PROPOSED FINAL DRAFT

Java™ Servlet Specification
Version 2.3

Please send technical comments to: servletapi-feedback@eng.sun.com
Please send business comments to: danny.coward@sun.com

Proposed Final Draft - October 20th 2000 Danny Coward (danny.coward@sun..com)

PROPOSED FINAL DRAFT

Java(TM) Servlet API Specification ("Specification”)
Version: 2.3

Status: Pre-FCS

Release: October 20th, 2000

Copyright 2000 Sun Microsystems, Inc.
901 San Antonio Road, Palo Alto, California 94303, U.S.A.
All rights reserved.

NOTICE

The Specification is protected by copyright and the information
described therein may be protected by one or more U.S. pat-
ents, foreign patents, or pending

applications. Except as provided under the following license, no
part of the Specification may be reproduced in any form by any
means without the prior

written authorization of Sun Microsystems, Inc. ("Sun") and its
licensors, if any. Any use of the Specification and the informa-
tion described therein will be

governed by the terms and conditions of this license and the
Export Control and General Terms as set forth in Sun’s website
Legal Terms. By viewing,

downloading or otherwise copying the Specification, you agree
that you have read, understood, and will comply with all of the
terms and conditions set forth

herein.

Subject to the terms and conditions of this license, Sun hereby
grants you a fully-paid, non-exclusive, non-transferable, world-
wide, limited license (without

the right to sublicense) under Sun’s intellectual property rights
to review the Specification internally for the purposes of evalua-
tion only. Other than this

limited license, you acquire no right, title or interest in or to the
Specification or any other Sun intellectual property. The Speci-
fication contains the

proprietary and confidential information of Sun and may only be
used in accordance with the license terms set forth herein. This
license will expire ninety

(90) days from the date of Release listed above and will termi-
nate immediately without notice from Sun if you fail to comply
with any provision of this

license. Upon termination, you must cease use of or destroy
the Specification.

TRADEMARKS

No right, title, or interest in or to any trademarks, service marks,
or trade names of Sun or Sun’s licensors is granted hereunder.

Sun, Sun Microsystems, the

Sun logo, Java, and the Java Coffee Cup logo, are trademarks
or registered trademarks of Sun Microsystems, Inc. in the U.S.

and other countries.

DISCLAIMER OF WARRANTIES

THE SPECIFICATION IS PROVIDED "AS IS" AND IS EXPERI-
MENTAL AND MAY CONTAIN DEFECTS OR DEFICIENCIES
WHICH

CANNOT OR WILL NOT BE CORRECTED BY SUN. SUN
MAKES NO REPRESENTATIONS OR WARRANTIES, EITHER
EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PUR-
POSE, OR

NON-INFRINGEMENT THAT THE CONTENTS OF THE SPEC-
IFICATION ARE SUITABLE FOR ANY PURPOSE OR THAT
ANY PRACTICE

OR IMPLEMENTATION OF SUCH CONTENTS WILL NOT
INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS,
TRADE SECRETS OR

OTHER RIGHTS. This document does not represent any com-
mitment to release or implement any portion of the Specification
in any product.

THE SPECIFICATION COULD INCLUDE TECHNICAL INAC-
CURACIES OR TYPOGRAPHICAL ERRORS. CHANGES
ARE PERIODICALLY

ADDED TO THE INFORMATION THEREIN; THESE
CHANGES WILL BE INCORPORATED INTO NEW VERSIONS
OF THE SPECIFICATION,

IF ANY. SUN MAY MAKE IMPROVEMENTS AND/OR
CHANGES TO THE PRODUCT(S) AND/OR THE PRO-
GRAM(S) DESCRIBED IN THE

SPECIFICATION AT ANY TIME. Any use of such changes in
the Specification will be governed by the then-current license for
the applicable version of

the Specification.

LIMITATION OF LIABILITY

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT
WILL SUN OR ITS LICENSORS BE LIABLE FOR ANY DAM-
AGES, INCLUDING

WITHOUT LIMITATION, LOST REVENUE, PROFITS OR DATA,
OR FOR SPECIAL, INDIRECT, CONSEQUENTIAL, INCIDEN-
TAL OR

PUNITIVE DAMAGES, HOWEVER CAUSED AND REGARD-
LESS OF THE THEORY OF LIABILITY, ARISING OUT OF OR
RELATED TO ANY

FURNISHING, PRACTICING, MODIFYING OR ANY USE OF
THE SPECIFICATION, EVEN IF SUN AND/OR ITS LICEN-
SORS HAVE BEEN

ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You will indemnify, hold harmless, and defend Sun and its licen-
sors from any claims based on your use of the Specification for
any purposes other than those

of internal evaluation, and from any claims that later versions or
releases of any Specification furnished to you are incompatible
with the Specification

provided to you under this license.

RESTRICTED RIGHTS LEGEND

If this Software is being acquired by or on behalf of the U.S.
Government or by a U.S. Government prime contractor or sub-
contractor (at any tier), then the

Government’s rights in the Software and accompanying
documentation shall be only as set forth in this license; this is in
accordance with 48 C.F.R. 227.7201 through 227.7202-4 (for
Department of Defense (DoD)

acquisitions) and with 48 C.F.R. 2.101 and 12.212 (for non-DoD
acquisitions).

REPORT

You may wish to report any ambiguities, inconsistencies or inac-
curacies you may find in connection with your evaluation of the
Specification ("Feedback").

To the extent that you provide Sun with any Feedback, you
hereby: (i) agree that such Feedback is provided on a non-pro-
prietary and non-confidential

basis, and (ii) grant Sun a perpetual, non-exclusive, worldwide,
fully paid-up, irrevocable license, with the right to sublicense
through multiple levels of

sublicensees, to incorporate, disclose, and use without limita-
tion the Feedback for any purpose related to the Specification
and future versions,

implementations, and test suites thereof.

PROPOSED FINAL DRAFT

Contents
STALUS ...eiiiiiiiiiineee e 12.....
Changes in this document SINCe V2.2.......cccovvveevvviiiiiiiniieeeeeeeiiennn, 12
PrefacCe ... 14......
Who should read this doCUMENtccvvvvvieeiiiiiee 14
APIREFEIENCE ... 14
Other Java™ Platform Specifications...........ccccccccciiiiii. 14
Other Important REferencesccoovvvviiiii i 15
Providing Feedback..............uoiiiiiiiii 16
ACKNOWIEAGEMENTSuuviiiiiiiiiiiiiiiiiieieieee e 16
Chapter 1: OVEIVIEW......ccciiiiiiiiiiiiiiiiiiiiieeeeeee 18
What iS @ SerVIEt?........ooviiiiiiiiiiiiiiieeeeee e 18
What is a Servlet ContaiNer?cccccovvvimiiiiieeinieeee e 18
AN EXAMPIE...iiiiiieeie et 19
Comparing Servlets with Other Technologies.........ccccccceeveeeiiies 19
Relationship to Java 2 Platform Enterprise Edition..................... 20
Chapter2: The Servlet Interface...........cccccvceeeiiieciiieecicc e, 22
Request Handling Methods ..., 22
HTTP Specific Request Handling Methods........................ 22

Contents 4

PROPOSED FINAL DRAFT

Conditional GET SUPPOIt.......cccovviiiiiiiieieee 23
NUmMber Of INSTANCESuuii e 23
Note about SingleThreadModel............ccoovveiieiiiiiiiiieeiien, 24
Servlet Life CYCIE .o 24
Loading and Instantiationcccooevevviiii i, 24
INITANIZALION. ... 24
Request Handlingooovviiiiiii e 25
ENd Of SEIVICE ..oovvviiiiiiiiiiiiiiiiii 27
Chapter3: Servlet CoNteXt.......coceeivreiiiiiiie e 28
Scope of a ServletCoNteXt..........uuiieeiiiiiiiiii e 28
Initialization Parametersoovvviiiiiiiiiiiiiiiiieeeee 28
Context AUINDULESovvviiiiii 29
Context Attributes in a Distributed Container.................... 29
RESOUICES ...t eeeees 29
Multiple Hosts and Servlet ConNtextS.........cooovvvuiiiiiinieeeeeeiiiiiee. 30
Reloading Considerationsooouiviiiiiiiiieeeeeeiii e 30
Temporary Working DireCtories ..o, 31
Chapter4: The ReQUEST.......cooiiiiiiiiie e 32
Parameterscoooiiiiiii e 32
ALIDULES .o 33
L[T= 0 L= £ PP PPPPPPPPPP 33
Request Path EIements...........coovvvviiiiiie e 34
Path Translation Methodsoocciiiiiiieii e 35
COO0KIES .. i 36
SSL ARFDULES .o 36
INterNatioNaliZationuuveeeeiiiiiiiiiiiiiiiie e 37
Request data encoding ... 37

5 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFT+ October 20, 2000

PROPOSED FINAL DRAFT

Chapter5: The RESPONSE.ottt 38
BUFEIING e 38
HEAUEIS. ., 39
Convenience MethOdSuuuiiiiiiiiiiiiiieiiiiieeieeee e 40
Internationalization.............eevvveeiiiii e 40
Closure of Response ODbjJecCtooocvvvviiiiiiiiiiiccceccee e, 41

Chapter6: Serviet Filteringueiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieiiieeens 42
What iS @ filter 2 ..o 42

Examples of Filtering Components.........ccoeeevvvvvviceeneeennn, 43
MaIN CONCEPLS. .ttt e e 43
Filter LIfeCYCle 43
Filter enVIrONMENT.........ooviiiiiiiecee e 45
Configuration of Filters in a Web Application 45

Chapter 7: SESSIONS.....cciiiiiiiiiie et e e 48

Session Tracking MechaniSmscccovieviiiiiiiiiiee e 48
URL REWIITING . cceiitiieee ettt 48
COOKIES ..vtttttiiitiittitttbbbbbbb bbbt eeeneaeeeneee 49
SSL SESSIONS ...etvviiiiieeiiiitiie ittt e e st e s 49
SESSION INTEGIILY ...oeiiieeieiie e 49

Creating 8 SESSIONuuuuuiiiiiiiiiiiiiiiiiiieiiiieeeeeeeeeeeeeee e eeeeeeeeeeeeeeeeees 49

SESSION SCOPE ..eiuuiiei e e ettt e et e e 50

Binding Attributes into a SeSSIONcceeviieiiiieeiiee e, 50

SESSION TIMEOULS......uuuiiiiiiiiiiiiiriiierirrrer e 50

Last ACCESSE TIMEScvvvviiiiiiiiiiii 51

Important SESSION SEMANTICS........vviiiiiiiiiiiiiiiiiiieeieeeeee e 51
Threading ISSUESouviiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeee e 51
Distributed ENVIFONMENTS.........ovvviiieiiiiiiiieiieee e 51

Contents 6

PROPOSED FINAL DRAFT

Client SEMANTICScooeiiiieiiiie 52
Chapter 8: Dispatching ReQUESTS.........coivieeiiiiiiiiiiiie e 54
Obtaining a RequestDispatCher.............uuuciiiieiiiiiiiiii e, 54
Query Strings in Request Dispatcher Paths......................... 55
Using a Request Dispatcher..........cccoo, 55
INCIUTE ... 56
Included Request Parameters........cccoovveeevvveviiiiiineeeeeeeeeinnnn, 56
FOIWAId......cooiiiiiiiiii 56
QUETY STIING 1o 57
Error Handlingooooeeiiieiicic e 57
Chapter9: Web Applications..........coooovviii 58
Relationship to ServletContextooovveeiiiieeiiiie e, 58
Elements of a Web Applicationccovvviiiiinii e, 58
Distinction Between Representations..........ccccccveevrinrineeeeeee s 59
DireCtory STrUCIUIEccvvvii i 59
Sample Web Application Directory Structure..................... 60
Web Application Archive Fileccoo 60
Web Application Configuration Descriptorcccccveeviiieeniennns 61
Dependencies on extensions: Library Files.............ccccco...... 61
Web Application Classloader..............ceevvvvieiiiiiiiiiiiiieeenenne. 62
Replacing a Web Applicationcccccoo, 62
Error Handlingoooeviiieiici e 62
WEICOME FlES ... 63
Web Application Environmentcccooiiiiiiiiiiiiiineeeeeeeiiiinnn 64
Chapter 10: Application Lifecycle Events.........ccccceevveeevvieeiiiinneeenn, 66
INEFOAUCTION L. 66
EVENT LISTENEIS .ot 66

7

Java Servlet 2.3 Specification - PROPOSED FINAL DRAFT+ October 20, 2000

PROPOSED FINAL DRAFT

Configuration of Listener ClasSescccoevevviiiiieviiiiieeeiiie e, 68
Listener Instances and Threading..........ccooeiiiiiiiiiiiiiiiiieee 69
Distributed CONTAINEIS.uuiiiiiiiiiiiiiiiiiieieeeeeee e 69
Session Events- Invalidation vs Timeout..............ccccooeeeiiin, 69
Chapter 11: Mapping Requests to Servlets.........cccceeeviiiiiiiieiiinnnnn. 70
Use Of URL PathsS.......coovviiiiiiiiiiiiii 70
Specification of MappPiNgS.......ccoooeoiiis 71
IMPLICIt MAPPINGS ..ceveeeeeeieie e e e 71
Example Mapping Set ... 71
Chapter 12: SECUILY....uuuuii et et r e e 74
INEFOAUCTION ... 74
Declarative SECUTILYoie i 75
ProgrammatiC SECUILYcoooeeieieee e 75
0] [T PP PPPPPPPPPP 76
AUNENTICALION ... 76
HTTP Basic Authenticationccccceeeiiiiiiiienee e 76
HTTP Digest Authentication..............c.uuueiiiiiiiiiiiiiiiiinee, 77
Form Based AuthentiCation..................uvvveeiviviiiiiiiiiiiiieennnn. 77
HTTPS Client Authenticationccccccoeeiiiiiieiieees 78
Server Tracking of Authentication Information 79
Propogation of Security ldentity.............ccoeeii, 79
Specifying Security CONSLraiNtSuvvvviiviiiiiiiiiiiiiiiiiiiiriiieiinn. 80
Default POlICIESvveiiieeiii e 80
Chapter 13: Deployment DesCriptor.........oooovviiiiiiiiiin 82
Deployment Descriptor Elements..........oocovvvveiiiiniiieccceeciien e, 82
Deployment Descriptor DOCTYPEccooveevvvvvviiiiiiieeeeeeees 82
DT D e 83

Contents 8

PROPOSED FINAL DRAFT

EXAMPIES ... 96
A BasiC EXampPIeooooiiiiii e 97
An Example of SECUNtY.........covviviii 98

Chapter14: APl DetailS.........cccvviiiiiiiiiiiiiiii 100
CONTIg .ttt 104
BT e 106
FIlterCon ig.....coo i 108
GENENCSEIVIEL. ...t 110
RequestDISpPatCher ... 115
SEIVIEE ..o 117
ServIetCoNfigcovuviiiiiii e 120
SEIVIEICONTEXL......eeeiiieeiieee e 121
ServletContextAttributeEvent............ccoveiiiiiiic i, 129
ServletContextAttributesListener.........ccccccvviiveeiiiiiiee i, 131
ServIetCONtEXIEVENTcocveeiiiie e 133
ServletCoNteXtLISIENETocuviiee e 135
ServIEtEXCEPLIONeviiiiiiiiiieiie e 136
ServlietiNPUISIIEaM.........coo i e 139
ServletOULPULSTIEAMcciiiiiiii it 141
SerVIEIREQUESTooiiiiiiiii it 146
ServietReqUESTWIAPPETcoi ot 153
SEIVIEtRESPONSE ...eeiiiiiiiei it 159
ServlietReSPONSEWIAPPETcooi it 163
SingleThreadModel..........uuveviiieeeiiiiie e 167
UnavailableEXCePLioNceeiiiiiiaiiiiiiiiieeeee e 168
COOKIE .. 173
HUPSEIVIEL oo 179

9 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFT+ October 20, 2000

PROPOSED FINAL DRAFT

HUPServlietREQUESTooiiiiiee e 185
HttpServietRequesStWIappercooovviiieeiiniiiee e 193
HUtPSErvIetRESPONSEcccve e 200
HttpServietResponseWrapperooocvvvieeeeeiieeeeeeeeiiee 212
HEEPSESSION . 217
HttpSessionAttributesListenercccccvvveeeeveeeeee i 222
HttpSessionBindingEvent ..., 224
HttpSessionBindingLiStener ... 227
HtpSESSIONCONIEXL......cce i 228
HUPSESSIONEVENT ...ttt 229
HEtPSESSIONLISIENETeeeiiiiiiiiee e 231
[111010] S 232
Appendix A: Deployment Descriptor Version 2.2............ccccoeeeeeeenn. 236
APPENAIXB: GIOSSAIYceviiiiiiiiiiiiiieieieieeeeeeeeeee ettt 250

Contents 10

PROPOSED FINAL DRAFT

11 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFT+ October 20, 2000

PROPOSED FINAL DRAFT

Status

This specification is being developed following the Java Community Process. This document
is the Proposed Final Draft version of the Java Servlet 2.3 Specification.

Changes in this document since version 2.2

» Incorporation of Javadoc API definitions into the specification document
» Application Events

» Servlet Filtering

* Requirement of J2SE as the underlying platform for web containers

» Dependencies on installed extensions

* Internationalization fixes

* Incorporation of Servlet 2.2 errata and numerous other clarifications

Changes since Public Draft

Here is a summary of the main items that have changed in the specification since public draft
based on a large amount of feedback.

Specification document changes

* Added 2.2 deployment descriptor as appendix
» Added change list
* Many editorial changes

Status 12

PROPOSED FINAL DRAFT

Servlets - Chapter 2

« Added doHead() method back to HttpServlet (see API)

ServiletContexts - Chapter 3

» added getServletContextName() (see API)
» added getResourcePaths() (see API)

Request - Chapter 4

» Add attributes for error processing

» Added UnsupportedCharacterEncoding to throws clause of setCharacterEncoding() (see
API)

» getQueryString() - specify value is not decoded (see API)
» getParameterMap() - return value is immutable (see API)
 clarify getAuthType() javadoc, added statics for authentication types (see API)

clarify default character encoding

clarify behavior of getRealPath() (see API)
« clarification of HttpServletRequest.getHeaders() when name not found (see API)

Response - Chapter 5

 clarify status code on response when errors occur (see API)
» added resetBuffer() method to ServietResponse (see API)
» sendError clarifrications (see API))

disallow container defaulting the content type of a response

clarify behavior of flush() on PrintWriter and ServletOutputStream (see API)

clarify default character encoding of response

clarify what container does with headers on setStatus() (see API)

sendRedirect() clarification for non-absolute URLs (API doc)

sendError() clarifications (APl doc)

13 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFT « October 20, 2000

PROPOSED FINAL DRAFT

Filters - Chapter 6

» Scoping of filter instances

 Clarification of filters acting on static resources

* Added FilterChain interface and minor refactoring

» Removed Config interface

» Added set{Response,Request} methods to filter wrapper classes

Sessions - Chapter 7

» Addition of HttpSessionActivationListener interface used in distributed containers (also
see API)

» Clarification of semantics for persisting & migrating sessions in distributed containers
* many clarifications of session expiry and notification, order of notification (see API)

Application Event Listeners - Chapter 10

 Clarifying notifications on shutdown and ordering thereof

RequestMappings - Chapter 11

+ clarified servlet mapped to /foo/* is called by a request for /foo
» Request matching is done by case-sensitive string match

Security - Chapter 12

» Specify a default behavior for isUserInRole() in absernce of role-refs
» Clarify interaction between RequestDispatcher and security model

» Clarify policy for processing multiple security constraints

* Added security attributes for SSL algorithm

» Specify status code for failed form login

» Specify allowed methods of return for form login error page

Status 14

PROPOSED FINAL DRAFT

Deployment Descriptor - Chapter 13

» corrected bad comment for ejb-ref-type
« clarifying web container policy for whitespace in the deployment descriptor
+ clarifying paths in deployment descriptor are assumed decoded

» recommend validation of deployment descriptor documents and some semantic checking
by web containers as aid to developers

» policy for paths refering to resources in the WAR: must start with '/’
« clarify policy for relativizing policy of paths in web.xml

» added display name to security-constraint for tool manipulation
 fix security example

* Use of "*" to mean ’all roles’ in the security-constraint element

» syntax for specifying sharing scope for connection factory connections
» syntax for declaring dependencies on administered objects in J2EE
 clarify <error-page> path usage

 clarify <jsp-file> path usage

» snyc with EJB and EE specs on allowed strings in res-auth element
» clarify 2.2 dtd must be supported for backwards compatibility

15 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFT « October 20, 2000

PROPOSED FINAL DRAFT

Preface

This document, the Java™ Servlet Specification, v2.3 the Java Servlet API. The reference
implementation provides a behavioral benchmark. In the case of an area where the
specification leaves implementation of a particular feature open to interpretation,
implementors should look first to the reference implementation and then to the compatibility
test suite. If further clarification is required, the working group for the Java Servlet API

under the Java Community Process should be consulted and is the final arbiter of such issues.

Who should read this document

This document is intended for consumption by:

* Web Server and Application Server vendors that want to provide Servlet Engines that
conform with this specification.

* Web Authoring Tool developers that want to generate Web Applications that conform to
this specification

» Sophisticated Servlet authors who want to understand the underlying mechanisms of
Servlet technology.

Please note that this specification is not a User's Guide and is not intended to be used as
such.

API| Reference

The Java Servlet API Reference, v2.3 provides the complete description of all the interfaces,
classes, exceptions, and methods that compose the Servlet API. This document contains the

full specification of class, interfaces, method signatures and accompanying javadoc that
defines the Servlet API.

Preface 14

| PROPOSED FINAL DRAFT

Other Java™ Platform Specifications

| The following Java API Specifications are referenced throughout this specification:

Java2 Platform Enterprise Edition, v1.3 (J2EE)
JavaServer Pages™, v1.2 (JSP)
Java Naming and Directory Interface (JNDI)

These specifications may be found at the Java2 Enterprise Edition website:

http://java.sun.com/j2ee/

Other Important References

The following Internet Specifications provide relevant information to the development and
implementation of the Servlet APl and engines which support the Servlet API:

RFC 1630 Uniform Resource Identifiers (URI)

RFC 1738 Uniform Resource Locators (URL)

RFC 2396 Uniform Resource Identifiers (URI): Generic Syntax
RFC 1808 Relative Uniform Resource Locators

RFC 1945 Hypertext Transfer Protocol (HTTP/1.0)

RFC 2045 MIME Part One: Format of Internet Message Bodies
RFC 2046 MIME Part Two: Media Types

RFC 2047 MIME Part Three: Message Header Extensions for non-ASCII text
RFC 2048 MIME Part Four: Registration Procedures

RFC 2049 MIME Part Five: Conformance Criteria and Examples
RFC 2109 HTTP State Management Mechanism

RFC 2145 Use and Interpretation of HTTP Version Numbers
RFC 2324 Hypertext Coffee Pot Control Protocol (HTCPCPA..0)
RFC 2616 Hypertext Transfer Protocol (HTTP/1.1)

RFC 2617 HTTP Authentication: Basic and Digest Authentication

You can locate the online versions of any of these RFCs at:

http://www.rfc-editor.org/

The World Wide Web Consortiunmhttp://www.w3.org/) is a definitive source of
HTTP related information that affects this specification and its implementations.

1. This reference is mostly tongue-in-cheek although most of the concepts described in the HTCPCP
RFC are relevant to all well designed web servers.

| 15 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFT+ October 20, 2000

PROPOSED FINAL DRAFT

The Extensible Markup Language (XML) is utilized by the Deployment Descriptors
described in this specification. More information about XML can be found at the following
websites:

http://java.sun.com/

http://www.xml.org/

Providing Feedback

The success of the Java Community Process depends on your participation in the community.
We welcome any and all feedback about this specification. Please e-mail your comments to:

servletapi-feedback@eng.sun.com

Please note that due to the volume of feedback that we receive, you will not normally receive
a reply from an engineer. However, each and every comment is read, evaluated, and archived
by the specification team.

Acknowledgements

This public draft represents the team work of the JSR053 expert group.

Preface 16

| PROPOSED FINAL DRAFT

| 17 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFT+ October 20, 2000

PROPOSED FINAL DRAFT

CHAPTER

1

Overview

1.1

1.2

This chapter provides an overview of the Servlet API.

What is a Servlet?

A servlet is a web component, managed by a container, that generates dynamic content.
Servlets are small, platform independent Java classes compiled to an architecture neutral
bytecode that can be loaded dynamically into and run by a web server. Servlets interact with
web clients via a request response paradigm implemented by the servlet container. This
request-response model is based on the behavior of the Hypertext Transfer Protocol (HTTP).

What is a Servlet Container?

The servlet container, in conjunction with a web server or application server, provides the
network services over which requests and responses are set, decodes MIME based requests
and formats MIME based responses. A servlet container also contains and manages servlets
through their lifecycle.

A servlet container can either be built into a host web server or installed as an add-on
component to a Web Server via that server’s native extension API. Servlet Containers can
also be built into or possibly installed into web-enabled Application Servers.

All servlet containers must support HTTP as a protocol for requests and responses, but may
also support other request / response based protocols such as HTTPS (HTTP over SSL). The
minimum required version of the HTTP specification that a container must implement is

HTTP/1.0. It is strongly suggested that containers implement the HTTP/1.1 specification as
well.

Overview 18

19

PROPOSED FINAL DRAFT

1.3

1.4

A Servlet Container may place security restrictions on the environment that a servlet
executes in. In a Java 2 Platform Standard Edition 1.2 (J2SE) or Java 2 Platform Enterprise
Edition 1.3 (J2EE) environment, these restrictions should be placed using the permission
architecture defined by Java 2 Platform. For example, high end application servers may limit
certain action, such as the creation oflaread object, to insure that other components of
the container are not negatively impacted.

An Example

A client program, such as a web browser, accesses a web server and makes an HTTP request.
This request is processed by the web server and is handed off to the servlet container. The
servlet container determines which servlet to invoke based on its internal configuration and
calls it with objects representing the request and response. The servlet container can run in
the same process as the host web server, in a different process on the same host, or on a
different host from the web server for which it processes requests.

The servlet uses the request object to find out who the remote user is, what HTML form
parameters may have been sent as part of this request, and other relevant data. The servlet
can then perform whatever logic it was programmed with and can generate data to send back
to the client. It sends this data back to the client via the response object.

Once the servlet is done with the request, the servlet container ensures that the response is
properly flushed and returns control back to the host web server.

Comparing Servlets with Other Technologies

In functionality, servlets lie somewhere between Common Gateway Interface (CGI) programs
and proprietary server extensions such as the Netscape Server APl (NSAPI) or Apache
Modules.

Servlets have the following advantages over other server extension mechanisms:

» They are generally much faster than CGI scripts because a different process model is
used.

» They use a standard API that is supported by many web servers.

» They have all the advantages of the Java programming language, including ease of
development and platform independence.

» They can access the large set of APIs available for the Java platform.

Java Servlet 2.3 Specification - PROPOSED FINAL DRAFTe« October 20, 2000

| PROPOSED FINAL DRAFT

1.5 Relationship to Java 2 Platform Enterprise
Edition

| The Servlet API v2.3 is a required API of the Java 2 Platform Enterprise Editionl.vIh&
J2EE specification describes additional requirements for servlet containers, and servlets that

are deployed into them, that are executing in a J2EE environment.

1. Please see the Java 2 Platform Enterprise Edition specification available at
http://java.sun.com/j2ee/

Chapter 1 Overview 20

| PROPOSED FINAL DRAFT

| 21 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFT+ October 20, 2000

PROPOSED FINAL DRAFT

CHAPTER

2

The Servlet Interface

TheServlet interface is the central abstraction of the Servlet API. All servlets implement
this interface either directly, or more commonly, by extending a class that implements the
interface. The two classes in the API that implement&esviet interface are
GenericServlet andHttpServlet . For most purposes, developers will typically
extendHttpServlet to implement their servlets.

2.1

2.1.1

Request Handling Methods

The basicServlet interface defines aervice method for handling client requests. This
method is called for each request that the servlet container routes to an instance of a servlet.
Multiple request threads may be executing within the service method at any time.

HTTP Specific Request Handling Methods

The HttpServlet abstract subclass adds additional methods which are automatically
called by theservice method in theHttpServlet class to aid in processing HTTP
based requests. These methods are:

e doGet for handling HTTP GET requests

e doPost for handling HTTP POST requests

e doPut for handling HTTP PUT requests

« doDelete for handling HTTP DELETE requests

» doHead for handling HTTP HEAD requests

e doOptions for handling HTTP OPTIONS requests
e doTrace for handling HTTP TRACE requests

The Servlet Interface 22

PROPOSED FINAL DRAFT

Typically when developing HTTP based servlets, a Servlet Developer will only concern
himself with thedoGet anddoPost methods. The rest of these methods are considered to
be advanced methods for use by programmers very familiar with HTTP programming.

ThedoPut anddoDelete methods allow Servlet Developers to support HTTP/1.1 clients
which support these features. THeHead method inHttpServlet is a specialized

method that will execute thdoGet method, but only return the headers produced by the
doGet method to the client. ThdoOptions method automatically determines which

HTTP methods are directly supported by the servlet and returns that information to the
client. ThedoTrace method causes a response with a message containing all of the headers
sent in the TRACE request.

In containers that only support HTTP/1.0, only theGet , doHead anddoPost methods
will be used as HTTP/1.0 does not define the PUT, DELETE, OPTIONS, or TRACE
methods.

2.1.2 Conditional GET Support

The HttpServlet interface defines thgetLastModified method to support

conditional get operations. A conditional get operation is one in which the client requests a
resource with the HTTP GET method and adds a header that indicates that the content body
should only be sent if it has been modified since a specified time.

Servlets that implement thdoGet method and that provide content that does not
necessarily change from request to request should implement this method to aid in efficient
utilization of network resources.

2.2 Number of Instances

In the default case of a servlet not implementing SingleThreadModel and not hosted in a
distributed environment, the servlet container must use only one instance of a servlet class
per servlet definition.

In the case of a servlet that implements hieagleThreadModel interface, the servlet
container may instantiate multiple instances of that servlet so that it can handle a heavy
request load while still serializing requests to a single instance.

In the case where a servlet was deployed as part of an application that is marked in the
deployment descriptor adistributable there is one instance of a servlet class per servlet
definition per VM in a container. If the servlet implements BimgleThreadModel

interface as well as is part of a distributable web application, the container may instantiate
multiple instances of that servlet in each VM of the container.

23 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFT+ October 20, 2000

PROPOSED FINAL DRAFT

2.2.1

Note about SingleThreadModel

The use of thésingleThreadModel interface guarantees that one thread at a time will
execute through a given servlet instancgésvice method. It is important to note that this
guarantee only applies to servlet instance. Objects that can be accessible to more than one
servlet instance at a time, such as instancedtgiSession , may be available to multiple
servlets, including those that implemegingleThreadModel , at any particular time.

2.3

2.3.1

2.3.2

Servlet Life Cycle

A servlet is managed through a well defined life cycle that defines how it is loaded,
instantiated and initialized, handles requests from clients, and how it is taken out of service.
This life cycle is expressed in the API by tidt |, service , anddestroy methods of

the javax.servlet.Servlet interface that all servlets must, directly or indirectly
through theGenericServlet or HttpServlet abstract classes, implement.

Loading and Instantiation

The servlet container is responsible for loading and instantiating a servlet. The instantiation
and loading can occur when the engine is started or it can be delayed until the container
determines that it needs the servlet to service a request.

First, a class of the servlet's type must be located by the servlet container. If needed, the
servlet container loads a servlet using normal Java class loading facilities from a local file
system, a remote file system, or other network services.

After the container has loaded ti&®rvlet class, it instantiates an object instance of that
class for use.

It is important to note that there can be more than one instance of a §@aret class in

the servlet container. For example, this can occur where there was more than one servlet
definition that utilized a specific servlet class with different initialization parameters. This
can also occur when a servlet implements SiegleThreadModel interface and the
container creates a pool of servlet instances to use.

Initialization

After the servlet object is loaded and instantiated, the container must initialize the servlet
before it can handle requests from clients. Initialization is provided so that a servlet can read
any persistent configuration data, initialize costly resources (such as JDBC™ based

Chapter 2 The Servlet Interface 24

PROPOSED FINAL DRAFT

connection), and perform any other one-time activities. The container initializes the servlet
by calling theinit method of theServlet interface with a unique (per servlet definition)
object implementing th&ervletConfig interface. This configuration object allows the
servlet to access name-value initialization parameters from the servlet container’s
configuration information. The configuration object also gives the servlet access to an object
implementing theServiletContext interface which describes the runtime environment
that the servlet is running within. See Chapter 3, “Servlet Context” for more information
about theServletContext interface.

2.3.2.1 Error Conditions on Initialization

During initialization, the servlet instance can signal that it is not to be placed into active
service by throwing atUnavailableException or ServletException .Ifa

servlet instance throws an exception of this type, it must not be placed into active service and
the instance must be immediately released by the servlet containedeBi@y method is

not called in this case as initialization was not considered to be successful.

After the instance of the failed servlet is released, a new instance may be instantiated and
initialized by the container at any time. The only exception to this rule is if the
UnavailableException thrown by the failed servlet which indicates the minimum
time of unavailability. In this case, the container must wait for the minimum time of
unavailability to pass before creating and initializing a new servlet instance.

2.3.2.2 Tool Considerations

When a tool loads and introspects a web application, it may load and introspect member
classes of the web application. This will trigger static initialization methods to be executed.
Because of this behavior, a Developer should not assume that a servlet is in an active
container runtime unless thrit method of theServlet interface is called. For

example, this means that a servlet should not try to establish connections to databases or
Enterprise JavaBeans™ compenent architecture containers when its static (class)
initialization methods are invoked.

2.3.3 Request Handling

After the servlet is properly initialized, the servlet container may use it to handle requests.
Each request is represented by a request object of $greletRequest and the servlet
can create a response to the request by using the provided object of type
ServletResponse . These objects are passed as parameters teghéce method of

the Servlet interface. In the case of an HTTP request, the container must provide the
request and response objects as implementatioh#tpServietRequest and
HttpServietResponse

25 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFT+ October 20, 2000

PROPOSED FINAL DRAFT

2.3.3.1

2.3.3.2

It is important to note that a servlet instance may be created and placed into service by a
servlet container but may handle no requests during its lifetime.

Multithreading Issues

During the course of servicing requests from clients, a servlet container may send multiple
requests from multiple clients through teervice method of the servlet at any one time.
This means that the Developer must take care to make sure that the servlet is properly
programmed for concurrency.

If a Developer wants to prevent this default behavior, he can program the servlet to
implement theSingleThreadModel interface. Implementing this interface will

guarantee that only one request thread at a time will be allowed in the service method. A
servlet container may satisfy this guarantee by serializing requests on a servlet or by
maintaining a pool of servlet instances. If the servlet is part of an application that has been
marked as distributable, the container may maintain a pool of servlet instances in each VM
that the application is distributed across.

If a Developer defines aervice method (or methods such deGet or doPost which

are dispatched to from theervice method of theHttpServiet abstract class) with the
synchronized keyword, the servlet container will, by necessity of the underlying Java
runtime, serialize requests through it. However, the container must not create an instance
pool as it does for servlets that implement BimgleThreadModel . It is strongly
recommended that developers not synchronize the service method or any of the
HttpServlet service methods such a@oGet , doPost , etc.

Exceptions During Request Handling

A servlet may throw either &ervletException or anUnavailableException

during the service of a request. ervletException signals that some error occurred
during the processing of the request and that the container should take appropriate measures
to clean up the request. AdnavailableException signals that the servlet is unable to
handle requests either temporarily or permanently.

If a permanent unavailability is indicated by thinavailableException , the servlet
container must remove the servlet from service, caltgstroy method, and release the
servlet instance.

If temporary unavailability is indicated by tHdnavailableException , then the

container may choose to not route any requests through the servlet during the time period of
the temporary unavailability. Any requests refused by the container during this period must
be returned with SERVICE_UNAVAILABLE(503) response status along witiRetry-

After header indicating when the unavailability will terminate. The container may choose
to ignore the distinction between a permanent and temporary unavailability and treat all
UnavailableExceptions as permanent, thereby removing a servlet that throws any
UnavailableException from service.

Chapter 2 The Servlet Interface 26

PROPOSED FINAL DRAFT

2.3.3.3 Thread Safety

A Developer should note that implementations of the request and response objects are not
guaranteed to be thread safe. This means that they should only be used in the scope of the
request handling thread. References to the request and response objects should not be given
to objects executing in other threads as the behavior may be nondeterministic.

2.3.4 End of Service

The servlet container is not required to keep a servlet loaded for any period of time. A servlet
instance may be kept active in a servlet container for a period of only milliseconds, for the
lifetime of the servlet container (which could be measured in days, months, or years), or any
amount of time in between.

When the servlet container determines that a servlet should be removed from service (for
example, when a container wants to conserve memory resources, or when it itself is being
shut down), it must allow the servlet to release any resources it is using and save any
persistent state. To do this the servlet container callgléstroy method of theServlet
interface.

Before the servlet container can call tlestroy method, it must allow any threads that
are currently running in theervice method of the servlet to either complete, or exceed a
server defined time limit, before the container can proceed with callingléstroy

method.

Once thedestroy method is called on a servlet instance, the container may not route any
more requests to that particular instance of the servlet. If the container needs to enable the
servlet again, it must do so with a new instance of the servlet’s class.

After thedestroy method completes, the servlet container must release the servlet
instance so that it is eligible for garbage collection

27 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFT+ October 20, 2000

PROPOSED FINAL DRAFT

CHAPTER

3

Servilet Context

The ServletContext defines a servlet's view of the web application within which the
servlet is running. Th&ervletContext also allows a servlet to access resources
available to it. Using such an object, a servlet can log events, obtain URL references to
resources, and set and store attributes that other servlets in the context can use. The
Container Provider is responsible for providing an implementation of the

ServletContext interface in the servlet container.
A ServletContext is rooted at a specific path within a web server. For example a
context could be located &ttp://www.mycorp.com/catalog . All requests that

start with the/catalog request path, which is known as tbentext pathwill be routed to
this servlet context.

3.1

Scope of a ServletContext

There is one instance of tHgervletContext interface associated with each web

application deployed into a container. In cases where the container is distributed over many

virtual machines, there is one instance per web application per VM.

Servlets that exist in a container that were not deployed as part of a web application are
implicitly part of a “default” web application and are contained by a default
ServletContext . In a distributed container, the defa@ervletContext is non-
distributable and must only exist on one VM.

3.2

Initialization Parameters

A set of context initialization parameters can be associated with a web application and are
made available by the following methods of tBervietContext interface:

Servlet Context 28

PROPOSED FINAL DRAFT

 getlnitParameter
 getlnitParameterNames
Initialization parameters can be used by an application developer to convey setup

information, such as a webmaster’s e-mail address or the name of a system that holds critical
data.

3.3 Context Attributes

A servlet can bind an object attribute into the context by name. Any object bound into a
context is available to any other servlet that is part of the same web application. The
following methods ofServietContext interface allow access to this functionality:

« setAttribute

« getAttribute

e getAttributeNames
» removeAttribute

3.3.1 Context Attributes in a Distributed Container

Context attributes exist locally to the VM in which they were created and placed. This
prevents theServletContext from being used as a distributed shared memory store. If
information needs to be shared between servlets running in a distributed environment, that
information should be placed into a session (See Chapter 8, “Sessions”), a database or set in
an Enterprise JavaBean.

3.4 Resources

The ServletContext interface allows direct access to the static document hierarchy of
content documents, such as HTML, GIF, and JPEG files, that are part of the web application
via the following methods of th&ervletContext interface:

* getResource
» getResourceAsStream

Both thegetResource andgetResourceAsStream methods take &tring
argument giving the path of the resource relative to the root of the context.

29 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFT+ October 20, 2000

PROPOSED FINAL DRAFT

It is important to note that these methods give access to static resources from whatever
repository the server uses. This hierarchy of documents may exist in a file system, in a web
application archive file, on a remote server, or some other location. These methods are not
used to obtain dynamic content. For example, in a container supporting the JavaServer Pages
specificatiort, a method call of the forngetResource("/index.jsp") would return

the JSP source code and not the processed output. See Chapter 8, “Dispatching Requests” for
more information about accessing dynamic content.

3.5

Multiple Hosts and Servilet Contexts

Many web servers support the ability for multiple logical hosts to share the same IP address
on a server. This capability is sometimes referred to as "virtual hosting". If a servlet
container’s host web server has this capability, each unique logical host must have its own
servlet context or set of servlet contexts. A servlet context can not be shared across virtual

hosts.

3.6

Reloading Considerations

Many servlet containers support servlet reloading for ease of development. Reloading of
servlet classes has been accomplished by previous generations of servlet containers by
creating a new class loader to load the servlet which is distinct from class loaders used to
load other servlets or the classes that they use in the servlet context. This can have the
undesirable side effect of causing object references within a servlet context to point at a
different class or object than expected which can cause unexpected behavior.

Therefore, when a Container Provider implements a class reloading scheme for ease of
development, they must ensure that all servlets, and classes that they may use, are loaded in
the scope of a single class loader guaranteeing that the application will behave as expected
by the Developer.

1. The JavaServer Pages specification can be fourttpatjava.sun.com/products/

Chapter 3 Servlet Context 30

PROPOSED FINAL DRAFT

3.7 Temporary Working Directories

It is often useful for Application Developers to have a temporary working area on the local
filesystem. All servlet containers must provide a private temporary directory per servlet
context and make it available via the context attribute of

javax.servlet.context.tempdir . The object associated with the attribute must be
of type java.io.File

31 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFTe« October 20, 2000

PROPOSED FINAL DRAFT

CHAPTER

4

The Request

The request object encapsulates all information from the client request. In the HTTP
protocol, this information is transmitted from the client to the server by the HTTP headers
and the message body of the request.

4.1

Request parameters are strings sent by the client to a servlet container as part of a request.
When the request is HttpServletRequest , the attributes are populated from the URI

query string and possibly posted form data. The parameters are stored by the servlet
container as a set of name-value pairs. Multiple parameter values can exist for any given
parameter name. The following methods of BervietRequest interface are available

to access parameters:

» getParameter
» getParameterNames
e getParameterValues

The getParameterValues method returns an array &tring objects containing all
the parameter values associated with a parameter name. The value returned from the
getParameter method must always equal the first value in the arraptifng objects
returned bygetParameterValues

All form data from both the query string and the post body are aggregated into the request
parameter set. The order of this aggregation is that query string data takes precedence over
post body parameter data. For example, if a request is made with a query starbeifo

and a post body oA=goodbye&a=world , the resulting parameter set would be ordered
a=(hello, goodbye, world)

Posted form data is only read from the input stream of the request and used to populate the
parameter set when all of the following conditions are met:

The Request 32

PROPOSED FINAL DRAFT

1. The request is an HTTP or HTTPS request.

2. The HTTP method is POST

3. The content type iapplication/x-www-form-urlencoded

4. The servlet calls any of thgetParameter family of methods on the request object.

If any of thegetParameter family of methods is not called, or not all of the above
conditions are met, the post data must remain available for the servlet to read via the
request’s input stream.

4.2

Attributes

Attributes are objects associated with a request. Attributes may be set by the container to
express information that otherwise could not be expressed via the API, or may be set by a
servlet to communicate information to another servlet @questDispatcher).

