
Sun Microsystems, Inc.
901 San Antonio Road
Palo Alto, CA 94303
U.S.A. 650-960-1300

Send comments about this document to: jdbc@eng.sun.com

JDBC™ 3.0 Specification

Proposed Final
Jon Ellis & Linda Ho

with Maydene Fisher

Alpha Draft

October 2000

Java (TM) JDBC (TM) Data Access API Specification ("Specification")
Version: 3.0
Status: Proposed Final Draft
Release: October 26th, 2000

Copyright 1999-2000 Sun Microsystems, Inc.
901 San Antonio Road, Palo Alto, CA 94303, U.S.A.
All rights reserved.

NOTICE.
This Specification is protected by copyright and the information described herein may be protected by one or more U.S. patents, foreign
patents, or pending applications. Except as provided under the following license, no part of this Specification may be reproduced in any
form by any means without the prior written authorization of Sun Microsystems, Inc. (“Sun”) and its licensors, if any. Any use of this
Specification and the information described herein will be governed by the terms and conditions of this license and the Export Control and
General Terms as set forth in Sun's website Legal Terms. By viewing, downloading or otherwise copying this Specification, you agree that
you have read, understood, and will comply with all of the terms and conditions set forth herein.

Subject to the terms and conditions of this license, Sun hereby grants you a fully-paid, non-exclusive, non-transferable, worldwide, limited
license (without the right to sublicense) under Sun’s intellectual property rights to review the Specification internally for the purposes of
evaluation only. Other than this limited license, you acquire no right, title or interest in or to the Specification or any other Sun intellectual
property. The Specification contains the proprietary and confidential information of Sun and may only be used in accordance with the
license terms set forth herein. This license will expire ninety (90) days from the date of Release listed above and will terminate immediately
without notice from Sun if you fail to comply with any provision of this license. Upon termination, you must cease use of or destroy the
Specification.

TRADEMARKS.
No right, title, or interest in or to any trademarks, service marks, or trade names of Sun or Sun's licensors is granted hereunder. Sun, Sun
Microsystems, the Sun logo, Java, the Java Coffee Cup Logo, JDBC, JDK, Java Naming and Directory Interface, JavaBeans, Enterprise
JavaBeans, EJB, JavaServerPages, Javadoc, J2SE, and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S.
and other countries.

DISCLAIMER OF WARRANTIES.
THIS SPECIFICATION IS PROVIDED "AS IS" AND IS EXPERIMENTAL AND MAY CONTAIN DEFECTS OR DEFICIENCIES WHICH
CANNOT OR WILL NOT BE CORRECTED BY SUN. SUN MAKES NO REPRESENTATIONS OR WARRANTIES, EITHER EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
OR NON-INFRINGEMENT THAT THE CONTENTS OF THE SPECIFICATION ARE SUITABLE FOR ANY PURPOSE OR THAT ANY
PRACTICE OR IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS,
TRADE SECRETS OR OTHER RIGHTS. This document does not represent any commitment to release or implement any portion of this
Specification in any product.

THIS SPECIFICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE
PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED INTO NEW VERSIONS OF
THE SPECIFICATION, IF ANY. SUN MAY MAKE IMPROVEMENTS AND/OR CHANGES TO THE PRODUCT(S) AND/OR THE
PROGRAM(S) DESCRIBED IN THIS SPECIFICATION AT ANY TIME. Any use of such changes in the Specification will be governed by
the then-current license for the applicable version of the Specification.

LIMITATION OF LIABILITY.
TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL SUN OR ITS LICENSORS BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION, LOST REVENUE, PROFITS OR DATA, OR FOR SPECIAL, INDIRECT, CONSEQUENTIAL,
INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT
OF OR RELATED TO ANY FURNISHING, PRACTICING, MODIFYING OR ANY USE OF THE SPECIFICATION, EVEN IF SUN
AND/OR ITS LICENSORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
You will indemnify, hold harmless, and defend Sun and its licensors from any claims based on your use of the Specification for any
purposes other than those of internal evaluation, and from any claims that later versions or releases of any Specification furnished to you
are incompatible with the Specification provided to you under this license.
Please

Recycle

RESTRICTED RIGHTS LEGEND.

If this Software is being acquired by or on behalf of the U.S. Government or by a U.S. Government prime contractor or subcontractor (at
any tier), then the Government’s rights in the Software and accompanying documentation shall be only as set forth in this license; this is
in accordance with 48 C.F.R. 227.7201 through 227.7202-4 (for Department of Defense (DoD) acquisitions) and with 48 C.F.R. 2.101 and
12.212 (for non-DoD acquisitions).

REPORT.
You may wish to report any ambiguities, inconsistencies, or inaccuracies you may find in connection with your evaluation of the
Specification ("Feedback"). To the extent that you provide Sun with any Feedback, you hereby: (i) agree that such Feedback is provided on a
non-proprietary and non-confidential basis and (ii) grant Sun a perpetual, non-exclusive, worldwide, fully paid-up, irrevocable license,
with the right to sublicense through multiple levels of sublicensees, to incorporate, disclose, and use without limitation the Feedback for
any purpose related to the Specification and future versions, implementations, and test suites thereof.

Please

Recycle

Contents

1. Introduction 13

1.1 The JDBC API 13

1.2 Platforms 13

1.3 Target Audience 14

1.4 Acknowledgements 14

2. Goals 17

3. Summary of New Features 21

3.1 Overview of changes 21

4. Overview 23

4.1 Establishing a Connection 23

4.2 Executing SQL Statements and Manipulating Results 24

4.3 Two-tier Model 25

4.4 Three-tier Model 26

4.5 JDBC in the J2EE Platform 28

5. Classes and Interfaces 29

5.1 The java.sql Package 29

5.2 The javax.sql Package 32
Contents v

6. Compliance 37

6.1 Definitions 37

6.2 Guidelines and Requirements 38

6.3 JDBC 1.0 API Compliance 39

6.4 JDBC 2.0 API Compliance 39

6.5 JDBC 3.0 API Compliance 40

6.6 Determining Compliance Level 41

6.7 Deprecated APIs 41

7. Database Metadata 43

7.1 Creating a DatabaseMetadata Object 44

7.2 Retrieving General Information 44

7.3 Determining Feature Support 45

7.4 Data Source Limits 45

7.5 SQL Objects and Their Attributes 46

7.6 Transaction Support 46

7.7 New Methods 46

7.8 Modified Methods 47

8. Exceptions 49

8.1 SQLException 49

8.2 SQLWarning 50

8.3 DataTruncation 50

8.4 BatchUpdateException 51

9. Connections 53

9.1 Types of Drivers 54

9.2 The Driver Interface 54

9.3 The DriverManager Class 55

9.4 The DataSource Interface 57
vi JDBC 3.0 • October 2000

10. Transactions 61

10.1 Transaction Boundaries and Auto-commit 61

10.2 Transaction Isolation Levels 62

10.3 Savepoints 64

11. Connection Pooling 67

11.1 ConnectionPoolDataSource and PooledConnection 69

11.2 Connection Events 70

11.3 Connection Pooling in a Three-tier Environment 71

11.4 DataSource Implementations and Connection Pooling 72

11.5 Deployment 73

11.6 Reuse of Statements by Pooled Connections 75

11.7 ConnectionPoolDataSource Properties 78

12. Distributed Transactions 81

12.1 Infrastructure 81

12.2 XADataSource and XAConnection 84

12.3 XAResource 87

12.4 Transaction Management 88

12.5 Closing the Connection 90

12.6 Limitations of the XAResource Interface 91

13. Statements 93

13.1 The Statement Interface 93

13.2 The PreparedStatement Interface 97

13.3 The CallableStatement Interface 103

13.4 Escape Syntax 109

13.5 Performance Hints 112

13.6 Retrieving Auto Generated Keys 112

14. Result Sets 115
Contents vii

14.1 Kinds of ResultSet Objects 115

14.2 Creating and Manipulating ResultSet Objects 118

15. Batch Updates 127

15.1 Description of Batch Updates 127

16. Advanced Data Types 133

16.1 Taxonomy of SQL Types 133

16.2 Mapping of SQL99 Types 135

16.3 Blob and Clob Objects 135

16.4 Array Objects 137

16.5 Ref Objects 139

16.6 Distinct Types 141

16.7 Structured Types 143

16.8 Datalinks 144

17. Customized Type Mapping 147

17.1 The Type Mapping 147

17.2 Class Conventions 148

17.3 Streams of SQL Data 149

17.4 Examples 151

17.5 Effect of Transform Groups 159

17.6 Generality of the Approach 160

17.7 NULL Data 160

18. Rowsets 163

18.1 Rowsets at Design Time 163

18.2 Rowsets at Run Time 165

19. Relationship to Connectors 167

19.1 System Contracts 167

19.2 Mapping Connector System Contracts to JDBC Interfaces 168
viii JDBC 3.0 • October 2000

19.3 Packaging JDBC Drivers in Connector RAR File Format 169

A. Revision History 171

B. Data Type Conversion Tables 175

C. Scalar Functions 183

D. Related Documents 187
Contents ix

x JDBC 3.0 • October 2000

Preface

This document supersedes and consolidates the content of these predecessor

specifications:

■ “JDBC: A Java SQL API”

■ “JDBC 2.1 API”

■ “JDBC 2.0 Standard Extension API”

New content is summarized in an introductory chapter and then incorporated

throughout this document. The main body of the specification describes the API at a

conceptual level. More extensive details and examples are relegated to the

appendices.

Readers can also download the API specification (JavadocTM API and comments) for

a complete and precise definition of JDBC classes and interfaces. This documentation

is available from the download page at

http://java.sun.com/products/jdbc/download.html

or it can be browsed at

http://java.sun.com/j2se/1.4/docs/api/java/sql/package-summary.html

[currently 1.3 for kestrel; will be 1.4 for merlin]
xi

Typographic Conventions

Submitting Feedback

Please send any comments and questions concerning this specification to:

jdbc@eng.sun.com

Typeface Meaning Examples

AaBbCc123 The names of commands, files,

and directories; on-screen

computer output

Edit your .login file.

Use ls -a to list all files.

% You have mail .

AaBbCc123 What you type, when

contrasted with on-screen

computer output

% su
Password:

AaBbCc123 Book titles, new words or

terms, words to be emphasized

Command-line variable;

replace with a real name or

value

Read Chapter 6 in the User’s Guide.

These are called class options.

You must be superuser to do this.

To delete a file, type rm filename.
xii JDBC 3.0 • October 2000

CHAPTER 1

Introduction

1.1 The JDBC API
The JDBCTM API provides programmatic access to relational data from the JavaTM

programming language. Using the JDBC API, applications written in the Java

programming language can execute SQL statements, retrieve results, and propagate

changes back to an underlying data source. The JDBC API can also be used to

interact with multiple data sources in a distributed, heterogenous environment.

The JDBC API is based on the X/Open SQL CLI, which is also the basis for ODBC.

JDBC provides a natural and easy-to-use mapping from the Java programming

language to the abstractions and concepts defined in the X/Open CLI and SQL

standards.

Since its introduction in January 1997, the JDBC API has become widely accepted

and implemented. The flexibility of the API allows for a broad range of

implementations.

1.2 Platforms
The JDBC API is part of the Java platform, which includes the JavaTM 2 Standard

Edition (J2SETM) and the JavaTM 2 Enterprise Edition (J2EETM). The JDBC 3.0 API is

divided into two packages: java.sql and javax.sql . Both packages are included

in the J2SE and J2EE platforms.
Chapter 1 Introduction 13

1.3 Target Audience
This specification is targeted primarily towards the vendors of these types of

products:

■ drivers that implement the JDBC API

■ application servers providing middle-tier services above the driver layer

■ tools that use the JDBC API to provide services such as application generation

This specification is also intended to serve the following purposes:

■ an introduction for end-users whose applications use the JDBC API

■ a starting point for developers of other APIs layered on top of the JDBC API

1.4 Acknowledgements
The authors would like to thank the following members of the expert group for their

invaluable contributions to this document:

■ ElhamChandler, Informix

■ Stefan Dessloch, IBM

■ Christopher Farrar, IBM

■ John Goodson, Merant

■ Jay Hiremath, Bluestone

■ Viquar Hussain, Inprise

■ Prabha Krishna, Oracle

■ Scott Marlow, Silverstream

■ David Schorow, Compaq

■ Yeh-Heng Sheng, Informix

■ Mark Spotswood, BEA

■ Satish Viswanatham, iPlanet

Maydene Fisher has been patient beyond compare in turning what we wrote into

English.

Jennifer Ball has converted scribbles and hand-waving into the diagrams we meant

them to be.
Chapter 1 Introduction 14

The work of Graham Hamilton, Rick Cattell, Mark Hapner, Seth White, and many

others who have worked on JDBC technology in the past has made this specification

possible.
Chapter 1 Introduction 15

Chapter 1 Introduction 16

CHAPTER 2

Goals

The JDBC API is a mature technology, having first been specified in January 1997. In

its initial release, the JDBC API focused on providing a basic call-level interface to

SQL databases. The JDBC 2.1 specification and the 2.0 Optional Package

specification then broadened the scope of the API to include support for more

advanced applications and for the features required by application servers to

manage use of the JDBC API on behalf of their applications.

The overall goal of the JDBC 3.0 specification is to “round out” the API by filling in

smaller areas of missing functionality. The following list outlines the goals and

design philosophy for the JDBC API in general and the JDBC 3.0 API in particular:

1. Fit into the J2EE and J2SE platforms

The JDBC API is a constituent technology of the Java platform. The JDBC 3.0 API

should be aligned with the overall direction of the Java 2 Enterprise Edition and

Java 2 Standard Edition platforms.

2. Be consistent with SQL99

The JDBC API provides programmatic access from applications written in the

Java programming language to standard SQL. At the time the JDBC 2.0 API was

in development, the SQL99 specification was a moving target. SQL99 is now a

published standard and includes features that are widely supported among

DBMS vendors as well as features that only a few vendors support. The intent of

the JDBC 3.0 API is to provide access to the subset of SQL99 features that are

likely to be widely supported within the next five years.

3. Consolidate predecessor specifications

This document incorporates content from three prior JDBC specifications to

provide a single standalone specification of the JDBC API.

4. Offer vendor-neutral access to common features
Chapter 2 Goals 17

The JDBC API strives to provide high-bandwidth access to features commonly

supported across different vendor implementations. The goal is to provide a

degree of feature access comparable to what can be achieved by native

applications. However, the API must be general and flexible enough to allow for

a wide range of implementations.

5. Maintain the focus on SQL

The focus of the JDBC API has always been on accessing relational data from the

Java programming language. This continues to be true with the JDBC 3.0 API. The

JDBC 3.0 API does not preclude interacting with other technologies, including

XML, CORBA, or non-relational data, but the primary target will still be relational

data and SQL.

6. Provide a foundation for tools and higher-level APIs

The JDBC API presents a standard API to access a wide range of underlying data

sources or legacy systems. Implementation differences are made transparent

through JDBC API abstractions, making it a valuable target platform for tools

vendors who want to create portable tools and applications.

Because it is a “call-level” interface from the Java programming language to SQL,

the JDBC API is also suitable as a base layer for higher-level facilities such as EJB

2.0 container-managed persistence and SQLJ.

7. Keep it simple

The JDBC API is intended to be a simple-to-use, straightforward interface upon

which more complex entities can be built. This goal is achieved by defining many

compact, single-purpose methods instead of a smaller number of complex, multi-

purpose ones with control flag parameters.

8. Enhance reliability, availability, and scalability

Reliability, availability, and scalability are the themes of the J2EE and J2SE

platforms, as well as the direction for future Java platforms. The JDBC 3.0 API

stays true to these themes by enhancing support in several areas, including

resource management, the reuse of prepared statements across logical

connections, and error handling.

9. Maintain backward compatibility with existing applications and drivers

Existing JDBC technology-enabled drivers (“JDBC drivers”) and the applications

that use them must continue to work in an implementation of the Java virtual

machine that supports the JDBC 3.0 API. Applications that use only features

defined in earlier releases of the JDBC API, excluding those that were deprecated

by JDBC 2.0, will not require changes to continue running. It should be

straightforward for existing applications to migrate to JDBC 3.0 technology.

10. Allow forward compatibility with Connectors
Chapter 2 Goals 18

The Connector architecture defines a standard way to package and deploy a

resource adapter that allows a J2EE container to integrate its connection,

transaction, and security management with those of an external resource.

The JDBC 3.0 API provides the migration path for JDBC drivers to the Connector

architecture. It should be possible for vendors whose products use JDBC

technology to move incrementally towards implementing the Connector API. The

expectation is that these implementors will write “resource manager wrappers”

around their existing data source implementations so that they can be reused in a

Connector framework.

11. Specify requirements unambiguously

The requirements for JDBC compliance need to be unambiguous and easy to

identify. The JDBC 3.0 specification and the API documentation (Javadoc) will

clarify which features are required and which are optional.
Chapter 2 Goals 19

Chapter 2 Goals 20

CHAPTER 3

Summary of New Features

3.1 Overview of changes
The JDBC 3.0 API introduces new material and changes in these areas:

■ Savepoint support

Added the Savepoint interface, which contains new methods to set, release, or

roll back a transaction to designated savepoints.

■ Reuse of prepared statements by connection pools

Added the ability for deployers to control how prepared statements are pooled

and reused by connections.

■ Connection pool configuration

Defined a number of properties for the ConnectionPoolDataSource interface.

These properties can be used to describe how PooledConnection objects

created by DataSource objects should be pooled.

■ Retrieval of parameter metadata

Added new interface ParameterMetaData which describes the number, type

and properties of parameters to prepared statements.

■ Retrieval of auto-generated keys

Added a means of retrieving values from columns containing automatically

generated values.

■ Ability to have multiple open ResultSet objects

Added a new method getMoreResults(int) that takes an argument which

specifies if ResultSet objects returned by a Statement should be closed before

returning any subsequent ResultSet objects.
Chapter 3 Summary of New Features 21

■ Passing parameters to CallableStatement objects by name

Added methods to allow a string to identify the parameter to be set for a

CallableStatement object.

■ Holdable cursor support

Added the ability to specify holdability.

■ BOOLEANdata type

Added the data type java.sql.Types.BOOLEAN . BOOLEANis logically

equivalent to BIT .

■ Making internal updates to the data in Blob and Clob objects

Added methods to allow the data contained in Blob and Clob objects to be

altered.

■ Retrieving and updating the object referenced by a Ref object

Added methods to retrieve the object referenced by a Ref object. Also added the

ability to update a referenced object through the Ref object.

■ Updating of columns containing BLOB, CLOB, ARRAYand REF types

Addition of the updateBlob , updateClob , updateArray , and updateRef
methods to the ResultSet interface.

■ DATALINK/URLdata type

Added the data type java.sql.Types.DATALINK , allowing JDBC drivers to

store and retrieve refereneces to external data.

■ Transform groups and type mapping

Described the effect of transform groups and how this is reflected in the meta-

data.

■ Relationship between the JDBC SPI (Service Provider Interface) and the

Connector architecture

Described the relationship between the JDBC SPI and the connector architecture

in Chapter 19 “Relationship to Connectors”.

■ DatabaseMetadata APIs

Added metadata for retrieving SQL type hierarchies. See the JDBC API

Specification for details.

See Chapter 5 “Classes and Interfaces” for a list of the classes and interfaces affected

by these changes.
Chapter 3 Summary of New Features 22

CHAPTER 4

Overview

The JDBC API provides a way for Java programs to access one or more sources of

data. In the majority of cases, the data source is a relational DBMS, and its data is

accessed using SQL. However, it is also possible for JDBC technology-enabled

drivers to be implemented on top of other data sources, including legacy file systems

and object-oriented systems. A primary motivation for the JDBC API is to provide a

standard API for applications to access a wide variety of data sources.

This chapter introduces some of the key concepts of the JDBC API. In addition, it

describes two common environments for JDBC applications, with a discussion of

how different functional roles are implemented in each one. The two-tier and three-

tier models are logical configurations that can be implemented on a variety of

physical configurations.

4.1 Establishing a Connection
The JDBC API defines the Connection interface to represent a connection to an

underlying data source.

In a typical scenario, a JDBC application will connect to a target data source using

one of two mechanisms:

■ DriverManager — this fully implemented class was introduced in the original

JDBC 1.0 API and requires the application to load a specific driver using a hard-

coded URL.

■ DataSource — this interface was introduced in the JDBC 2.0 Optional Package

API. It is preferred over DriverManager because it allows details about the

underlying data source to be transparent to the application. A DataSource
object’s properties are set so that it represents a particular data source. When its

getConnection method is invoked, the DataSource instance will return a

connection to that data source. An application can be directed to a different data
Chapter 4 Overview 23

source by simply changing the DataSource object’s properties; no change in

application code is needed. Likewise, a DataSource implementation can be

changed without changing the application code that uses it.

The JDBC API also defines two important extensions of the DataSource interface to

support enterprise applications. These extensions are the following two interfaces:

■ ConnectionPoolDataSource — supports caching and reusing of physical

connections, which improves application performance and scalability

■ XADataSource — provides connections that can participate in a distributed

transaction

4.2 Executing SQL Statements and
Manipulating Results
Once a connection has been established, an application using the JDBC API can

execute queries and updates against the target data source. The JDBC 3.0 API

provides access to the most commonly implemented features of SQL99. Because

different vendors vary in their level of support for these features, the JDBC API

includes the DatabaseMetadata interface. Applications can use this interface to

determine whether a particular feature is supported by the data source they are

using. The JDBC API also defines escape syntax to allow an application to access

non-standard vendor-specific features. The use of escape syntax has the advantage

of giving JDBC applications access to the same feature set as native applications and

at the same time maintaining the portability of the application.

Applications use methods in the Connection interface to specify transaction

attributes and create Statement , PreparedStatement , or CallableStatement
objects. These statements are used to execute SQL statements and retrieve results.

The ResultSet interface encapsulates the results of an SQL query. Statements may

also be batched, allowing an application to submit multiple updates to a data source

as a single unit of execution.

The JDBC API extends the ResultSet interface with the RowSet interface, thereby

providing a container for tabular data that is much more versatile than a standard

result set. A RowSet object is a JavaBeansTM component, and it may operate without

being connected to its data source. For example, a RowSet implementation can be

serializable and therefore sent across a network, which is particularly useful for

small-footprint clients that want to operate on tabular data without incurring the

overhead of a JDBC driver and data source connection. Another feature of a RowSet
implementation is that it can include a custom reader for accessing any data in

tabular format, not just data in a relational database. Further, a RowSet object can
Chapter 4 Overview 24

update its rows while it is disconnected from its data source, and its implementation

can include a custom writer that writes those updates back to the underlying data

source.

4.2.1 Support for SQL Advanced Data Types

The JDBC API defines standard mappings to convert SQL data types to JDBC data

types and back. This includes support for SQL99 advanced data types such as BLOB,

CLOB, ARRAY, REF, STRUCT, and DISTINCT . JDBC drivers may also implement one or

more customized type mappings for user-defined types (UDTs), in which the UDT is

mapped to a class in the Java programming language. The JDBC 3.0 API also adds

support for externally managed data, for example, data in a file outside the data

source.

4.3 Two-tier Model
A two-tier model divides functionality into a client layer and a server layer, as

shown in FIGURE 4-1.

FIGURE 4-1 Two-tier Model

The client layer includes the application(s) and one or more JDBC drivers, with the

application handling these areas of responsibility:

Application

data source

JDBC Driver
Chapter 4 Overview 25

■ presentation logic

■ business logic

■ transaction management for multiple-statement transactions or distributed

transactions

■ resource management

In this model, the application interacts directly with the JDBC driver(s), including

establishing and managing the physical connection(s) and dealing with the details of

specific underlying data source implementations. The application may use its

knowledge of a specific implementation to take advantage of nonstandard features

or do performance tuning.

Some drawbacks of this model include:

■ mingling presentation and business logic with infrastructure and system-level

functions. This presents an obstacle to producing maintainable code with a well-

defined architecture.

■ making applications less portable because they are tuned to a particular database

implementation. Applications that require connections to multiple databases must

be aware of the differences between the different vendors’ implementations.

■ limiting scalability. Typically, the application will hold onto one or more physical

database connections until it terminates, limiting the number of concurrent

applications that can be supported. In this model, issues of performance,

scalability and availability are handled by the JDBC driver and the corresponding

underlying data source. If an application deals with multiple drivers, it may also

need to be aware of the different ways in which each driver/data source pair

resolves these issues.

4.4 Three-tier Model
The three-tier model introduces a middle-tier server to house business logic and

infrastructure, as shown in FIGURE 4-2.
Chapter 4 Overview 26

FIGURE 4-2 Three-tier Model

This architecture is designed to provide improved performance, scalability and

availability for enterprise applications. Functionality is divided among the tiers as

follows:

1. Client tier — a thin layer implementing presentation logic for human interaction.

Java programs, web browsers and PDAs are typical client-tier implementations.

The client interacts with the middle-tier application and does not need to include

any knowledge of infrastructure or underlying data source functions.

2. Middle-tier server — a middle tier that includes:

■ Applications to interact with the client and implement business logic. If the

application includes interaction with a data source, it will deal with higher-

level abstractions, such as DataSource objects and logical connections rather

than lower-level driver API.

data source

Web Client
(Browser) Application

Server

transaction
manager

JDBC
Driver

JDBC
Driver

data source

Middle-tier Server

Application Application
Chapter 4 Overview 27

■ An application server to provide supporting infrastructure for a wide range of

applications. This can include management and pooling of physical

connections, transaction management, and the masking of differences between

different JDBC drivers. This last point makes it easier to write portable

applications. The application server role can be implemented by a J2EE server.

Application servers implement the higher-level abstractions used by

applications and interact directly with JDBC drivers.

■ JDBC driver(s) to provide connectivity to the underlying data sources. Each

driver implements the standard JDBC API on top of whatever features are

supported by its underlying data source. The driver layer may mask

differences between standard SQL99 syntax and the native dialect supported

by the data source. If the data source is not a relational DBMS, the driver

implements the relational layer used by the application server.

3. Underlying data source — the tier where the data resides. It can include

relational DBMSs, legacy file systems, object-oriented DBMSs, data warehouses,

spreadsheets, or other means of packaging and presenting data. The only

requirement is a corresponding driver that supports the JDBC API.

4.5 JDBC in the J2EE Platform
J2EE components, such as JavaServerTM Pages, Servlets, and Enterprise Java BeansTM

(EJBTM) components, often require access to relational data and use the JDBC API

for this access. When J2EE components use the JDBC API, the container manages

their transactions and data sources. This means that J2EE component developers do

not directly use the JDBC API’s transaction and datasource management facilities.

See the J2EE Platform Specification for further details.
Chapter 4 Overview 28

CHAPTER 5

Classes and Interfaces

The following classes and interfaces make up the JDBC API.

5.1 The java.sql Package
The core JDBC API is contained in the package java.sql . The classes and interfaces

in java.sql are listed below. Classes are bold type; interfaces are in standard type.

java.sql.Array

java.sql.BatchUpdateException

java.sql.Blob

java.sql.CallableStatement

java.sql.Clob

java.sql.Connection

java.sql.DataTruncation

java.sql.DatabaseMetaData

java.sql.Date

java.sql.Driver

java.sql.DriverManager

java.sql.DriverPropertyInfo

java.sql.ParameterMetaData

java.sql.PreparedStatement

java.sql.Ref

java.sql.ResultSet

java.sql.ResultSetMetaData
Chapter 5 Classes and Interfaces 29

java.sql.Savepoint

java.sql.SQLData

java.sql.SQLException

java.sql.SQLInput

java.sql.SQLOutput

java.sql.SQLPermission

java.sql.SQLWarning

java.sql.Statement

java.sql.Struct

java.sql.Time

java.sql.Timestamp

java.sql.Types

The following classes and interfaces are either new or updated in the JDBC 3.0 API.

