
ns
onent-
Beans
e writ-
Beans
This is the specification of the Enterprise JavaBeansTM architecture.The Enterprise JavaBea
architecture is a component architecture for the development and deployment of comp
based distributed business applications. Applications written using the Enterprise Java
architecture are scalable, transactional, and multi-user secure. These applications may b
ten once, and then deployed on any server platform that supports the Enterprise Java
specification.

EJB 2.0 Architects:

Linda G. DeMichiel, Specification Lead

L. Ümit Yalçinalp

Sanjeev Krishnan

Please send technical comments on this Draft to:

ejb-spec-comments@eng.sun.com

Sun Microsystems

Enterprise JavaBeansTM Specification,
Version 2.0

microsystems

October 23, 2000
Version 2.0, Proposed Final Draft

Enterprise JavaBeans 2.0, Proposed Final Draft Sun Microsystems, Inc.

ed by
follow-
prior
eci-
ense
own-

l com-

usive,
ctual

this
ctual
only
d and

from
of or

nsors
JB, JD-
Java-
Inc. in

-

I-
Enterprise Java Beans (EJB (TM)) Specification ("Specification")

Version: 2.0

Status: Proposed Final Draft

Release: 23 October 2000

Copyright 2000 Sun Microsystems, Inc.

901 San Antonio Road, Palo Alto, California 94303, U.S.A.

All rights reserved.

NOTICE

The Specification is protected by copyright and the information described therein may be protect
one or more U.S. patents, foreign patents, or pending applications. Except as provided under the
ing license, no part of the Specification may be reproduced in any form by any means without the
written authorization of Sun Microsystems, Inc. ("Sun") and its licensors, if any. Any use of the Sp
fication and the information described therein will be governed by the terms and conditions of this lic
and the Export Control and General Terms as set forth in Sun’s website Legal Terms. By viewing, d
loading or otherwise copying the Specification, you agree that you have read, understood, and wil
ply with all of the terms and conditions set forth herein.

Subject to the terms and conditions of this license, Sun hereby grants you a fully-paid, non-excl
non-transferable, worldwide, limited license (without the right to sublicense) under Sun’s intelle
property rights to review the Specification internally for the purposes of evaluation only. Other than
limited license, you acquire no right, title or interest in or to the Specification or any other Sun intelle
property. The Specification contains the proprietary and confidential information of Sun and may
be used in accordance with the license terms set forth herein. This license will expire one-hundre
fifty (150) days from the date of Release listed above and will terminate immediately without notice
Sun if you fail to comply with any provision of this license. Upon termination, you must cease use
destroy the Specification.

TRADEMARKS

No right, title, or interest in or to any trademarks, service marks, or trade names of Sun or Sun’s lice
is granted hereunder. Sun, Sun Microsystems, the Sun logo, Java, J2EE, Enterprise JavaBeans, E
BC, Java Naming and Directory Interface, "Write Once Run Anywhere", Java ServerPages, JDK,
Beans, and the Java Coffee Cup are trademarks or registered trademarks of Sun Microsystems,
the U.S. and other countries.

DISCLAIMER OF WARRANTIES

THE SPECIFICATION IS PROVIDED "AS IS" AND IS EXPERIMENTAL AND MAY CONTAIN
DEFECTS OR DEFICIENCIES WHICH CANNOT OR WILL NOT BE CORRECTED BY SUN. SUN
MAKES NO REPRESENTATIONS OR WARRANTIES, EITHER EXPRESS OR IMPLIED, IN
CLUDING BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT THAT THE CONTENTS OF THE SPECIF
CATION ARE SUITABLE FOR ANY PURPOSE OR THAT ANY PRACTICE OR IMPLEMENTA-
TION OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS,
2 10/23/00

Enterprise JavaBeans 2.0, Proposed Final Draft Sun Microsystems, Inc.

com-

-

ersion

-

r use
s that
ation

rime
nying

.7201
and

with
eed-
tial ba-
h the
ut lim-
ations,
COPYRIGHTS, TRADE SECRETS OR OTHER RIGHTS. This document does not represent any
mitment to release or implement any portion of the Specification in any product.

THE SPECIFICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL
ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION THEREIN;
THESE CHANGES WILL BE INCORPORATED INTO NEW VERSIONS OF THE SPECIFICA
TION, IF ANY. SUN MAY MAKE IMPROVEMENTS AND/OR CHANGES TO THE PRODUCT(S)
AND/OR THE PROGRAM(S) DESCRIBED IN THE SPECIFICATION AT ANY TIME. Any use of
such changes in the Specification will be governed by the then-current license for the applicable v
of the Specification.

LIMITATION OF LIABILITY

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL SUN OR ITS LICENSORS
BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUE,
PROFITS OR DATA, OR FOR SPECIAL, INDIRECT, CONSEQUENTIAL, INCIDENTAL OR PU
NITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILI-
TY, ARISING OUT OF OR RELATED TO ANY FURNISHING, PRACTICING, MODIFYING OR
ANY USE OF THE SPECIFICATION, EVEN IF SUN AND/OR ITS LICENSORS HAVE BEEN AD-
VISED OF THE POSSIBILITY OF SUCH DAMAGES.

You will indemnify, hold harmless, and defend Sun and its licensors from any claims based on you
of the Specification for any purposes other than those of internal evaluation, and from any claim
later versions or releases of any Specification furnished to you are incompatible with the Specific
provided to you under this license.

RESTRICTED RIGHTS LEGEND

If this Software is being acquired by or on behalf of the U.S. Government or by a U.S. Government p
contractor or subcontractor (at any tier), then the Government’s rights in the Software and accompa
documentation shall be only as set forth in this license; this is in accordance with 48 C.F.R. 227
through 227.7202-4 (for Department of Defense (DoD) acquisitions) and with 48 C.F.R. 2.101
12.212 (for non-DoD acquisitions).

REPORT

You may wish to report any ambiguities, inconsistencies or inaccuracies you may find in connection
your evaluation of the Specification ("Feedback"). To the extent that you provide Sun with any F
back, you hereby: (i) agree that such Feedback is provided on a non-proprietary and non-confiden
sis, and (ii) grant Sun a perpetual, non-exclusive, worldwide, fully paid-up, irrevocable license, wit
right to sublicense through multiple levels of sublicensees, to incorporate, disclose, and use witho
itation the Feedback for any purpose related to the Specification and future versions, implement
and test suites thereof.
3 10/23/00

Enterprise JavaBeans 2.0, Proposed Final Draft Sun Microsystems, Inc.
4 10/23/00

Enterprise JavaBeans 2.0, Proposed Final Draft

Sun Microsystems, Inc.