Attributes are accessed with the following methods of 8evietRequest interface:

» getAttribute
» getAttributeNames
+ setAttribute

Only one attribute value may be associated with an attribute name.

Attribute names beginning with the prefixes gava.” and ‘javax. " are reserved for
definition by this specification. Similarly attribute names beginning with the prefixes of
“sun.” , and ‘com.sun. " are reserved for definition by Sun Microsystems. It is suggested
that all attributes placed into the attribute set be named in accordance with the reverse
package name convention suggested by the Java Programming Language Spedification
package naming.

4.3

Headers

A servlet can access the headers of an HTTP request through the following methods of the
HttpServiletRequest interface:

e getHeader
» getHeaders

1. The Java Programming Language Specification is available at http://java.sun.com/docs/booksl/jls

33 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFT+ October 20, 2000

PROPOSED FINAL DRAFT

e getHeaderNames

ThegetHeader method allows access to the value of a header given the name of the
header. Multiple headers, such as (ache-Control header, can be present in an HTTP
request. If there are multiple headers with the same name in a requeggttieader
method returns the first header contained in the requestgétideaders method allow
access to all the header values associated with a particular header name returning an
Enumeration of String objects.

Headers may contain data that is better expressed &% aror aDate object. The
following convenience methods of tié#ttpServietRequest interface provide access to
header data in a one of these formats:

» getintHeader
e getDateHeader
If the getintHeader ~ method cannot translate the header value tinan, a

NumberFormatException is thrown. If thegetDateHeader method cannot
translate the header toRate object, anlllegalArgumentException is thrown.

4.4

Request Path Elements

The request path that leads to a servlet servicing a request is composed of many important
sections. The following elements are obtained from the request URI path and exposed via the
request object:

e Context Path: The path prefix associated with tigervietContext that this servlet
is a part of. If this context is the “default” context rooted at the base of the web server’s
URL namespace, this path will be an empty string. Otherwise, this path starts’fith a
character but does not end with’a character.

» Servlet Path: The path section that directly corresponds to the mapping which activated
this request. This path starts with’a character.

» Pathinfo: The part of the request path that is not part of the Context Path or the Servlet
Path.

The following methods exist in thElttpServlietRequest interface to access this

information:

« getContextPath

» getServletPath

« getPathinfo

It is important to note that, except for URL encoding differences between the request URI

and the path parts, the following equation is always true:
requestURI = contextPath + servletPath + pathinfo

Chapter4 The Request 34

PROPOSED FINAL DRAFT

To give a few examples to clarify the above points, consider the following:

Table 1: Example Context Set Up

ContextPath /catalog

Servlet Mapping Pattern: /lawn/*
Servlet: LawnServlet

Servlet Mapping Pattern: /garden/*
Servlet: GardenServlet

Servlet Mapping Pattern: *.jsp
Servlet: JSPServlet

The following behavior is observed:

Table 2: Observed Path Element Behavior

Request Path Path Elements

/catalog/lawn/index.html ContextPath: /catalog
ServletPath: /lawn
Pathinfo: /index.html

/catalog/garden/implements/ ContextPath: /catalog
ServletPath: /garden
Pathinfo: /implements/

/catalog/help/feedback.jsp ContextPath: /catalog
ServletPath: /help/feedback.jsp
Pathinfo: null

4.5 Path Translation Methods

There are two convenience methods in HigpServletRequest interface which allow
the Developer to obtain the file system path equivalent to a particular path. These methods
are:

» getRealPath
e getPathTranslated

35 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFT+ October 20, 2000

PROPOSED FINAL DRAFT

ThegetRealPath method takes &tring argument and returns $tring
representation of a file on the local file system to which that path corresponds. The
getPathTranslated method computes the real path of fpathinfo of this request.

In situations where the servlet container cannot determine a valid file path for these methods,
such as when the web application is executed from an archive, on a remote file system not
accessible locally, or in a database, these methods must return null.

4.6

Cookies

The HttpServletRequest interface provides thgetCookies method to obtain an

array of cookies that are present in the request. These cookies are data sent from the client to
the server on every request that the client makes. Typically, the only information that the
client sends back as part of a cookie is the cookie name and the cookie value. Other cookie
attributes that can be set when the cookie is sent to the browser, such as comments, are not
typically returned.

4.7

SSL Attributes

If a request has been transmitted over a secure protocol, such as HTTPS, this information
must be exposed via thisSecure method of theServletRequest interface. The web
container must expose the following attributes to the servlet programmer

» the cipher suite
« the bit size of the algothm
as java objects of typ8tring andinteger respectively. The names of the attributes must

be javax.servlet.request.cipher-suite and
javax.servet.request.key-size

If there is an SSL certificate associated with the request, it must be exposed by the servlet
container to the servlet programmer as an array of objects of type
java.security.cert.X509Certificate and accessible via a

ServletRequest attribute ofjavax.servlet.request.X509Certificate

Chapter4 The Request 36

PROPOSED FINAL DRAFT

4.8 Internationalization

Clients may optionally indicate to a web server what language they would prefer the
response be given in. This information can be communicated from the client using the
Accept-Language header along with other mechanisms described in the HTTP/1.1
specification. The following methods are provided in hervietRequest interface to
determine the preferred locale of the sender:

» getLocale
e getLocales

ThegetLocale method will return the preferred locale that the client will accept content
in. See section 14.4 of RFC 2616 (HTTP/1.1) for more information about howdticept-
Language header must interpreted to determine the preferred language of the client.

ThegetLocales method will return arEnumeration of Locale objects indicating,
in decreasing order starting with the preferred locale, the locales that are acceptable to the
client.

If no preferred locale is specified by the client, the locale returned byéikocale
method must be the default locale for the servlet container andeatieocales method
must contain an enumeration of a single Locale element of the default locale.

4.9 Request data encoding

Currently, many browsers do not send a char encoding qualifier with the Content-Type

header. This leaves open the determination of the character encoding for reading Http
requests. Many containers default in this case to the JVM default encoding, which causes a
breakage when the request data has not been encoded with the same encoding as the platform
default.

To aid this situation, a new metha#tCharacterEncoding(String enc) has been
added to the ServletRequest interface. Developers can override the character encoding
supplied by the container in this situation if necessary by calling this method. This method
must be called prior to parsing any post data or reading any input from the request. Calling
this method once data has been read will not affect the encoding.

The default encoding of a request is “ISO-8859-1" if none has been specified by the client
request.

37 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFTe« October 20, 2000

PROPOSED FINAL DRAFT

CHAPTER

5

The Response

The response object encapsulates all information to be returned from the server to the client.
In the HTTP protocol, this information is transmitted from the server to the client either by
HTTP headers or the message body of the request.

5.1

Buffering

In order to improve efficiency, a servlet container is allowed, but not required to by default,
to buffer output going to the client. The following methods are provided via the
ServletResponse interface to allow a servlet access to, and the setting of, buffering
information:

« getBufferSize

» setBufferSize

+ isCommitted

* reset

o flushBuffer

These methods are provided on tBervletResponse interface to allow buffering

operations to be performed whether the servlet is usiSgrvletOutputStream ora
Writer

The getBufferSize method returns the size of the underlying buffer being used. If no
buffering is being used for this response, this method must returinthevalue of0
(zero)

The servlet can request a preferred buffer size for the response by using the

setBufferSize method. The actual buffer assigned to this request is not required to be
the same size as requested by the servlet, but must be at least as large as the buffer size
requested. This allows the container to reuse a set of fixed size buffers, providing a larger

The Response 38

PROPOSED FINAL DRAFT

buffer than requested if appropriate. This method must be called before any content is written
using aServletOutputStream or Writer . If any content has been written, this
method must throw aillegalStateException

TheisCommitted method returns a boolean value indicating whether or not any bytes
from the response have yet been returned to the client. flisbBuffer method forces
any content in the buffer to be written to the client.

Thereset method clears any data that exists in the buffer as long as the response is not
considered to be committed. All headers and the status code set by the servlet previous to the
reset called must be cleared as well.

If the response is committed and theset method is called, an
lllegalStateException must be thrown. In this case, the response and its associated
buffer will be unchanged.

When buffering is in use is filled, the container must immediatly flush the contents of the
buffer to the client. If this is the first time for this request that data is sent to the client, the
response is considered to be committed at this point.

52 Headers

A servlet can set headers of an HTTP response via the following methods of the
HttpServietResponse interface:

« setHeader
+ addHeader
ThesetHeader method sets a header with a given name and value. If a previous header

exists, it is replaced by the new header. In the case where a set of header values exist for the
given name, all values are cleared and replaced with the new value.

TheaddHeader method adds a header value to the set of headers with a given name. If
there are no headers already associated with the given name, this method will create a new
set.

Headers may contain data that is better expressed &% aror aDate object. The
following convenience methods of tidttpServietResponse interface allow a servlet
to set a header using the correct formatting for the appropriate data type:

» setintHeader
« setDateHeader
+ addintHeader
» addDateHeader

39 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFT+ October 20, 2000

PROPOSED FINAL DRAFT

In order to be successfully transmitted back to the client, headers must be set before the
response is committed. Any headers set after the response is committed will be ignored by
the servlet container.

Servlet programmers are resoponsible for ensuring that the Content-Type header is
appropriately set on the response object for the content the servlet is generating. Since the
Http 1.1 specification does not require that this header be set on an HTTP response, servlet
containers must not set a default content type if the servlet programmer has not set one.

5.3

Convenience Methods

The following convenience methods exist in tHépServletResponse interface:
+ sendRedirect
» sendError

ThesendRedirect method will set the appropriate headers and content body to redirect
the client to a different URL. It is legal to call this method with a relative URL path, however
the underlying container must translate the relative path to a fully qualified URL for
transmission back to the client. If a partial URL is given and, for whatever reason, cannot be
converted into a valid URL, then this method must throw an

lllegalArgumentException

ThesendError method will set the appropriate headers and content body to return to the
client. An optionalString argument can be provided to tesendError method which
can be used in the content body of the error.

These methods will have the side effect of committing the response, if it had not already
been committed, and terminating it. No further output to the client should be made by the
servlet after these methods are called. If data is written to the response after these methods
are called, the data is ignored.

If data has been written to the response buffer, but not returned to the client (i.e. the response
is not committed), the data in the response buffer must be cleared and replaced with the data
set by these methods. If the response is committed, these methods must throw an
lllegalStateException

TBD Make it clearer that these mechanisms should not destroy existing header information
like Cookies

Chapter5 The Response 40

PROPOSED FINAL DRAFT

54 Internationalization

In response to a request by a client to obtain a document of a particular language, or perhaps
due to preference setting by a client, a servlet can set the language attributes of a response
back to a client. This information is communicated via tbentent-Language header

along with other mechanisms described in the HTTP/1.1 specification. The language of a
response can be set with teetLocale method of theServletResponse interface.

This method must correctly set the appropriate HTTP headers to accurately communicate the
Locale to the client.

For maximum benefit, theetLocale = method should be called by the Developer before
thegetWriter method of theServletResponse interface is called. This will ensure
that the returnedPrintWriter is configured appropriately for the targetcale .

If the setContentType method is called after theetLocale method and there is a
charset component to the given content type, ttiearset specified in the content type
overrides the value set via the call setLocale

The default encoding of a response is “ISO-8859-1" if none has been specified by the servlet
programmer.

5.5 Closure of Response Object

A number of events can indicate that the servlet has provided all of the content to satisfy the
request and that the response object can be considered to be closed. The events are:

* The termination of the service method of the servlet.

* When the amount of content specified in thetContentLength method of the
response has been written to the response.

 ThesendError method is called.
 ThesendRedirect method is called.

When a response is closed, all content in the response buffer, if any remains, must be
immediately flushed to the client.

41 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFTe« October 20, 2000

PROPOSED FINAL DRAFT

CHAPTER

6

Filtering

Filters are a new feature in the Java servlet API for version 2.3. This chapter describes the
new API classes and methods that provide a lightweight framework for filtering of Servlets
and static content in the API. It describes the ways that filters can be configured in a web
application, and describes some of the conventions and semantics around how they can be
implemented.

Filters allow on the fly transformations of the payload and header information both of the
request in to a resource and on the response from a resource.

API documentation for this model is provided in the API definitions chapters of this
document. Configuration syntax for filters is given by the Document Type Definition in
Chapter 13. Both should be referenced when reading this chapter.

6.1

What is a filter?

A filter is a reusable piece of code that transforms either the content of an HTTP request or
response and can also modify header information. Filters differ from Servlets in that they do
not themselves usually create a response, rather, they are there to modify or adapt the request
for a resource and modify or adapt the response from a request for a resource within the web
application.

The main functionality areas that are available to the Filter author are

» They can intercept the invocation of a servlet or static resource before the resource is
invoked.

» They can look at the request for a resource before it is invoked.

» They can modify the request headers and request data by providing customized versions
of the request object that wrap the real request.

» They can modify the response headers and response data by providing customized
versions of the response object that wrap the real response.

Filtering 42

PROPOSED FINAL DRAFT

» They can intercept the invocation of a resource after the it is called.
» They can be configured to act on a Servlet, on groups of Servlets or static content

» Servlets or static content can be configured to be filtered by zero, one or more filters in a
specifiable order.

6.1.1 Examples of Filtering Components

» Authentication Filters

» Logging and Auditing Filters

* Image conversion Filters

» Data compression Filters

* Encryption Filters

» Tokenizing Filters

» Filters that trigger resource access events
» XSL/T filters that transform XML content

* Mime-type chain Filters

6.2 Main Concepts

The main concepts in this filtering model are described in this section.

The application developer creates a filter by implementing the javax.servlet.Filter interface in
the Java Servlet APl and must provide a public constructor taking no arguments. The
implementation class is packaged in the Web Archive along with the rest of the static content
and Servlets that make up the web application. Each Filter is declared using the <filter>
syntax in the deployment descriptor. A Filter or collection of Filters can be configured to be
invoked by defining a number of <filter-mapping> elements in the deployment descriptor.
The syntax associates the filter or group of filters with a particular Servlet. This is done by
mapping a filter to a particular servlet by the servlet’s logical name, or mapping to a group of
Servlets and static content resources by mapping a filter to a url pattern.

6.2.1 Filter Lifecycle

After the time when the web application containing filters is deployed, and before an
incoming request for a resource in the web application causes a the container to access the
resource and serve it back, the container must look through the list of filter mappings to

43 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFT+ October 20, 2000

PROPOSED FINAL DRAFT

locate the list of filters that must be applied to the resource. How this list is built is described
below. The container must ensure at some point in this time that, for each filter instance that
is to be applied, it has instantiated a filter of the appropriate class, and called
setFilterConfig(FilterConfig config) on each filter instance in the list. The
container must ensure that only one instance of a filter per <filter> declaration in the
deployment descriptor is instantiated per Java Virtual Machine of the container. The
container also ensures that tla@ax.servlet.FilterConfig instance that is passed

in to this call has been initialized with the filter name as declared in the deployment
descriptor for that filter, with the reference to the ServletContext for this web application and
with the set of initialization parameters declared for the filter in the deployment descriptor.

When the container receives the incoming request, it takes the first filter instance in the list
and calls itsdoFilter() method, passing in th8ervletRequest and
ServletResponse , and a reference to theilterChain object it will use.

The doFilter() method of a Filter will typically be implemented following this or some
subset of this pattern

1) It will examine the request headers

2) It may wrap the request object passed intadivgilter() method with a customized
implementation of ServletRequest or HttpServletRequest if it wishes to modify request
headers or data.

3) It may wrap the response object passed in tadBilter() method with a customized
implementation of ServletRequest or HttpServletRequest if it wishes to modify response
headers or data.

4) It can make an invocation of the next entity in the filter chain. If this filter is the last filter

in the chain that ends with the target servlet or static resource, the next entity is the next filter
that was configured in the deployment descriptor, if it is not, it is the resource at the end of
the chain. It does this by calling thaoFilter() method on the chain object (passing in

the request and response it was called with, or the wrapped versions it may have created)

Alternatively, it can choose to block the request by not making the call to invoke the next
entity. In the latter case, the filter is responsible for filling out the response.

5) It may examine response headers after it has invoked the next filter in the chain.
6) Alternatively, the Filter may throw an exception to indicate an error in processing.

Before the container can remove filter instances at the end of the lifetime of a web
application, it must call theetFilterConfig() method on the Filter passing in null to
indicate that the Filter is being taken out of service.

Chapter 6 Filtering 44

PROPOSED FINAL DRAFT

6.2.2 Filter environment

A set of initialization parameters can be associated with a filter using the init-params element
in the deployment descriptor. The names and values of these parameters are available to the
Filter at runtime via thegetInitParameter andgetlnitParameterNames

methods on the filter'silterConfig . Additionally, theFilterConfig affords access

to the ServletContext of the web application for the loading of resources, for logging
functionality or for storage of state in th&ervletContext’s attribute list.

6.2.3 Configuration of Filters in a Web Application

A Filter is defined in the deployment descriptor using the <filter> element. In this element,
the programmer declares the

filter-name - this is used to map the filter to a servlet or URL
filter-class - this is used by the container to identify the filter type
init-params - the initialization parameters for a filter

and optionally can specify icons, a textual description and a display name for tool
manipulation.

Once a Filter has been declared in the deployment descriptor, the assembler uses the <filter-
mapping> element to define to which Servlets and static resources in the web application the
Filter is to be applied. Filters can be associated with a Servlet by using the <servlet-name>
style

<filter-mapping>
<filter-name>Image Filter</filter-name>
<servlet-name>ImageServlet</servlet-name>
<ffilter-mapping>

In this case the Image Filter is applied to the Servlet with servlet-name ‘Image Servlet'.

Filters can be associated with groups of Servlets and static content using the <url-pattern>
style of filter mapping:-

<filter-mapping>

<filter-name>Logging Filter</filter-name>

45 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFT+ October 20, 2000

PROPOSED FINAL DRAFT

<url-pattern>/*</url-pattern>
</filter-mapping>

In this case, the Logging Filter is applied to all the Servlets and static content pages in the
web application, because every request URI matches the ‘/*" URL pattern.

When processing a filter-mapping element using the url-pattern style, the container must
determine whether the URL pattern matches the request URI using the path mapping rules
defined in 12.1.

The order in which the container builds the chain of filters to be applied for a particular
request URI is

1) The URL pattern matching filter-mappings in the same as the order that those elements
appear in the deployment descriptor, and then

2) The servlet-name matching filter-mappings in the same as the order that those elements
appear in the deployment descriptor

Chapter 6 Filtering 46

PROPOSED FINAL DRAFT

47 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFTe« October 20, 2000

PROPOSED FINAL DRAFT

CHAPTER

2

Sessions

The Hypertext Transfer Protocol (HTTP) is by design a stateless protocol. To build effective
web applications, it is imperative that a series of different requests from a particular client
can be associated with each other. Many strategies for session tracking have evolved over
time, but all are difficult or troublesome for the programmer to use directly.

This specification defines a simpldttpSession interface that allows a servlet container
to use any number of approaches to track a user’s session without involving the Developer in
the nuances of any one approach.

7.1

7.1.1

Session Tracking Mechanisms

There are several strategies to implement session tracking.

URL Rewriting

URL rewriting is the lowest common denominator of session tracking. In cases where a
client will not accept a cookie, URL rewriting may be used by the server to establish session
tracking. URL rewriting involves adding data to the URL path that can be interpreted by the
container on the next request to associate the request with a session.

The session id must be encoded as a path parameter in the resulting URL string. The name of
the parameter must fsessionid . Here is an example of a URL containing encoded
path information:

http://www.myserver.com/catalog/index.html;jsessionid=1234

Sessions 48

PROPOSED FINAL DRAFT

7.1.2

7.1.3

7.1.4

Cookies

Session tracking through HTTP cookies is the most used session tracking mechanism and is
required to be supported by all servlet containers. The container sends a cookie to the client.
The client will then return the cookie on each subsequent request to the server
unambiguously associating the request with a session. The name of the session tracking
cookie must be]SESSIONID.

SSL Sessions

Secure Sockets Layer, the encryption technology which is used in the HTTPS protocol, has a
mechanism built into it allowing multiple requests from a client to be unambiguously
identified as being part of an accepted session. A servlet container can easily use this data to
serve as the mechanism for defining a session.

Session Integrity

Web containers must be able to support the integrity of the HTTP session when servicing
HTTP requests from clients that do not support the use of cookies. To fulfil this requirement
in this scenario, web containers commonly support the URL rewriting mechanism.

1.2

Creating a Session

Because HTTP is a request-response based protocol, a session is considered to be new until
a client “joins” it. A client joins a session when session tracking information has been
successfully returned to the server indicating that a session has been established. Until the
client joins a session, it cannot be assumed that the next request from the client will be
recognized as part of the session.

The session is considered to be “new” if either of the following is true:

e The client does not yet know about the session

» The client chooses not to join a session. This implies that the servlet container has no
mechanism by which to associate a request with a previous request.

49 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFT+ October 20, 2000

PROPOSED FINAL DRAFT

A Servlet Developer must design their application to handle a situation where a client has
not, can not, or will not join a session.

7.3

Session Scope

HttpSession objects must be scoped at the application / servlet context level. The
underlying mechanism, such as the cookie used to establish the session, can be shared
between contexts, but the object exposed, and more importantly the attributes in that object,
must not be shared between contexts.

7.4

Binding Attributes into a Session

A servlet can bind an object attribute into BittpSession implementation by name. Any
object bound into a session is available to any other servlet that belongs to the same
ServletContext and that handles a request identified as being a part of the same
session.

Some objects may require notification when they are placed into, or removed from, a session.
This information can be obtained by having the object implement the
HttpSessionBindingListener interface. This interface defines the following

methods that will signal an object being bound into, or being unbound from, a session.

» valueBound

 valueUnbound

ThevalueBound method must be called before the object is made available via the
getAttribute method of theHttpSession interface. ThevalueUnbound method

must be called after the object is no longer available viagd&ttribute method of the
HttpSession interface.

7.5

Session Timeouts

In the HTTP protocol, there is no explicit termination signal when a client is no longer
active. This means that the only mechanism that can be used to indicate when a client is no
longer active is a timeout period.

Chapter 7 Sessions 50

PROPOSED FINAL DRAFT

The default timeout period for sessions is defined by the servlet container and can be
obtained via thegetMaxInactivelnterval method of theHttpSession interface.
This timeout can be changed by the Developer using#t®axinactivelnterval of
the HttpSession interface. The timeout periods used by these methods is defined in
seconds. If the timeout period for a session is seflto the session will never expire.

7.6 Last Accessed Times

The getLastAccessedTime method of theHttpSession interface allows a servlet

to determine the last time the session was accessed before the current request. The session is
considered to be accessed when a request that is part of the session is handled by the servlet
context.

7.7 Important Session Semantics

7.7.1 Threading Issues

Multiple servlets executing request threads may have active access to a single session object
at the same time. The Developer has the responsibility to synchronize access to resources
stored in the session as appropriate.

7.7.2 Distributed Environments

Within an application that is marked as distributable, all requests that are part of a session
can only be handled on a single VM at any one time. In addition the container must be able
to handle all objects placed into instances of HitpSession class using the

setAttribute or putValue methods approriately.

* The container must accept objects that implement the Serializable interface

» The container may choose to support storage of other objects in the HttpSession (such as
references to Enterprise JavaBeans and transactions), migration of sessions will be
handled by container-specific facilities.

The servlet container may throw diflegalArgumentException if a object is placed
into the session which does not fall into either these two categories for which it cannot
support the mechanism necessary for migration of the session.

51 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFT+ October 20, 2000

PROPOSED FINAL DRAFT

7.7.3

These restrictions mean that the Developer is ensured that there are no additional
concurrency issues beyond those encountered in a non-distributed container.

The Container Provider can ensure scalability and quality of service features like load-
balancing and failover by having the ability to move a session object, and its contents, from
any active node of the distributed system to a different node of the system.

If distributed containers persist or migrate sessions to provide quality of service features,
they are not restricted to using the native JVM Serialization mechanism for serializing
HttpSessions and their attributes. Developers are not guaranteed that containers will call
readObject () andwriteObject () methods on session attributes if they implement
them, but are guaranteed that the Serializable closure of their attributes will be preserved.

Containers must notify any session attributes implementing the
HttpSessionActivationListener during migration of a session. They must notify
listeners of passivation prior to serialization of a session, and of activation after de-
serialization of a session.

Developers writing distributed applications must that since the container may run in more
than on Java VM, the developer cannot depend static or instance variables for storing
application state. They should store such state using an EJB or a database.

Client Semantics

Due to the fact that cookies or SSL certificates are typically controlled by the web browser
process and are not associated with any particular window of a the browser, requests from all
windows of a client application to a servlet container might be part of the same session. For
maximum portability, the Developer should always assume that all windows of a client are
participating in the same session.

Chapter 7 Sessions 52

PROPOSED FINAL DRAFT

53 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFTe+ October 20, 2000

PROPOSED FINAL DRAFT

CHAPTER

8

Dispatching Requests

When building a web application, it is often useful to forward processing of a request to
another servlet, or to include the output of another servlet in the response. The
RequestDispatcher interface provides a mechanism to accomplish this.

8.1

Obtaining a RequestDispatcher

An object implementing th&equestDispather interface may be obtained from the
ServletContext via the following methods:

« getRequestDispatcher
« getNamedDispatcher

The getRequestDispatcher method takes &tring argument describing a path
within the scope of th&ervietContext . This path must be relative to the root of the
ServletContext . This path is used to look up a servlet, wrap it with a
RequestDispatcher object, and return it. If no servlet can be resolved based on the
given path, aRequestDispatcher is provided that simply returns the content for that
path.

The getNamedDispatcher method takes &tring argument indicating the name of a
servlet known to thé&ervletContext . If a servlet is known to th&ervletContext

by the given name, it is wrapped withRequestDispatcher object and returned. If no
servlet is associated with the given name, the method must ratuin .

To allow RequestDispatcher objects to be obtained using relative paths, paths which
are not relative to the root of theervletContext but instead are relative to the path of
the current request, the following method is provided in 8ervletRequest interface:

» getRequestDispatcher

Dispatching Requests 54

PROPOSED FINAL DRAFT

The behavior of this method is similar to the method of the same name in the
ServletContext , however it does not require a complete path within the context to be
given as part of the argument to operate. The servlet container can use the information in the
request object to transform the given relative path to a complete path. For example, in a

context rooted a¥’ , arequest to
/garden/tools.html , a request dispatcher obtained via
ServletRequest.getRequestDispatcher("header.html") will behave

exactly like a call to ServletContext.getRequestDispatcher("/garden/
header.html")

8.1.1 Query Strings in Request Dispatcher Paths

In the ServletContext andServletRequest methods which allow the creation of a
RequestDispatcher using path information, optional query string information may be
attached to the path. For example, a Developer may obt&eguestDispatcher by
using the following code:

String path = “/raisons.jsp?orderno=5";

RequestDispatcher rd = context.getRequestDispatcher(path);

rd.include(request, response);

The contents of the query string are added to the parameter set that the included servlet has
access to. The parameters are ordered so that any parameters specified in the query string
used to create thRequestDispatcher take precedence. The parameters associated with

a RequestDispatcher are only scoped for the duration ofittbude or forward call.

8.2 Using a Request Dispatcher

To use a request dispatcher, a developer needs to call eitherdiuele or forward
method of theRequestDispatcher interface using theequest andresponse
arguments that were passed in via #ervice method of theServlet interface.

The Container Provider must ensure that the dispatch to a target servlet occurs in the same
thread of the same VM as the original request.

55 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFT+ October 20, 2000

PROPOSED FINAL DRAFT

8.3

8.3.1

Include

Theinclude method of theRequestDispatcher interface may be called at any time.
The target servlet has access to all aspects of the request object, but can only write
information to theServletOutputStream or Writer of the response object as well as

the ability to commit a response by either writing content past the end of the response buffer
or explicitly calling theflush method of theServletResponse interface. The included
servlet cannot set headers or call any method that affects the headers of the response. Any
attempt to do so should be ignored.

Included Request Parameters

When a servlet is being used from within @rclude | it is sometimes necessary for that
servlet to know the path by which it was invoked and not the original request paths. The
following request attributes are set:

javax.servlet.include.request_uri

javax.servlet.include.context_path

javax.servlet.include.servlet_path

javax.servlet.include.path_info

javax.servlet.include.query_string

These attributes are accessible from the included servlet vigehsttribute method
on therequest object.

If the included servlet was obtained by usindNamedDispatcher , these attributes are
not set.

8.4

Forward

Theforward method of theRequestDispatcher interface may only be called by the
calling servlet if no output has been committed to the client. If output data exists in the
response buffer that has not been committed, the content must cleared before the target
servlet'sservice method is called. If the response has been committed, an
lllegalStateException must be thrown.

The path elements of the request object exposed to the target servlet must reflect the path
used to obtain th&RequestDispatcher . The only exception to this is if the
RequestDispatcher was obtained via thgetNamedDispatcher method. In this
case, the path elements of the request object reflect those of the original request.

Chapter 8 Dispatching Requests 56

PROPOSED FINAL DRAFT

Before theforward method of theRequestDispatcher interface returns, the
response must be committed and closed by the servlet container.

8.4.1 Query String

The request dispatching mechanism aggregate query string parameters on forwarding or
including requests.

8.5 Error Handling

Only runtime exceptions and checked exceptions of {gpevietException or
IOException should be propagated to the calling servlet if thrown by the target of a
request dispatcher. All other exceptions should be wrappedSasdetException and

the root cause of the exception set to the original exception.

57 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFT+ October 20, 2000

- PROPOSED FINAL DRAFT

CHAPTER 9

Web Applications

A web application is a collection of servlets, html pages, classes, and other resources that can
be bundled and run on multiple containers from multiple vendors. A web application is
rooted at a specific path within a web server. For example, a catalog application could be
located ahttp://www.mycorp.com/catalog . All requests that start with this prefix

will be routed to theServletContext which represents the catalog application.

A servlet container can also establish rules for automatic generation of web applications. For
example a~user/ mapping could be used to map to a web application basethame/
user/public_html/

By default an instance of a web application must only be run on one VM at any one time.
This behavior can be overridden if the application is marked as “distributable” via its the
deployment descriptor. When an application is marked as distributable, the Developer must
obey a more restrictive set of rules than is expected of a normal web application. These
specific rules are called out throughout this specification.

9.1 Relationship to ServietContext

The servlet container must enforce a one to one correspondence between a web application
and aServletContext . A ServletContext object can be viewed as a Servlet's
view onto its application.

9.2 Elements of a Web Application

A web application may consist of the following items:
» Servlets

Web Applications 58

PROPOSED FINAL DRAFT

« JavaServer Pagks

» Utility Classes

» Static documents (html, images, sounds, etc.)

» Client side applets, beans, and classes

» Descriptive meta information which ties all of the above elements together.

9.3 Distinction Between Representations

This specification defines a hierarchical structure which can exist in an open file system, an
archive file, or some other form for deployment purposes. It is recommended, but not
required, that servlet containers support this structure as a runtime representation.

9.4 Directory Structure

A web application exists as a structured hierarchy of directories. The root of this hierarchy
serves as a document root for serving files that are part of this context. For example, for a
web application located dtatalog in a web server, thindex.html file located at the
base of the web application hierarchy can be served to satisfy a requestatog/

index.html

A special directory exists within the application hierarchy nam@EB-INF". This

directory contains all things related to the application that aren’t in the document root of the
application. It is important to note that tN¢EB-INF node is not part of the public document
tree of the application. No file contained in tNéEB-INF directory may be served directly

to a client.

The contents of th&®VEB-INF directory are:

e /WEB-INF/web.xml deployment descriptor

» /WEB-INF/classes/* directory for servlet and utility classes. The classes in this
directory are used by the application class loader to load classes from.

» /WEB-INF/lib/*.jar area for Java ARchive files which contain servlets, beans, and
other utility classes useful to the web application. All such archive files are used by the
web application class loader to load classes from.

1. See the JavaServer Pages specification available from http://java.sun.com/products/jsp.

59 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFTe+ October 20, 2000

PROPOSED FINAL DRAFT

94.1

The web application classloader loads classes first from the WEB-INF/classes directory and
then from library JARs in the WEB-INF/lib directory. For the latter case, the classloader
should attempt to load from library JARs in the same order that they appear as WAR archive
entries.

Sample Web Application Directory Structure

lllustrated here is a listing of all the files in a sample web application:
/index.html
/howto.jsp
/feedback.jsp
/images/banner.gif
/images/jumping.gif
/WEB-INF/web.xml
/WEB-INF/lib/jspbean.jar
/WEB-INF/classes/com/mycorp/servlets/MyServlet.class

/WEB-INF/classes/com/mycorp/util/MyUtils.class

9.5

Web Application Archive File

Web applications can be packaged and signed, using the standard Java Archive tools, into a
Web ARchive format (war) file. For example, an application for issue tracking could be
distributed in an archive with the filenamgsuetrack.war

When packaged into such a form, a META-INF directory will be present which contains
information useful to the Java Archive tools. If this directory is present, the servlet container
must not allow it be served as content to a web client’s request.

Chapter9 Web Applications 60

PROPOSED FINAL DRAFT

9.6 Web Application Configuration Descriptor

The following types of configuration and deployment information exist in the web
application deployment descriptor:

» ServletContext Init Parameters
» Session Configuration

» Servlet / JSP Definitions

* Servlet / JSP Mappings

« Mime Type Mappings

* Welcome File list

» Error Pages

e Security

All of these types of information are conveyed in the deployment descriptor (See Chapter 13,
“Deployment Descriptor”).

9.6.1 Dependencies on extensions: Container Library Files

Groups of applications commonly make use of the code or resources contained in a library
file or files installed container-wide in current implementations of web containers. The
application developer needs to be able to know what extensions are installed on a web
container for portability, and in creating a web application that may depend on such libraries,
containers need to know what dependencies on such libraries Servlets in a WAR may have.

Web containers are recommended to have a mechanism by which they can expose to the
application classloaders of every web app therein extra JAR files containing resources and
code. It is recommended that they provide a user-friendly way of editing and configuring
these library files or extensions, and that they expose information about what extensions are
available to web applications deployed on the web container. Application developers that
depend on the installation of library JARs installed on a web container should provide a
META-INF/MANIFEST.MF entry in the WAR file listing the extensions that the WAR
depends upon. The format of the manifest entry follows the standard JAR manifest format. In
expressing dependencies on extensions installed on the web container, the manifest entry
should follow the specification for standard extensions defined at http://java.sun.com/j2se/
1.3/docs/guide/extensions/versioning.html.

61 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFT+ October 20, 2000

PROPOSED FINAL DRAFT

9.6.2

Web Containers should be able to recognize such declared dependencies as expressed in the
optional manifest entry in a WAR file, or in the manifest entry of any of the library JARs

under the WEB-INF/lib entry in a WAR. If a web container is not able to satisfy the
dependencies that a WAR has on a particular extension declared in this manner, it should
reject the application with an informative error message.

Web Application Classloader

The classloader that a container uses to load a servlet in a WAR must not allow the WAR to
override JDK or Java Servlet API classes, and is recommended not to allow Servlets in the
WAR visibility of the web containers implementation classes.

If a web container has a mechanism for exposing container-wide library JARs to application
classloaders, it is recommended that the application classloader be implemented in such a
way that classes packaged within the WAR are able to override classes residing in container-
wide library JARs.

9.7

Replacing a Web Application

Applications evolve and must occasionally be replaced. In a long running server it is ideal to
be able to load a new web application and shut down the old one without restarting the
container. When an application is replaced, a container should provide a robust approach to
preserving session data within that application.

9.8

Error Handling

A web application may specify that when errors occur, other resources in the application are
used. These resources are specified in the deployment descriptor. If the location of the error
handler is a servlet or a JSP, the following request attributes can be set:

e javax.servlet.error.status_code

» javax.servlet.error.exception_type
* javax.servlet.error.message

e javax.servlet.error.exception

» javax.servlet.error.request_uri

Chapter9 Web Applications 62

PROPOSED FINAL DRAFT

These attributes allow the servlet to generate specialized content depending on the status
code, exception type, message of the error, the exception object itself, and the request URI of
the Servlet in which the error occurred. The types of the attribute objects are
java.lang.Integer, java.lang.Class and java.lang.String.

java.lang.Throwable and java.lang.String respectively.

With the introduction of the exception object to this attributes list for version 2.3 of this
specification, the exception type and error message attributes are redundant. They are
retained for backwards compatibility with earlier versions of the API.

The deployment descriptor defines a list of error page descriptions that the container must
examine when a Servlet generates an error. The container examines the list in the order that
it is defined, and attempts to match the error condition, by status code or by exception class.
On the first successful match of the error condition the container serves back the resource
defined in the corresponding location.

If a Servlet generates an error, the container must ensure the status code of the response is set
to status code 500.

9.9 Welcome Files

Web Application developers can define an ordered list of partial URIs in the web application
deployment descriptor known as welcome files. The deployment syntax for this mechanism is
described in the web application deployment descriptor DTD.

The purpose of this mechanism is to allow the deployer to specify an ordered list of partial
URIs for the container to append to a request for a URI that corresponds to a directory entry
in the WAR that is not mapped to a web component. Such a request is known here as a valid
partial request. The most common example is to define a welcome file of ‘index.html’ so that
a request to a URL like ‘*host:port/webapp/directory’ where ‘directory’ is a directory entry in
the WAR that is not mapped to a Servlet or JSP is served back to the client as ‘host:port/
webapp/directory/index.html’.

If a web container receives a valid partial request, the web container must examine the
welcome file list defined in the deployment descriptor. The welcome file list is an ordered list
of partial URLs with no trailing or leading /. The web server must append each welcome file
in the order specified in the deployment descriptor to the partial request and check whether a
resource in the WAR is mapped to that request URI. The web container must forward the
request to the first resource in the WAR that matches.

If no matching welcome file is found in the manner described, the container may handle the
request in a manner it finds suitable. For some configurations this may mean invoking a
default file servlet, or serving back a directory listing; for other configurations it may return
a 404 response.

63 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFTe+ October 20, 2000

PROPOSED FINAL DRAFT

Consider a web application where
» The deployment descriptor lists index.html, default.jsp as its welcome files.
» Servlet A is exact mapped to /foo/bar

The static content in the WAR is as follows
/fool/index.html

[foo/default.html

[foo/orderform.html

/foo/home.gif

/catalog/default.jsp
/catalog/products/shop.jsp

/catalog/products/register.jsp

» Arequest URI of /foo or /foo/ will be forwarded to /foo/index.html
» Arequest URI of /catalog/ will be forwarded to /catalog/default.jsp
* A request URI of /catalog/index.html will cause a 404 not found

» Arequest URI of /catalog/products/ may cause a 404 not found, may cause a directory
listing of shop.jsp or register.jsp, or other behavior suitable for the container.

9.10

Web Application Environment

Java 2 Platform Enterprise Edition defines a naming environment that allows applications to
easily access resources and external information without the explicit knowledge of how the
external information is named or organized.

As servlets are an integral component type of J2EE, provision has been made in the web
application deployment descriptor for specifying information allowing a servlet to obtain
references to resources and enterprise beans. The deployment elements that contain this
information are:

e env-entry

e gejb-ref

« resource-ref

Theenv-entry element contains information to set up basic environment entry names

relative to thgjava:comp/env context, the expected Java type of the environment entry
value (the type of object returned from the JNDI lookup method), and an optional

Chapter9 Web Applications 64

PROPOSED FINAL DRAFT

environment entry value. Thejb-ref element contains the information needed to allow a
servlet to locate the home interfaces of a enterprise beanr@gwurce-ref element
contains the information needed to set up a resource factory.

The requirements of the J2EE environment with regards to setting up the environment are
described in Chapter 5 of the Java 2 Platform Enterprise Edition v 1.3 specifitaierviet
containers that are not part of a J2EE compliant implementation are encouraged, but not
required, to implement the application environment functionality described in the J2EE
specification. If they do not implement the facilities required to support this environment,
upon deploying an application that relies on them, the container should provide a warning.

65

1. The J2EE specification is availabléhtip://java.sun.com/j2ee

Java Servlet 2.3 Specification - PROPOSED FINAL DRAFTe« October 20, 2000

PROPOSED FINAL DRAFT

CHAPTER 1 O

Application Lifecycle Events

10.1

Introduction

New for the Servlet Specification v2.3 is support for application level events. Application
events give the web application developer greater control over interactions with the
ServletContext andHttpSession objects, allow for better code factorization and
increased efficiency in managing resources that the web application uses.

10.2

Event Listeners

In extending the Java Servlet API to support event notifications for the state changes in the
servlet context and http session objects, the developer has a greater ability to manage
resources and state at the logical level of the web application. Servlet context listeners can be
used to manage resources or state held at a VM level for the application. Http session
listeners can be used to manage state or resources associated with a series of requests mad
into a web application from the same client or user.

Event listeners are Java classes following the JavaBeans design. They are provided by the
developer in the WAR. They implement one or more of the event listener interfaces in the
Servlet APl v 2.3 and are instantiated and registered in the web container at the time of
deployment of the web application. There may be multiple listener classes listening to each
event type, and the developer may specify the order in which the container invokes the
listener beans for each event type.

The events are shown in the following table, together with the listener interfaces.

Application Lifecycle Events 66

PROPOSED FINAL DRAFT

Listener Interface

Event Type Description
Servlet Context
Events
Lifecycle The servlet context has javax.servlet.ServletCon-

just been created and is textListener
available to service its first
request, or the servlet con-
text is about to be shut
down
Changes to attributes Attributes on the servigvax.servlet.ServletContex-
context have been addedAttributesListener
removed or replaced.

Http Session Events

Lifecycle An HttpSession has justjavax.servlet.http.HttpSes-
been created, or has beeaionListener
invalidated or timed out

Changes to attributes Attributes have been javax.servlet.HttpSession-
added, removed or AttributesListener
replaced on an HttpSes-
sion

For details on the API, refer to the API reference at the end of this document.

To illustrate one possible use of the event scheme, consider a simple web application
containing a number of servlets that make use of a database. The developer can provide a
servlet context listener class that manages the database connection. When the application
starts up the listener class is notified and so has the chance to log on to the database and store
the connection in the servlet context. Any servlet in the application may access the
connection during activity in the web application. When either the web server is shut down,

or the application is removed from the web server, the listener class is notified and so the
database connection can be at that point closed.

67 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFT+ October 20, 2000

PROPOSED FINAL DRAFT

10.3

Configuration of Listener Classes

The developer of the web application writes listener classes to implement one or more of the
four listener classes in the Servlet API. Each listener class must provide a public constructor
taking no arguments. The listener classes are packaged into the WAR, either under the WEB-
INF/classes archive entry, or inside a JAR in the WEB-INF/Iib directory.

Listener classes are declared in the web application deployment descriptor using the
<listener> element. The web application deployment descriptor lists the listener classes by
classname in the order that it wishes them to be invoked if there are more than one. The web
container is responsible for creating an instance of each listener class defined in the
deployment descriptor and registering it for event notifications prior to the first request being
serviced by the application. The web container checks the interfaces implemented by each
listener class and registers the listener instances according to the interfaces they implement in
the order that they appear in the deployment descriptor.

On application shutdown, all listeners to sessions must be notified of session invalidations
prior to context listeners being notified of application shutdown. They are notified in the
reverse order they were specified in the deployment descriptor.