New classes and interfaces are highlighted in bold.

java.sql.Array

java.sql.Blob

java.sql.CallableStatement

java.sql.Clob

java.sql.Connection

java.sql.DatabaseMetaData

java.sql.ParameterMetaData

java.sql.PreparedStatement

java.sql.Ref

Java.sql.ResultSet

java.sql.Savepoint

java.sql.SQLInput

java.sqlOutput

java.sql.Statement

java.sql.Types

FIGURE 5-1 shows the interactions and relationships between the key classes and

interfaces in the java.sql package. The methods involved in creating statements,

setting parameters and retrieving results are also shown.
Chapter 5 Classes and Interfaces 30

FIGURE 5-1 Relationships between major classes and interface in the java.sql package

Connection

Statement

Data types

CallableStatement

ResultSet

PreparedStatement

subclasses
prepareStatem

ent

prepareC
all

cr
ea

te
St

at
em

en
t

executeQuery

ex
ec

ut
eQ

ue
ry

executeQ
uery

Input to

getXXX

Input/Output of

ge
tM

or
eR

es
ul

ts
 /

ge
tR

es
ul

tS
et

subclasses

PreparedStatement
CallableStatement
Chapter 5 Classes and Interfaces 31

5.2 The javax.sql Package
The following list contains the classes and interfaces that are contained in the

javax.sql package. Classes are highlighted in bold; interfaces are in normal type.

javax.sql.ConnectionEvent

javax.sql.ConnectionEventListener

javax.sql.ConnectionPoolDataSource

javax.sql.DataSource

javax.sql.PooledConnection

javax.sql.RowSet

javax.sql.RowSetEvent

javax.sql.RowSetInternal

javax.sql.RowSetListener

javax.sql.RowSetMetaData

javax.sql.RowSetReader

javax.sql.RowSetWriter

javax.sql.XAConnection

javax.sql.XADataSource

Note – The classes and interfaces in the javax.sql package were first made

available as the JDBC 2.0 Optional Package. This optional package was previously

separate from the java.sql package, which was part of J2SE 1.2. Both packages

(java.sql and javax.sql) are now part of J2SE 1.4.

FIGURE 5-2, FIGURE 5-3, FIGURE 5-4, and FIGURE 5-5 show the relationships between key

classes and interfaces in these areas of functionality: DataSource objects,

connection pooling, distributed transactions, and rowsets.
Chapter 5 Classes and Interfaces 32

FIGURE 5-2 Relationship between javax.sql.DataSource and
java.sql.Connection

FIGURE 5-3 Relationships involved in connection pooling

DataSource Connection

java.sqljavax.sql

getConnection

Connection PooledConnection

javax.sqljava.sql

getConnection

ConnectionPoolDataSource

getConnection

ConnectionEvent

ConnectionEventListener

close or error event
Chapter 5 Classes and Interfaces 33

FIGURE 5-4 Relationships involved in distributed transaction support

XAConnection

PooledConnection

ConnectionEvent

XAResource

ConnectionEventListener

XADataSource

Connection

java.sqljavax.sqljavax.transaction.xa

getConnection

getXAConnection

getXAResource

subclasses

close or error event
Chapter 5 Classes and Interfaces 34

FIGURE 5-5 RowSet relationships

RowSet

ResultSet

RowSetEvent

RowSetReader

RowSetEventListener

RowSetMetaData RowSetWriter

javax.sqljava.sql

subclasses

RowSetInternal

ResultSetMetaData

subclasses

retrieves

metadata reads data writes data
Chapter 5 Classes and Interfaces 35

Chapter 5 Classes and Interfaces 36

CHAPTER 6

Compliance

This chapter identifies the features that a JDBC API implementation is required to

support for each level of compliance. A JDBC API implementation includes a JDBC

technology-enabled driver and its underlying data source. Therefore, compliance is

defined in terms of what features are available above the driver layer.

Any features not identified here are optional. In general, a driver is not required to

implement any feature that its underlying data source does not support.

6.1 Definitions
To avoid ambiguity, we will use these terms in our discussion of compliance:

■ JDBC API implementation — a JDBC technology-enabled driver and its

underlying data source. The driver may provide support for features that are not

implemented by the underlying data source. It may also provide the mapping

between standard syntax/semantics and the native API implemented by the data

source.

■ Relevant specifications — this document, the API specification, and the relevant

SQL specification. This is also the order of precedence if a feature is described in

more than one of these documents. For the JDBC 1.0 API, the relevant SQL

specification is SQL92 and X/Open SQL CLI. For the JDBC 2.0 and 3.0 APIs, it is

SQL92 plus the relevant sections of SQL99 and X/Open SQL CLI.

■ Supported feature — a feature for which the JDBC API implementation supports

standard syntax and semantics for that feature as defined in the relevant

specifications.

■ Extension — a feature that is not covered by any of the relevant specifications or

a non-standard implementation of a feature that is covered.

■ Fully implemented — a term applied to an interface that has all of its methods

implemented to support the semantics defined in the relevant specifications.
Chapter 6 Compliance 37

■ Required interface — an interface that must be included although it might not be

fully implemented. Methods that are not implemented should throw an

SQLException to indicate that the corresponding feature is not supported.

6.2 Guidelines and Requirements
The following guidelines apply to all levels of compliance:

■ A JDBC API implementation must support Entry Level SQL92 plus the SQL

command Drop Table (see note.)

Entry Level SQL92 represents a "floor" for the level of SQL that a JDBC API

implementation must support. Access to features based on SQL99 should be

provided in a way that is compatible with the relevant part of the SQL99

specification.

■ Drivers must support escape syntax. Escape syntax is described in Chapter 13

“Statements”.

■ Drivers must support transactions. See Chapter 10 “Transactions” for details.

■ Drivers should provide access to every feature implemented by the underlying

data source, including features that extend the JDBC API. When a feature is not

supported, the corresponding methods throw an SQLException . The intent is

for applications using the JDBC API to have access to the same feature set as

native applications.

■ If a DatabaseMetaData method indicates that a given feature is supported, it

must be supported via standard syntax and semantics as described in the relevant

specifications. This may require the driver to provide the mapping to the data

source’s native API or SQL dialect if it differs from the standard.

■ If a feature is supported, all of the relevant metadata methods must be

implemented. For example, if a JDBC API implementation supports the RowSet
interface, it must also implement the RowSetMetaData interface.

■ If a feature is not supported, the corresponding DatabaseMetaData method

must say so. Attempting to access the unsupported feature causes an

SQLException to be thrown.

Note – A JDBC API implementation is required to support the DROP TABLE
command as specified by SQL92, Transitional Level. However, support for the

CASCADEand RESTRICToptions of DROP TABLEis optional. In addition, the

behaviour of DROP TABLEis implementation-defined when there are views or

integrity constraints defined that reference the table being dropped.
Chapter 6 Compliance 38

6.3 JDBC 1.0 API Compliance
A driver that is compliant with the JDBC 1.0 API must do the following:

■ Adhere to the preceding guidelines and requirements

■ Fully implement the following interfaces:

■ java.sql.Driver

■ java.sql.DatabaseMetaData (excepting those methods introduced in the

JDBC 2.0 API and the JDBC 3.0 API)

■ java.sql.ResultSetMetaData (excepting those methods introduced in the

JDBC 2.0 API and the JDBC 3.0 API)

■ Include the following required interfaces:

■ java.sql.CallableStatement

■ java.sql.Connection

■ java.sql PreparedStatement

■ java.sql.ResultSet

■ java.sql.Statement

6.4 JDBC 2.0 API Compliance
A driver that is compliant with the JDBC 2.0 API must do the following:

■ Comply with the JDBC 1.0 API requirements

■ Implement the following additional DatabaseMetaData methods:

■ deletesAreDetected

■ getConnection

■ getUDTs

■ insertsAreDetetced

■ othersDeletesAreVisible

■ othersInsertsAreVisible

■ othersUpdatesAreVisible

■ ownDeletesAreVisible

■ ownInsertsAreVisible

■ ownUpdatesAreVisible
Chapter 6 Compliance 39

■ supportsBatchUpdates

■ supportsResultSetConcurrency

■ supportsResultSetType

■ updatesAreDetected

■ Implement the following additional ResultSetMetaData methods:

■ getColumnClassName

■ getColumnType

■ getColumnTypeName

6.5 JDBC 3.0 API Compliance
A driver that is compliant with the JDBC 3.0 API must do the following:

■ Comply with the JDBC 2.0 API requirements

■ Include the following required interfaces:

■ java.sql.ParameterMetaData

■ java.sql.Savepoint

■ It must implement the following additional DatabaseMetaData methods:

■ supportsSavepoints

■ supportsNamedParameters

■ supportsMultipleOpenResults

■ supportsGetGeneratedKeys

■ getSuperTypes

■ getSuperTables

■ getAttributes

■ getResultSetHoldability

■ supportsResultSetHoldability

■ getSQLStateType

■ getDatabaseMajorVersion

■ getDatabaseMinorVersion

■ getJDBCMajorVersion

■ getJDBCMinorVersion
Chapter 6 Compliance 40

6.6 Determining Compliance Level
The JDBC API is a constituent technology of the Java platform. Compliance with the

JDBC API specification is determined as a subset of evaluating compliance with the

overall platform.

Note – As of this writing, there is no separate evaluation of compliance level for the

JDBC API.

6.7 Deprecated APIs
Deprecation refers to a class, interface, constructor, method or field that is no longer

recommended and may cease to exist in a future version.

The following constructors and methods were deprecated in the JDBC 2.0 API:

java.sql.CallableStatement.getBigDecimal(int, int)

java.sql.Date(int, int, int)

java.sql.Date.getHours()

java.sql.Date.getMinutes()

java.sql.Date.getSeconds()

java.sql.Date.setHours(int)

java.sql.Date.setMinutes(int)

java.sql.Date.setSeconds(int)

java.sql.DriverManager.getLogStream()

java.sql.DriverManager.setLogStream(PrintStream)
Chapter 6 Compliance 41

java.sql.PreparedStatement.setUnicodeStream(int, InputStream,
int)

java.sql.ResultSet.getBigDecimal(int, int)

java.sql.ResultSet.getBigDecimal(String, int)

java.sql.ResultSet.getUnicodeStream(int)

java.sql.ResultSet.getUnicodeStream(String)

java.sql.Time(int, int, int)

java.sql.Time.getDate()

java.sql.Time.getDay()

java.sql.Time.getMonth()

java.sql.Time.getYear()

java.sql.Time.setDate(int)

java.sql.Time.setMonth(int)

java.sql.Time.setYear(int)

java.sql.Timestamp(int, int, int, int, int, int, int)
Chapter 6 Compliance 42

CHAPTER 7

Database Metadata

The DatabaseMetaData interface is implemented by JDBC drivers to provide

information about their underlying data sources. It is used primarily by application

servers and tools to determine how to interact with a given data source.

Applications may also use DatabaseMetaData methods to get information about a

data source, but this is less typical.

The DatabaseMetaData interface includes over 150 methods, which can be

categorized according to the types of information they provide:

■ general information about the data source

■ whether or not the data source supports a given feature or capability

■ data source limits

■ what SQL objects the data source contains and attributes of those objects

■ transaction support offered by the data source

The DatabaseMetaData interface also contains over 40 fields, which are constants

used as return values for various DatabaseMetaData methods.

This chapter presents an overview of the DatabaseMetaData interface, gives

examples to illustrate the categories of metadata methods, and introduces some new

methods. For a comprehensive listing, however, the reader should consult the JDBC

3.0 API specification.

JDBC also defines the ResultSetMetaData interface, which is discussed in

Chapter 14 “Result Sets”.
Chapter 7 Database Metadata 43

7.1 Creating a DatabaseMetadata Object
A DatabaseMetaData object is created with the Connection method

getMetaData . Once created, it can be used to dynamically discover information

about the underlying data source. CODE EXAMPLE 7-1 creates a DatabaseMetadata
object and uses it to determine the maximum number of characters allowed for a

table name.

// con is a Connection object

DatabaseMetaData dbmd = con.getMetadata();

int maxLen = dbmd.getMaxTableNameLength();

CODE EXAMPLE 7-1 Creating and using a DatabaseMetadata object

7.2 Retrieving General Information
Some DatabaseMetaData methods are used to dynamically discover general

information about a data source as well as some details about its implementation.

Some of the methods in this category are:

■ getURL

■ getUserName

■ getDatabaseProductVersion, getDriverMajorVersion and

getDriverMinorVersion

■ getSchemaTerm, getCatalogTerm and getProcedureTerm

■ nullsAreSortedHigh and nullsAreSortedLow

■ usesLocalFiles and usesLocalFilePerTable

■ getSQLKeywords
Chapter 7 Database Metadata 44

7.3 Determining Feature Support
A large group of DatabaseMetaData methods can be used to determine whether a

given feature or set of features is supported by the driver or underlying data source.

Beyond this, some of the methods describe what level of support is provided. Some

of the methods that describe support for individual features are:

■ supportsAlterTableWithDropColumn

■ supportsBatchUpdates

■ supportsTableCorrelationNames

■ supportsPositionedDelete

■ supportsFullOuterJoins

■ supportsStoredProcedures

■ supportsMixedCaseQuotedIdentifiers

Methods to describe a level of feature support include:

■ supportsANSI92EntryLevelSQL

■ supportsCoreSQLGrammar

7.4 Data Source Limits
Another group of methods provides the limits imposed by a given data source.

Some of the methods in this category are:

■ getMaxRowSize

■ getMaxStatementLength

■ getMaxTablesInSelect

■ getMaxConnections

■ getMaxCharLiteralLength

■ getMaxColumnsInTable

Methods in this group return the limit as an int . A return value of zero means that

there is no limit or the limit is unknown.
Chapter 7 Database Metadata 45

7.5 SQL Objects and Their Attributes
Some DatabaseMetaData methods provide information about the SQL objects that

populate a given data source. This group also includes methods to determine the

attributes of those objects. Methods in this group return ResultSet objects in

which each row describes a particular object. For example, the method getUDTs
returns a ResultSet object in which there is a row for each UDT that has been

defined in the data source. Examples of this category are:

■ getSchemas and getCatalogs

■ getTables

■ getPrimaryKeys

■ getProcedures and getProcedureColumns

■ getUDTs

7.6 Transaction Support
A small group of methods provides information about the transaction semantics

supported by the data source. Examples of this category include:

■ supportsMultipleTransactions

■ getDefaultTransactionIsolation

7.7 New Methods
The JDBC 3.0 API introduces the following new DatabaseMetaData methods:

■ getSuperTypes — returns a description of the user-defined type hierarchies

defined in a given schema in the underlying data source

■ getSuperTables — returns a description of the table hierarchies defined in a

given schema in the underlying data source

■ getAttributes — returns a description of user-defined type attributes available

from a given catalog in the underlying data source

■ getSQLStateType — returns the type of SQLSTATEs that will be returned by

the method SQLException.getSQLState , described in “SQLException” on

page 49.
Chapter 7 Database Metadata 46

■ supportsSavepoints — returns true if the driver or underlying data source

supports savepoints, described in “Savepoints” on page 64.

■ supportsNamedParameters — returns true if the driver or underlying data

source supports named parameters for CallableStatement objects, described

in “Setting Parameters” on page 98

■ supportsMultipleOpenResults — returns true if the driver or underlying

data source supports multiple open result sets for CallableStatement objects,

described in “Returning Unknown or Multiple Results” on page 107

■ supportsGetGeneratedKeys — returns true if the driver or underlying data

source supports the retrieval of automatically generated keys, described in

“Retrieving Auto Generated Keys” on page 112

A complete definition of these methods may be found in the JDBC 3.0 API

specification (javadoc).

7.8 Modified Methods
The JDBC 3.0 API modifies the definitions of these existing DatabaseMetaData
methods, adding support for type hierarchies:

■ getTables — returns descriptions of the tables that match the given catalog,

schema, table name, and type criteria

■ getColumns — returns descriptions of the columns that match the given catalog,

schema, table name, and column name criteria

■ getUDTs — returns descriptions of the user-defined types that match the given

catalog, schema, type name, and type criteria

■ getSchemas — now returns catalog for each schema as well as the schemata.

The JDBC 3.0 API specification includes updated definitions of these methods.
Chapter 7 Database Metadata 47

Chapter 7 Database Metadata 48

CHAPTER 8

Exceptions

The SQLException class and its subtypes provide information about errors and

warnings that occur while a data source is being accessed.

8.1 SQLException
An instance of SQLException is thrown when an error occurs during an interaction

with a data source. The exception contains the following information:

■ a textual description of the error. The String containing the description can be

retrieved by calling the method SQLException.getMessage .

■ a SQLState. The String containing the SQLState can be retrieved by calling the

method SQLException.getSQLState .

The value of the SQLState string will depend on the underlying data source

setting the value. Both X/Open and SQL99 define SQLState values and the

conditions in which they should be set. Although the sets of values overlap, the

values defined by SQL99 are not a superset of X/Open.

The DatabaseMetaData method getSQLStateType allows an application to

determine if the SQLStates being returned by a data source are X/Open or SQL99.

■ an error code. This is an integer value identifying the error that caused the

SQLException to be thrown. Its value and meaning are implementation specific

and may be the actual error code returned by the underlying data source. The

error code can be retrieved using the SQLException.getErrorCode method.

■ a reference to any "chained" exceptions. If more than one error occurs or the event

leading up to the exception being thrown can be described as a chain of events,

the exceptions are referenced via this chain. A chained exception can be retrieved

by calling the SQLException.getNextException method on the exception

that was thrown. If no more exceptions are chained, the getNextException
method returns null .
Chapter 8 Exceptions 49

SQLWarning , BatchUpdateException and DataTruncation are the three

subclasses that extend SQLException . These subclasses are described in the

following sections.

8.2 SQLWarning
Methods in the following interfaces will generate an SQLWarning object if they

cause a database access warning:

■ Connection

■ Statement and its subtypes, PreparedStatement and CallableStatement

■ ResultSet

When a method generates an SQLWarning object, the caller is not informed that a

data access warning has occurred. The method getWarnings must be called on the

appropriate object to retrieve the SQLWarning object. However, the

DataTruncation sub-class of SQLWarning may be thrown in some circumstances,

see “DataTruncation” on page 50 for more details.

If multiple data access warnings occur, they are chained to the first one and can be

retrieved by calling the SQLWarning.getNextWarning method. If there are no

more warnings in the chain, getNextWarning returns null .

Subsequent SQLWarning objects continue to be added to the chain until the next

statement is executed or, in the case of a ResultSet object, when the cursor is re-

positioned, at which point all SQLWarning objects in the chain are removed.

8.3 DataTruncation
The DataTruncation class, a sub-class of SQLWarning , provides information

when data is truncated. When data truncation occurs on a write to the data source, a

DataTruncation object is thrown. The data value that has been truncated may

have been written to the data source even if a warning has been generated. When

data trucation occurs on a read from the data source, a SQLWarning is reported.

A DataTruncation object contains the following information:

■ the descriptive String "Data truncation"

■ the SQLState "01004"
Chapter 8 Exceptions 50

■ a boolean to indicated whether a column value or a parameter was truncated.

The method DataTruncation.getParameter returns true if a parameter was

truncated and false if a column value was truncated.

■ an int giving the index of the column or parameter that was truncated. If the

index of the column or parameter is unknown, the method

DataTruncation.getIndex returns -1 . If the index is unknown, the values

returned by the methods DataTruncation.getParameter and

DataTruncation.getRead are undefined.

■ a boolean to indicate whether the truncation occurred on a read or a write

operation. The method DataTruncation.getRead returns true if the

truncation occurred on a read and false if the truncation occurred on a write.

■ an int indicating the the size of the target field in bytes. The method

DataTruncation.getDataSize returns the number of bytes of data that could

have been transferred or -1 if the number of bytes is unknown.

■ an int indicating the actual number of bytes that were transferred. The method

DataTruncation.getTransferSize returns the number of bytes actually

transferred or -1 if the number of bytes is unknown.

8.3.1 Silent Truncation

The Statement.setMaxFieldSize method allows a maximum size (in bytes) to

be set. This limit applies only to the BINARY, VARBINARY, LONGVARBINARY, CHAR,
VARCHARand LONGVARCHARdata types.

If a limit has been set using setMaxFieldSize and there is an attempt to read or

write data that exceeds the limit, any truncation that occurs as a result of exceeding

the set limit will not be reported.

8.4 BatchUpdateException
A BatchUpdateException object provides information about errors that occur

while a batch of statements is being executed. This exception’s behavior is described

in Chapter 15 “Batch Updates”.
Chapter 8 Exceptions 51

Chapter 8 Exceptions 52

CHAPTER 9

Connections

A Connection object represents a connection to a data source via a JDBC

technology-enabled driver. The data source can be a DBMS, a legacy file system, or

some other source of data with a corresponding JDBC driver. A single application

using the JDBC API may maintain multiple connections. These connections may

access multiple data sources, or they may all access a single data source.

From the JDBC driver perspective, a Connection object represents a client session.

It has associated state information such as user ID, a set of SQL statements and

result sets being used in that session, and what transaction semantics are in effect.

To obtain a connection, the application may interact with either:

■ the DriverManager class working with one or more Driver implementations

OR

■ a DataSource implementation

Using a DataSource object is the preferred method because it enhances application

portability, it makes code maintenance easier, and it makes it possible for an

application to transparently make use of connection pooling and distributed

transactions. All J2EE components that establish a connection to a data source use a

DataSource object to get a connection.

This chapter describes the various types of JDBC drivers and the use of the Driver
interface, the DriverManager class, and the basic DataSource interface.

DataSource implementations that support connection pooling and distributed

transactions are discussed in Chapter 11 “Connection Pooling” and Chapter 12

“Distributed Transactions”.
Chapter 9 Connections 53

9.1 Types of Drivers
There are many possible implementations of JDBC drivers. These implementations

are categorized as follows:

■ Type 1 — drivers that implement the JDBC API as a mapping to another data

access API, such as ODBC. Drivers of this type are generally dependent on a

native library, which limits their portability. The JDBC-ODBC Bridge driver is an

example of a Type 1 driver.

■ Type 2 — drivers that are written partly in the Java programming language and

partly in native code. These drivers use a native client library specific to the data

source to which they connect. Again, because of the native code, their portability

is limited.

■ Type 3 — drivers that use a pure Java client and communicate with a middleware

server using a database-independent protocol. The middleware server then

communicates the client’s requests to the data source.

■ Type 4 — drivers that are pure Java and implement the network protocol for a

specific data source. The client connects directly to the data source.

9.2 The Driver Interface
JDBC drivers must implement the Driver interface, and the implementation must

contain a static initializer that will be called when the driver is loaded. This

initializer registers a new instance of itself with the DriverManager , as shown in

CODE EXAMPLE 9-1.

public class AcmeJdbcDriver implements java.sql.Driver {

static {

java.sql.DriverManager.registerDriver(new AcmeJdbcDriver());

}

...

}

CODE EXAMPLE 9-1 Example static initializer for a driver implementing

java.sql.Driver

When an application loads a Driver implementation, which is shown in

CODE EXAMPLE 9-2, the static initializer will automatically register an instance of the

driver.
Chapter 9 Connections 54

 Class.forName(“com.acme.jdbc.AcmeJdbcDriver”);

CODE EXAMPLE 9-2 Loading a driver that implements java.sql.Driver

To insure that drivers can be loaded using this mechanism, drivers are required to

provide a niladic constructor.

The DriverManager class invokes Driver methods when it wishes to interact with

a registered driver. The Driver interface also includes the method acceptsURL .

The DriverManager can use this method to determine which of its registered

drivers it should use for a given URL.

When the DriverManager is trying to establish a connection, it calls that driver’s

connect method and passes the driver the URL. If the Driver implementation

understands the URL, it will return a Connection object; otherwise it returns null .

9.3 The DriverManager Class
The DriverManager class works with the Driver interface to manage the set of

drivers available to a JDBC client. When the client requests a connection and

provides a URL, the DriverManager is responsible for finding a driver that

recognizes the URL and using it to connect to the corresponding data source.

Key DriverManager methods include:

■ registerDriver — this method adds a driver to the set of available drivers and

is invoked implicitly when the driver is loaded. The registerDriver method is

typically called by the static initializer provided by each driver.

■ getConnection — the method the JDBC client invokes to establish a connection.

The invocation includes a JDBC URL, which the DriverManager passes to each

driver in its list until it finds one whose Driver.connect method recognizes the

URL. That driver returns a Connection object to the DriverManager , which in

turn passes it to the application.

CODE EXAMPLE 9-3 illustrates how a JDBC client obtains a connection from the

DriverManager .

// Load the driver. This creates an instance of the driver

// and calls the registerDriver method to make acme.db.Driver

// available to clients.

Class.forName(“acme.db.Driver”);
Chapter 9 Connections 55

// Set up arguments for the call to the getConnection method.

// The sub-protocol “odbc” in the driver URL indicates the

// use of the JDBC-ODBC bridge.

String url = “jdbc:odbc:DSN”;

String user = “SomeUser”;

String passwd = “SomePwd”;

// Get a connection from the first driver in the DriverManager

// list that recognizes the URL “jdbc:odbc:DSN”.

Connection con = DriverManager.getConnection(url, user, passwd);

CODE EXAMPLE 9-3 Loading a driver and getting a connection using the DriverManager

The DriverManager class also provides two other getConnection methods:

■ getConnection(String url) for connecting to data sources that do not use

username and passwords.

■ getConnection(String url, java.util.Properties prop) , which

allows the client to connect using a set of properties describing the user name and

password along with any addition information that may be required.

The DriverPropertyInfo class provides information on the properties that the

JDBC driver can understand.

See the JDBC 3.0 API Specification for more details.

9.3.1 The SQLPermission Class

The SQLPermission class represents a set of permissions that a codebase may be

granted.

Currently the only permission defined is setLog . The SecurityManager will

check for the setLog permission when an Applet calls one of the DriverManager
methods setLogWriter and setLogStream . If the codebase does not have the

setLog permission a java.lang.SecurityException exception will be thrown.

See the JDBC 3.0 API Specification for more details.
Chapter 9 Connections 56

9.4 The DataSource Interface
The DataSource interface, introduced in JDBC 2.0 Optional Package, is the

preferred approach to obtaining data source connections. A JDBC driver that

implements the Datasource interface returns connections that implement the

same interface, Connection , as those returned by a DriverManager using the

Driver interface. Using a Datasource object increases application portability by

making it possible for an application to use a logical name for a data source instead

of having to supply information specific to a particular driver. A logical name is

mapped to a DataSource object via a naming service that uses the Java Naming

and Directory InterfaceTM (JNDI). The DataSource object, represents a physical

data source and provides connections to that data source. If the data source or

information about it changes, the properties of the DataSource object can simply be

modified to reflect the changes; no change in application code is necessary.

The DataSource interface can be implemented so that it transparently provides the

following:

■ Increased performance and scalability through connection pooling

■ Support for distributed transactions through the XADataSource interface

The next three sections discuss (1) basic DataSource properties, (2) how logical

naming using the JNDI API improves an applications portability and makes it easier

to maintain, and (3) how to obtain a connection.

Connection pooling and distributed transactions will be discussed in Chapter 11

“Connection Pooling” and Chapter 12 “Distributed Transactions”.

9.4.1 DataSource Properties

The JDBC API defines a set of properties to identify and describe a DataSource
implementation. The actual set required for a specific implementation depends on

the type of DataSource object, that is, whether it is a basic DataSource object, a

ConnectionPoolDataSource object, or an XADataSource object. The only

property required for all DataSource implementations is description .

The following table describes the standard DataSource properties:

TABLE 9-1 Standard Data Source Properties

Property Name Type Description

databaseName String name of a particular database on a server
Chapter 9 Connections 57

DataSource properties follow the convention specified for properties of

JavaBeansTM components in the JavaBeans 1.01 Specification. DataSource
implementations may augment this set with implementation-specific properties. If

new properties are added, they must be given names that do not conflict with the

standard property names.

DataSource implementations must provide “getter” and “setter” methods for each

property they support. These properties typically are initialized when the

DataSource object is deployed, as in CODE EXAMPLE 9-4, in which a

VendorDataSource object implements the DataSource interface.

VendorDataSource vds = new VendorDataSource();

vds.setServerName(“my_database_server”);

String name = vds.getServerName();

CODE EXAMPLE 9-4 Setting and getting a DataSource property

DataSource properties are not intended to be directly accessible by JDBC clients.

This design is reinforced by defining the access methods on the implementation class

rather than on the public DataSource interface used by applications. Furthermore,

the object that the client manipulates can be a wrapper that only implements the

DataSource interface. The setter and getter methods for the properties need not be

exposed to the client.

Management tools that need to manipulate the properties of a DataSource
implementation can access those properties using introspection.

dataSourceName String a data source name; used to name an underlying

XADataSource object or

ConnectionPoolDataSource object when

pooling of connections is done

description String description of this data source

networkProtocol String network protocol used to communicate with the

server

password String a database password

portNumber int port number where a server is listening for requests

roleName String the initial SQL rolename

serverName String database server name

user String user’s account name

TABLE 9-1 Standard Data Source Properties

Property Name Type Description
Chapter 9 Connections 58

9.4.2 The JNDI API and Application Portability

The Java Naming and Directory Interface (JNDI) API provides a uniform way for

applications to access remote services over the network. This section describes how

it is used to register and access a JDBC DataSource object. See the JNDI

specification for a complete description of this interface.

