable and the difference is stored back into the variable. Before the subtraction,
binary numeric promotion (85.6.2) is performed on the value 1 and the value of
the variable. If necessary, the difference is narrowed by a narrowing primitive
conversion (85.1.3) and/or subjected to boxing conversion (85.1.7) to the type of
the variable beforeit is stored. The value of the prefix decrement expression isthe
value of the variable after the new value is stored.

Note that the binary numeric promotion mentioned above may include unboxing
conversion (85.1.8) and value set conversion (85.1.13). If necessary, format
conversion is applied to the difference prior to its being stored in the variable.

A variablethat isdeclared final cannot be decremented because when an access of
such afinal variable is used as an expression, the result isavalue, not avariable.
Thus, it cannot be used as the operand of a prefix decrement operator.

15.15.3 Unary Plus Operator +

The type of the operand expression of the unary + operator must be a type that is
convertible (85.1.8) to a primitive numeric type, or acompile-time error occurs.

Unary numeric promotion (85.6.1) is performed on the operand. The type of the
unary plus expression is the promoted type of the operand. The result of the unary
plus expression is not a variable, but a value, even if the result of the operand
expression isavariable.

At run time, the value of the unary plus expression is the promoted value of the
operand.



EXPRESSONS Unary Minus Operator -

15.15.4 Unary Minus Operator -

The type of the operand expression of the unary - operator must be a type that is
convertible (85.1.8) to a primitive numeric type, or a compile-time error occurs.

Unary numeric promotion (85.6.1) is performed on the operand. The type of the
unary minus expression is the promoted type of the operand.

Note that unary numeric promotion performs value set conversion (85.1.13).
Whatever value set the promoted operand value is drawn from, the unary negation
operation is carried out and the result is drawn from that same value set. That result
is then subject to further value set conversion.

At run time, the value of the unary minus expression is the arithmetic negation of
the promoted value of the operand.

For integer values, negation is the same as subtraction from zero. The Java
programming language uses two's-complement representation for integers, and the
range of two's-complement values is not symmetric, so negation of the maximum
negative int or long results in that same maximum negative number. Overflow
occurs in this case, but no exception is thrown. For all integer values x, -x equals
(~x)+1.

For floating-point val ues, negation isnot the same as subtraction from zero, because
if xis+0.0, then 0.0-x is+0.0, but -x is -0.0. Unary minus merely inverts the
sign of afloating-point number. Specia cases of interest:

« If the operand is NaN, the result is NaN (recall that NaN has no sign).
« If the operand is an infinity, the result is the infinity of opposite sign.

* If the operand is a zero, the result is the zero of opposite sign.

15.15.5 Bitwise Complement Operator ~

The type of the operand expression of the unary ~ operator must be a type that is
convertible (85.1.8) to a primitive integral type, or a compile-time error occurs.

Unary numeric promotion (85.6.1) is performed on the operand. The type of the
unary bitwise complement expression is the promoted type of the operand.

At run time, the value of the unary bitwise complement expression is the bitwise
complement of the promoted value of the operand; note that, in all cases, ~x equals
(-x)-1.

15.15.4

305



15.15.6 Logical Complement Operator ! EXPRESS ONS

306

15.15.6 Logical Complement Operator !

The type of the operand expression of the unary ! operator must be boolean or
Boolean, or acompile-time error occurs.

The type of the unary logical complement expression isboolean.

At run time, the operand is subject to unboxing conversion (85.1.8) if necessary;
the value of the unary logical complement expression is true if the (possibly
converted) operand valueis false, and false if the (possibly converted) operand
valueis true.

15.16 Cast Expressions

A cast expression converts, at run time, a value of one numeric type to a similar
value of another numeric type; or confirms, at compile time, that the type of an
expression is boolean; or checks, at run time, that a reference value refers to an
object whose class is compatible with a specified reference type.

CastExpression:
( PrimitiveType ) UnaryExpression
( ReferenceType ) UnaryExpressionNotPlusMinus

Thetype of acast expression isthe result of applying capture conversion (85.1.10)
to the type whose name appears within the parentheses. (The parentheses and the
type they contain are sometimes called the cast operator.)

The result of a cast expression is not a variable, but a value, even if the result of
the operand expression isavariable.

A cast operator has no effect on the choice of value set (84.2.3) for avalue of type
float or typedouble. Consequently, acast to type f1oat within an expression that
is not FP-strict (815.4) does not necessarily cause its value to be converted to an
element of the float value set, and a cast to type double within an expression that
is not FP-strict does not necessarily cause its value to be converted to an element
of the double value set.

Itisacompile-timeerror if the compile-time type of the operand may never be cast
tothetype specified by the cast operator according to the rulesof casting conversion
(85.5). Otherwise, at run-time, the operand value is converted (if necessary) by
casting conversion to the type specified by the cast operator.

A ClassCastException isthrownif acastisfound at runtimeto beimpermissible.



EXPRESSONS Multiplicative Operators

15.17 Multiplicative Operators

The operators *, /, and % are called the multiplicative operators. They have the
same precedence and are syntactically left-associative (they group left-to-right).

MultiplicativeExpression:
UnaryExpression
MultiplicativeExpression * UnaryExpression
MultiplicativeExpression / UnaryExpression
MultiplicativeExpression % UnaryExpression

The type of each of the operands of amultiplicative operator must be atypethat is
convertible (85.1.8) to a primitive numeric type, or acompile-time error occurs.
Binary numeric promotion is performed on the operands (85.6.2).

The type of amultiplicative expression is the promoted type of its operands.

If the promoted typeisint or Tong, then integer arithmetic is performed.

If the promoted type is float or double, then floating-point arithmetic is
performed.

15.17.1 Multiplication Operator *

The binary * operator performs multiplication, producing the product of its
operands.

Multiplication is acommutative operation if the operand expressions have no side
effects.

Integer multiplication is associative when the operands are all of the sametype, but
floating-point multiplication is not associative.

If an integer multiplication overflows, then the result is the low-order bits of the
mathematical product as represented in some sufficiently large two's-complement
format. As aresult, if overflow occurs, then the sign of the result may not be the
same as the sign of the mathematical product of the two operand values.

Theresult of afloating-point multiplication is determined by the rules of IEEE 754
arithmetic:

* If either operand is NaN, the result is NaN.

* If the result is not NaN, the sign of the result is positive if both operands have
the same sign, and negative if the operands have different signs.

15.17

307



15.17.2 Division Operator / EXPRESSONS

308

» Multiplication of an infinity by a zero resultsin NaN.

» Multiplication of aninfinity by afinite valueresultsin asigned infinity. Thesign
is determined by the rule stated above.

* In the remaining cases, where neither an infinity nor NaN isinvolved, the exact
mathematical product is computed. A floating-point value set is then chosen:

o If the multiplication expression is FP-strict (§15.4):

o If the type of the multiplication expression is f1oat, then the float value set
must be chosen.

o If the type of the multiplication expression is double, then the double value
set must be chosen.

o If the multiplication expression is not FP-strict:

o If the type of the multiplication expression is float, then either the float
value set or the float-extended-exponent value set may be chosen, at the
whim of the implementation.

o If the type of the multiplication expression is double, then either the double
value set or the double-extended-exponent value set may be chosen, at the
whim of the implementation.

Next, avalue must be chosen from the chosen value set to represent the product.

If the magnitude of the product is too large to represent, we say the operation
overflows; the result is then an infinity of appropriate sign.

Otherwise, the product is rounded to the nearest value in the chosen value
set using |IEEE 754 round-to-nearest mode. The Java programming language
requires support of gradual underflow as defined by |IEEE 754 (84.2.4).

Despite the fact that overflow, underflow, or loss of information may occur,
evaluation of a multiplication operator * never throws a run-time exception.

15.17.2 Division Operator /

The binary / operator performs division, producing the quotient of its operands.
The left-hand operand is the dividend and the right-hand operand is the divisor.

Integer division roundstoward 0. That is, the quotient produced for operands n and
d that are integers after binary numeric promotion (85.6.2) is an integer value g
whose magnitude is as large as possible while satisfying |d - g| < |n|. Moreover, q
is positive when |n| = [d] and n and d have the same sign, but q is negative when
[n] = |d] and n and d have opposite signs.



EXPRESSONS Division Operator / 15.17.2

Thereisonespecial casethat doesnot satisfy thisrule: if thedividend isthe negative
integer of largest possible magnitude for itstype, and the divisor is -1, then integer
overflow occurs and the result is equal to the dividend. Despite the overflow, no
exception isthrown in this case. On the other hand, if the value of the divisor in an
integer division is 0, then an ArithmeticException isthrown.

The result of a floating-point division is determined by the rules of |IEEE 754
arithmetic:

* If either operand is NaN, the result is NaN.

* If the result is not NaN, the sign of the result is positive if both operands have
the same sign, and negative if the operands have different signs.

 Division of an infinity by an infinity resultsin NaN.
 Division of an infinity by afinite value results in a signed infinity. The sign is
determined by the rule stated above.

* Division of a finite value by an infinity results in a signed zero. The sign is
determined by the rule stated above.

 Division of a zero by a zero resultsin NaN; division of zero by any other finite
value resultsin asigned zero. The sign is determined by the rule stated above.

 Division of anonzero finite value by azero resultsin asigned infinity. The sign
is determined by the rule stated above.

* In the remaining cases, where neither an infinity nor NaN isinvolved, the exact
mathematical quotient is computed. A floating-point value set is then chosen:
o If the division expression is FP-strict (815.4):
o If the type of the division expression is fl1oat, then the float value set must
be chosen.

o If the type of the division expression is double, then the double value set
must be chosen.

o If thedivision expression is not FP-strict:

o If the type of the division expression is float, then either the float value
set or the float-extended-exponent value set may be chosen, at the whim of
the implementation.

o If thetype of the division expression is doubTe, then either the double value
set or the double-extended-exponent value set may be chosen, at the whim
of the implementation.

309



15.17.3 Remainder Operator % EXPRESSONS

310

Next, avalue must be chosen from the chosen value set to represent the quotient.

If the magnitude of the quotient is too large to represent, we say the operation
overflows; the result is then an infinity of appropriate sign.

Otherwise, the quotient is rounded to the nearest value in the chosen value
set using |EEE 754 round-to-nearest mode. The Java programming language
requires support of gradual underflow as defined by |IEEE 754 (84.2.4).

Despite the fact that overflow, underflow, division by zero, or loss of information
may occur, evaluation of a floating-point division operator / never throws a run-
time exception.

15.17.3 Remainder Operator %

Thebinary % operator is said to yield the remainder of its operands from animplied
division; the left-hand operand is the dividend and the right-hand operand is the
divisor.

In C and C++, the remainder operator accepts only integral operands, but in the
Java programming language, it also accepts floating-point operands.

The remainder operation for operands that are integers after binary numeric
promotion (85.6.2) produces aresult value such that (a/b) *b+(a%b) isequal to a.

If the value of the divisor for an integer remainder operator is 0, then an
ArithmeticException isthrown.

The result of afloating-point remainder operation as computed by the % operator
is not the same as that produced by the remainder operation defined by IEEE
754. The |EEE 754 remainder operation computes the remainder from a rounding
division, not a truncating division, and so its behavior is not analogous to that
of the usual integer remainder operator. Instead, the Java programming language
defines % on floating-point operations to behave in a manner analogous to that of
the integer remainder operator; this may be compared with the C library function
fmod. The |EEE 754 remainder operation may be computed by the library routine
Math.IEEEremainder.

The result of a floating-point remainder operation is determined by the rules of
|EEE 754 arithmetic:

* If either operand is NaN, the result is NaN.
« If theresult is not NaN, the sign of the result equals the sign of the dividend.

« If thedividend is an infinity, or the divisor is a zero, or both, the result is NaN.



EXPRESSONS Additive Operators

* If the dividend is finite and the divisor is an infinity, the result equals the
dividend.

« If the dividend is a zero and the divisor isfinite, the result equals the dividend.

* Intheremaining cases, where neither an infinity, nor azero, nor NaN isinvolved,
the floating-point remainder r from the division of a dividend n by a divisor d
is defined by the mathematical relationr = n - (d - g) where g is an integer that
isnegative only if n/d is negative and positive only if n/d is positive, and whose
magnitude is as large as possible without exceeding the magnitude of the true
mathematical quotient of nand d.

Evauation of a floating-point remainder operator % never throws a run-time
exception, even if the right-hand operand is zero. Overflow, underflow, or loss of
precision cannot occur.

15.18 Additive Operators

The operators + and - are called the additive operators. They have the same
precedence and are syntactically |eft-associative (they group left-to-right).

AdditiveExpression:
MultiplicativeExpression
AdditiveExpression + MultiplicativeExpression
AdditiveExpression - MultiplicativeExpression

If the type of either operand of a+ operator is String, then the operation is string
concatenation.

Otherwise, the type of each of the operands of the + operator must be atypethat is
convertible (85.1.8) to a primitive numeric type, or a compile-time error occurs.

In every case, the type of each of the operands of the binary - operator must be
atype that is convertible (85.1.8) to a primitive numeric type, or a compile-time
error occurs.

15.18.1 String Concatenation Operator +

If only one operand expression is of type String, then string conversion (85.1.11)
is performed on the other operand to produce a string at run time. The result isa
reference to a String object (newly created, unless the expression is a compile-
time constant expression (815.28)) that is the concatenation of the two operand

15.18

311



15.18.2 Additive Operators (+ and -) for Numeric Types EXPRESSONS

312

strings. The characters of the left-hand operand precede the characters of the right-
hand operand in the newly created string.

If an operand of type String isnull, thenthestring "nu11" isused instead of that
operand.

15.18.2 Additive Operators (+ and -) for Numeric Types

The binary + operator performs addition when applied to two operands of numeric
type, producing the sum of the operands.

The binary - operator performs subtraction, producing the difference of two
numeric operands.

Binary numeric promotion is performed on the operands (85.6.2).

The type of an additive expression on numeric operands is the promoted type of
its operands:

* If this promoted typeisint or Tong, then integer arithmetic is performed.

« If this promoted type is float or double, then floating-point arithmetic is
performed.

Addition is a commutative operation if the operand expressions have no side
effects.

Integer addition is associative when the operands are al of the same type, but
floating-point addition is not associative.

If an integer addition overflows, then the result is the low-order bits of the
mathematical sum as represented in some sufficiently large two's-complement
format. If overflow occurs, then the sign of the result is not the same as the sign of
the mathematical sum of the two operand values.

The result of a floating-point addition is determined using the following rules of
|EEE 754 arithmetic:

« If either operand is NaN, the result is NaN.

» The sum of two infinities of opposite sign is NaN.

» The sum of two infinities of the same sign isthe infinity of that sign.

* Thesum of an infinity and afinite valueis equal to the infinite operand.
» The sum of two zeros of opposite sign is positive zero.

» The sum of two zeros of the same sign is the zero of that sign.



EXPRESI ONS Additive Operators (+ and -) for Numeric Types 15.18.2

» The sum of azero and a nonzero finite value is equal to the nonzero operand.

» The sum of two nonzero finite values of the same magnitude and opposite sign
is positive zero.

* Intheremaining cases, where neither an infinity, nor azero, nor NaN isinvolved,
and the operands have the same sign or have different magnitudes, the exact
mathematical sum is computed. A floating-point value set is then chosen:

o If the addition expression is FP-strict (815.4):

o If the type of the addition expression is f1oat, then the float value set must
be chosen.

o If the type of the addition expression is double, then the double value set
must be chosen.

o If the addition expression is not FP-strict:

o If the type of the addition expression is float, then either the float value
set or the float-extended-exponent value set may be chosen, at the whim of
the implementation.

o If thetype of the addition expressionisdouble, then either the double value
set or the double-extended-exponent value set may be chosen, at the whim
of the implementation.

Next, a value must be chosen from the chosen value set to represent the sum.

If the magnitude of the sum is too large to represent, we say the operation
overflows; the result is then an infinity of appropriate sign.

Otherwise, the sum is rounded to the nearest value in the chosen value set using
IEEE 754 round-to-nearest mode. The Java programming language requires
support of gradual underflow as defined by |EEE 754 (84.2.4).

The binary - operator performs subtraction when applied to two operands of
numeric type, producing the difference of its operands; the | eft-hand operand isthe
minuend and the right-hand operand is the subtrahend.

For both integer and floating-point subtraction, it is always the case that a-b
produces the same result as a+(-b).

Note that, for integer values, subtraction from zero is the same as negation.
However, for floating-point operands, subtraction from zero is not the same as
negation, becauseif X is+0.0, then 0.0-x iS+0.0, but -x is-0.0.

Despite the fact that overflow, underflow, or loss of information may occur,
evaluation of a numeric additive operator never throws a run-time exception.