ServletContextListeners are notified of shutdown in the reverse order that they
were specified in the deployment descriptor.

Here is an example of the deployment grammar for registering two servlet context lifecycle
listeners and amttpSession listener. Suppose that
com.acme.MyConnectionManager and com.acme.MyLoggingModule both implement

javax.servlet.ServletContextListener , and that
com.acme.MyLoggingModule additionally implements
javax.servlet.HttpSessionListener . Also the developer wishes for

com.acme.MyConnectionManager to be notified of servlet context lifecycle events
beforecom.acme.MyLoggingModule . Here is what the deployment descriptor for this
application would look like

<web-app>
<display-name>MyListeningApplication<display-name>
<listener>
<listener-class>com.acme.MyConnectionManager</listener-class>
</listener>
<listener>
<listener-class>com.acme.MyLoggingModule</listener-class>

</listener>

Chapter 10 Application Lifecycle Events 68

PROPOSED FINAL DRAFT

<servlet>
<display-name>RegistrationServlet</display-name>
...etc

...etc

</web-app>

10.4 Listener Instances and Threading

The container is required to complete instantiation of the listener classes in a web application
prior to the start of execution of the first request into the application. The container must
reference each listener instance until the last request is serviced for the web application.

Attribute list changes on both the servlet context and the http session object may occur
concurrently. The container is not required to synchronize the resulting notifications to
attribute listener classes. Listener beans that maintain state hold the responsibility for
ensuring integrity of data by handling this case explicitly.

10.5 Distributed Containers

In distributed web containers, Http session instances are scoped to the VM servicing requests
within the session, and the servlet context is scoped to one per web container VM.
Distributed containers are not required to propogate either servlet context events or Http
session events in a distributed manner. Listener class instances are scoped to one per
declaration in the deployment descriptor per Java Virtual Machine.

10.6 Session Events- Invalidation vs. Timeout

Listener classes provide the developer with a way of tracking sessions within a web
application. It is often useful in tracking sessions to know whether a session became invalid
because the container timed out the session or because a web component within the

69 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFTe+ October 20, 2000

PROPOSED FINAL DRAFT

application invalidated it using the invalidate() method. There is currently sufficient API with
the listeners and APl methods on tHETPSession class to determine this situation
indirectly.

Chapter 10 Application Lifecycle Events 70

PROPOSED FINAL DRAFT

71 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFT+ October 20, 2000

PROPOSED FINAL DRAFT

CHAPTER

11

Mapping Requests to Servlets

Previous versions of this specification have allowed servlet containers a great deal of
flexibility in mapping client requests to servlets only defining a set a suggested mapping
technigues. This specification now requires a set of mapping techniques to be used for web
applications which are deployed via the Web Application Deployment mechanism. Just as it
is highly recommended that servlet containers use the deployment representations as their
runtime representation, it is highly recommended that they use these path mapping rules in
their servers for all purposes and not just as part of deploying a web application.

11.1

Use of URL Paths

Servlet containers must use URL paths to map requests to servlets. The container uses the
RequestURI from the request, minus the Context Path, as the path to map to a servlet. In
determining the part of the URL signifying the context path, the container must choose the
longest matching available context path from the list of web applications it hosts. The URL
path mapping rules are as follows (where the first match wins and no further rules are
attempted):

1. The servlet container will try to match the exact path of the request to a servlet.

2. The container will then try to recursively match the longest path prefix mapping. This
process occurs by stepping down the path tree a directory at a time, usitly the
character as a path separator, and determining if there is a match with a servlet.

3. If the last node of the url-path contains an extensiggp(for example), the servlet
container will try to match a servlet that handles requests for the extension. An extension
is defined as the part of the path after the last character.

4. If neither of the previous two rules result in a servlet match, the container will attempt to
serve content appropriate for the resource requested. If a "default” servlet is defined for
the application, it will be used in this case.

Mapping Requests to Servlets 70

PROPOSED FINAL DRAFT

Containers must attempt path matching according to the rules set out here by making case-
sensitive string comparisons.

11.2

11.2.1

11.2.2

Specification of Mappings

In the web application deployment descriptor, the following syntax is used to define

mappings:

» Astring beginning with &’ character and ending with'#” postfix is used as a path
mapping.

» A string beginning with d*.” prefix is used as an extension mapping.

» All other strings are used as exact matches only

« A string containing only th¢’” character indicates that servlet specified by the mapping
becomes the "default" servlet of the application. In this case the servlet path is the request
URI minus the context path and the path info is null.

Implicit Mappings

If the container has an internal JSP container,*tf@ extension is implicitly mapped to
it so that JSP pages may be executed on demand. If the web application defijss a
mapping, its mapping takes precedence over this implicit mapping.

A servlet container is allowed to make other implicit mappings as long as explicit mappings
take precedence. For example, an implicit mapping.siitml could be mapped by a
container to a server side include functionality.

Example Mapping Set

Consider the following set of mappings:

Table 3: Example Set of Maps

path pattern serviet
/foo/bar/* servletl
/baz/* servlet2
/catalog servlet3

71 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFT+ October 20, 2000

PROPOSED FINAL DRAFT

Table 3: Example Set of Maps

path pattern servlet

*.bop servlet4

The following behavior would result:

Table 4: Incoming Paths applied to Example Maps

incoming path servlet handling request

[foo/bar/index.html servletl

/foo/bar/index.bop servletl

/baz servlet2

/baz/index.html servlet2

/catalog servlet3

/catalog/index.html “default” servlet

/catalog/racecar.bop serviet4

/index.bop servlet4
Note that in the case d€atalog/index.html and/catalog/racecar.bop , the
servlet mapped to/tatalog " is not used as it is not an exact match and the rule doesn’t

include the '*' character.

Chapter 11 Mapping Requests to Servlets 72

PROPOSED FINAL DRAFT

73 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFT+ October 20, 2000

PROPOSED FINAL DRAFT

CHAPTER

12

Security

Web applications are created by a Developer, who then gives, sells, or otherwise transfers the
application to the Deployer for installation into a runtime environment. It is useful for the
Developer to communicate attributes about how the security should be set up for a deployed
application.

As with the web application directory layout and deployment descriptor, the elements of this
section are only required as a deployment representation, not a runtime representation.
However, it is recommended that containers implement these elements as part of their
runtime representation.

12.1

Introduction

A web application contains many resources that can be accessed by many users. Sensitive
information often traverses unprotected open networks, such as the Internet. In such an
environment, there is a substantial number web applications that have some level of security
requirements. Most servlet containers have the specific mechanisms and infrastructure to
meet these requirements. Although the quality assurances and implementation details may
vary, all of these mechanisms share some of the following characteristics:

» Authentication: The mechanism by which communicating entities prove to one another
that they are acting on behalf of specific identities.

» Access control for resourcesThe mechanism by which interactions with resources are
limited to collections of users or programs for the purpose of enforcing availability,
integrity, or confidentiality.

» Data Integrity: The mechanism used to prove that information could not have been
modified by a third party while in transit.

» Confidentiality or Data Privacy: The mechanism used to ensure that the information is
only made available to users who are authorized to access it and is not compromised
during transmission.

Security 74

PROPOSED FINAL DRAFT

12.2

Declarative Security

Declarative security refers to the means of expressing an application’s security structure,
including roles, access control, and authentication requirements in a form external to the
application. The deployment descriptor is the primary vehicle for declarative security in web
applications.

The Deployer maps the application’s logical security requirements to a representation of the
security policy that is specific to the runtime environment. At runtime, the servlet container
uses the security policy that was derived from the deployment descriptor and configured by
the deployer to enforce authentication and authorization.

The security model is declared in this way to apply to both static content part of the web
application and to Servlets within the application that are requested by the client. The
security model does not intervene between a Servlet usinRéugiestDispatcher to
invoke a static resource or Servlet and the static resource or servlet being requested by a
forward() or an include()

12.3

Programmatic Security

Programmatic security is used by security aware applications when declarative security alone
is not sufficient to express the security model of the application. Programmatic security
consists of the following methods of thdttpServietRequest interface:

» getRemoteUser

 isUserInRole

» getUserPrincipal

ThegetRemoteUser method returns the user name that the client authenticated with. The
isUserinRole queries the underlying security mechanism of the container to determine

if a particular user is in a given security role. TgetUserPrinciple method returns a
java.security.Pricipal object.

These APIs allow servlets to make business logic decisions based on the logical role of the
remote user. They also allow the servlet to determine the principal name of the current user.

If getRemoteUser returnsnull (which means that no user has been authenticated), the
isUserlnRole method will always returfalse and thegetUserPrincipal will
always returmull

75 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFT+ October 20, 2000

PROPOSED FINAL DRAFT

TheisUserInRole method expects a String rolename. In order that this rolename can be
adjusted by the application assembler, or the deployer without having to recompile the
Servlet making the call, a <security-role-ref> element should be declared in the deployment
descriptor with the <role-name> sub-element containing the rolename passed into this call.
The value of the <role-link> sub-element is the <role-name> of the <security-role> that the
programmer is testing that the caller is mapped to or not. The container is required to respect
this mapping of <security-role-ref> to <security-role> in this manner when determining the
return value of the call.

If, however, no <security-role-ref> has been declared with <role-name> that matches the
argument tasUserIlnRole , the container must default to checking the argument against
the list of <security-role>s for this web application to determine whether the caller is mapped
to the rolename passed in.

12.4

Roles

A role is an abstract logical grouping of users that is defined by the Application Developer or
Assembler. When the application is deployed, these roles are mapped by a Deployer to
security identities, such as principals or groups, in the runtime environment.

A servlet container enforces declarative or programmatic security for the principal associated
with an incoming request based on the security attributes of that calling principal. For
example,

1. When a deployer has mapped a security role to a user group in the operational
environment. The user group to which the calling principal belongs is retrieved from its
security attributes. If the principal’'s user group matches the user group in the operational
environment that the security role has been mapped to, the principal is in the security role.

2. When a deployer has mapped a security role to a principal name in a security policy
domain, the principal name of the calling principal is retrieved from its security attributes.
If the principal is the same as the principal to which the security role was mapped, the
calling principal is in the security role.

12.5

Authentication

A web client can authenticate a user to a web server using one of the following mechanisms:
* HTTP Basic Authentication

« HTTP Digest Authentication

* HTTPS Client Authentication

Chapter 12 Security 76

PROPOSED FINAL DRAFT

12.5.1

12.5.2

12.5.3

* Form Based Authentication

HTTP Basic Authentication

HTTP Basic Authentication is the authentication mechanism defined in the HTTP/1.1
specification. This mechanism is based on a username and password. A web server requests
a web client to authenticate the user. As part of the request, the web server passes the string
called therealmof the request in which the user is to be authenticated. It is important to note
that the realm string of the Basic Authentication mechanism does not have to reflect any
particular security policy domain (which confusingly, can also be referred to as a realm). The
web client obtains the username and the password from the user and transmits them to the
web server. The web server then authenticates the user in the specified realm.

Basic Authentication is not a secure authentication protocol as the user password is
transmitted with a simple base64 encoding and the target server is not authenticated.
However, additional protection, such as applying a secure transport mechanism (HTTPS) or
using security at the network level (such as the IPSEC protocol or VPN strategies) can
alleviate some of these concerns.

HTTP Digest Authentication

Like HTTP Basic Authentication, HTTP Digest Authentication authenticates a user based on
a username and a password. However the authentication is performed by transmitting the
password in an encrypted form which is much more secure than the simple base64 encoding
used by Basic Authentication. This authentication method is not as secure as any private key
scheme such as HTTPS Client Authentication. As Digest Authentication is not currently in
widespread use, servlet containers are not required, but are encouraged, to support it.

Form Based Authentication

The look and feel of the “login screen” cannot be controlled with an HTTP browser’s built in
authentication mechanisms. Therefore this specification defines a form based authentication
mechanism which allows a Developer to control the look and feel of the login screens.

The web application deployment descriptor contains entries for a login form and error page
to be used with this mechanism. The login form must contain fields for the user to specify
username and password. These fields must be namesername’ and

'|_password’ , respectively.

77 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFT+ October 20, 2000

PROPOSED FINAL DRAFT

12.5.3.1

When a user attempts to access a protected web resource, the container checks if the user ha
been authenticated. If so, and dependent on the user’s authority to access the resource, the
requested web resource is activated and returned. If the user is not authenticated, all of the
following steps occur:

1. The login form associated with the security constraint is returned to the client. The URL
path which triggered the authentication is stored by the container.

2. The client fills out the form, including the username and password fields.
3. The form is posted back to the server.

4. The container processes the form to authenticate the user. If authentication fails, the error
page is returned using either a forward or a redirect and the status code of the response is
set to 401.

5. The authenticated principal is checked to see if it is in an authorized role for accessing the
original web request.

6. The client is redirected to the original resource using the original stored URL path.

If the user is not successfully authenticated, the error page is returned to the client. It is
recommended that the error page contains information that allows the user to determine that
the authorization failed.

Like Basic Authentication, this is not a secure authentication protocol as the user password is
transmitted as plain text and the target server is not authenticated. However, additional
protection, such as applying a secure transport mechanism (HTTPS) or using security at the
network level (IPSEC or VPN) can alleviate some of these concerns.

Login Form Notes

Form based login and URL based session tracking can be problematic to implement. It is
strongly recommended that form based login only be used when the session is being
maintained by cookies or by SSL session information.

In order for the authentication to proceed appropriately, the action of the login form must
always be | security _check ", This restriction is made so that the login form will
always work no matter what the resource is that requests it and avoids requiring that the
server to process the outbound form to correct the action field.

Here is an HTML sample showing how the form should be coded into the HTML page:
<form method="POST" action="]_security _check”>

<input type="text” name="j_username”>

<input type="password” name="j_password">

</form>

Chapter 12 Security 78

PROPOSED FINAL DRAFT

12.5.4

If the form based login mechanism is invoked as a result of a http request, all the original
request parameters should be preserved when the container redirects the call to the requested
resource within the web application on successful login.

HTTPS Client Authentication

End user authentication using HTTPS (HTTP over SSL) is a strong authentication
mechanism. This mechanism requires the user to possess a Public Key Certificate (PKC).
Currently, PKCs are useful in e-commerce applications and also for single-signon from
within the browser in an enterprise. Servlet containers that are not J2EE compliant are not
required to support the HTTPS protocol.

12.6

Server Tracking of Authentication
Information

As the underlying security identities (such as users and groups) to which roles are mapped in
a runtime environment are environment specific rather than application specific, it is
desirable to:

1. Make login mechanisms and policies a property of the environment the web application is
deployed in.

2. Be able to use the same authentication information to represent a principal to all
applications that are deployed in the same container.

3. Require the user to re-authenticate only when crossing a security policy domain.

Therefore, a servlet container is required to track authentication information at the container
level and not at the web application level allowing a user who is authenticated against one
web application to access any other resource managed by the container which is restricted to
the same security identity.

12.7

Propagation of Security Identity

The default mode for security identity propagation of a web user calling in to an EJB
container is to propogate the security identity of the caller to the EJB container. Web
applications may be configured to allow open access to all web users, or to employ of

79 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFT+ October 20, 2000

PROPOSED FINAL DRAFT

strategy whereby signon and customization of data based on caller identity is dealt with
wholly by application code. In either case, the web users are not known to the web container
or the EJB container.

The existence of a run-as element to the ejb-ref element in a web application deployment
descriptor is an instruction to the web container that when a Servlet makes calls to an EJB. If
present, the container must propagate the security identity of the caller to the EJB layer in
terms of the security role name defined in the run-as element. The security role name must
one of the security role names defined for the web application. For web containers part of a
the J2EE platform, the use of the mechism is supported both for calls to EJBs within the
same J2EE application as the calling web components and EJBs deployed as part of some
other J2EE application.

12.8

12.8.1

Specifying Security Constraints

Security constraints are a declarative way of annotating the intended protection of web
content. A constraint consists of the following elements:

» web resource collection

* authorization constraint

» user data constraint

A web resource collection is a set of URL patterns and HTTP methods that describe a set of

resources to be protected. All requests that contain a request path that matches the URL
pattern described in the web resource collection is subject to the constraint.

An authorization constraint is a set of roles that users must be a part of to access the
resources described by the web resource collection. If the user is not part of a allowed role,
the user is denied access to that resource.

A user data constraint indicates that the transport layer of the client server communication
process satisfy the requirement of either guaranteeing content integrity (preventing tampering
in transit) or guaranteeing confidentiality (preventing reading while in transit).

For an application specifying multiple security constraints, on processing a request to
determine what authentication method to use, or what authorization to allow, the container
matches to security constraints on a ‘first match wins’ basis.

Default Policies

By default, authentication is not needed to access resources. Authentication is only needed
for requests in a specific web resource collection when specified by the deployment
descriptor.

Chapter 12 Security 80

PROPOSED FINAL DRAFT

81 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFTe« October 20, 2000

PROPOSED FINAL DRAFT

CHAPTER

13

Deployment Descriptor

The Deployment Descriptor conveys the elements and configuration information of a web
application between Developers, Assemblers, and Deployers. This chapter defines and
describes the deployment descriptor for this version, 2.3, of the Java Servlet speicifcation.
For backwards compatibility of applications written to the 2.2 version of the API, web
containers are required to support the 2.2 version of the deployment descirptor. The 2.2
version is located as an appendix to this document.

13.1

Deployment Descriptor Elements

The following types of configuration and deployment information exist in the web
application deployment descriptor:

ServletContext Init Parameters
Session Configuration

Servlet / JSP Definitions

Servlet / JSP Mappings

Application Lifecyle Listener classes
Filter Definitions and Filter Mappings
Mime Type Mappings

Welcome File list

Error Pages

Security

See the DTD comments for further description of these elements.

Deployment Descriptor 82

PROPOSED FINAL DRAFT

13.1.1

General Rules for Processing the Deployment

Descriptor

In this section is a listing of some general rules that web containers and developers must note
concerning processing of the deployment descriptor for a web application

13.1.2

Web containers should ignore all leading whitespace characters before the first non-
writespace character, and all trailing whitespace characters after the last non-whitespace
character for PCDATA within text nodes of a deployment descriptor.

Web containers and tools that manipulate web applications have a wide range of options
in checking the validity of a WAR. This includes checking the validity of the deployment
descriptor document held within. It is recommended, but not required, that web containers
and tools validate deployment descriptors against the DTD document for structural
correctness. Additionally it is recommended that they provide a level of semantic
checking, for example, that a role referenced in a security constraint has the same name as
one of the security roles defined in the deployment descriptor. In cases of non-conformant
web applications, tools and containers should inform the developer with descriptive error
messages. High end application server vendors are encouraged to supply this kind of
validity checking in the form of a toool separate from the container.

URI paths specified in the deployment descriptor are assumed to be in URL-decoded
form.

Containers must attempt to canonicalize paths in the deployment descriptor. For example,
apths opf the form ‘/a/..b’ must be interpreted as ‘/a’. Paths beginning or resolving to
paths that begin with *..” are not valid paths in the deplyoment descriptor.

URI paths referring to a resource relative to the root of the WAR, or a path mapping
relative to the root of the WAR, unless otherwise specified, should begin with a leading ‘/

Deployment Descriptor DOCTYPE

All valid web application deployment descriptors must contain the following DOCTYPE
declaration:

<IDOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Appli-

cation

2.3//[EN" "http://java.sun.com/j2ee/dtds/web-app_2_3.dtd">

13.2

DTD

The DTD that follows defines the XML grammar for a web application deployment
descriptor.

83 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFT+ October 20, 2000

PROPOSED FINAL DRAFT

<l--
The web-app element is the root of the deployment descriptor for

a web application
-—->

<IELEMENT web-app (icon?, display-name?, description?,
distributable?, context-param*, filter*, filter-mapping*, listener*,
servlet*, servlet-mapping*, session-config?,

mime-mapping*, welcome-file-list?, error-page*, taglib*,
resource-env-ref*, resource-ref*, security-constraint*, login-
config?, security-role*,

env-entry*, ejb-ref*)>

<l--

Declares a filter in the web application. The filter is mapped to
either a servlet or a URL pattern in the filter-mapping element,
using the filter-name value to reference. Filters can access the
initialization parameters declared in the deployment descriptor at
runtime via the FilterConfig interface.

-->

<IELEMENT filter (icon?, filter-name, display-name?, description?,

filter-class, init-param*)>

<l--

The logical name of the filter. This name is used to map the filter.
->

<IELEMENT filter-name (#PCDATA)>

<l--

The fully qualified classname of the filter.
>

<IELEMENT filter-class (#PCDATA)>

<I--

Declaration of the filter mappings in this web application. The

container uses the filter-mapping declarations to decide which

filters to apply to a request, and in what order. The container

matches the request URI to a Servlet in the normal way. To determine
which filters to apply it matches filter-mapping declarations either

on servlet-name, or on url-pattern for each filter-mapping element,
depending on which style is used. The order in which filters are
invoked is the order in which filter-mapping declarations that match

a request URI for a servlet appear in the list of filter-mapping

elements.The filter-name value must be the value of the <filter-

name> sub-elements of one of the <filter> declarations in the

deployment descriptor.
-—->

Chapter 13 Deployment Descriptor

PROPOSED FINAL DRAFT

<IELEMENT filter-mapping (filter-name, (url-pattern | servlet-
name))>

<l--

The icon element contains a small-icon and a large-icon element

which specify the location within the web application for a small

and large image used to represent the web application in a GUI tool.

At a minimum, tools must accept GIF and JPEG format images.
-—->

<IELEMENT icon (small-icon?, large-icon?)>

<l--
The small-icon element contains the location within the web

application of a file containing a small (16x16 pixel) icon image.
>

<IELEMENT small-icon (#PCDATA)>

<l--

The large-icon element contains the location within the web
application of a file containing a large (32x32 pixel) icon image.
>

<IELEMENT large-icon (#PCDATA)>

<l--
The display-name element contains a short name that is intended

to be displayed by GUI tools
-->

<IELEMENT display-name (#PCDATA)>

<l--
The description element is used to provide descriptive text about

the parent element.
->

<IELEMENT description (#PCDATA)>

<l--

The distributable element, by its presence in a web application
deployment descriptor, indicates that this web application is
programmed appropriately to be deployed into a distributed servlet
container

-—->

<IELEMENT distributable EMPTY>

85 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFT+ October 20, 2000

PROPOSED FINAL DRAFT

<l--
The context-param element contains the declaration of a web

application’s servlet context initialization parameters.
-->

<IELEMENT context-param (param-name, param-value, description?)>

<l--

The param-name element contains the name of a parameter.
-—->

<IELEMENT param-name (#PCDATA)>

<l--

The param-value element contains the value of a parameter.
-->

<IELEMENT param-value (#PCDATA)>

<l--
The listener element indicates the deployment properties for a web

application listener bean.
>

<IELEMENT listener (listener-class)>

<l--
The listener-class element declares a class in the application must

be registered as a web application listener bean.
-->

<IELEMENT listener-class (#PCDATA)>

<I--

The servlet element contains the declarative data of a

servlet. If a jsp-file is specified and the load-on-startup element
is

present, then the JSP should be precompiled and loaded.

-->

<IELEMENT servlet (icon?, servlet-name, display-name?, description?,
(servlet-class|jsp-file), init-param*, load-on-startup?, security-
role-ref*)>

<l--

The servlet-name element contains the canonical name of the
servlet.

Chapter 13 Deployment Descriptor

PROPOSED FINAL DRAFT

->
<IELEMENT servlet-name (#PCDATA)>

<l--

The servlet-class element contains the fully qualified class name
of the servlet.

-->

<IELEMENT servlet-class (#PCDATA)>

<I--

The jsp-file element contains the full path to a JSP file within
the web application beginning with a ‘/".

->

<IELEMENT jsp-file (#PCDATA)>

<l--
The init-param element contains a name/value pair as an

initialization param of the servlet
-—->

<IELEMENT init-param (param-name, param-value, description?)>

<l--

The load-on-startup element indicates that this servlet should be
loaded on the startup of the web application. The optional contents
of

these element must be a positive integer indicating the order in

which

the servlet should be loaded. Lower integers are loaded before

higher

integers. If no value is specified, or if the value specified is not
a

positive integer, the container is free to load it at any time in the
startup sequence.

-->

<IELEMENT load-on-startup (#PCDATA)>

<I--

The servlet-mapping element defines a mapping between a servlet
and a url pattern

>

<IELEMENT servlet-mapping (servlet-name, url-pattern)>

87 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFTe« October 20, 2000

PROPOSED FINAL DRAFT

<l--
The url-pattern element contains the url pattern of the
mapping. Must follow the rules specified in Section 11.2 of the

Servlet API Specification.
-—->

<IELEMENT url-pattern (#PCDATA)>

<l--

The session-config element defines the session parameters for
this web application.

>

<IELEMENT session-config (session-timeout?)>

<l--

The session-timeout element defines the default session timeout
interval for all sessions created in this web application. The
specified timeout must be expressed in a whole number of minutes.
>

<IELEMENT session-timeout (#PCDATA)>

<I--
The mime-mapping element defines a mapping between an extension

and a mime type.
->

<IELEMENT mime-mapping (extension, mime-type)>

<l--
The extension element contains a string describing an

extension. example: "txt"
-—->

<IELEMENT extension (#PCDATA)>

<I--
The mime-type element contains a defined mime type. example:

"text/plain”
-—->

<IELEMENT mime-type (#PCDATA)>

<l--
The welcome-file-list contains an ordered list of welcome files

elements.
-->

Chapter 13 Deployment Descriptor

88

PROPOSED FINAL DRAFT

<IELEMENT welcome-file-list (welcome-file+)>

<l--
The welcome-file element contains file name to use as a default

welcome file, such as index.html
>

<IELEMENT welcome-file (#PCDATA)>

<l--

The taglib element is used to describe a JSP tag library.
>

<IELEMENT taglib (taglib-uri, taglib-location)>

<l--

The taglib-uri element describes a URI, relative to the location

of the web.xml document, identifying a Tag Library used in the Web
Application.

->

<IELEMENT taglib-uri (#{PCDATA)>

<l--
the taglib-location element contains the location (as a resource
relative to the root of the web application) where to find the Tag

Libary Description file for the tag library.
-—->

<IELEMENT taglib-location (#PCDATA)>

<l--
The error-page element contains a mapping between an error code

or exception type to the path of a resource in the web application
-—->

<IELEMENT error-page ((error-code | exception-type), location)>
<l--

The error-code contains an HTTP error code, ex: 404

-—->

<IELEMENT error-code (#PCDATA)>

<l--
The exception type contains a fully qualified class name of a

Java exception type.
>

89 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFT+ October 20, 2000

PROPOSED FINAL DRAFT

<IELEMENT exception-type (#PCDATA)>

<l--

The location element contains the location of the resource in the
web application relative to the root of the web application. The
value of the location must have a leading '/

-->

<IELEMENT location (#PCDATA)>

<l-- The resource-env-ref element contains a declaration of an
component’s reference to an administered object associated with a
resource in the component’s environment. It consists of an optional
description, the resource environment reference name, and an indica-
tion of the resource environment reference type expected by the
component’s code.
Examples:
<resource-env-ref>

<resource-env-ref-name>jms/StockQueue </resource-env-ref-name>

<resource-env-ref-type>javax.jms.Queue </resource-env-ref-type>

</resource-env-ref>
-—->

<IELEMENT resource-env-ref (description?, resource-env-ref-name,
resource-env-ref-type)>

<!l-- The resource-env-ref-name element specifies the name of a
resource environment reference; its value is the environment entry
name used in code.

>

<IELEMENT resource-env-ref-name (#PCDATA)>
<l-- The resource-env-ref-type element specifies the type of a
resource environment reference. Web containers in J2EE are required

to support javax.jms.Topic and javax.jms.Queue
-->

<IELEMENT resource-env-ref-type (#PCDATA)>

<l--
The resource-ref element contains a declaration of a Web

Application’s reference to an external resource.
->

<IELEMENT resource-ref (description?, res-ref-name, res-type, res-
auth, res-sharing-scope?)>

<l--

Chapter 13 Deployment Descriptor

PROPOSED FINAL DRAFT

The res-ref-name element specifies the name of the resource
factory reference name.
>

<IELEMENT res-ref-name (#PCDATA)>

<l--
The res-type element specifies the (Java class) type of the data

source.
>

<IELEMENT res-type (#PCDATA)>

<l--

The res-auth element indicates whether the application component

code performs resource signon programmatically or whether the

container signs onto the resource based on the principle mapping

information supplied by the deployer. The allowed values are
<res-auth>Application</res-auth>
<res-auth>Container</res-auth>

for those respective cases.

-—->

<IELEMENT res-auth (#PCDATA)>

<!l-- The res-sharing-scope element specifies whether connections
obtained through the given resource manager connection factory

reference can be shared. The value of this element, if specified,

must be one of the two following: <res-sharing-scope>Shareable</res-
sharing-scope>

<res-sharing-scope>Unshareable</res-sharing-scope> The default value
is Shareable.

-->

<IELEMENT res-sharing-scope (#PCDATA)>

<l--
The security-constraint element is used to associate security

constraints with one or more web resource collections
-—->

<IELEMENT security-constraint (display-name?, web-resource-
collection+,
auth-constraint?, user-data-constraint?)>

<l--
The web-resource-collection element is used to identify a subset

91 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFT+ October 20, 2000

PROPOSED FINAL DRAFT

of the resources and HTTP methods on those resources within a web
application to which a security constraint applies. If no HTTP
methods

are specified, then the security constraint applies to all HTTP
methods.

-->

<IELEMENT web-resource-collection (web-resource-name, description?,
url-pattern*, http-method*)>

<l--

The web-resource-name contains the name of this web resource
collection

-->

<IELEMENT web-resource-name (#PCDATA)>

<I--
The http-method contains an HTTP method (GET | POST |...)
->

<IELEMENT http-method (#PCDATA)>

<l--

The user-data-constraint element is used to indicate how data
communicated between the client and container should be protected
->

<IELEMENT user-data-constraint (description?, transport-guarantee)>

<l--

The transport-guarantee element specifies that the communication
between client and server should be NONE, INTEGRAL, or
CONFIDENTIAL. NONE means that the application does not require any
transport guarantees. A value of INTEGRAL means that the application
requires that the data sent between the client and server be sent in
such a way that it can’t be changed in transit. CONFIDENTIAL means

that the application requires that the data be transmitted in a

fashion that prevents other entities from observing the contents of

the transmission. In most cases, the presence of the INTEGRAL or
CONFIDENTIAL flag will indicate that the use of SSL is required.

>

<IELEMENT transport-guarantee (#PCDATA)>
<l--

The auth-constraint element indicates the user roles that should
be permitted access to this resource collection. The role used here

Chapter 13 Deployment Descriptor

PROPOSED FINAL DRAFT

must either in a security-role-ref element, or be the specially
reserved role-name “*” that is a compact syntax for indicating all
roles in the web application. If both “*” and rolenames appear, the

container interprets this as all roles.
-—->

<IELEMENT auth-constraint (description?, role-name*)>

<l--

The role-name element contains the name of a security role.
>

<IELEMENT role-name (#PCDATA)>

<I--

The login-config element is used to configure the authentication
method that should be used, the realm name that should be used for
this application, and the attributes that are needed by the form

login

mechanism.

-->

<IELEMENT login-config (auth-method?, realm-name?, form-login-
config?)>

<l--
The realm name element specifies the realm name to use in HTTP

Basic authorization
>

<IELEMENT realm-name (#PCDATA)>

<I--

The form-login-config element specifies the login and error pages
that should be used in form based login. If form based
authentication

is not used, these elements are ignored.

-->

<IELEMENT form-login-config (form-login-page, form-error-page)>
<l--

The form-login-page element defines the location in the web app
where the page that can be used for login can be found

>

<IELEMENT form-login-page (#PCDATA)>

<l--

93 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFT+ October 20, 2000

PROPOSED FINAL DRAFT

The form-error-page element defines the location in the web app
where the error page that is displayed when login is not successful
can be found

-—->

<IELEMENT form-error-page (#PCDATA)>

<I--

The auth-method element is used to configure the authentication
mechanism for the web application. As a prerequisite to gaining
access to any web resources which are protected by an authorization
constraint, a user must have authenticated using the configured
mechanism. Legal values for this element are "BASIC", "DIGEST",
"FORM", or "CLIENT-CERT".

-->

<IELEMENT auth-method (#PCDATA)>

<I--
The security-role element contains the declaration of a security
role which is used in the security-constraints placed on the web

application.
-—->

<IELEMENT security-role (description?, role-name)>

<I--

The security-role-ref element defines a mapping between the name of
role called from a Servlet using

isUserInRole(String name) and the name of a security role defined

for the web application. For example,

to map the security role reference "FOQO" to the security role with

role-name "manager" the sytax would

be:

<security-role-ref>
<role-name>FOO</role-name>
<role-link>manager</manager>

</security-role-ref>

In this case if the servlet called by a user belonging to the
"manager" security role made the API call
isUserInRole("FOO") the result would be true.

Since the role-name “*” has a special meaning for authorization
constraints, its value is not permitted here.

-->

<IELEMENT security-role-ref (description?, role-name, role-link)>

Chapter 13 Deployment Descriptor

94

PROPOSED FINAL DRAFT

<l--

The role-link element is used to link a security role reference

to a defined security role. The role-link element must contain the
name of one of the security roles defined in the security-role
elements.

>

<IELEMENT role-link (#PCDATA)>

<l--

The env-entry element contains the declaration of an
application’s environment entry. This element is required to be
honored on in J2EE compliant servlet containers.

->

<IELEMENT env-entry (description?, env-entry-name, env-entry-value?,
env-entry-type)>

<l--
The env-entry-name contains the name of an application’s

environment entry
-—->

<I[ELEMENT env-entry-name (#PCDATA)>

<l--
The env-entry-value element contains the value of an

application’s environment entry
-—->

<IELEMENT env-entry-value (#PCDATA)>

<I--

The env-entry-type element contains the fully qualified Java type
of the environment entry value that is expected by the application
code. The following are the legal values of env-entry-type:
java.lang.Boolean, java.lang.String, java.lang.Integer,
java.lang.Double, java.lang.Float.

>

<IELEMENT env-entry-type (#PCDATA)>

<I--

The ejb-ref element is used to declare a reference to an

enterprise bean. If the optional runAs element is used, the security
identity of the call to the EJB must be propogated as the security

role with the same name to the EJB.

>

95 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFT+ October 20, 2000

PROPOSED FINAL DRAFT

<IELEMENT ejb-ref (description?, ejb-ref-name, ejb-ref-type, home,
remote, ejb-link?, run-as?)>

<l--

The ejb-ref-name element contains the name of an EJB

reference. This is the JNDI name that the servlet code uses to get a
reference to the enterprise bean.

-->

<IELEMENT ejb-ref-name (#PCDATA)>

<l-- The ejb-ref-type element contains the expected type of the
referenced enterprise bean. The ejb-ref-type element must be one of
the following:
<ejb-ref-type>Entity</ejb-ref-type>
<ejb-ref-type>Session</ejb-ref-type>
>

<IELEMENT ejb-ref-type (#PCDATA)>

<l--

The ejb-home element contains the fully qualified name of the
EJB’s home interface

>

<IELEMENT home (#PCDATA)>

<l--

The ejb-remote element contains the fully qualified name of the
EJB’s remote interface

-->

<IELEMENT remote (#PCDATA)>

<l--

The ejb-link element is used in the ejb-ref element to specify

that an EJB reference is linked to an EJB in an encompassing Java2
Enterprise Edition (J2EE) application package. The value of the
ejb-link element must be the ejb-name of and EJB in the J2EE
application package.

>

<IELEMENT ejb-link (#PCDATA)>
<l--
The run-as element must contain the name of a security role defined

for this web application.
->

Chapter 13 Deployment Descriptor

PROPOSED FINAL DRAFT

<IELEMENT run-as (#PCDATA)>

<l--

The ID mechanism is to allow tools to easily make tool-specific
references to the elements of the deployment descriptor. This allows
tools that produce additional deployment information (i.e

information

beyond the standard deployment descriptor information) to store the
non-standard information in a separate file, and easily refer from
these tools-specific files to the information in the standard web-

app

deployment descriptor.

->

<IATTLIST web-app id ID #IMPLIED>
<IATTLIST filter id ID #IMPLIED>
<IATTLIST filter-name id ID #IMPLIED>
<IATTLIST filter-class id ID #IMPLIED>
<IATTLIST filter-mapping id ID #IMPLIED>
<IATTLIST icon id ID #IMPLIED>
<IATTLIST small-icon id ID #IMPLIED>
<IATTLIST large-icon id ID #IMPLIED>
<IATTLIST display-name id ID #IMPLIED>
<IATTLIST description id ID #IMPLIED>
<IATTLIST distributable id ID #IMPLIED>
<IATTLIST context-param id ID #IMPLIED>
<IATTLIST param-name id ID #IMPLIED>
<IATTLIST param-value id ID #IMPLIED>
<IATTLIST listener id ID #IMPLIED>
<IATTLIST listener-class id ID #IMPLIED>
<IATTLIST servlet id ID #IMPLIED>
<IATTLIST servlet-name id ID #IMPLIED>
<IATTLIST servlet-class id ID #IMPLIED>
<IATTLIST jsp-file id ID #IMPLIED>
<IATTLIST init-param id ID #IMPLIED>
<IATTLIST load-on-startup id ID #IMPLIED>
<IATTLIST servlet-mapping id ID #IMPLIED>
<IATTLIST url-pattern id ID #iIMPLIED>
<IATTLIST session-config id ID #IMPLIED>
<IATTLIST session-timeout id ID #IMPLIED>
<IATTLIST mime-mapping id ID #IMPLIED>
<IATTLIST extension id ID #IMPLIED>
<IATTLIST mime-type id ID #IMPLIED>
<IATTLIST welcome-file-list id ID #IMPLIED>
<IATTLIST welcome-file id ID #IMPLIED>
<IATTLIST taglib id ID #IMPLIED>
<IATTLIST taglib-uri id ID #IMPLIED>

97 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFT+ October 20, 2000

PROPOSED FINAL DRAFT

<IATTLIST taglib-location id ID #IMPLIED>
<IATTLIST error-page id ID #IMPLIED>
<IATTLIST error-code id ID #IMPLIED>
<IATTLIST exception-type id ID #IMPLIED>
<IATTLIST location id ID #IMPLIED>

<IATTLIST resource-env-ref id ID #IMPLIED>
<IATTLIST resource-env-ref-name id ID #IMPLIED>
<IATTLIST resource-env-ref-type id ID #IMPLIED>
<IATTLIST resource-ref id ID #IMPLIED>
<IATTLIST res-ref-name id ID #IMPLIED>
<IATTLIST res-type id ID #IMPLIED>

<IATTLIST res-auth id ID #IMPLIED>

<IATTLIST res-sharing-scope id ID #IMPLIED>
<IATTLIST security-constraint id 1D #IMPLIED>
<IATTLIST web-resource-collection id ID #IMPLIED>
<IATTLIST web-resource-name id ID #IMPLIED>
<IATTLIST http-method id ID #IMPLIED>
<IATTLIST user-data-constraint id ID #IMPLIED>
<IATTLIST transport-guarantee id 1D #IMPLIED>
<IATTLIST auth-constraint id ID #IMPLIED>
<IATTLIST role-name id ID #IMPLIED>
<IATTLIST login-config id ID #IMPLIED>
<IATTLIST realm-name id ID #IMPLIED>
<IATTLIST form-login-config id ID #IMPLIED>
<IATTLIST form-login-page id ID #IMPLIED>
<IATTLIST form-error-page id ID #IMPLIED>
<IATTLIST auth-method id ID #IMPLIED>
<IATTLIST security-role id ID #IMPLIED>
<IATTLIST security-role-ref id ID #IMPLIED>
<IATTLIST role-link id ID #IMPLIED>

<IATTLIST env-entry id ID #IMPLIED>
<IATTLIST env-entry-name id ID #IMPLIED>
<IATTLIST env-entry-value id ID #IMPLIED>
<IATTLIST env-entry-type id ID #IMPLIED>
<IATTLIST ejb-ref id ID #IMPLIED>

<IATTLIST ejb-ref-name id ID #IMPLIED>
<IATTLIST ejb-ref-type id ID #IMPLIED>
<IATTLIST home id ID #IMPLIED>

<IATTLIST remote id ID #IMPLIED>

<IATTLIST ejb-link id ID #IMPLIED>

<IATTLIST run-as id ID #IMPLIED>

13.3 Examples

The following examples illustrate the usage of the definitions listed above DTD.

Chapter 13 Deployment Descriptor

PROPOSED FINAL DRAFT

13.3.1 A Basic Example

<IDOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Appli-

cation
2.3//[EN" "http://java.sun.com/j2ee/dtds/web-app_2_3.dtd">
<web-app>

<display-name>A Simple Application</display-name>
<context-param>
<param-name>Webmaster</param-name>
<param-value>webmaster@mycorp.com</param-value>
</context-param>
<servlet>
<servlet-name>catalog</servlet-name>
<servlet-class>com.mycorp.CatalogServlet</servlet-class>
<init-param>
<param-name>catalog</param-name>
<param-value>Spring</param-value>
</init-param>
</servlet>
<servlet-mapping>
<servlet-name>catalog</servlet-name>
<url-pattern>/catalog/*</url-pattern>
</servlet-mapping>
<session-config>
<session-timeout>30</session-timeout>
</session-config>
<mime-mapping>
<extension>pdf</extension>
<mime-type>application/pdf</mime-type>
</mime-mapping>
<welcome-file-list>
<welcome-file>index.jsp</welcome-file>
<welcome-file>index.html</welcome-file>
<welcome-file>index.htm</welcome-file>
<welcome-file-list>
<error-page>
<error-code>404</error-code>
<location>/404.htmli</location>
</error-page>
</web-app>

13.3.2 An Example of Security

<IDOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web
Application 2.2//EN" "http://java.sun.com/j2ee/dtds/web-
app_2_2.dtd">
<web-app>

<display-name>A Secure Application</display-name>

99 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFTe+ October 20, 2000

PROPOSED FINAL DRAFT

<security-role>
<role-name>manager</role-name>
</security-role>
<servlet>
<servlet-name>catalog</servlet-name>
<servlet-class>com.mycorp.CatalogServlet</servlet-class>
<init-param>
<param-name>catalog</param-name>
<param-value>Spring</param-value>
</init-param>
<security-role-ref>
<role-name>MGR</role-name> <!-- role name used in code -->
<role-link>manager</role-link>
</security-role-ref>
</servlet>
<servlet-mapping>
<servlet-name>catalog</servlet-name>
<url-pattern>/catalog/*</url-pattern>
</servlet-mapping>
<security-constraint>
<web-resource-collection>
<web-resource-name>Salesinfo</web-resource-name>
<url-pattern>/salesinfo/*</url-pattern>
<http-method>GET</http-method>
<http-method>POST</http-method>
</web-resource-collection>
<auth-constraint>
<role-name>manager</role-name>
</auth-constraint>
<user-data-constraint>
<transport-guarantee>CONFIDENTIAL</transport-guarantee>
</user-data-constraint>
</security-constraint>
</web-app>

Chapter 13 Deployment Descriptor 100

PROPOSED FINAL DRAFT

101 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFTe« October 20, 2000

PROPOSED FINAL DRAFT

CHAPTER 14

APl Detalls

The following two chapters define the Java Servlet APl in terms of Java classes, interfaces, the
accompanying method signatures and javadoc comments.