Using the JNDI API, applications can access a DataSource object by specifying its

logical name. A naming service using the JNDI API maps this logical name to a

corresponding data source. This scheme greatly enhances portability because any of

the DataSource properties, such as portNumber or serverName, can be changed

without impacting the JDBC client code. In fact, the application can be re-directed to

a different underlying data source in a completely transparent fashion. This is

particularly useful in the three-tier environment, where an application server hides

the details of accessing different data sources.

CODE EXAMPLE 9-5 illustrates the use of a JNDI-based naming service to deploy a

new VendorDataSource object.

// Create a VendorDataSource object and set some properties

VendorDataSource vds = new VendorDataSource();

vds.setServerName(“my_database_server”);

vds.setDatabaseName(“my_database”);

vds.setDescription(“data source for inventory and personnel”);

// Use the JNDI API to register the new VendorDataSource object.

// Reference the root JNDI naming context and then bind the

// logical name “jdbc/AcmeDB” to the new VendorDataSource object.

Context ctx = new InitialContext();

ctx.bind(“jdbc/AcmeDB”, vds);

CODE EXAMPLE 9-5 Registering a DataSource object with a JNDI-based naming service

Note – J2EE components use a special convention for naming their data sources —

see Chapter 5 "Naming" in the J2EE platform specification for more details.
Chapter 9 Connections 59

9.4.3 Getting a Connection with a DataSource Object

Once a DataSource object has been registered with a JNDI-based naming service,

an application can use it to obtain a connection to the physical data source that it

represents, as is done in CODE EXAMPLE 9-6.

// Get the initial JNDI naming context

Context ctx = new InitialContext();

// Get the DataSource object associated with the logical name

// “jdbc/AcmeDB” and use it to obtain a database connection

DataSource ds = (DataSource)ctx.lookup(“jdbc/AcmeDB”);

Connection con = ds.getConnection(“user”, “pwd”);

CODE EXAMPLE 9-6 Getting a Connection object using a DataSource object

The DataSource implementation bound to the name “jdbc/AcmeDB” can be

modified or replaced without affecting the application code.
Chapter 9 Connections 60

CHAPTER 10

Transactions

Transactions are used to provide data integrity, correct application semantics, and a

consistent view of data during concurrent access. All JDBC compliant drivers are

required to provide transaction support. Transaction management in the JDBC API

mirrors the SQL99 specification and includes these concepts:

■ Auto-commit mode

■ Transaction isolation levels

■ Savepoints

This chapter describes transaction semantics associated with a single Connection
object. Transactions involving multiple Connection objects are discussed in

Chapter 12 “Distributed Transactions”.

10.1 Transaction Boundaries and Auto-
commit
When to start a new transaction is a decision made implicitly by either the JDBC

driver or the underlying data source. Although some data sources implement an

explicit “begin transaction” statement, there is no JDBC API to do so. Typically, a

new transaction is started when the current SQL statement requires one and there is

no transaction already in place. Whether or not a given SQL statement requires a

transaction is also specified by SQL99.

The Connection attribute auto-commit specifies when to end transactions. Enabling

auto-commit causes the JDBC driver to do a transaction commit after each

individual SQL statement as soon as it is complete. The point at which a statement

is considered to be “complete” depends on the type of SQL statement as well as

what the application does after executing it:
Chapter 10 Transactions 61

■ For Insert, Update, Delete, and DDL statements, the statement is complete as soon

as it has finished executing.

■ For Select statements, the statement is complete when the associated result set is

closed. The result set is closed as soon as one of the following occurs:

■ all of the rows have been retrieved

■ the associated Statement object is re-executed

■ For CallableStatement objects, the statement is complete when all of the

associated result sets have been closed.

10.1.1 Disabling Auto-commit Mode

CODE EXAMPLE 10-1 shows how to disable auto-commit mode.

// Assume con is a Connection object

con.setAutoCommit(false);

CODE EXAMPLE 10-1 Setting auto-commit off

When auto-commit is disabled, each transaction must be explicitly commited by

calling the Connection method commit or explicitly rolled back by calling the

Connection method rollback , respectively. This is appropriate for cases where

transaction management is being done in a layer above the driver, such as:

■ when the application needs to group multiple SQL statements into a single

transaction

■ when the transaction is being managed by the application server

The default is for auto-commit mode to be enabled when the Connection object is

created. If the value of auto-commit is changed in the middle of a transaction, the

current transaction is committed. It is an error to enable auto-commit for a

connection participating in a distributed transaction, as described in Chapter 12

“Distributed Transactions”.

10.2 Transaction Isolation Levels
Transaction isolation levels specify what data is “visible” to the statements within a

transaction. They directly impact the level of concurrent access by defining what

interaction, if any, is possible between transactions against the same target data

source. Possible interaction between concurrent transactions is categorized as

follows:
Chapter 10 Transactions 62

■ dirty reads occur when transactions are allowed to see uncommitted changes to

the data. In other words, changes made inside a transaction are visible outside the

transaction before it is commited. If the changes are rolled back instead of being

committed, it is possible for other transactions to have done work based on

incorrect, transient data.

■ nonrepeatable reads occur when:

a. Transaction A reads a row

b. Transaction B changes the row

c. Transaction A reads the same row a second time and gets different results

■ phantom reads occur when:

a. Transaction A reads all rows that satisfy a WHEREcondition

b. Transaction B inserts an additional row that satisfies the same condition

c. Transaction A reevaluates the WHEREcondition and picks up the additional

“phantom” row

JDBC augments the four levels of transaction isolation defined by SQL99, by adding

TRANSACTION_NONE. From least restrictive to most restrictive, the transaction

isolation levels are:

1. TRANSACTION_NONE— indicates that the driver does not support transactions,

which means that it is not a JDBC compliant driver.

2. TRANSACTION_READ_UNCOMMITTED— allows transactions to see uncommitted

changes to the data. This means that dirty reads, nonrepeatable reads, and

phantom reads are possible.

3. TRANSACTION_READ_COMMITTED— means that any changes made inside a

transaction are not visible outside the transaction until the transaction is

committed. This prevents dirty reads, but nonrepeatable reads and phantom

reads are still possible.

4. TRANSACTION_REPEATABLE_READ— disallows dirty reads and nonrepeatable

reads. Phantom read are still possible.

5. TRANSACTION_SERIALIZABLE— specifies that dirty reads, nonrepeatable reads,

and phantom reads are prevented.

10.2.1 Using the setTransactionIsolation Method

The default transaction level for a Connection object is determined by the driver

supplying the connection. Typically, it is the default transaction level supported by

the underlying data source.
Chapter 10 Transactions 63

The Connection method setTransactionIsolation is provided to allow JDBC

clients to change the transaction isolation level for a given Connection object. The

new isolation level remains in effect for the remainder of the session or until the next

invocation of the setTransactionIsolation method.

The result of invoking the method setTransactionIsolation in the middle of a

transaction is implementation-defined.

The return value of the method getTransactionIsolation should reflect the

change in isolation level when it actually occurs. It is recommended that drivers

implement the setTransactionIsolation method to change the isolation level

starting with the next transaction. Committing the current transaction to make the

effect immediate is also a valid implementation.

It is possible for a given JDBC driver to not support all four transaction isolation

levels (not counting TRANSACTION_NONE). If a driver does not support the isolation

level specified in an invocation of setTransactionIsolation , it is allowed to

substitute a higher, more restrictive transaction isolation level. If a driver is unable to

substitute a higher transaction level, it throws an SQLException . The

DatabaseMetaData method supportsTransactionIsolationLevel may be

used to determine whether or not the driver supports a given level.

10.2.2 Performance Considerations

As the transaction isolation level increases, more locking and other DBMS overhead

is required to ensure the correct semantics. This in turn lowers the degree of

concurrent access that can be supported. As a result, applications may see decreased

performance when they use a higher transaction isolation level. For this reason, the

transaction manager, whether it is the application itself or part of the application

server, should weigh the need for data consistency against the requirements for

performance when determining which transaction isolation level is appropriate.

10.3 Savepoints
Savepoints provide finer-grained control of transactions by marking intermediate

points within a transaction. Once a savepoint has been set, the transaction can be

rolled back to that savepoint without affecting preceding work.

The DatabaseMetaData.supportsSavepoints method can be used to determine

whether a JDBC driver and DBMS support savepoints.
Chapter 10 Transactions 64

10.3.1 Setting and Rolling Back to a Savepoint

The JDBC 3.0 API adds the method Connection.setSavepoint , which sets a

savepoint within the current transaction. The Connection.rollback method has

been overloaded to take a savepoint argument.

CODE EXAMPLE 10-2 inserts a row into a table, sets the savepoint svpt1 , and then

inserts a second row. When the transaction is later rolled back to svpt1 , the second

insertion is undone, but the first insertion remains intact. In other words, when the

transaction is committed, only the row containing ’FIRST ’ will be added to TAB1.

conn.createStatement();

int rows = stmt.executeUpdate("INSERT INTO TAB1 (COL1) VALUES " +

"(’FIRST’)");

// set savepoint

Savepoint svpt1 = conn.setSavepoint("SAVEPOINT_1");

rows = stmt.executeUpdate("INSERT INTO TAB1 (COL1) " +

"VALUES (’SECOND’)");

...

conn.rollback(svpt1);

...

conn.commit();

CODE EXAMPLE 10-2 Rolling back a transaction to a savepoint

10.3.2 Releasing a Savepoint

The method Connection.releaseSavepoint takes a Savepoint object as a

parameter and removes it from the current transaction.

Once a savepoint has been released, attempting to reference it in a rollback operation

will cause an SQLException to be thrown.

Any savepoints that have been created in a transaction are automatically released

and become invalid when the transaction is committed or when the entire

transaction is rolled back.

Rolling a transaction back to a savepoint automatically releases and makes invalid

any other savepoints that were created after the savepoint in question.
Chapter 10 Transactions 65

Chapter 10 Transactions 66

CHAPTER 11

Connection Pooling

In a basic DataSource implementation, there is a 1:1 correspondence between the

client’s Connection object and the physical database connection. When the

Connection object is closed, the physical connection is dropped. Thus, the

overhead of opening, initializing, and closing the physical connection is incurred for

each client session.

A connection pool solves this problem by maintaining a cache of physical database

connections that can be reused across client sessions. Connection pooling greatly

improves performance and scalability, particularly in a three-tier environment where

multiple clients can share a smaller number of physical database connections. In

FIGURE 11-1, the JDBC driver provides an implementation of

ConnectionPoolDataSource that the application server uses to build and

manage the connection pool.

The algorithm used to manage the connection pool is implementation-specific and

varies with application servers. The application server provides its clients with an

implementation of the DataSource interface that makes connection pooling

transparent to the client. As a result, the client gets better performance and

scalability while using the same JNDI and DataSource APIs as before.
Chapter 11 Connection Pooling 67

FIGURE 11-1 Connection pooling

The following sections introduce the ConnectionPoolDataSource interface, the

PooledConnection interface, and the ConnectionEvent class. These pieces,

which operate beneath the DataSource and Connection interfaces used by the

client, are incorporated into a step-by-step description of a typical connection

pooling implementation. This chapter also describes some important differences

Application Server

JDBC
Application

Cache of
PooledConnection objects

JDBC Driver

logical
Connection
object

physical
PooledConnection
object

ConnectionPoolDataSource API

DataSource API
Chapter 11 Connection Pooling 68

between a basic DataSource object and one that implements connection pooling. In

addition, it discusses how a pooled connection can maintain a pool of reusable

PrepredStatement objects.

Although much of the discussion in this chapter assumes a three-tier environment,

connection pooling is also relevant in a two-tier environment. In a two-tier

environment, the JDBC driver implements both the DataSource and

ConnectionPoolDataSource interfaces. This implementation allows an

application that opens and closes multiple connections to benefit from connection

pooling.

11.1 ConnectionPoolDataSource and
PooledConnection
Typically, a JDBC driver implements the ConnectionPoolDataSource interface,

and the application server uses it to obtain PooledConnection objects.

CODE EXAMPLE 11-1 shows the signatures for the two versions of the

getPooledConnection method.

public interface ConnectionPoolDataSource {

PooledConnection getPooledConnection() throws SQLException;

PooledConnection getPooledConnection(String user,

String password) throws SQLException;

...

}

CODE EXAMPLE 11-1 The ConnectionPoolDataSource interface

A PooledConnection object represents a physical connection to a data source. The

JDBC driver’s implementation of PooledConnection encapsulates all of the

details of maintaining that connection.

An application server caches and reuses PooledConnection objects within its

implementation of the DataSource interface. When a client calls the method

DataSource.getConnection , the application server uses the physical

PooledConnection object to obtain a logical Connection object.

CODE EXAMPLE 11-2 shows the PooledConnection interface definition.
Chapter 11 Connection Pooling 69

public interface PooledConnection {

Connection getConnection() throws SQLException;

void close() throws SQLException;

void addConnectionEventListener(

ConnectionEventListener listener);

void removeConnectionEventListener(

ConnectionEventListener listener);

}

CODE EXAMPLE 11-2 The PooledConnection interface

When an application is finished using a connection, it closes the logical connection

using the method Connection.close . This closes the logical connection but does

not close the physical connection. Instead, the physical connection is returned to the

pool so that it can be reused.

Connection pooling is completely transparent to the client: A client obtains a pooled

connection and uses it just the same way it obtains and uses a nonpooled

connection.

11.2 Connection Events
Recall that when an application calls the method Connection.close , the

underlying physical connection—the PooledConnection object—is available for

reuse. JavaBeans-style events are used to notify the connection pool manager (the

application server) that a PooledConnection object can be recycled.

In order to be notified of an event on a PooledConnection object, the connection

pool manager must implement the ConnectionEventListener interface and then

be registered as a listener by that PooledConnection object. The

ConnectionEventListener interface defines the following two methods, which

correspond to the two kinds of events that can occur on a PooledConnection
object:

■ connectionClosed — triggered when the logical Connection object associated

with this PooledConnection object is closed, that is, the application called the

method Connection.close

■ connectionErrorOccurred — triggered when a fatal error, such as the server

crashing, causes the connection to be lost
Chapter 11 Connection Pooling 70

A connection pool manager registers itself as a listener for a PooledConnection
object using the PooledConnection.addConnectionEventListener method.

Typically, a connection pool manager registers itself as a

ConnectionEventListener before returning a Connection object to an

application.

The driver invokes the ConnectionEventListener methods

connectionClosed and connectionErrorOccurred when the corresponding

events occur. Both methods take a ConnectionEvent object as a parameter, which

can be used to determine which PooledConnection object was closed or had an

error. When the JDBC application closes its logical connection, the JDBC driver

notifies the connection pool manager (the listener) by calling the listener’s

implementation of the method connectionClosed . At this point, the connection

pool manager can return the PooledConnection object to the pool for reuse.

When an error occurs, the JDBC driver notifies the listener by calling its

connectionErrorOccurred method and then throws an SQLException object to

the application to notify it of the same error. In the event of a fatal error, the bad

PooledConnection object is not returned to the pool. Instead, the connection pool

manager calls the PooledConnection.close method on the PooledConnection
object to close the physical connection.

11.3 Connection Pooling in a Three-tier
Environment
The following sequence of steps outlines what happens when a JDBC client requests

a connection from a DataSource object that implements connection pooling:

■ The client calls DataSource.getConnection .

■ The application server providing the DataSource implementation looks in its

connection pool to see if there is a suitable PooledConnection object— a

physical database connection—available. Determining the suitability of a given

PooledConnection object may include matching the client’s user authentication

information or application type as well as using other implementation-specific

criteria. The lookup method and other methods associated with managing the

connection pool are specific to the application server.

■ If there are no suitable PooledConnection objects available, the application

server calls the ConnectionPoolDataSource.getPooledConnection
method to get a new physical connection. The JDBC driver implementing

ConnectionPoolDataSource creates a new PooledConnection object and

returns it to the application server.
Chapter 11 Connection Pooling 71

■ Regardless of whether the PooledConnection was retrieved from the pool or

was newly created, the application server does some internal bookkeeping to

indicate that the physical connection is now in use.

■ The application server calls the method PooledConnection.getConnection
to get a logical Connection object. This logical Connection object is actually a

“handle” to a physical PooledConnection object, and it is this handle that is

returned by the DataSource.getConnection method when connection pooling

is in effect.

■ The application server registers itself as a ConnectionEventListener by

calling the method PooledConnection.addConnectionEventListener .

This is done so that the application server will be notified when the physical

connection is available for reuse.

■ The logical Connection object is returned to the JDBC client, which uses the

same Connection API as in the basic DataSource case. Note that the

underlying physical connection cannot be reused until the client calls the method

Connection.close .

Connection pooling can also be implemented in a two-tier environment where there

is no application server. In this case, the JDBC driver provides both the

implementation of DataSource which is visible to the client and the underlying

ConnectionPoolDataSource implementation.

11.4 DataSource Implementations and
Connection Pooling
Aside from improved performance and scalability, a JDBC application should not see

any difference between accessing a DataSource object that implements connection

pooling and one that does not. However, there are some important differences in the

application server and driver level implementations.

A basic DataSource implementation, that is, one that does not implement

connection pooling, is typically provided by a JDBC driver vendor. In a basic

DataSource implementation, the following are true:

■ The DataSource.getConnection method creates a new Connection object

that represents a physical connection and encapsulates all of the work to set up

and manage that connection.

■ The Connection.close method shuts down the physical connection and frees

the associated resources.

In a DataSource implementation that includes connection pooling, a great deal

happens behind the scenes. In such an implementation, the following are true:
Chapter 11 Connection Pooling 72

■ The DataSource implementation includes an implementation-specific

connection pooling module that manages a cache of PooledConnection objects.

The DataSource object is typically implemented by the application server as a

layer on top of the driver’s implementations of the

ConnectionPoolDataSource and PooledConnection interfaces.

■ The DataSource.getConnection method calls

PooledConnection.getConnection to get a logical handle to an underlying

physical connection. The overhead of setting up a new physical connection is

incurred only if there are no existing connections available in the connection pool.

When a new physical connection is needed, the connection pool manager will call

the ConnectionPoolDataSource method getPooledConnection to create

one. The work to manage the physical connection is delegated to the

PooledConnection object.

■ The Connection.close method closes the logical handle, but the physical

connection is maintained. The connection pool manager is notified that the

underlying PooledConnection object is now available for reuse. If the

application attempts to reuse the logical handle, the Connection implementation

throws an SQLException .

■ A single physical PooledConnection object may generate many logical

Connection objects during its lifetime. For a given PooledConnection object,

only the most recently produced logical Connection object will be valid. Any

previously existing Connection object is automatically closed when the associated

PooledConnection.getConnection method is called. Listeners (connection

pool managers) are not notified in this case.

This gives the application server a way to take a connection away from a client.

This is an unlikely scenario but may be useful if the application server is trying to

force an orderly shutdown.

■ A connection pool manager shuts down a physical connection by calling the

method PooledConnection.close . This method is typically called only in

certain circumstances: when the application server is undergoing an orderly

shutdown, when the connection cache is being reinitialized, or when the

application server receives an event indicating that an unrecoverable error has

occurred on the connection.

11.5 Deployment
Deploying a DataSource object that implements connection pooling requires that

both a client-visible DataSource object and an underlying

ConnectionPoolDataSource object be registered with a JNDI-based naming

service.
Chapter 11 Connection Pooling 73

The first step is to deploy the ConnectionPoolDataSource implementation, as is

done in CODE EXAMPLE 11-3.

// ConnectionPoolDS implements the ConnectionPoolDataSource

// interface. Create an instance and set properties.

com.acme.jdbc.ConnectionPoolDS cpds =

new com.acme.jdbc.ConnectionPoolDS();

cpds.setServerName(“bookserver”);

cpds.setDatabaseName(“booklist”);

cpds.setPortNumber(9040);

cpds.setDescription(“Connection pooling for bookserver”);

// Register the ConnectionPoolDS with JNDI, using the logical name

// “jdbc/pool/bookserver_pool”

Context ctx = new InitialContext();

ctx.bind(“jdbc/pool/bookserver_pool”, cpds);

CODE EXAMPLE 11-3 Deploying a ConnectionPoolDataSource object

Once this step is complete, the ConnectionPoolDataSource implementation is

available as a foundation for the client-visible DataSource implementation. The

DataSource implementation is deployed such that it references the

ConnectionPoolDataSource implementation, as shown in CODE EXAMPLE 11-4.

// PooledDataSource implements the DataSource interface.

// Create an instance and set properties.

com.acme.appserver.PooledDataSource ds =

new com.acme.appserver.PooledDataSource();

ds.setDescription(“Datasource with connection pooling”);

// Reference the previously registered ConnectionPoolDataSource

ds.setDataSourceName(“jdbc/pool/bookserver_pool”);

// Register the DataSource implementation with JNDI, using the logical
// name “jdbc/bookserver”.

Context ctx = new InitialContext();

ctx.bind(“jdbc/bookserver”, ds);

CODE EXAMPLE 11-4 Deploying a DataSource object backed by a

ConnectionPoolDataSource object
Chapter 11 Connection Pooling 74

The DataSource object is now available for use in an application.

11.6 Reuse of Statements by Pooled
Connections
The JDBC 3.0 specification introduces the feature of statement pooling. This feature,

which allows an application to reuse a PreparedStatement object in much the

same way it can reuse a connection, is made available through a pooled connection.

FIGURE 11-2 provides a logical view of how a pool of PreparedStatement objects

can be associated with a PooledConnection object. As with the

PooledConnection object itself, the PreparedStatement objects can be reused

by multiple logical connections in a transparent manner.
Chapter 11 Connection Pooling 75

FIGURE 11-2 Logical view of prepared statements reused by pooled connections

In FIGURE 11-2, the connection pool and statement pool are implemented by the

application server. However, this functionality could also be implemented by the

driver or underlying data source. This discussion of statement pooling is meant to

allow for any of these implementations.

11.6.1 Using a Pooled Statement

If a pooled connection reuses statements, the reuse must be completely transparent

to an application. In other words, from the application’s point of view, using a

PreparedStatement object that participates in statement pooling is exactly the

JDBC
Application

JDBC
Application

data source

PooledConnection

PooledConnection

Connection Pool

Application Server

Pool of
PreparedStatement
Objects

Pool of
PreparedStatement
Objects
Chapter 11 Connection Pooling 76

same as using one that does not. Statements are kept open for reuse entirely under

the covers, so there is no change in application code. If an application closes a

PreparedStatement object, it must still call Connection.prepareStatement
in order to use it again. The only visible effect of statement pooling is a possible

improvement in performance.

An application may find out whether a data source supports statement pooling by

calling the DatabaseMetaData method supportsStatementPooling . If the

return value is true , the application can then choose to use PreparedStatement
objects knowing that they are being pooled.

In many cases, reusing statements is a significant optimization. This is especially

true for complex prepared statements. However, it should also be noted that leaving

large numbers of statements open may have an adverse impact on the use of

resources.

11.6.2 Closing a Pooled Statement

An application closes a pooled statement exactly the same way it closes a nonpooled

statement. Whether it is pooled or not, a statement that has been closed is no longer

available for use by the application, and an attempt to reuse it will cause an

exception to be thrown.

The following methods can close a pooled statement:

■ Statement.close — called by an application; if the statement is being pooled,

closes the logical statement used by the application but does not close the

physical statement being pooled

■ Connection.close — called by an application

■ Nonpooled connection — closes the physical connection and all statements

created by that connection. This is necessary because the garbage collection

mechanism is unable to detect when externally managed resources can be

released.

■ Pooled connection — closes the logical connection and the logical statements it

returned but leaves open the underlying PooledConnection object and any

associated pooled statements

■ PooledConnection.closeAll — called by the connection pool manager to

close all of the physical statements being pooled by the PooledConnection
object

An application cannot directly close a physical statement that is being pooled;

instead, this is done by the connection pool manager. The method

PooledConnection.closeAll closes all of the statements open on a given

physical connection, which releases the resources associated with those statements.
Chapter 11 Connection Pooling 77

An application also has no direct control over how statements are pooled. A pool of

statements is associated with a PooledConnection object, whose behaviour is

determined by the properties of the ConnectionPoolDataSource object that

produced it. Section 11.7 “ConnectionPoolDataSource Properties” discusses these

properties.

11.7 ConnectionPoolDataSource
Properties
As with the DataSource interface, the JDBC API defines a set of properties that can

used to configure the behaviour of connection pools. These are shown in TABLE 11-1:

Connection pool configuration properties follow the convention specified for

JavaBeans components in the JavaBeans specification. Connection pool vendors may

choose to augment this set with implementation-specific properties. If so, the

additional properties must be given names that do not conflict with the standard

property names.

TABLE 11-1 Standard Connection Pool Properties

Property Name Type Description

maxStatements int The total number of statements that the pool should

keep open. 0 (zero) indicates that caching of

statements is disabled.

initialPoolSize int The number of physical connections the pool

should contain when it is created

minPoolSize int The number of physical connections the pool

should keep available at all times. 0 (zero) indicates

that connections should be created as needed.

maxPoolSize int The maximum number of physical connections that

the pool should contain. 0 (zero) indicates no

maximum size.

maxIdleTime int The number of seconds that a physical connection

should remain unused in the pool before the

connection is closed. 0 (zero) indicates no limit.

propertyCycle int The interval, in seconds, that the pool should wait

before enforcing the current policy defined by the

values of the above connection pool properties
Chapter 11 Connection Pooling 78

Like DataSource implementations, ConnectionPoolDataSource
implementations must provide “getter” and “setter” methods for each property they

support. These properties are typically initialized when the

ConnectionPoolDataSource object is deployed. CODE EXAMPLE 11-5 illustrates

setting properties in a vendor’s implementation of the

ConnectionPoolDataSource interface.

Vendor ConnectionPoolDS vcp = new Vendor ConnectionPool DS();

vcp.setMaxStatements(25);

vcp.setInitialPoolSize(10);

vcp.setMinPoolSize(1);

vcp.setMaxPoolSize(0);

vcp.setMaxIdleTime(0);

vcp.setPropertyCycle(300);

CODE EXAMPLE 11-5 Setting connection pool configuration properties

The properties set on a ConnectionPoolDataSource object apply to the

PooledConnection objects that it creates. An application server managing a pool

of PooledConnection objects uses these properties to determine how to manage

its pool.

ConnectionPoolDataSource configuration properties are not intended to be

directly accessible by JDBC clients. Management tools that need to manipulate the

properties of a ConnectionPoolDataSource implementation can access those

properties using introspection.
Chapter 11 Connection Pooling 79

Chapter 11 Connection Pooling 80

CHAPTER 12

Distributed Transactions

Up to this point, the discussion of transactions has focused on the local case—

transactions involving a single data source. This chapter introduces the distributed

case where a single transaction involves multiple connections to one or more

underlying data sources.

The following discussion includes these topics:

■ distributed transaction infrastructure

■ transaction managers and resource managers

■ the XADataSource , XAConnection , and XAResource interfaces

■ two-phase commit

Transaction management in the JDBC API is designed to fit with the Java Transaction

APITM (JTATM) . The examples presented here are high-level; the JTA specification

should be consulted for a more substantial discussion.

12.1 Infrastructure
Distributed transactions require an infrastructure that provides these roles:

■ Transaction manager — controls transaction boundaries and manages the two-

phase commit protocol. This typically will be an implementation of JTA.

■ JDBC drivers that implement the XADataSource , XAConnection, and

XAResource interfaces. These are described in the next section.

■ An application-visible implementation of DataSource to “sit on top of” each

XADataSource object and interact with the transaction manager. The

DataSource implementation is typically provided by an application server.

Because the XADataSource interface extends the

ConnectionPoolDataSource interface, the DataSource implementation will

usually include a connection pooling module as well.
Chapter 12 Distributed Transactions 81

■ Resource manager(s) to manage the underlying data. In the context of the JDBC

API, a resource manager is a DBMS server. The term “resource manager” is

borrowed from JTA to emphasize the point that distributed transactions using the

JDBC API follow the architecture specified in that document.

This infrastructure is most often implemented in a three-tier architecture that

includes the following:

1. A client tier

2. A middle tier that includes applications, an EJB server working with an external

transaction manager, and a set of JDBC drivers

3. Multiple resource managers

Distributed transactions can also be implemented in two tiers. In a two-tier

architecture, the application itself acts as the transaction manager and interacts

directly with the JDBC drivers’ XADataSource implementations.