313



15.19

314

Shift Operators EXPRESSONS

15.19 Shift Operators

The shift operators include left shift <<, signed right shift >>, and unsigned right
shift >>>; they are syntactically |eft-associative (they group left-to-right). The left-
hand operand of a shift operator is the value to be shifted; the right-hand operand
specifies the shift distance.

ShiftExpression:
AdditiveExpression
ShiftExpression << AdditiveExpression
ShiftExpression >> AdditiveExpression
ShiftExpression >>> AdditiveExpression

Thetype of each of the operands of ashift operator must be atypethat isconvertible
(85.1.8) to aprimitive integral type, or a compile-time error occurs.

Binary numeric promotion (85.6.2) is not performed on the operands; rather, unary
numeric promotion (85.6.1) is performed on each operand separately.

The type of the shift expression is the promoted type of the left-hand operand.

If the promoted type of theleft-hand operand isint, only the five lowest-order bits
of the right-hand operand are used as the shift distance.

Itisasif the right-hand operand were subjected to abitwise logical AND operator
& (815.22.1) with the mask value 0x1f. The shift distance actually used istherefore
awaysintherange 0 to 31, inclusive.

If the promoted type of the left-hand operand is Tong, then only the six lowest-
order bits of the right-hand operand are used as the shift distance.

Itisasif the right-hand operand were subjected to abitwise logical AND operator
& (815.22.1) with the mask value 0x3f. The shift distance actually used istherefore
alwaysin therange 0 to 63, inclusive.

At run time, shift operations are performed on the two's-complement integer
representation of the value of the left operand.

The value of n << s is n left-shifted s bit positions; this is equivalent (even if
overflow occurs) to multiplication by two to the power s.

The value of n >> s is n right-shifted s bit positions with sign-extension. The
resulting value is | n/ 2° ;. For non-negative values of n, this is equivaent to
truncating integer division, as computed by the integer division operator /, by two
to the power s.



EXPRESSONS Relational Operators

The value of n >>> sisn right-shifted s bit positions with zero-extension.
* If nispositive, then the result is the same as that of n>> s.

* If nis negative and the type of the left-hand operand is int, then the result is
equal to that of the expression (N >> $)+(2 << ~S).

« If nisnegative and the type of the left-hand operand is 1ong, then the result is
equal to that of the expression (N >> )+ (2L << ~8).

15.20 Relational Operators

Therelational operatorsare syntactically |eft-associative (they group | eft-to-right),
but thisfact is not useful. For example, a<b<c parses as (a<b) <c, which isaways
a compile-time error, because the type of a<b is always boolean and < is not an
operator on boolean values.

Relational Expression:
ShiftExpression
Relational Expression < ShiftExpression
Relational Expression > ShiftExpression
Relational Expression <= ShiftExpression
Relational Expression >= ShiftExpression
Relational Expression instanceof ReferenceType

Thetype of arelationa expression is always boolean.

15.20.1 Numerical Comparison Operators<, <=, >, and >=

The type of each of the operands of a numerical comparison operator must be a
typethat is convertible (85.1.8) to aprimitive numeric type, or acompile-timeerror
occurs.

Binary numeric promotion is performed on the operands (85.6.2).

If the promoted type of the operandsisint or Tong, then signed integer comparison
is performed.

If the promoted type is float or double, then floating-point comparison is
performed.

Comparisoniscarried out accurately on floating-point values, no matter what value
sets their representing values were drawn from.

15.20

315



15.20.2 Type Comparison Operator instanceof EXPRESSIONS

316

Theresult of afloating-point comparison, as determined by the specification of the
|EEE 754 standard, is:

* If either operand is NaN, then the result isfalse.

 All values other than NaN are ordered, with negative infinity less than al finite
values, and positive infinity greater than all finite values.

* Positive zero and negative zero are considered equal .

Subject to these considerationsfor floating-point numbers, the following rulesthen
hold for integer operands or for floating-point operands other than NaN:

» Thevalueproduced by the < operator is true if the value of theleft-hand operand
is less than the value of the right-hand operand, and otherwiseis false.

» The vaue produced by the <= operator is true if the value of the left-hand
operand islessthan or equal to the value of theright-hand operand, and otherwise
isfalse.

» Thevalueproduced by the> operator istrue if the value of theleft-hand operand
is greater than the value of the right-hand operand, and otherwiseis false.

* The value produced by the >= operator is true if the value of the left-hand
operand is greater than or equal to the value of the right-hand operand, and
otherwiseis false.

15.20.2 Type Comparison Operator instanceof

The type of a Relational Expression operand of the instanceof operator must be
areference type or the null type; otherwise, a compile-time error occurs.

It is a compile-time error if the ReferenceType mentioned after the instanceof
operator does not denote a reference type that isreifiable (84.7).

At run time, the result of the instanceof operator is true if the value of the
Relational Expression is not nu11 and the reference could be cast (§15.16) to the
ReferenceType without raising a ClassCastException. Otherwise the result is
false.

If acast of the Relational Expression to the ReferenceType would be rejected as a
compile-time error, then the instanceof relational expression likewise produces
a compile-time error. In such a situation, the result of the instanceof expression
could never betrue.



EXPRESSONS Equality Operators

15.21 Equality Operators

The equality operators are syntactically |eft-associative (they group left-to-right),
but thisfact isessentially never useful. For example, a==b==c parsesas (a==b)==c.
Theresult type of a==b isalwaysboolean, and c must therefore be of typeboolean
or a compile-time error occurs. Thus, a==b==c does not test to see whether a, b,
and c are all equal.

EqualityExpression:
Relational Expression
EqualityExpression == Relational Expression
EqualityExpression ! = Relational Expression

The == (equal to) and the ! = (not equal to) operators are analogousto the relational
operators except for their lower precedence. Thus, a<b==c<d iStrue whenever a<b
and c<d have the same truth value.

The equality operators may be used to compare two operands that are convertible
(85.1.8) to numeric type, or two operands of type boolean or Boolean, Or two
operandsthat are each of either referencetype or the null type. All other casesresult
in acompile-time error.

Thetype of an equality expression is aways boolean.
Inall cases, a!=b produces the same result as ! (a==b).

The equality operators are commutative if the operand expressions have no side
effects.

15.21.1 Numerical Equality Operators==and !=

If the operands of an equality operator are both of numeric type, or one is of
numeric type and the other is convertible (85.1.8) to numeric type, binary numeric
promotion is performed on the operands (85.6.2).

If the promoted type of the operandsis int or Tong, then an integer equality test
is performed.

If the promoted type is float or double, then a floating-point equality test is
performed.

Comparisoniscarried out accurately on floating-point values, no matter what value
sets their representing val ues were drawn from.

15.21

317



15.21.2 Boolean Equality Operators == and != EXPRESSONS

318

Floating-point equality testing is performed in accordance with the rules of the
|EEE 754 standard:

* If either operandisNaN, then theresult of == isfalse but theresult of !=istrue.
Indeed, the test x!=x is true if and only if the value of x is NaN.
* Positive zero and negative zero are considered equal .

» Otherwise, two distinct floating-point values are considered unequal by the
equality operators.
In particular, there is one value representing positive infinity and one value

representing negative infinity; each compares equal only to itself, and each
compares unequal to all other values.

Subject to these considerations for floating-point numbers, the following rulesthen
hold for integer operands or for floating-point operands other than NaN:

» The value produced by the == operator is true if the value of the left-hand
operand is equal to the value of the right-hand operand; otherwise, the result is
false.

* The value produced by the != operator is true if the value of the left-hand
operand is not equal to the value of the right-hand operand; otherwise, the result
isfalse.

15.21.2 Boolean Equality Operators==and !=

If the operands of an equality operator are both of type boolean, or if one operand
is of type boolean and the other is of type Boolean, then the operation is boolean
equality.

The boolean equality operators are associative.

If one of the operands is of type Boolean, it is subjected to unboxing conversion
(85.1.8).

The result of == is true if the operands (after any required unboxing conversion)
are both true or both false; otherwise, theresult is false.

Theresult of !=is false if the operands are both true or both false; otherwise,
theresult is true.



EXPRESSONS Reference Equality Operators == and ! =

15.21.3 Reference Equality Operators==and !=

If the operands of an equality operator are both of either reference type or the null
type, then the operation is object equality.

A compile-timeerror occursif it isimpossible to convert the type of either operand
to the type of the other by a casting conversion (85.5). The run-time values of the
two operands would necessarily be unequal.

At run time, the result of == is true if the operand values are both nu11 or both
refer to the same object or array; otherwise, theresult is false.

The result of != is false if the operand values are both nu11 or both refer to the
same object or array; otherwise, theresult is true.

While == may be used to compare references of type String, such an equality test
determines whether or not the two operands refer to the same String object. The
result is false if the operands are distinct String objects, even if they contain the
same sequence of characters. The contents of two strings s and t can be tested for
equality by the method invocation s.equals(t). See also §3.10.5.

15.22 Bitwiseand Logical Operators

The bitwise operatorsand logical operatorsincludethe AND operator &, exclusive
OR operator A, and inclusive OR operator |. These operators have different
precedence, with & having the highest precedence and | the lowest precedence.

Each of these operatorsis syntactically |eft-associative (each groups | eft-to-right).
Each operator is commutative if the operand expressions have no side effects.

Each operator is associative.

15.21.3

319



15.22.1 Integer Bitwise Operators &, A, and | EXPRESS ONS

320

AndExpression:
EqualityExpression
AndExpression & EqualityExpression

ExclusiveOr Expression:
AndExpression
ExclusiveOrExpression A AndExpression

InclusiveOrExpression:
ExclusiveOrExpression
InclusiveOrExpression | ExclusiveOrExpression

Thebitwise and logical operators may be used to compare two operands of numeric
typeor two operands of typeboolean. All other casesresultinacompile-timeerror.

15.22.1 Integer Bitwise Operators&, A, and |

When both operands of an operator &, A, or | areof atypethat isconvertible (85.1.8)
to a primitive integral type, binary numeric promotion is first performed on the
operands (85.6.2).

The type of the bitwise operator expression is the promoted type of the operands.
For &, the result value is the bitwise AND of the operand values.
For A, the result value is the bitwise exclusive OR of the operand values.

For |, theresult valueis the bitwise inclusive OR of the operand values.

15.22.2 Boolean Logical Operatorsg&, A, and |

When both operands of a &, A, or | operator are of type boolean oOr Boolean, then
the type of the bitwise operator expression is boolean. In al cases, the operands
are subject to unboxing conversion (85.1.8) as necessary.

For &, theresult valueis true if both operand values are true; otherwise, the result
isfalse.

For A, the result value is true if the operand values are different; otherwise, the
resultis false.

For |, the result value is false if both operand values are false; otherwise, the
resultis true.



EXPRESSIONS Conditional-And Operator &&

15.23 Conditional-And Operator &

The && operator is like & (815.22.2), but evaluates its right-hand operand only if
the value of its left-hand operand is true.
It is syntactically |eft-associative (it groups left-to-right).

It is fully associative with respect to both side effects and result value; that is, for
any expressions a, b, and c, evaluation of the expression ((a) && (b)) && (o)
produces the same result, with the same side effects occurring in the same order,
as evaluation of the expression (a) && ((b) && ().

Conditional AndExpression:
InclusiveOrExpression
Conditional AndExpression && InclusiveOr Expression

Each operand of && must be of type boolean or Boolean, or a compile-time error
occurs.

Thetype of a conditional-and expression is always boolean.

At run time, the left-hand operand expression is evaluated first; if the result has
type Boolean, it is subjected to unboxing conversion (85.1.8).

If theresulting valueis false, thevalue of the conditional-and expressionis false
and the right-hand operand expression is not evaluated.

If the value of the left-hand operand is true, then the right-hand expression is
evaluated; if the result has type Boolean, it is subjected to unboxing conversion
(85.1.8). Theresulting value becomes the value of the conditional-and expression.

Thus, && computes the sameresult as& on boolean operands. It differsonly in that
the right-hand operand expression is evaluated conditionally rather than always.

15.24 Conditional-Or Operator ||

The | | operator islike | (815.22.2), but evaluates its right-hand operand only if
the value of itsleft-hand operand is false.

It is syntactically left-associative (it groups left-to-right).

It is fully associative with respect to both side effects and result value; that is, for
any expressions a, b, and c, evaluation of the expression ((a) || (b)) || (O

15.23

321



15.25

322

Conditional Operator ? : EXPRESSIONS

produces the same result, with the same side effects occurring in the same order,
as evaluation of the expression (a) || ((b) || ().

Conditional Or Expression:
Conditional AndExpression
Conditional OrExpression | | Conditional AndExpression

Each operand of | | must be of type boolean or Boolean, or a compile-time error
occurs.

The type of aconditional-or expression is always boolean.

At run time, the left-hand operand expression is evaluated first; if the result has
type Boolean, it is subjected to unboxing conversion (85.1.8).

If theresulting valueis true, the value of the conditional-or expressionis true and
the right-hand operand expression is not evaluated.

If the value of the left-hand operand is false, then the right-hand expression is
evaluated; if the result has type Boolean, it is subjected to unboxing conversion
(85.1.8). The resulting value becomes the value of the conditional-or expression.

Thus, | | compuresthe sameresult as | on booTlean or Boolean operands. It differs
only inthat theright-hand operand expressioniseval uated conditionally rather than
aways.

15.25 Conditional Operator ? :

The conditional operator ? : uses the boolean value of one expression to decide
which of two other expressions should be evaluated.

The conditional operator is syntactically right-associative (it groups right-to-left),
so that a?b:c?d:e?f:g meansthe sameasa?b: (c?d: (e?f:g)).

Conditional Expression:
Conditional Or Expression
Conditional OrExpression ? Expression : Conditional Expression

The conditional operator hasthree operand expressions; ? appears between thefirst
and second expressions, and : appears between the second and third expressions.

The first expression must be of type boolean or Boolean, or a compile-time error
occurs.



EXPRESSIONS Conditional Operator ? :

It is a compile-time error for either the second or the third operand expression to
be an invocation of avoid method.

Thetype of aconditional expression is determined as follows:

If the second and third operands have the same type (which may bethe null type),
then that is the type of the conditional expression.

If one of the second and third operandsis of primitive type T, and the type of the
other is the result of applying boxing conversion (85.1.7) to T, then the type of
the conditional expressionisT.

If one of the second and third operandsis of the null type and the type of the other
is areference type, then the type of the conditional expression is that reference

type.

Otherwise, if the second and third operands have types that are convertible
(85.1.8) to numeric types, then there are several cases:

o If one of the operands is of type byte or Byte and the other is of type short
or Short, then the type of the conditional expressionis short.

o If one of the operands is of type T where T is byte, short, or char, and the
other operand isaconstant expression of type int whosevalueisrepresentable
in type T, then the type of the conditional expressionisT.

o If one of the operands is of type T, where T is Byte, Short, or Character,
and the other operand is a constant expression of type int whose value is
representablein thetype U which istheresult of applying unboxing conversion
to T, then the type of the conditional expression is u.

o Otherwise, binary numeric promotion (85.6.2) is applied to the operand types,
and the type of the conditional expression isthe promoted type of the second
and third operands.

Otherwise, the second and third operands are of types S; and S, respectively. Let
T be the type that results from applying boxing conversion to S;, and let T, be
the type that results from applying boxing conversion to S..

The type of the conditional expression is the result of applying capture
conversion (85.1.10) to lub(7;, T>) (815.12.2.7).

At runtime, thefirst operand expression of the conditional expressionis evaluated
first; if necessary, unboxing conversion is performed on the result. The resulting
boolean vaue is then used to choose either the second or the third operand
expression:

15.25

323



15.26

324

Assignment Operators EXPRESS ONS

* If the value of the first operand is true, then the second operand expression is
chosen.

« If the value of the first operand is false, then the third operand expression is
chosen.

The chosen operand expression is then evauated and the resulting value is
converted to the type of the conditional expression as determined by therules stated
above.

This conversion may include boxing (85.1.7) or unboxing (85.1.8) conversion.

The operand expression not chosen is not evaluated for that particular evaluation
of the conditional expression.

15.26 Assignment Operators

There are 12 assignment operators; al are syntactically right-associative (they
group right-to-left). Thus, a=b=c means a=(b=c), which assigns the value of c to
b and then assigns the value of b to a.

AssignmentExpression:
Conditional Expression
Assignment

Assignment:
LeftHandS de AssignmentOperator AssignmentExpression

LeftHandS de:
ExpressionName
FieldAccess
ArrayAccess

AssignmentOperator: one of
= *= /= %= += -= <<= >>= >>>= &= A= |=

The result of the first operand of an assignment operator must be a variable, or a
compile-time error occurs.

This operand may be a named variable, such as alocal variable or afield of the
current object or class, or it may be a computed variable, as can result from afield
access (815.11) or an array access (815.13).



EXPRESSONS Smple Assignment Operator =

The type of the assignment expression is the type of the variable after capture
conversion (85.1.10).