API Details 100

PROPOSED FINAL DRAFT

101 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFTe« October 20, 2000

Package

javax.servlet

Class Summary

Interfaces
Config

Filter

FilterChain

FilterConfig

RequestDispatcher

Servlet

ServletConfig

ServletContext

ServletContextAt-

tributesListener

ServletContextlLis-

tener

ServletRequest

ServletResponse

SingleThreadModel

Classes

GenericServlet

ServletContextAt-

tributeEvent

ServletContextEvent

ServletinputStream

ServletOutputStream

ServletRequestWrapper

This is the super interface for objects in the Servlet API that pass configuration i
mation to Servlets or Filters during initialization.

A filter is an object than perform filtering tasks on either the request to a resourg
servlet or static content), or on the response from a resource, or both.
Filters perform filtering in theloFilter ~ method.

A FilterChain is an object provided by the servlet container to the developer givi
view into the invocation chain of a filtered request for a resource.

A filter configuration object used by a servlet container used to pass information
filter during initialization.

Defines an object that receives requests from the client and sends them to any re|
(such as a servlet, HTML file, or JSP file) on the server.

Defines methods that all servlets must implement.

A servlet configuration object used by a servlet container used to pass informatio
servlet during initialization.

Defines a set of methods that a servlet uses to communicate with its servlet con
for example, to get the MIME type of a file, dispatch requests, or write to a log fi

Implementations of this interface recieve notifications of changes to the attribute
on the servlet context of a web application.

Implementations of this interface recieve notifications about changes to the serv
context of the web application they are part of.

Defines an object to provide client request information to a servlet.
Defines an object to assist a servlet in sending a response to the client.

Ensures that servlets handle only one request at a time.

Defines a generic, protocol-independent servlet.

This is the event class for notifications about changes to the attributes of the sef
context of a web application.

This is the event class for notifications about changes to the servlet context of a
application.

Provides an input stream for reading binary data from a client request, including
efficientreadLine method for reading data one line at a time.

Provides an output stream for sending binary data to the client.

Provides a convenient implementation of the ServletRequest interface that can
classed by developers wishing to adapt the request to a Servlet.

nfor-

e (a

ng a

toa

isource

ntoa
tainer,
e.

list

let

viet

web

an

e sub-

javax.servlet

Class Summary

ServletResponseWrap- Provides a convenient implementation of the ServletResponse interface that can be

per. subclassed by developers wishing to adapt the response from a Servlet.

Exceptions

ServletException Defines a general exception a servlet can throw when it encounters difficulty.

UnavailableException Defines an exception that a servlet throws to indicate that it is permanently or t¢mpo-
rarily unavailable.

javax.servlet Config
getInitParameter(String)

javax.serviet

Config

Syntax

public interface Config

Description
This is the super interface for objects in the Servlet API that pass configuration information to Servlets or Filters
during initialization. The configuration information contains initialization parameters, which are a set of name/

value pairs, and &ervletContext object, which gives the calling object information about the web con-
tainer.
Since: v 2.3

See Also: ServletContext

Member Summary

Methods

qetlnltParame- Returns &tring containing the value of the named initialization parameter, or

ter(String) null if the parameter does not exist.

getinitParameter- Returns the names of the servlet's initialization parameters Bswaneration of

Names() String objects, or an emptgnumeration if the servlet has no initialization

parameters.

getServletContext() Returns a reference to tBervlietContext in which the caller is executing.

Methods

getInitParameter(String)
public java.lang.String getinitParameter(java.lang.String name)

Returns aString containing the value of the named initialization parametenut if the parameter
does not exist.

Parameters:
name - aString specifying the name of the initialization parameter

Returns: aString containing the value of the initialization parameter

getinitParameterNames()

public java.util. Enumeration getlnitParameterNames()

Config javax.servlet
getServletContext()

Returns the names of the servlet's initialization parameters BEsameration of String objects, or an
emptyEnumeration if the servlet has no initialization parameters.

Returns: anEnumeration of String objects containing the names of the servlet’s initialization

parameters
getServletContext()
public ServletContext getServletContext()
Returns a reference to tBervietContext in which the caller is executing.
Returns: aServiletContext object, used by the caller to interact with its servlet container

See Also: ServletContext

javax.servlet Filter
getServletContext()

javax.serviet

Filter

Syntax

public interface Filter

Description
A filter is an object than perform filtering tasks on either the request to a resource (a servlet or static content), or
on the response from a resource, or both.

Filters perform filtering in theloFilter ~ method. Every Filter has access to a FilterConfig object from which
it can obtain its initialization parameters, a reference to the ServletContext which it can use, for example, to load
resources needed for filtering tasks.

Filters are configured in the deployment descriptor of a web application
Examples that have been identified for this design are
1) Authentication Filters

2) Logging and Auditing Filters

3) Image conversion Filters

4) Data compression Filters

5) Encryption Filters

6) Tokenizing Filters

7) Filters that trigger resource access events

8) XSL/T filters

9) Mime-type chain Filter

Since: Servlet 2.3

Member Summary
Methods
doFilter(ServletRe- ThedoFilter method of the Filter is called by the container each time a requegst/
quest, ServietRe- response pair is passed through the chain due to a client request for a resourceg at the
sponse, FilterChain) end of the chain.
getFilterConfig() Return the FilterConfig for this Filter.
setFilterConfig(Fil- The container calls this method when the Filter is instantiated and passes in a Filter-
terConfig) Config object.

Methods

Filter javax.servlet
doFilter(ServletRequest, ServletResponse, FilterChain)

doFilter(ServletRequest, ServletResponse, FilterChain)

public void doFilter(ServletRequest request, ServletResponse response,
FilterChain chain)

ThedoFilter method of the Filter is called by the container each time a request/response pair is passed
through the chain due to a client request for a resource at the end of the chain. The FilterChain passed in to
this method allows the Filter to pass on the request and response to the next entity in the chain.

A typical implementation of this method would follow the following pattern:-
1. Examine the request

2. Optionally wrap the request object with a custom implementation to filter content or headers for input fil-
tering

3. Optionally wrap the response object with a custom implementation to filter content or headers for output
filtering

4. a)Either invoke the next entity in the chain using the FilterChain obgetif.doFilter()),

4. b) or not pass on the request/response pair to the next entity in the filter chain to block the request pro-
cessing

5. Directly set headers on the response after invokation of the next entity in ther filter chain.

Throws: ServletException , IOException

getFilterConfig()

public FilterConfig getFilterConfig()
Return the FilterConfig for this Filter.

setFilterConfig(FilterConfig)
public void setFilterConfig(FilterConfig filterConfig)

The container calls this method when the Filter is instantiated and passes in a FilterConfig object. When the
container is done with the Filter, it calls this method, passing in null.

javax.servlet FilterChain
doFilter(ServletRequest, ServletResponse)

javax.serviet

FilterChain

Syntax

public interface FilterChain
Description
A FilterChain is an object provided by the servlet container to the developer giving a view into the invocation

chain of a filtered request for a resource. Filters use the FilterChain to invoke the next filter in the chain, or if the
calling filter is the last filter in the chain, to invoke the rosource at the end of the chain.

Since: Servlet 2.3

See Also: Filter

Member Summary

Methods

doFilter(ServletRe- Causes the next filter in the chain to be invoked, or if the calling filter is the last filter
quest, ServletRe- in the chain, causes the resource at the end of the chain to be invoked.

sponse)

Methods

doFilter(ServletRequest, ServletResponse)

public void doFilter(ServletRequest request, ServletResponse response)

Causes the next filter in the chain to be invoked, or if the calling filter is the last filter in the chain, causes the
resource at the end of the chain to be invoked.

Parameters:
request - the request to pass along the chain.

response - the response to pass along the chain.

Throws: ServletException , IOException
Since: 2.3

FilterConfig javax.servlet
getFilterName()

javax.serviet

FilterConfig

Syntax

public interface FilterConfig

Description
A filter configuration object used by a servlet container used to pass information to a filter during initialization.

Since: Servlet 2.3

See Also: Filter

Member Summary

Methods

getFilterName() Returns the filter-name of this filter as defined in the deployment descriptor.

getlnitParame- Returns &tring containing the value of the named initialization parameter, or

ter(String) null if the parameter does not exist.

getinitParameter- Returns the names of the servlet’s initialization parameters Bswaneration of

Names() String objects, or an empfgnumeration if the servlet has no initialization

parameters.

getServletContext() Returns a reference to tBervietContext in which the caller is executing.

Methods

getFilterName()
public java.lang.String getFilterName()
Returns the filter-name of this filter as defined in the deployment descriptor.

getlnitParameter(String)
public java.lang.String getlnitParameter(java.lang.String name)

Returns aString containing the value of the named initialization parametenuwt if the parameter
does not exist.

Parameters:
name - aString specifying the name of the initialization parameter

Returns: aString containing the value of the initialization parameter

javax.servlet FilterConfig
getinitParameterNames()

getinitParameterNames()
public java.util. Enumeration getinitParameterNames()

Returns the names of the servlet’s initialization parameters BEnameration of String objects, or an
emptyEnumeration if the servlet has no initialization parameters.

Returns: anEnumeration of String objects containing the names of the servlet’s initialization

parameters
getServletContext()
public ServletContext getServletContext()
Returns a reference to tBervletContext in which the caller is executing.
Returns: aServiletContext object, used by the caller to interact with its servlet container

See Also: ServletContext

GenericServlet

getServletContext()

javax.serviet

javax.servlet

GenericServlet

Syntax

public abstract class GenericServlet implements Servlet , ServletConfig , java.io.Serializable

java.lang.Object

+-- javax.servlet.GenericServlet

Direct Known Subclasses: HttpServlet

All Implemented Interfaces: java.io.SerializableServiet , ServletConfig

Description

Defines a generic, protocol-independent servlet. To write an HTTP servlet for use on the Web, extend

HttpServlet instead.

GenericServlet implements theServlet andServletConfig interfaces GenericServlet may

be directly extended by a servlet, although it's more common to extend a protocol-specific subclass such as

HttpServlet

GenericServlet makes writing servlets easier. It provides simple versions of the lifecycle meithibds
anddestroy and of the methods in thBervletConfig interface.GenericServlet also implements
thelog method, declared in thi&ervietContext interface.

To write a generic servlet, you need only override the absteagce method.

Member Summary

Constructors
GenericServlet()

Methods
destroy()

getlnitParame-

ter(String)

getlnitParameter-

Names()

getServletConfig()
getServletContext()
getServletinfo()
getServletName()

init()

init(ServletConfig)

log(String)

Does nothing.

Called by the servlet container to indicate to a servlet that the servlet is being ta
out of service.

Returns &tring containing the value of the named initialization parameter, or
null if the parameter does not exist.

Returns the names of the servlet's initialization parameters Bswaneration of
String objects, or an emptgnumeration if the servlet has no initialization
parameters.

Returns this servletServletConfig object.

Returns a reference to tBervietContext in which this servlet is running.
Returns information about the servlet, such as author, version, and copyright.
Returns the name of this servlet instance.

A convenience method which can be overridden so that there’s no need to call
super.init(config)

Called by the servlet container to indicate to a servlet that the servlet is being p,
into service.

ken

aced

Writes the specified message to a servlet log file, prepended by the servlet's ng

me.

10

javax.servlet GenericServlet
GenericServlet()

Member Summary

log(String, Throw- Writes an explanatory message and a stack trace for aldivewable exception
able) to the servlet log file, prepended by the servlet’s name.

service(ServletRe- Called by the servlet container to allow the servlet to respond to a request.
guest, ServletRe-

sponse)

Inherited Member Summary

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

Constructors

GenericServlet()
public GenericServlet()

Does nothing. All of the servlet initialization is done by one ofitite methods.

Methods

destroy()
public void destroy()
Called by the servlet container to indicate to a servlet that the servlet is being taken out of service. See

destroy() .
Specified By: destroy() in interfaceServlet

getlnitParameter(String)
public java.lang.String getinitParameter(java.lang.String name)

Returns aString containing the value of the named initialization parametenuwl if the parameter
does not exist. SaetinitParameter(String)

This method is supplied for convenience. It gets the value of the named parameter from the servlet’s
ServletConfig object.

Specified By: getlnitParameter(String) in interfaceServletConfig

Parameters:

11

GenericServlet javax.servlet
getlnitParameterNames()

name - aString specifying the name of the initialization parameter

Returns: String aString containing the value of the initalization parameter

getinitParameterNames()
public java.util.Enumeration getinitParameterNames()

Returns the names of the servlet’s initialization parameters Bsameration of String objects, or an
empty Enumeration if the servlet has no initialization parameters. See
getlnitParameterNames()

This method is supplied for convenience. It gets the parameter names from the s8eseetConfig
object.

Specified By: getlnitParameterNames() in interfaceServletConfig

Returns: Enumeration an enumeration®tring objects containing the names of the servlet’s
initialization parameters

getServletConfig()
public ServletConfig getServletConfig()
Returns this servletServletConfig object.
Specified By: getServletConfig() in interfaceServlet

Returns: ServletConfig th&ervletConfig object that initialized this servlet

getServletContext()
public ServletContext getServletContext()
Returns a reference to theServietContext in which this servlet is running. See
getServletContext()

This method is supplied for convenience. It gets the context from the sePdetletConfig object.
Specified By: getServletContext() in interfaceServletConfig

Returns: ServletContext th&ervletContext object passed to this servlet by the method

getServletinfo()
public java.lang.String getServletinfo()

Returns information about the servlet, such as author, version, and copyright. By default, this method
returns an empty string. Override this method to have it return a meaningful value. See
getServletinfo()

Specified By: getServletinfo() in interfaceServlet

Returns: String information about this servlet, by default an empty string

getServietName()

12

javax.servlet GenericServlet

init()
public java.lang.String getServietName()
Returns the name of this servlet instance.d@&8ervietName()
Specified By: getServletName() in interfaceServletConfig
Returns: the name of this servlet instance
init()
public void init()
A convenience method which can be overridden so that there’s no needstgealinit(config)
Instead of overridingnit(ServletConfig) , simply override this method and it will be called by
GenericServlet.init(ServletConfig config) . The ServletConfig object can still be
retrieved viegetServletConfig()
Throws: ServletException - if an exception occurs that interrupts the servlet's normal operation
init(ServletConfig)
public void init(ServletConfig config)
Called by the servlet container to indicate to a servlet that the servlet is being placed into service. See
init(ServletConfig)
This implementation stores thgervletConfig object it receives from the servlet container for alter
use. When overriding this form of the method, safper.init(config)
Specified By: init(ServiletConfig) in interfaceServlet
Parameters:

config - theServletConfig object that contains configutation information for this servlet

Throws: ServletException - if an exception occurs that interrupts the servlet's normal operation

See Also: UnavailableException

log(String)
public void log(java.lang.String msg)
Writes the specified message to a servlet log file, prepended by the servlet's ndoSHeeg) .

Parameters:
msg - aString specifying the message to be written to the log file

log(String, Throwable)
public void log(java.lang.String message, java.lang.Throwable t)

Writes an explanatory message and a stack trace for a givewable exception to the servlet log file,
prepended by the serviet's name. 8egString, Throwable)

Parameters:
message - aString that describes the error or exception

t - thejava.lang.Throwable error or exception

13

GenericServlet javax.servlet

service(ServletRequest, ServletResponse)

service(ServletRequest, ServletResponse)

14

public abstract void service(ServletRequest req, ServletResponse res)

Called by the servlet container to allow the servlet to respond to a requeseSgme(ServletRe-

guest, ServletResponse)

This method is declared abstract so subclasses, stittp&grvlet , must override it.

Specified By: service(ServletRequest, ServletResponse) in interfaceServlet

Parameters:
req -theServletRequest object that contains the client’s request

res -theServletResponse object that will contain the servlet’s response

Throws: ServletException - if an exception occurs that interferes with the servlet's normal
operation occurred

IOException - if an input or output exception occurs

javax.servlet RequestDispatcher
forward(ServletRequest, ServletResponse)

javax.serviet

RequestDispatcher

Syntax

public interface RequestDispatcher

Description

Defines an object that receives requests from the client and sends them to any resource (such as a servlet, HTML
file, or JSP file) on the server. The servlet container createRé¢lgeiestDispatcher object, which is used

as a wrapper around a server resource located at a particular path or given by a particular name.

This interface is intended to wrap servlets, but a servlet container can BegtestDispatcher objects to
wrap any type of resource.

See Also: getRequestDispatcher(String) , getNamedDispatcher(String) , getRe-
questDispatcher(String)

Member Summary

Methods
forward(ServletRe- Forwards a request from a servlet to another resource (servlet, JSP file, or HTML file)
guest, ServletRe- on the server.
sponse)

include(ServletRe- Includes the content of a resource (servlet, JSP page, HTML file) in the response.
quest, ServletRe-

sponse)

Methods

forward(ServletRequest, ServletResponse)

public void forward(ServletRequest request, ServiletResponse response)

Forwards a request from a servlet to another resource (servlet, JSP file, or HTML file) on the server. This
method allows one servlet to do preliminary processing of a request and another resource to generate the
response.

For a RequestDispatcher obtained viagetRequestDispatcher() , the ServletRequest
object has its path elements and parameters adjusted to match the path of the target resource.

forward should be called before the response has been committed to the client (before response body out-
put has been flushed). If the response already has been committed, this method thitbegakn
StateException . Uncommitted output in the response buffer is automatically cleared before the
forward.

15

RequestDispatcher javax.servlet

include(ServletRequest, ServletResponse)

The request and response parameters must be either the same objects as were passed to the calling servlet’s

service method or be subclasses of the ServletRequestWrapper or
ServletResponseWrapper classes that wrap them.
Parameters:

request - aServiletRequest object that represents the request the client makes of the servlet

response - aServletResponse object that represents the response the servlet returns to the

client

Throws: ServletException - if the target resource throws this exception
IOException - if the target resource throws this exception
lllegalStateException - if the response was already committed

include(ServletRequest, ServletResponse)

16

public void include(ServletRequest request, ServletResponse response)

Includes the content of a resource (servlet, JSP page, HTML file) in the response. In essence, this method
enables programmatic server-side includes.

The ServiletResponse object has its path elements and parameters remain unchanged from the
caller’s. The included servlet cannot change the response status code or set headers; any attempt to make a
change is ignored.

The request and response parameters must be either the same objects as were passed to the calling servlet's

service method or be subclasses of the ServletRequestWrapper or
ServletResponseWrapper classes that wrap them.
Parameters:

request - aServietRequest object that contains the client’s request

response - aServletResponse object that contains the servlet's response

Throws: ServletException - if the included resource throws this exception

IOException - if the included resource throws this exception

javax.servlet Servlet
include(ServletRequest, ServletResponse)

javax.serviet

Servlet

Syntax

public interface Servlet

All Known Implementing Classes: GenericServlet

Description
Defines methods that all servlets must implement.

A servlet is a small Java program that runs within a Web server. Servlets receive and respond to requests from
Web clients, usually across HTTP, the HyperText Transfer Protocol.

To implement this interface, you can write a generic servlet that ext@wds.servlet.Generic-
Servlet or an HTTP servlet that exten@dsax.servlet.http.HttpServiet

This interface defines methods to initialize a servlet, to service requests, and to remove a servlet from the server.
These are known as life-cycle methods and are called in the following sequence:

1. The servlet is constructed, then initialized withithe method.
2. Any calls from clients to theervice method are handled.

3. The servlet is taken out of service, then destroyed witlebigoy method, then garbage collected and

finalized.
In addition to the life-cycle methods, this interface provides gbéServietConfig method, which the
servlet can use to get any startup information, andytServietinfo method, which allows the servlet to

return basic information about itself, such as author, version, and copyright.

See Also: GenericServlet , HitpServlet

Member Summary

Methods

destroy() Called by the servlet container to indicate to a servlet that the servlet is being taken
out of service.

getServletConfig() Returns &ervletConfig object, which contains initialization and startup param-
eters for this servlet.

getServletinfo() Returns information about the servlet, such as author, version, and copyright.

init(ServletConfig) Called by the servlet container to indicate to a servlet that the servlet is being placed
into service.

service(ServletRe- Called by the servlet container to allow the servlet to respond to a request.

guest, ServletRe-

sponse)

Methods

17

Servlet javax.servlet

destroy()

destroy()

public void destroy()

Called by the servlet container to indicate to a servlet that the servlet is being taken out of service. This
method is only called once all threads within the servis¢srice method have exited or after a timeout
period has passed. After the servlet container calls this method, it will not calethize method again

on this servlet.

This method gives the servlet an opportunity to clean up any resources that are being held (for example,
memory, file handles, threads) and make sure that any persistent state is synchronized with the servlet’s cur-
rent state in memory.

getServletConfig()

public ServletConfig getServletConfig()

Returns &ServletConfig object, which contains initialization and startup parameters for this servlet.
The ServletConfig object returned is the one passed tartite method.

Implementations of this interface are responsible for storingSeevletConfig object so that this
method can return it. TH8enericServlet class, which implements this interface, already does this.

Returns: the ServletConfig object that initializes this servlet
See Also: init(ServletConfig)

getServletinfo()

public java.lang.String getServletinfo()
Returns information about the servlet, such as author, version, and copyright.

The string that this method returns should be plain text and not markup of any kind (such as HTML, XML,
etc.).

Returns: aString containing servlet information

init(ServletConfig)

18

public void init(ServletConfig config)
Called by the servlet container to indicate to a servlet that the servlet is being placed into service.

The servlet container calls tleit method exactly once after instantiating the servlet. ifite method
must complete successfully before the servlet can receive any requests.

The servlet container cannot place the servlet into serviceiifithe method
1. Throws &ServletException

2. Does not return within a time period defined by the Web server

Parameters:
config - aServletConfig object containing the servlet’s configuration and initialization
parameters

Throws: ServletException - if an exception has occurred that interferes with the servlet's normal
operation

javax.servlet Servlet
service(ServletRequest, ServletResponse)

See Also: UnavailableException , getServletConfig()

service(ServletRequest, ServletResponse)

public void service(ServletRequest req, ServletResponse res)

Called by the servlet container to allow the servlet to respond to a request.
This method is only called after the servlébi() method has completed successfully.
The status code of the response always should be set for a servlet that throws or sends an error.

Servlets typically run inside multithreaded servlet containers that can handle multiple requests concur-
rently. Developers must be aware to synchronize access to any shared resources such as files, network con-
nections, and as well as the servlet's class and instance variables. More information on multithreaded
programming in Java is available in the Java tutorial on multi-threaded programming.

Parameters:
req -theServletRequest object that contains the client’s request

res -theServletResponse object that contains the servlet's response

Throws: ServletException - if an exception occurs that interferes with the servlet's normal
operation
IOException - if an input or output exception occurs

19

ServletConfig javax.servlet
getInitParameter(String)

javax.serviet

ServletConfig

Syntax

public interface ServletConfig

All Known Implementing Classes: GenericServlet

Description
A servlet configuration object used by a servlet container used to pass information to a servlet during initializa-
tion.

Member Summary
Methods
getlnitParame- Returns &tring containing the value of the named initialization parameter, or
ter(String) null if the parameter does not exist.
getlnitParameter- Returns the names of the servlet's initialization parameters Bsuaneration of
Names() String objects, or an emptgnumeration if the servlet has no initialization
parameters.

getServletContext() Returns a reference to tBervletContext in which the caller is executing.
getServietName() Returns the name of this servlet instance.

Methods

getlnitParameter(String)
public java.lang.String getlnitParameter(java.lang.String name)

Returns aString containing the value of the named initialization parametenuwk if the parameter
does not exist.

Parameters:
name - aString specifying the name of the initialization parameter

Returns: aString containing the value of the initialization parameter

getinitParameterNames()
public java.util. Enumeration getinitParameterNames()

Returns the names of the servlet’s initialization parameters BEnameration of String objects, or an
emptyEnumeration if the servlet has no initialization parameters.

Returns: anEnumeration of String objects containing the names of the servlet’s initialization
parameters

20

javax.servlet ServletConfig

getServletContext()
getServletContext()
public ServletContext getServletContext()
Returns a reference to tBervietContext in which the caller is executing.
Returns: aServletContext object, used by the caller to interact with its servlet container

See Also: ServletContext

getServletName()
public java.lang.String getServietName()

Returns the name of this servlet instance. The name may be provided via server administration, assigned in

the web application deployment descriptor, or for an unregistered (and thus unnamed) servlet instance it
will be the servlet’s class name.

Returns: the name of the servlet instance

21

ServletContext javax.servlet
getServietName()

javax.serviet

ServietContext

Syntax

public interface ServletContext

Description
Defines a set of methods that a servlet uses to communicate with its servlet container, for example, to get the
MIME type of a file, dispatch requests, or write to a log file.

There is one context per “web application” per Java Virtual Machine. (A “web application” is a collection of
servlets and content installed under a specific subset of the server's URL hamespace/satdicgs and
possibly installed via avar file.)

In the case of a web application marked “distributed” in its deployment descriptor, there will be one context
instance for each virtual machine. In this situation, the context cannot be used as a location to share global infor-
mation (because the information won'’t be truly global). Use an external resource like a database instead.

The ServletContext object is contained within th8erviletConfig object, which the Web server pro-
vides the servlet when the servlet is initialized.

See Also: getServletConfig() , getServletContext()

Member Summary

Methods

getAttribute(String) Returns the servlet container attribute with the given nammylbr if there is no
attribute by that name.

getAttributeNames() Returns afEnumeration containing the attribute names available within this sgrv-
let context.

getContext(String) Returns &ervletContext object that corresponds to a specified URL on the
server.

getinitParame- Returns &tring containing the value of the named context-wide initialization

ter(String) parameter, onull if the parameter does not exist.

getinitParameter- Returns the names of the context’s initialization parameters Eswaneration of

Names() String objects, or an empfgnumeration if the context has no initialization
parameters.

getMajorVersion() Returns the major version of the Java Servlet API that this servlet container supports.

getMimeType(String) Returns the MIME type of the specified file, mull if the MIME type is not known.

getMinorVersion() Returns the minor version of the Servlet API that this servlet container supports.

getNamedDis- Returns &RequestDispatcher object that acts as a wrapper for the named serv-

patcher(String) let.

getRealPath(String) Returns &String ~ containing the real path for a given virtual path.

getRequestDis- Returns &RequestDispatcher object that acts as a wrapper for the resource|

patcher(String) located at the given path.

getResource(String) Returns a URL to the resource that is mapped to a specified path.

getResourceAs- Returns the resource located at the named pathlapatiStream object.

Stream(String)

getResourcePaths() Return all the paths to resources held in the web application.

getServerInfo() Returns the name and version of the servlet container on which the servlet is rynning.

22

javax.servlet ServletContext
getAttribute(String)

Member Summary
getServlet(String)

getServletContext- Returns the name of this web application correponding to this ServletContext as|spec-
Name(). ified in the deployment descriptor for this web application by the display-name ¢le-
ment.

getServiletNames()

getServlets()

log(Exception,

String)

log(String) Writes the specified message to a servlet log file, usually an event log.
log(String, Throw- Writes an explanatory message and a stack trace for afjivewable exception
able) to the servlet log file.

removeAt- Removes the attribute with the given name from the servlet context.
tribute(String)

setAttribute(String, Binds an object to a given attribute name in this servlet context.

Object)

Methods

getAttribute(String)
public java.lang.Object getAttribute(java.lang.String name)

Returns the servlet container attribute with the given nameubr if there is no attribute by that name.
An attribute allows a servlet container to give the servlet additional information not already provided by this

interface. See your server documentation for information about its attributes. A list of supported attributes

can be retrieved usirgetAttributeNames

The attribute is returned asjava.lang.Object or some subclass. Attribute names should follow the
same convention as package names. The Java Servlet API specification reserves namesjavatc¢hing
javax.* , andsun.*

Parameters:
name - aString specifying the name of the attribute

Returns: anObject containing the value of the attribute,rardl if no attribute exists matching the
given name

See Also: getAttributeNames()

getAttributeNames()
public java.util. Enumeration getAttributeNames()

Returns arEnumeration containing the attribute names available within this servlet context. Use the
getAttribute(String) method with an attribute name to get the value of an attribute.

Returns: anEnumeration of attribute names
See Also: getAttribute(String)

23

ServletContext javax.servlet

getContext(String)

getContext(String)

public ServletContext getContext(java.lang.String uripath)
Returns &ervletContext object that corresponds to a specified URL on the server.

This method allows servlets to gain access to the context for various parts of the server, and as needed
obtainRequestDispatcher objects from the context. The given path must be absolute (beginning with
“/") and is interpreted based on the server's document root.

In a security conscious environment, the servlet container may retlirnfor a given URL.

Parameters:
uripath - aString specifying the absolute URL of a resource on the server

Returns: theServletContext object that corresponds to the named URL
See Also: RequestDispatcher

getlnitParameter(String)

public java.lang.String getlnitParameter(java.lang.String name)

Returns &tring containing the value of the named context-wide initialization parametenlor if the
parameter does not exist.

This method can make available configuration information useful to an entire “web application”. For exam-
ple, it can provide a webmaster’'s email address or the name of a system that holds critical data.

Parameters:
name - aString containing the name of the parameter whose value is requested

Returns: aString containing at least the servlet container name and version number
See Also: getlnitParameter(String)

getinitParameterNames()

public java.util. Enumeration getlnitParameterNames()

Returns the names of the context’s initialization parameters &nameration of String objects, or
an emptyEnumeration if the context has no initialization parameters.

Returns: anEnumeration of String objects containing the names of the context’s initialization
parameters

See Also: getlnitParameter(String)

getMajorVersion()

public int getMajorVersion()

Returns the major version of the Java Servlet API that this servlet container supports. All implementations
that comply with Version 2.3 must have this method return the integer 2.

Returns: 2

getMimeType(String)

24

javax.servlet ServletContext
getMinorVersion()

public java.lang.String getMimeType(java.lang.String file)

Returns the MIME type of the specified file, oull if the MIME type is not known. The MIME type is
determined by the configuration of the servlet container, and may be specified in a web application deploy-
ment descriptor. Common MIME types dtext/html” and“image/gif”

Parameters:
file -aString specifying the name of a file

Returns: aString specifying the file's MIME type

getMinorVersion()
public int getMinorVersion()

Returns the minor version of the Servlet API that this servlet container supports. All implementations that
comply with Version 2.2 must have this method return the integer 3.

Returns: 3

getNamedDispatcher(String)

public ReguestDispatcher getNamedDispatcher(java.lang.String name)

Returns &RequestDispatcher object that acts as a wrapper for the named servlet.

Servlets (and JSP pages also) may be given names via server administration or via a web application
deployment descriptor. A servlet instance can determine its namegas8eyvietName()

This method returnaull if the ServiletContext cannot return @&RequestDispatcher for any
reason.

Parameters:
name - aString specifying the name of a servlet to wrap

Returns: aRequestDispatcher object that acts as a wrapper for the named servlet

See Also: RequestDispatcher , getContext(String) , getServletName()

getRealPath(String)
public java.lang.String getRealPath(java.lang.String path)

Returns aString containing the real path for a given virtual path. For example, the path “/index.html”
returns the absolute file path on the server’s filesystem would be served by a request for “http://host/
contextPath/index.html”, where contextPath is the context path of this ServletContext..

The real path returned will be in a form appropriate to the computer and operating system on which the
servlet container is running, including the proper path separators. This method railirnsf the servlet
container cannot translate the virtual path to a real path for any reason (such as when the content is being
made available from avar archive).

Parameters:
path - aString specifying a virtual path

Returns: aString specifying the real path, or null if the translation cannot be performed

25

ServletContext javax.servlet
getRequestDispatcher(String)

getRequestDispatcher(String)

public RequestDispatcher getRequestDispatcher(java.lang.String path)

Returns &RequestDispatcher object that acts as a wrapper for the resource located at the given path.
A RequestDispatcher object can be used to forward a request to the resource or to include the
resource in a response. The resource can be dynamic or static.

The pathname must begin with a “/” and is interpreted as relative to the current context rogetse
Context to obtain aRequestDispatcher for resources in foreign contexts. This method returns
null if the ServletContext cannot return RequestDispatcher

Parameters:
path - aString specifying the pathname to the resource

Returns: aRequestDispatcher object that acts as a wrapper for the resource at the specified path

See Also: RequestDispatcher , getContext(String)

getResource(String)
public java.net.URL getResource(java.lang.String path)

Returns a URL to the resource that is mapped to a specified path. The path must begin with a “/” and is
interpreted as relative to the current context root.

This method allows the servlet container to make a resource available to servlets from any source.
Resources can be located on a local or remote file system, in a databasewar irfike.

The servlet container must implement the URL handlersldRdConnection objects that are necessary
to access the resource.

This method returnsull if no resource is mapped to the pathname.

Some containers may allow writing to the URL returned by this method using the methods of the URL
class.

The resource content is returned directly, so be aware that requesjspy apage returns the JSP source
code. Use &equestDispatcher instead to include results of an execution.

This method has a different purpose thgva.lang.Class.getResource , which looks up
resources based on a class loader. This method does not use class loaders.

Parameters:
path - aString specifying the path to the resource

Returns: the resource located at the named pathudr if there is no resource at that path

Throws: MalformedURLException - if the pathname is not given in the correct form

getResourceAsStream(String)
public java.io.lnputStream getResourceAsStream(java.lang.String path)
Returns the resource located at the named pathlapai$tream object.

The data in thénputStream can be of any type or length. The path must be specified according to the
rules given irgetResource . This method returnsull if no resource exists at the specified path.

26

javax.servlet ServletContext
getResourcePaths()

Meta-information such as content length and content type that is availabietResource method is
lost when using this method.

The servlet container must implement the URL handlers dRIL.Connection objects necessary to
access the resource.

This method is different fromava.lang.Class.getResourceAsStream , Which uses a class
loader. This method allows servlet containers to make a resource available to a servlet from any location,
without using a class loader.

Parameters:
name - aString specifying the path to the resource

Returns: thelnputStream returned to the servlet, aull if no resource exists at the specified path

getResourcePaths()
public java.util.Set getResourcePaths()

Return all the paths to resources held in the web application. All paths are java.lang.String objects, begin
with a leading /, and are relative to the root of the web application.

Returns: an immutable set containing the paths
Since: Servlet 2.3

getServerinfo()
public java.lang.String getServerinfo()
Returns the name and version of the servlet container on which the servlet is running.

The form of the returned string Eervernaméersionnumber-or example, the JavaServer Web Develop-
ment Kit may return the strintavaServer Web Dev Kit/1.0

The servlet container may return other optional information after the primary string in parentheses, for
exampleJavaServer Web Dev Kit/1.0 (JDK 1.1.6; Windows NT 4.0 x86)

Returns: aString containing at least the servlet container name and version number

getServlet(String)

public Servlet getServlet(java.lang.String name)

Deprecated. As of Java Servlet API 2.1, with no direct replacement.

This method was originally defined to retrieve a servlet fr@eraletContext . In this version,
this method always returmsill and remains only to preserve binary compatibility. This method will
be permanently removed in a future version of the Java Servlet API.

In lieu of this method, servlets can share information usinGéneletContext class and can
perform shared business logic by invoking methods on common non-servlet classes.

Throws: ServletException

getServletContextName()

public java.lang.String getServietContextName()

27

ServletContext javax.servlet
getServletNames()

Returns the name of this web application correponding to this ServletContext as specified in the deploy-
ment descriptor for this web application by the display-name element.

Returns: The name of the web application or null if no name has been declared in the deployment
descriptor.

Since: Servlet 2.3

getServletNames()
public java.util. Enumeration getServletNames()
Deprecated. As of Java Servlet API 2.1, with no replacement.

This method was originally defined to returnBnumeration of all the servlet names known to this
context. In this version, this method always returns an eEptyneration and remains only to
preserve binary compatibility. This method will be permanently removed in a future version of the Java
Servlet API.

getServlets()
public java.util. Enumeration getServlets()
Deprecated. As of Java Servlet API 2.0, with no replacement.

This method was originally defined to returnEEmumeration of all the servlets known to this

servlet context. In this version, this method always returns an empty enumeration and remains only to
preserve binary compatibility. This method will be permanently removed in a future version of the Java
Servlet API.

log(Exception, String)
public void log(java.lang.Exception exception, java.lang.String msg)

Deprecated. As of Java Servlet API 2.1, ukmy(String, Throwable) instead.

This method was originally defined to write an exception’s stack trace and an explanatory error
message to the servlet log file.

log(String)
public void log(java.lang.String msg)

Writes the specified message to a servlet log file, usually an event log. The name and type of the servlet log
file is specific to the servlet container.

Parameters:
msg - aString specifying the message to be written to the log file

log(String, Throwable)
public void log(java.lang.String message, java.lang.Throwable throwable)

Writes an explanatory message and a stack trace for a givmwable exception to the servlet log file.
The name and type of the servlet log file is specific to the servlet container, usually an event log.

28

javax.servlet ServletContext
removeAttribute(String)

Parameters:
message - aString that describes the error or exception

throwable - theThrowable error or exception

removeAttribute(String)
public void removeAttribute(java.lang.String name)

Removes the attribute with the given name from the servlet context. After removal, subsequent calls to
getAttribute(String) to retrieve the attribute’s value will retunall

Parameters:
name - aString specifying the name of the attribute to be removed

setAttribute(String, Object)
public void setAttribute(java.lang.String name, java.lang.Object object)

Binds an object to a given attribute name in this servlet context. If the name specified is already used for an
attribute, this method will remove the old attribute and bind the name to the new attribute.

Attribute names should follow the same convention as package names. The Java Servlet API specification
reserves names matchijaya.* ,javax.* , andsun.* .

Parameters:
name - aString specifying the name of the attribute

object - anObject representing the attribute to be bound

29

ServletContextAttributeEvent javax.servlet
setAttribute(String, Object)

javax.serviet

ServietContextAttributeEvent

Syntax

public class ServletContextAttributeEvent extends ServletContextEvent

java.lang.Object

+--java.util. EventObject

+-- ServletContextEvent

+-- javax.servlet.ServletContextAttributeEvent

All Implemented Interfaces: java.io.Serializable

Description
This is the event class for notifications about changes to the attributes of the servlet context of a web application.

Since: v2.3

See Also: ServletContextAttributesListener

Member Summary

Constructors
ServletContextAt- Construct a ServletContextAttributeEvent from the given context for the given

tributeEvent(Servlet- attribute name and attribute value.
Context, String,

Object)

Methods
getName() Return the name of the attribute that changed on the ServiletContext.
getvalue() Returns the value of the attribute being added removed or replaced.

Inherited Member Summary

Fields inherited from class java.util. EventObject

source

Methods inherited from classServletContextEvent

getServletContext()

Methods inherited from class java.util. EventObject
getSource, toString

30

javax.servlet ServletContextAttributeEvent
ServletContextAttributeEvent(ServletContext, String, Object)

Inherited Member Summary

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait

Constructors

ServletContextAttributeEvent(ServletContext, String, Object)

public ServletContextAttributeEvent(ServletContext source, java.lang.String name,
java.lang.Object value)

Construct a ServletContextAttributeEvent from the given context for the given attribute name and attribute
value.

Methods

getName()
public java.lang.String getName()
Return the name of the attribute that changed on the ServletContext.

getValue()
public java.lang.Object getValue()

Returns the value of the attribute being added removed or replaced. If the attribute was added, this is the
value of the attribute. If the attrubute was removed, this is the value of the removed attribute. If the attribute
was replaced, this is the old value of the attribute.

31

ServletContextAttributesListener javax.servlet
attributeAdded(ServletContextAttribute Event)

javax.serviet

ServietContextAttributesListener

Syntax

public interface ServletContextAttributesListener extends java.util. EventListener

All Superinterfaces: java.util.EventListener

Description

Implementations of this interface recieve notifications of changes to the attribute list on the servlet context of a
web application. To recieve notification events, the implementation class must be configured in the deployment
descriptor for the web application.

Since: v2.3

See Also: ServletContextAttributeEvent

Member Summary

Methods

attributeAdded(Serv- Notification that a new attribute was added to the servlet context.
letContextAttribu-

teEvent)

attributeRe- Notification that an existing attribute has been remved from the servlet context.
moved(ServletContex-

tAttributeEvent)

attributeRe- Notification that an attribute on the servlet context has been replaced.
placed(ServletContex-

tAttributeEvent)

Methods

attributeAdded(ServletContextAttributeEvent)

public void attributeAdded(ServletContextAttributeEvent scab)

Notification that a new attribute was added to the servlet context. Called after the attribute is added.

attributeRemoved(ServiletContextAttributeEvent)

public void attributeRemoved(ServletContextAttributeEvent scab)

Notification that an existing attribute has been remved from the servlet context. Called after the attribute is
removed.

32

javax.servlet ServletContextAttributesListener
attributeReplaced(ServletContextAttributeEvent)

attributeReplaced(ServletContextAttributeEvent)

public void attributeReplaced(ServletContextAttributeEvent scab)

Notification that an attribute on the servlet context has been replaced. Called after the attribute is replaced.

33

ServletContextEvent javax.servlet
attributeReplaced(ServletContextAttribute Event)

javax.serviet

ServletContextEvent

Syntax

public class ServletContextEvent extends java.util. EventObject

java.lang.Object

+--java.util. EventObject

+-- javax.servlet.ServletContextEvent

Direct Known Subclasses: ServletContextAttributeEvent

All Implemented Interfaces: java.io.Serializable

Description
This is the event class for notifications about changes to the servlet context of a web application.

Since: v2.3

See Also: ServletContextListener

Member Summary

Constructors

ServletContex- Construct a ServletContextEvent from the given context.
tEvent(ServletCon-

text)

Methods
getServletContext() Return the ServletContext that changed.

Inherited Member Summary

Fields inherited from class java.util. EventObject

source

Methods inherited from class java.util. EventObject

getSource, toString

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait

34

javax.servlet ServletContextEvent
ServletContextEvent(ServletContext)
Constructors
ServletContextEvent(ServietContext)
public ServletContextEvent(ServletContext source)

Construct a ServletContextEvent from the given context.

Parameters:

source - - the ServletContext that is sending the event.

Methods

getServletContext()
public ServletContext getServletContext()
Return the ServletContext that changed.

Returns: the ServletContext that sent the event.

35

ServletContextListener javax.servlet
contextDestroyed(ServlietContextEvent)

javax.serviet

ServietContextListener

Syntax

public interface ServletContextListener extends java.util. EventListener

All Superinterfaces: java.util.EventListener

Description

Implementations of this interface recieve notifications about changes to the servlet context of the web applica-
tion they are part of. To recieve notification events, the implementation class must be configured in the deploy-
ment descriptor for the web application.

Since: v2.3

See Also: ServiletContextEvent

Member Summary

Methods
contextDe- Notification that the servlet context is about to be shut down.
stroyed(ServletCon-

textEvent)

contextlnitial- Notification that the web application is ready to process requests.
ized(ServletContex-

tEvent)

Methods

contextDestroyed(ServletContextEvent)

public void contextDestroyed(ServletContextEvent sce)

Notification that the servlet context is about to be shut down.

contextlnitialized(ServletContextEvent)

public void contextlnitialized(ServletContextEvent sce)

Notification that the web application is ready to process requests.