The following diagram illustrates the distributed transaction infrastructure:
Chapter 12 Distributed Transactions 82

FIGURE 12-1 Infrastructure for distributed transactions

resource
manager

transaction
manager

JDBC
Driver A

resource
manager

Application Server

Connection
pool for A

JDBC Application

DataSource API

XAResource
B1

logical
Connection A1

logical
Connection B1

Connection
pool for B

JDBC
Driver B

XAResource
A1

physical
XAConnection
A1

XADataSource
API

XADataSource
API

physical
XAConnection
B1
Chapter 12 Distributed Transactions 83

The following sections provide more detail on the components of this architecture.

12.2 XADataSource and XAConnection
The XADataSource and XAConnection interfaces, which are defined in the

package javax.sql , are implemented by JDBC drivers that support distributed

transactions. An XAConnection object is a pooled connection that can participate in

a distributed transaction. More precisely, XAConnection extends the

PooledConnection interface by adding the method getXAResource . This

method produces an XAResource object that can be used by a transaction manager

to coordinate the work done on this connection with the other participants in the

distributed transaction. CODE EXAMPLE 12-1 gives the definition of the

XAConnection interface.

public interface XAConnection extends PooledConnection {

javax.transaction.xa.XAResource getXAResource()

throws SQLException;

}

CODE EXAMPLE 12-1 The XAConnection interface

Because they extend the PooledConnection interface, XAConnection objects

support all the methods of PooledConnection objects. They are reusable physical

connections to an underlying data source and produce logical connection handles

that can be passed back to a JDBC application.

XAConnection objects are produced by an XADataSource object. There is some

similarity between ConnectionPoolDataSource objects and XADataSource
objects in that they are both implemented below a DataSource layer that is visible

to the JDBC application. This architecture allows JDBC drivers to support

distributed transactions in a way that is transparent to the application.

CODE EXAMPLE 12-2 shows the signatures for the two getXAConnection methods

defined in XADataSource .

public interface XADataSource {

XAConnection getXAConnection() throws SQLException;

XAConnection getXAConnection(String user,

String password) throws SQLException;

...
Chapter 12 Distributed Transactions 84

}

CODE EXAMPLE 12-2 The XADataSource interface

Typically, DataSource implementations built on top of an XADataSource
implementation will also include a connection pooling module.

12.2.1 Deploying an XADataSource Object

Deploying an XADataSource object is done in exactly the same manner as

previously described for ConnectionPoolDataSource objects. The two-step

process includes deploying the XADataSource object and the application-visible

DataSource object, as is done in CODE EXAMPLE 12-3.

// com.acme.jdbc.XADataSource implements the

// XADataSource interface.

// Create an instance and set properties.

com.acme.jdbc.XADataSource xads = new com.acme.jdbc.XADataSource();

xads.setServerName(“bookstore”);

xads.setDatabaseName(“bookinventory”);

xads.setPortNumber(9040);

xads.setDescription(“XADataSource for inventory”);

// First register xads with a JNDI naming service, using the

// logical name “jdbc/xa/inventory_xa”

Context ctx = new InitialContext();

ctx.bind(“jdbc/xa/inventory_xa”, xads);

// Next register the overlying DataSource object for application

// access. com.acme.appserver.DataSource is an implementation of

// the DataSource interface.

// Create an instance and set properties.

com.acme.appserver.DataSource ds =

new com.acme.appserver.DataSource();

ds.setDescription(“Datasource supporting distributed transactions”);
Chapter 12 Distributed Transactions 85

// Reference the previously registered XADataSource

ds.setDataSourceName(“jdbc/xa/inventory_xa”);

// Register the DataSource implementation with a JNDI naming service,

// using the logical name “jdbc/inventory”.

ctx.bind(“jdbc/inventory”, ds);

CODE EXAMPLE 12-3 Deploying a DataSource object backed by an XADataSource object

12.2.2 Getting a Connection

As in the connection pooling case, the application call to the method

DataSource.getConnection returns a logical handle produced by the physical

XAConnection object. The application code to get a logical connection is shown in

CODE EXAMPLE 12-4.

Context ctx = new InitialContext();

DataSource ds = (DataSource)ctx.lookup(“jdbc/inventory”);

Connection con = ds.getConnection(“myID”,“mypasswd”);

CODE EXAMPLE 12-4 Application code to get a logical connection

CODE EXAMPLE 12-5 is an example of code from the middle-tier server’s

implementation of the method DataSource.getConnection .

// Assume xads is a driver’s implementation of XADataSource

XADataSource xads = (XADataSource)ctx.lookup(“jdbc/xa/" +

"inventory_xa”);

// xacon implements XAConnection

XAConnection xacon = xads.getXAConnection(“myID”, “mypasswd”);

// Get a logical connection to pass back up to the application

Connection con = xacon.getConnection();

CODE EXAMPLE 12-5 Getting a logical connection from an XAConnection object
Chapter 12 Distributed Transactions 86

12.3 XAResource
The XAResource interface is defined in the JTA specification and is the mapping in

the Java programming language of the X/Open Group XA interface. An

XAResource object is produced by calling the XAConnection.getXAResource
method and is used to associate an XAConnection object with a distributed

transaction. A given XAConnection object may be associated with at most one

transaction at a time. The JDBC driver maintains a one-to-one correspondence

between an XAResource object and its associated XAConnection object; that is,

multiple calls to the getXAResource method must all return the same object.

In a typical scenario, the middle-tier application server calls the method

XAConnection.getXAResource and passes the returned object to an external

transaction manager. The transaction manager uses the XAResource object

exclusively—it does not access an XAConnection object directly.

The transaction manager coordinates the work of multiple XAResource objects,

each of which represents a resource manager participating in the distributed

transaction. Note that two XAResource objects may “point” to the same resource

manager, that is, they may be associated with XAConnection objects that were

produced by the same XADataSource .

The following XAResource methods are used by the transaction manager to

implement a two-phase commit protocol. Each method takes an xid parameter that

identifies the distributed transaction:

■ start — tells the resource manager that the subsequent operations are part of

the distributed transaction.

■ end — marks the end of this resource manager’s part of the distributed

transaction.

■ prepare — gets the resource manager’s vote on whether to commit or roll back

the distributed transaction.

■ commit — tells the resource manager to commit its part of the distributed

transaction. This method is invoked only if all the participating resource

managers voted to commit the transaction.

■ rollback — tells the resource manager to roll back its part of the distributed

transaction. This method is invoked if one or more of the participating resource

managers voted to roll back the transaction.

See the JTA specification for a complete description of the XAResouce interface.
Chapter 12 Distributed Transactions 87

12.4 Transaction Management
Participation in a distributed transaction is defined as the work done between

invocations of the methods XAResource.start and XAResource.end . Outside

these boundaries, the transaction mode is local, and a connection behaves exactly

like a local connection.

With one exception, there is no difference in how an application participating in a

distributed transaction is coded. In contrast to the local case, the boundaries of a

distributed transaction must be controlled by an external transaction manager that is

coordinating the work of multiple connections. For this reason, it is an error for

applications to call any of the following Connection methods while they are

participating in a distributed transaction:

■ setAutoCommit(true)

■ commit

■ rollback

■ setSavepoint

The JDBC driver throws an SQLException if one of these operations is attempted

on a connection that is participating in a distributed transaction. If the connection is

later used for a local transaction, these operations are legal at that point.

Applications should also refrain from calling

Connection.setTransactionIsolation within the bounds of a distributed

transaction. The resulting behavior is implementation-defined.

If a connection has auto-commit mode already enabled at the time it joins a global

transaction, the attribute will be ignored. The auto-commit behavior will resume

when the connection returns to local transaction mode.

12.4.1 Two-phase Commit

The following steps outline how a transaction manager uses XAResource objects to

implement the two-phase commit protocol. These steps assume a three-tier

architecture where an application server is working with an external transaction

manager:

1. The application server gets XAResource objects from two different connections:

// XAConA connects to resource manager A

javax.transaction.xa.XAResource resourceA = XAConA.getXAResource();
Chapter 12 Distributed Transactions 88

// XAConB connects to resource manager B
javax.transaction.xa.XAResource resourceB = XAConB.getXAResource();

CODE EXAMPLE 12-6 Getting the XAResource object from an XAConnection object

2. The application server passes the XAResource objects to the transaction manager.

The transaction manager does not access the associated XAConnection objects

directly.

3. The transaction manager uses the XAResource objects to assign a piece of the

transaction to each of the associated resource managers. The transaction is

identified by xid , which represents the identifier generated by the transaction

manager when the transaction is created.

// Send work to resource manager A. The TMNOFLAGS argument indicates

// we are starting a new branch of the transaction, not joining or

// resuming an existing branch.

resourceA.start(xid, javax.transaction.xa.TMNOFLAGS);

// do work with resource manager A

...

// tell resource manager A that it’s done, and no errors have occurred

resourceA.end(xid, javax.transaction.xa.TMSUCCESS);

// do work with resource manager B.

resourceB.start(xid, javax.transaction.xa.TMNOFLAGS);

// B’s part of the distributed transaction

...

resourceB.end(xid, javax.transaction.xa.TMSUCCESS);

CODE EXAMPLE 12-7 Starting and ending transaction branches using the XAResource
interface

4. The transaction manager initiates the two-phase commit protocol by asking each

participant to vote:

resourceA.prepare(xid);

resourceB.prepare(xid);

CODE EXAMPLE 12-8 Initiating two-phase commit

A participating resource manager can vote to roll back the transaction by throwing a

javax.transaction.xa.XAException .
Chapter 12 Distributed Transactions 89

5. If both participants vote to commit, the transaction manager tells each one to

commit its piece of the distributed transaction (the second parameter tells the

resource manager not to use a one phase commit protocol on behalf of the xid):

resourceA.commit(xid, false);

resourceB.commit(xid, false);

CODE EXAMPLE 12-9 Committing the distributed transaction

6. If either resource manager votes to roll back, the transaction manager tells each

one to roll back its piece of the transaction:

resourceA.rollback(xid);

resourceB.rollback(xid);

CODE EXAMPLE 12-10 Rolling back the distributed transaction

The transaction manager is not required to use the same XAResource object to

commit/rollback a transaction branch as was used to execute the branch. If different

XAResource objects are used, however, they must be associated with

XAConnection objects that connect to the same resource manager.

Note – Steps 1-6 also apply to the case where XAConAand XAConBare two physical

connections to the same resource manager.

12.5 Closing the Connection
In a typical distributed transaction environment, the middle-tier server needs to be

notified when an application has finished using a connection. As in the earlier

discussion of PooledConnection objects, the middle-tier server will add itself as a

ConnectionEventListener so that it will be notified when the application calls

the method Connection.close . At this point, the server will notify the transaction

manager so that it can end the transaction branch for the corresponding

XAResource object. If the server’s DataSource implementation includes

connection pooling, the connection pooling module will be notified that it can return

the physical XAConnection object to the pool.

Note – A distributed transaction may still be active after a participating

Connection object is closed. This is not true for local transactions.
Chapter 12 Distributed Transactions 90

12.6 Limitations of the XAResource Interface
The javax.transaction.xa.XAResource interface is limited to defining only

the set of methods needed to join and participate in global transactions, as defined

by the X/Open XA standard. This allows any resource manager that implements the

interface to participate with any other resource manager or transaction manager that

has the same level of support.

Functionality that is not defined in the X/Open standard is correspondingly not

defined in the XAResource interface. Resource managers that provide for support

of features not defined in the X/Open XA standard, such as setting isolation levels

in global transactions, will have to do so in an implementation-defined way.

Users who use implementation-defined features should be aware that they will limit

the portability of their applications.
Chapter 12 Distributed Transactions 91

Chapter 12 Distributed Transactions 92

CHAPTER 13

Statements

This section describes the Statement interface and its subclasses,

PreparedStatement and CallableStatement . It also describes related topics,

including escape syntax, performance hints, and auto-generated keys.

13.1 The Statement Interface
The Statement interface defines methods for executing SQL statements that do not

contain parameter markers. The PreparedStatement interface adds methods for

setting input parameters, and the CallableStatement interface adds methods for

retrieving output parameter values returned from stored procedures.

13.1.1 Creating Statements

Statement objects are created by Connection objects, as is done in

CODE EXAMPLE 13-1.

Connection conn = dataSource.getConnection(user, passwd);

Statement stmt = conn.createStatement()

CODE EXAMPLE 13-1 Creating a Statement object

Each Connection object can create multiple Statement objects that may be used

concurrently by the program. This is demonstrated in CODE EXAMPLE 13-2.

// get a connection from the DataSource object ds

Connection conn = ds.getConnection(user, passwd);

// create two instances of Statement
Chapter 13 Statements 93

Statement stmt1 = conn.createStatement();

Statement stmt2 = conn.createStatement();

CODE EXAMPLE 13-2 Creating multiple Statement objects from a single connection

13.1.1.1 Setting ResultSet Characteristics

Additional constructors may be used to set the type and concurrency or the type,

concurrency, and holdability of any result sets produced by a statement. See

Chapter 14 “Result Sets” for more on the ResultSet interface.

CODE EXAMPLE 13-3 creates a Statement object that returns result sets that are

scrollable, that are insensitive to changes made while the ResultSet object is open,

that can be updated, and that do not close the ResultSet objects when commit is

called.

Connection conn = ds.getConnection(user, passwd);

Statement stmt = conn.createStatement(

ResultSet.TYPE_SCROLL_INSENSITIVE,

ResultSet.CONCUR_UPDATABLE,

ResultSet.HOLD_CURSOR_OVER_COMMIT);

CODE EXAMPLE 13-3 Creating a scrollable, insensitive, updatable result set that stays open

after the method commit is called

See Chapter 14 “Result Sets” for more information on ResultSet types.

13.1.2 Executing Statement Objects

The method used to execute a Statement object depends on the type of SQL

statement being executed. If the Statement object represents an SQL query

returning a ResultSet object, the method executeQuery should be used. If the

SQL is known to be a DDL statement or a DML statement returning an update

count, the method executeUpdate should be used. If the type of the SQL

statement is not known, the method execute should be used.

13.1.2.1 Returning a ResultSet object

CODE EXAMPLE 13-4 shows the execution of an SQL string returning a ResultSet
object.
Chapter 13 Statements 94

Statement stmt = conn.createStatement();

ResultSet rs = stmt.executeQuery(“select TITLE, AUTHOR, ISBN " +

"from BOOKLIST”);

while (rs.next()){

...

}

CODE EXAMPLE 13-4 Executing a Statement object that returns a ResultSet object

If the SQL string being executed does not return a ResultSet object, the method

executeQuery throws an SQLException .

13.1.2.2 Returning an Update Count

In CODE EXAMPLE 13-5, the SQL statement being executed returns the number of rows

affected by the update.

Statement stmt = conn.createStatement();

int rows = stmt.executeUpdate(“update STOCK set ORDER = ‘Y’ " +

 "where SUPPLY = 0”);

if (rows > 0) {

...

}

CODE EXAMPLE 13-5 Executing a Statement object that returns an update count

The method executeUpdate throws an SQLException if the SQL string being

executed does not return an update count.

13.1.2.3 Using the Method execute

The method execute should be used only when the SQL string being executed

could return either an update count or a ResultSet object. The execute method

returns true if the first result is a ResultSet object and false if it is an update

count. Additional methods must be called to retrieve the ResultSet object or

update count or to retrieve additional results, if any.

String sql;

...
Chapter 13 Statements 95

Statement stmt = conn.createStatement();

boolean b = stmt.execute(sql);

if (b == true) {

// b is true if a ResultSet is returned

ResultSet rs;

rs = stmt.getResultSet();

while (rs.next()) {

...

}

} else {

// b is false if an update count is returned

int rows = stmt.getUpdateCount();

if (rows > 0) {

...

}

}

CODE EXAMPLE 13-6 Executing a Statement object that may return an update count or a

ResultSet object

When the SQL string being executed returns a ResultSet object, the method

getUpdateCount returns -1 . If the SQL string being executed returns an update

count, the method getResultSet returns null .

13.1.3 Closing Statement Objects

An application calls the method Statement.close to indicate that it has finished

processing a statement. All Statement objects will be closed when the connection

that created them is closed. However, it is good coding practice for applications to

close statements as soon as they have finished processing them. This allows any

external resources that the statement is using to be released immediately.

Closing a Statement object will close and invalidate any instances of ResultSet
produced by that Statement object. The resources held by the ResultSet object

may not be released until garbage collection runs again, so it is a good practice to

explicitly close ResultSet objects when they are no longer needed.

These comments about closing Statement objects apply to PreparedStatement
and CallableStatement objects as well.
Chapter 13 Statements 96

13.2 The PreparedStatement Interface
The PreparedStatement interface extends Statement , adding the ability to set

values for parameter markers contained within the statement.

PreparedStatement objects represent SQL statements that can be prepared, or

precompiled, for execution once and then executed mulitple times. Parameter

markers, represented by “?” in the SQL string, are used to specify input vaues to the

statement that may vary at runtime.

13.2.1 Creating a PreparedStatement Object

An instance of PreparedStatement is created in the same manner as a Statement
object, except that the SQL command is supplied when the statement is created:

Connection conn = ds.getConnection(user, passwd);

PreparedStatement ps = conn.prepareStatement(“INSERT INTO BOOKLIST" +

"(AUTHOR, TITLE, ISBN) VALUES (?, ?, ?)”);

CODE EXAMPLE 13-7 Creating a PreparedStatement object with three placeholder

markers

13.2.1.1 Setting ResultSet Characteristics

As with createStatement , the method prepareStatement defines a constructor

that can be used to specify the characteristics of result sets produced by that

prepared statement.

Connection conn = ds.getConnection(user, passwd);

PreparedStatement ps = conn.prepareStatement(

“SELECT AUTHOR, TITLE FROM BOOKLIST WHERE ISBN = ?”,

ResultSet.TYPE_FORWARD_ONLY,

ResultSet.CONCUR_UPDATABLE);

CODE EXAMPLE 13-8 Creating a PreparedStatement object that returns forward only,

updatable result sets
Chapter 13 Statements 97

13.2.2 Setting Parameters

The PreparedStatement interface defines setter methods that are used to

substitute values for each of the parameter markers in the precompiled SQL string.

The names of the methods follow the pattern "set<Type> ".

For example, the method setString is used to specify a value for a parameter

marker that expects a string. Each of these setter methods takes at least two

parameters. The first is always an int equal to the ordinal position of the parameter

to be set, starting at 1. The second and any remaining parameters specify the value

to be assigned to the parameter.

PreparedStatement ps = conn.prepareStatement(“INSERT INTO BOOKLIST" +

 "(AUTHOR, TITLE, ISBN) VALUES (?, ?, ?)”);

ps.setString(1, “Zamiatin, Evgenii”);

ps.setString(2, “We”);

ps.setLong(3, 0140185852);

CODE EXAMPLE 13-9 Setting parameters in a PreparedStatement object

A value must be provided for each parameter marker in the PreparedStatement
object before it can be executed. The methods used to execute a

PreparedStatement object (executeQuery , executeUpdate and execute) will

throw an SQLException if a value is not supplied for a parameter marker.

The values set for the parameter markers of a PreparedStatement object are not

reset when it is executed. The method clearParameters can be called to explictly

clear the values that have been set. Setting a parameter with a different value will

replace the previous value with the new one.

13.2.2.1 Type Conversions

The data type specified in a PreparedStatement setter method is a data type in

the Java programming language. The JDBC driver is responsible for mapping this to

the corresponding JDBC type (one of the SQL types defined in java.sql.Types) so

that it is the appropriate type to be sent to the data source. The default mapping is

specified in Appendix B TABLE B-2.

13.2.2.2 Type Conversions Using the Method setObject

The method setObject can be used to convert an object in the Java programming

language to a JDBC type.
Chapter 13 Statements 98

The conversion is explicit when setObject is passed a Java Object and a JDBC

data type. The driver will attempt to convert the Object to the specified JDBC type

before passing it to the data source. If the object cannot be converted to the target

type, an SQLException object is thrown. In CODE EXAMPLE 13-10, a Java Object of

type Integer is being converted to the JDBC type SHORT.

Integer value = new Integer(15);

ps.setObject(1, value, java.sql.Types.SHORT);

CODE EXAMPLE 13-10 Converting an Integer object to an SQL SHORT

If setObject is called without a type parameter, the Java Object is implicitly

mapped using the default mapping for that object type.

Integer value = new Integer(15);

// value is mapped to java.sql.Types.INTEGER

ps.setObject(1, value);

CODE EXAMPLE 13-11 The method setObject using the default mapping

The default mapping is described in Appendix B TABLE B-4

Note – The method setObject will do custom mapping for SQL UDTs that have a

custom mapping. See Chapter 17 “Customized Type Mapping” for more

information.

13.2.2.3 Setting NULL Parameters

The method setNull can be used to set any parameter to JDBC NULL. It takes two

parameters, the ordinal position of the parameter marker, and the JDBC type of the

parameter.

ps.setNull(2, java.sql.Types.VARCHAR);

CODE EXAMPLE 13-12 Setting a String parameter to JDBC NULL

If a Java null is passed to any of the setter methods that take a Java object, the

parameter will be set to JDBC NULL.
Chapter 13 Statements 99

13.2.3 Describing Outputs and Inputs of a

PreparedStatement Object

The method PreparedStatement.getMetaData retrieves a

ResultSetMetaData object containing a description of the columns that will be

returned by a prepared statement when is it executed. The ResultSetMetaData
object contains a record for each column being returned. Methods in the

ResultSetMetaData interface provide information about the number of columns

being returned and the characteristics of each column.

PreparedStatement pstmt = conn.prepareStatement(

"SELECT * FROM CATALOG");

ResultSetMetaData rsmd = pstmt.getMetaData();

int colCount = rsmd.getColumnCount();

int colType;

String colLabel;

for (int i = 1; i <= colCount; i++) {

colType = rsmd.getColumnType(i);

colLabel = rsmd.getColumnLabel(i);

...

}

CODE EXAMPLE 13-13 Creating a ResultSetMetaData object and retrieving column

information from it

The method PreparedStatement.getParameterMetaData returns a

ParameterMetaData object describing the parameter markers that appear in the

PreparedStatement object. Methods in the ParameterMetaData interface

provide information about the number of parameters and their characteristics.

PreparedStatement pstmt = conn.prepareStatement(

"SELECT * FROM BOOKLIST WHERE ISBN = ?");

...

ParameterMetaData pmd = pstmt.getParameterMetaData();

int colType = pmd.getParameterType(1);

...

CODE EXAMPLE 13-14 Creating a ParameterMetaData object and retrieving parameter

information from it

See the API specification for more details.
Chapter 13 Statements 100

13.2.4 Executing a PreparedStatement Object

As with Statement objects, the method used to execute a PreparedStatement
object depends on the type of SQL statement being executed. If the

PreparedStatement object is a query returning a ResultSet object, it should be

executed with the method executeQuery . If it is a DML statement returning a row

count, it should be executed with the method executeUpdate . The method

execute should be used only if the return type of the statement is unknown.

If any of the PreparedStatement execute methods is called with an SQL string as

a parameter, an SQLException is thrown.

13.2.4.1 Returning a ResultSet Object

CODE EXAMPLE 13-15 shows a query being prepared and then executed multiple

times.

PreparedStatement pstmt = conn.prepareStatement(“SELECT AUTHOR, " +

"TITLE FROM BOOKLIST WHERE SECTION = ?”);

for (int i = 1; i <= maxSectionNumber; i++) {

pstmt.setInt(1, i);

ResultSet rs = pstmt.executeQuery();

while (rs.next()) {

// process the record

}

rs.close();

}

pstmt.close();

CODE EXAMPLE 13-15 Preparing and executing a statement returning a result set

If the statement being executed does not return a ResultSet object an

SQLException is thrown by executeQuery .

13.2.4.2 Returning a Row Count

If the statement being prepared and executed is a DML or DDL operation, it should

be executed using the method executeUpdate . This method returns the number of

rows that the statement affected.
Chapter 13 Statements 101

PreparedStatement pstmt = conn.prepare(

“update stock set reorder = ’Y’ where stock < ?”);

pstmt.setInt(1, 5);

int num = pstmt.executeUpdate();

CODE EXAMPLE 13-16 Preparing and executing a statement returning an update count

If the statement being executed returns a ResultSet object, an SQLException is

thrown.

13.2.4.3 Using the Method execute

If the return type of a PreparedStatement object is not known, it should be

executed with the execute method. As is true with Statement objects, the

methods getResultSet and getUpdateCount can be used to retrieve a result.

PreparedStatement pstmt = conn.prepareStatement(sqlStatement);

// set any parameters the user passes

...

boolean b = pstmt.execute();

if (b == true) {

ResultSet rs = pstmt.getResultSet();

// process a ResultSet

...

}

} else {

int rowCount = pstmt.getUpdateCount();

// process row count

...

}

}

CODE EXAMPLE 13-17 Preparing and executing a statement that may return a result set or an

update count
Chapter 13 Statements 102

13.3 The CallableStatement Interface
The CallableStatement interface extends PreparedStatement with methods

for executing and retrieving results from stored procedures.

13.3.1 Creating a CallableStatement Object

As with Statement and PreparedStatement objects, CallableStatement
objects are created by Connection objects. CODE EXAMPLE 13-18 shows the creation

of a CallableStatement object for calling the stored procedure ‘validate’, which

has a return parameter and two other parameters.

CallableStatement cstmt = conn.prepareCall(

“{? = call validate(?, ?)}”);

CODE EXAMPLE 13-18 Creating a CallableStatement object

All the examples in this chapter use the escape syntax for calling stored procedures.

See “Stored Procedures” on page 111.

13.3.2 Setting Parameters

CallableStatement objects may take three types of parameters: IN, OUT, and

INOUT. The parameter can be specified as either an ordinal parameter or a named

parameter. A value must be set for each parameter marker in the statement.

The number, type, and attributes of parameters to a stored procedure can be

determined using the DatabaseMetaData method getProcedureColumns .

Parameter ordinals, which are integers passed to the approriate setter method, refer

to the parameter markers ("?") in the statement, starting at one. Literal parameter

values in the statement do not increment the ordinal value of the parameter markers.

In CODE EXAMPLE 13-19, the two parameter markers have the ordinal values 1 and 2.

CallableStatement cstmt = con.prepareCall(

"{CALL PROC(?, "Literal_Value", ?)}");

cstmt.setString(1, "First");

cstmt.setString(2, "Third");

CODE EXAMPLE 13-19 Specifying ordinal parameters
Chapter 13 Statements 103

Named parameters can also be used to specify specific parameters. This is especially

useful when a procedure has many parameters with default values. Named

parameters can be used to specify only the values that have no default value. The

name of a parameter corresponds to the COLUMN_NAMEfield returned by

DatabaseMetaData.getProcedureColumns .

In CODE EXAMPLE 13-20, the procedure COMPLEX_PROCtakes ten parameters, but

only the first and fifth parameters, PARAM_1and PARAM_5, are required.

CallableStatement cstmt = con.prepareCall(

"{CALL COMPLEX_PROC(?, ?)}";

cstmt.setString("PARAM_1", "Price");

cstmt.setFloat("PARAM_5", 150.25);

CODE EXAMPLE 13-20 Specifying two input parameters to a stored procedure

Additional methods in the CallableStatement interface allow parameters to be

registered and retrieved by name.

The DatabaseMetaData.supportsNamedParameters method can be called to

determine if a JDBC driver and underlying data source support specifying named

parameters.

It is not possible to combine setting parameters with ordinals and with names in the

same statement. If ordinals and names are used for parameters in the same

statement, an SQLException is thrown.

Note – In some cases it may not be possible to provide only some of the parameters

for a procedure. For example, if the procedure name is overloaded, the data source

determines which procedure to call based on the number of parameters. Enough

parameters must be provided to allow the data source to resolve any ambiguity.

13.3.2.1 IN Parameters

IN parameters are assigned values using the setter methods as described in “Setting

Parameters” on page 98. In CODE EXAMPLE 13-21, a string parameter and a date

parameter are set.

cstmt.setString(1, “October”);

cstmt.setDate(2, date);

CODE EXAMPLE 13-21 Setting IN parameters
Chapter 13 Statements 104

13.3.2.2 OUT Parameters

The method registerOutParameter must be called to set the type for each OUT

parameter before a CallableStatement object is executed. When the stored

procedure returns from execution, it will use these types to set the values for any

OUT parameters.

The values of OUT parameters can be retrieved using the appropriate getter

methods defined in the CallableStatement interface. CODE EXAMPLE 13-22 shows

the execution of a stored procedure with two OUT parameters, a string and float,

and the retrieval of the OUT parameter values.