9

Table of Contents

Chapter 1 Introduction.. 25

1.1 Target audience.. 25

1.2 What is new in EJB 2.0 ... 25

1.3 Acknowledgments ... 26

1.4 Organization .. 27

1.5 Document conventions .. 28

Chapter 2 Goals .. 29

2.1 Overall goals.. 29

2.2 EJB Releases 1.0 and 1.1... 30

2.3 Goals for Release 2.0... 30

Chapter 3 EJB Roles and Scenarios ...33

3.1 EJB Roles .. 33

3.1.1 Enterprise Bean Provider .. 34
3.1.2 Application Assembler.. 34
3.1.3 Deployer.. 34
3.1.4 EJB Server Provider .. 35
3.1.5 EJB Container Provider... 35
3.1.6 Persistence Manager Provider... 36
3.1.7 System Administrator ... 36

3.2 Scenario: Development, assembly, and deployment 37

Chapter 4 Overview.. 41

4.1 Enterprise Beans as components ... 41

4.1.1 Component characteristics .. 41
4.1.2 Flexible component model.. 42

4.2 Enterprise JavaBeans contracts.. 42

4.2.1 Client-view contract .. 43
4.2.2 Component contract .. 44
4.2.3 Ejb-jar file ... 45
4.2.4 Contracts summary ... 46

4.3 Session, entity, and message-driven objects .. 47

4.3.1 Session objects .. 47
4.3.2 Entity objects... 47
4.3.3 Message-driven objects ... 48

4.4 Standard mapping to CORBA protocols ... 48

Chapter 5 Client View of a Session Bean... 4

5.1 Overview ... 49
5 10/23/00

Enterprise JavaBeans 2.0, Proposed Final Draft

Sun Microsystems, Inc.

9

7

5.2 EJB Container.. 50

5.2.1 Locating a session bean’s home interface ... 50
5.2.2 What a container provides... 51

5.3 Home interface... 51

5.3.1 Creating a session object ... 52
5.3.2 Removing a session object .. 52

5.4 EJBObject .. 53

5.5 Session object identity ... 53

5.6 Client view of session object’s life cycle... 54

5.7 Creating and using a session object ... 55

5.8 Object identity ... 56

5.8.1 Stateful session beans.. 56
5.8.2 Stateless session beans .. 57
5.8.3 getPrimaryKey() .. 57

5.9 Type narrowing .. 57

Chapter 6 Session Bean Component Contract.. 5

6.1 Overview.. 59

6.2 Goals .. 60

6.3 A container’s management of its working set.. 60

6.4 Conversational state ... 61

6.4.1 Instance passivation and conversational state.................................... 61
6.4.2 The effect of transaction rollback on conversational state 63

6.5 Protocol between a session bean instance and its container 63

6.5.1 The requiredSessionBean interface .. 63
6.5.2 TheSessionContext interface .. 63
6.5.3 The optionalSessionSynchronization interface................................. 64
6.5.4 Business method delegation .. 65
6.5.5 Session bean’s ejbCreate<METHOD>(...) methods 65
6.5.6 Serializing session bean methods.. 65
6.5.7 Transaction context of session bean methods 66

6.6 STATEFUL Session Bean State Diagram.. 66

6.6.1 Operations allowed in the methods of a stateful session bean class . 69
6.6.2 Dealing with exceptions .. 71
6.6.3 Missed ejbRemove() calls ... 71
6.6.4 Restrictions for transactions .. 72

6.7 Object interaction diagrams for a STATEFUL session bean 72

6.7.1 Notes.. 72
6.7.2 Creating a session object ... 73
6.7.3 Starting a transaction... 73
6.7.4 Committing a transaction .. 74
6.7.5 Passivating and activating an instance between transactions 75
6.7.6 Removing a session object .. 76

6.8 Stateless session beans... 7

6.8.1 Stateless session bean state diagram ... 78
6.8.2 Operations allowed in the methods of a stateless session bean class 79
 10/23/00 6

Enterprise JavaBeans 2.0, Proposed Final Draft

Sun Microsystems, Inc.

6

6.8.3 Dealing with exceptions.. 81
6.9 Object interaction diagrams for a STATELESS session bean 81

6.9.1 Client-invoked create().. 81
6.9.2 Business method invocation.. 82
6.9.3 Client-invoked remove() ... 82
6.9.4 Adding instance to the pool .. 83

6.10 The responsibilities of the bean provider .. 84

6.10.1 Classes and interfaces ... 84
6.10.2 Session bean class ... 84
6.10.3 ejbCreate<METHOD> methods ... 85
6.10.4 Business methods.. 86
6.10.5 Session bean’s remote interface .. 86
6.10.6 Session bean’s home interface .. 86

6.11 The responsibilities of the container provider ... 87

6.11.1 Generation of implementation classes .. 87
6.11.2 Session EJBHome class .. 88
6.11.3 Session EJBObject class ... 88
6.11.4 Handle classes ... 88
6.11.5 EJBMetaData class ... 88
6.11.6 Non-reentrant instances... 88
6.11.7 Transaction scoping, security, exceptions ... 89
6.11.8 SessionContext.. 89

Chapter 7 Example Session Scenario ... 91

7.1 Overview ... 91

7.2 Inheritance relationship ... 91

7.2.1 What the session Bean provider is responsible for 93
7.2.2 Classes supplied by container provider... 93
7.2.3 What the container provider is responsible for 93

Chapter 8 Client View of an Entity... 95

8.1 Overview ... 95

8.2 EJB Container.. 96

8.2.1 Locating an entity bean’s home interface.. 97
8.2.2 What a container provides... 97

8.3 Entity bean’s home interface ... 98

8.3.1 create methods... 99
8.3.2 finder methods... 100
8.3.3 remove methods .. 100
8.3.4 home methods ... 101

8.4 Entity object’s life cycle .. 101

8.5 Primary key and object identity... 103

8.6 Entity Bean’s remote interface .. 104

8.7 Entity bean’s handle .. 105

8.8 Entity home handles .. 10

8.9 Type narrowing of object references ... 106
7 10/23/00

Enterprise JavaBeans 2.0, Proposed Final Draft

Sun Microsystems, Inc.