36

javax.servlet ServletException
contextlnitialized(ServletContextEvent)

javax.serviet

ServietException

Syntax

public class ServletException extends java.lang.Exception

java.lang.Object

+--java.lang.Throwable

+--java.lang.Exception

+-- javax.servlet.ServletException

Direct Known Subclasses: UnavailableException

All Implemented Interfaces: java.io.Serializable

Description
Defines a general exception a servlet can throw when it encounters difficulty.

Member Summary

Constructors

ServletException() Constructs a new servlet exception.

ServletExcep- Constructs a new servlet exception with the specified message.

tion(String)

ServletExcep- Constructs a new servlet exception when the servlet needs to throw an exceptipn and

tion(String, Throw- include a message about the “root cause” exception that interfered with its normal

able) operation, including a description message.

ServletExcep- Constructs a new servlet exception when the servlet needs to throw an exceptipn and

tion(Throwable) include a message about the “root cause” exception that interfered with its normal
operation.

Methods

getRootCause() Returns the exception that caused this servlet exception.

Inherited Member Summary

Methods inherited from class java.lang.Throwable

fillinStackTrace, getLocalizedMessage, getMessage, printStackTrace, printStackTrace,
printStackTrace, toString

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait

37

ServletException javax.servlet

ServletException()

Constructors

ServletException()

public ServletException()

Constructs a new servlet exception.

ServletException(String)

public ServletException(java.lang.String message)

Constructs a new servlet exception with the specified message. The message can be written to the server log
and/or displayed for the user.

Parameters:
message - aString specifying the text of the exception message

ServletException(String, Throwable)

public ServletException(java.lang.String message, java.lang.Throwable rootCause)

Constructs a new servlet exception when the servlet needs to throw an exception and include a message
about the “root cause” exception that interfered with its normal operation, including a description message.

Parameters:
message - aString containing the text of the exception message

rootCause -theThrowable exception that interfered with the servlet's normal operation, making
this servlet exception necessary

ServletException(Throwable)

public ServletException(java.lang.Throwable rootCause)

Constructs a new servlet exception when the servlet needs to throw an exception and include a message
about the “root cause” exception that interfered with its normal operation. The exception’s message is based
on the localized message of the underlying exception.

This method calls thgetLocalizedMessage method on th@hrowable exception to get a localized
exception message. When subclassiiegvletException , this method can be overridden to create an
exception message designed for a specific locale.

Parameters:
rootCause -theThrowable exception that interfered with the servlet’s normal operation, making
the servlet exception necessary

Methods

getRootCause()

38

javax.servlet ServletException
getRootCause()

public java.lang.Throwable getRootCause()
Returns the exception that caused this servlet exception.

Returns: theThrowable that caused this servlet exception

39

ServletinputStream javax.servlet
getRootCause()

javax.serviet

ServletinputStream

Syntax

public abstract class ServletinputStream extends java.io.InputStream

java.lang.Object

+--java.io.InputStream

+-- javax.servlet.ServletinputStream

Description

Provides an input stream for reading binary data from a client request, including an effedeihtine
method for reading data one line at a time. With some protocols, such as HTTP POST andSaddiet
InputStream object can be used to read data sent from the client.

A ServletinputStream object is normally retrieved via tlyetinputStream() method.

This is an abstract class that a servlet container implements. Subclasses of this class must implement the
java.io.lnputStream.read() method.

See Also: ServletRequest

Member Summary

Constructors
ServletinputStream() Does nothing, because this is an abstract class.

Methods
readLine(byte[], int, Reads the input stream, one line at a time.

int)

Inherited Member Summary

Methods inherited from class java.io.lnputStream
available, close, mark, markSupported, read, read, read, reset, skip

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

Constructors

40

javax.servlet ServletinputStream
ServletinputStream()

ServletinputStream()
protected ServletinputStream()

Does nothing, because this is an abstract class.

Methods

readLine(byte[], int, int)
public int readLine(byte[] b, int off, int len)

Reads the input stream, one line at a time. Starting at an offset, reads bytes into an array, until it reads a cer-
tain number of bytes or reaches a newline character, which it reads into the array as well.

This method returns -1 if it reaches the end of the input stream before reading the maximum number of
bytes.

Parameters:
b - an array of bytes into which data is read

off - an integer specifying the character at which this method begins reading
len - an integer specifying the maximum number of bytes to read
Returns: an integer specifying the actual number of bytes read, or -1 if the end of the stream is reached

Throws: I10Exception - if an input or output exception has occurred

41

ServletOutputStream javax.servlet
readLine(byte[], int, int)

javax.serviet

ServletOutputStream

Syntax

public abstract class ServletOutputStream extends java.io.OutputStream

java.lang.Object

+--java.io.OutputStream

+-- javax.servlet.ServletOutputStream

Description
Provides an output stream for sending binary data to the clieige®letOutputStream object is nor-
mally retrieved via thgetOutputStream() method.

This is an abstract class that the servlet container implements. Subclasses of this class must implement the
java.io.OutputStream.write(int) method.

See Also: ServletResponse

Member Summary

Constructors

ServletOutputStream() Does nothing, because this is an abstract class.

Methods

print(boolean) Writes aboolean value to the client, with no carriage return-line feed (CRLF) char-
acter at the end.

print(char) Writes a character to the client, with no carriage return-line feed (CRLF) at the end.

print(double) Writes adouble value to the client, with no carriage return-line feed (CRLF) at the
end.

print(float) Writes afloat value to the client, with no carriage return-line feed (CRLF) at the
end.

print(int) Writes an int to the client, with no carriage return-line feed (CRLF) at the end.

printfong) Writes along value to the client, with no carriage return-line feed (CRLF) at the
end.

print(String) Writes aString to the client, without a carriage return-line feed (CRLF) character
at the end.

printin() Writes a carriage return-line feed (CRLF) to the client.

printin(boolean) Writes aboolean value to the client, followed by a carriage return-line feed
(CRLF).

printin(char) Writes a character to the client, followed by a carriage return-line feed (CRLF).

printin(double) Writes adouble value to the client, followed by a carriage return-line feed (CRLF).

printin(float) Writes afloat value to the client, followed by a carriage return-line feed (CRLE).

printin(int) Writes an int to the client, followed by a carriage return-line feed (CRLF) charagter.

printin(long) Writes along value to the client, followed by a carriage return-line feed (CRLF)|

printIn(String) Writes aString to the client, followed by a carriage return-line feed (CRLF).

42

javax.servlet ServletOutputStream
ServletOutputStream()

Inherited Member Summary

Methods inherited from class java.io.OutputStream

close, flush, write, write, write

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

Constructors

ServletOutputStream()
protected ServletOutputStream()

Does nothing, because this is an abstract class.

Methods

print(boolean)
public void print(boolean b)

Writes aboolean value to the client, with no carriage return-line feed (CRLF) character at the end.

Parameters:
b - theboolean value to send to the client
Throws: I10Exception - if an input or output exception occurred
print(char)

public void print(char c)
Writes a character to the client, with no carriage return-line feed (CRLF) at the end.

Parameters:
c - the character to send to the client
Throws: I0Exception - if an input or output exception occurred
print(double)

public void print(double d)
Writes adouble value to the client, with no carriage return-line feed (CRLF) at the end.

43

ServletOutputStream javax.servlet

print(float)
Parameters:
d - thedouble value to send to the client
Throws: I0Exception - if an input or output exception occurred
print(float)

public void print(float f)
Writes afloat value to the client, with no carriage return-line feed (CRLF) at the end.

Parameters:
f -thefloat value to send to the client
Throws: I10Exception - if an input or output exception occurred
print(int)

public void print(int i)
Writes an int to the client, with no carriage return-line feed (CRLF) at the end.

Parameters:
i -theintto send to the client
Throws: I10Exception - if an input or output exception occurred
print(long)

public void print(long)
Writes along value to the client, with no carriage return-line feed (CRLF) at the end.

Parameters:
| -thelong value to send to the client
Throws: I0Exception - if an input or output exception occurred
print(String)

public void print(java.lang.String s)
Writes aString to the client, without a carriage return-line feed (CRLF) character at the end.

Parameters:
s - theString</code to send to the client
Throws: I10Exception - if an input or output exception occurred
printin()

public void printin()
Writes a carriage return-line feed (CRLF) to the client.

Throws: I0Exception - if an input or output exception occurred

44

javax.servlet ServletOutputStream
printin(boolean)

printin(boolean)
public void printin(boolean b)

Writes aboolean value to the client, followed by a carriage return-line feed (CRLF).

Parameters:
b - theboolean value to write to the client
Throws: I0Exception - if an input or output exception occurred
printin(char)

public void printin(char c)

Writes a character to the client, followed by a carriage return-line feed (CRLF).

Parameters:
¢ - the character to write to the client
Throws: I0Exception - if an input or output exception occurred
printin(double)

public void printin(double d)
Writes adouble value to the client, followed by a carriage return-line feed (CRLF).

Parameters:
d - thedouble value to write to the client
Throws: I0Exception - if an input or output exception occurred
printin(float)

public void printin(float f)
Writes afloat value to the client, followed by a carriage return-line feed (CRLF).

Parameters:
f -thefloat value to write to the client
Throws: I0Exception - if an input or output exception occurred
printin(int)

public void printin(int i)
Writes an int to the client, followed by a carriage return-line feed (CRLF) character.

Parameters:
i -the int to write to the client
Throws: I0Exception - if an input or output exception occurred
printin(long)

public void printin(long I)

45

ServletOutputStream javax.servlet
printin(String)

Writes along value to the client, followed by a carriage return-line feed (CRLF).

Parameters:
| -thelong value to write to the client
Throws: I0Exception - if an input or output exception occurred
printin(String)

public void println(java.lang.String s)
Writes aString to the client, followed by a carriage return-line feed (CRLF).

Parameters:
s - the String to write to the client

Throws: I0Exception - if an input or output exception occurred

46

javax.servlet ServletRequest
printin(String)

javax.serviet

ServletRequest

Syntax

public interface ServletRequest

All Known Subinterfaces: HittpServietRequest

All Known Implementing Classes: ServletRequestWrapper

Description

Defines an object to provide client request information to a servlet. The servlet container crgatetet
Request object and passes it as an argument to the serségt/kce method.

A ServletRequest object provides data including parameter name and values, attributes, and an input
stream. Interfaces that exteServletRequest can provide additional protocol-specific data (for example,
HTTP data is provided bidttpServietRequest

See Also: HttpServletRequest

Member Summary

Methods

getAttribute(String) Returns the value of the named attribute a©afect , ornull if no attribute of the
given name exists.

getAttributeNames() Returns arfEnumeration containing the names of the attributes available to thig
request.

getCharacterEncod- Returns the name of the character encoding used in the body of this request.

ing()

getContentlength() Returns the length, in bytes, of the request body and made available by the inpjt
stream, or -1 if the length is not known.

getContentType() Returns the MIME type of the body of the requestiudt if the type is not known.

getlnputStream() Retrieves the body of the request as binary data usBervéetinputStream

getlocale() Returns the preferrddbcale that the client will accept content in, based on the
Accept-Language header.

getlocales() Returns arfEnumeration of Locale objects indicating, in decreasing order staft-
ing with the preferred locale, the locales that are acceptable to the client based ¢n the
Accept-Language header.

getParameter(String) Returns the value of a request parameter@giag , ornull if the parameter doeg
not exist.

getParameterMap() Returns a java.util.Map of the parameters of this request.

getParameterNames() Returns arfEnumeration of String objects containing the names of the parame-
ters contained in this request.

getParameterVal- Returns an array @tring objects containing all of the values the given request

ues(String) parameter has, owll if the parameter does not exist.

getProtocol() Returns the name and version of the protocol the request uses in thEdtoool/
majorVersion.minorVersiqrfor example, HTTP/1.1.

getReader() Retrieves the body of the request as character data uBinffeaedReader

47

ServletRequest

getAttribute(String)

javax.servlet

Member Summary

pss of

annel,

getRealPath(String)

getRemoteAddr() Returns the Internet Protocol (IP) address of the client that sent the request.

getRemoteHost() Returns the fully qualified name of the client that sent the request, or the IP addrg
the client if the name cannot be determined.

getRequestDis- Returns &RequestDispatcher object that acts as a wrapper for the resource|

patcher(String) located at the given path.

getScheme() Returns the name of the scheme used to make this request, for exdtpple,
https , orftp .

getServerName() Returns the host name of the server that received the request.

getServerPort() Returns the port number on which this request was received.

isSecure() Returns a boolean indicating whether this request was made using a secure ch
such as HTTPS.

removeAt- Removes an attribute from this request.

tribute(String)

setAttribute(String, Stores an attribute in this request.

Object)

setCharacterEncod- Overrides the name of the character encoding used in the body of this request.

ing(String)

Methods
getAttribute(String)

public java.lang.Object getAttribute(java.lang.String name)

Returns the value of the named attribute a®bject , ornull

Attributes can be set two ways. The servlet container may set attributes to make available custom informa-

tion about a request. For example, for requests made using HTTPS, the atjabateserv-
can be used to retrieve information on the certificate of the client.
Attributes can also be set programatically usgejAttribute(String, Object) . This allows
information to be embedded into a request bef®®eg@uestDispatcher call.

let.request.X509Certificate

Attribute names should follow the same conventions as package names. This specification reserves names
, andsun.*

matchingjava.*

Parameters:

name - aString

Returns: anObject

specifying the name of the attribute

containing the value of the attribute,radl if the attribute does not exist

getAttributeNames()

public java.util. Enumeration getAttributeNames()

Returns arEnumeration
returns an emptinumeration

Returns: anEnumeration

48

if the request has no attributes available to it.

of strings containing the names of the request’s attributes

if no attribute of the given name exists.

containing the names of the attributes available to this request. This method

javax.servlet ServletRequest
getCharacterEncoding()

getCharacterEncoding()
public java.lang.String getCharacterEncoding()

Returns the name of the character encoding used in the body of this request. This methoduvdituriis
the request does not specify a character encoding

Returns: aString containing the name of the chararacter encodinguibr if the request does not
specify a character encoding

getContentLength()

public int getContentLength()

Returns the length, in bytes, of the request body and made available by the input stream, or -1 if the length
is not known. For HTTP servlets, same as the value of the CGI variable CONTENT_LENGTH.

Returns: an integer containing the length of the request body or -1 if the length is not known

getContentType()
public java.lang.String getContentType()

Returns the MIME type of the body of the requestpotl if the type is not known. For HTTP servlets,
same as the value of the CGI variable CONTENT_TYPE.

Returns: aString containing the name of the MIME type of the request, or -1 if the type is not known

getinputStream()

public ServletinputStream getinputStream()

Retrieves the body of the request as binary data usiggraletinputStream . Either this method or
getReader() may be called to read the body, not both.

Returns: aServletinputStream object containing the body of the request

Throws: lllegalStateException - ifthe getReader() _ method has already been called for this
request

IOException - if an input or output exception occurred

getLocale()
public java.util.Locale getLocale()

Returns the preferreldocale that the client will accept content in, based on the Accept-Language header.

If the client request doesn’t provide an Accept-Language header, this method returns the default locale for
the server.

Returns: the preferred.ocale for the client

getLocales()

public java.util. Enumeration getLocales()

49

ServletRequest javax.servlet

getParameter(String)

Returns arEnumeration of Locale objects indicating, in decreasing order starting with the preferred
locale, the locales that are acceptable to the client based on the Accept-Language header. If the client
request doesn't provide an Accept-Language header, this method retuErsuareration containing
onelLocale , the default locale for the server.

Returns: anEnumeration of preferred_ocale objects for the client

getParameter(String)

public java.lang.String getParameter(java.lang.String name)

Returns the value of a request parameter &rimg , or null if the parameter does not exist. Request
parameters are extra information sent with the request. For HTTP servlets, parameters are contained in the
guery string or posted form data.

You should only use this method when you are sure the parameter has only one value. If the parameter
might have more than one value, ge¢ParameterValues(String)

If you use this method with a multivalued parameter, the value returned is equal to the first value in the
array returned bgetParameterValues

If the parameter data was sent in the request body, such as occurs with an HTTP POST request, then read-
ing the body directly viagetinputStream() or getReader() can interfere with the execution of
this method.

Parameters:
name - aString specifying the name of the parameter

Returns: aString representing the single value of the parameter

See Also: getParameterValues(String)

getParameterMap()

public java.util.Map getParameterMap()

Returns a java.util. Map of the parameters of this request. Request parameters are extra information sent
with the request. For HTTP servlets, parameters are contained in the query string or posted form data.

Returns: an immutable java.util.Map containing parameter names as keys and parameter values as map
values.

getParameterNames()

public java.util. Enumeration getParameterNames()

Returns arEnumeration of String objects containing the names of the parameters contained in this
request. If the request has no parameters, the method returns afcampgration

Returns: anEnumeration of String objects, eacBtring containing the name of a request
parameter; or an empBnumeration if the request has no parameters

getParameterValues(String)

50

public java.lang.String[] getParameterValues(java.lang.String name)

javax.servlet ServletRequest
getProtocol()

Returns an array dbtring objects containing all of the values the given request parameter hasl| or
if the parameter does not exist.

If the parameter has a single value, the array has a length of 1.

Parameters:
name - aString containing the name of the parameter whose value is requested

Returns: an array ofString objects containing the parameter’s values

See Also: getParameter(String)

getProtocol()
public java.lang.String getProtocol()

Returns the name and version of the protocol the request uses in theifotmeol/majorVersion.minor-
Version for example, HTTP/1.1. For HTTP servlets, the value returned is the same as the value of the CGI
variableSERVER_PROTOCOL

Returns: aString containing the protocol name and version number

getReader()
public java.io.BufferedReader getReader()

Retrieves the body of the request as character data udugferedReader . The reader translates the
character data according to the character encoding used on the body. Either this megittkader()
may be called to read the body, not both.

Returns: aBufferedReader containing the body of the request

Throws: UnsupportedEncodingException - if the character set encoding used is not supported
and the text cannot be decoded

lllegalStateException - if getlnputStream() method has been called on this request

IOException - if an input or output exception occurred

See Also: getlnputStream()

getRealPath(String)
public java.lang.String getRealPath(java.lang.String path)
Deprecated. As of Version 2.1 of the Java Servlet API, ge¢RealPath(String) instead.

getRemoteAddr()
public java.lang.String getRemoteAddr()

Returns the Internet Protocol (IP) address of the client that sent the request. For HTTP servlets, same as the
value of the CGI variablREMOTE_ADDR

Returns: aString containing the IP address of the client that sent the request

getRemoteHost()

51

ServletRequest javax.servlet

getRequestDispatcher(String)

public java.lang.String getRemoteHost()

Returns the fully qualified name of the client that sent the request, or the IP address of the client if the name
cannot be determined. For HTTP servlets, same as the value of the CGl \REMDITE HOST

Returns: aString containing the fully qualified name of the client

getRequestDispatcher(String)

public ReguestDispatcher getRequestDispatcher(java.lang.String path)

Returns &RequestDispatcher object that acts as a wrapper for the resource located at the given path.
A RequestDispatcher object can be used to forward a request to the resource or to include the
resource in a response. The resource can be dynamic or static.

The pathname specified may be relative, although it cannot extend outside the current servlet context. If the
path begins with a “/” it is interpreted as relative to the current context root. This method raturnsif
the servlet container cannot returRequestDispatcher

The difference between this method am@tRequestDispatcher(String) is that this method can
take a relative path.

Parameters:
path - aString specifying the pathname to the resource

Returns: aRequestDispatcher object that acts as a wrapper for the resource at the specified path
See Also: RequestDispatcher |, getRequestDispatcher(String)

getScheme()

public java.lang.String getScheme()

Returns the name of the scheme used to make this request, for exattple,https , or ftp . Different
schemes have different rules for constructing URLSs, as noted in RFC 1738.

Returns: aString containing the name of the scheme used to make this request

getServerName()

public java.lang.String getServerName()

Returns the host name of the server that received the request. For HTTP servlets, same as the value of the
CGl variableSERVER_NAME

Returns: aString containing the name of the server to which the request was sent

getServerPort()

52

public int getServerPort()

Returns the port number on which this request was received. For HTTP servlets, same as the value of the
CGl variableSERVER_PORT

Returns: an integer specifying the port number

javax.servlet ServletRequest
isSecure()

isSecure()
public boolean isSecure()
Returns a boolean indicating whether this request was made using a secure channel, such as HTTPS.

Returns: a boolean indicating if the request was made using a secure channel

removeAttribute(String)
public void removeAttribute(java.lang.String name)

Removes an attribute from this request. This method is not generally needed as attributes only persist as
long as the request is being handled.

Attribute names should follow the same conventions as package names. Names beginnjagatith,
javax.* , andcom.sun.* , are reserved for use by Sun Microsystems.

Parameters:
name - aString specifying the name of the attribute to remove

setAttribute(String, Object)
public void setAttribute(java.lang.String name, java.lang.Object 0)

Stores an attribute in this request. Attributes are reset between requests. This method is most often used in
conjunction withRequestDispatcher

Attribute names should follow the same conventions as package names. Names beginnjagatith,
javax.* ,andcom.sun.* , are reserved for use by Sun Microsystems.

Parameters:
name - aString specifying the name of the attribute

o - theObject to be stored

setCharacterEncoding(String)
public void setCharacterEncoding(java.lang.String env)

Overrides the name of the character encoding used in the body of this request. This method must be called
prior to reading request parameters or reading input using getReader().

Parameters:
a - String containing the name of the chararacter encoding.

Throws: java.io.UnsupportedEncodingException - if this is not a valid encoding

53

ServletRequestWrapper javax.servlet
setCharacterEncoding(String)

javax.serviet

ServletRequestWrapper

Syntax

public class ServletRequestWrapper implements ServletRequest

java.lang.Object

+-- javax.servlet.ServletRequestWrapper

Direct Known Subclasses: HitpServletRequestWrapper

All Implemented Interfaces: ServietRequest

Description

Provides a convenient implementation of the ServletRequest interface that can be subclassed by developers
wishing to adapt the request to a Servlet. This class implements the Wrapper or Decorator pattern. Methods
default to calling through to the wrapped request object.

Since: v2.3

See Also: ServletRequest

Member Summary

Constructors

ServletRequestWrap- Creates a ServletRequest adaptor wrapping the given request object.

per(ServletRequest)

Methods

getAttribute(String) The default behavior of this method is to call getAttribute(String name) on the
wrapped request object.

getAttributeNames() The default behavior of this method is to return getAttributeNames() on the wrapped
request object.

getCharacterEncod- The default behavior of this method is to return getCharacterEncoding() on the

ing() wrapped request object.

getContentlLength() The default behavior of this method is to return getContentLength() on the wrapped
request object.

getContentType() The default behavior of this method is to return getContentType() on the wrappéed
request object.

getinputStream() The default behavior of this method is to return getinputStream() on the wrapped
request object.

getlocale() The default behavior of this method is to return getLocale() on the wrapped request
object.

getlocales() The default behavior of this method is to return getLocales() on the wrapped refjuest
object.

getParameter(String) The default behavior of this method is to return getParameter(String name) on the
wrapped request object.

54

javax.servlet

ServletRequestWrapper(ServietRequ

ServletRequestWrapper

est)

Member Summary

ped

ipped

e) on

ed

2d

h) on
quest

od

est

getParameterMap() The default behavior of this method is to return getParameterMap() on the wray
request object.

getParameterNames() The default behavior of this method is to return getParameterNames() on the wrg
request object.

qetPara}meterVaI- The default behavior of this method is to return getParameterValues(String nan

ues(String) the wrapped request object.

getProtocol() The default behavior of this method is to return getProtocol() on the wrapped reguest
object.

getReader() The default behavior of this method is to return getReader() on the wrapped request
object.

getRealPath(String) The default behavior of this method is to return getRealPath(String path) on the
wrapped request object.

getRemoteAddr() The default behavior of this method is to return getRemoteAddr() on the wrappé¢
request object.

getRemoteHost() The default behavior of this method is to return getRemoteHost() on the wrappe
request object.

getRequest() Return the wrapped request object.

getRequestDis- The default behavior of this method is to return getRequestDispatcher(String pat

patcher(String) the wrapped request object.

getScheme() The default behavior of this method is to return getScheme() on the wrapped re
object.

getServerName() The default behavior of this method is to return getServerName() on the wrapps
request object.

getServerPort() The default behavior of this method is to return getServerPort() on the wrapped
request object.

isSecure() The default behavior of this method is to return isSecure() on the wrapped requ
object.

removeAt-

tribute(String)
setAttribute(String,

Object)

setCharacterEncod-
ing(String)

setRequest(ServietRe-

quest)

The default behavior of this method is to call removeAttribute(String name) on t
wrapped request object.

The default behavior of this method is to return setAttribute(String name, Objec
on the wrapped request object.

The default behavior of this method is to set the character encoding on the wra
request object.

Sets the request object being wrapped.

he
to)

bped

Inherited Member Summary

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,

wait

Constructors

ServletRequestWrapper(ServletRequest)

55

ServletRequestWrapper javax.servlet
getAttribute(String)

public ServletRequestWrapper(ServletRequest request)
Creates a ServletRequest adaptor wrapping the given request object.

Throws: java.lang.lllegalArgumentException - if the request is null

Methods

getAttribute(String)
public java.lang.Object getAttribute(java.lang.String name)
The default behavior of this method is to call getAttribute(String name) on the wrapped request object.

Specified By: getAttribute(String) in interfaceServletRequest

getAttributeNames()
public java.util. Enumeration getAttributeNames()
The default behavior of this method is to return getAttributeNames() on the wrapped request object.

Specified By: getAttributeNames() in interfaceServletRequest

getCharacterEncoding()
public java.lang.String getCharacterEncoding()
The default behavior of this method is to return getCharacterEncoding() on the wrapped request object.

Specified By: getCharacterEncoding() in interfaceServietRequest

getContentLength()
public int getContentLength()
The default behavior of this method is to return getContentLength() on the wrapped request object.

Specified By: getContentlLength() in interfaceServietRequest

getContentType()
public java.lang.String getContentType()
The default behavior of this method is to return getContentType() on the wrapped request object.

Specified By: getContentType() in interfaceServletRequest

getinputStream()

public ServletinputStream getinputStream()

The default behavior of this method is to return getinputStream() on the wrapped request object.

56

javax.servlet ServletRequestWrapper
getLocale()

Specified By: getlnputStream() in interfaceServietRequest

Throws: I0Exception

getLocale()
public java.util.Locale getLocale()
The default behavior of this method is to return getLocale() on the wrapped request object.
Specified By: getlLocale() in interfaceServietRequest

getLocales()
public java.util. Enumeration getLocales()
The default behavior of this method is to return getLocales() on the wrapped request object.

Specified By: getLocales() in interfaceServletRequest

getParameter(String)
public java.lang.String getParameter(java.lang.String name)
The default behavior of this method is to return getParameter(String name) on the wrapped request object.

Specified By: getParameter(String) in interfaceServietRequest

getParameterMap()
public java.util.Map getParameterMap()
The default behavior of this method is to return getParameterMap() on the wrapped request object.

Specified By: getParameterMap() in interfaceServletRequest

getParameterNames()
public java.util. Enumeration getParameterNames()
The default behavior of this method is to return getParameterNames() on the wrapped request object.

Specified By: getParameterNames() _in interfaceServletRequest

getParameterValues(String)
public java.lang.String[] getParameterValues(java.lang.String name)

The default behavior of this method is to return getParameterValues(String name) on the wrapped request
object.

Specified By: getParameterValues(String) in interfaceServietRequest

getProtocol()

public java.lang.String getProtocol()

57

ServletRequestWrapper javax.servlet
getReader()

The default behavior of this method is to return getProtocol() on the wrapped request object.

Specified By: getProtocol() in interfaceServietRequest

getReader()
public java.io.BufferedReader getReader()
The default behavior of this method is to return getReader() on the wrapped request object.
Specified By: getReader() _in interfaceServletRequest
Throws: I0Exception

getRealPath(String)
public java.lang.String getRealPath(java.lang.String path)
The default behavior of this method is to return getRealPath(String path) on the wrapped request object.

Specified By: getRealPath(String) in interfaceServietRequest

getRemoteAddr()
public java.lang.String getRemoteAddr()
The default behavior of this method is to return getRemoteAddr() on the wrapped request object.

Specified By: getRemoteAddr() in interfaceServietRequest

getRemoteHost()
public java.lang.String getRemoteHost()
The default behavior of this method is to return getRemoteHost() on the wrapped request object.

Specified By: getRemoteHost() _in interfaceServietRequest

getRequest()

public ServletRequest getRequest()
Return the wrapped request object.

getRequestDispatcher(String)

public RequestDispatcher getRequestDispatcher(java.lang.String path)

The default behavior of this method is to return getRequestDispatcher(String path) on the wrapped request
object.

Specified By: getRequestDispatcher(String) in interfaceServletRequest

getScheme()

public java.lang.String getScheme()

58

javax.servlet ServletRequestWrapper
getServerName()

The default behavior of this method is to return getScheme() on the wrapped request object.
Specified By: getScheme() in interfaceServletRequest

getServerName()
public java.lang.String getServerName()

The default behavior of this method is to return getServerName() on the wrapped request object.

Specified By: getServerName() in interfaceServiletRequest

getServerPort()
public int getServerPort()
The default behavior of this method is to return getServerPort() on the wrapped request object.

Specified By: getServerPort() in interfaceServletRequest

isSecure()
public boolean isSecure()
The default behavior of this method is to return isSecure() on the wrapped request object.
Specified By: isSecure() in interfaceServietRequest

removeAttribute(String)

public void removeAttribute(java.lang.String name)

The default behavior of this method is to call removeAttribute(String name) on the wrapped request object.

Specified By: removeAttribute(String) in interfaceServietRequest

setAttribute(String, Object)

public void setAttribute(java.lang.String name, java.lang.Object 0)

The default behavior of this method is to return setAttribute(String name, Object 0) on the wrapped request

object.
Specified By: setAttribute(String, Object) in interfaceServietRequest

setCharacterEncoding(String)
public void setCharacterEncoding(java.lang.String enc)
The default behavior of this method is to set the character encoding on the wrapped request object.

Specified By: setCharacterEncoding(String) in interfaceServietRequest

Throws: UnsupportedEncodingException

setRequest(ServletRequest)

59

ServletRequestWrapper javax.servlet
setRequest(ServletRequest)

public void setRequest(ServletRequest request)
Sets the request object being wrapped.

Throws: java.lang.lllegalArgumentException

60

- if the request is null.

javax.serviet

javax.servlet ServletResponse
setRequest(ServletRequest)

ServletResponse

Syntax

public interface ServletResponse

All Known Subinterfaces: HittpServiletResponse

All Known Implementing Classes: ServletResponseWrapper

Description

Defines an object to assist a servlet in sending a response to the client. The servlet container creates a

ServletResponse object and passes it as an argument to the serségt/kce method.

To send binary data in a MIME body response, use ervietOutputStream

returned by

getOutputStream() . To send character data, use thHerintWriter object returned by
getWriter() . To mix binary and text data, for example, to create a multipart response, Sse/lat-

OutputStream and manage the

The charset for the MIME body response can be specifiedseitGontentType(String)
“text/html; charset=Shift_JIS”. The charset can alternately be set gsth@cale(Locale)

character sections manually.

. For example,
. If no charset

is specified, ISO-8859-1 will be used. ThetContentType orsetLocale method must be called before
getWriter for the charset to affect the construction of the writer.

See the Internet RFCs such as RFC 2045 for more information on MIME. Protocols such as SMTP and HTTP

define profiles of MIME, and those standards are still evolving.

See Also: ServletOutputStream

Member Summary

Methods
flushBuffer

getBufferSize()
getCharacterEncod-

ing()
getLocale()
getOutputStream()

getWriter()
isCommitted()
reset()
resetBuffer()

setBufferSize(int)
setContentLength(int)

Forces any content in the buffer to be written to the client.
Returns the actual buffer size used for the response.
Returns the name of the charset used for the MIME body sent in this response|

Returns the locale assigned to the response.

Returns &ervletOutputStream suitable for writing binary data in the
response.

Returns @PrintWriter object that can send character text to the client.
Returns a boolean indicating if the response has been committed.

Clears any data that exists in the buffer as well as the status code and headers|
Clears the content of the underlying buffer in the response without clearing head
status code.

Sets the preferred buffer size for the body of the response.

Sets the length of the content body in the response In HTTP servlets, this metho|
the HTTP Content-Length header.

er's or

d sets

61

ServletResponse javax.servlet

flushBuffer()

Member Summary

setContent- Sets the content type of the response being sent to the client.
Type(String)
setLocale(Locale) Sets the locale of the response, setting the headers (including the Content-Type's

charset) as appropriate.

Methods

flushBuffer()

public void flushBuffer()

Forces any content in the buffer to be written to the client. A call to this method automatically commits the
response, meaning the status code and headers will be written.

Throws: I0Exception

See Also: setBufferSize(int) , agetBufferSize() ,iIsCommitted() , reset()

getBufferSize()

public int getBufferSize()

Returns the actual buffer size used for the response. If no buffering is used, this method returns 0.
Returns: the actual buffer size used

See Also: setBufferSize(int) , flushBuffer() , isCommitted() _, reset()

getCharacterEncoding()

public java.lang.String getCharacterEncoding()
Returns the name of the charset used for the MIME body sent in this response.
If no charset has been assigned, it is implicitly s¢5€@-8859-1 (Latin-1).

See RFC 2047 (http://ds.internic.net/rfc/rfc2045.t1xt) for more information about character encoding and
MIME.

Returns: aString specifying the name of the charset, for exam@e©-8859-1

getLocale()

public java.util.Locale getLocale()
Returns the locale assigned to the response.

See Also: setLocale(Locale)

getOutputStream()

62

public ServletOutputStream getOutputStream()

javax.servlet ServletResponse
getWriter()

Returns aServletOutputStream suitable for writing binary data in the response. The servlet con-
tainer does not encode the binary data.

Calling flush() on the ServletOutputStream commits the response. Either this metbetiAfmiter()
may be called to write the body, not both.

Returns: aServletOutputStream for writing binary data
Throws: lllegalStateException - if thegetWriter method has been called on this response
IOException - if an input or output exception occurred

See Also: getWriter()

getWriter()
public java.io.PrintWriter getWriter()

Returns &PrintWriter object that can send character text to the client. The character encoding used is
the one specified in theharset= property of thesetContentType(String) method, which must
be calledbeforecalling this method for the charset to take effect.

If necessary, the MIME type of the response is modified to reflect the character encoding used.
Calling flush() on the PrintWriter commits the response.

Either this method agetOutputStream() may be called to write the body, not both.

Returns: aPrintWriter object that can return character data to the client

Throws: UnsupportedEncodingException - if the charset specified getContentType
cannot be used
lllegalStateException - if thegetOutputStream method has already been called for this
response object
IOException - if an input or output exception occurred

See Also: getOutputStream() , setContentType(String)

isCommitted()

public boolean isCommitted()

Returns a boolean indicating if the response has been committed. A commited response has already had its
status code and headers written.

Returns: a boolean indicating if the response has been committed
See Also: setBufferSize(int) , getBufferSize() , flushBuffer() , reset()

reset()
public void reset()

Clears any data that exists in the buffer as well as the status code and headers. If the response has been com-
mitted, this method throws ditegalStateException

Throws: lllegalStateException - if the response has already been committed
See Also: setBufferSize(int) , getBufferSize() , flushBuffer() , isCommitted()

63

ServletResponse javax.servlet

resetBuffer()

resetBuffer()

public void resetBuffer()

Clears the content of the underlying buffer in the response without clearing headers or status code. If the
response has been committed, this method throwkegalStateException

Since: 2.3

See Also: setBufferSize(int) , getBufferSize() ,iIsCommitted() , reset()

setBufferSize(int)

public void setBufferSize(int size)

Sets the preferred buffer size for the body of the response. The servlet container will use a buffer at least as
large as the size requested. The actual buffer size used can be fourgktBiuffprSize

A larger buffer allows more content to be written before anything is actually sent, thus providing the servlet
with more time to set appropriate status codes and headers. A smaller buffer decreases server memory load
and allows the client to start receiving data more quickly.

This method must be called before any response body content is written; if content has been written, this
method throws atllegalStateException

Parameters:
size - the preferred buffer size
Throws: lllegalStateException - if this method is called after content has been written
See Also: getBufferSize() , flushBuffer() , isCommitted() _, reset()
setContentLength(int)

public void setContentLength(int len)

Sets the length of the content body in the response In HTTP servlets, this method sets the HTTP Content-
Length header.

Parameters:
len - an integer specifying the length of the content being returned to the client; sets the Content-
Length header

setContentType(String)

64

public void setContentType(java.lang.String type)

Sets the content type of the response being sent to the client. The content type may include the type of char-
acter encoding used, for exampkxt/ntml; charset=1S0O-8859-4

If obtaining aPrintWriter , this method should be called first.

Parameters:
type -aString specifying the MIME type of the content

See Also: getOutputStream() , aetWriter()

javax.servlet ServletResponse
setLocale(Locale)

setLocale(Locale)
public void setLocale(java.util.Locale loc)

Sets the locale of the response, setting the headers (including the Content-Type’s charset) as appropriate.
This method should be called before a callgetWriter() . By default, the response locale is the
default locale for the server.

Parameters:
loc - the locale of the response

See Also: getlLocale()

65

ServletResponseWrapper javax.servlet
setLocale(Locale)

javax.serviet

ServletResponseWrapper

Syntax

public class ServletResponseWrapper implements ServletResponse

java.lang.Object

+-- javax.servlet.ServletResponseWrapper

Direct Known Subclasses: HitpServletResponseWrapper

All Implemented Interfaces: ServietResponse

Description

Provides a convenient implementation of the ServletResponse interface that can be subclassed by developers
wishing to adapt the response from a Servlet. This class implements the Wrapper or Decorator pattern. Methods
default to calling through to the wrapped response object.

Since: v2.3

See Also: ServletResponse

Member Summary

Constructors

ServletResponseWrap- Creates a ServletResponse adaptor wrapping the given response object.

per(ServletResponse)

Methods

flushBuffer The default behavior of this method is to call flushBuffer() on the wrapped response
object.

getBufferSize() The default behavior of this method is to return getBufferSize() on the wrapped
response object.

getCharacterEncod- The default behavior of this method is to return getCharacterEncoding() on the

ingQ) wrapped response object.

getlocale() The default behavior of this method is to return getLocale() on the wrapped response
object.

getOutputStream() The default behavior of this method is to return getOutputStream() on the wrapped
response object.

getResponse() Return the wrapped ServletResponse object.

getWriter() The default behavior of this method is to return getWriter() on the wrapped response
object.

isCommitted() The default behavior of this method is to return isCommitted() on the wrapped
response object.

reset() The default behavior of this method is to call reset() on the wrapped response pbject.

resetBuffer() The default behavior of this method is to call resetBuffer() on the wrapped resppnse
object.

66

javax.servlet ServletResponseWrapper
ServletResponseWrapper(ServletResponse)

Member Summary

setBufferSize(int) The default behavior of this method is to call setBufferSize(int size) on the wragped
response object.

setContentLength(int) The default behavior of this method is to call setContentLength(int len) on the
wrapped response object.

setContent- The default behavior of this method is to call setContentType(String type) on the

Type(String) wrapped response object.

setLocale(Locale) The default behavior of this method is to call setLocale(Locale loc) on the wrapped
response object.

setResponse(Servlet- Sets the response being wrapped.

Response)

Inherited Member Summary

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

Constructors

ServletResponseWrapper(ServletResponse)

public ServletResponseWrapper(ServletResponse __ response)

Creates a ServletResponse adaptor wrapping the given response object.

Throws: java.lang.lllegalArgumentException - if the response is null.

Methods

flushBuffer()
public void flushBuffer()
The default behavior of this method is to call flushBuffer() on the wrapped response object.

Specified By: flushBuffer() in interfaceServletResponse

Throws: I0Exception

getBufferSize()
public int getBufferSize()
The default behavior of this method is to return getBufferSize() on the wrapped response object.

67

ServletResponseWrapper javax.servlet
getCharacterEncoding()

Specified By: getBufferSize() in interfaceServiletResponse

getCharacterEncoding()
public java.lang.String getCharacterEncoding()

The default behavior of this method is to return getCharacterEncoding() on the wrapped response object.

Specified By: getCharacterEncoding() in interfaceServietResponse

getLocale()
public java.util.Locale getLocale()
The default behavior of this method is to return getLocale() on the wrapped response object.
Specified By: getLocale() in interfaceServiletResponse

getOutputStream()

public ServletOutputStream getOutputStream()

The default behavior of this method is to return getOutputStream() on the wrapped response object.

Specified By: getOutputStream() in interfaceServiletResponse

Throws: I0Exception

getResponse()

public ServletResponse _ getResponse()

Return the wrapped ServietResponse object.

getWriter()
public java.io.PrintWriter getWriter()
The default behavior of this method is to return getWriter() on the wrapped response object.
Specified By: getWriter() in interfaceServletResponse
Throws: I0Exception

isCommitted()
public boolean isCommitted()
The default behavior of this method is to return isCommitted() on the wrapped response object.

Specified By: isCommitted() __ in interfaceServietResponse

reset()

public void reset()

68

javax.servlet ServletResponseWrapper
resetBuffer()

The default behavior of this method is to call reset() on the wrapped response object.
Specified By: reset() in interfaceServletResponse

resetBuffer()
public void resetBuffer()

The default behavior of this method is to call resetBuffer() on the wrapped response object.

Specified By: resetBuffer() in interfaceServletResponse

setBufferSize(int)
public void setBufferSize(int size)

The default behavior of this method is to call setBufferSize(int size) on the wrapped response object.

Specified By: setBufferSize(int) in interfaceServietResponse

setContentLength(int)
public void setContentLength(int len)
The default behavior of this method is to call setContentLength(int len) on the wrapped response object.

Specified By: setContentlength(int) in interfaceServiletResponse

setContentType(String)
public void setContentType(java.lang.String type)
The default behavior of this method is to call setContentType(String type) on the wrapped response object.

Specified By: setContentType(String) in interfaceServietResponse

setLocale(Locale)
public void setLocale(java.util.Locale loc)
The default behavior of this method is to call setLocale(Locale loc) on the wrapped response object.

Specified By: setLocale(Locale) in interfaceServletResponse

setResponse(ServletResponse)

public void setResponse(ServletResponse response)

Sets the response being wrapped.
Throws: java.lang.lllegalArgumentException - if the response is null.

69

SingleThreadModel javax.servlet
setResponse(ServletResponse)

javax.serviet

SingleThreadModel

Syntax
public interface SingleThreadModel

Description
Ensures that servlets handle only one request at a time. This interface has no methods.

If a servlet implements this interface, you @pgaranteedhat no two threads will execute concurrently in the
servlet'sservice method. The servlet container can make this guarantee by synchronizing access to a single
instance of the servlet, or by maintaining a pool of servlet instances and dispatching each new request to a free
servlet.

This interface does not prevent synchronization problems that result from servlets accessing shared resources
such as static class variables or classes outside the scope of the servlet.

70

javax.servlet UnavailableException
setResponse(ServletResponse)

javax.serviet

UnavailableException

Syntax

public class UnavailableException extends ServletException

java.lang.Object

+--java.lang.Throwable

+--java.lang.Exception

+-- ServletException

+-- javax.servlet.UnavailableException

All Implemented Interfaces: java.io.Serializable

Description
Defines an exception that a servlet throws to indicate that it is permanently or temporarily unavailable.