CallableStatement cstmt = conn.prepareCall(

“{CALL GET_NAME_AND_NUMBER(?, ?)}");

cstmt.registerOutParameter(1, java.sql.Types.STRING);

cstmt.registerOutParameter(2, java.sql.Types.FLOAT);

cstmt.execute();

// Retrieve OUT parameters

String name = cstmt.getString(1);

float number = cstmt.getFloat(2);

CODE EXAMPLE 13-22 Registering and retrieving OUT parameters

13.3.2.3 INOUT Parameters

Parameters that are both input and output parameters must be both set by using the

appropriate setter method and also registered by calling the

registerOutParameter method. The type implied by the setter method (see

TABLE B-1 in Appendix B “Data Type Conversion Tables‘‘) and the type supplied to

the method registerOutParameter must be the same.

CODE EXAMPLE 13-23 shows the stored procedure calc , which takes one INOUT float

parameter.

CallableStatement cstmt = conn.prepareCall(“{CALL CALC(?)}”);

cstmt.setFloat(1, 1237.98f);

ctsmt.registerOutParameter(1, java.sql.Types.FLOAT);

cstmt.execute();

float f = cstmt.getFloat(1);

CODE EXAMPLE 13-23 Executing a CallableStatement object with an INOUT parameter
Chapter 13 Statements 105

13.3.3 Executing a CallableStatement Object

As with Statement and PreparedStatement objects, the method used to execute

a CallableStatement object depends on whether it returns a single ResultSet
object, an update count, or multiple mixed results.

13.3.3.1 Returning a Single ResultSet Object

CODE EXAMPLE 13-24 shows the execution of a CallableStatement object that takes

one input parameter and returns a single ResultSet object.

CallableStatement cstmt = conn.prepareCall(“{CALL GETINFO(?)}”);

cstmt.setLong(1, 1309944422);

ResultSet rs = cstmt.executeQuery();

// process the results

while (rs.next()) {

...

}

rs.close();

cstmt.close();

CODE EXAMPLE 13-24 Executing a CallableStatement object that returns a single result

set

The method executeQuery throws an SQLException if the stored procedure does

not return a ResultSet object.

13.3.3.2 Returning a Row Count

CODE EXAMPLE 13-25 shows the execution of a CallableStatement object that

returns a row count.

CallableStatement cstmt = conn.prepareCall(“{call GETCOUNT(?)}”);

cstmt.setString(1, “Smith”);

int count = cstmt.executeUpdate();

cstmt.close();

CODE EXAMPLE 13-25 Executing a CallableStatement object returning an update count

If the stored procedure does not return a row count, the method executeUpdate
throws an SQLException .
Chapter 13 Statements 106

13.3.3.3 Returning Unknown or Multiple Results

If the type or number of results returned by a CallableStatement object are not

known until run time, the CallableStatement object should be executed with the

method execute . The methods getMoreResults , getUpdateCount , and

getResultSet can be used to retrieve all the results.

The method execute returns true if the first result is a ResultSet object and

false if it is an update count.

When the method execute returns true , the method getResultSet is called to

retrieve the ResultSet object. When execute returns false , the method

getUpdateCount returns an int . If this number is greater than or equal to zero, it

indicates the number of rows that were affected by the statement. If it is -1, it

indicates that there are no more results.

If multiple results are being returned, the method getMoreResults can be called to

get the next result. As with the method execute , getMoreResults will return

true if the next result is a ResultSet object and false if the next result is a row

count or no more result are available.

CODE EXAMPLE 13-26 shows how to retrieve all the results from a

CallableStatment object.

CallableStatement cstmt = conn.prepareCall(procCall);

boolean retval = cstmt.execute();

ResultSet rs;

int count;

do {

if (retval == false) {

count = cstmt.getUpdateCount();

if (count == -1) {

// no more results

break;

} else {

// process row count

}

} else { // ResultSet

rs = cstmt.getResultSet();

// process ResultSet

}

retval = cstmt.getMoreResults();
Chapter 13 Statements 107

while (true);

CODE EXAMPLE 13-26 Executing a callable statement that returns multiple results

By default, each call to the method getMoreResults closes any previous

ResultSet object returned by the method getResultSet . However, the method

getMoreResults may take a parameter that specifies whether a ResultSet object

returned by getResultSet should be closed. The Statement interface defines

three constants that can be supplied to the method getMoreResults :

■ CLOSE_CURRENT_RESULT— indicates that the current ResultSet object should

be closed when the next ResultSet object is returned

■ KEEP_CURRENT_RESULT— indicates that the current ResultSet object should

not be closed when the next ResultSet object is returned

■ CLOSE_ALL_RESULTS— indicates that any ResultSet objects that have been

kept open should be closed when the next result is returned

If the current result is an update count and not a ResultSet object, any parameter

passed to getMoreResults is ignored.

To determine whether a driver implements this feature, an application can call the

DatabaseMetaData method supportsMultipleOpenResults .

ResultSet rs1 = cstmt.getResultSet();

rs1.next();

...

retval = cstmt.getMoreResults(Statement.KEEP_CURRENT_RESULT);

if (retval == true) {

ResultSet rs2 = cstmt.getResultSet();

rs2.next();

...

rs1.next();

}

retval = cstmt.getMoreResults(Statement.CLOSE_ALL_RESULTS);

...

CODE EXAMPLE 13-27 Keeping multiple results from a CallableStatement object open
Chapter 13 Statements 108

13.4 Escape Syntax
The SQL string used in a Statement object may include JDBC escape syntax. Escape

syntax allows the driver to more easily scan for syntax that requires special

processing. Implementing this special processing in the driver layer improves

application portability.

Special escape processing might be needed for the following:

■ commonly used features that do not have standard syntax defined by SQL, or

where the native syntax supported by the underlying data source varies widely

among vendors. The driver may translate the escape syntax to a specific native

syntax in this case.

■ features that are not supported by the underlying data source but are

implemented by the driver.

Escape processing for a Statement object is turned on or off using the method

setEscapeProcessing , with the default being on. The RowSet interface also

includes a setEscapeProcessing method. The RowSet method applies to the

SQL string used to populate a RowSet object. The setEscapeProcessing method

does not work for a PreparedStatement object because its SQL string may have

been precompiled when the PreparedStatement object was created.

JDBC defines escape syntax for the following:

■ scalar functions

■ date and time literals

■ outer joins

■ calling stored procedures

■ escape characters for LIKE clauses

13.4.1 Scalar Functions

Almost all underlying data sources support numeric, string, time, date, system, and

conversion functions on scalar values. The escape syntax to access a scalar function

is:

{fn <function-name> (argument list)}

For example, the following code calls the function concat with two arguments to be

concatenated:
Chapter 13 Statements 109

{fn concat("Hot", "Java")}

The following syntax gets the name of the current database user:

{fn user()}

Scalar functions may be supported by different data sources with slightly different

native syntax, and they may not be supported by all drivers. The driver will either

map the escaped function call into the native syntax or implement the function

directly.

Various DatabaseMetaData methods list the functions that are supported. For

example, the method getNumericFunctions returns a comma-separated list of the

Open Group CLI names of numeric functions, the method getStringFunctions

returns string functions, and so on.

Refer to Appendix C “Scalar Functions" for a list of the scalar functions a driver is

expected to support. A driver is required to implement these functions only if the

data source supports them, however.

13.4.2 Date and Time Literals

Data sources differ widely in the syntax they use for date, time, and timestamp

literals. The JDBC API supports ISO standard format for the syntax of these literals,

using an escape clause that the driver translates to native syntax.

The escape syntax for date literals is:

{d 'yyyy-mm-dd'}

The driver will replace the escape clause with the equivalent native representation.

For example, the driver might replace {d ’1999-02-28’} with '28-FEB-99' if that

is the appropriate format for the underlying data source.

The escape syntax for TIME and TIMESTAMPliterals are:

{t 'hh:mm:ss'}

{ts 'yyyy-mm-dd hh:mm:ss.f . . .'}

The fractional seconds (.f . . .) portion of the timestamp can be omitted.

13.4.3 Outer Joins

Outer joins are an advanced feature and are not supported by all data sources.

Consult relevant SQL documentation for an explanation of outer joins.
Chapter 13 Statements 110

The escape syntax for an outer join is:

{oj <outer-join>}

where <outer-join> has the form:

table {LEFT|RIGHT|FULL} OUTER JOIN {table | <outer-join>} ON search-
condition

(Note that curly braces ({}) in the preceding line indicate that one of the items

between them must be used; they are not part of the syntax.) The following SELECT
statement uses the escape syntax for an outer join.

Statement stmt = con.createStatement();

stmt.executeQuery("SELECT * FROM {oj TABLE1 " +

"LEFT OUTER JOIN TABLE2 ON DEPT_NO = 003420930}");

The JDBC API provides three DatabaseMetaData methods for determining the

kinds of outer joins a driver supports: supportsOuterJoins ,

supportsFullOuterJoins , and supportsLimitedOuterJoins .

13.4.4 Stored Procedures

If a database supports stored procedures, they can be invoked using JDBC escape

syntax as follows:

{call <procedure_name> [(<argument-list>)]}

or, where a procedure returns a result parameter:

{? = call <procedure_name> [(<argument-list>)]}

The square brackets indicate that the (argument-list) portion is optional. Input

arguments may be either literals or parameter markers. See “Setting Parameters” on

page 103 for information on parameters.

The method DatabaseMetaData.supportsStoredProcedures returns true if the

database supports stored procedures.
Chapter 13 Statements 111

13.4.5 LIKE Escape Characters

The percent sign (%) and underscore (_) characters are wild card characters in SQL

LIKE clauses (% matches zero or more characters, and _ matches exactly one

character). In order to interpret them literally, they can be preceded by a backslash

(\), which is a special escape character in strings. One can specify which character to

use as the escape character by including the following syntax at the end of a query:

{escape '<escape-character>'}

For example, the following query uses the backslash as an escape character, and

finds identifier names that begin with an underscore. Note that the Java compiler

will not recognize the backslash as a character unless it is preceded by a backslash.

stmt.executeQuery("SELECT name FROM Identifiers " +

"WHERE Id LIKE '_%' {escape '\\'}");

13.5 Performance Hints
The Statement interface has two methods that can be used to provide hints to a

JDBC driver: setFetchDirection and setFetchSize . The values supplied to

these methods are applied to each result set produced by the statement. The

methods of the same name in the ResultSet interface can be used to supply hints

for just that result set.

Hints provided to the driver via this interface may be ignored by the driver if they

are not appropriate.

The methods getFetchDirection and getFetchSize return the current value of

the hints. If either of these methods is called before the corresponding setter method

has been called, the value returned is implementation-defined.

13.6 Retrieving Auto Generated Keys
Many database systems have a mechanism that automatically generates a unique

key field when a row is inserted. The method Statement.getGeneratedKeys ,

which can be called to retrieve the value of such a key, returns a ResultSet object

with a column for each automatically generated key. A flag indicating that any auto
Chapter 13 Statements 112

generated columns should be returned is passed to the methods execute ,

executeUpdate or prepareStatement when the statement is executed or

prepared.

Statement stmt = conn.createStatement();

// indicate that the key generated is going to be returned

int rows = stmt.executeUpdate("INSERT INTO ORDERS " +

"(ISBN, CUSTOMERID) " +

"VALUES (195123018, ’BILLG’)",

Statement.RETURN_GENERATED_KEYS);

ResultSet rs = stmt.getGeneratedKeys();

boolean b = rs.next();

if (b == true) {

// retrieve the new key value

...

}

CODE EXAMPLE 13-28 Retrieving auto generated keys

Additional methods allow the ordinals or names of the columns that should be

returned to be specified. In CODE EXAMPLE 13-29 the Statement method

executeUpdate is called with two parameters, the first is the SQL statement to be

executed, the second is an array of String containing the column name that should

be returned when getGeneratedKeys is called:

String keyColumn[] = {"ORDER_ID"};

...

Statement stmt = conn.createStatement();

int rows = stmt.executeUpdate("INSERT INTO ORDERS " +

"(ISBN, CUSTOMERID) " +

"VALUES (966431502, ’BILLG’)",

keyColumn);

ResultSet rs = stmt.getGeneratedKeys();

....

CODE EXAMPLE 13-29 Retrieving a named column using executeUpdate and

getGeneratedKeys

See the API Specification for more details.
Chapter 13 Statements 113

Calling ResultSet.getMetaData on the ResultSet object returned by

getGeneratedKeys will produce a ResultSetMetaData object that can be used

to determine the number, type and properties of the generated keys.

In some cases, such as in an insert select statement, more than one key may be

returned. The ResultSet object returned by getGeneratedKeys will contain a

row for each key that a statement generated. If no keys are generated, an empty

result set will be returned.

The concurrency of the ResultSet object returned by getGeneratedKeys must be

CONCUR_READ_ONLY. The type of the ResultSet object must be either

TYPE_FORWARD_ONLYor TYPE_SCROLL_INSENSITIVE.

The method DatabaseMetaData.supportsGetGeneratedKeys returns true if

a JDBC driver and underlying data source support the retrieval of automatically

generated keys.
Chapter 13 Statements 114

CHAPTER 14

Result Sets

The ResultSet interface provides methods for retrieving and manipulting the

results of executed queries.

14.1 Kinds of ResultSet Objects
ResultSet objects can have different functionality and characteristics. These

characteristics are result set type, result set concurrency, and cursor holdability.

14.1.1 ResultSet Types

The type of a ResultSet object determines the level of its functionality in two main

areas: (1) the ways in which the cursor can be manipulated and (2) how concurrent

changes made to the underlying data source are reflected by the ResultSet object.

The latter is called the sensitivity of the ResultSet object.

The three different ResultSet types are described below.

1. TYPE_FORWARD_ONLY

■ The result set is not scrollable; its cursor moves forward only, from before the first

row to after the last row.

■ The rows contained in the result set depend on how the underlying database

materializes the results. That is, it contains the rows that satisfy the query at

either the time the query is executed or as the rows are retrieved.

2. TYPE_SCROLL_INSENSITIVE

■ The result set is scrollable; its cursor can move both forward and backward

relative to the current position, and it can move to an absolute position.
Chapter 14 Result Sets 115

■ The result set is insensitive to changes made to the underlying data source while

it is open. It contains the rows that satisfy the query at either the time the query is

executed or as the rows are retrieved.

3. TYPE_SCROLL_SENSITIVE

■ The result set is scrollable; its cursor can move both forward and backward

relative to the current position, and it can move to an absolute position.

■ The result set reflects changes made to the underlying data source while the result

set remains open.

The default ResultSet type is TYPE_FORWARD_ONLY.

The method DatabaseMetaData.supportsResultSetType returns true if the

specified type is supported by the driver and false otherwise.

If the driver does not support the type supplied to the methods createStatement ,

prepareStatement , or prepareCall , it generates an SQLWarning on the

Connection object that is creating the statement. When the statement is executed,

the driver returns a ResultSet object of a type that most closely matches the

requested type. An application can find out the type of a ResultSet object by

calling the method ResultSet.getType .

14.1.2 ResultSet Concurrency

The concurrency of a ResultSet object determines what level of update

functionality is supported.

The two concurrency levels are:

■ CONCUR_READ_ONLY

The ResultSet object cannot be updated using the ResultSet interface.

■ CONCUR_UPDATABLE

The ResultSet object can be updated using the ResultSet interface.

The default ResultSet concurrency is CONCUR_READ_ONLY.

The method DatabaseMetaData.supportsResultSetConcurrency returns

true if the specified concurrency level is supported by the driver and false
otherwise.

If the driver does not support the concurrency level supplied to the methods

createStatement , prepareStatement , or prepareCall , it generates an

SQLWarning on the Connection object that is creating the statement. An

application can find out the concurrency of a ResultSet object by calling the

method ResultSet.getConcurrency .
Chapter 14 Result Sets 116

If the driver cannot return a ResultSet object at the requested type and

concurrency, it determines the appropriate type before determining the concurrency.

14.1.3 ResultSet Holdability

Calling the method Connection.commit can close the ResultSet objects that

have been created during the current transaction. In some cases, however, this may

not be the desired behaviour. The ResultSet property holdability gives the

application control over whether ResultSet objects (cursors) are closed when

commit is called.

The following ResultSet constants may be supplied to the Connection methods

createStatement , prepareStatement , and prepareCall :

1.HOLD_CURSORS_OVER_COMMIT

■ ResultSet objects (cursors) are not closed; they are held open when the method

commit is called.

2. CLOSE_CURSORS_AT_COMMIT

■ ResultSet objects (cursors) are closed when commit is called. Closing cursors at

commit can result in better performance for some applications.

The default holdability of ResultSet objects is implementation defined. The

DatabaseMetaData method getResultSetHoldability can be called to

determine the default holdability of result sets returned by the underlying data

source.

14.1.4 Specifying ResultSet Type, Concurrency and

Holdability

The parameters supplied to the methods Connection.createStatement ,

Connection.prepareStatement , and Connection.prepareCall determine

the type, concurrency, and holdability of ResultSet objects that the statement

produces. CODE EXAMPLE 14-1 creates a Statement object that will return scrollable,

read-only ResultSet objects that are insensitive to updates made to the data source

and that will be closed when the transaction in which they were created is

committed.

Connection conn = ds.getConnection(user, passwd);

Statement stmt = conn.createStatement(

ResultSet.TYPE_SCROLL_INSENSITIVE,

ResultSet.CONCUR_READ_ONLY,
Chapter 14 Result Sets 117

ResultSet.CLOSE_CURSORS_AT_COMMIT);

CODE EXAMPLE 14-1 Creating a scrollable, insensitive, read-only result set with a cursor

that is not holdable

The Statement , PreparedStatement and CallableStatement interfaces also

provide setter and getter methods for each of these properties.

14.2 Creating and Manipulating ResultSet
Objects

14.2.1 Creating ResultSet Objects

A ResultSet object is most often created as the result of executing a Statement
object. The Statement methods executeQuery and getResultSet both return a

ResultSet object, as do various DatabaseMetaData methods. CODE EXAMPLE 14-2

executes an SQL statement returning a ResultSet object.

Statement stmt = conn.createStatement();

ResultSet rs = stmt.executeQuery(“select author, title, isbn " +

"from booklist”);

CODE EXAMPLE 14-2 Executing a query returning a ResultSet object

For each book in the table booklist , the ResultSet object will contain a row

consisting of three columns, author , title , and isbn . The following sections detail

how these rows and columns can be retrieved.

14.2.2 Cursor Movement

A ResultSet object maintains a cursor, which points to its current row of data.

When a ResultSet object is first created, the cursor is positioned before the first

row. The following methods can be used to move the cursor:

■ next() — moves the cursor forward one row. Returns true if the cursor is now

positioned on a row and false if the cursor is positioned after the last row.
Chapter 14 Result Sets 118

■ previous() — moves the cursor backwards one row. Returns true if the cursor

is now positioned on a row and false if the cursor is positioned before the first

row.

■ first() — moves the cursor to the first row in the ResultSet object. Returns

true if the cursor is now positioned on the first row and false if the

ResultSet object does not contain any rows.

■ last() — moves the cursor to the last row in the ResultSet object. Returns

true if the cursor is now positioned on the last row and false if the ResultSet
object does not contain any rows.

■ beforeFirst() — positions the cursor at the start of the ResultSet object,

before the first row. If the ResultSet object does not contain any rows, this

method has no effect.

■ afterLast() — positions the cursor at the end of the ResultSet object, after

the last row. If the ResultSet object does not contain any rows, this method has

no effect.

■ relative(int rows) — moves the cursor relative to its current position.

If rows is 0 (zero), the cursor is unchanged. If rows is positive, the cursor is

moved forward rows rows. If the cursor is less than the specified number of rows

from the last row, the cursor is positioned after the last row. If rows is negative,

the cursor is moved backward rows rows. If the cursor is less than rows rows

from the first row, the cursor is positioned before the first row.

The method relative returns true if the cursor is positioned on a valid row

and false otherwise.

If rows is 1, relative is identical to the method next . If rows is -1, relative
is identical to the method previous .

■ absolute(int row) — positions the cursor on the row -th row of the

ResultSet object.

If row is positive, the cursor is moved row rows from the beginning of the

ResultSet object. The first row is 1, the second 2, and so on. If row is greater

than the number of rows in the ResultSet object, the cursor is positioned after

the last row.

If row is negative, the cursor is moved row rows from the end of the ResultSet
object. The last row is -1, the penultimate -2, and so on. If row is greater than the

number of rows in the ResultSet object, the cursor is positioned before the first

row.

Calling absolute(0) moves the cursor before the first row.

For a ResultSet object that is of type TYPE_FORWARD_ONLY, the only valid cursor

movement method is next . All other cursor movement methods throw an

SQLException .
Chapter 14 Result Sets 119

14.2.3 Retrieving Values

The ResultSet interface provides methods for retrieving the values of columns

from the row where the cursor is currently positioned.

Two getter methods exist for each JDBC type: one that takes the column index as its

first parameter and one that takes the column name or label.

The columns are numbered from left to right, as they appear in the select list of the

query, starting at 1.

Column names supplied to getter methods are case insensitive. If a select list

contains the same column more than once, the first instance of the column will be

returned.

The index of the first instance of a column name can be retrieved using the method

findColumn . If the specified column is not found, the method findColumn throws

an SQLException .

ResultSet rs = stmt.executeQuery(sqlstring);

int colIdx = rs.findColumn(“ISBN”);

CODE EXAMPLE 14-3 Mapping a column name to a column index

14.2.3.1 Data Type Conversions

The recommended ResultSet getter method for each JDBC type is shown in

TABLE B-6 on page B-181. This table also shows all of the possible conversions that a

JDBC driver may support. The method

DataBaseMetaData.supportsConvert(int fromType, int toType)
returns true if the driver supports the given conversion.

14.2.3.2 ResultSet Metadata

When the ResultSet method getMetaData is called on a ResultSet object, it

returns a ResultSetMetaData object describing the columns of that ResultSet
object. In cases where the SQL statement being executed is unkown until runtime,

the result set metadata can be used to determine which of the getter methods should

be used to retrieve the data. In CODE EXAMPLE 14-4, result set metadata is used to

determine the type of each column in the result set.
Chapter 14 Result Sets 120

ResultSet rs = stmt.executeQuery(sqlString);

ResultSetMetaData rsmd = rs.getMetaData();

int colType [] = new int[rsmd.getColumnCount()];

for (int idx = 0, int col = 1; idx < colType.length; idx++, col++)

colType[idx] = rsmd.getColumnType(col);

CODE EXAMPLE 14-4 Retrieving result set metadata

14.2.3.3 Retrieving NULL values

The method wasNull can be called to determine if the last value retrieved was a

JDBC NULL in the database.

When the column value in the database is JDBC NULL, it may be returned to the Java

application as null , 0, or false , depending on the type of the column value.

Column values that map to Java Object types are returned as a Java null ; those

that map to numeric types are returned as 0; those that map to a Java boolean are

returned as false . Therefore, it may be necessary to call the wasNull method to

determine whether the last value retrieved was a JDBC NULL.

14.2.4 Modifying ResultSet Objects

ResultSet objects with concurrency CONCUR_UPDATABLEcan be updated using

ResultSet methods. Columns can be updated, new rows can be inserted, and rows

can be deleted using methods defined in the ResultSet interface.

14.2.4.1 Updating a Row

Updating a row in a ResultSet object is a two-phase process. First, the new value

for each column being updated is set, and then the change is applied to the row. The

row in the underlying data source is not updated until the second phase is

completed.

The ResultSet interface contains two update methods for each JDBC type, one

specifying the column to be updated as an index and one specifying the column

name as it appears in the select list.

Column names supplied to updater methods are case insensitive. If a select list

contains the same column more than once, the first instance of the column will be

updated.
Chapter 14 Result Sets 121

The method updateRow is used to apply all column changes to the current row. The

changes are not made to the row until updateRow has been called. The method

cancelUpdates can be used to back out changes made to the row before the

method updateRow is called. CODE EXAMPLE 14-5 shows the current row being

updated to change the value of the column “author” to “Zamyatin, Evgenii

Ivanovich”:

Statement stmt = conn.createStatement(ResultSet.TYPE_FORWARD_ONLY,

ResultSet.CONCUR_UPDATABLE);

ResultSet rs = stmt.executeQuery(“select author from booklist " +

"where isbn = 140185852”);

rs.next();

rs.updateString(“author”, “Zamyatin, Evgenii Ivanovich”);

rs.updateRow();

CODE EXAMPLE 14-5 Updating a row in a ResultSet object

The method DatabaseMetaData.ownUpdatesAreVisible(int type) returns

true if a ResultSet object of the specified type is able to see its own updates and

false otherwise.

A ResultSet object may be able to use the method rowUpdated to detect rows

that have had the method updateRow called on them. The method

DatabaseMetaData.updatesAreDetected(int type) returns true if a

ResultSet object of the specified type can determine if a row is updated using the

method rowUpdated and false otherwise.

14.2.4.2 Deleting a Row

A row in a ResultSet object can be deleted using the method deleteRow .

CODE EXAMPLE 14-6 shows the fourth row of the ResultSet rs being deleted.

rs.absolute(4);

rs.deleteRow();

CODE EXAMPLE 14-6 Deleting a row in a ResultSet object

After the method deleteRow has been called, the current row is deleted in the

underlying data source. This deletion is visible as a change in the open ResultSet
object if the row is either removed or replaced by an empty or invalid row.
Chapter 14 Result Sets 122

If the deleted row is removed or replaced by an empty row, the method

DatabaseMetaData.ownDeletesAreVisible(int type) will return true . It

returns false if the ResultSet object still contains the deleted row, which means

that the deletion is not visible as a change to ResultSet objects of the given type.

The method DatabaseMetaData.othersDeletesAreVisible(int type)
checks whether deletions made by others (another transaction or another

ResultSet object in the same transaction) are visible to ResultSet objects of the

specified type. This method returns true if a row deleted by others is visible and

false if it is not.

If a ResultSet object can detect deletions, the ResultSet method rowDeleted
returns true when the current row has been deleted and false when it has not.

However, rowDeleted also returns false if the ResultSet object cannot detect

deletions. The method DatabaseMetaData.deletesAreDetected(int type)
can be called to see whether a ResultSet object of the specified type can call the

method rowDeleted to detect a deletion that is visible. The method

deletesAreDetected returns false if a row deleted from the ResultSet object

is removed from it and true if the deleted row is replaced by an empty or invalid

row.

In CODE EXAMPLE 14-7, application code uses metadata to process a ResultSet
object that may contain deleted rows.

if (dbmd.ownDeletesAreVisible(ResultSet.TYPE_SCROLL_INSENSITIVE) &&

 dbmd.deletesAreDetected(ResultSet.TYPE_SCROLL_INSENSITIVE)) {

 while (rs.next) {

if (rs.rowDeleted()) {

 continue;

} else {

 // process row

 ...

}

 }

} else {

 // if up-to-date data is needed, it is better to close this

 // ResultSet object and reexecute the query to get an updated

// ResultSet object

 ...

 rs.close();

 break;
Chapter 14 Result Sets 123

}

CODE EXAMPLE 14-7 Processing a ResultSet object containing deleted rows

Note – CODE EXAMPLE 14-7 does not cover the case where ownDeletesAreVisible
returns true and deletesAreDetected returns false . This will cause an

SQLException to be thrown when the cursor is positioned on a deleted row, so an

implementation with these characteristics requires that an application handle the

exception. Such an implementation does not appear to be a very likely.

After the method deleteRow has been called, the cursor will be positioned before

the next valid row. If the deleted row is the last row, the cursor will be positioned

after the last row.

14.2.4.3 Inserting a Row

New rows may be inserted using the ResultSet interface. New rows are

constructed in a special insert row. The steps to insert a new row are:

1. Move the cursor to the insert row

2. Set the values for the columns of the row using the ResultSet interface update

methods

3. Insert the new row into the ResultSet object

CODE EXAMPLE 14-8 shows the steps necessary to insert a new row into the table

booklist .

// select all the columns from the table booklist

ResultSet rs = stmt.executeQuery(“select author, title, isbn " +

"from booklist”);

rs.moveToInsertRow();

// set values for each column

rs.updateString(1, “Huxley, Aldous”);

rs.updateString(2, “Doors of Perception and Heaven and Hell”);

rs.updateLong(3, 60900075);

// insert the row

rs.insertRow();

// move the cursor back to its position in the result set
Chapter 14 Result Sets 124

rs.moveToCurrentRow();

CODE EXAMPLE 14-8 Inserting a new row into a ResultSet object

Each column in the insert row that does not allow null as a value and does not

have a default value must be given a value using the approriate update method. If

this is not the case, the method insertRow will throw an SQLException .