At run time, the result of the assignment expression is the value of the variable
after the assignment has occurred. The result of an assignment expression is not
itself avariable.

A variable that is declared final cannot be assigned to (unless it is definitely
unassigned (Chapter 16, Definite Assignment)), because when an access of such a
final variable is used as an expression, theresult isavalue, not avariable, and so
it cannot be used as the first operand of an assignment operator.

15.26.1 Simple Assignment Operator =

A compile-time error occurs if the type of the right-hand operand cannot be
converted to the type of the variable by assignment conversion (85.2).

At run time, the expression is evaluated in one of three ways.

If the left-hand operand expression is a field access expression (815.11) e. f,
possibly enclosed in one or more pairs of parentheses, then:

» Firdt, the expression e is evaluated. If evaluation of e completes abruptly, the
assignment expression completes abruptly for the same reason.

* Next, the right hand operand is evaluated. If evauation of the right hand
expression completes abruptly, the assignment expression completes abruptly
for the same reason.

e Then, if the field denoted by e. fis not static and the result of the evaluation
of e aboveisnull, then aNul1PointerException isthrown.

» Otherwise, the variable denoted by e. f is assigned the value of the right hand
operand as computed above.

If the left-hand operand is an array access expression (815.13), possibly enclosed
in one or more pairs of parentheses, then:

 Firdt, the array reference subexpression of the left-hand operand array access
expression is evaluated. If this evaluation completes abruptly, then the
assignment expression completes abruptly for the same reason; the index
subexpression (of the left-hand operand array access expression) and the right-
hand operand are not evaluated and no assignment occurs.

» Otherwise, the index subexpression of the left-hand operand array access
expression is evaluated. If this evaluation completes abruptly, then the

15.26.1

325



15.26.1

326

Simple Assignment Operator = EXPRESSONS

assignment expression compl etes abruptly for the same reason and the right-hand
operand is not evaluated and no assignment occurs.

Otherwise, the right-hand operand is evaluated. If this evaluation completes
abruptly, then the assignment expression completes abruptly for the same reason
and no assignment occurs.

Otherwisg, if the value of the array reference subexpression is nul1, then no
assignment occurs and aNul1PointerException isthrown.

Otherwise, the value of the array reference subexpression indeed refers to an
array. If the value of the index subexpression is less than zero, or greater
than or equal to the 1ength of the array, then no assignment occurs and an
ArrayIndexOutOfBoundsException isthrown.

Otherwise, the value of theindex subexpression is used to select acomponent of
the array referred to by the value of the array reference subexpression.

This component isavariable; cal itstype SC. Also, let TC be the type of the left-
hand operand of the assignment operator as determined at compile time. Then
there are two possibilities:

o If TCisaprimitive type, then SCis necessarily the same as TC.

The value of the right-hand operand is converted to the type of the selected
array component, is subjected to value set conversion (85.1.13) to the
appropriate standard value set (not an extended-exponent value set), and the
result of the conversion is stored into the array component.

o If TCisareference type, then SC may not be the same as TC, but rather atype
that extends or implements TC.

Let RC be the class of the object referred to by the value of the right-hand
operand at run time.

A Javacompiler may be ableto proveat compiletimethat the array component
will be of type TC exactly (for example, TC might be final). But if a Java
compiler cannot prove at compile time that the array component will be of
type TC exactly, then acheck must be performed at run time to ensure that the
class RC is assignment compatible (85.2) with the actual type SC of the array
component.

If class RC is not assignable to type SC, then no assignment occurs and an
ArrayStoreException isthrown.

Otherwise, the reference value of the right-hand operand is stored into the
selected array component.



EXPRESSONS Compound Assignment Operators  15.26.2

Otherwise, three steps are required:

* First, the left-hand operand is evaluated to produce a variable. If this evaluation
completes abruptly, then the assignment expression completes abruptly for the
same reason; the right-hand operand is not evaluated and no assignment occurs.

» Otherwise, the right-hand operand is evaluated. If this evaluation completes
abruptly, then the assignment expression compl etes abruptly for the same reason
and no assignment occurs.

» Otherwise, thevalue of theright-hand operand is converted to the type of theleft-
hand variable, is subjected to value set conversion (85.1.13) to the appropriate
standard value set (not an extended-exponent value set), and the result of the
conversion is stored into the variable.

15.26.2 Compound Assignment Operators

A compound assignment expression of the form E1 op= E2 is equivalent to E1
= (T) ((E1) op (E2)),where Tisthe type of E1, except that £1 is evaluated
only once.

At run time, the expression is evaluated in one of two ways.
If the left-hand operand expression is not an array access expression, then:

» Firgt, the left-hand operand is evaluated to produce a variable. If this evaluation
completes abruptly, then the assignment expression completes abruptly for the
same reason; the right-hand operand is not evaluated and no assignment occurs.

» Otherwise, the value of the left-hand operand is saved and then the right-hand
operand is evaluated. If this evaluation completes abruptly, then the assignment
expression completes abruptly for the same reason and no assignment occurs.

» Otherwise, the saved vaue of the left-hand variable and the value of the
right-hand operand are used to perform the binary operation indicated by
the compound assignment operator. If this operation completes abruptly, then
the assignment expression completes abruptly for the same reason and no
assignment occurs.

» Otherwise, the result of the binary operation is converted to the type of the left-
hand variable, subjected to value set conversion (85.1.13) to the appropriate
standard value set (not an extended-exponent value set), and the result of the
conversion is stored into the variable.

If the left-hand operand expression is an array access expression (815.13), then:

327



15.26.2

328

Compound Assignment Operators EXPRESS ONS

First, the array reference subexpression of the left-hand operand array access
expression is evaluated. If this evaluation completes abruptly, then the
assignment expression completes abruptly for the same reason; the index
subexpression (of the left-hand operand array access expression) and the right-
hand operand are not evaluated and no assignment occurs.

Otherwise, the index subexpression of the left-hand operand array access
expression is evaluated. If this evaluation completes abruptly, then the
assignment expression compl etes abruptly for the same reason and theright-hand
operand is not evaluated and no assignment occurs.

Otherwise, if the value of the array reference subexpression is nul1, then no
assignment occurs and aNul1PointerException isthrown.

Otherwise, the value of the array reference subexpression indeed refers to an
array. If the value of the index subexpression is less than zero, or greater
than or equal to the 1ength of the array, then no assignment occurs and an
ArrayIndexOutOfBoundsException isthrown.

Otherwise, the value of the index subexpression is used to select a component
of the array referred to by the value of the array reference subexpression. The
value of this component is saved and then the right-hand operand is evaluated.
If this evaluation completes abruptly, then the assignment expression completes
abruptly for the same reason and no assignment occurs.

Otherwise, consider the array component selected in the previous step, whose
value was saved. This component is a variable; call its type S. Also, let T be
the type of the left-hand operand of the assignment operator as determined at
compiletime.

o If Tisaprimitive type, then S is necessarily the same as T.

The saved vaue of the array component and the value of the right-hand
operand are used to perform the binary operation indicated by the compound
assignment operator.

If this operation completes abruptly (the only possibility isan integer division
by zero - see §15.17.2), then the assignment expression completes abruptly for
the same reason and no assignment occurs.

Otherwise, the result of the binary operation is converted to the type of the
selected array component, subjected to value set conversion (85.1.13) to the
appropriate standard value set (not an extended-exponent value set), and the
result of the conversion is stored into the array component.



EXPRESSONS Expression

o If Tis areference type, then it must be String. Because class String is a
final class, S must also be String.

The saved vaue of the array component and the value of the right-hand
operand are used to perform the binary operation (string concatenation)
indicated by the compound assignment operator (which is necessarily +=). If
this operation completes abruptly, then the assignment expression completes
abruptly for the same reason and no assignment occurs.

Otherwise, the String result of the binary operation is stored into the array
component.

15.27 Expression

An Expression is any assignment expression:

Expression:
AssignmentExpression

Unlike C and C++, the Java programming language has no comma operator.

15.28 Constant Expression

ConstantExpression:
Expression

A compile-time constant expression is an expression denoting a value of primitive
type or aString that does not complete abruptly and is composed using only the
following:

* Literals of primitive type and literals of type String (§3.10.5)
* Caststo primitive types and casts to type String

* Theunary operators +, -, ~, and ! (but not ++ or --)

» The multiplicative operators *, /, and %

» The additive operators + and -

» The shift operators <<, >>, and >>>

» Therelational operators <, <=, >, and >= (but not instanceof)

15.27

329



15.28

330

Constant Expression EXPRESSONS

» The equality operators==and !=

» The bitwise and logical operators &, A, and |

» The conditional-and operator && and the conditional-or operator | |

» Theternary conditiona operator ? :

* Parenthesized expressions whose contained expression is a constant expression.
e Simple names that refer to constant variables (84.12.4).

* Qualified names of the form TypeName . Identifier that refer to constant
variables (84.12.4).

Compile-time constant expressions of type String are always "interned" so asto
share unique instances, using the method String.intern.

A compile-time constant expression is always treated as FP-strict (815.4), even if
it occursin a context where a non-constant expression would not be considered to
be FP-dtrict.



CHAPTER 16

Definite Assignment

EACH local variable (814.4) and every blank final (84.12.4) field (88.3.1.2)
must have a definitely assigned value when any access of its value occurs. An
access to its value consists of the simple name of the variable (or, for afield, the
simple name of the field qualified by this) occurring anywhere in an expression
except as the left-hand operand of the simple assignment operator =.

For every access of alocal variable or blank final field f, £ must be definitely
assigned before the access, or a compile-time error occurs.

Similarly, every blank final variable must be assigned at most once; it must
be definitely unassigned when an assignment to it occurs. Such an assignment is
defined to occur if and only if either the simple name of the variable (or, for afield,
its simple name qualified by this) occurs on the left hand side of an assignment
operator.

For every assignment to a blank final variable, the variable must be definitely
unassigned before the assignment, or a compile-time error occurs.

The remainder of this chapter is devoted to a precise explanation of the words
"definitely assigned before" and "definitely unassigned before".

The idea behind definite assignment is that an assignment to the local variable
or blank final field must occur on every possible execution path to the access.
Similarly, the idea behind definite unassignment is that no other assignment to the
blank final variable is permitted to occur on any possible execution path to an
assignment.

The analysis takes into account the structure of statements and expressions; it also
provides a special treatment of the expression operators !, &&, | |, and ? :, and of
boolean-valued constant expressions.

331



332

DEFINITE ASSGNMENT

Except for the special treatment of the conditional boolean operators &&, | |, and
7 : and of boolean-valued constant expressions, the values of expressions are not
taken into account in the flow analysis.

In order to precisely specify all the cases of definite assignment, the rulesin this
section define severa technical terms:

» whether avariable is definitely assigned before a statement or expression;

» whether avariable is definitely unassigned before a statement or expression;
» whether avariable is definitely assigned after a statement or expression; and
» whether avariable is definitely unassigned after a statement or expression.
For boolean-valued expressions, the last two are refined into four cases:

» whether avariable is definitely assigned after the expression when true;

» whether avariable is definitely unassigned after the expression when true;

» whether avariable is definitely assigned after the expression when false; and
» whether avariable is definitely unassigned after the expression when false.
Here when true and when fal se refer to the value of the expression.

The phrase "V is definitely assigned after X" (where visalocal variable and X is
a statement or expression) means "V is definitely assigned after x if x completes
normally". If x completes abruptly, the assignment need not have occurred, and the
rules stated here take thisinto account.

The statement "V is definitely unassigned after X" (where visavariable and Xisa
statement or expression) means "V is definitely unassigned after X if X completes
normally".

In all, there are four possibilities for a variable v after a statement or expression
has been executed:

» Visdefinitely assigned and is not definitely unassigned.

(The flow analysis rules prove that an assignment to v has occurred.)
» Visdefinitely unassigned and is not definitely assigned.

(The flow analysis rules prove that an assignment to v has not occurred.)
» Visnot definitely assigned and is not definitely unassigned.

(The rules cannot prove whether or not an assignment to v has occurred.)

» Visdefinitely assigned and is definitely unassigned.



DEFINITE ASSGNMENT Definite Assignment and Expressions

(It isimpossible for the statement or expression to complete normally.)

16.1 Definite Assgnment and Expressions

16.1.1 Boolean Constant Expressions
* Vis[un]assigned after any constant expression whose value is true when false.
* Vis[un]assigned after any constant expression whose valueis false when true.

* Vis[un]assigned after any constant expression whose value is true when true
iff vis[un]assigned before the constant expression.

vis[un]assigned after any constant expression whose valueis false when false
iff vis[un]assigned before the constant expression.

* V is [un]assigned after a boolean-valued constant expression e iff Vv is
[un]assigned after e when true and Vv is [un]assigned after e when false.

16.1.2 The Boolean Operator &&

* Vis[un]assigned after a & b when true iff Vis[un]assigned after b when true.

* Vis[un]assigned after a & b when falseiff vis[un]assigned after a when false
and vis[un]assigned after b when false.

» Vis[un]assigned before a iff Vis[un]assigned before a && b.
* Vis[un]assigned before b iff Vis[un]assigned after a when true.

» Vis[un]assigned after a && b iff Vis[un]assigned after a && b when true and v
is[un]assigned after a & b when false.

16.1.3 TheBoolean Operator | |

* Vis[un]assigned after a | | b when true iff Vis[un]assigned after a when true
and vis[un]assigned after b when true.

* Vis[un]assigned after a | | b when falseiff vis[un]assigned after b when false.
* Vis[un]assigned before a iff vis[un]assigned beforea || b.
* Vis[un]assigned before b iff Vis[un]assigned after a when false.

16.1

333



16.1.4

334

The Boolean Operator ! DEFINITE ASSGNMENT

* Vis[un]assigned after a || biff Vis[un]assigned after a | | b when true and v
is[un]assigned after a | | b when false.

16.1.4 The Boolean Operator !

* Vis[un]assigned after ! a when trueiff vis[un]assigned after a when false.
* Vis[un]assigned after !a when false iff vis[un]assigned after a when true.
* Vis[un]assigned before a iff vis[un]assigned before ! a.

* Vis [un]assigned after !a iff v is [un]assigned after !'a when true and V is
[un]assigned after ! a when false.

16.1.5 TheBoolean Operator ? :

Suppose that b and ¢ are boolean-valued expressions.

» Vis[un]assigned after a? b : cwhentrueiff vis[un]assigned after b when true
and vis[un]assigned after ¢ when true.

* Vis[un]assigned after a ? b : ¢ when false iff vis [un]assigned after b when
false and vis[un]assigned after ¢ when false.

* Vis[un]assigned before a iff Vis[un]assigned beforea? b : c.
* Vis[un]assigned before b iff Vis[un]assigned after a when true.
* Vis[un]assigned before ciff Vis[un]assigned after a when false.

* Vis[un]assigned after a ? b : ciff Vis[un]assigned after a ? b : ¢ when true
and vis[un]assigned after a? b : ¢ when false.

16.1.6 The Conditional Operator ? :

Suppose that b and ¢ are expressions that are not boolean-valued.

* Vis[un]assigned after a? b : ciff Vis[un]assigned after b and Vis[un]assigned
after c.

* Vis[un]assigned before a iff Vis[un]assigned beforea? b : c.
* Vis[un]assigned before b iff Vis[un]assigned after a when true.

» Vis[un]assigned before ciff Vis[un]assigned after a when false.



DEFINITE ASSIGNMENT Other Expressions of Type boolean

16.1.7 Other Expressionsof Type boolean

Suppose that e is an expression of type boolean and is not a boolean constant
expression, logical completment expression ! a, conditional-and expression a && b,
conditional-or expression a | | b, or conditional expressiona? b : c.

* Vis[un]assigned after e when trueiff vis[un]assigned after e.

* Vis[un]assigned after e when falseiff vis[un]assigned after e.

16.1.8 Assignment Expressions

Consider an assignment expression a= b, a+=b,a-=b,a*=b,a/=b, a%=b, a
<<=b,a>>=b,a>>>=b,a&=b,a |=b,0r aA=b.

* Visdefinitely assigned after the assignment expression iff either:
o aisv,or
0 Visdefinitely assigned after b.

» Visdefinitely unassigned after the assignment expression iff aisnot vVand Vis
definitely unassigned after b.

* Vis[un]assigned before a iff vis[un]assigned before the assignment expression.
* Vis[un]assigned before b iff Vis[un]assigned after a.

16.1.9 Operators++and --

» Visdefinitely assigned after ++a, --a, a++, or a-- iff either aisvor visdefinitely
assigned after the operand expression.

* Vis definitely unassigned after ++a, --a, a++, or a-- iff aisnot vand vis
definitely unassigned after the operand expression.

» Vis[un]assigned before a iff Vis[un]assigned before ++a, --a, a++, or a--.