09

is-

1

3

5

rsis-

e man-
Chapter 9 Entity Bean Component Contract for Container Managed Persistence......................... 1

9.1 Overview.. 110

9.2 Data independence between the Client View, the Entity Bean View, and the Pers
tence View110

9.3 Container-managed entity persistence... 11

9.3.1 Granularity of entity beans.. 113
9.4 The entity bean provider’s view of persistence ... 113

9.4.1 The entity bean provider’s programming contract 114
9.4.2 The entity bean provider’s view of persistent relationships 115
9.4.3 The view of dependent classes .. 116
9.4.4 The entity bean provider’s programming contract for dependent object

classes117
9.4.4.1 Creation protocol for dependent objects 118
9.4.4.2 Removal of dependent objects .. 119

9.4.5 Identity of dependent object class instances 121
9.4.6 Semantics of assignment for relationships .. 122

9.4.6.1 Use of the java.util.Collection API to update relationships 122
9.4.6.2 Use of set accessor methods to update relationships 124

9.4.7 Assignment rules for relationships.. 125
9.4.7.1 One-to-one bidirectional relationships................................ 125
9.4.7.2 One-to-one unidirectional relationships.............................. 126
9.4.7.3 One-to-many bidirectional relationships............................. 127
9.4.7.4 One-to-many unidirectional relationships........................... 131
9.4.7.5 Many-to-one unidirectional relationships 134
9.4.7.6 Many-to-many bidirectional relationships 136
9.4.7.7 Many-to-many unidirectional relationships 140

9.4.8 Collections managed by the Persistence Manager 143
9.4.9 Dependent value classes.. 14

9.4.10 Non-persistent state ... 143
9.4.11 The relationship between the persistence view and the client view.. 144
9.4.12 Mapping data to a persistent store... 145
9.4.13 Example... 145
9.4.14 The Bean Provider’s view of the deployment descriptor 150

9.5 The entity bean component contract.. 15

9.5.1 Runtime execution model of entity beans ... 155
9.5.2 Relationships among the classes provided by the bean provider and pe

tence manager157
9.5.3 Persistence Manager responsibilities .. 159

9.5.3.1 Container-managed fields ... 159
9.5.3.2 Container-managed relationships.. 159
9.5.3.3 Container-managed dependent object classes..................... 160

9.6 Instance life cycle contract between the bean, the container, and the persistenc
ager160

9.6.1 Instance life cycle.. 161
9.6.2 Bean Provider’s entity bean instance’s view 163
9.6.3 Persistence Manager’s view .. 168
9.6.4 Container’s view.. 172
9.6.5 Operations allowed in the methods of the entity bean class.............. 175
9.6.6 Finder methods.. 177
 10/23/00 8

Enterprise JavaBeans 2.0, Proposed Final Draft

Sun Microsystems, Inc.

4

5
6
6
7

2

3
3
4

9.6.6.1 Single-object finder... 177
9.6.6.2 Multi-object finders .. 177

9.6.7 Select methods .. 178
9.6.7.1 Single-object select methods .. 179
9.6.7.2 Multi-object select methods.. 179

9.6.8 Standard application exceptions for Entities..................................... 180
9.6.8.1 CreateException.. 180
9.6.8.2 DuplicateKeyException .. 180
9.6.8.3 FinderException.. 181
9.6.8.4 ObjectNotFoundException ... 181
9.6.8.5 RemoveException... 181

9.6.9 Commit options... 182
9.6.10 Concurrent access from multiple transactions 183
9.6.11 Non-reentrant and re-entrant instances ... 18

9.7 Responsibilities of the Enterprise Bean Provider .. 185

9.7.1 Classes and interfaces ... 18
9.7.2 Enterprise bean class... 18
9.7.3 Dependent object classes .. 18
9.7.4 Dependent value classes.. 18
9.7.5 ejbCreate<METHOD> methods ... 187
9.7.6 ejbPostCreate<METHOD> methods .. 188
9.7.7 ejbHome<METHOD> methods.. 188
9.7.8 ejbSelect<METHOD> methods.. 188
9.7.9 Business methods.. 189

9.7.10 Entity bean’s remote interface... 189
9.7.11 Entity bean’s home interface... 190
9.7.12 Entity bean’s primary key class... 191
9.7.13 Entity bean’s deployment descriptor... 191

9.8 The responsibilities of the Persistence Manager ... 19

9.8.1 Generation of implementation classes .. 192
9.8.2 Classes and interfaces ... 19
9.8.3 Enterprise bean class... 19
9.8.4 Dependent object classes .. 19
9.8.5 ejbCreate<METHOD> methods ... 194
9.8.6 ejbPostCreate<METHOD> methods .. 195
9.8.7 ejbFind<METHOD> methods .. 195
9.8.8 ejbSelect<METHOD> methods.. 195

9.9 The responsibilities of the Container Provider .. 196

9.9.1 Generation of implementation classes .. 196
9.9.2 Entity EJBHome class... 197
9.9.3 Entity EJBObject class.. 197
9.9.4 Handle class .. 197
9.9.5 Home Handle class.. 198
9.9.6 Meta-data class.. 198
9.9.7 Instance’s re-entrance.. 198
9.9.8 Transaction scoping, security, exceptions ... 198
9.9.9 Implementation of object references... 198

9.9.10 EntityContext .. 199
9.10 Primary Keys ... 199
9 10/23/00

Enterprise JavaBeans 2.0, Proposed Final Draft

Sun Microsystems, Inc.

99
199

ject

01

3

5
er

5

15

9

9.10.1 Entity bean’s primary key type.. 199
9.10.1.1 Primary key that maps to a single field in the entity bean class1
9.10.1.2 Primary key that maps to multiple fields in the entity bean class
9.10.1.3 Special case: Unknown primary key class.......................... 200

9.10.2 Dependent object’s primary key type.. 200
9.10.2.1 Primary key that maps to one or more fields in the dependent ob

class200
9.10.2.2 Unspecified dependent object primary key......................... 201

9.11 Other contracts between the Persistence Manager and Container................... 2

9.11.1 Transaction context ... 201
9.11.2 Connection management ... 202
9.11.3 Connection management scenarios ... 20

9.11.3.1 Scenario: Pessimistic concurrency control 203
9.11.3.2 Scenario: Optimistic concurrency control 203

9.11.4 Synchronization notifications.. 203
9.11.5 Container responsibilities.. 204
9.11.6 Persistence manager responsibilities... 20
9.11.7 Additional contracts between the Container and the Persistence Manag

205
9.12 Object interaction diagrams... 20

9.12.1 Notes.. 206
9.12.2 Creating an entity object ... 207
9.12.3 Passivating and activating an instance in a transaction 208
9.12.4 Committing a transaction .. 209
9.12.5 Starting the next transaction .. 210
9.12.6 Removing an entity object... 212
9.12.7 Finding an entity object... 213
9.12.8 Adding and removing an instance from the pool 213

Chapter 10 EJB QL: EJB Query Language for Container Managed Persistence Query Methods... 2

10.1 Overview.. 215

10.2 EJB QL Definition ... 217

10.2.1 Abstract schema types and query domains 21
10.2.2 Naming .. 220
10.2.3 Examples ... 220
10.2.4 The FROM clause and navigational declarations.............................. 223

10.2.4.1 Identifiers .. 224
10.2.4.2 Identification variables.. 224
10.2.4.3 Range variable declarations .. 225
10.2.4.4 Collection member declarations ... 225
10.2.4.5 Example .. 226
10.2.4.6 Path expressions.. 226
10.2.4.7 Path expressions that reference remote interface types 228

10.2.5 WHERE clause and conditional cxpressions 228
10.2.5.1 Literals .. 228
10.2.5.2 Identification variables.. 229
10.2.5.3 Path expressions.. 229
10.2.5.4 Input parameters.. 230
 10/23/00 10

Enterprise JavaBeans 2.0, Proposed Final Draft

Sun Microsystems, Inc.