The method DatabaseMetaData.ownInsertsAreVisible(int type) will

return true if newly inserted rows can be seen in result sets of the specified type.

If the ResultSet objects of the specified type can identify newly inserted rows, the

method DatabaseMetaData.insertsAreDetected(int type) will return

true . This indicates that the inserted rows are visible to the ResultSet object.

14.2.4.4 Positioned Updates and Deletes

JDBC drivers or DBMSs that do not support performing updates via the ResultSet
interface may support positioned updates and deletes via SQL commands. This

method of updating a row relies on using named cursors to allow multiple

statements to act on a single result set. CODE EXAMPLE 14-9 shows the use of the

method setCursorName to associate a cursor with a Statement object and then

the use of the method getCursorName to retrieve the name for use by a second

Statement object.

Statement stmt1 = conn.createStatement();

stmt1.setCursorName(“CURSOR1”);

ResultSet rs = stmt1.executeQuery(“select author, title, isbn " +

"from booklist for update of author”);

// move to the row we want to update

while (...) {

rs.next()

}

String cursorName = rs.getCursorName();

Statement stmt2 = conn.createStatement();

// now update the row

int updateCount = stmt2.executeUpdate("update booklist " +

"set author = ’Zamyatin, Evgenii Ivanovich’ " +

"where current of “ + cursorName);

CODE EXAMPLE 14-9 Updating a row using positioned updates
Chapter 14 Result Sets 125

The syntax of both the select statement and the update statement may vary among

driver or DBMS implementations.

The method DatabaseMetaData.supportsPositionedUpdates returns true if

the JDBC driver and DBMS support this facility.

14.2.5 Closing a ResultSet Object

A ResultSet object is automatically closed when the Statement object that

produced it is closed. The method close can be called explicitly to close a

ResultSet object, thereby releasing any external resources and making it

immediately available for garbage collection.
Chapter 14 Result Sets 126

CHAPTER 15

Batch Updates

The batch update facility allows multiple update operations to be submitted to a

data source for processing at once. Submitting multiple updates together, instead of

individually, can greatly improve performance. Statement , PreparedStatement ,

and CallableStatement objects can be used to submit batch updates.

15.1 Description of Batch Updates

15.1.1 Statements

The batch update facility allows a Statement object to submit a set of

heterogeneous update commands together as a single unit, or batch, to the

underlying data source.

Since the JDBC 2.0 API, a Statement object has had the ability to keep track of a list

of commands—or batch—that can be submitted together for execution. When a

Statement object is created, its associated batch is empty. An application adds

commands to a statement’s batch one at a time by calling the method

Statement.addBatch and providing it with the SQL update command to be

added. All of the commands added to a batch must be statements that return an

update count.

If an application decides not to submit a batch of updates that has been constructed

for a statement, it can call the method Statement.clearBatch to clear the batch

of all commands.

In CODE EXAMPLE 15-1, all of the update operations required to insert a new

employee into a fictitious company database are submitted as a single batch.
Chapter 15 Batch Updates 127

// turn off autocommit

con.setAutoCommit(false);

Statement stmt = con.createStatement();

stmt.addBatch("INSERT INTO employees VALUES (1000, 'Joe Jones')");

stmt.addBatch("INSERT INTO departments VALUES (260, 'Shoe')");

stmt.addBatch("INSERT INTO emp_dept VALUES (1000, 260)");

// submit a batch of update commands for execution

int[] updateCounts = stmt.executeBatch();

CODE EXAMPLE 15-1 Creating and executing a batch of insert statements

In the example, auto-commit mode is disabled to prevent the driver from

committing the transaction when Statement.executeBatch is called. Disabling

auto-commit allows an application to decide whether or not to commit the

transaction in the event that an error occurs and some of the commands in a batch

cannot be processed successfully. For this reason, auto-commit should always be

turned off when batch updates are done. The commit behaviour of executeBatch
is always implementation-defined when an error occurs and auto-commit is true .

It is not possible to set a savepoint "within" a batch of statements to enable partial

recovery. If a savepoint is set any time before the method executeBatch is called,

is set before any of the statements that have been added to the batch are executed.

Although the focus in this section is on using Statement objects to do batch

updates, the discussion that follows applies to PreparedStatment and

CallableStatement objects as well.

15.1.2 Successful Execution

The Statement.executeBatch method submits a statement’s batch to the

underlying data source for execution. Batch commands are executed serially (at least

logically) in the order in which they were added to the batch. When all of the

commands in a batch execute successfully, the method executeBatch returns an

integer array containing one entry for each command in the batch.

The entries in the array are ordered according to the order in which the commands

were processed (which, again, is the same as the order in which the commands were

originally added to the batch). When all of the commands in a batch have been

executed successfully, an entry in the array of update counts may have the following

values :
Chapter 15 Batch Updates 128

■ 0 or greater — the command was processed successfully and the value is an

update count indicating the number of rows in the database that were affected by

the command’s execution

■ Statement.SUCCESS_NO_INFO — the command was processed successfully, but

the number of rows affected is unknown

Calling the method executeBatch closes the calling Statement object’s current

result set if one is open. The statement’s batch is reset to empty once

executeBatch returns. The behaviour of the methods executeQuery ,

executeUpdate , and execute is implementation-defined when a statement’s

batch is non-empty.

Only DDL and DML commands that return a simple update count may be executed

as part of a batch. The method executeBatch throws a BatchUpdateException
if any of the commands in the batch fail to execute properly or if a command

attempts to return a result set. When a BatchUpdateException is thrown, an

application can call the BatchUpdateException.getUpdateCounts method to

obtain an integer array of update counts that describes the outcome of the batch

execution.

15.1.3 Handling Failures during Execution

A JDBC driver may or may not continue processing the remaining commands in a

batch once execution of a command fails. However, a JDBC driver must always

provide the same behaviour with a particular data source. For example, a driver

cannot continue processing after a failure for one batch and not continue processing

for another batch.

If a driver stops processing after the first failure, the array returned by the method

BatchUpdateException.getUpdateCounts will always contain fewer entries

than there were statements in the batch. Since statements are executed in the order

that they are added to the batch, if the array contains N elements, this means that the

first N elements in the batch were processed successfully when executeBatch was

called.

When a driver continues processing in the presence of failures, the number of

elements in the array returned by the method

BatchUpdateException.getUpdateCounts always equals the number of

commands in the batch. When a BatchUpdateException object is thrown and the

driver continues processing after a failure, the array of update counts will contain

the following BatchUpdateException constant:

■ Statement.EXECUTE_FAILED — the command failed to execute successfully.

This value is also returned for commands that could not be processed for some

reason—such commands fail implicitly.
Chapter 15 Batch Updates 129

JDBC drivers that do not continue processing after a failure never return

Statement.EXECUTE_FAILED in an update count array. Drivers of this type

simply return a status array containing an entry for each command that was

processed successfully.

A JDBC technology-based application can distinguish a JDBC driver that continues

processing after a failure from one that does not by examining the size of the array

returned by BatchUpdateException.getUpdateCounts . A JDBC driver that

continues processing always returns an array containing one entry for each element

in the batch. A JDBC driver that does not continue processing after a failure will

always return an array whose number of entries is less than the number of

commands in the batch.

15.1.4 PreparedStatement Objects

When a PreparedStatement object is used, a command in a batch consists of a

parameterized SQL statement and an associated set of parameters . The batch update

facility is used with a PreparedStatement object to associate multiple sets of

input parameter values with a single PreparedStatement object. The sets of

parameter values together with their associated parameterized update commands

can then be sent to the underlying data source engine for execution as a single unit.

CODE EXAMPLE 15-2 inserts two new employee records into a database as a single

batch. The PreparedStatement interface setter methods are used to create each

parameter set, one for each employee. The PreparedStatement.addBatch
method adds a set of parameters to the current command.

// turn off autocommit

con.setAutoCommit(false);

PreparedStatement stmt = con.prepareStatement(

"INSERT INTO employees VALUES (?, ?)");

stmt.setInt(1, 2000);

stmt.setString(2, "Kelly Kaufmann");

stmt.addBatch();

stmt.setInt(1, 3000);

stmt.setString(2, "Bill Barnes");

stmt.addBatch();
Chapter 15 Batch Updates 130

// submit the batch for execution

int[] updateCounts = stmt.executeBatch();

CODE EXAMPLE 15-2 Creating and executing a batch of prepared statements

Finally, the method PreparedStatement.executeBatch is called to submit the

updates to the underlying data source. Calling this method clears the statement’s

associated list of commands. The array returned by

PreparedStatement.executeBatch contains an element for each set of

parameters in the batch, similar to the case for Statement objects. Each element

contains either an update count or the generic ‘success’ indicator

SUCCESS_NO_INFO.

Error handling in the case of PreparedStatement objects is the same as error

handling in the case of Statement objects. Some drivers may stop processing as

soon as an error occurs, while others may continue processing the rest of the batch.

As with Statement objects, the number of elements in the array returned by

BatchUpdateException.getUpdateCounts indicates whether or not the driver

continues processing after a failure. The same three array element values are

possible: 0 or higher, Statement.SUCCESS_NO_INFO , or

Statement.EXECUTE_FAILED . The order of the entries in the array is the same

order as the order in which commands were added to the batch.

15.1.5 CallableStatement Objects

The batch update facility works the same with CallableStatement objects as it

does with PreparedStatement objects. Multiple sets of input parameter values

may be associated with a CallableStatement object and sent to the underlying

data source together.

Stored procedures invoked using the batch update facility with a callable statement

must return a maximum of one update counts, if no update count is returned the

array element value will be Statement.SUCCESS_NO_INFO . Additionally, a

batchable stored procedure may not have OUT or INOUT parameters. The

CallableStatement.executeBatch method throws an exception if this

restriction is violated. Error handling is analogous to that for PreparedStatement
objects.
Chapter 15 Batch Updates 131

Chapter 15 Batch Updates 132

CHAPTER 16

Advanced Data Types

Chapter 16 “Advanced Data Types” and Chapter 17 “Customized Type Mapping”

discuss additions to the JDBC API that allow an application written in the Java

programming language to access SQL99 data types, such as binary large objects and

structured types. If a data source does not support an advanced data type described

in these two chapters, a driver for that data source is not required to implement the

methods and interfaces associated with that data type.

16.1 Taxonomy of SQL Types
The latest version of the ANSI/ISO SQL standard is commonly referred to as SQL99.

The JDBC API incorporates a model of the new SQL99 data types that includes only

those properties that are essential to exchanging data between a database and an

application written in the Java programming language.

SQL99 specifies these data types:

■ SQL92 built-in types—the familiar SQL ‘column types’

■ CHAR

■ FLOAT

■ DATE

■ and so on

■ New built-in types — new types added by SQL99

■ BOOLEAN— a truth value

■ BLOB— a Binary Large OBject

■ CLOB— a Character Large OBject

■ User Defined Types

■ Structured type — a user-defined type; for example:
Chapter 16 Advanced Data Types 133

CREATE TYPE PLANE_POINT AS (X FLOAT, Y FLOAT) NOT FINAL

■ DISTINCT type — a user-defined type based on a built-in type; for example:

CREATE TYPE MONEY AS NUMERIC(10,2) FINAL

■ Constructed types — new types based on a given base type

■ REF(structured-type) — a pointer that persistently denotes an instance of

a structured type that resides in the database

■ base-type ARRAY[n] — an array of n base-type elements

■ Locators — new entities that are logical pointers to data that resides on the

database server. A LOCATORexists in the client environment and is a transient,

logical pointer to data on the server. A locator typically refers to data that is too

large to materialize on the client, such as images or audio. There are operators

defined at the SQL level to retrieve random-access pieces of the data denoted by

the locator.

■ LOCATOR(structured-type) — locator to a structured instance in server

■ LOCATOR(array) — locator to an array in server

■ LOCATOR(blob) — locator to a Binary Large Object in server

■ LOCATOR(clob) — locator to a Character Large Object in server

■ Type for managing data external to the data source

■ Datalink — a reference to data external to the data source that is managed by

the data source. At the time of this writing, Datalink values are being

standardized as part of SQL MED (Management of External Data), a part of the

SQL ANSI/ISO standard specification. Having the data source manage the

reference to external data has several advantages:

i. Referential integrity — the referenced data can no longer be deleted or

renamed directly through file system APIs

ii. Access control — access to the data may be configured such that it is

controlled by the data source instead of the file system

iii. Coordinated backup and recovery — fields referenced by Datalink values

may be included in the data source’s backup process

iv. Transaction consistency — changes that affect both relational and external

data are executed in a transactional context to preserve the integrity and

consistency of the data

The remainder of this chapter discusses the default mechanism provided by the

JDBC API for accessing each of the new SQL data types mentioned above. The JDBC

API also provides a means of customizing the mapping of SQL DISTINCT and

structured types into Java classes. This mechanism is discussed in Chapter 17

“Customized Type Mapping”.
Chapter 16 Advanced Data Types 134

16.2 Mapping of SQL99 Types
The JDBC API provides default mappings for the new SQL99 types. Except for the

DISTINCT and DATALINK types, these default mappings take the form of interfaces.

The following list gives the SQL99 types and the interfaces to which they are

mapped.

■ BLOB— the Blob interface

■ CLOB— the Clob interface

■ ARRAY— the Array interface

■ Structured types — the Struct interface

■ REF(structured type) — the Ref interface

The other SQL99 data types with default mappings to the Java programming

language are:

■ DISTINCT — the type to which the base type is mapped. For example, a

DISTINCT value based on an SQL NUMERICtype maps to a

java.math.BigDecimal type because NUMERICmaps to BigDecimal in the

Java programming language.

■ DATALINK — a java.net.URL object.

16.3 Blob and Clob Objects

16.3.1 Retrieving BLOBand CLOBValues

The binary large object (BLOB) and character large object (CLOB) data types are

treated similarly to the more primitive built-in types. Values of these types can be

retrieved by calling the getBlob and getClob methods in the ResultSet and

CallableStatement interfaces. For example, CODE EXAMPLE 16-1 retrieves a BLOB
value from the first column of the ResultSet rs and a CLOBvalue from the second

column.

Blob blob = rs.getBlob(1);

Clob clob = rs.getClob(2);

CODE EXAMPLE 16-1 Retrieving BLOBand CLOBvalues
Chapter 16 Advanced Data Types 135

The Blob interface contains operations for returning the length of the BLOBvalue, a

specific range of bytes contained in the BLOBvalue, and so on. The Clob interface

contains corresponding operations that are character based. The API documentation

gives more details.

An application does not deal directly with the LOCATOR(blob) and

LOCATOR(clob) types that are defined in SQL. By default, a JDBC driver should

implement the Blob and Clob interfaces using the appropriate locator type. Also by

default, Blob and Clob objects remain valid only during the transaction in which

they are created.

16.3.2 Storing Blob and Clob Objects

A Blob or Clob object can be passed as an input parameter to a

PreparedStatement object just like other data types. The method setBlob sets a

PreparedStatement parameter with a Blob object, and the method setClob sets

a Clob object as a parameter. In CODE EXAMPLE 16-2, authorImage is an instance of

java.sql.Blob retrieved from another SQL statement, and authorBio is a an

instance of java.sql.Clob retrieved from another SQL statement.

PreparedStatement pstmt = conn.prepareStatement(

“INSERT INTO bio (image, text) VALUES (?, ?)");

pstmt.setBlob(1, authorImage);

pstmt.setClob(2, authorBio);

CODE EXAMPLE 16-2 Setting Blob and Clob objects as parameters to a

PreparedStatement object

The setBinaryStream and setObject methods may also be used to set a Blob
object as a parameter in a PreparedStatement object. The setAsciiStream ,

setCharacterStream , and setObject methods are alternate means of setting a

Clob object as a parameter.

The updateBlob and updateClob methods can be used to update a column value

in an updatable result set.

16.3.3 Altering Blob and Clob Objects

The Blob and Clob interfaces provide methods to alter their internal content. In

CODE EXAMPLE 16-3, the method setBytes is used to write the first five bytes of the

Blob object retrieved from the column DATA.
Chapter 16 Advanced Data Types 136

byte[] val = {0,1,2,3,4};

...

Blob data = rs.getBlob(“DATA”);

int numWritten = data.setBytes(1, val);

CODE EXAMPLE 16-3 Writing bytes to a Blob object

Similarly, the Clob methods setString and truncate can be used to change the

value of a column containing a Clob object.

16.4 Array Objects

16.4.1 Retrieving Array Objects

Data of type SQL ARRAYcan be retrieved by calling the getArray method of the

ResultSet and CallableStatement interfaces. For example, the following line

of code retrieves an Array value from the first column of the ResultSet rs .

Array a = rs.getArray(1);

By default, a JDBC driver should implement the Array interface using an SQL

LOCATOR(array) internally. Also by default, Array objects remain valid only

during the transaction in which they are created.

The Array object returned to an application by the ResultSet.getArray and

CallableStatement.getArray methods is a logical pointer to the SQL ARRAY
value in the database; it does not contain the contents of the SQL ARRAYvalue. The

Array interface provides several versions of the methods getArray and

getResultSet that return the contents of an SQL ARRAYvalue to the client as a

materialized Java programming language array (Java array) or as a ResultSet
object. The API documentation gives complete details.

16.4.2 Storing Array Objects

The PreparedStatement methods setArray and setObject may be called to

pass an Array value as an input parameter to a PreparedStatement object.

CODE EXAMPLE 16-4 sets the Array object member_array , which was retrieved from

another table in the database, as the second parameter to the PreparedStatement
pstmt .
Chapter 16 Advanced Data Types 137

PreparedStatement pstmt = conn.prepareStatement(

"INSERT INTO dept (name, members) VALUES (?, ?)");

pstmt.setString(1, "biology");

pstmt.setArray(2, member_array);

pstmt.executeUpdate();

CODE EXAMPLE 16-4 Storing an Array object

A Java array may be passed as an input parameter by calling the method

PreparedSatement.setObject .

16.4.3 Updating Array Objects

The ResultSet methods updateArray and updateObject can be used to update

a column value.

CODE EXAMPLE 16-5 uses the method ResultSet.updateArray to update the value

of the column LATEST_NUMBERSin one ResultSet object with an Array object

retrieved from the column NUMBERSin another ResultSet object.

// retrieve a column containing an SQL ARRAY value from ResultSet rs

java.sql.Array num = rs.getArray("NUMBERS");

...

// update the column "LATEST_NUMBERS" in a second ResultSet

// with the value retrieved...

rs2.updateArray("LATEST_NUMBERS", num);

rs2.updateRow();

CODE EXAMPLE 16-5 Updating a column with an Array object
Chapter 16 Advanced Data Types 138

16.5 Ref Objects

16.5.1 Retrieving REFValues

An SQL REF(structured type) value can be retrieved as a Ref object by calling

the getRef method of the ResultSet and CallableStatement interfaces. For

example, in CODE EXAMPLE 16-6, the ResultSet rs contains a reference to an

instance of the SQL structured type dog that is stored in the table dogs . The code

retrieves this REF(dog) from the first column of rs.

ResultSet rs = stmt.executeQuery("SELECT oid FROM dogs WHERE " +

"name = rover");

rs.next();

Ref ref = rs.getRef(1);

CODE EXAMPLE 16-6 Retrieving a REFvalue

An SQL REFvalue is a pointer; therefore, a Ref object, which is the mapping of a

REFvalue, is likewise a pointer and does not contain the data of the structured type

instance to which it refers. A Ref object remains valid while the session or

connection on which it is created is open.

16.5.2 Retrieving the Referenced Value

The Ref object returned from the method getRef is a reference to an instance of a

structured type in the underlying data source. The methods getObject() and

getObject(Map map) can be used to retrieve the structured type instance that is

referenced. CODE EXAMPLE 16-7 shows how a reference to an instance of the

structured type Address can be dereferenced to retrieve the instance of Address .

This example would require that a map, mapping Address to its SQL type, had

been supplied to the Connection using the method setMap .

Ref ref = rs.getRef(1);

Address addr = (Address)ref.getObject();

CODE EXAMPLE 16-7 Retrieving the structured type instance referenced by a Ref object
Chapter 16 Advanced Data Types 139

16.5.3 Storing Ref Objects

The PreparedStatement.setRef method may be called to pass a Ref object as

an input parameter to a PreparedStatement object.

16.5.4 Storing the Referenced Value

An instance of a structured type retrieved with the method ResultSet.getRef or

CallableStatement.getRef is stored using the Ref.setObject method. In

CODE EXAMPLE 16-8, the table DOGSstores instances of the structured type DOG. The

SELECTstatement selects the REF(DOG) that refers to the instance in which the

name is Rover. The referenced instance of the type DOGis retrieved using getValue .

The parameter map describes a mapping from the SQL type DOGto the Java class

Dog, which implements the SQLData interface.

ResultSet rs = stmt.executeQuery("SELECT OID FROM DOGS " +

"WHERE NAME = ’ROVER’");

rs.next();

Ref rover = rs.getRef("OID");

Dog dog = (Dog)rover.getObject(map);

// manipulate instance of Dog

dog.setAge(14);

...

// store updated Dog

rover.setObject((Object)dog);

CODE EXAMPLE 16-8 Retrieving and storing the structured type instance referenced by a

Ref object

16.5.5 Metadata

The type REF is defined in the class java.sql.Types . This value is returned by

methods such as DatabaseMetaData.getTypeInfo and

DatabaseMetaData.getColumns when a JDBC driver supports the Ref data

type.
Chapter 16 Advanced Data Types 140

16.6 Distinct Types
An SQL DISTINCT type is a new user defined data type that is based on one of the

primitive types. C and C++ programmers can think of it as being similar to a

typedef .

16.6.1 Retrieving Distinct Types

By default, a column of SQL type DISTINCT is retrieved by calling any getter

method that is appropriate to the type on which it is based. For example, the

following type declaration creates the type MONEY, which is based on the SQL type

NUMERIC.

CREATE TYPE MONEY AS NUMERIC(10,2) FINAL

CODE EXAMPLE 16-9 Creating a distinct type

CODE EXAMPLE 16-10 uses the method getBigDecimal to retrieve a MONEYvalue

because the underlying SQL NUMERICtype is mapped to the

java.math.BigDecimal type.

java.math.BigDecimal bd = rs.getBigDecimal(1);

CODE EXAMPLE 16-10 Retrieving a distinct type

16.6.2 Storing Distinct Types

Any setter method in the PreparedStatement interface that is appropriate for the

base type of an SQL DISTINCT type may be used to pass an input parameter of that

distinct type to a prepared statement. For example, given the definition of type

MONEYin CODE EXAMPLE 16-9, the method PreparedStatement.setBigDecimal
would be used.

16.6.3 Metadata

The type code DISTINCT is defined in the class java.sql.Types . This value is

returned by methods such as DatabaseMetaData.getTypeInfo and

DatabaseMetaData.getColumns when a JDBC driver supports this data type.
Chapter 16 Advanced Data Types 141

An SQL DISTINCT type must be defined as part of a particular database schema

before it can be used in a schema table definition. Information on schema-specific

user-defined types—of which DISTINCT types are one particular kind—can be

retrieved by calling the DatabaseMetaData.getUDTs method. For example,

CODE EXAMPLE 16-11 returns descriptions of all the SQL DISTINCT types defined in

the catalog-name.schema-name schema. If the driver does not support UDTs

or no matching UDTs are found, the getUDTs method returns an empty result set.

int[] types = {Types.DISTINCT};

ResultSet rs = dmd.getUDTs("catalog-name", "schema-name",

"%", types);

CODE EXAMPLE 16-11 Querying a DatabaseMetaData object for distinct types

Each row in the ResultSet object returned by the method getUDTs describes a

UDT. Each row contains the following columns:

Most of the columns above should be self-explanatory. The TYPE_NAMEis the SQL

type name given to the DISTINCT type—MONEYin the example above. This is the

name used in a CREATE TABLEstatement to specify a column of this type.

When DATA_TYPEis Types.DISTINCT , the CLASS_NAMEcolumn contains a fully

qualified Java class name. Instances of this class will be created if getObject is

called on a column of this DISTINCT type. For example, CLASS_NAMEwould default

to java.math.BigDecimal in the case of MONEYabove. The JDBC API does not

prohibit a driver from returning a subtype of the class named by CLASS_NAME. The

CLASS_NAMEvalue reflects a custom type mapping when one is used. See

Chapter 17 “Customized Type Mapping” for details.

TYPE_CAT String => the type's catalog (may be null)

TYPE_SCHEM String => the type's schema (may be null)

TYPE_NAME String => the SQL type name

CLASS_NAME String => a Java class name

DATA_TYPE short => value defined in java.sql.Types , such as DISTINCT

REMARKS String => explanatory comment on the type

BASE_TYPE short => value defined in java.sql.Types , for DISTINCT or

reference types (may be null)
Chapter 16 Advanced Data Types 142

16.7 Structured Types

16.7.1 Retrieving Structured Types

An SQL structured type value is always retrieved by calling the method

getObject . By default, getObject returns a value of type Struct for a structured

type. For example, the following line of code retrieves a Struct value from the first

column of the current row of the ResultSet object rs .

Struct struct = (Struct)rs.getObject(1);

The Struct interface contains methods for retrieving the attributes of a structured

type as an array of java.lang.Object values. By default, a JDBC driver

materializes the contents of a Struct prior to returning a reference to it to the

application. Also, by default a Struct object is considered valid as long as the Java

application maintains a reference to it.

16.7.2 Storing Structured Types

The PreparedStatement.setObject method may be called to pass a Struct
object as an input parameter to a prepared statement.

16.7.3 Metadata

The type code STRUCTis defined in the class java.sql.Types . This value is

returned by methods such as DatabaseMetaData.getTypeInfo and

DatabaseMetaData.getColumns when a JDBC driver supports structured data

types.

An SQL structured type must be defined as part of a particular database schema

before it can be used in a schema table definition. Information on schema-specific

user-defined types—of which STRUCTtypes are one particular kind—can be

retrieved by calling the DatabaseMetaData.getUDTs method. For example,

CODE EXAMPLE 16-1 returns descriptions of all the SQL structured types defined in

the catalog-name.schema-name schema.

int[] types = {Types.STRUCT};

ResultSet rs = dmd.getUDTs("catalog-name", "schema-name",

"%", types);
Chapter 16 Advanced Data Types 143

CODE EXAMPLE 16-12 Querying a DatabaseMetaData object for structured types

If the driver does not support UDTs or no matching UDTs are found, an empty result

set is returned. See section 16.6.3 for a description of the result set returned by the

method getUDTs .

When the DATA_TYPEreturned by getUDTs is Types.STRUCT , the CLASS_NAME
column contains the fully qualified Java class name of a Java class. Instances of this

class are manufactured by the JDBC driver when getObject is called on a column

of this STRUCTtype. Thus, CLASS_NAMEdefaults to java.sql.Struct for

structured types. If there is a custom mapping for the STRUCTtype, CLASS_NAME
will be the implementation of the interface SQLData that specifies the mapping. The

JDBC API does not prohibit a driver from returning a subtype of the class named by

CLASS_NAME. Chapter 17 “Customized Type Mapping” provides more information

about implementations of the SQLData interface.

16.8 Datalinks
A DATALINK value references a file outside of the underlying data source that the

data source manages.

16.8.1 Retrieving References to External Data

A reference to external data being managed by the data source can be retrieved

using the method ResultSet.getURL . The java.net.URL object that is returned

can be used to manipulate the data.

java.net.URL url = rs.getURL(1);

CODE EXAMPLE 16-13 Retrieving a reference to an external data object

In cases where the type of URL returned by the methods getObject or getURL is

not supported by the Java platform, the URL can be retrieved as a String by calling

the method getString .
Chapter 16 Advanced Data Types 144

16.8.2 Storing References to External Data

The method PreparedStatement.setURL can be used to pass a java.net.URL
object to a prepared statement. In cases where the type of URL being set is not

supported by the Java platform, the URL can be stored using the setString
method.

16.8.3 Metadata

The type code DATALINK is defined in the class java.sql.Types . This value is

returned by methods such as DatabaseMetaData.getTypeInfo and

DatabaseMetaData.getColumns when a JDBC driver supports the Datalink
data type or references to external files.
Chapter 16 Advanced Data Types 145

Chapter 16 Advanced Data Types 146

CHAPTER 17

Customized Type Mapping

This chapter describes the support that the JDBC API provides for mapping SQL

structured and distinct types to classes in the Java programming language. Because

the mechanism for this custom mapping is an extension of the existing getObject
and setObject mechanism, it involves minimal extensions to the JDBC API from

the user’s point of view.