16.1.10 Other Expressions

If an expression is not a boolean constant expression, and is not a preincrement
expression ++a, predecrement expression --a, postincrement expression a++,
postdecrement expression a--, logical complement expression ! a, conditional-and
expression a && b, conditional-or expression a | | b, conditional expressiona? b :
¢, Or assignment expression, then the following rules apply:

16.1.7

335



16.1.10

336

Other Expressions DEFINITE ASSGNMENT

If the expression has no subexpressions, V is [un]assigned after the expression
iff vis[un]assigned before the expression.

This case applies to literals, names, this (both quaified and unqualified),
unqualified class instance creation expressions with no arguments, initialized
array creation expressions whose initializers contain no expressions, unqualified
superclass field access expressions, named method invocations with no
arguments, and unqualified superclass method invocations with no arguments.

If the expression has subexpressions, Vis [un]assigned after the expression iff v
is [un]assigned after its rightmost immediate subexpression.

For any immediate subexpression y of an expression x, Vis[un]assigned before y
iff one of the following situationsis true:

y isthe leftmost immediate subexpression of x and Vis [un]assigned before x.

y is the right-hand operand of a binary operator and Vv is [un]assigned after the
left-hand operand.

x IS an array access, y is the subexpression within the brackets, and Vv is
[un]assigned after the subexpression before the brackets.

x isaprimary method invocation expression, y is the first argument expression
in the method invocation expression, and V is [un]assigned after the primary
expression that computes the target object.

x isamethod invocation expression or a class instance creation expression; y is
an argument expression, but not thefirst; and vis[un]assigned after the argument
expression to the left of y.

x is a qualified class instance creation expression, y is the first argument
expression in the class instance creation expression, and V is [un]assigned after
the primary expression that computes the qualifying object.

x IS an array instance creation expression; y is a dimension expression, but not
thefirst; and vis[un]assigned after the dimension expression to the | eft of y.

x isan array instance creation expression initialized viaan array initializer; yis
the array initializer in x; and Vv is [un]assigned after the dimension expression
to the l€eft of y.



DEFINITE ASSGNMENT Definite Assignment and Statements 16.2

16.2 Definite Assignment and Statements

16.2.1 Empty Statements

» Vis[un]assigned after an empty statement iff it is[un]assigned before the empty
statement.

16.2.2 Blocks

e A blank final member field v is definitely assigned (and moreover is not
definitely unassigned) before the block that is the body of any method in the
scope of vand before the declaration of any class declared within the scope of V.

e A loca variable Vv is definitely unassigned (and moreover is not definitely
assigned) before the block that is the body of the constructor, method, instance
initializer or static initializer that declares V.

* Let C be a class declared within the scope of v. Then v is definitely assigned
before the block that isthe body of any constructor, method, instance initializer,
or staticinitializer declared in Ciff visdefinitely assigned before the declaration
of C.

e Vis[un]assigned after an empty block iff v is [un]assigned before the empty
block.

* Vis [un]assigned after a non-empty block iff v is [un]assigned after the last
statement in the block.

* Vis [un]assigned before the first statement of the block iff v is [un]assigned
before the block.

» Vis[un]assigned before any other statement S of the block iff Vvis[un]assigned
after the statement immediately preceding S in the block.

We say that Vis definitely unassigned everywhere in ablock B iff:
* Visdefinitely unassigned before B.

» Visdefinitely assigned after e in every assignment expression V= e, V+= e, V
=g, V¥*=e, V/=¢e, V%=e, V<<=ge, V>>=¢e, V>>>=¢, V&= e, V|= e, Or VA=
e that occursin B.

* Visdefinitely assigned before every expression ++V, --V, V++, or V--. that occurs
in B.

337



16.2.3

338

Local Class Declaration Satements DEFINITE ASS GNMENT

16.2.3 Local Class Declaration Statements

* Vis[un]assigned after alocal class declaration statement iff v is [un]assigned
before the local class declaration statement.

16.2.4 Local Variable Declaration Statements

* Vis[un]assigned after a local variable declaration statement that contains no

variable initializers iff v is [un]assigned before the local variable declaration
Statement.

» Visdefinitely assigned after alocal variable declaration statement that contains

at least one variable initializer iff either v is definitely assigned after the last
variableinitializer in theloca variable declaration statement or the last variable
initializer in the declaration isin the declarator that declares V.

» V is definitely unassigned after a local variable declaration statement that

containsat least one variableinitializer iff visdefinitely unassigned after thelast
variableinitializer inthelocal variable declaration statement and thelast variable
initializer in the declaration is not in the declarator that declares V.

* Vis[un]assigned beforethefirst variableinitializer inalocal variable declaration

statement iff vis[un]assigned before the local variable declaration statement.

» Visdefinitely assigned before any variable initializer e other than the first one

in the local variable declaration statement iff either vis definitely assigned after
the variable initializer to the left of e or theinitializer expression to the left of e
isin the declarator that declares v.

* Visdefinitely unassigned before any variableinitiaizer e other than thefirst one

in the local variable declaration statement iff visdefinitely unassigned after the
variable initializer to the left of e and the initializer expression to the left of eis
not in the declarator that declares V.

16.2.5 Labeled Statements
» Vis[un]assigned after a labeled statement L : S (where L is a label) iff vis

[un]assigned after S and Vis[un]assigned before every break statement that may
exit the labeled statement L : S.

* Vis[un]assigned before S iff vis[un]assigned before L : S.



DEFINITE ASSGNMENT Expression Satements  16.2.6

16.2.6 Expression Statements
* Vis[un]assigned after an expression statement e; iff it is[un]assigned after e.

» Vis[un]assigned before e iff it is[un]assigned before e;.

16.2.7 1f Statements

The following rules apply to astatement if (e) S:

» Vis[un]assigned after i (e) Siff vis[un]assigned after Sand vis[un]assigned
after e when false.

» Vis[un]assigned before e iff vis[un]assigned beforeif (e) S.
* Vis[un]assigned before S iff vis[un]assigned after e when true.
The following rules apply to astatement if (e) S else T:

* Vis[un]assigned after if (e) S else Tiff vis[un]assigned after Sand Vis
[un]assigned after T.

» Vis[un]assigned before e iff Vis[un]assigned beforeif (e) S else T.
* Vis[un]assigned before S iff vis[un]assigned after e when true.

* Vis[un]assigned before Tiff vis[un]assigned after e when false.

16.2.8 assert Statements

Thefollowing rulesapply both to astatement assert el andtoastatement assert
el : e2:

* Vis[un]assigned before e1 iff Vis[un]assigned before the assert statement.

* Vis definitely assigned after the assert statement iff v is definitely assigned
before the assert statement.

 Visdefinitely unassigned after the assert statement iff visdefinitely unassigned
before the assert statement and Vv is definitely unassigned after e1 when true.

The following rule appliesto a statement assert el : e2:
* Vis[un]assigned before e2 iff Vis[un]assigned after e1 when false.

16.2.9 switch Statements

| e Vis[un]assigned after a switch statement iff all of the following are true:

339



16.2.10 while Satements DEFINITE ASSGNMENT

340

0 Either thereisadefault label in the switch block and the type of the switch
expression isnot an enum type; or thetype of the switch expressionisan enum
type and the case labels include all the enum constants of the enum type; or
vis[un]assigned after the switch expression.

o Either there are no switch labelsin the switch block that do not begin ablock-
statement-group (that is, there are no switch labelsimmediately beforethe"}"
that ends the switch block) or vis[un]assigned after the switch expression.

o Either the switch block contains no block-statement-groups or Vv is
[un]assigned after the last block-statement of the last block-statement-group.

0 Vs [un]assigned before every break statement that may exit the switch
Statement.

e Vis[un]assigned before the switch expression iff v is [un]assigned before the
switch statement.

If a switch block contains at least one block-statement-group, then the following
rules also apply:

* Vis[un]assigned before the first block-statement of the first block-statement-
group in the switch block iff vis[un]assigned after the switch expression.

» Vis[un]assigned before the first block-statement of any block-statement-group
other than the first iff v is [un]assigned after the switch expression and V is
[un]assigned after the preceding block-statement.

16.2.10 while Statements

* Vis[un]assigned after while (e) Siff vis[un]assigned after e when false and
vis [un]assigned before every break statement for which the while statement
isthe break target.

* Vis definitely assigned before e iff v is definitely assigned before the while
Statement.

» Visdefinitely unassigned before e iff al of the following conditions hold:
o Visdefinitely unassigned before the while statement.
o Assuming Visdefinitely unassigned before e, Visdefinitely unassigned after S.

o Assuming Visdefinitely unassigned before e, visdefinitely unassigned before
every continue statement for which thewhile statement isthe continue target.

» Vis[un]assigned before S iff Vis[un]assigned after e when true.



DEFINITE ASSGNMENT do Satements 16.2.11

16.2.11 do Statements

* Vis[un]assigned after do S while (e); iff vis[un]assigned after e when false
and Vis[un]assigned before every break statement for which the do statement
isthe break target.

* Vv is definitely assigned before S iff v is definitely assigned before the do
statement.

* Visdefinitely unassigned before S iff all of the following conditions hold:
o Visdefinitely unassigned before the do statement.

o Assuming Vis definitely unassigned before S, vis definitely unassigned after
e when true.

* Vis[un]assigned before eiff vis[un]assigned after Sand vis[un]assigned before
every continue statement for which the do statement is the continue target.

16.2.12 for Statements

Therules herein cover the basic for statement (814.14.1). Since the enhanced for
(814.14.2) statement is defined by translation to abasic for statement, no special
rules need to be provided for it.

* Vis[un]assigned after a for statement iff both of the following are true:

o Either a condition expression is not present or V is [un]assigned after the
condition expression when false.

0 vis[un]assigned before every break statement for which the for statement
isthe break target.

* Vis [un]assigned before the initialization part of the for statement iff v is
[un]assigned before the for statement.

» Vis definitely assigned before the condition part of the for statement iff v is
definitely assigned after the initialization part of the for statement.

* Visdefinitely unassigned before the condition part of the for statement iff all
of the following conditions hold:

o visdefinitely unassigned after the initialization part of the for statement.

o Assuming V is definitely unassigned before the condition part of the for
statement, Vis definitely unassigned after the contained statement.

341



16.212 for Satements DEFINITE ASSGNMENT

o Assuming V is definitely unassigned before the contained statement, Vv is
definitely unassigned before every continue statement for which the for
statement is the continue target.

* Vis[un]assigned beforethe contained statement iff either of thefollowingistrue:

o A condition expression is present and V is [un]assigned after the condition
expression when true.

o No condition expressionis present and Vis[un]assigned after theinitialization
part of the for statement.

* Vis [un]assigned before the incrementation part of the for statement iff v is
[un]assigned after the contained statement and V is [un]assigned before every
continue statement for which the for statement is the continue target.

16.2.12.1 Initialization Part

 If the initialization part of the for statement is a local variable declaration
statement, the rules of §16.2.4 apply.

» Otherwise, if the initialization part is empty, then V is [un]assigned after the
initialization part iff vis[un]assigned before the initialization part.

» Otherwise, threerules apply:

o Vvis[un]assigned after theinitialization part iff vis[un]assigned after the last
expression statement in the initialization part.

o vis[un]assigned before the first expression statement in the initialization part
iff vis[un]assigned before the initialization part.

0 Vv is [un]assigned before an expression statement S other than the first in
the initialization part iff v is [un]assigned after the expression statement
immediately preceding S.

16.2.12.2 Incrementation Part

* If the incrementation part of the for statement is empty, then v is [un]assigned
after theincrementation part iff vis[un]assigned before the incrementation part.

» Otherwise, threerules apply:

0 Vis[un]assigned after the incrementation part iff v is [un]assigned after the
last expression statement in the incrementation part.

342



DEFINITE ASSGNMENT break, continue, return, and throw Satements 16.2.13

o vis[un]assigned before the first expression statement in the incrementation
part iff vis[un]assigned before the incrementation part.

o Vv is [un]assigned before an expression statement S other than the first in
the incrementation part iff v is [un]assigned after the expression statement
immediately preceding S.

16.2.13 break, continue, return, and throw Statements

» By convention, we say that Vis[un]assigned after any break, continue, return,
or throw statement.

The notion that avariableis"[un]assigned after" astatement or expression really
means "is [un]assigned after the statement or expression completes normally".
Because a break, continue, return, Or throw Statement never completes
normally, it vacuously satisfies this notion.

* In a return statement with an expression e or a throw statement with an
expression e, Vis[un]assigned before e iff vis[un]assigned before the return
or throw statement.

16.2.14 synchronized Statements
e Vis[un]assigned after synchronized (e) Siff vis[un]assigned after S.

e V is [un]assigned before e iff Vv is [un]assigned before the statement
synchronized (e) S.

* Vis[un]assigned before S iff vis[un]assigned after e.

16.2.15 try Statements

These rules apply to every try statement, whether or not it hasa finally block:

e Vis [un]assigned before the try block iff v is [un]assigned before the try
statement.

* Visdefinitely assigned before a catch block iff vis definitely assigned before
the try block.

 Visdefinitely unassigned beforeacatch block iff al of thefollowing conditions
hold:

0 Visdefinitely unassigned after the try block.

343



16.2.15 try Satements DEFINITE ASSGNMENT

o Visdefinitely unassigned before every return statement that belongs to the
try block.

o Visdefinitely unassigned after e in every statement of the form throw e that
belongs to the try block.

o Visdefinitely unassigned after every assert statement that occursinthe try
block.

o Vis definitely unassigned before every break statement that belongs to the
try block and whose break target contains (or is) the try statement.

o visdefinitely unassigned before every continue statement that belongsto the
try block and whose continue target contains the try statement.

If atry statement does not have a finally block, then thisrule also applies:

» Vis[un]assigned after the try statement iff vis[un]assigned after the try block
and vis[un]assigned after every catch block in the try statement.

If atry statement does have a finally block, then these rules also apply:

» Visdefinitely assigned after the try statement iff at least one of the following
istrue:

o Visdefinitely assigned after the try block and Vv is definitely assigned after
every catch block inthe try statement.

o visdefinitely assigned after the final1y block.

o Vvisdefinitely unassigned after a try statement iff v is definitely unassigned
after the finally block.

* Vis definitely assigned before the finally block iff v is definitely assigned
before the try statement.

e Vis definitely unassigned before the finally block iff all of the following
conditions hold:

o Visdefinitely unassigned after the try block.

o Visdefinitely unassigned before every return statement that belongs to the
try block.

0 Visdefinitely unassigned after e in every statement of the form throw e that
belongs to the try block.

o Visdefinitely unassigned after every assert statement that occursin the try
block.




DEFINITE ASSGNMENT Definite Assignment and Parameters

o Vis definitely unassigned before every break statement that belongs to the
try block and whose break target contains (or is) the try statement.

o Visdefinitely unassigned before every continue statement that belongsto the
try block and whose continue target contains the try statement.

0 Visdefinitely unassigned after every catch block of the try statement.

16.3 Definite Assignment and Parameters

» A formal parameter v of a method or constructor is definitely assigned (and
moreover is not definitely unassigned) before the body of the method or
constructor.

» Anexception parameter vV of acatch clauseisdefinitely assigned (and moreover
is not definitely unassigned) before the body of the catch clause.

16.4 Definite Assgnment and Array Initializers

» Vis[un]assigned after an empty array initializer iff vis[un]assigned before the
empty array initializer.

* Vis[un]assigned after anon-empty array initializer iff vis[un]assigned after the
last variable initiaizer in the array initializer.

* Vis[un]assigned before the first variable initializer of the array initializer iff v
is[un]assigned before the array initializer.

* Vis[un]assigned beforeany other variableinitializer e of thearray initializer iff v
is[un]assigned after the variable initializer to the left of e inthe array initializer.

16.5 Definite Assignment and Enum Constants

The rules determining when a variable is definitely assigned or definitely
unassigned before an enum constant are given in §816.8.

* Visdefinitely assigned before the declaration of aclass body of an enum constant
with no argumentsthat isdeclared within the scope of Viff visdefinitely assigned
before the enum constant.

16.3

345



16.6

346

Definite Assignment and Anonymous Classes DEFINITE ASSGNMENT

 Visdefinitely assigned beforethe declaration of aclass body of an enum constant
with arguments that is declared within the scope of Viff vis definitely assigned
after the last argument expression of the enum constant

The definite assignment/unassignment status of any construct within the class body
of an enum constant is governed by the usual rules for classes.

Let y be an argument of an enum constant, but not the first. Then:
* Vis[un]assigned before y iff vis[un]assigned after the argument to the left of y.
Otherwise:

* V is [un]assigned before the first argument to an enum constant iff it is
[un]assigned before the enum constant.

16.6 Definite Assgnment and Anonymous Classes

 Visdefinitely assigned before an anonymous class declaration (815.9.5) that is
declared within the scope of Viff vis definitely assigned after the class instance
creation expression that declares the anonymous class.