When a servlet is permanently unavailable, something is wrong with the servlet, and it cannot handle requests
until some action is taken. For example, the servlet might be configured incorrectly, or its state may be cor-
rupted. A servlet should log both the error and the corrective action that is needed.

A servlet is temporarily unavailable if it cannot handle requests momentarily due to some system-wide problem.
For example, a third-tier server might not be accessible, or there may be insufficient memory or disk storage to
handle requests. A system administrator may need to take corrective action.

Servlet containers can safely treat both types of unavailable exceptions in the same way. However, treating tem-
porary unavailability effectively makes the servlet container more robust. Specifically, the servlet container
might block requests to the servlet for a period of time suggested by the servlet, rather than rejecting them until
the servlet container restarts.

Member Summary

Constructors
UnavailableExcep-
tion(int, Servlet,
String)
UnavailableExcep-
tion(Servlet, String)

UnavailableExcep- Constructs a new exception with a descriptive message indicating that the servlet is
tion(String) permanently unavailable.
L_Jnavaﬂ_able_Excep- Constructs a new exception with a descriptive message indicating that the servlet is
tion(String, int) temporarily unavailable and giving an estimate of how long it will be unavailablg.
Methods

etServlet
getUnavailableSec- Returns the number of seconds the servlet expects to be temporarily unavailable.
onds()

71

UnavailableException javax.servlet
UnavailableException(int, Servlet, String)

Member Summary
isPermanent() Returns doolean indicating whether the servlet is permanently unavailable.

Inherited Member Summary

Methods inherited from interface ServletException

getRootCause()

Methods inherited from class java.lang.Throwable

fillinStackTrace, getLocalizedMessage, getMessage, printStackTrace, printStackTrace,
printStackTrace, toString

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait

Constructors

UnavailableException(int, Servlet, String)

public UnavailableException(int seconds, Servlet servlet, java.lang.String msg)
Deprecated. As of Java Servlet API 2.2, umavailableException(String, int) instead.
Parameters:

seconds - an integer specifying the number of seconds the servlet expects to be unavailable; if zero or
negative, indicates that the servlet can’t make an estimate

servlet -theServlet thatis unavailable

msg-aString specifying the descriptive message, which can be written to a log file or displayed for
the user.

UnavailableException(Servlet, String)

public UnavailableException(Servlet servlet, java.lang.String msg)
Deprecated. As of Java Servlet API 2.2, ugmavailableException(String) instead.
Parameters:

servlet -theServlet instance thatis unavailable

msg - aString specifying the descriptive message

UnavailableException(String)

public UnavailableException(java.lang.String msg)

72

javax.servlet UnavailableException
UnavailableException(String, int)

Constructs a new exception with a descriptive message indicating that the servlet is permanently unavail-
able.

Parameters:
msg - aString specifying the descriptive message

UnavailableException(String, int)
public UnavailableException(java.lang.String msg, int seconds)

Constructs a new exception with a descriptive message indicating that the servlet is temporarily unavailable
and giving an estimate of how long it will be unavailable.

In some cases, the servlet cannot make an estimate. For example, the servlet might know that a server it
needs is not running, but not be able to report how long it will take to be restored to functionality. This can
be indicated with a negative or zero value forgbeonds argument.

Parameters:
msg-aString specifying the descriptive message, which can be written to a log file or displayed for
the user.

seconds - an integer specifying the number of seconds the servlet expects to be unavailable; if zero or
negative, indicates that the servlet can’t make an estimate

Methods

getServlet()
public Servlet getServlet()

Deprecated. As of Java Servlet API 2.2, with no replacement. Returns the servlet that is reporting its
unavailability.

Returns: theServlet object that is throwing thenavailableException

getUnavailableSeconds()
public int getUnavailableSeconds()
Returns the number of seconds the servlet expects to be temporarily unavailable.

If this method returns a negative number, the servlet is permanently unavailable or cannot provide an esti-
mate of how long it will be unavailable. No effort is made to correct for the time elapsed since the exception
was first reported.

Returns: an integer specifying the number of seconds the servlet will be temporarily unavailable, or a
negative number if the servlet is permanently unavailable or cannot make an estimate

isPermanent()

public boolean isPermanent()

73

UnavailableException javax.servlet
isPermanent()

Returns aboolean indicating whether the servlet is permanently unavailable. If so, something is wrong
with the servlet, and the system administrator must take some corrective action.

Returns: true if the servlet is permanently unavailabfalse if the servlet is available or temporarily
unavailable

74

Package

javax.servlet.nttp

Class Summary

Interfaces

HttpServietRequest Extends the&ServletRequest interface to provide request information for HTTFP
servlets.

HttpServletResponse Extends théServletResponse interface to provide HTTP-specific functionality
in sending a response.

HttpSession Provides a way to identify a user across more than one page request or visit to a Web
site and to store information about that user.

HttpS_essionActiva- Objects that are bound to a session may listen to container events notifying them that

tionListener sessions will be passivated and that session will be activated.

H_ttpSess_ionAt— This listener interface can be implemented in order to get notifications of changes

tributesListener made to sessions within this web application.

HttpSessionBind- Causes an object to be notified when it is bound to or unbound from a session.

ingListener

HttpSessionContext

HttpSessionListener Implementations of this interface may are notified of changes to the list of active| ses-
sions in a web application.

Classes
Cookie Creates a cookie, a small amount of information sent by a servlet to a Web browser,
saved by the browser, and later sent back to the server.
HttpServiet Provides an abstract class to be subclassed to create an HTTP servlet suitable for a
Web site.
HttpServietRequest- Provides a convenient implementation of the HttpServletRequest interface that ¢an be
Wrapper. subclassed by developers wishing to adapt the request to a Servlet.
HttpServietResponse- Provides a convenient implementation of the HttpServietResponse interface that can
Wrapper. be subclassed by developers wishing to adapt the response from a Servlet.
HttpSessionBindingEv- Either Sent to an object that implemehtpSessionBindingListener when
ent. it is bound or unbound from a session, or to a
HttpSessionAttributesListener that has been configured in the
deploymewnt descriptor when any attribute is bound, unbound or replaced in a sgssion.
HttpSessionEvent This is the class representing event notifications for changes to sessions within|a web
application.
HttpUtils

75

Cookie javax.servlet.http

javax.servlet.http

Cookie

Syntax

public class Cookie implements java.lang.Cloneable

java.lang.Object

+-- javax.servlet.http.Cookie

All Implemented Interfaces: java.lang.Cloneable

Description

Creates a cookie, a small amount of information sent by a servlet to a Web browser, saved by the browser, and
later sent back to the server. A cookie’s value can uniquely identify a client, so cookies are commonly used for
session management.

A cookie has a name, a single value, and optional attributes such as a comment, path and domain qualifiers, a
maximum age, and a version number. Some Web browsers have bugs in how they handle the optional attributes,
so use them sparingly to improve the interoperability of your servlets.

The servlet sends cookies to the browser by usingatt@Cookie(Cookie) method, which adds fields to
HTTP response headers to send cookies to the browser, one at a time. The browser is expected to support 20
cookies for each Web server, 300 cookies total, and may limit cookie size to 4 KB each.

The browser returns cookies to the servlet by adding fields to HTTP request headers. Cookies can be retrieved
from a request by using ttgetCookies() method. Several cookies might have the same name but different
path attributes.

Cookies affect the caching of the Web pages that use them. HTTP 1.0 does not cache pages that use cookies cre-
ated with this class. This class does not support the cache control defined with HTTP 1.1.

This class supports both the Version 0 (by Netscape) and Version 1 (by RFC 2109) cookie specifications. By
default, cookies are created using Version 0 to ensure the best interoperability.

Member Summary

Constructors

Cookie(String, Constructs a cookie with a specified name and value.

String)

Methods

clone Overrides the standajava.lang.Object.clone method to return a copy of
this cookie.

getComment() Returns the comment describing the purpose of this cookiaylor if the cookie has
no comment.

getDomain() Returns the domain name set for this cookie.

getMaxAge() Returns the maximum age of the cookie, specified in seconds, By defairiticat-
ing the cookie will persist until browser shutdown.

getName() Returns the name of the cookie.

getPath() Returns the path on the server to which the browser returns this cookie.

76

javax.servlet.http Cookie
Cookie(String, String)

Member Summary

getSecure() Returnstrue if the browser is sending cookies only over a secure protocol, or
false if the browser can send cookies using any protocol.

getValue() Returns the value of the cookie.

getVersion() Returns the version of the protocol this cookie complies with.

setComment(String) Specifies a comment that describes a cookie’s purpose.

setDomain(String) Specifies the domain within which this cookie should be presented.

setMaxAge(int) Sets the maximum age of the cookie in seconds.

setPath(String) Specifies a path for the cookie to which the client should return the cookie.

setSecure(boolean) Indicates to the browser whether the cookie should only be sent using a secure proto-
col, such as HTTPS or SSL.

setValue(String) Assigns a new value to a cookie after the cookie is created.

setVersion(int) Sets the version of the cookie protocol this cookie complies with.

Inherited Member Summary

Methods inherited from class java.lang.Object

equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Constructors

Cookie(String, String)
public Cookie(java.lang.String name, java.lang.String value)
Constructs a cookie with a specified name and value.

The name must conform to RFC 2109. That means it can contain only ASCII alphanumeric characters and
cannot contain commas, semicolons, or white space or begin with a $ character. The cookie’s name cannot
be changed after creation.

The value can be anything the server chooses to send. Its value is probably of interest only to the server. The
cookie’s value can be changed after creation witlsétéalue method.

By default, cookies are created according to the Netscape cookie specification. The version can be changed
with thesetVersion method.

Parameters:
name - aString specifying the name of the cookie

value -aString specifying the value of the cookie

Throws: lllegalArgumentException - if the cookie name contains illegal characters (for
example, a comma, space, or semicolon) or it is one of the tokens reserved for use by the cookie
protocol

See Also: setValue(String) , setVersion(int)

77

Cookie javax.servlet.http
clone()

Methods

clone()
public java.lang.Object clone()
Overrides the standajava.lang.Object.clone method to return a copy of this cookie.

Overrides: java.lang.Object.clone() in class java.lang.Object

getComment()
public java.lang.String getComment()
Returns the comment describing the purpose of this cookirylor if the cookie has no comment.
Returns: aString containing the comment, aull if none

See Also: setComment(String)

getDomain()
public java.lang.String getDomain()
Returns the domain name set for this cookie. The form of the domain name is set by RFC 2109.
Returns: aString containing the domain name

See Also: setDomain(String)

getMaxAge()
public int getMaxAge()

Returns the maximum age of the cookie, specified in seconds, By defaiiltdicating the cookie will per-
sist until browser shutdown.

Returns: an integer specifying the maximum age of the cookie in seconds; if negative, means the cookie
persists until browser shutdown

See Also: setMaxAge(int)

getName()
public java.lang.String getName()
Returns the name of the cookie. The name cannot be changed after creation.

Returns: aString specifying the cookie’s name

getPath()
public java.lang.String getPath()

Returns the path on the server to which the browser returns this cookie. The cookie is visible to all subpaths
on the server.

78

javax.servlet.http Cookie

getSecure()

Returns: aString specifying a path that contains a servlet name, for exaroptejog
See Also: setPath(String)

getSecure()
public boolean getSecure()

Returnstrue if the browser is sending cookies only over a secure protocdglse if the browser can
send cookies using any protocol.

Returns: true if the browser can use any standard protocol; othervalse,
See Also: setSecure(boolean)

getValue()
public java.lang.String getValue()
Returns the value of the cookie.
Returns: aString containing the cookie’s present value
See Also: setValue(String) , Cookie

getVersion()
public int getVersion()

Returns the version of the protocol this cookie complies with. Version 1 complies with RFC 2109, and ver-
sion 0 complies with the original cookie specification drafted by Netscape. Cookies provided by a browser
use and identify the browser’s cookie version.

Returns: O if the cookie complies with the original Netscape specification; 1 if the cookie complies with
RFC 2109

See Also: setVersion(int)

setComment(String)
public void setComment(java.lang.String purpose)

Specifies a comment that describes a cookie’s purpose. The comment is useful if the browser presents the
cookie to the user. Comments are not supported by Netscape Version 0 cookies.

Parameters:
purpose -aString specifying the comment to display to the user

See Also: getComment()

setDomain(String)
public void setDomain(java.lang.String pattern)

Specifies the domain within which this cookie should be presented.

79

Cookie javax.servlet.http

setMaxAge(int)

The form of the domain name is specified by RFC 2109. A domain name begins with .fodatdm)

and means that the cookie is visible to servers in a specified Domain Name System (DNS) zone (for exam-
ple,www.foo.com , but nota.b.foo.com). By default, cookies are only returned to the server that sent
them.

Parameters:
pattern -aString containing the domain hame within which this cookie is visible; form is
according to RFC 2109

See Also: getDomain()

setMaxAge(int)

public void setMaxAge(int expiry)
Sets the maximum age of the cookie in seconds.

A positive value indicates that the cookie will expire after that many seconds have passed. Note that the
value is thanaximumage when the cookie will expire, not the cookie’s current age.

A negative value means that the cookie is not stored persistently and will be deleted when the Web browser
exits. A zero value causes the cookie to be deleted.

Parameters:
expiry - an integer specifying the maximum age of the cookie in seconds; if negative, means the
cookie is not stored; if zero, deletes the cookie

See Also: getMaxAge()

setPath(String)

public void setPath(java.lang.String uri)
Specifies a path for the cookie to which the client should return the cookie.

The cookie is visible to all the pages in the directory you specify, and all the pages in that directory’s subdi-
rectories. A cookie’s path must include the servlet that set the cookie, for exaisgilpg which makes
the cookie visible to all directories on the server urckialog

Consult RFC 2109 (available on the Internet) for more information on setting path names for cookies.

Parameters:
uri - aString specifying a path

See Also: getPath()

setSecure(boolean)

80

public void setSecure(boolean flag)

Indicates to the browser whether the cookie should only be sent using a secure protocol, such as HTTPS or
SSL.

The default value ifalse

Parameters:
flag - if true , sends the cookie from the browser to the server using only when using a secure
protocol; iffalse , sent on any protocol

javax.servlet.http Cookie
setValue(String)

See Also: getSecure()

setValue(String)
public void setValue(java.lang.String newValue)

Assigns a new value to a cookie after the cookie is created. If you use a binary value, you may want to use
BASE64 encoding.

With Version 0 cookies, values should not contain white space, brackets, parentheses, equals signs, com-
mas, double quotes, slashes, question marks, at signs, colons, and semicolons. Empty values may not
behave the same way on all browsers.

Parameters:
newValue -aString specifying the new value

See Also: getValue() , Cookie

setVersion(int)
public void setVersion(int v)

Sets the version of the cookie protocol this cookie complies with. Version 0 complies with the original
Netscape cookie specification. Version 1 complies with RFC 2109.

Since RFC 2109 is still somewhat new, consider version 1 as experimental; do not use it yet on production
sites.

Parameters:
v - 0 if the cookie should comply with the original Netscape specification; 1 if the cookie should
comply with RFC 2109

See Also: getVersion()

81

HttpServlet javax.servlet.http
setVersion(int)

javax.servlet.http

HttpServiet

Syntax

public abstract class HttpServlet extends GenericServlet implements java.io.Serializable

java.lang.Object

+-- GenericServlet

+-- javax.servlet.http.HttpServlet

All Implemented Interfaces: java.io.SerializableServiet , ServletConfig

Description
Provides an abstract class to be subclassed to create an HTTP servlet suitable for a Web site. A subclass of
HttpServiet must override at least one method, usually one of these:

doGet , if the servlet supports HTTP GET requests

doPost , for HTTP POST requests

doPut , for HTTP PUT requests

doDelete , for HTTP DELETE requests

< init anddestroy , to manage resources that are held for the life of the servlet

getServletinfo , Which the servlet uses to provide information about itself

There’s almost no reason to override fevice methodservice handles standard HTTP requests by dis-
patching them to the handler methods for each HTTP request tymo e methods listed above).

Likewise, there’s almost no reason to overridedb®ptions anddoTrace methods.

Servlets typically run on multithreaded servers, so be aware that a servlet must handle concurrent requests and
be careful to synchronize access to shared resources. Shared resources include in-memory data such as instance
or class variables and external objects such as files, database connections, and network connections. See the
Java Tutorial on Multithreaded Programming for more information on handling multiple threads in a Java pro-
gram.

Member Summary

Constructors
HttpServiet) Does nothing, because this is an abstract class.

Methods

doDelete(HttpServle- Called by the server (via tieervice method) to allow a servlet to handle a
tRequest, HttpServle- DELETE request.

tResponse)

doGet(HttpServietRe- Called by the server (via tlservice method) to allow a servlet to handle a GET|
quest, HttpServletRe- request.

sponse)

doHead(HttpServletRe- Receives an HTTP HEAD request from the protectediice method and handles
guest, HttpServietRe- the request.

sponse)

82

javax.servlet.http HttpServlet

HttpServlet()
Member Summary
doOptions(HttpServle- Called by the server (via tlervice method) to allow a servlet to handle a
tRequest, HttpServle- OPTIONS request.
tResponse)
doPost(HttpServletRe- Called by the server (via tlervice method) to allow a servlet to handle a POST
quest, HttpServletRe- request.
sponse)
doPut(HttpServletRe- Called by the server (via thservice method) to allow a servlet to handle a PUT]
quest, HttpServletRe- request.
sponse)
doTrace(HttpServle- Called by the server (via treervice method) to allow a servlet to handle a TRACE
tRequest, HttpServle- request.
tResponse)
g.w Returns the time thdttpServletRequest object was last modified, in milliseg-
fied(HttpServietRe- onds since midnight January 1, 1970 GMT.
quest)
service(HttpServle- Receives standard HTTP requests from the psblicice method and dispatches
tRequest, HttpServle- them to thedlo XXX methods defined in this class.
tResponse)
service(ServletRe- Dispatches client requests to the protesidice method.
quest, ServletRe-
sponse)
Inherited Member Summary
Methods inherited from classGenericServlet
destroy() , getInitParameter(String) , getinitParameterNames() , getServletConfig() ,
getServletContext() , getServletinfo() , init(ServletConfig) , Init) , log(String)

log(String, Throwable) , getServletName()

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

Constructors

HttpServlet()
public HttpServlet()
Does nothing, because this is an abstract class.

Methods

doDelete(HttpServletRequest, HttpServietResponse)

83

HttpServlet javax.servlet.http

doGet(HttpServletRequest, HttpServietResponse)

protected void doDelete(HttpServietRequest req, HttpServletResponse resp)

Called by the server (via theervice method) to allow a servlet to handle a DELETE request. The
DELETE operation allows a client to remove a document or Web page from the server.

This method does not need to be either safe or idempotent. Operations requested through DELETE can
have side effects for which users can be held accountable. When using this method, it may be useful to save
a copy of the affected URL in temporary storage.

If the HTTP DELETE request is incorrectly formattethDelete returns an HTTP “Bad Request” mes-
sage.

Parameters:
req - theHttpServietRequest object that contains the request the client made of the servlet
resp - theHttpServietResponse object that contains the response the servlet returns to the
client

Throws: I0Exception - if an input or output error occurs while the servlet is handling the DELETE
request
ServletException - if the request for the DELETE cannot be handled

doGet(HttpServletRequest, HttpServletResponse)

84

protected void doGet(HttpServietRequest req, HttpServletResponse resp)

Called by the server (via tlservice method) to allow a servlet to handle a GET request.

Overriding this method to support a GET request also automatically supports an HTTP HEAD request. A
HEAD request is a GET request that returns no body in the response, only the request header fields.

When overriding this method, read the request data, write the response headers, get the response’s writer or
output stream object, and finally, write the response data. It's best to include content type and encoding.
When using aPrintWriter object to return the response, set the content type before accessing the
PrintWriter object.

The servlet container must write the headers before committing the response, because in HTTP the headers
must be sent before the response body.

Where possible, set the Content-Length header (witls¢€ontentlL ength(int) method), to allow
the servlet container to use a persistent connection to return its response to the client, improving perfor-
mance. The content length is automatically set if the entire response fits inside the response buffer.

The GET method should be safe, that is, without any side effects for which users are held responsible. For
example, most form queries have no side effects. If a client request is intended to change stored data, the
request should use some other HTTP method.

The GET method should also be idempotent, meaning that it can be safely repeated. Sometimes making a
method safe also makes it idempotent. For example, repeating queries is both safe and idempotent, but buy-
ing a product online or modifying data is neither safe nor idempotent.

If the request is incorrectly formattedhGet returns an HTTP “Bad Request” message.

Parameters:
req - anHttpServletRequest object that contains the request the client has made of the servlet
resp - anHttpServletResponse object that contains the response the servlet sends to the client
Throws: 10Exception - if an input or output error is detected when the servlet handles the GET
request

javax.servlet.http HttpServlet
doHead(HttpServietRequest, HttpServletResponse)

ServletException - if the request for the GET could not be handled

See Also: setContentType(String)

doHead(HttpServletRequest, HttpServietResponse)

protected void doHead(HttpServletRequest req, HttpServiletResponse resp)

Receives an HTTP HEAD request from the protededrice method and handles the request. The client
sends a HEAD request when it wants to see only the headers of a response, such as Content-Type or Con-
tent-Length. The HTTP HEAD method counts the output bytes in the response to set the Content-Length
header accurately.

If you override this method, you can avoid computing the response body and just set the response headers
directly to improve performance. Make sure thatdoélead method you write is both safe and idempotent
(that is, protects itself from being called multiple times for one HTTP HEAD request).

If the HTTP HEAD request is incorrectly formattetbHead returns an HTTP “Bad Request” message.

Parameters:
req - the request object that is passed to the servlet

resp - the response object that the servlet uses to return the headers to the clien
Throws: I0Exception - if an input or output error occurs

ServletException - if the request for the HEAD could not be handled

doOptions(HttpServletRequest, HitpServletResponse)

protected void doOptions(HttpServietRequest req, HttpServletResponse resp)

Called by the server (via theervice method) to allow a servlet to handle a OPTIONS request. The
OPTIONS request determines which HTTP methods the server supports and returns an appropriate header.
For example, if a servlet overriddeGet , this method returns the following header:

Allow: GET, HEAD, TRACE, OPTIONS

There’s no need to override this method unless the servlet implements new HTTP methods, beyond those
implemented by HTTP 1.1.

Parameters:
req - theHttpServietRequest object that contains the request the client made of the servlet
resp - theHttpServietResponse object that contains the response the servlet returns to the
client

Throws: 10Exception - if an input or output error occurs while the servlet is handling the OPTIONS
request
ServletException - if the request for the OPTIONS cannot be handled

doPost(HttpServletRequest, HttpServietResponse)

protected void doPost(HttpServletRequest req, HttpServletResponse resp)

Called by the server (via theervice method) to allow a servlet to handle a POST request. The HTTP
POST method allows the client to send data of unlimited length to the Web server a single time and is useful
when posting information such as credit card numbers.

85

HttpServlet javax.servlet.http

doPut(HttpServletRequest, HttpServietResponse)

When overriding this method, read the request data, write the response headers, get the response’s writer or
output stream object, and finally, write the response data. It's best to include content type and encoding.
When using aPrintWriter object to return the response, set the content type before accessing the
PrintWriter object.

The servlet container must write the headers before committing the response, because in HTTP the headers
must be sent before the response body.

Where possible, set the Content-Length header (witls¢ti€ontentlL ength(int) method), to allow
the servlet container to use a persistent connection to return its response to the client, improving perfor-
mance. The content length is automatically set if the entire response fits inside the response buffer.

When using HTTP 1.1 chunked encoding (which means that the response has a Transfer-Encoding header),
do not set the Content-Length header.

This method does not need to be either safe or idempotent. Operations requested through POST can have
side effects for which the user can be held accountable, for example, updating stored data or buying items
online.

If the HTTP POST request is incorrectly formattddPost returns an HTTP “Bad Request” message.

Parameters:
req - anHttpServletRequest object that contains the request the client has made of the servlet

resp -anHttpServletResponse object that contains the response the servlet sends to the client

Throws: I0Exception - if an input or output error is detected when the servlet handles the request
ServletException - if the request for the POST could not be handled

See Also: ServletOutputStream , setContentType(String)

doPut(HttpServletRequest, HttpServietResponse)

86

protected void doPut(HttpServietRequest req, HttpServletResponse resp)

Called by the server (via theervice method) to allow a servlet to handle a PUT request. The PUT oper-
ation allows a client to place a file on the server and is similar to sending a file by FTP.

When overriding this method, leave intact any content headers sent with the request (including Content-
Length, Content-Type, Content-Transfer-Encoding, Content-Encoding, Content-Base, Content-Language,
Content-Location, Content-MD5, and Content-Range). If your method cannot handle a content header, it
must issue an error message (HTTP 501 - Not Implemented) and discard the request. For more information
on HTTP 1.1, see RFC 2068 .

This method does not need to be either safe or idempotent. Operatiodskhdt performs can have side
effects for which the user can be held accountable. When using this method, it may be useful to save a copy
of the affected URL in temporary storage.

If the HTTP PUT request is incorrectly formatteddPut returns an HTTP “Bad Request” message.

Parameters:
req -theHttpServietRequest object that contains the request the client made of the servlet
resp -theHttpServietResponse object that contains the response the servlet returns to the
client

Throws: 10Exception - if aninput or output error occurs while the servlet is handling the PUT request
ServletException - if the request for the PUT cannot be handled

javax.servlet.http HttpServlet
doTrace(HttpServletRequest, HttpServlietResponse)

doTrace(HttpServietRequest, HttpServletResponse)

protected void doTrace(HttpServietRequest req, HttpServietResponse resp)

Called by the server (via theervice method) to allow a servlet to handle a TRACE request. A TRACE
returns the headers sent with the TRACE request to the client, so that they can be used in debugging.
There’s no need to override this method.

Parameters:
req - theHttpServletRequest object that contains the request the client made of the servlet
resp - theHttpServietResponse object that contains the response the servlet returns to the
client

Throws: 10Exception - if an input or output error occurs while the servlet is handling the TRACE
request
ServletException - if the request for the TRACE cannot be handled

getLastModified(HttpServletRequest)

protected long getLastModified(HttpServletRequest req)

Returns the time theélttpServietRequest object was last modified, in milliseconds since midnight
January 1, 1970 GMT. If the time is unknown, this method returns a negative number (the default).

Servlets that support HTTP GET requests and can quickly determine their last modification time should
override this method. This makes browser and proxy caches work more effectively, reducing the load on
server and network resources.

Parameters:
req - theHttpServletRequest object that is sent to the servlet
Returns: along integer specifying the time théttpServietRequest object was last modified, in

milliseconds since midnight, January 1, 1970 GMT, or -1 if the time is not known

service(HttpServletRequest, HttpServietResponse)

protected void service(HttpServietRequest req, HttpServietResponse resp)

Receives standard HTTP requests from the pud#ivice method and dispatches them to theXXX
methods defined in this class. This method is an HTTP-specific version stthieze(ServietRe-

guest, ServletResponse) method. There’s no need to override this method.

Parameters:
req - theHttpServletRequest object that contains the request the client made of the servlet
resp - theHttpServietResponse object that contains the response the servlet returns to the
client

Throws: 10Exception - if an input or output error occurs while the servlet is handling the TRACE
request
ServletException - if the request for the TRACE cannot be handled

See Also: service(ServletRequest, ServletResponse)

87

HttpServlet javax.servlet.http

service(ServletRequest, ServletResponse)

service(ServletRequest, ServletResponse)

88

public void service(ServletRequest req, ServletResponse res)

Dispatches client requests to the protesiedice method. There’s no need to override this method.

Specified By: service(ServletRequest, ServletResponse) in interfaceServlet

Overrides: service(ServletRequest, ServletResponse) in classGenericServlet

Parameters:
req - theHttpServletRequest object that contains the request the client made of the servlet
resp - theHttpServietResponse object that contains the response the servlet returns to the
client

Throws: I0Exception - if an input or output error occurs while the servlet is handling the TRACE
request
ServletException - if the request for the TRACE cannot be handled

See Also: service(ServletRequest, ServletResponse)

javax.servlet.http HttpServletRequest
service(ServletRequest, ServletResponse)

javax.servlet.http

HttpServietRequest

Syntax

public interface HttpServletRequest extends ServletRequest

All Superinterfaces: ServletRequest

All Known Implementing Classes: HttpServietRequestWrapper

Description
Extends thé&ervletRequest interface to provide request information for HTTP servlets.
The servlet container creates lditpServietRequest object and passes it as an argument to the servlet's

service methodglpGet , doPost , etc).

Member Summary

Fields

BASIC_AUTH String identifier for Basic authentication.

CLIENT CERT_AUTH String identifier for Basic authentication.

DIGEST_AUTH String identifier for Basic authentication.

EFORM_AUTH String identifier for Basic authentication.

Methods

getAuthType() Returns the name of the authentication scheme used to protect the servlet.

getContextPath() Returns the portion of the request URI that indicates the context of the request,

getCookies() Returns an array containing all of tBeokie objects the client sent with this
request.

getDateHeader(String) Returns the value of the specified request headeloag avalue that represents a
Date object.

getHeader(String) Returns the value of the specified request headeStasg

getHeaderNames() Returns an enumeration of all the header names this request contains.

getHeaders(String) Returns all the values of the specified request header Exsuameration of
String objects.

getintHeader(String) Returns the value of the specified request headerias an

getMethod() Returns the name of the HTTP method with which this request was made, for gxam-
ple, GET, POST, or PUT.

getPathinfo() Returns any extra path information associated with the URL the client sent when it
made this request.

getPathTranslated() Returns any extra path information after the servlet name but before the query string,
and translates it to a real path.

getQueryString() Returns the query string that is contained in the request URL after the path.

getRemoteUser() Returns the login of the user making this request, if the user has been authenticated, or
null if the user has not been authenticated.

getRequestedSes- Returns the session ID specified by the client.

sionld()

getRequestURI() Returns the part of this request’s URL from the protocol nhame up to the query dtring
in the first line of the HTTP request.

89

HttpServletRequest

BASIC_AUTH

javax.servlet.http

Member Summary

getRequestURL() Reconstructs the URL the client used to make the request.
getServletPath() Returns the part of this request’s URL that calls the servlet.
getSession() Returns the current session associated with this request, or if the request does n

getSession(boolean)

getUserPrincipal()

isRequestedSessionld-

FromCookie()

isRequestedSessionld-

FromUrl()

isRequestedSessionld-

FromURL()

isRequestedSessionld-

Valid()

isUserlnRole(String)

a session, creates one.
Returns the curreiittpSession associated with this request or, if if there is ng
current session arateate s true, returns a new session.

Returns gava.security.Principal object containing the name of the cur-
rent authenticated user.

Checks whether the requested session ID came in as a cookie.

Checks whether the requested session ID came in as part of the request URL.
Checks whether the requested session ID is still valid.

Returns a boolean indicating whether the authenticated user is included in the
fied logical “role”.

bt have

speci-

Inherited Member Summary

Methods inherited from interface ServletRequest

getAttribute(String) getAttributeNames() , getCharacterEncoding() , setCharacterEncod-
ing(String) getContentLength() getContentType() getinputStream() getParame-
ter(String) getParameterNames() getParameterValues(String) getParameterMap()
getProtocol() getScheme() getServerName() getServerPort() getReader() getRem-
oteAddr() getRemoteHost() setAttribute(String, Object) removeAttribute(String)
getLocale() , getlLocales() isSecure() getRequestDispatcher(String) getReal-
Path(Strin

Fields

BASIC_AUTH

public static final java.lang.String BASIC_AUTH

String identifier for Basic authentication. Value “BASIC”

CLIENT_CERT_AUTH

public static final java.lang.String CLIENT_CERT_AUTH
String identifier for Basic authentication. Value “CERT-CLIENT”

DIGEST_AUTH

90

javax.servlet.http HttpServletRequest
FORM_AUTH

public static final java.lang.String DIGEST_AUTH
String identifier for Basic authentication. Value “DIGEST”

FORM_AUTH
public static final java.lang.String FORM_AUTH

String identifier for Basic authentication. Value “FORM”

Methods

getAuthType()
public java.lang.String getAuthType()

Returns the name of the authentication scheme used to protect the servlet. All servlet containers support
BASIC_AUTH, FORM_AUTH, and CLIENT_CERT_AUTH and may support DIGEST_AUTH. If the
servlet is not authenticatedll is returned.

Same as the value of the CGI variable AUTH_TYPE.

Returns: aString specifying the name of the authentication schemeulbr if the request was not
authenticated

getContextPath()
public java.lang.String getContextPath()

Returns the portion of the request URI that indicates the context of the request. The context path always
comes first in a request URI. The path starts with a “/” character but does not end with a “/” character. For
servlets in the default (root) context, this method returns “”. The container does not decode this string.

Returns: aString specifying the portion of the request URI that indicates the context of the request

getCookies()
public Cookie [] getCookies()

Returns an array containing all of t@®okie objects the client sent with this request. This method returns
null if no cookies were sent.

Returns: an array of all th€ookies included with this request, oull if the request has no cookies

getDateHeader(String)
public long getDateHeader(java.lang.String name)

Returns the value of the specified request header@sga value that represents@ate object. Use this
method with headers that contain dates, sudfilsdified-Since

The date is returned as the number of milliseconds since January 1, 1970 GMT. The header name is case
insensitive.

91

HttpServletRequest javax.servlet.http

getHeader(String)

If the request did not have a header of the specified name, this method returns -1. If the header can't be con-
verted to a date, the method throwdleegalArgumentException

Parameters:
name - aString specifying the name of the header

Returns: along value representing the date specified in the header expressed as the number of
milliseconds since January 1, 1970 GMT, or -1 if the named header was not included with the reqest

Throws: lllegalArgumentException - If the header value can’t be converted to a date

getHeader(String)

public java.lang.String getHeader(java.lang.String name)

Returns the value of the specified request headeSasray . If the request did not include a header of the
specified name, this method retumgll . The header name is case insensitive. You can use this method
with any request header.

Parameters:
name - aString specifying the header name

Returns: aString containing the value of the requested headetubr if the request does not have a
header of that name

getHeaderNames()

public java.util.Enumeration getHeaderNames()

Returns an enumeration of all the header names this request contains. If the request has no headers, this
method returns an empty enumeration.

Some servlet containers do not allow do not allow servlets to access headers using this method, in which
case this method returnsill

Returns: an enumeration of all the header names sent with this request; if the request has no headers, an
empty enumeration; if the servlet container does not allow servlets to use this mathod,

getHeaders(String)

92

public java.util. Enumeration getHeaders(java.lang.String name)
Returns all the values of the specified request header Easuameration of String objects.

Some headers, suchAscept-Language can be sent by clients as several headers each with a different
value rather than sending the header as a comma separated list.

If the request did not include any headers of the specified name, this method returns aikeuméra-
tion . The header name is case insensitive. You can use this method with any request header.

Parameters:
name - aString specifying the header name

Returns: anEnumeration containing the values of the requested header. If the request does not have
any headers of that name return an empty enumeration. If the container does not allow access to header
information, return null

javax.servlet.http HttpServletRequest
getintHeader(String)

getintHeader(String)
public int getintHeader(java.lang.String name)

Returns the value of the specified request header astanlf the request does not have a header of the
specified name, this method returns -1. If the header cannot be converted to an integer, this method throws a
NumberFormatException

The header name is case insensitive.

Parameters:
name - aString specifying the name of a request header

Returns: an integer expressing the value of the request header or -1 if the request doesn’t have a header of
this name

Throws: NumberFormatException - If the header value can’t be converted taran

getMethod()
public java.lang.String getMethod()

Returns the name of the HTTP method with which this request was made, for example, GET, POST, or
PUT. Same as the value of the CGI variable REQUEST_METHOD.

Returns: aString specifying the name of the method with which this request was made

getPathinfo()
public java.lang.String getPathinfo()

Returns any extra path information associated with the URL the client sent when it made this request. The
extra path information follows the servlet path but precedes the query string. This method nedlirng
there was no extra path information.

Same as the value of the CGI variable PATH_INFO.

Returns: aString , decoded by the web container, specifying extra path information that comes after the
servlet path but before the query string in the request URhutir if the URL does not have any extra
path information

getPathTranslated()
public java.lang.String getPathTranslated()

Returns any extra path information after the servlet name but before the query string, and translates it to a
real path. Same as the value of the CGI variable PATH_TRANSLATED.

If the URL does not have any extra path information, this method retuiiis . The web container does
not decode thins string.

Returns: aString specifying the real path, aull if the URL does not have any extra path
information

getQueryString()
public java.lang.String getQueryString()

93

HttpServletRequest javax.servlet.http
getRemoteUser()

Returns the query string that is contained in the request URL after the path. This method maturnié
the URL does not have a query string. Same as the value of the CGI variable QUERY_STRING.

Returns: aString containing the query string aull if the URL contains no query string. The value
is not decoded by the container.

getRemoteUser()
public java.lang.String getRemoteUser()

Returns the login of the user making this request, if the user has been authenticatéd, drthe user has
not been authenticated. Whether the user name is sent with each subsequent request depends on the browser
and type of authentication. Same as the value of the CGI variable REMOTE_USER.

Returns: aString specifying the login of the user making this requeshutix/code if the
user login is not known

getRequestedSessionld()
public java.lang.String getRequestedSessionld()

Returns the session ID specified by the client. This may not be the same as the ID of the actual session in
use. For example, if the request specified an old (expired) session ID and the server has started a new ses-
sion, this method gets a new session with a new ID. If the request did not specify a session ID, this method
returnsnull

Returns: aString specifying the session ID, aull if the request did not specify a session 1D
See Also: isRequestedSessionldValid()

getRequestURI()
public java.lang.String getRequestURI()

Returns the part of this request’s URL from the protocol name up to the query string in the first line of the
HTTP request. The web container does not decode this String. For example:

First line of HTTP request Returned

Value POST /some/path.html HTTP/1.1/
some/path.html GET http://foo.bar/

a.html HTTP/1.0 /a.html HEAD /xyz?a=b
HTTP/1.1/xyz

To reconstruct an URL with a scheme and hostgeseequestURL (HttpServietRequest)

Returns: aString containing the part of the URL from the protocol name up to the query string
See Also: getRequestURL(HttpServletRequest)

94

javax.servlet.http HttpServletRequest
getRequestURL()

getRequestURL()
public java.lang.StringBuffer getRequestURLY()

Reconstructs the URL the client used to make the request. The returned URL contains a protocol, server
name, port number, and server path, but it does not include query string parameters.

Because this method returnSaingBuffer , not a string, you can modify the URL easily, for example,
to append query parameters.

This method is useful for creating redirect messages and for reporting errors.

Returns: aStringBuffer object containing the reconstructed URL

getServletPath()

public java.lang.String getServletPath()

Returns the part of this request’s URL that calls the servlet. This includes either the servlet name or a path

to the servlet, but does not include any extra path information or a query string. Same as the value of the
CGl variable SCRIPT_NAME.

Returns: aString containing the name or path of the servlet being called, as specified in the request
URL, decoded.

getSession()
public HttpSession _ getSession()

Returns the current session associated with this request, or if the request does not have a session, creates
one.

Returns: theHttpSession associated with this request

See Also: getSession(boolean)

getSession(boolean)
public HttpSession _ getSession(boolean create)

Returns the currentttpSession associated with this request or, if if there is no current session and
create s true, returns a new session.

If create isfalse and the request has no valttpSession |, this method returnsull

To make sure the session is properly maintained, you must call this method before the response is commit-
ted.

Parameters:

<code>true</code> -to create a new session for this request if necesdatye to returnnull
if there’s no current session

Returns: theHttpSession associated with this requestimull if create isfalse and the request
has no valid session

See Also: getSession()

95

HttpServletRequest javax.servlet.http
getUserPrincipal()

getUserPrincipal()
public java.security.Principal getUserPrincipal()

Returns gava.security.Principal object containing the name of the current authenticated user. If
the user has not been authenticated, the method retutns

Returns: ajava.security.Principal containing the name of the user making this requast;
if the user has not been authenticated

isRequestedSessionldFromCookie()
public boolean isRequestedSessionldFromCookie()
Checks whether the requested session ID came in as a cookie.
Returns: true if the session ID came in as a cookie; otherwilee

See Also: getSession(boolean)

isRequestedSessionldFromUrl()
public boolean isRequestedSessionldFromUrl()

Deprecated. As of Version 2.1 of the Java Servlet API, islRequestedSessionldFromURL()
instead.

isSRequestedSessionldFromURL()
public boolean isRequestedSessionldFromURL()
Checks whether the requested session ID came in as part of the request URL.
Returns: true if the session ID came in as part of a URL; otherviaee

See Also: getSession(boolean)

isRequestedSessionldValid()
public boolean isRequestedSessionldValid()
Checks whether the requested session ID is still valid.

Returns: true if this request has an id for a valid session in the current session ctaisext;
otherwise

See Also: getRequestedSessionld() , getSession(boolean) , HttpSessionContext

isUserInRole(String)
public boolean isUserInRole(java.lang.String role)

Returns a boolean indicating whether the authenticated user is included in the specified logical “role”.
Roles and role membership can be defined using deployment descriptors. If the user has not been authenti-
cated, the method returfase

Parameters:

96

javax.servlet.http HttpServletRequest
isUserInRole(String)

role -aString specifying the name of the role

Returns: aboolean indicating whether the user making this request belongs to a givefatsée; if
the user has not been authenticated

97

HttpServletRequestWrapper javax.servlet.http
isUserInRole(String)

javax.servlet.http

HttpServietRequestWrapper

Syntax

public class HttpServletRequestWrapper extends ServletRequestWrapper implements
HttpServietRequest

java.lang.Object

+-- ServletRequestWrapper

I
+-- javax.servlet.http.HttpServletRequestWrapper

All Implemented Interfaces: HttpServietRequest , ServletRequest

Description

Provides a convenient implementation of the HttpServletRequest interface that can be subclassed by developers
wishing to adapt the request to a Servlet. This class implements the Wrapper or Decorator pattern. Methods
default to calling through to the wrapped request object.

Since: v2.3

See Also: HttpServletRequest

Member Summary

Constructors

HttpServletRequest- Constructs a request object wrapping the given request.

Wrapper(HttpServle-

tRequest)

Methods

getAuthType() The default behavior of this method is to return getAuthType() on the wrapped
request object.

getContextPath() The default behavior of this method is to return getContextPath() on the wrappead
request object.

getCookies() The default behavior of this method is to return getCookies() on the wrapped request
object.

getDateHeader(String) The default behavior of this method is to return getDateHeader(String name) on the
wrapped request object.

getHeader(String) The default behavior of this method is to return getHeader(String name) on the
wrapped request object.

getHeaderNames() The default behavior of this method is to return getHeaderNames() on the wrapped
request object.

getHeaders(String) The default behavior of this method is to return getHeaders(String name) on the
wrapped request object.

getintHeader(String) The default behavior of this method is to return getintHeader(String name) on the
wrapped request object.