17.1 The Type Mapping
The SQL user-defined types (UDTs), structured types and DISTINCT types, can be

given a custom mapping to a class in the Java programming language. The default is

for a driver to use the default mappings between SQL data types and types in the

Java programming language. The default mapping for an SQL structured type is to

the interface Struct ; the default mapping for an SQL DISTINCT type is to the type

to which the underlying type is mapped. If a custom mapping has been set up for a

UDT, the driver will use the custom mapping instead of the default mapping when

an application calls the getObject or setObject methods on that UDT.

Setting up a custom mapping requires two things:

1. Writing an implementation of the SQLData interface for the UDT. This class

typically maps the attribute(s) of an SQL structured type (or the single attribute of

a DISTINCT type) to fields. There is, however, great latitude allowed in how a

UDT is custom mapped. It is expected that most SQLData implementations will

be created using a tool.

2. Putting an entry in a java.util.Map object. The entry must contain the

following two items:

a. The fully qualified name of the SQL UDT that is to be mapped.
Chapter 17 Customized Type Mapping 147

b. The Class object for the SQLData implementation. It is an error if the class

listed in a type map entry does not implement the SQLData interface.

For example, if the UDT is named mySchemaName.AUTHORSand the SQLData
implementation is the class Authors , the entry for the type map associated with the

Connection object conn would look like CODE EXAMPLE 17-1.

java.util.Map map = conn.getTypeMap();

map.put("mySchemaName.AUTHORS", Class.forName("Authors"));

conn.setTypeMap(map);

CODE EXAMPLE 17-1 Putting an entry in a connection’s type map

The method Connection.getTypeMap returns the type map associated with the

Connection object conn ; the method Connection.setTypeMap sets the given

java.util.Map object as the type map for conn .

When an SQL value with a custom mapping is being retrieved (by the method

ResultSet.getObject , CallableStatement.getObject , or any of the other

methods that materialize an SQL value’s data on the client), the driver will check to

see if there is an entry in the connection’s type map for the SQL value that is to be

retrieved. If there is, the driver will map the SQL UDT to the class specified in the

type map. If there is no entry for the UDT in the connection’s type map, the UDT is

mapped to the default mapping.

Certain methods may take a type map as a parameter. A type map supplied as a

parameter supersedes the type map associated with the connection. A UDT that

does not have an entry in the type map supplied as a parameter will be mapped to

the default mapping. When a type map is explicitly supplied to a method, the

connection’s type map is never used.

17.2 Class Conventions
A class that appears in a type map entry must do the following:

1. Implement the interface java.sql.SQLData

2. Provide a niladic constructor, that is, a constructor that takes no parameters

The SQLData interface contains methods that convert instances of SQL UDTs to Java

class instances and that convert Java class instances back to SQL UDTs. For example,

the method SQLData.readSQL reads a stream of data values and builds a Java
Chapter 17 Customized Type Mapping 148

object, while the method SQLData.writeSQL writes a sequence of values from a

Java object to a stream. These methods will typically be generated by a tool that

understands the database schema.

This stream-based approach for exchanging data between SQL and the Java

programming language is conceptually similar to Java object serialization. The data

are read from and written to an SQL data stream provided by the JDBC driver. The

SQL data stream may be implemented on various network protocols and data

formats. It may be implemented on any logical data representation in which the leaf

SQL data items (of which SQL structured types are composed) can be read from

(written to) the data stream in a "depth-first" traversal of the structured types. That

is, each attribute value, which may itself be a structured type, appears fully (its

structure recursively elaborated) in the stream before the next attribute. In addition,

the attributes of an SQL structured type must appear in the stream in the order in

which they are declared in the type definition. For data of SQL structured types that

use inheritance, the attributes must appear in the stream in the order that they are

inherited. That is, the attributes of a supertype must appear before attributes of a

subtype.

If multiple inheritance is used, then the attributes of supertypes should appear in the

stream in the order in which the supertypes are listed in the type declaration. This

protocol does not require the database server to have any knowledge of the Java

programming language. However, as there is no support for multiple inheritance in

the SQL99, this issue should not arise.

17.3 Streams of SQL Data
This section describes the stream interfaces, SQLInput and SQLOutput , which

support customization of the mapping of SQL UDTs to Java data types.

17.3.1 Retrieving Data

In a custom mapping, when data of SQL structured and distinct types are retrieved

from the database, they "arrive" in a stream implementing the SQLInput interface.

The SQLInput interface contains methods for reading individual data values

sequentially from the stream. CODE EXAMPLE 17-2 illustrates how a driver can use an

SQLInput stream to provide values for the fields of an SQLData object. The

SQLData object—the this object in the example—contains three persistent fields:

the String str , the Blob object blob , and the Employee object emp.

SQLInput sqlin;

...
Chapter 17 Customized Type Mapping 149

this.str = sqlin.readString();

this.blob = sqlin.readBlob();

this.emp = (Employee)sqlin.readObject();

CODE EXAMPLE 17-2 Retrieving data using the SQLInput interface

The SQLInput.readString method reads a String value from the stream; the

SQLInput.readBlob method reads a Blob value from the stream. By default, the

Blob interface is implemented using an SQL locator, so calling the method

readBlob doesn’t materialize the SQL BLOBcontents on the client. The

SQLInput.readObject method retrieves an object reference from the stream. In

the example, the Object returned is narrowed to an Employee object.

There are a number of additional methods defined on the SQLInput interface for

reading each of the types (readLong , readBytes , and so on). The

SQLInput.wasNull method can be called to check whether the last value read was

SQL NULL in the database.

17.3.2 Storing Data

When an instance of a class that implements SQLData is passed to a driver as an

input parameter via the setObject method, the JDBC driver calls the object’s

SQLData.writeSQL method. It also creates an SQLOutput stream to which the

method writeSQL writes the attributes of the custom mapped UDT. The method

writeSQL will typically have been generated by a tool from an SQL type definition.

CODE EXAMPLE 17-3 illustrates the use of the SQLOutput object sqlout .

sqlout.writeString(this.str);

sqlout.writeBlob(this.blob);

sqlout.writeObject(this.emp);

CODE EXAMPLE 17-3 Storing data using the SQLOutput interface

The example shows how the contents of an SQLData object can be written to an

SQLOutput stream. The SQLData object—the this object in the example—contains

three persistent fields: the String str , the Blob object blob , and the Employee
object emp. Each field is written in turn to the SQLOutput stream, sqlout . The

SQLOutput interface contains methods for writing each of the types defined in the

JDBC API.
Chapter 17 Customized Type Mapping 150

17.4 Examples
This section gives examples of SQL code as well as code in the Java programming

language. SQL code is used for creating structured types, creating tables for

instances of those types, populating the tables with instances of the structured types,

and creating an SQL DISTINCT type. This code sets up the SQL values that will be

mapped to classes in the Java programming language.

The examples of code in the Java programming language create implementations of

the SQLData interface for the newly created SQL UDTs and also show how a class in

the Java programming language can mirror SQL inheritance for structured types.

17.4.1 An SQL Structured Type

CODE EXAMPLE 17-4, which defines the structured types PERSON, FULLNAME, and

RESIDENCE, shows that it is possible for an attribute to be a REFvalue or another

structured type. PERSONand RESIDENCEeach have an attribute that is a REFvalue,

and the REFvalue in one structured type references the other structured type. Note

also that FULLNAMEis used as an attribute of PERSON.

CREATE TYPE RESIDENCE AS

(

DOOR NUMERIC(6),

STREET VARCHAR(100),

CITY VARCHAR(50),

OCCUPANT REF(PERSON)

) NOT FINAL

CREATE TYPE FULLNAME AS

(

FIRST VARCHAR(50),

LAST VARCHAR(50)

) NOT FINAL

CREATE TYPE PERSON AS

(

NAME FULLNAME,
Chapter 17 Customized Type Mapping 151

HEIGHT NUMERIC,

WEIGHT NUMERIC,

HOME REF(RESIDENCE)

) NOT FINAL

CODE EXAMPLE 17-4 Creating SQL structured types

The types created in CODE EXAMPLE 17-4 are presumed to be created in the current

schema for the following examples.

CODE EXAMPLE 17-5 creates two tables that are maintained by the DBMS

automatically. The CREATEstatements do two things:

1. Create tables that store instances of the structured types named in the OFpart of

the statement (RESIDENCEin the first one, PERSONin the second). Each of the

subsequent INSERT INTO statements adds a new row representing an instance of

the UDT.

2. Create a REFvalue that is a pointer to each instance that is inserted into the table.

As indicated in the CREATEstatement, the REFvalue is generated by the system,

which is done implicitly. Because REFvalues are stored in the table, they are

persistent pointers. This contrasts with LOCATORtypes, which are logical pointers

but exist only as long as the transactions in which they are created.

CREATE TABLE HOMES OF RESIDENCE

(REF IS OID SYSTEM GENERATED,

OCCUPANT WITH OPTIONS SCOPE PEOPLE)

CREATE TABLE PEOPLE OF PERSON

(REF IS OID SYSTEM GENERATED,

OCCUPANT WITH OPTIONS SCOPE HOMES)

CODE EXAMPLE 17-5 Creating tables to store instances of a structured type

CODE EXAMPLE 17-6 uses INSERT INTO statements to populate the tables created in

CODE EXAMPLE 17-5. For example, the INSERT INTO PEOPLEstatement inserts an

instance of the UDT PERSONinto the table PEOPLE. When this command is executed,

the DBMS will also automatically generate a REFvalue that is a pointer to this

instance of PERSONand store it in the column OID (the column name specified in the

CREATEstatement that created the table PEOPLE).

Each column value in these special tables is an attribute of the UDT, which may itself

be a UDT. For example, the first attribute of the UDT PERSONis the value in the

column NAME, which must be an instance of the UDT FULLNAME. The example

assumes that the UDT FULLNAME has an additional two parameter constructor.
Chapter 17 Customized Type Mapping 152

A column value may also be a reference to an SQL structured type. For example, the

attribute OCCUPANTof the UDT RESIDENCEis of type REF(PERSON). It takes an

SQL SELECTstatement to retrieve the REFvalue from the table HOMESand use it as

the value for OCCUPANT, which is shown at the end of CODE EXAMPLE 17-6.

INSERT INTO PEOPLE (NAME, HEIGHT, WEIGHT) VALUES

(

NEW FULLNAME('DAFFY', 'DUCK'),

4,

58

);

INSERT INTO HOMES (DOOR, STREET, CITY, OCCUPANT) VALUES

(

1234,

'CARTOON LANE',

'LOS ANGELES',

(SELECT OID FROM PEOPLE P WHERE P.NAME.FIRST = 'DAFFY')

)

UPDATE PEOPLE SET HOME = (SELECT OID FROM HOMES H WHERE

H.OCCUPANT->NAME.FIRST = 'DAFFY') WHERE

FULLNAME.FIRST = 'DAFFY'

CODE EXAMPLE 17-6 Populating and updating tables that store instances of structured

types

17.4.2 SQLData Implementations

The Java classes defined in CODE EXAMPLE 17-7 are mappings of the SQL structured

types used in the examples in Section 17.4.1. We expect that such classes will

typically be generated by a tool that reads the definitions of those structured types

from the catalog tables and, subject to customizations that a user of the tool may

provide for name mappings and type mappings of primitive fields, will generate

Java classes like those in the example.

In each implementation of SQLData , the method SQLData.readSQL reads the

attributes in the order in which they appear in the SQL definition of the structured

type. Attributes are also read in "row order, depth-first" order, where the complete
Chapter 17 Customized Type Mapping 153

structure of each attribute is read recursively before the next attribute is read. The

method SQLData.writeSQL writes each attribute to the output stream in the same

order.

public class Residence implements SQLData {

 public int door;

 public String street;

 public String city;

 public Ref occupant;

 private String sql_type;

public String getSQLTypeName() { return sql_type; }

 public void readSQL (SQLInput stream, String type)

throws SQLException {

 sql_type = type;

 door = stream.readInt();

 street = stream.readString();

 city = stream.readString();

 occupant = stream.readRef();

}

 public void writeSQL (SQLOutput stream) throws SQLException {

stream.writeInt(door);

 stream.writeString(street);

 stream.writeString(city);

 stream.writeRef(occupant);

 }

}

public class Fullname implements SQLData {

 public String first;

 public String last;

 private String sql_type;

public String getSQLTypeName() { return sql_type; }
Chapter 17 Customized Type Mapping 154

 public void readSQL (SQLInput stream, String type)

throws SQLException {

 sql_type = type;

 first = stream.readString();

 last = stream.readString();

}

 public void writeSQL (SQLOutput stream) throws SQLException {

 stream.writeString(first);

 stream.writeString(last);

 }

}

public class Person implements SQLData {

 Fullname name;

 float height;

 float weight;

 Ref home;

 private String sql_type;

public String getSQLTypeName() { return sql_type; }

 public void readSQL (SQLInput stream, String type)

throws SQLException {

 sql_type = type;

 name = (Fullname)stream.readObject();

 height = stream.readFloat();

 weight = stream.readFloat();

 home = stream.readRef();

 }

 public void writeSQL (SQLOutput stream)

throws SQLException {

 stream.writeObject(name);

 stream.writeFloat(height);

 stream.writeFloat(weight);
Chapter 17 Customized Type Mapping 155

 stream.writeRef(home);

 }

}

CODE EXAMPLE 17-7 Classes implementing the SQLData interface

CODE EXAMPLE 17-8 puts entries for custom mappings in the connection’s type map.

Then it retrieves the Ref instance stored in the OCCUPANTcolumn of the table

HOMES. This Ref instance is set as a parameter in the where clause of the query to

get the name of the occupant. When the method getObject is called to retrieve an

instance of FULLNAME, the driver looks in the connections type map and uses the

SQLData implementation, Fullname , to custom map the FULLNAMEvalue.

// set up mappings for the connection

try {

java.util.Map map = con.getTypeMap();

map.put(“S.RESIDENCE", Class.forName("Residence"));

map.put("S.FULLNAME", Class.forName("Fullname"));

map.put("S.PERSON", Class.forName("Person"));

}

catch (ClassNotFoundException ex) {}

PreparedStatement pstmt;

ResultSet rs;

pstmt = con.prepareStatement("SELECT OCCUPANT FROM HOMES");

rs = pstmt.executeQuery();

rs.next();

Ref ref = rs.getRef(1);

pstmt = con.prepareStatement(

"SELECT FULLNAME FROM PEOPLE WHERE OID = ?");

pstmt.setRef(1, ref);

rs = pstmt.executeQuery(); rs.next();

Fullname who = (Fullname)rs.getObject(1);

// prints "Daffy Duck"

System.out.println(who.first + " " + who.last);

CODE EXAMPLE 17-8 Retrieving a custom mapping
Chapter 17 Customized Type Mapping 156

17.4.3 Mirroring SQL Inheritance in the Java

Programming Language

SQL structured types may be defined to form an inheritance hierarchy. For example,

consider SQL type STUDENT, which inherits from PERSON:

CREATE TYPE PERSON AS

(NAME VARCHAR(20),

BIRTH DATE)

NOT FINAL;

CREATE TYPE STUDENT UNDER PERSON AS

(GPA NUMERIC(4,2))

NOT FINAL;

CODE EXAMPLE 17-9 Creating a hierarchy of SQL types

The following Java classes can represent data of those SQL types. Class Student
extends Person , mirroring the SQL type hierarchy. Methods SQLData.readSQL
and SQLData.writeSQL of the subclass cascade each call to the corresponding

method in its superclass in order to read or write the superclass attributes before

reading or writing the subclass attributes.

import java.sql.*;

 ...

 public class Person implements SQLData {

 public String name;

 public Date birth;

 private String sql_type;

public String getSQLTypeName() { return sql_type; }

 public void readSQL (SQLInput data, String type)

throws SQLException {

sql_type = type;

 name = data.readString();

 birth = data.readDate();

 }

 public void writeSQL (SQLOutput data)
Chapter 17 Customized Type Mapping 157

throws SQLException {

 data.writeString(name);

 data.writeDate(birth);

 }

 }

 public class Student extends Person {

 public float GPA;

 private String sql_type;

public String getSQLTypeName() { return sql_type; }

 public void readSQL (SQLInput data, String type)

throws SQLException {

 sql_type = type;

 super.readSQL(data, type);

 GPA = data.readFloat();

 }

 public void writeSQL (SQLOutput data)

 throws SQLException {

 super.writeSQL(data);

 data.writeFloat(GPA);

 }

 }

CODE EXAMPLE 17-10 Mirroring SQL type hierarchies in Java classes

The Java class hierarchy need not mirror the SQL inheritance hierarchy. For example,

the class Student above could have been declared without a superclass. In this

case, Student could contain fields to hold the inherited attributes of the SQL type

STUDENTas well as the attributes declared by STUDENTitself.

17.4.4 Example Mapping of SQL DISTINCT Type

CODE EXAMPLE 17-11 illustrates creating an SQL DISTINCT type, MONEY, and

CODE EXAMPLE 17-12 illustrates a Java class, Money, that represents it.
Chapter 17 Customized Type Mapping 158

CREATE TYPE MONEY AS NUMERIC(10,2) FINAL;

CODE EXAMPLE 17-11 Creating an SQL DISTINCT type

public class Money implements SQLData {

public java.math.BigDecimal value;

private String sql_type;

public String getSQLTypeName() { return sql_type; }

public void readSQL (SQLInput stream, String type)

throws SQLException {

sql_type = type;

value = stream.readBigDecimal();

}

public void writeSQL (SQLOutput stream) throws SQLException {

stream.writeBigDecimal(value);

}

}

CODE EXAMPLE 17-12 Java class that represents a DISTINCT type

17.5 Effect of Transform Groups
Transform groups (SQL99) can be used to convert a user-defined SQL type into

predefined SQL types. This transformation is performed by the underlying data

source before it is returned to the JDBC driver.

If transform groups are used for a user-defined type, and the application has not

defined a mapping for that type to a Java class, then the ResultSetMetaData
method getColumnClass should return the Java class corresponding to the data

type produced by the transformation function (that is, String for a VARCHAR).

Note – This is consistent with the behaviour for DISTINCT types.
Chapter 17 Customized Type Mapping 159

If transform groups are used for a UDT, and the application has defined a mapping

for that type to a Java class, then the SQLInput stream delivered by the JDBC driver

during an invocation of the method readSQL contains only a single value, that is,

the result produced by the transformation function. The same model holds for the

method writeSQL .

17.6 Generality of the Approach
Users have great flexibility in customizing the Java classes that represent SQL

structured and DISTINCT types. They control the mappings of built-in SQL attribute

types to Java field types. They control the mappings of SQL names (of types and

attributes) to Java names (of classes and fields). Users may add (to Java classes that

represent SQL types) fields and methods that implement domain-specific

functionality. Users can generate JavaBeans components as the classes that represent

SQL types.

A user can even map a single SQL type to different Java classes, depending on

arbitrary conditions. To do that, the user must customize the implementation of

SQLData.readSQL to construct and return objects of different classes under

different conditions.

Similarly, the user can map a single SQL value to a graph of Java objects. Again, that

is accomplished by customizing the implementation of the method

SQLData.readSQL to construct multiple objects and distribute the SQL attributes

into fields of those objects.

A customization of the SQLData.readSQL method could populate a connection’s

type map incrementally. This flexibility will allow users to map SQL types

appropriately for different kinds of applications.

17.7 NULLData
An application uses the existing getObject and setObject mechanism to retrieve

and store SQLData values. We note that when the second parameter, x , of method

PreparedStatement.setObject has the value null , the driver executes the SQL

statement as if the SQL literal NULL had appeared in its place.

void setObject (int i, Object x) throws SQLException;
Chapter 17 Customized Type Mapping 160

When parameter x is null , there is no enforcement that the corresponding

argument expression is of a Java type that could successfully be passed to that SQL

statement if its value were not null . The Java programming language null carries

no type information. For example, a null Java programming language variable of

class AntiMatter could be passed as an argument to an SQL statement that

requires a value of SQL type MATTER, and no error would result, even though the

relevant type map object did not permit the translation of MATTERto AntiMatter .
Chapter 17 Customized Type Mapping 161

Chapter 17 Customized Type Mapping 162

CHAPTER 18

Rowsets

A javax.sql.RowSet object encapsulates a set of rows that have been retrieved

from a tabular data source. Because the RowSet interface includes an event

notification mechanism and supports getting and setting properties, every RowSet
object is a JavaBeansTM component. This means, for example, that a rowset can be

used as a JavaBeans component in a visual JavaBeans development environment. As

a result, a RowSet instance can be created and configured at design time, and its

methods can be executed at run time.

18.1 Rowsets at Design Time

18.1.1 Properties

The RowSet interface provides a set of JavaBeans properties that allow a RowSet
instance to be configured to connect to a data source and retrieve a set of rows.

CODE EXAMPLE 18-1 sets some properties for the RowSet object rset.

rset.setDataSourceName("jdbc/SomeDataSourceName");

rset.setTransactionIsolation(

Connection.TRANSACTION_READ_COMMITTED);

rset.setCommand("SELECT NAME, BREED, AGE FROM CANINE");

CODE EXAMPLE 18-1 Setting properties for a RowSet object

The data source name property is used by a RowSet object to look up a

DataSource object in a JNDI naming service. (Relational databases are the most

common type of data source used by rowsets.) The DataSource object is used to

create a connection to the physical data source that it represents. The transaction
Chapter 18 Rowsets 163

isolation property specifies that only data that was produced by committed

transactions may be read by the rowset. Lastly, the command property specifies the

command that will be executed to retrieve a set of rows. In this case, the NAME,
BREED, and AGEcolumns for all rows in the CANINE table are retrieved.

18.1.2 Events

RowSet components support JavaBeans events, which allows other JavaBeans

components in an application to be notified when an event on a rowset occurs. A

component that wishes to register for RowSet events must implement the

RowSetListener interface. Event listeners are registered with a rowset by calling

the addRowSetListener method as shown below. Any number of listeners may be

registered with an individual RowSet object. CODE EXAMPLE 18-2 adds one listener to

the RowSet object rset.

RowSetListener listener = ...;

rset.addRowSetListener(listener);

CODE EXAMPLE 18-2 Adding a listener to a RowSet object

Rowsets can generate three different types of events:

1. Cursor movement events — indicate that the rowset’s cursor has moved

2. Row change events — indicate that a particular row has been inserted, updated or

deleted

3. Rowset change events — indicate that the entire contents of a rowset have

changed, which may happen, for example, when the method RowSet.execute
is called.

When an event occurs, the appropriate listener method is called behind the scenes to

notify the registered listener(s). If a listener is not interested in a particular kind of

event, it may implement the method for that event so that it does nothing. Listener

methods take a RowSetEvent object, which identifies the RowSet object that is the

source of the event.
Chapter 18 Rowsets 164

18.2 Rowsets at Run Time

18.2.1 Parameters

The command property in CODE EXAMPLE 18-1 was set with a simple SQL command

that takes no input parameters, but it could also have been set with a command that

accepts input parameters. The RowSet interface provides a group of setter methods

for setting these input parameters.

CODE EXAMPLE 18-3 shows a command that takes a String input parameter. The

RowSet.setString method is used to pass the input parameter value to the

RowSet object rset . Typically, the command property is specified at design time,

whereas parameters are not set until run time when their values are known.

rset.setCommand("SELECT NAME, BREED, AGE FROM CANINE WHERE NAME = ?");

rset.setString(1, "spot");

CODE EXAMPLE 18-3 Setting parameters in a RowSet object’s command

18.2.2 Command Execution

A rowset may be filled with data by calling the RowSet.execute method. This

method uses the appropriate property values internally to connect to a data source

and retrieve some data. The RowSet interface includes the properties that are

needed to connect to a data source. The exact properties that must be set may vary

between RowSet implementations, so developers need to check the documentation

for the particular rowset they are using. The method execute throws an

SQLException if the necessary properties have not been set. The current contents of

a rowset, if any, are lost when the method execute is called.

18.2.3 Traversing a Rowset

The javax.sql.RowSet interface extends the java.sql.ResultSet interface, so

in many ways a rowset behaves just like a result set. In fact, most components that

make use of a RowSet component will likely treat it as a ResultSet object. A

RowSet object is simply a ResultSet object that can function as a JavaBeans
Chapter 18 Rowsets 165

component. The code below shows how to iterate forward through a rowset. Notice

that since a rowset is a result set, this code is identical to the code that would be

used to iterate forward through a result set.

// iterate forward through the rowset

rset.beforeFirst();

while (rset.next()) {

System.out.println(rset.getString(1) + " " + rset.getFloat(2));

}

CODE EXAMPLE 18-4 Printing all the rows in a two-column RowSet object

Other cursor movements, such as iterating backward through the rowset and

positioning the cursor on a specific row, are also done the same way they are for

result sets.
Chapter 18 Rowsets 166

CHAPTER 19

Relationship to Connectors

The J2EE Connector Architecture 1.0 Specification defines a set of contracts that

allow a resource adapter to extend a container in a pluggable way. A resource

adapter provides connectivity to an external system from the application server. The

resource adapter’s functionality is similar to that provided by the JDBC interfaces

used in the J2EE platform to establish a connection with a data source. These

interfaces, which the Connector specification refers to as the service provider interface
(SPI), are the following:

■ DataSource
■ ConnectionPoolDataSource
■ XADataSource

Additionally, the Connector Architecture defines a packaging format to allow a

resource adapter to be deployed into a J2EE compliant application server.

19.1 System Contracts
The system contracts defined in the Connector specfication describe the interface

between an application server and one or more resource adapters. This interface

allows a resource adapter to be bundled in such a way that it can be used by any

application server that supports the system contracts.

The following standard contracts are defined between an application server and a

back end system:

■ A connection management contract that enables application components to

connect to a back end system.

The connection management contract is equivalent to the services described by

the JDBC interfaces DataSource and ConnectionPoolDataSource.
Chapter 19 Relationship to Connectors 167

■ A transaction management contract between the transaction manager and a back

end system supporting transactional access to its resources.

The transaction contract is equivalent to the services described by the JDBC

interface XADataSource .

■ A security contract that enables secure access to a back end system.

The security contract does not have an equivalent in the JDBC API.

Authentication in the JDBC API always consists of providing a user name and a

password.

The JDBC specification does not make a distinction between its application

programming interface (API) and the SPI. However, a driver can map the JDBC

interfaces in the SPI to the Connector system contracts.

19.2 Mapping Connector System Contracts to
JDBC Interfaces
Driver vendors who want to supply JDBC drivers that use the Connector system

contracts have several options:

1. To write a set of classes that wrap a JDBC driver and implement the Connector

system contracts. Constructing these wrappers is fairly straightforward and

should allow JDBC driver vendors to provide resource adapters quickly enough

so that they are available when application server vendors have implemented the

Connector contracts.

2. To implement the Connector system contracts natively. This approach avoids the

overhead of wrapper classes, but the implementation effort may be more involved

and time-consuming. This alternative is a more long-term option.

Either approach will allow JDBC driver vendors to package their drivers as resource

adapters and get all the benefits of pluggability, packaging, and deployment.

Note – There are no plans to deprecate or remove the current JDBC interfaces,

DataSource , ConnectionPoolDataSource and XADataSource .
Chapter 19 Relationship to Connectors 168

19.3 Packaging JDBC Drivers in Connector
RAR File Format
Resource adapters can be packaged, along with a deployment descriptor, into a

Resource adapter ARchive, or RARfile. The RAR file contains the Java classes/

interfaces, native libraries, deployment descriptor, and other resources needed to

deploy the adapter.

The deployment descriptor maps the classes in the resource adapter to the specific

roles that they perform. The descriptor also details the capabilities of the resource

adapter in terms of what level of transactional support it provides, the kind of

security it supports, and so on.