16.7 Definite Assignment and Member Types

Let Cbeaclass, and let v be ablank final member field of C. Then:

* Vis definitely assigned (and moreover, not definitely unassigned) before the
declaration of any member type of C.

Let C be aclass declared within the scope of V. Then:

» Visdefinitely assigned before a member type (88.5, §9.5) declaration of Ciff v
is definitely assigned before the declaration of C.

16.8 Definite Assignment and Static I nitializers

Let C be aclass declared within the scope of V. Then:

* Visdefinitely assigned before an enum constant or static variableinitializer of C
iff visdefinitely assigned before the declaration of C.



DEFINITE ASSGNMENT Definite Assignment, Constructors, and Instance Initializers

Note that there are no rules that would allow us to conclude that v is
definitely unassigned before astatic variableinitializer or enum constant. We can
informally conclude that vis not definitely unassigned before any static variable
initializer of C, but there is no need for such arule to be stated explicitly.

Let C be aclass, and let vV be ablank static final member field of ¢, declared
in C. Then:

» Visdefinitely unassigned (and moreover is not definitely assigned) before the
leftmost enum constant, static initializer, or static variableinitializer of C.

* Vis[un]assigned before an enum constant, static initializer, or static variable
initializer of C other than the leftmost iff v is [un]assigned after the preceding
enum constant, static initializer, or static variable initializer of C.

Let C be aclass, and let vV be ablank static final member field of ¢, declared
in asuperclass of C. Then:

» Visdefinitely assigned (and moreover is not definitely unassigned) before every
enum constant of C.

* Vis definitely assigned (and moreover is not definitely unassigned) before the
block that isthe body of a static initializer of C.

» Visdefinitely assigned (and moreover is not definitely unassigned) before every
static variable initializer of C.

16.9 Definite Assignment, Constructors, and I nstance
Initializers

Let C be aclass declared within the scope of V. Then:

» V is definitely assigned before an instance variable initidlizer of C iff v is
definitely assigned before the declaration of C.

Note that there are no rules that would allow us to conclude that v is definitely
unassigned before an instance variable initializer. We can informally conclude
that vis not definitely unassigned before any instance variable initializer of C,
but thereis no need for such arule to be stated explicitly.

Let Cbeaclass, and let Vbeablank final non-static member field of ¢, declared
in C. Then:

16.9

347



16.9

348

Definite Assignment, Constructors, and Instance Initializers DEFINITE ASSIGNMENT

» Visdefinitely unassigned (and moreover is not definitely assigned) before the
leftmost instance initializer or instance variable initializer of C.

* Vis[un]assigned before aninstanceinitializer or instance variableinitializer of C
other than theleftmost iff vis[un]assigned after the preceding instanceinitializer
or instance variableinitializer of C.

The following rules hold within the constructors of class C:

» Vis definitely assigned (and moreover is not definitely unassigned) after an
aternate constructor invocation (88.8.7.1).

* Vis definitely unassigned (and moreover is not definitely assigned) before an
explicit or implicit superclass constructor invocation (§8.8.7.1).

» If C has no instance initializers or instance variable initializers, then Vv is not
definitely assigned (and moreover is definitely unassigned) after an explicit or
implicit superclass constructor invocation.

» If Chas at least one instance initializer or instance variable initializer then vis
[un]assigned after an explicit or implicit superclass constructor invocation iff vis
[un]assigned after therightmost instanceinitializer or instancevariableinitializer
of C.

Let C be a class, and let v be a blank final member field of ¢, declared in a
superclass of C. Then:

* Visdefinitely assigned (and moreover is not definitely unassigned) before the
block that isthe body of a constructor or instance initializer of C.

» Visdefinitely assigned (and moreover is not definitely unassigned) before every
instance variable initializer of C.



CHAPTER 1;

Threads and Locks

W HILE most of the discussion in the preceding chaptersis concerned only with
the behavior of code as executed a single statement or expression at atime, that is,
by asinglethread, each Javavirtual machine can support many threads of execution
at once. These threads independently execute code that operates on values and
objects residing in a shared main memory. Threads may be supported by having
many hardware processors, by time-dlicing asingle hardware processor, or by time-
dlicing many hardware processors.

Threads are represented by the Thread class. The only way for a user to create
a thread is to create an object of this class; each thread is associated with such
an object. A thread will start when the start() method is invoked on the
corresponding Thread object.

The behavior of threads, particularly when not correctly synchronized, can
be confusing and counterintuitive. This chapter describes the semantics of
multithreaded programs; it includes rulesfor which values may be seen by aread of
shared memory that isupdated by multiplethreads. Asthe specificationissimilar to
the memory modelsfor different hardware architectures, these semanticsareknown
as the Java programming language memory model. When no confusion can arise,
we will simply refer to these rules as "the memory model”.

These semantics do not prescribe how amultithreaded program should be executed.
Rather, they describe the behaviors that multithreaded programs are alowed
to exhibit. Any execution strategy that generates only allowed behaviors is an
acceptable execution strategy.

349



17.1

350

Synchronization THREADS AND LOCKS

17.1 Synchronization

The Java programming language provides multiple mechanisms for
communicating between threads. The most basic of these methods is
synchronization, which is implemented using monitors. Each object in Java is
associated with a monitor, which athread can lock or unlock. Only one thread at
a time may hold a lock on a monitor. Any other threads attempting to lock that
monitor are blocked until they can obtain alock on that monitor. A thread t may
lock a particular monitor multiple times; each unlock reverses the effect of one
lock operation.

The synchronized statement (§14.19) computes a reference to an object; it then
attempts to perform alock action on that object's monitor and does not proceed
further until the lock action has successfully completed. After the lock action has
been performed, the body of the synchronized statement is executed. If execution
of the body is ever completed, either normally or abruptly, an unlock action is
automatically performed on that same monitor.

A synchronized method (88.4.3.6) automatically performsalock actionwhenitis
invoked; itsbody isnot executed until thelock action has successfully completed. If
the method is an instance method, it locks the monitor associated with the instance
for which it was invoked (that is, the object that will be known as this during
execution of the body of the method). If the method is static, it locks the monitor
associated with the Class object that represents the class in which the method is
defined. If execution of the method's body is ever completed, either normally or
abruptly, an unlock action is automatically performed on that same monitor.

The Java programming language neither prevents nor requires detection of
deadlock conditions. Programs where threads hold (directly or indirectly) locks
on multiple objects should use conventional techniques for deadlock avoidance,
creating higher-level locking primitives that do not deadlock, if necessary.

Other mechanisms, such as reads and writes of volatile variables and the use
of classes in the java.util.concurrent package, provide alternative ways of
synchronization.

17.2 Wait Setsand Notification

Every object, in addition to having an associated monitor, has an associated wait
set. A wait set isaset of threads.



THREADS AND LOCKS Wait  17.2.1

When an object is first created, its wait set is empty. Elementary actions that
add threads to and remove threads from wait sets are atomic. Wait sets are
manipulated solely through the methods Object.wait, Object.notify, and
Object.notifyAll.

Wait set manipulations can also be affected by the interruption status of athread,
and by the Thread class's methods dealing with interruption. Additionaly, the
Thread class's methods for sleeping and joining other threads have properties
derived from those of wait and notification actions.

17.2.1 Wait

Wait actions occur upon invocation of wait(), or the timed forms wait(long
millisecs) andwait(long millisecs, int nanosecs).

A thread returns normally from a wait if it returns without throwing an
InterruptedException.

Let thread t be the thread executing the wait method on object m, and let n be the
number of lock actions by t on m that have not been matched by unlock actions.
One of the following actions occurs:

If niszero, then an I11egalMonitorStateException isthrown.

Thisisthe case where thread t does not already possess the lock for target m.

If thisisatimed wait and the nanosecs argument isnot in the range of 0-999999
or themi1lisecs argument is negative, then an I11egalArgumentException is
thrown.

If thread t is interrupted, then an InterruptedException is thrown and t's
interruption statusis set to false.

Otherwise, the following sequence occurs:

1

Thread t is added to the wait set of object m, and performs n unlock actions
onm.

Thread t does not execute any further instructions until it has been removed
from m's wait set. The thread may be removed from the wait set due to any
one of the following actions, and will resume sometime afterward:

o A notify action being performed on min which t is selected for removal
from the wait set.

o A notifyAll action being performed on m.

0 An-interrupt action being performed on t.

351



17.22  Notification THREADS AND LOCKS

o If thisisatimed wait, an internal action removing t from m's wait set that
occurs after at least mi111 secs milliseconds plus nanosecs nanoseconds
elapse since the beginning of this wait action.

o Aninternal action by the implementation. |mplementations are permitted,
although not encouraged, to perform "spurious wake-ups', that is, to
removethreads from wait sets and thus enable resumption without explicit
instructions to do so.

Each thread must determine an order over the events that could cause it to
be removed from await set. That order does not have to be consistent with
other orderings, but the thread must behave as though those events occurred
in that order.

For example, if athread t isin the wait set for m, and then both an interrupt
of t and anotification of m occur, there must be an order over these events.
If the interrupt is deemed to have occurred first, then t will eventually return
from wait by throwing InterruptedException, and some other thread in
the wait set for m (if any exist at the time of the notification) must receive
the notification. If the notification is deemed to have occurred first, then t
will eventually return normally from wait with an interrupt still pending.

Thread t performs n lock actions on m.

If thread t was removed from m's wait set in step 2 due to an interrupt,
then t's interruption status is set to false and the wait method throws
InterruptedException.

17.2.2 Notification

Notification actions occur upon invocation of methodsnoti fy and notifyAl1. Let
thread t be the thread executing either of these methods on object m, and let n be
the number of lock actions by t on mthat have not been matched by unlock actions.
One of the following actions occurs:

* If niszero, then an I11egalMonitorStateException isthrown.
Thisisthe case where thread t does not already possess the lock for target m.

* If nis greater than zero and this is a notify action, then if m's wait set is not
empty, athread u that isamember of m'scurrent wait set is selected and removed
from the wait set.

Thereisno guarantee about which thread in the wait set is selected. Thisremoval
from the wait set enables u's resumption in await action. Notice, however, that

352



THREADS AND LOCKS Interruptions

u's lock actions upon resumption cannot succeed until some time after t fully
unlocks the monitor for m.

* If nis greater than zero and this is a notifyA11 action, then all threads are
removed from m's wait set, and thus resume.

Notice, however, that only one of them at atime will lock the monitor required
during the resumption of wait.

17.2.3 Interruptions

Interruption actions occur upon invocation of Thread.interrupt, as well as
methods defined to invoke it in turn, such as ThreadGroup.interrupt.

Let t be the thread invoking u.interrupt, for some thread u, where t and u may
be the same. This action causes u's interruption status to be set to true.

Additionally, if there exists some object m whose wait set contains u, then u is
removed from m'swait set. This enables u to resumein await action, in which case
thiswait will, after re-locking m's monitor, throw InterruptedException.

Invocations of Thread.isInterrupted can determine a thread's interruption
status. The static method Thread.interrupted may be invoked by a thread to
observe and clear its own interruption status.

17.2.4 Interactionsof Waits, Notification, and Interruption

The above specifications allow usto determine several propertieshaving to do with
the interaction of waits, notification, and interruption.

If athread is both naotified and interrupted while waiting, it may either:

* return normally fromwai t, while still having apending interrupt (in other words,
acal to Thread.interrupted would return true)

e return fromwait by throwing an InterruptedException

The thread may not reset its interrupt status and return normally from the call to
wait.

Similarly, notifications cannot be lost due to interrupts. Assume that a set s of
threads is in the wait set of an object m, and another thread performs a notify on
m. Then either:

* at least one thread in s must return normally fromwai t, or

« al of the threadsin s must exit wait by throwing InterruptedException

17.2.3

353



17.3

354

Seep and Yield THREADS AND LOCKS

Note that if athread is both interrupted and woken via notify, and that thread
returnsfromwait by throwing an InterruptedException, then some other thread
in the wait set must be notified.

17.3 Sleep and Yield

Thread.sTeep causes the currently executing thread to sleep (temporarily cease
execution) for the specified duration, subject to the precision and accuracy of
system timers and schedulers. The thread does not |ose ownership of any monitors,
and resumption of execution will depend on scheduling and the availability of
processors on which to execute the thread.

It is important to note that neither Thread.sleep nor Thread.yield have any
synchronization semantics. In particular, the compiler does not have to flush
writes cached in registers out to shared memory before a call to Thread.sleep
or Thread.yield, nor doesthe compiler have to reload values cached in registers
after acall to Thread.sleep or Thread.yield.

17.4 Memory M odel

A memory model describes, given a program and an execution trace of that
program, whether the execution trace is a legal execution of the program. The
Java programming language memory model works by examining each read in an
execution trace and checking that the write observed by that read isvalid according
to certain rules.

The memory model describes possible behaviors of aprogram. Animplementation
isfreeto produce any codeit likes, aslong as al resulting executions of a program
produce aresult that can be predicted by the memory model.

The memory model determines what values can be read at every point in the
program. The actions of each thread in isolation must behave as governed by the
semantics of that thread, with the exception that the values seen by each read are
determined by the memory model. When we refer to this, we say that the program
obeys intra-thread semantics. Intra-thread semantics are the semantics for single-
threaded programs, and allow the complete prediction of the behavior of athread
based on the values seen by read actions within the thread. To determine if the
actionsof thread t in an execution arelegal, we simply eval uate the implementation



THREADS AND LOCKS Shared Variables

of thread t asit would be performed in a single-threaded context, as defined in the
rest of this specification.

Each time the evaluation of thread t generates an inter-thread action, it must match
the inter-thread action a of t that comes next in program order. If aisaread, then
further evaluation of t usesthe value seen by a as determined by the memory model.

This section provides the specification of the Java programming language memory
model except for issues dealing with final fields, which are described in 817.5.

17.4.1 Shared Variables

Memory that can be shared between threads is called shared memory or heap
memory.

All instance fields, static fields, and array elements are stored in heap memory.
In this chapter, we use the term variable to refer to both fields and array elements.

Local variables (814.4), formal method parameters (88.4.1), and exception handler
parameters (814.20) are never shared between threads and are unaffected by the
memory maodel.

Two accesses to (reads of or writes to) the same variable are said to be conflicting
if at least one of the accessesisawrite.

17.4.2 Actions

Aninter-thread action is an action performed by one thread that can be detected or
directly influenced by another thread. There are several kinds of inter-thread action
that a program may perform:

* Read (normal, or non-volatile). Reading avariable.
» Write (normal, or non-volatile). Writing a variable.
 Synchronization actions, which are:

o Volatileread. A volatile read of avariable.

o Volatilewrite. A volatile write of avariable.

O

Lock. Locking a monitor

O

Unlock. Unlocking a monitor.
The (synthetic) first and last action of athread.
Actionsthat start athread or detect that athread has terminated (817.4.4).

]

O

1741

355



17.4.2

356

Actions THREADS AND LOCKS

» External Actions. An external action is an action that may be observable outside
of an execution, and has a result based on an environment external to the
execution.

» Thread divergence actions (817.4.9). A thread divergence action is only
performed by a thread that is in an infinite loop in which no memory,
synchronization, or external actions are performed. If athread performs athread
divergence action, it will befollowed by aninfinite number of thread divergence
actions.

This specification is only concerned with inter-thread actions. We do not need to
concern ourselves with intra-thread actions (e.g., adding two local variables and
storing the result in a third local variable). As previously mentioned, all threads
need to obey the correct intra-thread semantics for Java programs. We will usually
refere to inter-thread actions more succinctly as simply actions.

An action ais described by atuple<t, k, v, u >, comprising:
* t - thethread performing the action

* k- thekind of action

* v - the variable or monitor involved in the action.

For lock actions, v is the monitor being locked; for unlock actions, v is the
monitor being unlocked.

If the action is a (volatile or non-volatile) read, v is the variable being read.
If the action is a (volatile or non-volatile) write, v is the variable being written.
* U - anarbitrary unique identifier for the action

An external action tuple contains an additional component, which contains the
results of the external action as perceived by the thread performing the action. This
may be information as to the success or failure of the action, and any values read
by the action.

Parametersto the externa action (e.g., which bytes are written to which socket) are
not part of the external action tuple. These parameters are set up by other actions
within the thread and can be determined by examining the intra-thread semantics.
They are not explicitly discussed in the memory model.

In non-terminating executions, not al external actions are observable. Non-
terminating executions and observable actions are discussed in §17.4.9.



THREADS AND LOCKS Programs and Program Order

17.4.3 Programsand Program Order

Among al the inter-thread actions performed by each thread t, the program order
of tisatotal order that reflectsthe order in which these actions would be performed
according to the intra-thread semantics of t.

A set of actions is sequentially consistent if all actions occur in atotal order (the
execution order) that is consistent with program order, and furthermore, each read
r of avariable v sees the value written by the write w to v such that:

» w comes beforer in the execution order, and

« thereis no other write w' such that w comes before w' and w' comes beforer in
the execution order.