9

9

45

te

8

10.2.5.5 Conditional expression composition................................... 230
10.2.5.6 Operators and operator precedence 230
10.2.5.7 Between expressions... 231
10.2.5.8 In expressions ... 231
10.2.5.9 Like expressions.. 232

10.2.5.10 Null comparison expressions.. 232
10.2.5.11 Empty collection comparison expressions.......................... 233
10.2.5.12 Finder expressions .. 233
10.2.5.13 Functional expressions.. 234

10.2.6 SELECT clause ... 235
10.2.7 Null values .. 237
10.2.8 Equality semantics .. 238
10.2.9 Restrictions.. 238

10.3 Examples ... 23

10.3.1 Simple queries... 239
10.3.2 Queries with dependent object classes.. 23
10.3.3 Queries that refer to other entity beans ... 240
10.3.4 Queries using input parameters... 241
10.3.5 Queries for select methods.. 241
10.3.6 EJB QL and SQL .. 242

10.4 EJB QL BNF ... 243

Chapter 11 Entity Bean Component Contract for Bean Managed Persistence 2

11.1 Overview of Bean Managed Entity Persistence .. 245

11.1.1 Granularity of entity beans.. 246
11.1.2 Entity Bean Provider’s view of persistence and relationships 247
11.1.3 Runtime execution model ... 248
11.1.4 Instance life cycle.. 250
11.1.5 The entity bean component contract ... 252

11.1.5.1 Entity bean instance’s view... 252
11.1.5.2 Container’s view: .. 256

11.1.6 Operations allowed in the methods of the entity bean class 258
11.1.7 Caching of entity state and the ejbLoad and ejbStore methods 260

11.1.7.1 ejbLoad and ejbStore with the NotSupported transaction attribu
261

11.1.8 Finder method return type... 262
11.1.8.1 Single-object finder... 262
11.1.8.2 Multi-object finders .. 262

11.1.9 Standard application exceptions for Entities..................................... 264
11.1.9.1 CreateException.. 264
11.1.9.2 DuplicateKeyException .. 264
11.1.9.3 FinderException.. 265
11.1.9.4 ObjectNotFoundException ... 265
11.1.9.5 RemoveException... 265

11.1.10 Commit options... 265
11.1.11 Concurrent access from multiple transactions 266
11.1.12 Non-reentrant and re-entrant instances ... 26

11.2 Responsibilities of the Enterprise Bean Provider .. 269
11 10/23/00

Enterprise JavaBeans 2.0, Proposed Final Draft

Sun Microsystems, Inc.

9
9

2

7

287

91

1

3

11.2.1 Classes and interfaces.. 26
11.2.2 Enterprise bean class ... 26
11.2.3 ejbCreate<METHOD> methods ... 270
11.2.4 ejbPostCreate<METHOD> methods... 271
11.2.5 ejbFind methods .. 271
11.2.6 ejbHome<METHOD> methods .. 272
11.2.7 Business methods .. 27
11.2.8 Entity bean’s remote interface... 273
11.2.9 Entity bean’s home interface ... 273

11.2.10 Entity bean’s primary key class... 274
11.3 The responsibilities of the Container Provider .. 275

11.3.1 Generation of implementation classes... 275
11.3.2 Entity EJBHome class... 275
11.3.3 Entity EJBObject class .. 276
11.3.4 Handle class... 276
11.3.5 Home Handle class.. 276
11.3.6 Meta-data class.. 277
11.3.7 Instance’s re-entrance.. 277
11.3.8 Transaction scoping, security, exceptions ... 277
11.3.9 Implementation of object references ... 277

11.3.10 EntityContext... 277
11.4 Object interaction diagrams... 27

11.4.1 Notes.. 278
11.4.2 Creating an entity object ... 279
11.4.3 Passivating and activating an instance in a transaction 280
11.4.4 Committing a transaction .. 281
11.4.5 Starting the next transaction .. 281
11.4.6 Removing an entity object... 283
11.4.7 Finding an entity object... 284
11.4.8 Adding and removing an instance from the pool 284

Chapter 12 Example bean managed persistence entity scenario ..

12.1 Overview.. 287

12.2 Inheritance relationship ... 288

12.2.1 What the entity Bean Provider is responsible for.............................. 289
12.2.2 Classes supplied by Container Provider.. 289
12.2.3 What the container provider is responsible for 289

Chapter 13 EJB 1.1 Entity Bean Component Contract for Container Managed Persistence 2

13.1 EJB 1.1 Entity beans with container-managed persistence 29

13.1.1 Container-managed fields.. 292
13.1.2 ejbCreate, ejbPostCreate ... 29
13.1.3 ejbRemove... 294
13.1.4 ejbLoad.. 294
13.1.5 ejbStore.. 295
13.1.6 finder methods ... 295
13.1.7 home methods ... 295
 10/23/00 12

Enterprise JavaBeans 2.0, Proposed Final Draft

Sun Microsystems, Inc.

5

96
296

7

09

0

0

12

4
4

6

7

1
1

2

13.1.8 create methods... 29
13.1.9 primary key type ... 296

13.1.9.1 Primary key that maps to a single field in the entity bean class2
13.1.9.2 Primary key that maps to multiple fields in the entity bean class
13.1.9.3 Special case: Unknown primary key class.......................... 296

13.2 Object interaction diagrams... 29

13.2.1 Notes ... 297
13.2.2 Creating an entity object ... 298
13.2.3 Passivating and activating an instance in a transaction 300
13.2.4 Committing a transaction .. 302
13.2.5 Starting the next transaction.. 303
13.2.6 Removing an entity object .. 305
13.2.7 Finding an entity object... 306
13.2.8 Adding and removing an instance from the pool 306

Chapter 14 Message-driven Bean Component Contract .. 3

14.1 Overview ... 309

14.2 Goals.. 31

14.3 Client view of a message-driven bean ... 31

14.4 Protocol between a message-driven bean instance and its container 3

14.4.1 The requiredMessageDrivenBean interface..................................... 312
14.4.2 The requiredjavax.jms.MessageListener interface........................... 313
14.4.3 TheMessageDrivenContext interface ... 313
14.4.4 Message-driven bean’s ejbCreate() method 314
14.4.5 Serializing message-driven bean methods .. 314
14.4.6 Concurrency of message processing ... 31
14.4.7 Transaction context of message-driven bean methods...................... 31
14.4.8 Message acknowledgment .. 315
14.4.9 Association of a message-driven bean with a destination................. 315