98

javax.servlet.http HttpServletRequestWrapper

isUserInRole(String)

Member Summary

o

3%

9%
o

L

getMethod() The default behavior of this method is to return getMethod() on the wrapped request
object.

getPathinfo() The default behavior of this method is to return getPathinfo() on the wrapped request
object.

getPathTranslated() The default behavior of this method is to return getPathTranslated() on the wrapped
request object.

getQueryString() The default behavior of this method is to return getQueryString() on the wrappe
request object.

getRemoteUser() The default behavior of this method is to return getRemoteUser() on the wrapped
request object.

getRequestedSes- The default behavior of this method is to return getRequestedSessionld() on th

sionld() wrapped request object.

getRequestURI() The default behavior of this method is to return getRequestURI() on the wrappad
request object.

getRequestURL() The default behavior of this method is to return getRequestURL() on the wrapp
request object.

getServletPath() The default behavior of this method is to return getServletPath() on the wrappe
request object.

getSession() The default behavior of this method is to return getSession() on the wrapped request

getSession(boolean)

getUserPrincipal()

isRequestedSessionld-

FromCookie()

isRequestedSessionld-

FromUrl()

isRequestedSessionld-

FromURL()

isRequestedSessionld-

Valid()

isUserInRole(String)

object.
The default behavior of this method is to return getSession(boolean create) on the
wrapped request object.
The default behavior of this method is to return getUserPrincipal() on the wrapped
request object.
The default behavior of this method is to return isRequestedSessionldFromCoqkie()
on the wrapped request object.
The default behavior of this method is to return isRequestedSessionldFromUrl() on
the wrapped request object.
The default behavior of this method is to return isRequestedSessionldFromURL() on
the wrapped request object.

The default behavior of this method is to return isRequestedSessionldValid() on
wrapped request object.

The default behavior of this method is to return isUserInRole(String role) on the
wrapped request object.

he

—

Inherited Member Summary

Fields inherited from interface HttpServletRequest
BASIC_AUTH FORM_AUTH CLIENT_CERT_AUTH DIGEST_AUTH

Methods inherited from classServletRequestWrapper
getRequest() , setRequest(ServletRequest)

getAttribute(String) getAttributeNames()

getCharacterEncoding()

setCharacterEncoding(String)

getContentlLength() , getContent-

Type() , getlnputStream()

getParameter(String)

getParameterMap() , getParameter-

Names() , getParameterValues(String) , getProtocol() , getScheme() , getServerName()

getServerPort() , getReader()

, getRemoteAddr() , getRemoteHost() , setAttribute(String,

Object) , removeAttribute(String)

getLocale() , getLocales() , isSecure() , getRequest-

Dispatcher(String)

getRealPath(String)

Methods inherited from class java.lang.Object

99

HttpServletRequestWrapper javax.servlet.http
HttpServiletRequestWrapper(HttpServletRequest)

Inherited Member Summary

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

Methods inherited from interface ServletRequest

getAttribute(String) , getAttributeNames() , getCharacterEncoding() , setCharacterEncod-
ing(String) , getContentLength() , getContentType() ., getlnputStream() , getParame-
ter(String) , getParameterNames() , getParameterValues(String) , getParameterMap()
getProtocol() , getScheme() , getServerName() , getServerPort() , getReader() , getRem-
oteAddr() , getRemoteHost() , setAttribute(String, Object) , removeAttribute(String)
getLocale() , getLocales() , isSecure() , getRequestDispatcher(String) , getReal-
Path(String)

Constructors

HttpServletRequestWrapper(HttpServietRequest)

public HttpServletRequestWrapper(HttpServiletRequest request)

Constructs a request object wrapping the given request.
Throws: java.lang.lllegalArgumentException - if the request is null

Methods

getAuthType()
public java.lang.String getAuthType()
The default behavior of this method is to return getAuthType() on the wrapped request object.
Specified By: getAuthType() in interfaceHttpServietRequest

getContextPath()
public java.lang.String getContextPath()
The default behavior of this method is to return getContextPath() on the wrapped request object.
Specified By: getContextPath() in interfaceHttpServietRequest

getCookies()
public Cookie [] getCookies()

The default behavior of this method is to return getCookies() on the wrapped request object.

Specified By: getCookies() in interfaceHttpServietRequest

100

javax.servlet.http HttpServletRequestWrapper
getDateHeader(String)

getDateHeader(String)
public long getDateHeader(java.lang.String name)
The default behavior of this method is to return getDateHeader(String name) on the wrapped request object.

Specified By: getDateHeader(String) in interfaceHttpServietRequest

getHeader(String)
public java.lang.String getHeader(java.lang.String name)
The default behavior of this method is to return getHeader(String name) on the wrapped request object.

Specified By: getHeader(String) in interfaceHttpServietRequest

getHeaderNames()
public java.util.Enumeration getHeaderNames()
The default behavior of this method is to return getHeaderNames() on the wrapped request object.
Specified By: getHeaderNames() _in interfaceHttpServietRequest

getHeaders(String)
public java.util. Enumeration getHeaders(java.lang.String name)

The default behavior of this method is to return getHeaders(String name) on the wrapped request object.

Specified By: getHeaders(String) in interfaceHttpServietRequest

getintHeader(String)
public int getintHeader(java.lang.String name)

The default behavior of this method is to return getintHeader(String name) on the wrapped request object.

Specified By: getintHeader(String) in interfaceHttpServietRequest

getMethod()
public java.lang.String getMethod()
The default behavior of this method is to return getMethod() on the wrapped request object.
Specified By: getMethod() in interfaceHttpServietRequest

getPathinfo()
public java.lang.String getPathinfo()
The default behavior of this method is to return getPathinfo() on the wrapped request object.
Specified By: getPathinfo() in interfaceHttpServietRequest

101

HttpServletRequestWrapper javax.servlet.http
getPathTranslated()

getPathTranslated()
public java.lang.String getPathTranslated()
The default behavior of this method is to return getPathTranslated() on the wrapped request object.

Specified By: getPathTranslated() in interfaceHttpServietRequest

getQueryString()
public java.lang.String getQueryString()
The default behavior of this method is to return getQueryString() on the wrapped request object.

Specified By: getQueryString() in interfaceHttpServlietRequest

getRemoteUser()
public java.lang.String getRemoteUser()
The default behavior of this method is to return getRemoteUser() on the wrapped request object.
Specified By: getRemoteUser() _in interfaceHttpServietRequest

getRequestedSessionid()
public java.lang.String getRequestedSessionld()

The default behavior of this method is to return getRequestedSessionld() on the wrapped request object.

Specified By: getRequestedSessionld() in interfaceHttpServietRequest

getRequestURI()
public java.lang.String getRequestURI()
The default behavior of this method is to return getRequestURI() on the wrapped request object.

Specified By: getRequestURI() in interfaceHttpServletRequest

getRequestURL()
public java.lang.StringBuffer getRequestURL()
The default behavior of this method is to return getRequestURL() on the wrapped request object.

Specified By: getRequestURL() in interfaceHttpServietRequest

getServletPath()
public java.lang.String getServletPath()
The default behavior of this method is to return getServletPath() on the wrapped request object.
Specified By: getServletPath() in interfaceHttpServietRequest

102

javax.servlet.http HttpServletRequestWrapper
getSession()

getSession()

public HttpSession getSession()
The default behavior of this method is to return getSession() on the wrapped request object.

Specified By: getSession() in interfaceHttpServietRequest

getSession(boolean)
public HttpSession _ getSession(boolean create)
The default behavior of this method is to return getSession(boolean create) on the wrapped request object.

Specified By: getSession(boolean) in interfaceHttpServietRequest

getUserPrincipal()
public java.security.Principal getUserPrincipal()
The default behavior of this method is to return getUserPrincipal() on the wrapped request object.
Specified By: getUserPrincipal() in interfaceHttpServietRequest

isRequestedSessionldFromCookie()
public boolean isRequestedSessionldFromCookie()

The default behavior of this method is to return isRequestedSessionldFromCookie() on the wrapped request
object.

Specified By: isRequestedSessionldFromCookie() in interfaceHttpServietRequest

isRequestedSessionldFromUrl()
public boolean isRequestedSessionldFromUrl()

The default behavior of this method is to return isRequestedSessionldFromUrl() on the wrapped request
object.

Specified By: isRequestedSessionldFromUrl() in interfaceHttpServietRequest

isRequestedSessionldFromURL()
public boolean isRequestedSessionldFromURL()

The default behavior of this method is to return isRequestedSessionldFromURL() on the wrapped request
object.

Specified By: isRequestedSessionldFromURL () in interfaceHttpServietRequest

isRequestedSessionldValid()
public boolean isRequestedSessionldValid()

The default behavior of this method is to return isRequestedSessionldValid() on the wrapped request object.

103

HttpServletRequestWrapper javax.servlet.http
isUserInRole(String)

Specified By: isRequestedSessionldValid() in interfaceHttpServietRequest

isUserInRole(String)
public boolean isUserInRole(java.lang.String role)
The default behavior of this method is to return isUserIinRole(String role) on the wrapped request object.

Specified By: isUserInRole(String) in interfaceHttpServietRequest

104

javax.servlet.http HttpServletResponse

isUserInRole(String)

javax.servlet.http

HttpServietResponse

Syntax

public interface HttpServletResponse extends ServletResponse

All Superinterfaces: ServletResponse

All Known Implementing Classes: HttpServletResponseWrapper

Description
Extends the&ServietResponse interface to provide HTTP-specific functionality in sending a response. For
example, it has methods to access HTTP headers and cookies.

The servlet container creates lditpServietRequest
service methodslpGet , doPost , etc).

object and passes it as an argument to the servlet's

See Also: ServletResponse

Member Summary

Fields
SC_ACCEPTED

SC_BAD_GATEWAY

SC_BAD_REQUEST
SC_CONFLICT

SC_CONTINUE
SC_CREATED

SC_EXPECTATION_FAILED

SC_FORBIDDEN
SC_GATEWAY_TIMEOUT

SC_GONE

SC_HTTP_VERSION_NOT_S
UPPORTED
SC_INTERNAL_SERVER_ER
ROR
SC_LENGTH_REQUIRED

SC_METHOD_NOT_ALLOWED

Status code (202) indicating that a request was accepted for processing, but was not
completed.
Status code (502) indicating that the HTTP server received an invalid response ffom a
server it consulted when acting as a proxy or gateway.
Status code (400) indicating the request sent by the client was syntactically incprrect.
Status code (409) indicating that the request could not be completed due to a conflict
with the current state of the resource.

Status code (100) indicating the client can continue.
Status code (201) indicating the request succeeded and created a new resource on the
server.
Status code (417) indicating that the server could not meet the expectation given in
the Expect request header.
Status code (403) indicating the server understood the request but refused to fulfill it.
Status code (504) indicating that the server did not receive a timely response from the
upstream server while acting as a gateway or proxy.
Status code (410) indicating that the resource is no longer available at the server and
no forwarding address is known.
Status code (505) indicating that the server does not support or refuses to support the
HTTP protocol version that was used in the request message.
Status code (500) indicating an error inside the HTTP server which prevented it from
fulfilling the request.
Status code (411) indicating that the request cannot be handled without a defined
Content-Length

Status code (405) indicating that the method specified iR¢l@est-Line
allowed for the resource identified by tRequest-URI

is not

105

HttpServletResponse

isUserInRole(String)

javax.servlet.http

Member Summary

SC_MOVED_PERMANENTLY

SC_MOVED_TEMPORARILY

SC_MULTIPLE_CHOICES

SC_NO_CONTENT

SC_NON_AUTHORITATIVE
INFORMATION

SC_NOT_ACCEPTABLE

SC_NOT_FOUND
SC_NOT_IMPLEMENTED

SC_NOT_MODIFIED

SC_OK

SC_PARTIAL_CONTENT

SC_PAYMENT_REQUIRED
SC_PRECONDITION_FAILE
D
SC_PROXY_AUTHENTICATI
ON_REQUIRED
SC_REQUEST_ENTITY_TOO
LARGE
SC_REQUEST_TIMEOUT

SC_REQUEST_URI_TOO_LO
NG
SC_REQUESTED_RANGE_NO

T_SATISFIABLE
SC_RESET_CONTENT

SC_SEE_OTHER

SC_SERVICE_UNAVAILABL
E

SC_SWITCHING_PROTOCOL
S

SC_UNAUTHORIZED
SC_UNSUPPORTED_MEDIA _
TYPE

SC_USE_PROXY

Methods
addCookie(Cookie)
addDate-

Header(String, long)
addHeader(String,

String)

Status code (301) indicating that the resource has permanently moved to a new
tion, and that future references should use a new URI with their requests.

Status code (302) indicating that the resource has temporarily moved to anothg
tion, but that future references should still use the original URI to access the res
Status code (300) indicating that the requested resource corresponds to any o

loca-

r loca-
burce.
eofa

set of representations, each with its own specific location.
Status code (204) indicating that the request succeeded but that there was no
information to return.

ew

Status code (203) indicating that the meta information presented by the client did not

originate from the server.

Status code (406) indicating that the resource identified by the request is only capable

of generating response entities which have content characteristics not accepta
according to the accept headerssent in the request.

Status code (404) indicating that the requested resource is not available.
Status code (501) indicating the HTTP server does not support the functionality
needed to fulfill the request.

Status code (304) indicating that a conditional GET operation found that the res
was available and not modified.

Status code (200) indicating the request succeeded normally.

Status code (206) indicating that the server has fulfilled the partial GET request
the resource.

Status code (402) reserved for future use.
Status code (412) indicating that the precondition given in one or more of the red
header fields evaluated to false when it was tested on the server.

Status code (407) indicating that the cliBidSTfirst authenticate itself with the
proxy.

Status code (413) indicating that the server is refusing to process the request by
the request entity is larger than the server is willing or able to process.

Status code (408) indicating that the client did not produce a requestwithin the
that the server was prepared to wait.

Status code (414) indicating that the server is refusing to service the request be
theRequest-URI is longer than the server is willing to interpret.

Status code (416) indicating that the server cannot serve the requested byte ra

Status code (205) indicating that the ag&HOULDreset the document view which
caused the request to be sent.

Status code (303) indicating that the response to the request can be found und
ferent URI.

Status code (503) indicating that the HTTP server is temporarily overloaded, an
unable to handle the request.

Status code (101) indicating the server is switching protocols according to Upg
header.

Status code (401) indicating that the request requires HTTP authentication.
Status code (415) indicating that the server is refusing to service the request be
the entity of the request is in a format not supported by the requested resource f]
requested method.

Status code (305) indicating that the requested resMIU&ET be accessed through
the proxy given by theocation field.

Adds the specified cookie to the response.
Adds a response header with the given name and date-value.

Adds a response header with the given name and value.

le

urce

—

or

uest-

ecause

ime

cause

nge.

er a dif-

d

ade

cause
pr the

106

javax.servlet.http

HttpServletResponse

SC_ACCEPTED

Member Summary

addIntHeader(String,

int)

contains-
Header(String)
encodeRedirec-
tUrl(String)
encodeRedirec-
tURL(String)
encodeUrl(String)

encodeURL(String)

sendError(int)
sendError(int,
String)
sendRedirect(String)

setDate-
Header(String, long)

setHeader(String,

String)
setintHeader(String,

int)
setStatus(int)
setStatus(int,

String)

Adds a response header with the given name and integer value.

Returns a boolean indicating whether the named response header has already 4

Encodes the specified URL for use in tendRedirect method or, if encoding is
not needed, returns the URL unchanged.

Encodes the specified URL by including the session ID in it, or, if encoding is n
needed, returns the URL unchanged.

Sends an error response to the client using the specified status clearing the bu
Sends an error response to the client using the specified status code and desc
message.

Sends a temporary redirect response to the client using the specified redirect Ig
URL.

Sets a response header with the given name and date-value.

Sets a response header with the given nhame and value.
Sets a response header with the given name and integer value.

Sets the status code for this response.

een set.

Dt

fer.
iptive

cation

Inherited Member Summary

Methods inherited from interface ServletResponse

getCharacterEncoding() getOutputStream() getWriter() setContentLength(int) , set-
ContentType(String) setBufferSize(int) getBufferSize() flushBuffer() , reset-
Buffer() , isCommitted() reset() , setlLocale(Locale) getLocale()

Fields

SC_ACCEPTED

public static final int SC_ACCEPTED

Status code (202) indicating that a request was accepted for processing, but was not completed.

SC_BAD_GATEWAY

public static final int SC_BAD_GATEWAY

Status code (502) indicating that the HTTP server received an invalid response from a server it consulted
when acting as a proxy or gateway.

107

HttpServletResponse javax.servlet.http
SC_BAD_REQUEST

SC_BAD_REQUEST
public static final int SC_BAD_REQUEST

Status code (400) indicating the request sent by the client was syntactically incorrect.

SC_CONFLICT
public static final int SC_CONFLICT

Status code (409) indicating that the request could not be completed due to a conflict with the current state
of the resource.

SC_CONTINUE
public static final int SC_CONTINUE
Status code (100) indicating the client can continue.

SC_CREATED
public static final int SC_CREATED

Status code (201) indicating the request succeeded and created a new resource on the server.

SC_EXPECTATION_FAILED
public static final int SC_EXPECTATION_FAILED

Status code (417) indicating that the server could not meet the expectation given in the Expect request
header.

SC_FORBIDDEN
public static final int SC_FORBIDDEN

Status code (403) indicating the server understood the request but refused to fulfill it.

SC_GATEWAY_TIMEOUT
public static final int SC_GATEWAY_TIMEOUT

Status code (504) indicating that the server did not receive a timely response from the upstream server
while acting as a gateway or proxy.

SC_GONE
public static final int SC_GONE

Status code (410) indicating that the resource is no longer available at the server and no forwarding address
is known. This conditioSHOULDbe considered permanent.

108

javax.servlet.http HttpServletResponse
SC_HTTP_VERSION_NOT_SUPPORTED

SC_HTTP_VERSION_NOT_SUPPORTED
public static final int SC_HTTP_VERSION_NOT_SUPPORTED

Status code (505) indicating that the server does not support or refuses to support the HTTP protocol ver-
sion that was used in the request message.

SC_INTERNAL_SERVER_ERROR
public static final int SC_INTERNAL_SERVER_ERROR
Status code (500) indicating an error inside the HTTP server which prevented it from fulfilling the request.

SC_LENGTH_REQUIRED
public static final int SC_LENGTH_REQUIRED
Status code (411) indicating that the request cannot be handled without a @efitext-Length

SC_METHOD_NOT_ALLOWED
public static final int SC_METHOD_NOT_ALLOWED

Status code (405) indicating that the method specified inRbguest-Line is not allowed for the
resource identified by tHeequest-URI

SC_MOVED_PERMANENTLY
public static final int SC_MOVED_PERMANENTLY

Status code (301) indicating that the resource has permanently moved to a new location, and that future ref-
erences should use a new URI with their requests.

SC_MOVED_TEMPORARILY
public static final int SC_MOVED_TEMPORARILY

Status code (302) indicating that the resource has temporarily moved to another location, but that future ref-
erences should still use the original URI to access the resource.

SC_MULTIPLE_CHOICES
public static final int SC_MULTIPLE_CHOICES

Status code (300) indicating that the requested resource corresponds to any one of a set of representations,
each with its own specific location.

SC_NO_CONTENT
public static final int SC_NO_CONTENT

Status code (204) indicating that the request succeeded but that there was no new information to return.

109

HttpServletResponse javax.servlet.http
SC_NON_AUTHORITATIVE_INFORMATION

SC_NON_AUTHORITATIVE_INFORMATION
public static final int SC_NON_AUTHORITATIVE_INFORMATION

Status code (203) indicating that the meta information presented by the client did not originate from the
server.

SC_NOT_ACCEPTABLE
public static final int SC_NOT_ACCEPTABLE

Status code (406) indicating that the resource identified by the request is only capable of generating
response entities which have content characteristics not acceptable according to the accept headerssent in
the request.

SC_NOT_FOUND
public static final int SC_NOT_FOUND

Status code (404) indicating that the requested resource is not available.

SC_NOT_IMPLEMENTED
public static final int SC_NOT_IMPLEMENTED

Status code (501) indicating the HTTP server does not support the functionality needed to fulfill the
request.

SC_NOT_MODIFIED
public static final int SC_NOT_MODIFIED

Status code (304) indicating that a conditional GET operation found that the resource was available and not
modified.

SC_OK
public static final int SC_OK

Status code (200) indicating the request succeeded normally.

SC_PARTIAL_CONTENT
public static final int SC_PARTIAL_CONTENT
Status code (206) indicating that the server has fulfilled the partial GET request for the resource.

SC_PAYMENT_REQUIRED
public static final int SC_PAYMENT_REQUIRED

Status code (402) reserved for future use.

110

javax.servlet.http HttpServletResponse
SC_PRECONDITION_FAILED

SC_PRECONDITION_FAILED
public static final int SC_PRECONDITION_FAILED

Status code (412) indicating that the precondition given in one or more of the request-header fields evalu-
ated to false when it was tested on the server.

SC_PROXY_AUTHENTICATION_REQUIRED
public static final int SC_PROXY_AUTHENTICATION_REQUIRED
Status code (407) indicating that the cliBflSTfirst authenticate itself with the proxy.

SC_REQUEST_ENTITY_TOO_LARGE
public static final int SC_REQUEST_ENTITY_TOO_LARGE

Status code (413) indicating that the server is refusing to process the request because the request entity is
larger than the server is willing or able to process.

SC_REQUEST_TIMEOUT
public static final int SC_REQUEST_TIMEOUT

Status code (408) indicating that the client did not produce a requestwithin the time that the server was pre-
pared to wait.

SC_REQUEST_URI_TOO LONG
public static final int SC_REQUEST_URI_TOO_LONG

Status code (414) indicating that the server is refusing to service the request bec&egubst-URI is
longer than the server is willing to interpret.

SC_REQUESTED_RANGE_NOT_SATISFIABLE
public static final int SC_REQUESTED_RANGE_NOT_SATISFIABLE

Status code (416) indicating that the server cannot serve the requested byte range.

SC_RESET _CONTENT
public static final int SC_RESET_CONTENT

Status code (205) indicating that the ag8rtOULDreset the document view which caused the request to
be sent.

SC_SEE_OTHER
public static final int SC_SEE_OTHER

Status code (303) indicating that the response to the request can be found under a different URI.

111

HttpServletResponse javax.servlet.http
SC_SERVICE_UNAVAILABLE

SC_SERVICE_UNAVAILABLE
public static final int SC_SERVICE_UNAVAILABLE

Status code (503) indicating that the HTTP server is temporarily overloaded, and unable to handle the
request.

SC_SWITCHING_PROTOCOLS
public static final int SC_SWITCHING_PROTOCOLS
Status code (101) indicating the server is switching protocols according to Upgrade header.

SC_UNAUTHORIZED
public static final int SC_UNAUTHORIZED

Status code (401) indicating that the request requires HTTP authentication.

SC_UNSUPPORTED_MEDIA TYPE
public static final int SC_UNSUPPORTED_MEDIA_TYPE

Status code (415) indicating that the server is refusing to service the request because the entity of the
request is in a format not supported by the requested resource for the requested method.

SC_USE_PROXY
public static final int SC_USE_PROXY

Status code (305) indicating that the requested resdtt8Tbe accessed through the proxy given by the
Location field.

Methods

addCookie(Cookie)

public void addCookie(Cookie cookie)

Adds the specified cookie to the response. This method can be called multiple times to set more than one
cookie.

Parameters:
cookie - the Cookie to return to the client

addDateHeader(String, long)

public void addDateHeader(java.lang.String name, long date)

112

javax.servlet.http HttpServletResponse
addHeader(String, String)

Adds a response header with the given name and date-value. The date is specified in terms of milliseconds
since the epoch. This method allows response headers to have multiple values.

Parameters:
name - the name of the header to set

value - the additional date value
See Also: setDateHeader(String. lonq)

addHeader(String, String)
public void addHeader(java.lang.String name, java.lang.String value)

Adds a response header with the given name and value. This method allows response headers to have mul-
tiple values.

Parameters:
name - the name of the header

value - the additional header value
See Also: setHeader(String, String)

addIntHeader(String, int)
public void addIntHeader(java.lang.String name, int value)

Adds a response header with the given name and integer value. This method allows response headers to
have multiple values.

Parameters:
name - the name of the header

value - the assigned integer value
See Also: setintHeader(String, int)

containsHeader(String)
public boolean containsHeader(java.lang.String name)
Returns a boolean indicating whether the named response header has already been set.

Parameters:
name - the header name

Returns: true if the named response header has already bedalset; otherwise

encodeRedirectUrl(String)
public java.lang.String encodeRedirectUrl(java.lang.String url)
Deprecated. As of version 2.1, use encodeRedirectURL(String url) instead

Parameters:
url - the url to be encoded.

Returns: the encoded URL if encoding is needed; the unchanged URL otherwise.

113

HttpServletResponse javax.servlet.http

encodeRedirectURL(String)

encodeRedirectURL(String)

public java.lang.String encodeRedirectURL (java.lang.String url)

Encodes the specified URL for use in thendRedirect method or, if encoding is not needed, returns

the URL unchanged. The implementation of this method includes the logic to determine whether the ses-
sion ID needs to be encoded in the URL. Because the rules for making this determination can differ from
those used to decide whether to encode a normal link, this method is seperate fremctideURL
method.

All URLs sent to theHttpServietResponse.sendRedirect method should be run through this
method. Otherwise, URL rewriting cannot be used with browsers which do not support cookies.

Parameters:
url - the url to be encoded.

Returns: the encoded URL if encoding is needed; the unchanged URL otherwise.

See Also: sendRedirect(String) , encodeUrl(String)

encodeUrl(String)

public java.lang.String encodeUrl(java.lang.String url)
Deprecated. As of version 2.1, use encodeURL(String url) instead

Parameters:
url - the url to be encoded.

Returns: the encoded URL if encoding is needed; the unchanged URL otherwise.

encodeURL(String)

public java.lang.String encodeURL (java.lang.String url)

Encodes the specified URL by including the session ID in it, or, if encoding is not needed, returns the URL
unchanged. The implementation of this method includes the logic to determine whether the session 1D
needs to be encoded in the URL. For example, if the browser supports cookies, or session tracking is turned
off, URL encoding is unnecessary.

For robust session tracking, all URLs emitted by a servlet should be run through this method. Otherwise,
URL rewriting cannot be used with browsers which do not support cookies.

Parameters:
url - the url to be encoded.

Returns: the encoded URL if encoding is needed; the unchanged URL otherwise.

sendError(int)

114

public void sendError(int sc)

Sends an error response to the client using the specified status clearing the buffer. The server defaults to cre-
ating the response to look like an HTML-formatted server error page, setting the content type to “text/
html”, leaving cookies and other headers unmodified. If an error-page declaration has been made for the
web application corresponding to the status code passed in, it will be served back in preference to the sug-
gested msg parameter.

javax.servlet.http HttpServletResponse
sendError(int, String)

If the response has already been committed, this method throws an lllegalStateException. After using this
method, the response should be considered to be committed and should not be written to.

Parameters:
sc - the error status code

Throws: I10Exception - If an input or output exception occurs
lllegalStateException - If the response was committed

sendError(int, String)
public void sendError(int sc, java.lang.String msg)

Sends an error response to the client using the specified status code and descriptive message. The server
generally creates the response to look like a normal server error page.

If the response has already been committed, this method throws an lllegalStateException. After using this
method, the response should be considered to be committed and should not be written to.

Parameters:
sc - the error status code

msg - the descriptive message
Throws: I0Exception - If an input or output exception occurs

lllegalStateException - If the response was committed before this method call

sendRedirect(String)
public void sendRedirect(java.lang.String location)

Sends a temporary redirect response to the client using the specified redirect location URL. This method
can accept relative URLSs; the servlet container must convert the relative URL to an absolute URL before
sending the response to the client. If the location is relative without a leading '/’ the container interprets it as
relative to the current request URI. If the location is relative with a leading '/’ the container interprets it as
relative to the servlet container root.

If the response has already been committed, this method throws an lllegalStateException. After using this
method, the response should be considered to be committed and should not be written to.

Parameters:
location - the redirect location URL

Throws: I0Exception - If an input or output exception occurs

lllegalStateException - If the response was committed

setDateHeader(String, long)
public void setDateHeader(java.lang.String name, long date)

Sets a response header with the given name and date-value. The date is specified in terms of milliseconds
since the epoch. If the header had already been set, the new value overwrites the previous one. The
containsHeader = method can be used to test for the presence of a header before setting its value.

Parameters:
name - the name of the header to set

115

HttpServletResponse javax.servlet.http
setHeader(String, String)

value - the assigned date value

See Also: containsHeader(String) , addDateHeader(String. lonq)

setHeader(String, String)
public void setHeader(java.lang.String name, java.lang.String value)

Sets a response header with the given name and value. If the header had already been set, the new value
overwrites the previous one. TlwntainsHeader method can be used to test for the presence of a
header before setting its value.

Parameters:
name - the name of the header

value - the header value
See Also: containsHeader(String) , addHeader(String, String)

setintHeader(String, int)
public void setintHeader(java.lang.String name, int value)

Sets a response header with the given name and integer value. If the header had already been set, the new
value overwrites the previous one. TtentainsHeader =~ method can be used to test for the presence of
a header before setting its value.

Parameters:
name - the name of the header

value - the assigned integer value

See Also: containsHeader(String) , addIntHeader(String, int)

setStatus(int)

public void setStatus(int sc)

Sets the status code for this response. This method is used to set the return status code when there is no
error (for example, for the status codes SC_OK or SC_MOVED_TEMPORARILY). If there is an error, and

the caller wishes to invoke an error-page defined in the web applicaioseti=rror method should be

used instead.

The container clears the buffer and sets the Location header, preserving cookies and other headers.

Parameters:
sc - the status code

See Also: sendError(int, String)

setStatus(int, String)
public void setStatus(int sc, java.lang.String sm)

Deprecated. As of version 2.1, due to ambiguous meaning of the message parameter. To set a status code
usesetStatus(int) , to send an error with a description ussndError(int, String) . Sets
the status code and message for this response.

116

javax.servlet.http HttpServletResponse
setStatus(int, String)

Parameters:
sc - the status code

sm- the status message

117

HttpServletResponseWrapper javax.servlet.http
setStatus(int, String)

javax.servlet.http

HttpServletResponseWrapper

Syntax

public class HttpServletResponseWrapper extends ServletResponseWrapper implements
HttpServietResponse

java.lang.Object

+-- ServletResponseWrapper

+-- javax.servlet.http.HttpServletResponseWrapper

All Implemented Interfaces: HttpServletResponse , ServletResponse

Description

Provides a convenient implementation of the HttpServletResponse interface that can be subclassed by develop-
ers wishing to adapt the response from a Servlet. This class implements the Wrapper or Decorator pattern.
Methods default to calling through to the wrapped response object.

Since: v2.3

See Also: HttpServletResponse

Member Summary

Constructors

HttpServletResponse- Constructs a response adaptor wrapping the given response.

Wrapper(HttpServlet-

Response)

Methods

addCookie(Cookie) The default behavior of this method is to call addCookie(Cookie cookie) on the
wrapped response object.

addDate- The default behavior of this method is to call addDateHeader(String name, long fate)

Header(String, long) on the wrapped response object.

addHeader(String, The default behavior of this method is to return addHeader(String name, String value)

String) on the wrapped response object.

addintHeader(String, The default behavior of this method is to call addIntHeader(String name, int valug) on

int) the wrapped response object.

contains- The default behavior of this method is to call containsHeader(String name) on the

Header(String) wrapped response object.

encodeRedirec- The default behavior of this method is to return encodeRedirectUrl(String url) on the

tUrl(String) wrapped response object.

encodeRedirec- The default behavior of this method is to return encodeRedirectURL(String url) jon

tURL(String) the wrapped response object.

encodeUrl(String) The default behavior of this method is to call encodeUrl(String url) on the wrapped
response object.

118

javax.servlet.http

HttpServletResponseWrapper

setStatus(int, String)

Member Summary

encodeURL(String)

sendError(int)

sendError(int,

String)
sendRedirect(String)

setDate-
Header(String, long)

setHeader(String,
String)
setintHeader(String,

int)

The default behavior of this method is to call encodeURL(String url) on the wra
response object.

The default behavior of this method is to call sendError(int sc) on the wrapped
response object.

The default behavior of this method is to call sendError(int sc, String msg) on th
wrapped response object.

The default behavior of this method is to return sendRedirect(String location) o
wrapped response object.

The default behavior of this method is to call setDateHeader(String name, long
on the wrapped response object.

The default behavior of this method is to return setHeader(String name, String v|
on the wrapped response object.

The default behavior of this method is to call setintHeader(String name, int value
the wrapped response object.

setStatus(int)

The default behavior of this method is to call setStatus(int sc) on the wrapped
response object.

The default behavior of this method is to call setStatus(int sc, String sm) on the
wrapped response object.

setStatus(int,

String)

bped

e
n the
date)
alue)

) on

Inherited Member Summary

Fields inherited from interface HttpServletResponse

SC_CONTINUE SC_SWITCHING_PROTOCOLSSC_OK SC_CREATED SC_ACCEPTED
SC_NON_AUTHORITATIVE_INFORMATIQNSC_NO_CONTENT SC_RESET_CONTENT
SC_PARTIAL_CONTENT SC_MULTIPLE_CHOICES SC_MOVED_PERMANENTLBC_MOVED_TEMPORARILY
SC_SEE_OTHER SC_NOT_MODIFIED SC_USE_PROXY SC_BAD_REQUEST SC_UNAUTHORIZED
SC_PAYMENT_REQUIREDSC_FORBIDDEN SC_NOT_FOUND SC_METHOD_NOT_ALLOWED
SC_NOT_ACCEPTABLESC_PROXY_AUTHENTICATION_REQUIREISC_REQUEST TIMEOUTSC_CONFLICT
SC_GONE SC_LENGTH_REQUIRED SC_PRECONDITION_FAILED SC_REQUEST ENTITY_TOO_LARGE
SC_REQUEST_URI_TOO_LONGSC_UNSUPPORTED_MEDIA_TYPE
SC_REQUESTED_RANGE_NOT_SATISFIABLESC_EXPECTATION_FAILED SC_INTERNAL_SERVER_ERROR
SC_NOT_IMPLEMENTED SC_BAD_GATEWAYSC_SERVICE_UNAVAILABLE SC_GATEWAY_TIMEOUT
SC_HTTP_VERSION_NOT_SUPPORTED

Methods inherited from classServletResponseWrapper

getResponse() setResponse(ServietResponse) getCharacterEncoding() getOutput-
Stream() getWriter() setContentLength(int) setContentType(String) setBuffer-
Size(int) , getBufferSize() , flushBuffer() , isCommitted() , reset() , resetBuffer() ,
setLocale(Locale) getLocale()

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,

wait

Methods inherited from interface ServletResponse

getCharacterEncoding() getOutputStream() getWriter() setContentLength(int) set-
ContentType(String) setBufferSize(int) getBufferSize() flushBuffer() reset-
Buffer() , isCommitted() , reset() , setLocale(Locale) , getLocale()

119

HttpServletResponseWrapper javax.servlet.http
HttpServletResponseWrapper(HttpServietResponse)

Constructors

HttpServletResponseWrapper(HttpServletResponse)

public HttpServietResponseWrapper(HttpServiletResponse response)

Constructs a response adaptor wrapping the given response.

Throws: java.lang.lllegalArgumentException - if the response is null
Methods
addCookie(Cookie)

public void addCookie(Cookie cookie)

The default behavior of this method is to call addCookie(Cookie cookie) on the wrapped response object.

Specified By: addCookie(Cookie) in interfaceHttpServietResponse

addDateHeader(String, long)
public void addDateHeader(java.lang.String name, long date)

The default behavior of this method is to call addDateHeader(String name, long date) on the wrapped
response object.

Specified By: addDateHeader(String, long) in interfaceHttpServietResponse

addHeader(String, String)
public void addHeader(java.lang.String name, java.lang.String value)

The default behavior of this method is to return addHeader(String name, String value) on the wrapped
response object.

Specified By: addHeader(String, String) in interfaceHttpServietResponse

addIntHeader(String, int)
public void addIntHeader(java.lang.String name, int value)

The default behavior of this method is to call addintHeader(String name, int value) on the wrapped
response object.

Specified By: addIntHeader(String. int) in interfaceHttpServietResponse

containsHeader(String)
public boolean containsHeader(java.lang.String name)

The default behavior of this method is to call containsHeader(String name) on the wrapped response object.

120

javax.servlet.http HttpServletResponseWrapper
encodeRedirectUrl(String)

Specified By: containsHeader(String) in interfaceHttpServietResponse

encodeRedirectUrl(String)
public java.lang.String encodeRedirectUrl(java.lang.String url)

The default behavior of this method is to return encodeRedirectUrl(String url) on the wrapped response
object.

Specified By: encodeRedirectUrl(String) in interfaceHttpServietResponse

encodeRedirectURL(String)
public java.lang.String encodeRedirectURL(java.lang.String url)

The default behavior of this method is to return encodeRedirectURL(String url) on the wrapped response
object.

Specified By: encodeRedirectURL(String) in interfaceHttpServietResponse

encodeUrl(String)
public java.lang.String encodeUrl(java.lang.String url)

The default behavior of this method is to call encodeUrl(String url) on the wrapped response object.

Specified By: encodeUrl(String) in interfaceHttpServietResponse

encodeURL(String)
public java.lang.String encodeURL (java.lang.String url)

The default behavior of this method is to call encodeURL(String url) on the wrapped response object.

Specified By: encodeURL(String) in interfaceHttpServietResponse

sendError(int)
public void sendError(int sc)

The default behavior of this method is to call sendError(int sc) on the wrapped response object.

Specified By: sendError(int) in interfaceHttpServietResponse

Throws: I0Exception

sendError(int, String)
public void sendError(int sc, java.lang.String msg)

The default behavior of this method is to call sendError(int sc, String msg) on the wrapped response object.

Specified By: sendError(int, String) in interfaceHttpServietResponse

Throws: I0Exception

121

HttpServletResponseWrapper javax.servlet.http

sendRedirect(String)

sendRedirect(String)

public void sendRedirect(java.lang.String location)

The default behavior of this method is to return sendRedirect(String location) on the wrapped response
object.

Specified By: sendRedirect(String) in interfaceHttpServietResponse

Throws: I0Exception

setDateHeader(String, long)

public void setDateHeader(java.lang.String name, long date)

The default behavior of this method is to call setDateHeader(String name, long date) on the wrapped
response object.

Specified By: setDateHeader(String, long) in interfaceHttpServietResponse

setHeader(String, String)

public void setHeader(java.lang.String name, java.lang.String value)

The default behavior of this method is to return setHeader(String name, String value) on the wrapped
response object.

Specified By: setHeader(String, String) in interfaceHttpServietResponse

setintHeader(String, int)

public void setintHeader(java.lang.String name, int value)

The default behavior of this method is to call setintHeader(String name, int value) on the wrapped response
object.

Specified By: setIntHeader(String, int) in interfaceHttpServietResponse

setStatus(int)

public void setStatus(int sc)

The default behavior of this method is to call setStatus(int sc) on the wrapped response object.

Specified By: setStatus(int) in interfaceHttpServietResponse

setStatus(int, String)

122

public void setStatus(int sc, java.lang.String sm)
The default behavior of this method is to call setStatus(int sc, String sm) on the wrapped response object.

Specified By: setStatus(int, String) in interfaceHttpServietResponse

javax.servlet.http HttpSession
setStatus(int, String)

javax.servlet.http

HttpSession

Syntax

public interface HttpSession

Description
Provides a way to identify a user across more than one page request or visit to a Web site and to store informa-
tion about that user.

The servlet container uses this interface to create a session between an HTTP client and an HTTP server. The
session persists for a specified time period, across more than one connection or page request from the user. A
session usually corresponds to one user, who may visit a site many times. The server can maintain a session in
many ways such as using cookies or rewriting URLS.

This interface allows servlets to

» View and manipulate information about a session, such as the session identifier, creation time, and last
accessed time
 Bind objects to sessions, allowing user information to persist across multiple user connections
When an application stores an object in or removes an object from a session, the session checks whether the
object implement$ttpSessionBindingListener . If it does, the servlet notifies the object that it has
been bound to or unbound from the session. Natifications are sent after the binding methods complete. For ses-
sion that are invalidated or expire, notifications are sent after the session has been invalidatd or expired.

When container migrates a session between VMs in a distributed container setting, all session atributes imple-
menting thedttpSessionActivationListener interface are notified.

A servlet should be able to handle cases in which the client does not choose to join a session, such as when
cookies are intentionally turned off. Until the client joins the sessisNew returnstrue . If the client

chooses not to join the sessigetSession will return a different session on each request, esiNew will

always returrirue

Session information is scoped only to the current web applicaBenv{etContext), so information stored
in one context will not be directly visible in another.

See Also: HttpSessionBindingListener , HttpSessionContext

Member Summary

Methods

getAttribute(String) Returns the object bound with the specified name in this session)lor if no object
is bound under the name.

getAttributeNames() Returns arfEnumeration of String objects containing the names of all the
objects bound to this session.

getCreationTime() Returns the time when this session was created, measured in milliseconds sinde mid-
night January 1, 1970 GMT.

getld) Returns a string containing the unique identifier assigned to this session.

123

HttpSession

getAttribute(String)

javax.servlet.http

Member Summary

getLastAccessedTime()

getMaxInactivelnter-

val()

getSessionContext()

getValue(String)

getValueNames()

invalidate()
isNew()

putValue(String,

Object)

removeAt-

tribute(String)
removeValue(String)

setAttribute(String,

Object)

setMaxlInactivelnter-

val(int)

Returns the last time the client sent a request associated with this session, as th

e num-

ber of milliseconds since midnight January 1, 1970 GMT, and marked by the tim¢ the

container recieved the request.

Returns the maximum time interval, in seconds, that the servlet container will keep

this session open between client accesses.

Invalidates this session then unbinds any objects bound to it.
Returndrue if the client does not yet know about the session or if the client chod
not to join the session.

Removes the object bound with the specified name from this session.

Binds an object to this session, using the name specified.

Specifies the time, in seconds, between client requests before the servlet contg
will invalidate this session.

Methods

getAttribute(String)

public java.lang.Object getAttribute(java.lang.String name)

Ses

iner

Returns the object bound with the specified name in this sessiomllor if no object is bound under the

name.

Parameters:

name - a string specifying the name of the object

Returns: the object with the specified name

Throws: lllegalStateException

- if this method is called on an invalidated session

getAttributeNames()

public java.util. Enumeration getAttributeNames()

Returns arEnumeration

sion.

Returns: anEnumeration

session

Throws: lllegalStateException

of String

of String

- if this method is called on an invalidated session

getCreationTime()

124

objects containing the names of all the objects bound to this ses-

objects specifying the names of all the objects bound to this

javax.servlet.http HttpSession
getld()

public long getCreationTime()

Returns the time when this session was created, measured in milliseconds since midnight January 1, 1970
GMT.

Returns: along specifying when this session was created, expressed in milliseconds since 1/1/1970
GMT

Throws: lllegalStateException - if this method is called on an invalidated session

getld()
public java.lang.String getld()

Returns a string containing the unique identifier assigned to this session. The identifier is assigned by the
servlet container and is implementation dependent.

Returns: a string specifying the identifier assigned to this session

getLastAccessedTime()
public long getLastAccessedTime()

Returns the last time the client sent a request associated with this session, as the number of milliseconds
since midnight January 1, 1970 GMT, and marked by the time the container recieved the request.