CODE EXAMPLE 19-1 is an example of a deployment descriptor for a JDBC driver. The

class com.acme.JdbcManagedConnectionFactory could be supported by an

implementation of javax.sql.XADataSource . The resource adapter section

contains information on the level of transaction support, the mechanism used for

authentication, and configuration information for deploying the data source in the

JNDI namespace.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE connector PUBLIC ’-//Sun Microsystems, Inc.//DTD Connector 1.0//EN’
’http://java.sun.com/j2ee/dtds/connector_1_0.dtd’>

<connector>

<display-name>Acme JDBC Adapter</display-name>

<vendor-name>Acme Software Inc</vendor-name>

<spec-version>1.0</spec-version>

<version>1.0</version>

<eis-type>JDBC Database</eis-type>

<resourceadapter>

<managedconnectionfactory-class>com.acme.JdbcManagedConnectionFactory</
managedconnectionfactory-class>

<connectionfactory-interface>javax.sql.DataSource<connectionfactory-
interface>

<connectionfactory-impl-class>com.acme.JdbcDataSource<connectionfactory-impl-
class>

<connection-interface>java.sql.Connection</connection-interface>

<connection-impl-class>com.acme.JdbcConnection</connection-impl-class>

<transaction-support>xa_transaction</transaction-support>

<config-property>

<config-property-name>XADataSourceName</config-property-name>

<config-property-type>java.lang.String</config-property-type>
Chapter 19 Relationship to Connectors 169

<config-property-value>jdbc/XAAcme</config-property-value>

</config-property>

<auth-mechanism>

<auth-mech-type>basic-password</auth-mech-type>

<credential-interface>javax.resource.security.PasswordCredential</
credential-interface>

</auth-mechanism>

<reauthentication-support>false</reauthentication-support>

</resourceadapter>

</connector>

CODE EXAMPLE 19-1 Example of a resource adapter deployment descriptor.

See the Connector specification for more details.
Chapter 19 Relationship to Connectors 170

APPENDIX A

Revision History

Appendix TABLE A-1 presents a summary of the revisions made to this

specification.

TABLE A-1 Revision History

Revision Dash Date Comments

Expert Draft 01 June 2000 First expert draft

Expert Draft 02 July 2000 Second expert draft. Addressed

expert group comment and major

editorial updates.

Community

Draft

July 2000 First community draft. Minor

editiorial changes and clarifications

from Expert Draft 02.
A-171

First Public

Draft

Sept 2000 Continuing editorial changes and

clarifications.

• updated section 6.2 to clarify

reference to SQL92. Made note that

SQL99 behaviour is to be used for

new features

• updated section 8.1 to allow for

SQL99 SQLStates to be returned.

Added new DatabaseMetaData

method to indicate if SQLStates

being returned are X/Open of

SQL99

• updated section 14.2.2 to align

the ResultSet methods

relative and absolute
withSQL99 behaviour.

• updated section 14.1.3 making

the default holdability

implementation defined and

adding new database metadata

method getResultSetHoldability to

report the default.

• updated section 13.6 removing

setGenerateKeys(boolean). Now

passing flag into execute/

executeUpdate/prepareStatement.

• Added BOOLEAN data type.

Logically equivalent to BIT.

Updated data type table to reflect

new type.

TABLE A-1 Revision History

Revision Dash Date Comments
A-172 JDBC 3.0 • July 2000

Proposed Final

Draft

Oct 2000 Continued minor editorial changes

and clarification.

• added getJDBCMajorVersion
and getJDBCMinorVersion to

the DatabaseMetaData interface.

• updated section 6.5 adding new

DatabaseMetaData methods

• updated section 6.7 adding

missing constructor

java.sql.Time(int, int,
int) to the list of deprecated

methods

• further updated SQL syntax

used in Chapters 16 & 17.

• renamed the methods getValue
and setValue in the Ref interface

to getObject and setObject
respectively.

• added new example to section

13.6 to clarify process of retrieving

named columns.

• Added new section 9.3.1 on

SQLPermission .

• Added missing methods to

register parameters and retrieve

parameters by name.

TABLE A-1 Revision History

Revision Dash Date Comments
Appendix A Revision History A-173

A-174 JDBC 3.0 • July 2000

APPENDIX B

Data Type Conversion Tables

The tables provided here describe the various mappings and conversions that

drivers must support.

TABLE B-1 JDBC Types Mapped to Java Types

This table shows the conceptual correspondence between JDBC types and Java

types. A programmer should write code with this mapping in mind. For example, if

a value in the database is a SMALLINT, a short should be the data type used in a

JDBC application.

All CallableStatement getter methods except for getObject use this mapping. The

getObject methods for both the CallableStatement and ResultSet interfaces

use the mapping in TABLE B-3.

TABLE B-2 Java Types Mapper to JDBC Types

This table shows the mapping a driver should use for the updater methods in the

ResultSet interface and for IN parameters. PreparedStatement setter
methods and RowSet setter methods use this table for mapping an IN parameter,

which is a Java type, to the JDBC type that will be sent to the database. Note that the

setObject methods for these two interfaces use the mapping shown in TABLE B-4.

TABLE B-3 JDBC Types Mapped to Java Object Types

ResultSet.getObject and CallableStatement.getObject use the mapping

shown in this table for standard mappings.

TABLE B-4 Java Object Types Mapped to JDBC Types

PreparedStatement.setObject and RowSet.setObject use the mapping

shown in this table when no parameter specifying a target JDBC type is provided.

TABLE B-5 Conversions by setObject from Java Obejct Types to JDBC Types

This table shows which JDBC types may be specified as the target JDBC type to the

methods PreparedStatement.setObject and RowSet.setObject .
B-175

TABLE B-6 Type Conversions Supported by ResultSet getter Methods

This table shows which JDBC types may be returned by ResultSet getter methods.

A bold X indicates the method recommended for retrieving a JDBC type. A plain x

indicates for which JDBC types it is possible to use a getter method.

This table also shows the conversions used by the SQLInput reader methods, except

that they use only the recommended conversions.

JDBC Type Java Type

CHAR String

VARCHAR String

LONGVARCHAR String

NUMERIC java.math.BigDecimal

DECIMAL java.math.BigDecimal

BIT boolean

BOOLEAN boolean

TINYINT byte

SMALLINT short

INTEGER int

BIGINT long

REAL float

FLOAT double

DOUBLE double

BINARY byte[]

VARBINARY byte[]

LONGVARBINARY byte[]

DATE java.sql.Date

TIME java.sql.Time

TIMESTAMP java.sql.Timestamp

CLOB Clob

BLOB Blob

ARRAY Array

DISTINCT mapping of underlying type

STRUCT Struct

REF Ref

DATALINK java.net.URL

JAVA_OBJECT underlying Java class

TABLE B-1 JDBC Types Mapped to Java Types
B-176 JDBC 3.0 • July 2000

Java Type JDBC Type

String CHAR, VARCHAR, or LONGVARCHAR

java.math.BigDecimal NUMERIC

boolean BIT or BOOLEAN

byte TINYINT

short SMALLINT

int INTEGER

long BIGINT

float REAL

double DOUBLE

byte[] BINARY, VARBINARY, or
LONGVARBINARY

java.sql.Date DATE

java.sql.Time TIME

java.sql.Timestamp TIMESTAMP

Clob CLOB

Blob BLOB

Array ARRAY

Struct STRUCT

Ref REF

java.net.URL DATALINK

Java class JAVA_OBJECT

TABLE B-2 Standard Mapping from Java Types to JDBC Types
Appendix B Data Type Conversion Tables B-177

JDBC Type Java Object Type

CHAR String

VARCHAR String

LONGVARCHAR String

NUMERIC java.math.BigDecimal

DECIMAL java.math.BigDecimal

BIT Boolean

BOOLEAN Boolean

TINYINT Integer

SMALLINT Integer

INTEGER Integer

BIGINT Long

REAL Float

FLOAT Double

DOUBLE Double

BINARY byte[]

VARBINARY byte[]

LONGVARBINARY byte[]

DATE java.sql.Date

TIME java.sql.Time

TIMESTAMP java.sql.Timestamp

DISTINCT Object type of underlying type

CLOB Clob

BLOB Blob

ARRAY Array

STRUCT Struct or SQLData

REF Ref

DATALINK java.net.URL

JAVA_OBJECT underlying Java class

TABLE B-3 Mapping from JDBC Types to Java Object Types
B-178 JDBC 3.0 • July 2000

Java Object Type JDBC Type

String CHAR, VARCHAR, or LONGVARCHAR

java.math.BigDecimal NUMERIC

Boolean BIT or BOOLEAN

Integer INTEGER

Long BIGINT

Float REAL

Double DOUBLE

byte[] BINARY, VARBINARY, or
LONGVARBINARY

java.sql.Date DATE

java.sql.Time TIME

java.sql.Timestamp TIMESTAMP

Clob CLOB

Blob BLOB

Array ARRAY

Struct STRUCT

Ref REF

java.net.URL DATALINK

Java class JAVA_OBJECT

TABLE B-4 Mapping from Java Object Types to JDBC Types
Appendix B Data Type Conversion Tables B-179

T
IN

Y
IN

T

S
M

A
LL

IN
T

IN
T

E
G

E
R

B
IG

IN
T

R
E

A
L

F
LO

AT

D
O

U
B

LE

D
E

C
IM

A
L

N
U

M
E

R
IC

B
IT

B
O

O
LE

A
N

C
H

A
R

V
A

R
C

H
A

R

LO
N

G
V

A
R

C
H

A
R

B
IN

A
R

Y

V
A

R
B

IN
A

R
Y

LO
N

G
V

A
R

B
IN

A
R

Y

D
AT

E

T
IM

E

T
IM

E
S

TA
M

P

A
R

R
AY

B
LO

B

C
LO

B

S
T

R
U

C
T

R
E

F

D
AT

A
LI

N
K

JA
V

A
_O

B
JE

C
T

String x

java.math.
BigDecimal

x x x x x x x x x x x x x x

Boolean x x x x x x x x x x x x x x

Integer x x x x x x x x x x x x x x

Long x x x x x x x x x x x x x x

Float x x x x x x x x x x x x x x

Double x x x x x x x x x x x x x x

byte[] x x x

java.sql.
Date

x x x x x

java.sql.
Time

x x x x

java.sql.
Timestamp

x x x x x x

Array x

Blob x

Clob x

Struct x

Ref x

java.net.URL x

Java class x

TABLE B-5 Conversions Performed by setObject Between Java Object Types
and Target JDBC Types
B-180 JDBC 3.0 • July 2000

T
IN

Y
IN

T

S
M

A
LL

IN
T

IN
T

E
G

E
R

B
IG

IN
T

R
E

A
L

F
LO

AT

D
O

U
B

LE

D
E

C
IM

A
L

N
U

M
E

R
IC

B
IT

B
O

O
LE

A
N

C
H

A
R

V
A

R
C

H
A

R

LO
N

G
V

A
R

C
H

A
R

B
IN

A
R

Y

V
A

R
B

IN
A

R
Y

LO
N

G
V

A
R

B
IN

A
R

Y

D
AT

E

T
IM

E

T
IM

E
S

TA
M

P

C
LO

B

B
LO

B

A
R

R
AY

R
E

F

D
AT

A
LI

N
K

S
T

R
U

C
T

JA
V

A
_O

B
JE

C
T

getByte X x x x x x x x x x x x x x

getShort x X x x x x x x x x x x x x

getInt x x X x x x x x x x x x x x

getLong x x x X x x x x x x x x x x

getFloat x x x x X x x x x x x x x x

getDouble x x x x x X X x x x x x x x

getBigDecimal x x x x x x x X X x x x x x

getBoolean x x x x x x x x x X X x x x

getString x x x x x x x x x x x X X x x x x x x x x

getBytes X X x

getDate x x x X x

getTime x x x X x

getTimestamp x x x x x X

getAsciiStream x x X x x x

getBinaryStream x x X

getCharacterStream x x X x x x

getClob X

getBlob X

getArray X

getRef X

getURL X

getObject x X X

TABLE B-6 Use of ResultSet getter Methods to Retrieve JDBC Data Types
Appendix B Data Type Conversion Tables B-181

B-182 JDBC 3.0 • July 2000

APPENDIX C

Scalar Functions

The JDBC API supports escape syntax for numeric, string, time, date, system, and

conversion functions on scalar values. These scalar functions may be used in SQL

strings as described in Section 13.4.1 “Scalar Functions” on page 13-109. The Open

Group CLI specification provides more information on the semantics of the scalar

functions. The scalar functions are listed below for reference.

If a DBMS supports a scalar function, the driver should also. Because scalar

functions are supported by different DBMSs with slightly different syntax, it is the

driver’s job either to map them into the appropriate syntax or to implement the

functions directly in the driver.

A user should be able to find out which functions are supported by calling metadata

methods. For example, the method DatabaseMetaData.getNumericFunctions

returns a comma separated list of the Open Group CLI names of the numeric

functions supported. Similarly, the method

DatabaseMetaData.getStringFunctions returns a list of string functions

supported, and so on.

The scalar functions are listed by category:

C.1 NUMERIC FUNCTIONS
Function Name Function Returns
ABS(number) Absolute value of number
ACOS(float) Arccosine, in radians, of float
ASIN(float) Arcsine, in radians, of float
ATAN(float) Arctangent, in radians, of float
ATAN2(float1, float2) Arctangent, in radians, of float2 / float1
CEILING(number) Smallest integer >= number
COS(float) Cosine of float radians
C-183

COT(float) Cotangent of float radians

DEGREES(number) Degrees in number radians

EXP(float) Exponential function of float
FLOOR(number) Largest integer <= number
LOG(float) Base e logarithm of float
LOG10(float) Base 10 logarithm of float
MOD(integer1, integer2) Remainder for integer1 / integer2
PI() The constant pi
POWER(number, power) number raised to (integer) power
RADIANS(number) Radians in number degrees

RAND(integer) Random floating point for seed integer
ROUND(number, places) number rounded to places places

SIGN(number) -1 to indicate number is < 0 ;

0 to indicate number is = 0 ;

1 to indicate number is > 0
SIN(float) Sine of float radians

SQRT(float) Square root of float
TAN(float) Tangent of float radians

TRUNCATE(number, places) number truncated to places places

C.2 STRING FUNCTIONS
Function Name Function Returns
ASCII(string) Integer representing the ASCII code value of the leftmost character in string
CHAR(code) Character with ASCII code value code , where code is between 0 and 255

CONCAT(string1, string2) Character string formed by appending string2 to string1 ; if a string is

null, the result is DBMS-dependent

DIFFERENCE(string1, Integer indicating the difference between the

string2) values returned by the function SOUNDEX for string1 and string2
INSERT(string1, start, A character string formed by deleting length
length, string2) characters from string1 beginning at start , and inserting string2 into

string1 at start
LCASE(string) Converts all uppercase characters in string to lowercase

LEFT(string, count) The count leftmost characters from string
LENGTH(string) Number of characters in string , excluding trailing blanks

LOCATE(string1, Position in string2 of the first occurrence of

string2[, start]) string1 , searching from the beginning of string2 ; if start is specified,

the search begins from position start. 0 is returned if string2 does not con-

tain string1 . Position 1 is the first character in string2 .

LTRIM(string) Characters of string with leading blank spaces removed

REPEAT(string, count) A character string formed by repeating string count times

REPLACE(string1, string2, Replaces all occurrences of string2 in string1
string3) with string3
RIGHT(string, count) The count rightmost characters in string
RTRIM(string) The characters of string with no trailing blanks
C-184 JDBC 3.0 • July 2000

SOUNDEX(string) A character string, which is data source-dependent, representing the sound of

the words in string ; this could be a four-digit SOUNDEX code, a phonetic

representation of each word, etc.

SPACE(count) A character string consisting of count spaces

SUBSTRING(string, start, A character string formed by extracting length
length) characters from string beginning at start
UCASE(string) Converts all lowercase characters in string to uppercase

C.3 TIME and DATE FUNCTIONS
Function Name Function Returns
CURDATE() The current date as a date value

CURTIME() The current local time as a time value

DAYNAME(date) A character string representing the day component of date ; the name for the

day is specific to the data source

DAYOFMONTH(date) An integer from 1 to 31 representing the day of the month in date
DAYOFWEEK(date) An integer from 1 to 7 representing the day of the week in date ; 1 represents

Sunday

DAYOFYEAR(date) An integer from 1 to 366 representing the day of the year in date
HOUR(time) An integer from 0 to 23 representing the hour component of time
MINUTE(time) An integer from 0 to 59 representing the minute component of time
MONTH(date) An integer from 1 to 12 representing the month component of date
MONTHNAME(date) A character string representing the month component of date ; the name for

the month is specific to the data source

NOW() A timestamp value representing the current date and time

QUARTER(date) An integer from 1 to 4 representing the quarter in date ; 1 represents January

1 through March 31

SECOND(time) An integer from 0 to 59 representing the second component of time
TIMESTAMPADD(interval, A timestamp calculated by adding count num-

count, timestamp) ber of interval(s) to timestamp; interval may be one of the following:

SQL_TSI_FRAC_SECOND, SQL_TSI_SECOND, SQL_TSI_MINUTE,

SQL_TSI_HOUR, SQL_TSI_DAY, SQL_TSI_WEEK, SQL_TSI_MONTH,
SQL_TSI_QUARTER, or SQL_TSI_YEAR

TIMESTAMPDIFF(interval, An integer representing the number of interval

timestamp1, timestamp2) by which timestamp2 is greater than timestamp1 ; interval may be one of

the following: SQL_TSI_FRAC_SECOND, SQL_TSI_SECOND,
SQL_TSI_MINUTE, SQL_TSI_HOUR, SQL_TSI_DAY, SQL_TSI_WEEK,
SQL_TSI_MONTH, SQL_TSI_QUARTER, or SQL_TSI_YEAR

WEEK(date) An integer from 1 to 53 representing the week of the year in date
YEAR(date) An integer representing the year component of date
Appendix C Scalar Functions C-185

C.4 SYSTEM FUNCTIONS
Function Name Function Returns
DATABASE() Name of the database

IFNULL(expression, value) value if expression is null;

expression if expression is not null

USER() User name in the DBMS

C.5 CONVERSION FUNCTIONS
Function Name Function Returns
CONVERT(value, SQLtype) value converted to SQLtype where SQLtype may be one of the following

SQL types:

BIGINT , BINARY, BIT , CHAR, DATE, DECIMAL, DOUBLE, FLOAT, INTEGER,

LONGVARBINARY, LONGVARCHAR, REAL, SMALLINT, TIME, TIMESTAMP,
TINYINT , VARBINARY, or VARCHAR
C-186 JDBC 3.0 • July 2000

APPENDIX D

Related Documents

This specification makes reference to the following documents.

Data Management: SQL Call Level Interface (X/Open SQL CLI) Available at http:/
/www.opengroup.org .

Distributed Transaction Processes: The XA Specification (X/Open CAE) Available at

http://www.opengroup.org .

JDBC 2.1 API (JDBC 2.1). Copyright 1998, Sun Microsystems, Inc. Available at

http://java.sun.com/products/jdbc .

JDBC 2.0 Standard Extension API (JDBC extension specification). Copyright 1998,

1999, Sun Microsystems, Inc. Available at http://java.sun.com/products/
jdbc .

JDBC 1.22 API (JDBC 1.22). Copyright 1998, Sun Microsystems, Inc. Available at

http://java.sun.com/products/jdbc .

JavaBeans 1.01 Specification (JavaBeans specification). Copyright 1996, 1997, Sun

Microsystems, Inc. Available at http://java.sun.com/beans .

Java Transaction API, Version 1.0.1 (JTA Specification). Copyright 1998, 1999, Sun

Microsystems, Inc. Available at http://java.sun.com/products/jta .

Java Naming and Directory Interface 1.2 Specification (JNDI specification).

Copyright 1998, 1999, Sun Microsystems, Inc. Available at http://
java.sun.com/products/jndi .

Enterprise Java Beans, Version 1.1 (EJB). Copyright 1998, 1999, Sun Microsystems,

Inc. Available at http://java.sun.com/products/ejb .

J2EE Connector Architecture (JCX1.0) Copyright 1999, 2000, Sun Microsystems, Inc.

Available at http://java.sun.com/j2ee.

The following documents are collectively refered to as SQL99:
D-187

ISO/IEC 9075-1:1999, Information technology - Database languages - SQL - Part 1:

Framework (SQL/Framework).

ISO/IEC 9075-2:1999, Information technology - Database languages - SQL - Part 2:

Foundation (SQL/Foundation).

ISO/IEC 9075-3:1999, Information technology - Database languages - SQL - Part 3:

Call-Level Interface (SQL/CLI).

ISO/IEC 9075-4:1999, Information technology - Database languages - SQL - Part 4:

Persistent Stored Modules (SQL/PSM).

ISO/IEC 9075-5:1999, Information technology - Database languages - SQL - Part 5:

Host Language Bindings (SQL/Bindings).

The following document is a reference for SQL MED:

ISO/IEC 9075-9:2000 Information technology - Database languages - SQL - Part 9:

Management of External Data (SQL/MED)

The following document is a reference for SQLJ:

ISO/IEC 9075-10:2000, Information technology - Database Languages SQL - Part 10:

Object Language Bindings (SQL/OLB)
D-188 JDBC 3.0 • July 2000

Appendix D Related Documents D-189

Sun Microsystems, Inc.

901 San Antonio Road

Palo Alto, CA 94303

650 960-1300

For U.S. Sales Office locations, call:

800 821-4643

In California:

800 821-4642

Australia: (02) 844 5000

Belgium: 32 2 716 7911

Canada: 416 477-6745

Finland: +358-0-525561

France: (1) 30 67 50 00

Germany: (0) 89-46 00 8-0

Hong Kong: 852 802 4188

Italy: 039 60551

Japan: (03) 5717-5000

Korea: 822-563-8700

Latin America: 650 688-9464

The Netherlands: 033 501234

New Zealand: (04) 499 2344

Nordic Countries: +46 (0) 8 623 90 00

PRC: 861-849 2828

Singapore: 224 3388

Spain: (91) 5551648

Switzerland: (1) 825 71 11

Taiwan: 2-514-0567

UK: 0276 20444

Elsewhere in the world,

call Corporate Headquarters:

650 960-1300

Intercontinental Sales: 650 688-9000

	Contents
	Preface
	Introduction
	1.1 The JDBC API
	1.2 Platforms
	1.3 Target Audience
	1.4 Acknowledgements

	Goals
	Summary of New Features
	3.1 Overview of changes

	Overview
	4.1 Establishing a Connection
	4.2 Executing SQL Statements and Manipulating Results
	4.2.1 Support for SQL Advanced Data Types

	4.3 Two-tier Model
	4.4 Three-tier Model
	4.5 JDBC in the J2EE Platform

	Classes and Interfaces
	5.1 The java.sql Package
	5.2 The javax.sql Package

	Compliance
	6.1 Definitions
	6.2 Guidelines and Requirements
	6.3 JDBC 1.0 API Compliance
	6.4 JDBC 2.0 API Compliance
	6.5 JDBC 3.0 API Compliance
	6.6 Determining Compliance Level
	6.7 Deprecated APIs

	Database Metadata
	7.1 Creating a DatabaseMetadata Object
	7.2 Retrieving General Information
	7.3 Determining Feature Support
	7.4 Data Source Limits
	7.5 SQL Objects and Their Attributes
	7.6 Transaction Support
	7.7 New Methods
	7.8 Modified Methods

	Exceptions
	8.1 SQLException
	8.2 SQLWarning
	8.3 DataTruncation
	8.3.1 Silent Truncation

	8.4 BatchUpdateException

	Connections
	9.1 Types of Drivers
	9.2 The Driver Interface
	9.3 The DriverManager Class
	9.3.1 The SQLPermission Class

	9.4 The DataSource Interface
	9.4.1 DataSource Properties
	9.4.2 The JNDI API and Application Portability
	9.4.3 Getting a Connection with a DataSource Object

	Transactions
	10.1 Transaction Boundaries and Auto- commit
	10.1.1 Disabling Auto-commit Mode

	10.2 Transaction Isolation Levels
	10.2.1 Using the setTransactionIsolation Method
	10.2.2 Performance Considerations

	10.3 Savepoints
	10.3.1 Setting and Rolling Back to a Savepoint
	10.3.2 Releasing a Savepoint

	Connection Pooling
	11.1 ConnectionPoolDataSource and PooledConnection
	11.2 Connection Events
	11.3 Connection Pooling in a Three-tier Environment
	11.4 DataSource Implementations and Connection Pooling
	11.5 Deployment
	11.6 Reuse of Statements by Pooled Connections
	11.6.1 Using a Pooled Statement
	11.6.2 Closing a Pooled Statement

	11.7 ConnectionPoolDataSource Properties

	Distributed Transactions
	12.1 Infrastructure
	12.2 XADataSource and XAConnection
	12.2.1 Deploying an XADataSource Object
	12.2.2 Getting a Connection

	12.3 XAResource
	12.4 Transaction Management
	12.4.1 Two-phase Commit

	12.5 Closing the Connection
	12.6 Limitations of the XAResource Interface

	Statements
	13.1 The Statement Interface
	13.1.1 Creating Statements
	13.1.2 Executing Statement Objects
	13.1.3 Closing Statement Objects

	13.2 The PreparedStatement Interface
	13.2.1 Creating a PreparedStatement Object
	13.2.2 Setting Parameters
	13.2.3 Describing Outputs and Inputs of a PreparedStatement Object
	13.2.4 Executing a PreparedStatement Object

	13.3 The CallableStatement Interface
	13.3.1 Creating a CallableStatement Object
	13.3.2 Setting Parameters
	13.3.3 Executing a CallableStatement Object

	13.4 Escape Syntax
	13.4.1 Scalar Functions
	13.4.2 Date and Time Literals��
	13.4.3 Outer Joins
	13.4.4 Stored Procedures
	13.4.5 LIKE Escape Characters

	13.5 Performance Hints
	13.6 Retrieving Auto Generated Keys

	Result Sets
	14.1 Kinds of ResultSet Objects
	14.1.1 ResultSet Types
	14.1.2 ResultSet Concurrency
	14.1.3 ResultSet Holdability
	14.1.4 Specifying ResultSet Type, Concurrency and Holdability

	14.2 Creating and Manipulating ResultSet Objects
	14.2.1 Creating ResultSet Objects
	14.2.2 Cursor Movement
	14.2.3 Retrieving Values
	14.2.4 Modifying ResultSet Objects
	14.2.5 Closing a ResultSet Object

	Batch Updates
	15.1 Description of Batch Updates
	15.1.1 Statements
	15.1.2 Successful Execution
	15.1.3 Handling Failures during Execution
	15.1.4 PreparedStatement Objects
	15.1.5 CallableStatement Objects

	Advanced Data Types
	16.1 Taxonomy of SQL Types
	16.2 Mapping of SQL99 Types
	16.3 Blob and Clob Objects
	16.3.1 Retrieving BLOB and CLOB Values
	16.3.2 Storing Blob and Clob Objects
	16.3.3 Altering Blob and Clob Objects

	16.4 Array Objects
	16.4.1 Retrieving Array Objects
	16.4.2 Storing Array Objects
	16.4.3 Updating Array Objects

	16.5 Ref Objects
	16.5.1 Retrieving REF Values
	16.5.2 Retrieving the Referenced Value
	16.5.3 Storing Ref Objects
	16.5.4 Storing the Referenced Value
	16.5.5 Metadata

	16.6 Distinct Types
	16.6.1 Retrieving Distinct Types
	16.6.2 Storing Distinct Types
	16.6.3 Metadata

	16.7 Structured Types
	16.7.1 Retrieving Structured Types
	16.7.2 Storing Structured Types
	16.7.3 Metadata

	16.8 Datalinks
	16.8.1 Retrieving References to External Data
	16.8.2 Storing References to External Data
	16.8.3 Metadata

	Customized Type Mapping
	17.1 The Type Mapping
	17.2 Class Conventions
	17.3 Streams of SQL Data
	17.3.1 Retrieving Data
	17.3.2 Storing Data

	17.4 Examples
	17.4.1 An SQL Structured Type
	17.4.2 SQLData Implementations
	17.4.3 Mirroring SQL Inheritance in the Java Programming Language
	17.4.4 Example Mapping of SQL DISTINCT Type

	17.5 Effect of Transform Groups
	17.6 Generality of the Approach
	17.7 NULL Data

	Rowsets
	18.1 Rowsets at Design Time
	18.1.1 Properties
	18.1.2 Events

	18.2 Rowsets at Run Time
	18.2.1 Parameters
	18.2.2 Command Execution
	18.2.3 Traversing a Rowset

	Relationship to Connectors
	19.1 System Contracts
	19.2 Mapping Connector System Contracts to JDBC Interfaces
	19.3 Packaging JDBC Drivers in Connector RAR File Format

	Revision History
	Data Type Conversion Tables
	Scalar Functions
	C.1 NUMERIC FUNCTIONS �
	C.2 STRING FUNCTIONS
	C.3 TIME and DATE FUNCTIONS
	C.4 SYSTEM FUNCTIONS
	C.5 CONVERSION FUNCTIONS

	Related Documents