14.4.10 Dealing with exceptions.. 315
14.4.11 Missed ejbRemove() calls ... 316

14.5 Message-driven bean state diagram... 31

14.5.1 Operations allowed in the methods of a message-driven bean class. 31
14.6 Object interaction diagrams for a MESSAGE-DRIVEN bean........................ 319

14.6.1 Message receipt: onMessage method invocation 319
14.6.2 Adding instance to the pool .. 319
14.6.3 Removing instance from the pool ... 320

14.7 The responsibilities of the bean provider .. 321

14.7.1 Classes and interfaces ... 32
14.7.2 Message-driven bean class .. 32
14.7.3 ejbCreate method .. 322
14.7.4 onMessage method.. 32
14.7.5 ejbRemove method.. 323

14.8 The responsibilities of the container provider ... 323

14.8.1 Generation of implementation classes .. 323
14.8.2 Deployment of message-driven beans... 323
14.8.3 Non-reentrant instances... 324
13 10/23/00

Enterprise JavaBeans 2.0, Proposed Final Draft

Sun Microsystems, Inc.

25

1

ata-

7

8

6

3
ans
14.8.4 Transaction scoping, security, exceptions ... 324

Chapter 15 Example Message-driven Bean Scenario... 3

15.1 Overview.. 325

15.2 Inheritance relationship ... 325

15.2.1 What the message-driven Bean provider is responsible for 327
15.2.2 Classes supplied by container provider ... 327
15.2.3 What the container provider is responsible for 327

Chapter 16 Support for Transactions .. 329

16.1 Overview.. 329

16.1.1 Transactions... 329
16.1.2 Transaction model ... 330
16.1.3 Relationship to JTA and JTS ... 331

16.2 Sample scenarios ... 33

16.2.1 Update of multiple databases .. 331
16.2.2 Messages sent or received over JMS sessions and update of multiple d

bases332
16.2.3 Update of databases via multiple EJB Servers.................................. 334
16.2.4 Client-managed demarcation... 335
16.2.5 Container-managed demarcation... 336

16.3 Bean Provider’s responsibilities .. 337

16.3.1 Bean-managed versus container-managed transaction demarcation. 33
16.3.1.1 Non-transactional execution ... 337

16.3.2 Isolation levels... 338
16.3.3 Enterprise beans using bean-managed transaction demarcation 33

16.3.3.1 getRollbackOnly() and setRollbackOnly() method 345
16.3.4 Enterprise beans using container-managed transaction demarcation 34

16.3.4.1 javax.ejb.SessionSynchronization interface........................ 347
16.3.4.2 javax.ejb.EJBContext.setRollbackOnly() method 347
16.3.4.3 javax.ejb.EJBContext.getRollbackOnly() method 348

16.3.5 Use of JMS APIs in transactions... 348
16.3.6 Declaration in deployment descriptor ... 348

16.4 Application Assembler’s responsibilities .. 348

16.4.1 Transaction attributes .. 349
16.5 Deployer’s responsibilities... 352

16.6 Container Provider responsibilities.. 352

16.6.1 Bean-managed transaction demarcation.. 35
16.6.2 Container-managed transaction demarcation for Session and Entity Be

355
16.6.2.1 NotSupported .. 355
16.6.2.2 Required.. 356
16.6.2.3 Supports .. 356
16.6.2.4 RequiresNew... 356
16.6.2.5 Mandatory ... 357
16.6.2.6 Never... 357
16.6.2.7 Transaction attribute summary.. 357
 10/23/00 14

Enterprise JavaBeans 2.0, Proposed Final Draft

Sun Microsystems, Inc.

359

61

9

2

7
8

3

16.6.2.8 Handling of setRollbackOnly() method.............................. 358
16.6.2.9 Handling of getRollbackOnly() method 359

16.6.2.10 Handling of getUserTransaction() method 359
16.6.2.11 javax.ejb.SessionSynchronization callbacks....................... 359

16.6.3 Container-managed transaction demarcation for Message-driven Beans
16.6.3.1 NotSupported.. 360
16.6.3.2 Required.. 360
16.6.3.3 Handling of setRollbackOnly() method.............................. 360
16.6.3.4 Handling of getRollbackOnly() method 360
16.6.3.5 Handling of getUserTransaction() method 361

16.6.4 Local transaction optimization.. 361
16.6.5 Handling of methods that run with “an unspecified transaction context”3

16.7 Access from multiple clients in the same transaction context......................... 362

16.7.1 Transaction “diamond” scenario with an entity object 362
16.7.2 Container Provider’s responsibilities .. 364
16.7.3 Bean Provider’s responsibilities.. 365
16.7.4 Application Assembler and Deployer’s responsibilities 366
16.7.5 Transaction diamonds involving session objects 366

Chapter 17 Exception handling .. 369

17.1 Overview and Concepts... 36

17.1.1 Application exceptions.. 369
17.1.2 Goals for exception handling .. 370

17.2 Bean Provider’s responsibilities .. 370

17.2.1 Application exceptions.. 370
17.2.2 System exceptions... 371

17.2.2.1 javax.ejb.NoSuchEntityException 372
17.3 Container Provider responsibilities ... 372

17.3.1 Exceptions from a session or entity bean’s business methods 37
17.3.2 Exceptions from message-driven bean methods 375
17.3.3 Exceptions from container-invoked callbacks................................... 376
17.3.4 javax.ejb.NoSuchEntityException... 377
17.3.5 Non-existing session object... 377
17.3.6 Exceptions from the management of container-managed transactions37
17.3.7 Release of resources.. 37
17.3.8 Support for deprecated use of java.rmi.RemoteException................ 378

17.4 Client’s view of exceptions.. 378

17.4.1 Application exception ... 379
17.4.2 java.rmi.RemoteException .. 379

17.4.2.1 javax.transaction.TransactionRolledbackException 380
17.4.2.2 javax.transaction.TransactionRequiredException............... 380
17.4.2.3 java.rmi.NoSuchObjectException 381

17.5 System Administrator’s responsibilities .. 381

17.6 Differences from EJB 1.0 .. 381

Chapter 18 Support for Distribution and Interoperability .. 38

18.1 Support for distribution ... 383
15 10/23/00

Enterprise JavaBeans 2.0, Proposed Final Draft

Sun Microsystems, Inc.

ce

ithin

iners

era-

0

es

8

18.1.1 Client-side objects in distributed environment.................................. 384
18.2 Interoperability overview... 384

18.2.1 Interoperability goals... 385
18.3 Interoperability Scenarios.. 386

18.3.1 Interactions between web containers and EJB containers for e-commer
applications386

18.3.2 Interactions between application client containers and EJB containers w
an enterprise’s intranet387

18.3.3 Interactions between two EJB containers in an enterprise’s intranet 388
18.3.4 Intranet application interactions between web containers and EJB conta