Sequential consistency is avery strong guarantee that is made about visibility and
ordering in an execution of a program. Within a sequentially consistent execution,
thereisatotal order over al individua actions (such as reads and writes) which is
consistent with the order of the program, and each individual action is atomic and
isimmediately visible to every thread.

If a program has no data races, then all executions of the program will appear to
be sequentially consistent.

Sequential consistency and/or freedom from data races still alows errors arising
from groups of operations that need to be perceived atomically and are not.

17.4.4 Synchronization Order

Every execution has a synchronization order. A synchronization order is a total
order over al of the synchronization actions of an execution. For each thread t,
the synchronization order of the synchronization actions (817.4.2) int is consistent
with the program order (817.4.3) of t.

Synchronization actions induce the synchronized-with relation on actions, defined
asfollows:

» Anunlock action on monitor m synchronizes-with all subseguent lock actionson
m (where "subsequent” is defined according to the synchronization order).

» A write to a volatile variable v (88.3.1.4) synchronizes-with all subsequent
reads of v by any thread (where "subsequent" is defined according to the
synchronization order).

» An action that starts a thread synchronizes-with the first action in the thread it
starts.

17.4.3

357



17.45

358

Happens-before Order THREADS AND LOCKS

» The write of the default value (zero, false, or null) to each variable
synchronizes-with the first action in every thread.

» Thefinal actionin athread T1 synchronizes-with any action in another thread 72
that detectsthat 71 has terminated.

T2 may accomplish thisby calling T1.isATive() or T1.join().

« If thread T1 interruptsthread 72, theinterrupt by 71 synchronizes-with any point
whereany other thread (including 72) determinesthat 72 has been interrupted (by
havingan InterruptedExceptionthrownor by invoking Thread.interrupted
or Thread.isInterrupted).

The source of a synchronizes-with edge is called arelease, and the destination is
called an acquire.

17.45 Happens-before Order

Two actions can be ordered by a happens-before relationship. If one action
happens-before ancther, then the first is visible to and ordered before the second.

If we havetwo actionsx and y, we write hb(x, y) to indicate that x happens-beforey.

 If xand y are actions of the same thread and x comes before y in program order,
then hb(x, y).

* Thereisahappens-before edge from the end of a constructor of an object to the
start of afinalizer (812.6) for that object.

« If an action x synchronizes-with afollowing action y, then we also have hb(x, y).
« If hb(x, y) and hb(y, 2), then hb(x, 2).

It should be noted that the presence of a happens-before relationship between
two actions does not necessarily imply that they have to take place in that order
in an implementation. If the reordering produces results consistent with a legal
execution, itisnot illegal.

More specifically, if two actions share a happens-before relationship, they do not
necessarily have to appear to have happened in that order to any code with which
they do not share a happens-before relationship. Writes in one thread that are in
a data race with reads in another thread may, for example, appear to occur out of
order to those reads.

The wait methods of class Object (817.2.1) have lock and unlock actions
associated with them; their happens-before relationships are defined by these
associated actions.



THREADS AND LOCKS Happens-before Order

The happens-before relation defines when data races take place.

A set of synchronization edges, S issufficient if it isthe minimal set such that the
transitive closure of Swith the program order determines all of the happens-before
edgesin the execution. This set is unique.

It follows from the above definitions that:
» Anunlock on amonitor happens-before every subsequent lock on that monitor.

* A writetoavolatile field (88.3.1.4) happens-before every subsequent read of
that field.

» A cdl to start() on athread happens-before any actionsin the started thread.

» All actionsin athread happen-before any other thread successfully returns from
ajoin() on that thread.

» The default initialization of any object happens-before any other actions (other
than default-writes) of a program.

When a program contains two conflicting accesses (§17.4.1) that are not ordered
by a happens-before relationship, it is said to contain adata race.

The semantics of operations other than inter-thread actions, such as reads of array
lengths (810.7), executions of checked casts (85.5, §15.16), and invocations of
virtual methods (815.12), are not directly affected by data races.

A program is correctly synchronized if and only if all sequentially consistent
executions are free of data races.

If a program is correctly synchronized, then all executions of the program will
appear to be sequentially consistent (817.4.3).

We say that aread r of avariable v is allowed to observe awrite w to v if, in the
happens-before partial order of the execution trace:

* risnot ordered beforew (i.e., it is not the case that hb(r, w)), and

* thereisnointervening write w' to v (i.e. no write w' to v such that hb(w, w') and
hb(w', r)).

Informally, aread r is allowed to see the result of awrite w if thereis no happens-
before ordering to prevent that read.

A set of actions A is happens-before consistent if for all readsr in A, where W(r)
is the write action seen by r, it is not the case that either hb(r, W(r)) or that there
existsawrite w in A such that w.v = r.v and hb(\W(r), w) and hb(w, r).

17.45

359



17.4.6

360

Executions THREADS AND LOCKS

In ahappens-befor e consistent set of actions, each read seesawritethatitisallowed
to see by the happens-before ordering.

17.4.6 Executions

An execution E is described by atuple< P, A, po, so, W, V, sw, hb >, comprising:
» P-aprogram

* A-asetof actions

» po - program order, which for each thread t, is a total order over al actions
performed by tin A

* s0- synchronization order, whichisatotal order over all synchronization actions
inA

» W- awrite-seen function, which for eachread r in A, givesW(r), thewrite action
seenbyrinE.

» V - avalue-written function, which for each write w in A, gives V(w), the value
written by win E.

* sw - synchronizes-with, a partial order over synchronization actions
* hb - happens-before, a partial order over actions

Note that the synchronizes-with and happens-before elements are uniquely
determined by the other components of an execution and the rules for well-formed
executions (817.4.7).

An execution is happens-before consistent if its set of actions is happens-before
consistent (817.4.5).

17.4.7 Waell-Formed Executions

We only consider well-formed executions. An execution E=< P, A, po, so, W, V,
sw, hb > iswell formed if the following conditions are true:

1. Each read sees awrite to the same variable in the execution.

All reads and writes of volatile variables are volatile actions. For all reads r
in A, we have W(r) in A and W(r).v = r.v. The variable r.v is volatile if and
only if r isavolatile read, and the variable w.v is volatile if and only if wis
avolatile write.

2. The happens-before order isapartial order.



THREADS AND LOCKS Executions and Causality Requirements

The happens-before order is given by the transitive closure of synchronizes-
with edges and program order. It must be a valid partial order: reflexive,
transitive and antisymmetric.

3. The execution obeys intra-thread consistency.

For each thread t, the actions performed by t in A are the same as would
be generated by that thread in program-order in isolation, with each write w
writing the value V(w), given that each read r sees the value V(W(r)). Values
seen by each read are determined by the memory model. The program order
given must reflect the program order in which the actions would be performed
according to the intra-thread semantics of P.

The execution is happens-before consistent (§17.4.6).
The execution obeys synchronization-order consistency.

For al volatilereadsr in A, it isnot the case that either so(r, W(r)) or that there
existsawrite w in A such that w.v = r.v and so(W(r), w) and so(w, r).

17.4.8 Executionsand Causality Requirements

A well-formed execution E = < P, A, po, so, W, V, sw, hb > is validated by
committing actions from A. If all of the actions in A can be committed, then the
execution satisfies the causality requirements of the Java programming language
memory maodel.

Starting with the empty set as Cy, we perform a sequence of steps where we take
actions from the set of actions A and add them to a set of committed actions C; to
get a new set of committed actions Ci+1. To demonstrate that this is reasonable,
for each C; we need to demonstrate an execution E containing C; that meets certain
conditions.

Formally, an execution E satisfies the causality requirements of the Java
programming language memory model if and only if there exist:

» Setsof actions Cgp, Cy, ... such that:
o Cyisthe empty set
o Cjisaproper subset of Ci:1q
o A=uU(Cp Cy, ...)
If Alisfinite, then the sequence Cop, Cy, ... will befinite, endinginaset C, = A.

17.4.8

361



17.4.9

362

Observable Behavior and Nonterminating Executions THREADS AND LOCKS

If Aisinfinite, then the sequence Cgp, Cq, ... may be infinite, and it must be the
case that the union of all elements of thisinfinite sequenceis equal to A.

» Well-formed executions E;, ..., where Ej = < P, A, poj, soi, Wi, Vi, sw;, hb;j >.

Given these sets of actions Cy, ... and executions Ey, ... , every action in C; must
be one of the actionsin E;. All actionsin C; must share the same relative happens-
before order and synchronization order in both E; and E. Formally:

1. Cjisasubset of A
2. hbi ICi =hb |(:i
3.0 |c; =0,

The values written by the writesin C; must be the samein both E; and E. Only the
reads in Cj_1 need to see the same writesin Ej asin E. Formally:

4, Vi ICi =V |(;i
S Wilc, =Wlc,

All reads in E; that are not in Cj.; must see writes that happen-before them. Each
read r in Cj - Ci.1 must see writesin Cj_1 in both E; and E, but may see a different
writein E; from the oneit seesin E. Formally:

6. For any read r in A; - Ci.1, we have hb;(Wi(r), r)
7. Forany read r in (C; - Ci.1), we have Wi(r) in Ci.; and W(r) in Cj 1

Given aset of sufficient synchronizes-with edgesfor E;, if thereisarelease-acquire
pair that happens-before (817.4.5) an action you are committing, then that pair must
be present in all Ej, wherej 2 i. Formally:

8. Let ssw; be the sw; edges that are also in the transitive reduction of hb; but not
in po. We call ssw; the sufficient synchronizes-with edges for E;. If ssw;(x, y) and
hbi(y, 2) and zin Cj, then swj(x, y) for all j > i.

If an action y is committed, all external actions that happen-before y are also
committed.

9.Ifyisin G, xisan externa action and hb;(x, y), then xin C;.

17.4.9 Observable Behavior and Nonter minating Executions

For programs that always terminate in some bounded finite period of time,
their behavior can be understood (informally) simply in terms of their allowable



THREADS AND LOCKS Observable Behavior and Nonterminating Executions

executions. For programs that can fail to terminate in a bounded amount of time,
more subtle issues arise.

The observable behavior of a program is defined by the finite sets of externa
actions that the program may perform. A program that, for example, smply prints
"Hello" forever is described by a set of behaviorsthat for any non-negative integer
i, includes the behavior of printing "Hello" i times.

Termination is not explicitly modeled as a behavior, but a program can easily
be extended to generate an additional external action executionTermination that
occurs when all threads have terminated.

We also define a special hang action. If behavior is described by a set of externa
actions including a hang action, it indicates a behavior where after the external
actionsare observed, the program can run for an unbounded amount of timewithout
performing any additional external actions or terminating. Programs can hang if all
threads are blocked or if the program can perform an unbounded number of actions
without performing any external actions.

A thread can be blocked in avariety of circumstances, such aswhen it isattempting
to acquire a lock or perform an external action (such as a read) that depends on
external data.

An execution may result in athread being blocked indefinitely and the execution's
not terminating. In such cases, the actions generated by the blocked thread must
consist of all actions generated by that thread up to and including the action that
caused the thread to be blocked, and no actions that would be generated by the
thread after that action.

To reason about observable behaviors, we need to talk about sets of observable
actions.

If Oisaset of observable actionsfor an execution E, then set O must be a subset of
E'sactions, A, and must contain only afinite number of actions, even if A contains
an infinite number of actions. Furthermore, if an action y isin O, and either hb(x,
y) or so(X, y), thenxisin O.

Note that a set of observable actions are not restricted to external actions. Rather,
only external actions that are in a set of observable actions are deemed to be
observable external actions.

A behavior B is an allowable behavior of a program P if and only if B is afinite
set of external actions and either:

17.4.9

363



175

364

final Field Semantics THREADS AND LOCKS

* There exists an execution E of P, and a set O of observable actions for E, and B
isthe set of external actionsin O (If any threads in E end in a blocked state and
O contains all actionsin E, then B may also contain a hang action); or

» There exists aset O of actions such that B consists of a hang action plus all the
external actionsin O and for al k = | O |, there exists an execution E of P with
actions A, and there exists a set of actions O' such that:

0 Both O and O' are subsets of A that fulfill the requirements for sets of
observable actions.

1 0cOcA
o |02k

o O'- O contains no external actions

17.5 fina1 Field Semantics

Fields declared final are initialized once, but never changed under normal
circumstances. The detailed semanticsof final fields are somewhat different from
those of normal fields. In particular, compilers have a great deal of freedom to
move reads of final fields across synchronization barriers and callsto arbitrary or
unknown methods. Correspondingly, compilers are allowed to keep the value of a
final field cached in aregister and not reload it from memory in situations where
anon-final field would have to be reloaded.

final fields aso allow programmers to implement thread-safe immutable objects
without synchronization. A thread-safe immutable object is seen as immutable
by all threads, even if a data race is used to pass references to the immutable
object between threads. This can provide safety guarantees against misuse of an
immutable class by incorrect or malicious code. final fieldsmust be used correctly
to provide a guarantee of immutability.

An abject isconsidered to be completely initialized when its constructor finishes. A
thread that can only seeareferenceto an object after that object has been compl etely
initialized isguaranteed to seethe correctly initialized valuesfor that object's final
fields.

The usage modd for final fields is a smple one: Set the final fields for an
object in that object's constructor; and do not write a reference to the object being
constructed in aplace where another thread can seeit before the object's constructor
isfinished. If thisisfollowed, then when the abject is seen by another thread, that



THREADS AND LOCKS Semantics of final Fields

thread will alwaysseethe correctly constructed version of that object's final fields.
It will also seeversions of any object or array referenced by those final fields that
are at least as up-to-date as the final fields are.

17.5.1 Semanticsof final Fields

The semantics for final fields are as follows. Let o be an object, and ¢ be a
constructor for o in which afinal field f iswritten. A freeze action on final field
f of o takes place when c exits, either normally or abruptly.

Note that if one constructor invokes another constructor, and the invoked
constructor sets a final field, the freeze for the final field takes place at the end
of the invoked constructor.

For each execution, the behavior of reads is influenced by two additional partial
orders, the dereference chain dereferences() and the memory chain me(), which are
considered to be part of the execution (and thus, fixed for any particular execution).
These partial orders must satisfy the following constraints (which need not have
aunique solution):

» Dereference Chain: If an action a is aread or write of afield or element of an
object o by athread t that did not initialize o, then there must exist some read r
by thread t that sees the address of o such that r dereferences(r, a).

* Memory Chain: There are severa constraints on the memory chain ordering:
o If risaread that sees awrite w, then it must be the case that mc(w, r).
o If r and a are actions such that dereferences(r, a), then it must be the case that
mc(r, a).

o If wisawrite of the address of an object o by athread t that did not initialize
0, then there must exist some read r by thread t that sees the address of o such
that mc(r, w).

Given awritew, afreezef, an action a (that is not aread of a final field), aread
r, of the final field frozen by f, and aread r, such that hb(w, f), hb(f, a), mc(a, r1),
and dereferences(r, r»), then when determining which values can be seen by r»,
we consider hb(w, ry). (This happens-before ordering does not transitively close
with other happens-before orderings.)

Note that the dereferences order is reflexive, and r1 can bethe same asr».

For reads of final fields, the only writes that are deemed to come before the read
of the final field are the ones derived through the final field semantics.

1751

365



1752

366

Reading final Fields During Construction THREADS AND LOCKS

17.5.2 Reading final Fields During Construction

A read of a final field of an object within the thread that constructs that object is
ordered with respect to the initialization of that field within the constructor by the
usual happens-beforerules. If theread occursafter thefield isset in the constructor,
it seesthe value the final field is assigned, otherwise it sees the default value.

17.5.3 Subsequent Modification of final Fields

In some cases, such as deseriaization, the system will need to change the final
fields of an object after construction. final fields can be changed via reflection
and other implementation-dependent means. The only pattern in which this has
reasonable semantics is one in which an object is constructed and then the final
fields of the object are updated. The object should not be made visible to other
threads, nor should the final fields be read, until all updates to the final fields
of the object are complete. Freezes of a final field occur both at the end of the
constructor inwhichthe final fieldisset, and immediately after each modification
of afinal field viareflection or other special mechanism.

Even then, there are a number of complications. If a final field isinitialized to a
compile-time constant in the field declaration, changes to the final field may not
be observed, since uses of that final field are replaced at compile time with the
compile-time constant.

Another problem isthat the specification allows aggressive optimization of final
fields. Within athread, it is permissible to reorder reads of a final field with those
modifications of a final field that do not take place in the constructor.

An implementation may provide away to execute ablock of codein afinal-field-
safe context. If an object is constructed within a final-field-saf e context, the reads
of afinal field of that object will not be reordered with modifications of that final
field that occur within that final-field-safe context.