Actions that your application takes, such as getting or setting a value associated with the session, do not
affect the access time.

Returns: along representing the last time the client sent a request associated with this session, expressed
in milliseconds since 1/1/1970 GMT

getMaxInactivelnterval()
public int getMaxInactivelnterval()

Returns the maximum time interval, in seconds, that the servlet container will keep this session open
between client accesses. After this interval, the servlet container will invalidate the session. The maximum
time interval can be set with theetMaxInactivelnterval method. A negative time indicates the
session should never timeout.

Returns: an integer specifying the number of seconds this session remains open between client requests
See Also: setMaxInactivelnterval(int)

getSessionContext()

public HttpSessionContext getSessionContext()

Deprecated. As of Version 2.1, this method is deprecated and has no replacement. It will be removed in a
future version of the Java Servlet API.

getValue(String)

public java.lang.Object getValue(java.lang.String name)

125

HttpSession javax.servlet.http
getValueNames()

Deprecated. As of Version 2.2, this method is replaceddafAttribute(String)

Parameters:
name - a string specifying the name of the object

Returns: the object with the specified name

Throws: lllegalStateException - if this method is called on an invalidated session

getValueNames()
public java.lang.String[] getValueNames()
Deprecated. As of Version 2.2, this method is replaceddefAttributeNames()

Returns: an array ofString objects specifying the names of all the objects bound to this session
Throws: lllegalStateException - if this method is called on an invalidated session

invalidate()
public void invalidate()
Invalidates this session then unbinds any objects bound to it.

Throws: lllegalStateException - if this method is called on an already invalidated session

isNew()

public boolean isNew()

Returnstrue if the client does not yet know about the session or if the client chooses not to join the ses-

sion. For example, if the server used only cookie-based sessions, and the client had disabled the use of
cookies, then a session would be new on each request.

Returns: true if the server has created a session, but the client has not yet joined

Throws: lllegalStateException - if this method is called on an already invalidated session

putValue(String, Object)
public void putValue(java.lang.String name, java.lang.Object value)

Deprecated. As of Version 2.2, this method is replaceddeyAttribute(String, Object)

Parameters:
name - the name to which the object is bound; cannot be null

value - the object to be bound; cannot be null

Throws: lllegalStateException - if this method is called on an invalidated session

removeAttribute(String)
public void removeAttribute(java.lang.String name)

Removes the object bound with the specified name from this session. If the session does not have an object
bound with the specified name, this method does nothing.

126

javax.servlet.http HttpSession
removeValue(String)

After this method executes, and if the object implemétitpSessionBindingListener , the con-
tainer calldHttpSessionBindingListener.valueUnbound

Parameters:
name - the name of the object to remove from this session

Throws: lllegalStateException - if this method is called on an invalidated session

removeValue(String)
public void removeValue(java.lang.String name)

Deprecated. As of Version 2.2, this method is replacedrbgnoveAttribute(String)

Parameters:
name - the name of the object to remove from this session

Throws: lllegalStateException - if this method is called on an invalidated session

setAttribute(String, Object)
public void setAttribute(java.lang.String name, java.lang.Object value)

Binds an object to this session, using the name specified. If an object of the same name is already bound to
the session, the object is replaced.

After this method executes, and if the new object implemetiteSessionBindingListener , the
container call$ttpSessionBindingListener.valueBound

If an object was already bound to this session of this name that impleré&piSessionBinding-
Listener , itsHttpSessionBindingListener.valueUnbound method is called.

Parameters:
name - the name to which the object is bound; cannot be null

value - the object to be bound; cannot be null

Throws: lllegalStateException - if this method is called on an invalidated session

setMaxlInactivelnterval(int)
public void setMaxInactivelnterval(int interval)

Specifies the time, in seconds, between client requests before the servlet container will invalidate this ses-
sion. A negative time indicates the session should never timeout.

Parameters:
interval - An integer specifying the number of seconds

127

HttpSessionActivationListener javax.servlet.http
sessionDidActivate(HttpSessionEvent)

javax.servlet.http

HttpSessionActivationListener

Syntax

public interface HttpSessionActivationListener

Description

Objects that are bound to a session may listen to container events notifying them that sessions will be passivated
and that session will be activated. A container that migrates session between VMs or persists sessions is
required to notify all attributes bound to sessions implementing HttpSessionActivationListener.

Since: 2.3

Member Summary

Methods

sessionDidActi- Notification that the session has just been activated.
vate(HttpSession-

Event)

sessionWillPassi- Notification that the session is about to be passivated.
vate(HttpSession-

Event)

Methods

sessionDidActivate(HttpSessionEvent)

public void sessionDidActivate(HttpSessionEvent se)

Notification that the session has just been activated.

sessionWillPassivate(HttpSessionEvent)

public void sessionWillPassivate(HttpSessionEvent se)

Notification that the session is about to be passivated.

128

javax.servlet.http HttpSessionAttributesListener
attributeAdded(HttpSessionBindingEvent)

javax.servlet.http

HttpSessionAttributesListener

Syntax

public interface HttpSessionAttributesListener extends java.util. EventListener

All Superinterfaces: java.util.EventListener

Description
This listener interface can be implemented in order to get notifications of changes made to sessions within this
web application.

Since: v2.3

Member Summary

Methods

attributeAd- Notification that an attribute has been added to a session.
ded(HttpSessionBind-

ingEvent)
attributeRe- Notification that an attribute has been removed from a session.
moved(HttpSession-

BindingEvent
attributeRe- Notification that an attribute has been replaced in a session.
placed(HttpSession-

BindingEvent)

Methods

attributeAdded(HttpSessionBindingEvent)

public void attributeAdded(HttpSessionBindingEvent se)

Notification that an attribute has been added to a session.

attributeRemoved(HttpSessionBindingEvent)

public void attributeRemoved(HttpSessionBindingEvent se)

Notification that an attribute has been removed from a session.

attributeReplaced(HttpSessionBindingEvent)

public void attributeReplaced(HttpSessionBindingEvent se)

129

HttpSessionAttributesListener javax.servlet.http
attributeReplaced(HttpSessionBindingEvent)

Notification that an attribute has been replaced in a session.

130

javax.servlet.http HttpSessionBindingEvent
attributeReplaced(HttpSessionBindingEvent)

javax.servlet.http

HttpSessionBindingEvent

Syntax

public class HttpSessionBindingEvent extends HttpSessionEvent

java.lang.Object

+--java.util. EventObject

+-- HttpSessionEvent

+-- javax.servlet.http.HttpSessionBindingEvent

All Implemented Interfaces: java.io.Serializable

Description
Either Sent to an object that implemehtgpSessionBindingListener when it is bound or unbound
from a session, or tolditpSessionAttributesListener that has been configured in the deploymewnt

descriptor when any attribute is bound, unbound or replaced in a session.

Yhe session binds the object by a call HttpSession.putValue and unbinds the object by a call to
HttpSession.removeValue

Since: v2.3

See Also: HttpSession , HttpSessionBindingListener , HttpSessionAttributesLis-
tener

Member Summary

Constructors

HttpSessionBindingEv- Constructs an event that notifies an object that it has been bound to or unbound from a
ent(HttpSession, session.

String)

HttpSessionBindingEv- Constructs an event that notifies an object that it has been bound to or unbound from a
ent(HttpSession, session.

String, Object)

Methods
getName() Returns the name with which the object is bound to or unbound from the sessig
getSession() Return the session that changed.

getvalue() Returns the value of the attribute being added, removed or replaced.

>

131

HttpSessionBindingEvent javax.servlet.http
HttpSessionBindingEvent(HttpSession, String)

Inherited Member Summary

Fields inherited from class java.util. EventObject

source

Methods inherited from class java.util. EventObject
getSource, toString

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait

Constructors

HttpSessionBindingEvent(HttpSession, String)
public HttpSessionBindingEvent(HttpSession _ session, java.lang.String name)

Constructs an event that notifies an object that it has been bound to or unbound from a session. To receive
the event, the object must implemétitpSessionBindingListener

Parameters:
session - the session to which the object is bound or unbound

name - the name with which the object is bound or unbound

See Also: getName() , getSession()

HttpSessionBindingEvent(HttpSession, String, Object)

public HttpSessionBindingEvent(HttpSession __ session, java.lang.String name,
java.lang.Object value)

Constructs an event that notifies an object that it has been bound to or unbound from a session. To receive
the event, the object must implemeétitpSessionBindingListener

Parameters:
session - the session to which the object is bound or unbound

name - the name with which the object is bound or unbound

See Also: getName() , getSession()

Methods

getName()
public java.lang.String getName()
Returns the name with which the object is bound to or unbound from the session.

132

javax.servlet.http HttpSessionBindingEvent
getSession()

Returns: a string specifying the name with which the object is bound to or unbound from the session

getSession()

public HttpSession getSession()
Return the session that changed.

Overrides: getSession() in classHttpSessionEvent

getValue()
public java.lang.Object getValue()

Returns the value of the attribute being added, removed or replaced. If the attribute was added (or bound),
this is the value of the attribute. If the attrubute was removed (or unbound), this is the value of the removed
attribute. If the attribute was replaced, this is the old value of the attribute.

133

HttpSessionBindingListener javax.servlet.http
valueBound(HttpSessionBindingEvent)

javax.servlet.http

HttpSessionBindingListener

Syntax

public interface HttpSessionBindingListener extends java.util. EventListener

All Superinterfaces: java.util.EventListener

Description
Causes an object to be notified when it is bound to or unbound from a session. The object is notified by an
HttpSessionBindingEvent object. This may be as a result of a servlet programmer explicitly unbinding

an attribute from a session, due to a session being invalidated, or die to a session timing out.

See Also: HttpSession , HitpSessionBindingEvent

Member Summary

Methods

valueBound(HttpSes- Notifies the object that it is being bound to a session and identifies the session.
sionBindingEvent)

valueUnbound(HttpSes- Notifies the object that it is being unbound from a session and identifies the segsion.

sionBindingEvent)

Methods

valueBound(HttpSessionBindingEvent)

public void valueBound(HttpSessionBindingEvent event)

Notifies the object that it is being bound to a session and identifies the session.

Parameters:
event - the event that identifies the session

See Also: valueUnbound(HttpSessionBindingEvent)

valueUnbound(HttpSessionBindingEvent)

public void valueUnbound(HttpSessionBindingEvent event)
Notifies the object that it is being unbound from a session and identifies the session.

Parameters:
event - the event that identifies the session

See Also: valueBound(HttpSessionBindingEvent)

134

javax.servlet.http HttpSessionContext
getlds()

javax.servlet.http

HttpSessionContext

Syntax

public interface HttpSessionContext

Description

Deprecated. As of Java(tm) Servlet API 2.1 for security reasons, with no replacement. This interface will be
removed in a future version of this API.

See Also: HttpSession , HttpSessionBindingEvent , HttpSessionBindingListener

Member Summary

Methods
getlds()
getSession(String)

Methods

getlds()
public java.util.Enumeration getlds()

Deprecated. As of Java Servlet APl 2.1 with no replacement. This method must return an empty
Enumeration and will be removed in a future version of this API.

getSession(String)
public HttpSession getSession(java.lang.String sessionld)

Deprecated. As of Java Servlet API 2.1 with no replacement. This method must return null and will be
removed in a future version of this API.

135

HttpSessionEvent javax.servlet.http
getSession(String)

javax.servlet.http

HttpSessionEvent

Syntax

public class HttpSessionEvent extends java.util. EventObject

java.lang.Object

+--java.util. EventObject

+-- javax.servlet.http.HttpSessionEvent

Direct Known Subclasses: HttpSessionBindingEvent

All Implemented Interfaces: java.io.Serializable

Description
This is the class representing event notifications for changes to sessions within a web application.

Since: v2.3

Member Summary

Constructors

HttpSession- Construct a session event from the given source.
Event(HttpSession)

Methods
getSession() Return the session that changed.

Inherited Member Summary

Fields inherited from class java.util. EventObject

source

Methods inherited from class java.util. EventObject

getSource, toString

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait

Constructors

136

javax.servlet.http

HttpSessionEvent

HttpSessionEvent(HttpSession)

HttpSessionEvent(HttpSession)
public HttpSessionEvent(HttpSession source)
Construct a session event from the given source.

Methods

getSession()

public HttpSession _ getSession()
Return the session that changed.

137

HttpSessionListener javax.servlet.http
sessionCreated(HttpSessionEvent)

javax.servlet.http

HttpSessionListener

Syntax

public interface HttpSessionListener

Description

Implementations of this interface may are notified of changes to the list of active sessions in a web application.
To recieve notification events, the implementation class must be configured in the deployment descriptor for the
web application.

Since: v2.3

See Also: HitpSessionEvent

Member Summary

Methods

sessionCre- Notification that a session was created.
ated(HttpSession-

Event)

sessionDe- Notification that a session was invalidated.
stroyed(HttpSession-

Event)

Methods

sessionCreated(HttpSessionEvent)

public void sessionCreated(HttpSessionEvent se)

Notification that a session was created.

Parameters:
se - the notification event

sessionDestroyed(HttpSessionEvent)

public void sessionDestroyed(HttpSessionEvent se)

Notification that a session was invalidated.

Parameters:
se - the notification event

138

javax.servlet.http HttpUtils
HttpUtils()

javax.servlet.http

HttpUtils

Syntax
public class HttpUtils

java.lang.Object

+-- javax.servlet.http.HttpUtils

Description

Deprecated. As of Java(tm) Servlet API 2.3. These methods were only useful with the default encoding and
have been moved to the request interfaces.

Member Summary

Constructors

HittpUtils() Constructs an emptyttpUtils ~ object.

Methods

getRequestURL (HttpS- Reconstructs the URL the client used to make the request, using information infthe
ervietRequest) HttpServletRequest object.

parsePostData(int, Parses data from an HTML form that the client sends to the server using the HTTP
ServletinputStream) POST method and ttepplication/x-www-form-urlencodedIME type.

parseQue- Parses a query string passed from the client to the server and bdéddbEable
ryString(String) object with key-value pairs.

Inherited Member Summary

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

Constructors

HttpUtils()
public HttpUTtils()
Constructs an emptyttpUtils object.

139

HttpUtils javax.servlet.http

getRequestURL (HttpServletRequest)

Methods

getRequestURL(HttpServletRequest)

public static java.lang.StringBuffer getRequestURL(HttpServletRequest req)

Reconstructs the URL the client used to make the request, using information HttiFeerviet-
Request object. The returned URL contains a protocol, server name, port number, and server path, but it
does not include query string parameters.

Because this method returnSaingBuffer , not a string, you can modify the URL easily, for example,
to append query parameters.

This method is useful for creating redirect messages and for reporting errors.

Parameters:
req - aHttpServiletRequest object containing the client’s request

Returns: a StringBuffer object containing the reconstructed URL

parsePostData(int, ServletinputStream)

public static java.util.Hashtable parsePostData(int len, ServletinputStream in)

Parses data from an HTML form that the client sends to the server using the HTTP POST method and the
application/x-www-form-urlencodedIME type.

The data sent by the POST method contains key-value pairs. A key can appear more than once in the POST
data with different values. However, the key appears only once in the hashtable, with its value being an
array of strings containing the multiple values sent by the POST method.

The keys and values in the hashtable are stored in their decoded form, so any + characters are converted to
spaces, and characters sent in hexadecimal notatiod%Keare converted to ASCII characters.

Parameters:
len - an integer specifying the length, in characters, oS#reletinputStream object that is
also passed to this method

in - theServletinputStream object that contains the data sent from the client
Returns: aHashTable object built from the parsed key-value pairs
Throws: lllegalArgumentException - if the data sent by the POST method is invalid

parseQueryString(String)

140

public static java.util.Hashtable parseQueryString(java.lang.String s)

Parses a query string passed from the client to the server and buildshd able object with key-value
pairs. The query string should be in the form of a string packaged by the GET or POST method, that is, it
should have key-value pairs in the fokmy=value with each pair separated from the next by a & character.

A key can appear more than once in the query string with different values. However, the key appears only
once in the hashtable, with its value being an array of strings containing the multiple values sent by the
query string.

The keys and values in the hashtable are stored in their decoded form, so any + characters are converted to
spaces, and characters sent in hexadecimal notatio¥{}Keare converted to ASCII characters.

javax.servlet.http HttpUtils
parseQueryString(String)

Parameters:
s - a string containing the query to be parsed

Returns: aHashTable object built from the parsed key-value pairs

Throws: lllegalArgumentException - if the query string is invalid

141

HttpUtils javax.servlet.http
parseQueryString(String)

142

Deployment Descriptor Version 2.2

This appendix defines the deployment descriptor for version 2.2. All web containers are
required to support web applications using the 2.2 deployment descriptor.

Deployment Descriptor DOCTYPE

DTD

All valid web application deployment descriptors must contain the following DOCTYPE
declaration:

<IDOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//[DTD Web Appli-

cation

2.2/[EN" "http://java.sun.com/j2ee/dtds/web-app_2_2.dtd">

The DTD that follows defines the XML grammar for a web application deployment
descriptor.

<l--

The web-app element is the root of the deployment descriptor for

a web application

->

<IELEMENT web-app (icon?, display-name?, description?,
distributable?,

context-param*, servlet*, servlet-mapping*, session-config?,
mime-mapping*, welcome-file-list?, error-page*, taglib*,
resource-ref*, security-constraint*, login-config?, security-role*,
env-entry*, ejb-ref*)>

<l--

The icon element contains a small-icon and a large-icon element

which specify the location within the web application for a small

and

large image used to represent the web application in a GUI tool. At a

Deployment Descriptor Version 2.2 236

237

minimum, tools must accept GIF and JPEG format images.
->

<IELEMENT icon (small-icon?, large-icon?)>

<I--

The small-icon element contains the location within the web
application of a file containing a small (16x16 pixel) icon image.
->

<IELEMENT small-icon (#PCDATA)>

<l--
The large-icon element contains the location within the web

application of a file containing a large (32x32 pixel) icon image.
-—->

<IELEMENT large-icon (#PCDATA)>

<l--
The display-name element contains a short name that is intended

to be displayed by GUI tools
-->

<IELEMENT display-name (#PCDATA)>

<l--

The description element is used to provide descriptive text about
the parent element.

>

<IELEMENT description (#PCDATA)>

<l--

The distributable element, by its presence in a web application
deployment descriptor, indicates that this web application is
programmed appropriately to be deployed into a distributed servlet
container

->

<IELEMENT distributable EMPTY>

<l--

The context-param element contains the declaration of a web
application’s servlet context initialization parameters.

>

<IELEMENT context-param (param-name, param-value, description?)>

Java Servlet 2.3 Specification ¢

October 20, 2000

<l--

The param-name element contains the name of a parameter.
>

<IELEMENT param-name (#PCDATA)>

<l--

The param-value element contains the value of a parameter.
>

<IELEMENT param-value (#PCDATA)>

<I--

The servlet element contains the declarative data of a

servlet. If a jsp-file is specified and the load-on-startup element
is

present, then the JSP should be precompiled and loaded.

-->

<IELEMENT servlet (icon?, servlet-name, display-name?, description?,
(servlet-class|jsp-file), init-param*, load-on-startup?, security-
role-ref*)>

<l--

The servlet-name element contains the canonical name of the
servlet.

->

<IELEMENT servlet-name (#PCDATA)>

<l--
The servlet-class element contains the fully qualified class name

of the servlet.
-—->

<IELEMENT servlet-class (#PCDATA)>

<l--
The jsp-file element contains the full path to a JSP file within

the web application.
-—->

<IELEMENT jsp-file (#PCDATA)>

<I--

The init-param element contains a name/value pair as an
initialization param of the servlet

-->

Deployment Descriptor Version 2.2

238

239

<IELEMENT init-param (param-name, param-value, description?)>

<I--

The load-on-startup element indicates that this servlet should be
loaded on the startup of the web application. The optional contents
of

these element must be a positive integer indicating the order in

which

the servlet should be loaded. Lower integers are loaded before

higher

integers. If no value is specified, or if the value specified is not
a

positive integer, the container is free to load it at any time in the
startup sequence.

-->

<IELEMENT load-on-startup (#PCDATA)>

<l--
The servlet-mapping element defines a mapping between a servlet

and a url pattern
-—->

<IELEMENT servlet-mapping (servlet-name, url-pattern)>

<l--

The url-pattern element contains the url pattern of the
mapping. Must follow the rules specified in Section 10 of the
Servlet

API Specification.

>

<IELEMENT url-pattern (#PCDATA)>

<l--
The session-config element defines the session parameters for

this web application.
->

<IELEMENT session-config (session-timeout?)>

<I--

The session-timeout element defines the default session timeout
interval for all sessions created in this web application. The
specified timeout must be expressed in a whole number of minutes.
-—->

<IELEMENT session-timeout (#PCDATA)>

Java Servlet 2.3 Specification ¢

October 20, 2000

<l--
The mime-mapping element defines a mapping between an extension

and a mime type.
-—->

<IELEMENT mime-mapping (extension, mime-type)>

<l--
The extension element contains a string describing an

extension. example: "txt"
>

<IELEMENT extension (#PCDATA)>

<l--

The mime-type element contains a defined mime type. example:
"text/plain”

>

<IELEMENT mime-type (#PCDATA)>

<I--
The welcome-file-list contains an ordered list of welcome files

elements.
>

<IELEMENT welcome-file-list (welcome-file+)>

<l--
The welcome-file element contains file name to use as a default

welcome file, such as index.html
>

<IELEMENT welcome-file (#PCDATA)>
<l--

The taglib element is used to describe a JSP tag library.
>

<IELEMENT taglib (taglib-uri, taglib-location)>

<l--
The taglib-uri element describes a URI, relative to the location
of the web.xml document, identifying a Tag Library used in the Web

Application.
-—->

<IELEMENT taglib-uri (#PCDATA)>

Deployment Descriptor Version 2.2

240

241

<l--
the taglib-location element contains the location (as a resource
relative to the root of the web application) where to find the Tag

Libary Description file for the tag library.
-—->

<IELEMENT taglib-location (#PCDATA)>

<l--
The error-page element contains a mapping between an error code

or exception type to the path of a resource in the web application
>

<IELEMENT error-page ((error-code | exception-type), location)>

<l--

The error-code contains an HTTP error code, ex: 404
-->

<IELEMENT error-code (#PCDATA)>

<l--
The exception type contains a fully qualified class name of a

Java exception type.
-->

<IELEMENT exception-type (#PCDATA)>

<l--
The location element contains the location of the resource in the

web application
->

<IELEMENT location (#PCDATA)>

<l--
The resource-ref element contains a declaration of a Web

Applic ation’s reference to an external resource.
>

<IELEMENT resource-ref (description?, res-ref-name, res-type, res-
auth)>

<l--
The res-ref-name element specifies the name of the resource
factory reference name.

>

<IELEMENT res-ref-name (#PCDATA)>

Java Servlet 2.3 Specification ¢

October 20, 2000

<l--
The res-type element specifies the (Java class) type of the data

source.
>

<IELEMENT res-type (#PCDATA)>

<l--

The res-auth element indicates whether the application component

code performs resource signon programmatically or whether the
container signs onto the resource based on the principle mapping
information supplied by the deployer. Must be CONTAINER or SERVLET
-->

<IELEMENT res-auth (#PCDATA)>

<l--

The security-constraint element is used to associate security
constraints with one or more web resource collections

->

<IELEMENT security-constraint (web-resource-collection+,
auth-constraint?, user-data-constraint?)>

<l--

The web-resource-collection element is used to identify a subset

of the resources and HTTP methods on those resources within a web
application to which a security constraint applies. If no HTTP
methods

are specified, then the security constraint applies to all HTTP
methods.

-->

<IELEMENT web-resource-collection (web-resource-name, description?,
url-pattern*, http-method*)>

<l--

The web-resource-name contains the name of this web resource
collection

-—->

<IELEMENT web-resource-name (#PCDATA)>

<l--

The http-method contains an HTTP method (GET | POST |...)
-—->

<IELEMENT http-method (#PCDATA)>

Deployment Descriptor Version 2.2

242

243

<l--
The user-data-constraint element is used to indicate how data

communicated between the client and container should be protected
-->

<IELEMENT user-data-constraint (description?, transport-guarantee)>

<I--

The transport-guarantee element specifies that the communication
between client and server should be NONE, INTEGRAL, or
CONFIDENTIAL. NONE means that the application does not require any
transport guarantees. A value of INTEGRAL means that the application
requires that the data sent between the client and server be sent in
such a way that it can’t be changed in transit. CONFIDENTIAL means

that the application requires that the data be transmitted in a

fashion that prevents other entities from observing the contents of

the transmission. In most cases, the presence of the INTEGRAL or
CONFIDENTIAL flag will indicate that the use of SSL is required.

->

<IELEMENT transport-guarantee (#PCDATA)>

<l--
The auth-constraint element indicates the user roles that should
be permitted access to this resource collection. The role used here

must appear in a security-role-ref element.
-—->

<IELEMENT auth-constraint (description?, role-name*)>

<l--

The role-name element contains the name of a security role.
-—->

<IELEMENT role-name (#PCDATA)>

<l--

The login-config element is used to configure the authentication
method that should be used, the realm name that should be used for
this application, and the attributes that are needed by the form

login

mechanism.

-->

<IELEMENT login-config (auth-method?, realm-name?, form-login-
config?)>

<l--

Java Servlet 2.3 Specification ¢

October 20, 2000

The realm name element specifies the realm name to use in HTTP
Basic authorization
>

<IELEMENT realm-name (#PCDATA)>

<l--

The form-login-config element specifies the login and error pages
that should be used in form based login. If form based
authentication

is not used, these elements are ignored.

>

<IELEMENT form-login-config (form-login-page, form-error-page)>

<l--
The form-login-page element defines the location in the web app

where the page that can be used for login can be found
-->

<IELEMENT form-login-page (#PCDATA)>

<l--

The form-error-page element defines the location in the web app
where the error page that is displayed when login is not successful
can be found

>

<IELEMENT form-error-page (#PCDATA)>

<l--

The auth-method element is used to configure the authentication
mechanism for the web application. As a prerequisite to gaining
access

to any web resources which are protected by an authorization
constraint, a user must have authenticated using the configured
mechanism. Legal values for this element are "BASIC", "DIGEST",
"FORM", or "CLIENT-CERT".

-->

<IELEMENT auth-method (#PCDATA)>

<l--
The security-role element contains the declaration of a security
role which is used in the security-constraints placed on the web

application.
-—->

<IELEMENT security-role (description?, role-name)>

Deployment Descriptor Version 2.2

244

245

<l--
The role-name element contains the name of a role. This element

must contain a non-empty string.
-->

<IELEMENT security-role-ref (description?, role-name, role-link)>

<I--

The role-link element is used to link a security role reference

to a defined security role. The role-link element must contain the
name of one of the security roles defined in the security-role
elements.

-->

<IELEMENT role-link (#PCDATA)>

<l--
The env-entry element contains the declaration of an
application’s environment entry. This element is required to be

honored on in J2EE compliant servlet containers.
-—->

<I[ELEMENT env-entry (description?, env-entry-name, env-entry-value?,
env-entry-type)>

<l--
The env-entry-name contains the name of an application’s

environment entry
>

<IELEMENT env-entry-name (#PCDATA)>

<l--
The env-entry-value element contains the value of an

application’s environment entry
>

<IELEMENT env-entry-value (#PCDATA)>

<l--

The env-entry-type element contains the fully qualified Java type
of the environment entry value that is expected by the application
code. The following are the legal values of env-entry-type:
java.lang.Boolean, java.lang.String, java.lang.Integer,

java.lang.Double, java.lang.Float.
-—->

<IELEMENT env-entry-type (#PCDATA)>

Java Servlet 2.3 Specification ¢

October 20, 2000

<l--
The ejb-ref element is used to declare a reference to an

enterprise bean.
-->

<IELEMENT ejb-ref (description?, ejb-ref-name, ejb-ref-type, home,
remote,
ejb-link?)>

<l--

The ejb-ref-name element contains the name of an EJB

reference. This is the JNDI name that the servlet code uses to get a
reference to the enterprise bean.

->

<IELEMENT ejb-ref-name (#PCDATA)>

<I--
The ejb-ref-type element contains the expected java class type of

the referenced EJB.
-—->

<IELEMENT ejb-ref-type (#PCDATA)>

<l--
The ejb-home element contains the fully qualified name of the

EJB’s home interface
-—->

<I[ELEMENT home (#PCDATA)>

<l--
The ejb-remote element contains the fully qualified name of the

EJB’s remote interface
-->

<IELEMENT remote (#PCDATA)>

<l--

The ejb-link element is used in the ejb-ref element to specify

that an EJB reference is linked to an EJB in an encompassing Java2
Enterprise Edition (J2EE) application package. The value of the
ejb-link element must be the ejb-name of and EJB in the J2EE
application package.

-—->

<IELEMENT ejb-link (#PCDATA)>

Deployment Descriptor Version 2.2

246

247

<l--

The ID mechanism is to allow tools to easily make tool-specific
references to the elements of the deployment descriptor. This allows
tools that produce additional deployment information (i.e

information

beyond the standard deployment descriptor information) to store the
non-standard information in a separate file, and easily refer from
these tools-specific files to the information in the standard web-

app

deployment descriptor.

>

<IATTLIST web-app id ID #IMPLIED>
<IATTLIST icon id ID #IMPLIED>
<IATTLIST small-icon id ID #IMPLIED>
<IATTLIST large-icon id ID #IMPLIED>
<IATTLIST display-name id ID #IMPLIED>
<IATTLIST description id ID #IMPLIED>
<IATTLIST distributable id ID #IMPLIED>
<IATTLIST context-param id ID #IMPLIED>
<IATTLIST param-name id ID #IMPLIED>
<IATTLIST param-value id ID #IMPLIED>
<IATTLIST servlet id ID #IMPLIED>
<IATTLIST servlet-name id ID #IMPLIED>
<IATTLIST servlet-class id ID #IMPLIED>
<IATTLIST jsp-file id ID #IMPLIED>
<IATTLIST init-param id ID #IMPLIED>
<IATTLIST load-on-startup id ID #IMPLIED>
<IATTLIST servlet-mapping id ID #IMPLIED>
<IATTLIST url-pattern id ID #IMPLIED>
<IATTLIST session-config id ID #IMPLIED>
<IATTLIST session-timeout id ID #IMPLIED>
<IATTLIST mime-mapping id ID #IMPLIED>
<IATTLIST extension id ID #IMPLIED>
<IATTLIST mime-type id ID #IMPLIED>
<IATTLIST welcome-file-list id ID #IMPLIED>
<IATTLIST welcome-file id ID #IMPLIED>
<IATTLIST taglib id ID #IMPLIED>
<IATTLIST taglib-uri id ID #IMPLIED>
<IATTLIST taglib-location id ID #IMPLIED>
<IATTLIST error-page id ID #IMPLIED>
<IATTLIST error-code id ID #IMPLIED>
<IATTLIST exception-type id ID #IMPLIED>
<IATTLIST location id ID #IMPLIED>
<IATTLIST resource-ref id ID #IMPLIED>
<IATTLIST res-ref-name id ID #IMPLIED>
<IATTLIST res-type id ID #IMPLIED>
<IATTLIST res-auth id ID #IMPLIED>
<IATTLIST security-constraint id 1D #IMPLIED>

Java Servlet 2.3 Specification ¢

October 20, 2000

<IATTLIST web-resource-collection id ID #IMPLIED>
<IATTLIST web-resource-name id ID #IMPLIED>
<IATTLIST http-method id ID #IMPLIED>
<IATTLIST user-data-constraint id ID #IMPLIED>
<IATTLIST transport-guarantee id ID #IMPLIED>
<IATTLIST auth-constraint id ID #IMPLIED>
<IATTLIST role-name id ID #IMPLIED>
<IATTLIST login-config id ID #IMPLIED>
<IATTLIST realm-name id ID #IMPLIED>
<IATTLIST form-login-config id ID #IMPLIED>
<IATTLIST form-login-page id ID #IMPLIED>
<IATTLIST form-error-page id ID #IMPLIED>
<IATTLIST auth-method id ID #IMPLIED>
<IATTLIST security-role id ID #IMPLIED>
<IATTLIST security-role-ref id ID #IMPLIED>
<IATTLIST role-link id ID #IMPLIED>

<IATTLIST env-entry id ID #IMPLIED>
<IATTLIST env-entry-name id ID #IMPLIED>
<IATTLIST env-entry-value id ID #IMPLIED>
<IATTLIST env-entry-type id ID #IMPLIED>
<IATTLIST ejb-ref id ID #IMPLIED>

<IATTLIST ejb-ref-name id ID #IMPLIED>
<IATTLIST ejb-ref-type id ID #IMPLIED>
<IATTLIST home id ID #IMPLIED>

<IATTLIST remote id ID #IMPLIED>

<IATTLIST ejb-link id ID #IMPLIED>

Deployment Descriptor Version 2.2

248

249 Java Servlet 2.3 Specification October 20, 2000

Glossary

Application Developer

Application Assembler

Deployer

principal

role (development)

role (security)

The producer of a web application. The output of an Application Developer is a set of
servlet classes, JSP pages, HTML pages, and supporting libraries and files (such as
images, compressed archive files, etc.) for the web application. The Application
Developer is typically an application domain expert. The developer is required to be
aware of the servlet environment and its consequences when programming, including
concurrency considerations, and create the web application accordingly.

Takes the output of the Application Developer and ensures that it is a deployable unit.
Thus, the input of the Application Assembiler is the servlet classes, JSP pages, HTML
pages, and other supporting libraries and files for the web application. The output of
the Application Assembler is a web application archive or a web application in an open
directory structure.

The Deployer takes one or more web application archive files or other directory
structures provided by an Application Developer and deploys the application into a
specific operational environment. The operational environment includes a specific
servlet container and web server. The Deployer must resolve all the external
dependencies declared by the developer. To perform his role, the deployer uses tools
provided by the Servlet Container Provider.

The Deployer is an expert in a specific operational environment. For example, the
Deployer is responsible for mapping the security roles defined by the Application
Developer to the user groups and accounts that exist in the operational environment
where the web application is deployed.

A principal is an entity that can be authenticated by an authentication protocol. A
principal is identified by grincipal nameand authenticated by usirauthentication

data The content and format of the principal name and the authentication data depend
on the authentication protocol.

The actions and responsibilities taken by various parties during the development,
deployment, and running of a web application. In some scenarios, a single party may
perform several roles; in others, each role may be performed by a different party.

An abstract notion used by an Application Developer in an application that can be
mapped by the Deployer to a user, or group of users, in a security policy domain.

Glossary 250

251

security policy domain

security technology
domain

Servlet Container
Provider

servlet definition

servlet mapping

System Administrator

The scope over which security policies are defined and enforced by a security
administrator of the security service. A security policy domain is also sometimes
referred to as aealm

The scope over which the same security mechanism, such as Kerberos, is used to
enforce a security policy. Multiple security policy domains can exist within a single
technology domain.

A vendor that provides the runtime environment, namely the servlet container and
possibly the web server, in which a web application runs as well as the tools necessary
to deploy web applications.

The expertise of the Container Provider is in HTTP-level programming. Since this
specification does not specify the interface between the web server and the servlet
container, it is left to the Container Provider to split the implementation of the required
functionality between the container and the server.

A unique name associated with a fully qualified class name of a class implementing the
Servlet interface. A set of initialization parameters can be associated with a servlet
definition.

A servlet definition that is associated by a servlet container with a URL path pattern.
All requests to that path pattern are handled by the servlet associated with the servlet
definition.

The person responsible for the configuration and administration of the servlet container
and web server. The administrator is also responsible for overseeing the well-being of
the deployed web applications at run time.

This specification does not define the contracts for system management and
administration. The administrator typically uses runtime monitoring and management
tools provided by the Container Provider and server vendors to accomplish these tasks.

Java Servlet 2.3 Specification ¢ October 20, 2000

uniform resource locator
(URL)

web application

web application
archive

web application,
distributable

1. See RFC 1738

A compact string representation of resources available via the network. Once the
resource represented by a URL has been accessed, various operations may be
performed on that resourdeA URL is a type of uniform resource identifier (URI).
URLs are typically of the form:

<protocol>//<servername>/<resource>

For the purposes of this specification, we are primarily interested in HTT- based URLs
which are of the form:

http[s]://<servername>[:port]/<url-path>[?<query-string>]
For example:
http://java.sun.com/products/serviet/index.html
https://javashop.sun.com/purchase

In HTTP-based URLs, thd’ character is reserved to separate a hierarchical path
structure in the URL-path portion of the URL. The server is responsible for
determining the meaning of the hierarchical structure. There is no correspondence
between a URL-path and a given file system path.

A collection of servlets, JSP pages , HTML documents, and other web resources which
might include image files, compressed archives, and other data. A web application may
be packaged into an archive or exist in an open directory structure.

All compatible servlet containers must accept a web application and perform a
deployment of its contents into their runtime. This may mean that a container can run
the application directly from a web application archive file or it may mean that it will
move the contents of a web application into the appropriate locations for that particular
container.

A single file that contains all of the components of a web application. This archive file
is created by using standard JAR tools which allow any or all of the web components
to be signed.

Web application archive files are identified by thvgar extension. A new extension is
used instead ofjar because that extension is reserved for files which contain a set
of class files and that can be placed in the classpath or double clicked using a GUI to
launch an application. As the contents of a web application archive are not suitable for
such use, a new extension was in order.

A web application that is written so that it can be deployed in a web container
distributed across multiple Java virtual machines running on the same host or different
hosts. The deployment descriptor for such an application usedighributable

element.

Glossary 252

253 Java Servlet 2.3 Specification October 20, 2000

	Contents
	Chapter 1: Overview 18
	Chapter 2: The Servlet Interface 22
	Chapter 3: Servlet Context 28
	Chapter 4: The Request 32
	Chapter 5: The Response 38
	Chapter 6: Servlet Filtering 42
	Chapter 7: Sessions 48
	Chapter 8: Dispatching Requests 54
	Chapter 9: Web Applications 58
	Chapter 10: Application Lifecycle Events 66
	Chapter 11: Mapping Requests to Servlets 70
	Chapter 12: Security 74
	Chapter 13: Deployment Descriptor 82
	Chapter 14: API Details 100
	Appendix A: Deployment Descriptor Version 2.2 236
	Appendix B: Glossary 250

	Status
	Preface
	Overview
	1.1 What is a Servlet?
	1.2 What is a Servlet Container?
	1.3 An Example
	1.4 Comparing Servlets with Other Technologies
	1.5 Relationship to Java 2 Platform Enterprise Edition

	The Servlet Interface
	2.1 Request Handling Methods
	2.1.1 HTTP Specific Request Handling Methods
	2.1.2 Conditional GET Support

	2.2 Number of Instances
	2.2.1 Note about SingleThreadModel

	2.3 Servlet Life Cycle
	2.3.1 Loading and Instantiation
	2.3.2 Initialization
	2.3.3 Request Handling
	2.3.4 End of Service

	Servlet Context
	3.1 Scope of a ServletContext
	3.2 Initialization Parameters
	3.3 Context Attributes
	3.3.1 Context Attributes in a Distributed Container

	3.4 Resources
	3.5 Multiple Hosts and Servlet Contexts
	3.6 Reloading Considerations
	3.7 Temporary Working Directories

	The Request
	4.1 Parameters
	4.2 Attributes
	4.3 Headers
	4.4 Request Path Elements
	4.5 Path Translation Methods
	4.6 Cookies
	4.7 SSL Attributes
	4.8 Internationalization
	4.9 Request data encoding

	The Response
	5.1 Buffering
	5.2 Headers
	5.3 Convenience Methods
	5.4 Internationalization
	5.5 Closure of Response Object

	Filtering
	6.1 What is a filter?
	6.1.1 Examples of Filtering Components

	6.2 Main Concepts
	6.2.1 Filter Lifecycle
	6.2.2 Filter environment
	6.2.3 Configuration of Filters in a Web Application

	Sessions
	7.1 Session Tracking Mechanisms
	7.1.1 URL Rewriting
	7.1.2 Cookies
	7.1.3 SSL Sessions
	7.1.4 Session Integrity

	7.2 Creating a Session
	7.3 Session Scope
	7.4 Binding Attributes into a Session
	7.5 Session Timeouts
	7.6 Last Accessed Times
	7.7 Important Session Semantics
	7.7.1 Threading Issues
	7.7.2 Distributed Environments
	7.7.3 Client Semantics

	Dispatching Requests
	8.1 Obtaining a RequestDispatcher
	8.1.1 Query Strings in Request Dispatcher Paths

	8.2 Using a Request Dispatcher
	8.3 Include
	8.3.1 Included Request Parameters

	8.4 Forward
	8.4.1 Query String

	8.5 Error Handling

	Web Applications
	9.1 Relationship to ServletContext
	9.2 Elements of a Web Application
	9.3 Distinction Between Representations
	9.4 Directory Structure
	9.4.1 Sample Web Application Directory Structure

	9.5 Web Application Archive File
	9.6 Web Application Configuration Descriptor
	9.6.1 Dependencies on extensions: Container Library Files
	9.6.2 Web Application Classloader

	9.7 Replacing a Web Application
	9.8 Error Handling
	9.9 Welcome Files
	9.10 Web Application Environment

	Application Lifecycle Events
	10.1 Introduction
	10.2 Event Listeners
	10.3 Configuration of Listener Classes
	10.4 Listener Instances and Threading
	10.5 Distributed Containers
	10.6 Session Events- Invalidation vs. Timeout

	Mapping Requests to Servlets
	11.1 Use of URL Paths
	11.2 Specification of Mappings
	11.2.1 Implicit Mappings
	11.2.2 Example Mapping Set

	Security
	12.1 Introduction
	12.2 Declarative Security
	12.3 Programmatic Security
	12.4 Roles
	12.5 Authentication
	12.5.1 HTTP Basic Authentication
	12.5.2 HTTP Digest Authentication
	12.5.3 Form Based Authentication
	12.5.4 HTTPS Client Authentication

	12.6 Server Tracking of Authentication Information
	12.7 Propagation of Security Identity
	12.8 Specifying Security Constraints
	12.8.1 Default Policies

	Deployment Descriptor
	13.1 Deployment Descriptor Elements
	13.1.1 General Rules for Processing the Deployment Descriptor
	13.1.2 Deployment Descriptor DOCTYPE

	13.2 DTD
	13.3 Examples
	13.3.1 A Basic Example
	13.3.2 An Example of Security

	API Details
	javax.servlet
	Config
	Filter
	FilterChain
	FilterConfig
	GenericServlet
	RequestDispatcher
	Servlet
	ServletConfig
	ServletContext
	ServletContextAttributeEvent
	ServletContextAttributesListener
	ServletContextEvent
	ServletContextListener
	ServletException
	ServletInputStream
	ServletOutputStream
	ServletRequest
	ServletRequestWrapper
	ServletResponse
	ServletResponseWrapper
	SingleThreadModel
	UnavailableException

	javax.servlet.http
	Cookie
	HttpServlet
	HttpServletRequest
	HttpServletRequestWrapper
	HttpServletResponse
	HttpServletResponseWrapper
	HttpSession
	HttpSessionActivationListener
	HttpSessionAttributesListener
	HttpSessionBindingEvent
	HttpSessionBindingListener
	HttpSessionContext
	HttpSessionEvent
	HttpSessionListener
	HttpUtils

	Deployment Descriptor Version 2.2
	Glossary