389
18.3.5 Overview of interoperability requirements 389

18.4 Remote Invocation Interoperability ... 390

18.4.1 Mapping Java Remote Interfaces to IDL... 390
18.4.2 Mapping value objects to IDL... 391
18.4.3 Mapping of system exceptions.. 391
18.4.4 Obtaining stub and client view classes.. 392

18.5 Transaction interoperability... 392

18.5.1 Transaction interoperability requirements... 393
18.5.1.1 Transaction context wire format ... 393
18.5.1.2 Two-phase commit protocol.. 393
18.5.1.3 Transactional policies of enterprise bean references 395
18.5.1.4 Exception handling behavior .. 396

18.5.2 Interoperating with containers that do not implement transaction interop
bility396

18.5.2.1 Client container requirements ... 396
18.5.2.2 EJB container requirements .. 397

18.6 Naming Interoperability... 398

18.7 Security Interoperability .. 399

18.7.1 Introduction ... 399
18.7.1.1 Trust relationships between containers, principal propagation40
18.7.1.2 Application Client Authentication 401

18.7.2 Securing EJB invocations.. 401
18.7.2.1 Secure transport protocol .. 402
18.7.2.2 Security information in IORs.. 402
18.7.2.3 Propagating principals and authentication data in IIOP messag

403
18.7.2.4 Security configuration for containers.................................. 405
18.7.2.5 Runtime behavior.. 405

Chapter 19 Enterprise bean environment..407

19.1 Overview.. 407

19.2 Enterprise bean’s environment as a JNDI naming context 40

19.2.1 Bean Provider’s responsibilities .. 409
19.2.1.1 Access to enterprise bean’s environment 409
19.2.1.2 Declaration of environment entries..................................... 410

19.2.2 Application Assembler’s responsibility .. 413
19.2.3 Deployer’s responsibility... 413
 10/23/00 16

Enterprise JavaBeans 2.0, Proposed Final Draft

Sun Microsystems, Inc.

3

9

ry

 in

5

9

3

7

19.2.4 Container Provider responsibility ... 413
19.3 EJB references ... 41

19.3.1 Bean Provider’s responsibilities.. 414
19.3.1.1 EJB reference programming interfaces 414
19.3.1.2 Declaration of EJB references in deployment descriptor ... 414

19.3.2 Application Assembler’s responsibilities.. 416
19.3.3 Deployer’s responsibility .. 418
19.3.4 Container Provider’s responsibility... 418

19.4 Resource manager connection factory references ... 41

19.4.1 Bean Provider’s responsibilities.. 419
19.4.1.1 Programming interfaces for resource manager connection facto

references419
19.4.1.2 Declaration of resource manager connection factory references

deployment descriptor421
19.4.1.3 Standard resource manager connection factory types 423

19.4.2 Deployer’s responsibility .. 423
19.4.3 Container provider responsibility.. 424
19.4.4 System Administrator’s responsibility .. 425

19.5 Resource environment references.. 42

19.5.1 Bean Provider’s responsibilities.. 425
19.5.1.1 Resource environment reference programming interfaces . 426
19.5.1.2 Declaration of resource environment references in deployment

descriptor426
19.5.2 Deployer’s responsibility .. 427
19.5.3 Container Provider’s responsibility... 428

19.6 Deprecated EJBContext.getEnvironment() method .. 428

19.7 UserTransaction interface.. 42

Chapter 20 Security management... 431

20.1 Overview ... 431

20.2 Bean Provider’s responsibilities .. 433

20.2.1 Invocation of other enterprise beans ... 433
20.2.2 Resource access... 43
20.2.3 Access of underlying OS resources .. 433
20.2.4 Programming style recommendations... 433
20.2.5 Programmatic access to caller’s security context.............................. 434

20.2.5.1 Use of getCallerPrincipal() ... 435
20.2.5.2 Use of isCallerInRole(String roleName) 436
20.2.5.3 Declaration of security roles referenced from the bean’s code43

20.3 Application Assembler’s responsibilities .. 438

20.3.1 Security roles... 439
20.3.2 Method permissions .. 440
20.3.3 Linking security role references to security roles 444
20.3.4 Specification of security identities in the deployment descriptor 444

20.3.4.1 Run-as ... 445
20.4 Deployer’s responsibilities .. 445

20.4.1 Security domain and principal realm assignment 446
20.4.2 Assignment of security roles... 446
17 10/23/00

Enterprise JavaBeans 2.0, Proposed Final Draft

Sun Microsystems, Inc.

7

50

6

8

20.4.3 Principal delegation... 447
20.4.4 Security management of resource access .. 44
20.4.5 General notes on deployment descriptor processing......................... 447

20.5 EJB Client Responsibilities ... 447

20.6 EJB Container Provider’s responsibilities ... 448

20.6.1 Deployment tools .. 448
20.6.2 Security domain(s) .. 448
20.6.3 Security mechanisms... 449
20.6.4 Passing principals on EJB calls ... 449
20.6.5 Security methods in javax.ejb.EJBContext 449
20.6.6 Secure access to resource managers.. 4
20.6.7 Principal mapping ... 450
20.6.8 System principal .. 450
20.6.9 Runtime security enforcement .. 450

20.6.10 Audit trail .. 451
20.7 System Administrator’s responsibilities .. 451

20.7.1 Security domain administration .. 451
20.7.2 Principal mapping ... 451
20.7.3 Audit trail review... 452

Chapter 21 Deployment descriptor ... 453

21.1 Overview.. 453

21.2 Bean Provider’s responsibilities .. 454

21.3 Application Assembler’s responsibility... 456

21.4 Container Provider’s responsibilities... 458

21.5 Deployment descriptor DTD ... 459

Chapter 22 Ejb-jar file .. 485

22.1 Overview.. 485

22.2 Deployment descriptor... 486

22.3 Class files ... 48

22.4 ejb-client JAR file .. 487

22.5 Deprecated in EJB 1.1 ... 48

22.5.1 ejb-jar Manifest ... 488
22.5.2 Serialized deployment descriptor JavaBeans™ components 488

Chapter 23 Runtime environment... 489

23.1 Bean Provider’s responsibilities .. 489

23.1.1 APIs provided by Container .. 489
23.1.2 Programming restrictions .. 490

23.2 Container Provider’s responsibility ... 492

23.2.1 Java 2 APIs requirements .. 493
23.2.2 EJB 2.0 requirements .. 494
23.2.3 JNDI 1.2 requirements .. 494
23.2.4 JTA 1.0.1 requirements.. 495
 10/23/00 18

Enterprise JavaBeans 2.0, Proposed Final Draft

Sun Microsystems, Inc.