A final-field-safe context has additional protections. If a thread has seen an
incorrectly published reference to an object that allowsthe thread to see the default
valueof afinal field, and then, within a final-field-safe context, reads a properly
published reference to the object, it will be guaranteed to see the correct value of
the final field. In the formalism, code executed within a fina1-field-safe context
istreated as a separate thread (for the purposes of final field semantics only).

In an implementation, a compiler should not move an accessto a final field into
or out of a final-field-safe context (although it can be moved around the execution
of such a context, so long as the object is not constructed within that context).



THREADS AND LOCKS Write-protected Fields

17.5.4 Write-protected Fields

Normally, a field that is final and static may not be modified. However,
System.in, System.out, and System.err are static final fields that, for
legacy reasons, must be allowed to be changed by the methods System.setIn,
System.setOut, and System.setErr. We refer to these fields as being write-
protected to distinguish them from ordinary final fields.

The compiler needs to treat these fields differently from other final fields. For
example, aread of an ordinary final field is "immune" to synchronization: the
barrier involved in alock or volatile read does not have to affect what valueis read
fromafinal field. Sincethe value of write-protected fields may be seen to change,
synchronization events should have an effect on them. Therefore, the semantics
dictate that these fields be treated as normal fields that cannot be changed by user
code, unless that user codeisin the System class.

17.6 Word Tearing

One consideration for implementations of the Java virtual machine is that every
field and array element is considered distinct; updatesto one field or element must
not interact with reads or updates of any other field or element. In particular, two
threads that update adjacent elements of a byte array separately must not interfere
or interact and do not need synchronization to ensure sequential consistency.

Some processors do not provide the ability to write to a single byte. It would be
illegal to implement byte array updates on such a processor by simply reading an
entire word, updating the appropriate byte, and then writing the entire word back to
memory. This problemissometimesknown asword tearing, and on processorsthat
cannot easily update asingle byteinisolation some other approach will berequired.

17.7 Non-atomic Treatment of double and Tong

For the purposes of the Java programming language memory model, asingle write
toanon-volatile Tong or double valueistreated astwo separate writes: oneto each
32-bit half. This can result in a situation where a thread sees the first 32 bits of a
64-bit value from one write, and the second 32 bits from another write.

1754

367



17.7 Non-atomic Treatment of doubTe and Tong THREADS AND LOCKS

Writes and reads of volatile Tong and double values are aways atomic. Writes
to and reads of references are aways atomic, regardiess of whether they are
implemented as 32-bit or 64-bit values.

368



CHAPTER 18
Syntax

T HIS chapter presents agrammar for the Java programming language.

The grammar presented piecemeal in the preceding chapters is much better for
exposition, but it is not well suited as a basis for a parser. The grammar presented
in this chapter is the basis for the reference implementation. Note that it is not an
LL (1) grammar, though in many cases it minimizes the necessary look ahead.

The grammar below uses the following BNF-style conventions:
* [X] denotes zero or one occurrences of Xx.

» {X} denotes zero or more occurrences of x.

* X |y meansone of either x or y.

Identifier:
IDENTIFIER

Qualifiedidentifier:
Identifier { . Identifier }

QualifiedidentifierList:
Qualifiedidentifier { , Qualifiedidentifier }

369



SYNTAX

CompilationUnit:
[ [Annotations] package Qualifiedidentifier ; ]
{ImportDeclaration} { TypeDeclaration}

ImportDeclaration:
import [static] Identifier { . Identifier } [. *] ;

TypeDeclaration:
ClassOrInterfaceDeclaration

ClassOr|nterfaceDeclaration:
{Modifier} (ClassDeclaration | InterfaceDeclaration)

ClassDeclaration:
Normal ClassDeclaration
EnumDeclaration

InterfaceDeclaration:

Normal InterfaceDeclaration
AnnotationTypeDeclaration

Normal ClassDeclaration:
class ldentifier [ TypeParameters] [extends Type] [implements Typelist] ClassBody

EnumDeclaration:
enum |dentifier [implements TypelList] EnumBody

NormalInterfaceDeclaration:
interface |dentifier [ TypeParameters] [extends Typelist] InterfaceBody

AnnotationTypeDeclaration:;
@ interface Identifier AnnotationTypeBody

370



SYNTAX

Type:
ReferenceType {[1}
BasicType{[1}

ReferenceType:
Identifier [ TypeArguments] { . Identifier [ TypeArguments] }

TypeArguments:
< TypeArgument { , TypeArgument } >

TypeArgument:
ReferenceType
? [ (extends | super ) ReferenceType]

BasicType:
byte
short
char
int
Tong
float
double
boolean

TypeParameters:
< TypeParameter { , TypeParameter } >

TypeParameter:
Identifier [extends Bound]

Bound:
ReferenceType { & ReferenceType }
NonWildcar dTypeArguments:

< TypelList >

TypelList:
ReferenceType{ , ReferenceType}

371



372

Modifier:
Annotation
public
protected
private
static
abstract
final
native
synchronized
transient
volatile
strictfp

Annotations:
Annotation { Annotation}

Annotation:
@ Qualifiedidentifier [ ( [AnnotationElement] ) ]

Annotati onElement:
ElementValuePairs
ElementValue

ElementValuePairs:
ElementValuePair { , ElementValuePair }

ElementValuePair:
Identifer = ElementValue

ElementValue:
Annotation
Expressionl
ElementValueArraylnitializer

ElementValueArraylnitializer:
{ [ElementValues] [,] }

ElementValues:
ElementValue{ , ElementValue}

SYNTAX



SYNTAX

ClassBody:
{{ ClassBodyDeclaration } }

ClassBodyDeclaration:

{Modifier} MemberDecl
[static] Block

Member Decl:
MethodOr FieldDecl
void ldentifier VoidMethodDeclarator Rest
Identifier Constructor Declarator Rest
GenericMethodOr Constructor Decl
ClassDeclaration
InterfaceDeclaration

MethodOrFieldDecl:
Type Identifier MethodOr FieldRest

MethodOr FieldRest:
VariableDeclaratorsRest ;
MethodDecl ar ator Rest

MethodDeclarator Rest:
FormalParameters{[1} [throws QualifiedldentifierList] (Block| ;)

VoidMethodDeclar ator Rest:
Formal Parameters [ throws QualifiedldentifierList] (Block | ;)

Constructor Declarator Rest:
FormalParameters [ throws QualifiedldentifierList] Block

GenericMethodOr Constructor Decl:
TypeParameters GenericMethodOr Constructor Rest

GenericMethodOr Constructor Rest:

(Type | void) Identifier MethodDeclarator Rest
Identifier Constructor Declarator Rest

373



374

InterfaceBody:
{{ InterfaceBodyDeclaration } }

InterfaceBodyDeclaration:
{Modifier} InterfaceMemberDecl

InterfaceMember Decl:
I nterfaceMethodOr FieldDecl
void ldentifier VoidlnterfaceMethodDeclar ator Rest
I nterfaceGenericMethodDecl
ClassDeclaration
InterfaceDeclaration

InterfaceMethodOrFieldDecl:
Type ldentifier InterfaceMethodOr FieldRest

InterfaceMethodOr Fiel dRest:
ConstantDeclaratorsRest ;
I nterfaceMethodDeclar ator Rest

ConstantDeclarator sRest:
ConstantDeclaratorRest { , ConstantDeclarator }

ConstantDecl ar ator Rest:
{[1} = Variablelnitializer

ConstantDeclarator:
Identifier ConstantDeclar ator Rest

InterfaceMethodDecl ar ator Rest:

FormalParameters{[]} [ throws QualifiedldentifierList] ;

VoidlnterfaceMethodDecl ar ator Rest:
Formal Parameters [ throws QualifiedidentifierList] ;

InterfaceGenericMethodDecl:

SYNTAX

TypeParameters (Type | void) Identifier InterfaceMethodDeclarator Rest



SYNTAX

Formal Parameters:
( [Formal ParameterDeclg] )

Formal Parameter Decls:
{VariableModifier} Type FormalParameter DeclsRest

VariableModifier:
final
Annotation

Formal Parameter DeclsRest:
VariableDeclaratorld [ , FormalParameter Decls ]
... VariableDeclaratorld

VariableDeclaratorld:
Identifier {[1}
VariableDeclarators:

VariableDeclarator { , VariableDeclarator }

VariableDeclarator:
Identifier VariableDeclarator Rest

VariableDeclarator Rest:
{[1} [ = Variablelnitializer ]

Variablelnitializer:
Arraylnitializer
Expression
Arraylnitializer:
{[ Variablelnitializer { , Variablelnitializer } [,] ] }

VariableDeclaratorsRest:
VariableDeclaratorRest { , VariableDeclarator }

375



SYNTAX

Block:
{ BlockStatements }

BlockStatements:
{ BlockSatement }

BlockStatement:
LocalVariableDeclarationSatement
ClassOrInterfaceDeclaration
[Identifier :] Satement

LocalVariableDeclarationSatement:
{ VariableModifier } Type VariableDeclarators ;

Satement:
Block
assert Expression[: Expression] ;
if ParExpression Satement [e1se Satement]
while ParExpression Statement
do Statement while ParExpression ;
synchronized ParExpression Block
return [ Expression] ;
throw Expression ;
break [Identifier] ;
continue [ldentifier] ;
try Block ( Catches | [Catches] finally Block)
switch ParExpression { SwitchBlockStatementGroups }
for ( ForControl ) Statement

SatementExpression ;
Identifier : Statement

SatementExpression:
Expression
Catches:

CatchClause{ CatchClause}

CatchClause:
catch ({VariableModifier} Type Identifier ) Block

376



SYNTAX

SwitchBlockStatementGroups:
{ SwitchBlockStatementGroup }

SwitchBlockStatementGroup:
SwitchLabels BlockSatements

SwitchLabels:
SwitchLabel { SwitchLabel }

SwitchLabel:
case Expression :
case EnumConstantName :
default :

EnumConstantName:
| dentifier

ForControl:
ForVarControl
Forlnit ; [Expression] ; [ForUpdate]

ForVarControl:
{VariableModifier} Type VariableDeclaratorld ForVarControl Rest

ForVarControl Rest:
ForVariableDeclaratorsRest ; [ Expression] ; [ForUpdate]
: Expression

ForVariableDeclarator sRest:
[ = Variablelnitializer ] { , VariableDeclarator }

Forlnit;

ForUpdate:
SatementExpression { , SlatementExpression }

377



378

Expression:

Expressionl [ AssignmentOperator Expressionl ]

AssignmentOperator:

>>>=

Expressionl:

Expression2 [ Expression1Rest |

ExpressionlRest:

? Expression : Expressionl

Expression2:

Expression3 [ Expression2Rest |

Expression2Rest:

{ InfixOp Expression3 }
instanceof Type

SYNTAX



SYNTAX

InfixOp:
I
&&

S )

Expression3:
PrefixOp Expression3
( Expression | Type ) Expression3
Primary { Selector } { PostfixOp }

PrefixOp:
++

PostfixOp:
++

379



SYNTAX

Primary:
Literal
Par Expression

this [Arguments]

super Super uffix

new Creator

NonWildcardTypeArguments ( ExplicitGenericlnvocationSuffix | this Arguments)
Identifier { . Identifier } [Identifier Suffix]

BasicType{[1} . class

void . class

Literal:
IntegerLiteral
FloatingPointLiteral
CharacterLiteral
SringLiteral
BooleanLiteral
NullLiteral

ParExpression:
( Expression)

Arguments:
([ Expression{ , Expression}])

Super Suffix:
Arguments
. |dentifier [ Arguments]

ExplicitGenericlnvocationSuffix:

super Super uffix
Identifier Arguments

380



SYNTAX

Creator:
NonWildcardTypeArguments CreatedName ClassCreator Rest
CreatedName ( ClassCreatorRest | ArrayCreatorRRest )

CreatedName:
Identifier [ TypeArguments] { . Identifier [ TypeArguments] }

ClassCreator Rest:
Arguments [ ClassBody]

ArrayCreatorRest:
[
(1 {01} Arraylnitializer |
Expression ] {[ Expression1} {[1})
]

| dentifier Suffix:
[ ({[1} . class | Expression) ]
Arguments
. (class | ExplicitGenericlnvocation | this | super Arguments |
new [ NonWildcardTypeArguments] InnerCreator )

ExplicitGenericlnvocation:
NonWildcar dTypeArguments ExplicitGenericl nvocationSuffix

InnerCreator:
Identifier ClassCreator Rest

Selector:
. |dentifier [ Arguments]
. ExplicitGenericlnvocation
. this
. super Superuffix
. new [NonWildcardTypeArguments] InnerCreator
[ Expression ]

381



382

SYNTAX

EnumBody:
{ [EnumConstants] [,] [EnumBodyDeclarations] }

EnumConstants:
EnumConstant
EnumConstants , EnumConstant

EnumConstant:
[Annotations] Identifier [ Arguments] [ ClassBody]

EnumBodyDeclarations:
; {ClassBodyDeclaration}

AnnotationTypeBody:
{ [ AnnotationTypeElementDeclarations] }

AnnotationTypeElementDeclarations:
AnnotationTypeElementDeclaration
AnnotationTypeElementDeclarations AnnotationTypeElementDeclaration

AnnotationTypeElementDeclaration:
{Modifier} AnnotationTypeElementRest

AnnotationTypeElementRest:
Type ldentifier AnnotationMethodOr ConstantRest ;
ClassDeclaration
InterfaceDeclaration
EnumDeclaration
AnnotationTypeDeclaration

AnnotationMethodOr ConstantRest:
AnnotationMethodRest
ConstantDeclar ator sRest

AnnotationMethodRest:
( ) [[1] [default ElementValue]



	The Java™ Language Specification
	Table of Contents
	Chapter 1. Introduction
	1.1. Example Programs
	1.2. Notation
	1.3. Relationship to Predefined Classes and Interfaces
	1.4. References
	Bibliography


	Chapter 2. Grammars
	2.1. Context-Free Grammars
	2.2. The Lexical Grammar
	2.3. The Syntactic Grammar
	2.4. Grammar Notation

	Chapter 3. Lexical Structure
	3.1. Unicode
	3.2. Lexical Translations
	3.3. Unicode Escapes
	3.4. Line Terminators
	3.5. Input Elements and Tokens
	3.6. White Space
	3.7. Comments
	3.8. Identifiers
	3.9. Keywords
	3.10. Literals
	3.10.1. Integer Literals
	3.10.2. Floating-Point Literals
	3.10.3. Boolean Literals
	3.10.4. Character Literals
	3.10.5. String Literals
	3.10.6. Escape Sequences for Character and String Literals
	3.10.7. The Null Literal

	3.11. Separators
	3.12. Operators

	Chapter 4. Types, Values, and Variables
	4.1. The Kinds of Types and Values
	4.2. Primitive Types and Values
	4.2.1. Integral Types and Values
	4.2.2. Integer Operations
	4.2.3. Floating-Point Types, Formats, and Values
	4.2.4. Floating-Point Operations
	4.2.5. The boolean Type and boolean Values

	4.3. Reference Types and Values
	4.3.1. Objects
	4.3.2. The Class Object
	4.3.3. The Class String
	4.3.4. When Reference Types Are the Same

	4.4. Type Variables
	4.5. Parameterized Types
	4.5.1. Type Arguments and Wildcards
	4.5.2. Members and Constructors of Parameterized Types

	4.6. Type Erasure
	4.7. Reifiable Types
	4.8. Raw Types
	4.9. Intersection Types
	4.10. Subtyping
	4.10.1. Subtyping among Primitive Types
	4.10.2. Subtyping among Class and Interface Types
	4.10.3. Subtyping among Array Types

	4.11. Where Types Are Used
	4.12. Variables
	4.12.1. Variables of Primitive Type
	4.12.2. Variables of Reference Type
	4.12.3. Kinds of Variables
	4.12.4. final Variables
	4.12.5. Initial Values of Variables
	4.12.6. Types, Classes, and Interfaces


	Chapter 5. Conversions and Promotions
	5.1. Kinds of Conversion
	5.1.1. Identity Conversions
	5.1.2. Widening Primitive Conversion
	5.1.3. Narrowing Primitive Conversions
	5.1.4. Widening and Narrowing Primitive Conversions
	5.1.5. Widening Reference Conversions
	5.1.6. Narrowing Reference Conversions
	5.1.7. Boxing Conversion
	5.1.8. Unboxing Conversion
	5.1.9. Unchecked Conversion
	5.1.10. Capture Conversion
	5.1.11. String Conversions
	5.1.12. Forbidden Conversions
	5.1.13. Value Set Conversion

	5.2. Assignment Conversion
	5.3. Method Invocation Conversion
	5.4. String Conversion
	5.5. Casting Conversion
	5.5.1. Reference Type Casting
	5.5.2. Checked Casts and Unchecked Casts
	5.5.3. Checked Casts at Run-time

	5.6. Numeric Promotions
	5.6.1. Unary Numeric Promotion
	5.6.2. Binary Numeric Promotion


	Chapter 6. Names
	6.1. Declarations
	6.2. Names and Identifiers
	6.3. Scope of a Declaration
	6.4. Shadowing and Obscuring
	6.4.1. Shadowing
	6.4.2. Obscuring

	6.5. Determining the Meaning of a Name
	6.5.1. Syntactic Classification of a Name According to Context
	6.5.2. Reclassification of Contextually Ambiguous Names
	6.5.3. Meaning of Package Names
	6.5.3.1. Simple Package Names
	6.5.3.2. Qualified Package Names

	6.5.4. Meaning of PackageOrTypeNames
	6.5.4.1. Simple PackageOrTypeNames
	6.5.4.2. Qualified PackageOrTypeNames

	6.5.5. Meaning of Type Names
	6.5.5.1. Simple Type Names
	6.5.5.2. Qualified Type Names

	6.5.6. Meaning of Expression Names
	6.5.6.1. Simple Expression Names
	6.5.6.2. Qualified Expression Names

	6.5.7. Meaning of Method Names
	6.5.7.1. Simple Method Names
	6.5.7.2. Qualified Method Names


	6.6. Access Control
	6.6.1. Determining Accessibility
	6.6.2. Details on protected Access
	6.6.2.1. Access to a protected Member
	6.6.2.2. Qualified Access to a protected Constructor


	6.7. Fully Qualified Names and Canonical Names

	Chapter 7. Packages
	7.1. Package Members
	7.2. Host Support for Packages
	7.3. Compilation Units
	7.4. Package Declarations
	7.4.1. Named Packages
	7.4.2. Unnamed Packages
	7.4.3. Observability of a Package

	7.5. Import Declarations
	7.5.1. Single-Type-Import Declaration
	7.5.2. Type-Import-on-Demand Declaration
	7.5.3. Single Static Import Declaration
	7.5.4. Static-Import-on-Demand Declaration

	7.6. Top Level Type Declarations

	Chapter 8. Classes
	8.1. Class Declaration
	8.1.1. Class Modifiers
	8.1.1.1. abstract Classes
	8.1.1.2. final Classes
	8.1.1.3. strictfp Classes

	8.1.2. Generic Classes and Type Parameters
	8.1.3. Inner Classes and Enclosing Instances
	8.1.4. Superclasses and Subclasses
	8.1.5. Superinterfaces
	8.1.6. Class Body and Member Declarations

	8.2. Class Members
	8.3. Field Declarations
	8.3.1. Field Modifiers
	8.3.1.1. static Fields
	8.3.1.2. final Fields
	8.3.1.3. transient Fields
	8.3.1.4. volatile Fields

	8.3.2. Initialization of Fields
	8.3.2.1. Initializers for Class Variables
	8.3.2.2. Initializers for Instance Variables
	8.3.2.3. Restrictions on the use of Fields during Initialization


	8.4. Method Declarations
	8.4.1. Formal Parameters
	8.4.2. Method Signature
	8.4.3. Method Modifiers
	8.4.3.1. abstract Methods
	8.4.3.2. static Methods
	8.4.3.3. final Methods
	8.4.3.4. native Methods
	8.4.3.5. strictfp Methods
	8.4.3.6. synchronized Methods

	8.4.4. Generic Methods
	8.4.5. Method Return Type
	8.4.6. Method Throws
	8.4.7. Method Body
	8.4.8. Inheritance, Overriding, and Hiding
	8.4.8.1. Overriding (by Instance Methods)
	8.4.8.2. Hiding (by Class Methods)
	8.4.8.3. Requirements in Overriding and Hiding
	8.4.8.4. Inheriting Methods with Override-Equivalent Signatures

	8.4.9. Overloading

	8.5. Member Type Declarations
	8.5.1. Access Modifiers
	8.5.2. Static Member Type Declarations

	8.6. Instance Initializers
	8.7. Static Initializers
	8.8. Constructor Declarations
	8.8.1. Formal Parameters and Type Parameters
	8.8.2. Constructor Signature
	8.8.3. Constructor Modifiers
	8.8.4. Generic Constructors
	8.8.5. Constructor Throws
	8.8.6. The Type of a Constructor
	8.8.7. Constructor Body
	8.8.7.1. Explicit Constructor Invocations

	8.8.8. Constructor Overloading
	8.8.9. Default Constructor
	8.8.10. Preventing Instantiation of a Class

	8.9. Enums
	8.9.1. Enum Constants
	8.9.2. Enum Body and Member Declarations


	Chapter 9. Interfaces
	9.1. Interface Declarations
	9.1.1. Interface Modifiers
	9.1.1.1. abstract Interfaces
	9.1.1.2. strictfp Interfaces

	9.1.2. Generic Interfaces and Type Parameters
	9.1.3. Superinterfaces and Subinterfaces
	9.1.4. Interface Body and Member Declarations

	9.2. Interface Members
	9.3. Field (Constant) Declarations
	9.3.1. Initialization of Fields in Interfaces

	9.4. Abstract Method Declarations
	9.4.1. Inheritance and Overriding
	9.4.2. Overloading

	9.5. Member Type Declarations
	9.6. Annotation Types
	9.6.1. Annotation Type Elements
	9.6.2. Defaults for Annotation Type Elements
	9.6.3. Predefined Annotation Types
	9.6.3.1. Target
	9.6.3.2. Retention
	9.6.3.3. Inherited
	9.6.3.4. Override
	9.6.3.5. SuppressWarnings
	9.6.3.6. Deprecated


	9.7. Annotations
	9.7.1. Normal Annotations
	9.7.2. Marker Annotations
	9.7.3. Single-Element Annotations


	Chapter 10. Arrays
	10.1. Array Types
	10.2. Array Variables
	10.3. Array Creation
	10.4. Array Access
	10.5. Array Store Exception
	10.6. Array Initializers
	10.7. Array Members
	10.8. Class Objects for Arrays
	10.9. An Array of Characters is Not a String

	Chapter 11. Exceptions
	11.1. The Kinds and Causes of Exceptions
	11.1.1. The Kinds of Exceptions
	11.1.2. The Causes of Exceptions
	11.1.3. Asynchronous Exceptions

	11.2. Compile-Time Checking of Exceptions
	11.2.1. Exception Analysis of Expressions
	11.2.2. Exception Analysis of Statements
	11.2.3. Exception Checking

	11.3. Run-Time Handling of an Exception

	Chapter 12. Execution
	12.1. Java virtual machine Start-Up
	12.1.1. Load the Class Test
	12.1.2. Link Test: Verify, Prepare, (Optionally) Resolve
	12.1.3. Initialize Test: Execute Initializers
	12.1.4. Invoke Test.main

	12.2. Loading of Classes and Interfaces
	12.2.1. The Loading Process

	12.3. Linking of Classes and Interfaces
	12.3.1. Verification of the Binary Representation
	12.3.2. Preparation of a Class or Interface Type
	12.3.3. Resolution of Symbolic References

	12.4. Initialization of Classes and Interfaces
	12.4.1. When Initialization Occurs
	12.4.2. Detailed Initialization Procedure

	12.5. Creation of New Class Instances
	12.6. Finalization of Class Instances
	12.6.1. Implementing Finalization
	12.6.1.1. Interaction with the Memory Model

	12.6.2. Finalizer Invocations are Not Ordered

	12.7. Unloading of Classes and Interfaces
	12.8. Program Exit

	Chapter 13. Binary Compatibility
	13.1. The Form of a Binary
	13.2. What Binary Compatibility Is and Is Not
	13.3. Evolution of Packages
	13.4. Evolution of Classes
	13.4.1. abstract Classes
	13.4.2. final Classes
	13.4.3. public Classes
	13.4.4. Superclasses and Superinterfaces
	13.4.5. Class Type Parameters
	13.4.6. Class Body and Member Declarations
	13.4.7. Access to Members and Constructors
	13.4.8. Field Declarations
	13.4.9. final Fields and Constants
	13.4.10. static Fields
	13.4.11. transient Fields
	13.4.12. Method and Constructor Declarations
	13.4.13. Method and Constructor Type Parameters
	13.4.14. Method and Constructor Formal Parameters
	13.4.15. Method Result Type
	13.4.16. abstract Methods
	13.4.17. final Methods
	13.4.18. native Methods
	13.4.19. static Methods
	13.4.20. synchronized Methods
	13.4.21. Method and Constructor Throws
	13.4.22. Method and Constructor Body
	13.4.23. Method and Constructor Overloading
	13.4.24. Method Overriding
	13.4.25. Static Initializers
	13.4.26. Evolution of Enums

	13.5. Evolution of Interfaces
	13.5.1. public Interfaces
	13.5.2. Superinterfaces
	13.5.3. The Interface Members
	13.5.4. Interface Type Parameters
	13.5.5. Field Declarations
	13.5.6. abstract Methods
	13.5.7. Evolution of Annotation Types


	Chapter 14. Blocks and Statements
	14.1. Normal and Abrupt Completion of Statements
	14.2. Blocks
	14.3. Local Class Declarations
	14.4. Local Variable Declaration Statements
	14.4.1. Local Variable Declarators and Types
	14.4.2. Local Variable Names
	14.4.3. Execution of Local Variable Declarations

	14.5. Statements
	14.6. The Empty Statement
	14.7. Labeled Statements
	14.8. Expression Statements
	14.9. The if Statement
	14.9.1. The if-then Statement
	14.9.2. The if-then-else Statement

	14.10. The assert Statement
	14.11. The switch Statement
	14.12. The while Statement
	14.12.1. Abrupt Completion

	14.13. The do Statement
	14.13.1. Abrupt Completion

	14.14. The for Statement
	14.14.1. The basic for Statement
	14.14.1.1. Initialization of for statement
	14.14.1.2. Iteration of for statement
	14.14.1.3. Abrupt Completion of for statement

	14.14.2. The enhanced for statement

	14.15. The break Statement
	14.16. The continue Statement
	14.17. The return Statement
	14.18. The throw Statement
	14.19. The synchronized Statement
	14.20. The try statement
	14.20.1. Execution of try-catch
	14.20.2. Execution of try-finally and try-catch-finally

	14.21. Unreachable Statements

	Chapter 15. Expressions
	15.1. Evaluation, Denotation, and Result
	15.2. Variables as Values
	15.3. Type of an Expression
	15.4. FP-strict Expressions
	15.5. Expressions and Run-Time Checks
	15.6. Normal and Abrupt Completion of Evaluation
	15.7. Evaluation Order
	15.7.1. Evaluate Left-Hand Operand First
	15.7.2. Evaluate Operands before Operation
	15.7.3. Evaluation Respects Parentheses and Precedence
	15.7.4. Argument Lists are Evaluated Left-to-Right
	15.7.5. Evaluation Order for Other Expressions

	15.8. Primary Expressions
	15.8.1. Lexical Literals
	15.8.2. Class Literals
	15.8.3. this
	15.8.4. Qualified this
	15.8.5. Parenthesized Expressions

	15.9. Class Instance Creation Expressions
	15.9.1. Determining the Class being Instantiated
	15.9.2. Determining Enclosing Instances
	15.9.3. Choosing the Constructor and its Arguments
	15.9.4. Run-time Evaluation of Class Instance Creation Expressions
	15.9.5. Anonymous Class Declarations
	15.9.5.1. Anonymous Constructors


	15.10. Array Creation Expressions
	15.10.1. Run-time Evaluation of Array Creation Expressions

	15.11. Field Access Expressions
	15.11.1. Field Access Using a Primary
	15.11.2. Accessing Superclass Members using super

	15.12. Method Invocation Expressions
	15.12.1. Compile-Time Step 1: Determine Class or Interface to Search
	15.12.2. Compile-Time Step 2: Determine Method Signature
	15.12.2.1. Identify Potentially Applicable Methods
	15.12.2.2. Phase 1: Identify Matching Arity Methods Applicable by Subtyping
	15.12.2.3. Phase 2: Identify Matching Arity Methods Applicable by Method Invocation Conversion
	15.12.2.4. Phase 3: Identify Applicable Variable Arity Methods
	15.12.2.5. Choosing the Most Specific Method
	15.12.2.6. Method Result and Throws Types
	15.12.2.7. Inferring Type Arguments Based on Actual Arguments
	15.12.2.8. Inferring Unresolved Type Arguments

	15.12.3. Compile-Time Step 3: Is the Chosen Method Appropriate?
	15.12.4. Runtime Evaluation of Method Invocation
	15.12.4.1. Compute Target Reference (If Necessary)
	15.12.4.2. Evaluate Arguments
	15.12.4.3. Check Accessibility of Type and Method
	15.12.4.4. Locate Method to Invoke
	15.12.4.5. Create Frame, Synchronize, Transfer Control


	15.13. Array Access Expressions
	15.13.1. Runtime Evaluation of Array Access

	15.14. Postfix Expressions
	15.14.1. Expression Names
	15.14.2. Postfix Increment Operator ++
	15.14.3. Postfix Decrement Operator --

	15.15. Unary Operators
	15.15.1. Prefix Increment Operator ++
	15.15.2. Prefix Decrement Operator --
	15.15.3. Unary Plus Operator +
	15.15.4. Unary Minus Operator -
	15.15.5. Bitwise Complement Operator ~
	15.15.6. Logical Complement Operator !

	15.16. Cast Expressions
	15.17. Multiplicative Operators
	15.17.1. Multiplication Operator *
	15.17.2. Division Operator /
	15.17.3. Remainder Operator %

	15.18. Additive Operators
	15.18.1. String Concatenation Operator +
	15.18.2. Additive Operators (+ and -) for Numeric Types

	15.19. Shift Operators
	15.20. Relational Operators
	15.20.1. Numerical Comparison Operators <, <=, >, and >=
	15.20.2. Type Comparison Operator instanceof

	15.21. Equality Operators
	15.21.1. Numerical Equality Operators == and !=
	15.21.2. Boolean Equality Operators == and !=
	15.21.3. Reference Equality Operators == and !=

	15.22. Bitwise and Logical Operators
	15.22.1. Integer Bitwise Operators &, ^, and |
	15.22.2. Boolean Logical Operators &, ^, and |

	15.23. Conditional-And Operator &&
	15.24. Conditional-Or Operator ||
	15.25. Conditional Operator ? :
	15.26. Assignment Operators
	15.26.1. Simple Assignment Operator =
	15.26.2. Compound Assignment Operators

	15.27. Expression
	15.28. Constant Expression

	Chapter 16. Definite Assignment
	16.1. Definite Assignment and Expressions
	16.1.1. Boolean Constant Expressions
	16.1.2. The Boolean Operator &&
	16.1.3. The Boolean Operator ||
	16.1.4. The Boolean Operator !
	16.1.5. The Boolean Operator ? :
	16.1.6. The Conditional Operator ? :
	16.1.7. Other Expressions of Type boolean
	16.1.8. Assignment Expressions
	16.1.9. Operators ++ and --
	16.1.10. Other Expressions

	16.2. Definite Assignment and Statements
	16.2.1. Empty Statements
	16.2.2. Blocks
	16.2.3. Local Class Declaration Statements
	16.2.4. Local Variable Declaration Statements
	16.2.5. Labeled Statements
	16.2.6. Expression Statements
	16.2.7. if Statements
	16.2.8. assert Statements
	16.2.9. switch Statements
	16.2.10. while Statements
	16.2.11. do Statements
	16.2.12. for Statements
	16.2.12.1. Initialization Part
	16.2.12.2. Incrementation Part

	16.2.13. break, continue, return, and throw Statements
	16.2.14. synchronized Statements
	16.2.15. try Statements

	16.3. Definite Assignment and Parameters
	16.4. Definite Assignment and Array Initializers
	16.5. Definite Assignment and Enum Constants
	16.6. Definite Assignment and Anonymous Classes
	16.7. Definite Assignment and Member Types
	16.8. Definite Assignment and Static Initializers
	16.9. Definite Assignment, Constructors, and Instance Initializers

	Chapter 17. Threads and Locks
	17.1. Synchronization
	17.2. Wait Sets and Notification
	17.2.1. Wait
	17.2.2. Notification
	17.2.3. Interruptions
	17.2.4. Interactions of Waits, Notification, and Interruption

	17.3. Sleep and Yield
	17.4. Memory Model
	17.4.1. Shared Variables
	17.4.2. Actions
	17.4.3. Programs and Program Order
	17.4.4. Synchronization Order
	17.4.5. Happens-before Order
	17.4.6. Executions
	17.4.7. Well-Formed Executions
	17.4.8. Executions and Causality Requirements
	17.4.9. Observable Behavior and Nonterminating Executions

	17.5. final Field Semantics
	17.5.1. Semantics of final Fields
	17.5.2. Reading final Fields During Construction
	17.5.3. Subsequent Modification of final Fields
	17.5.4. Write-protected Fields

	17.6. Word Tearing
	17.7. Non-atomic Treatment of double and long

	Chapter 18. Syntax