99

9

0

5

1

23.2.5 JDBC™ 2.0 extension requirements... 495
23.2.6 JMS 1.0.2 requirements .. 495
23.2.7 Argument passing semantics... 496

Chapter 24 Responsibilities of EJB Roles..497

24.1 Bean Provider’s responsibilities .. 497

24.1.1 API requirements .. 497
24.1.2 Packaging requirements .. 497

24.2 Application Assembler’s responsibilities .. 498

24.3 EJB Container Provider’s responsibilities ... 498

24.4 Deployer’s responsibilities .. 498

24.5 System Administrator’s responsibilities .. 498

24.6 Client Programmer’s responsibilities .. 498

Chapter 25 Enterprise JavaBeans™ API Reference... 4

package javax.ejb... 49

package javax.ejb.deployment ... 500

Chapter 26 Related documents ... 501

Appendix A Features deferred to future releases ... 53

Appendix B EJB 1.1 Deployment descriptor ... 50

B.1 Overview ... 505

B.2 Bean Provider’s responsibilities .. 506

B.3 Application Assembler’s responsibility... 508

B.4 Container Provider’s responsibilities... 509

B.5 Deployment descriptor DTD ... 509

B.6 Deployment descriptor example.. 524

Appendix C EJB 1.1 Runtime environment ... 53

C.1 EJB 1.1 Bean Provider’s responsibilities... 531
C.1.1 APIs provided by EJB 1.1 Container .. 531
C.1.2 Programming restrictions.. 532

C.2 EJB 1.1 Container Provider’s responsibility ... 534
C.2.1 Java 2 Platform, Standard Edition, v 1.2 (J2SE) APIs requirements 535
C.2.2 EJB 1.1 requirements .. 536
C.2.3 JNDI 1.2 requirements .. 536
C.2.4 JTA 1.0.1 requirements ... 536
C.2.5 JDBC™ 2.0 extension requirements... 536
C.2.6 Argument passing semantics... 536
19 10/23/00

Enterprise JavaBeans 2.0, Proposed Final Draft

Sun Microsystems, Inc.

7

8

8

8

9

1

2

2

3

3

4

4

6

Appendix D Frequently asked questions .. 537

D.1 Client-demarcated transactions.. 53

D.2 Container managed persistence ... 53

D.3 Inheritance ... 53

D.4 How to obtain database connections.. 53

D.5 Session beans and primary key.. 53

D.6 Copying of parameters required for EJB calls within the same JVM 539

Appendix E Revision History... 541

E.1 Version 0.1 ... 54

E.2 Version 0.2 ... 54

E.3 Version 0.3 ... 54

E.4 Version 0.4 ... 54

E.5 Version 0.5 ... 54

E.6 Version 0.6 ... 54

E.7 Version 0.7 ... 54

E.8 Participant Draft... 544

E.9 Public Draft.. 545

E.10 Public Draft 2... 545

E.11 Proposed Final Draft.. 54
 10/23/00 20

Enterprise JavaBeans 2.0, Proposed Final Draft

Sun Microsystems, Inc.

........82

........83

........84

.......

.......11

.......183

........

......207

ce ..208

nce209

.......211

.......212

nce213

le. ...221

criptors,

........2
List of Figures

Figure 1 Enterprise JavaBeans Contracts ..46

Figure 2 Client View of session beans deployed in a Container..51

Figure 3 Lifecycle of a session object. ..54

Figure 4 Session Bean Example Objects ...55

Figure 5 Lifecycle of a STATEFUL Session bean instance...67

Figure 6 OID for Creation of a session object ..73

Figure 7 OID for session object at start of a transaction. ..74

Figure 8 OID for session object transaction synchronization..75

Figure 9 OID for passivation and activation of a session object ...76

Figure 10 OID for the removal of a session object ...77

Figure 11 Lifecycle of a STATELESS Session bean ..79

Figure 12 OID for creation of a STATELESS session object..81

Figure 13 OID for invocation of business method on a STATELESS session object......................................

Figure 14 OID for removal of a STATELESS session object..83

Figure 15 OID for Container Adding Instance of a STATELESS session bean to a method-ready pool........

Figure 16 OID for a Container Removing an Instance of a STATELESS Session bean from ready pool

Figure 17 Example of Inheritance Relationships Between EJB Classes..92

Figure 18 Client view of entity beans deployed in a container ...98

Figure 19 Client View of Entity Object Life Cycle ...102

Figure 20 Client view of underlying data sources accessed through entity bean ..2

Figure 21 Relationship example ..146

Figure 22 Overview of the entity bean runtime execution model..156

Figure 23 Relationships among the classes ...158

Figure 24 Life cycle of an entity bean instance. ..161

Figure 25 Multiple clients can access the same entity object using multiple instances

Figure 26 Multiple clients can access the same entity object using single instance......................................184

Figure 27 OID of creation of an entity object with container-managed persistence

Figure 28 OID of passivation and reactivation of an entity bean instance with container managed persisten

Figure 29 OID of transaction commit protocol for an entity bean instance with container-managed persiste

Figure 30 OID of start of transaction for an entity bean instance with container-managed persistence

Figure 31 OID of removal of an entity bean object with container-managed persistence..............................

Figure 32 OID of execution of a finder method on an entity bean instance with container-managed persiste

Figure 33 OID of a container adding an instance to the pool ..214

Figure 34 OID of a container removing an instance from the pool...214

Figure 35 Two beans, OrderEJB and ProductEJB, with abstract persistence schemas in the same ejb-jar fi

Figure 36 The abstract persistence schemas of OrderEJB and ProductEJB are in different deployment des
and hence two different ejb-jar files. 223

Figure 37 Client view of underlying data sources accessed through entity bean ..46

Figure 38 Overview of the entity bean runtime execution model..249
21 10/23/00

Enterprise JavaBeans 2.0, Proposed Final Draft

Sun Microsystems, Inc.

.......267

........

.......2

........280

.......281

........282

.......283

.......284

........288

......299

......301

persis-

ce..304

.......305

persis-

.....

.....319

.....320

....321

.......

.........

es334

.

.....
Figure 39 Life cycle of an entity bean instance. ..250

Figure 40 Multiple clients can access the same entity object using multiple instances

Figure 41 Multiple clients can access the same entity object using single instance......................................268

Figure 42 OID of Creation of an entity object with bean-managed persistence...79

Figure 43 OID of passivation and reactivation of an entity bean instance with bean-managed persistence .

Figure 44 OID of transaction commit protocol for an entity bean instance with bean-managed persistence

Figure 45 OID of start of transaction for an entity bean instance with bean-managed persistence

Figure 46 OID of removal of an entity bean object with bean-managed persistence.....................................

Figure 47 OID of execution of a finder method on an entity bean instance with bean-managed persistence

Figure 48 OID of a container adding an instance to the pool ..285

Figure 49 OID of a container removing an instance from the pool ...285

Figure 50 Example of the inheritance relationship between the interfaces and classes:

Figure 51 OID of creation of an entity object with EJB 1.1 container-managed persistence..........................

Figure 52 OID of passivation and reactivation of an entity bean instance with EJB 1.1 CMP

Figure 53 OID of transaction commit protocol for an entity bean instance with EJB 1.1 container-managed
tence302

Figure 54 OID of start of transaction for an entity bean instance with EJB 1.1 container-managed persisten

Figure 55 OID of removal of an entity bean object with EJB 1.1 container-managed persistence

Figure 56 OID of execution of a finder method on an entity bean instance with EJB 1.1 container-managed
tence306

Figure 57 OID of a container adding an instance to the pool ..307

Figure 58 OID of a container removing an instance from the pool ...307

Figure 59 Client view of message-driven beans deployed in a container...311

Figure 60 Lifecycle of a MESSAGE-DRIVEN bean. ...317

Figure 61 OID for invocation of onMessage method on MESSAGE-DRIVEN bean instance........................

Figure 62 OID for container adding instance of a MESSAGE-DRIVEN bean to a method-ready pool..........

Figure 63 OID for a container removing an instance of MESSAGE-DRIVEN bean from ready pool

Figure 64 Example of Inheritance Relationships Between EJB Classes ..326

Figure 65 Updates to Simultaneous Databases..332

Figure 66 Message sent to JMS queue and updates to multiple databases...333

Figure 67 Message sent to JMS queue serviced by message-driven bean and updates to multiple databas

Figure 68 Updates to Multiple Databases in Same Transaction ...334

Figure 69 Updates on Multiple Databases on Multiple Servers ..335

Figure 70 Update of Multiple Databases from Non-Transactional Client..336

Figure 71 Transaction diamond scenario with entity object ..363

Figure 72 Handling of diamonds by a multi-process container ..365

Figure 73 Transaction diamond scenario with a session bean ...366

Figure 74 Location of EJB Client Stubs. ...384

Figure 75 Heterogeneous EJB Environment ...385

Figure 76 Transaction context propagation..394
 10/23/00 22

Enterprise JavaBeans 2.0, Proposed Final Draft

Sun Microsystems, Inc.

......

.......

.

.......

........354

tion

on

transac-

saction

.....

.....
List of Tables

Table 1 EJB Roles in the example scenarios..40

Table 2 Operations allowed in the methods of a stateful session bean ..70

Table 3 Operations allowed in the methods of a stateless session bean..80

Table 4 Operations allowed in the methods of an entity bean ..175

Table 5 Comparison of finder and select methods ...179

Table 6 Summary of commit-time options...182

Table 7 Entity Bean Naming Conventions ...220

Table 8 Definition of the AND operator ..237

Table 9 Definition of the OR operator..237

Table 10 Definition of the NOT operator ...237

Table 11 Definition of the conditional test ...238

Table 12 Operations allowed in the methods of an entity bean ...259

Table 13 Summary of commit-time options...266

Table 14 Operations allowed in the methods of a message-driven bean...318

Table 15 Container’s actions for methods of beans with bean-managed transaction

Table 16 Transaction attribute summary ..357

Table 17 Handling of exceptions thrown by a business method of a bean with container-managed transac
demarcation373

Table 18 Handling of exceptions thrown by a business method of a session with bean-managed transacti
demarcation374

Table 19 Handling of exceptions thrown by a method of a message-driven bean with container-managed
tion demarcation.375

Table 20 Handling of exceptions thrown by a method of a message-driven bean with bean-managed tran
demarcation.376

Table 21 Java 2 Platform Security policy for a standard EJB Container ..494

Table 22 Java 2 Platform Security policy for a standard EJB Container ..535
23 10/23/00

Enterprise JavaBeans 2.0, Proposed Final Draft

Sun Microsystems, Inc.
 10/23/00 24

Enterprise JavaBeans 2.0, Proposed Final Draft

Sun Microsystems, Inc.
Chapter 1 Introduction
c-
ributed
alable,
on any

ndors
ns™

erprise

terprise

the

e, and
that is
mes-
ously
e same

s, and
n of
beans
ch to
ifica-
owing
This is the specification of the Enterprise JavaBeansTM architecture. The Enterprise JavaBeans archite
ture is a component architecture for the development and deployment of component-based dist
business applications. Applications written using the Enterprise JavaBeans architecture are sc
transactional, and multi-user secure. These applications may be written once, and then deployed
server platform that supports the Enterprise JavaBeans specification.

1.1 Target audience

The target audiences for this specification are the vendors of transaction processing platforms, ve
of enterprise application tools, and other vendors who want to support the Enterprise JavaBea
(EJB) technology in their products.

Many concepts described in this document are system-level issues that are transparent to the Ent
JavaBeans application programmer.

1.2 What is new in EJB 2.0

The Enterprise JavaBeans 2.0 architecture presented in this document is an extension of the En
JavaBeans architecture designed and specified by Vlada Matena and Mark Hapner in theEnterprise
JavaBeans Specification, v1.1.In this document we have extended Enterprise JavaBeans to include
following new functionality:

• We have specified the integration of Enterprise JavaBeans with the Java Message Servic
introduced Message-driven beans. A message-driven bean is a stateless component
invoked by the container as a result of the arrival of a JMS message. The goal of the
sage-driven bean model is to make developing an enterprise bean that is asynchron
invoked to handle the processing of incoming JMS messages as simple as developing th
functionality in any other JMS MessageListener.

• We have revised Enterprise JavaBeans container managed persistence for entity bean
have added support for container managed relationships and support for the integratio
persistence managers with EJB containers. We have specified new contracts for entity
with container-managed persistence to address the limitations of the field-based approa
container-managed in persistence in earlier versions of the Enterprise JavaBeans spec
tion. The new container managed persistence mechanisms are added to provide the foll
functionality:
25 10/23/00

Introduction Enterprise JavaBeans 2.0, Proposed Final Draft Acknowledgments

Sun Microsystems, Inc.

dent

cha-
ms;

with
ods to

en-

d per-
beans

iness

ality
f an

s on
ferent

t and
hitec-

rous
EJB
d in

orte,
ople,
ystems,
• To support container managed relationships among entity beans and depen
object classes.

• To provide the basis for a portable finder query syntax.

• To support more efficient vendor implementations leveraging lazy loading me
nisms, dirty detection; to reduce memory footprints; to avoid data aliasing proble
etc.

• To provide a foundation for pluggable persistence managers.

• We have provided a declarative syntax for the definition of query methods for entity beans
container managed persistence that allows the implementation of finder and select meth
be provided by the persistence manager. The resulting Enterprise JavaBeansTM Query Lan-
guage, EJBTM QL, provides for navigation across a network of enterprise beans and dep
dent objects defined by means of container-managed relationships.

• We have added select methods for the internal use of entity beans with container manage
sistence. Select methods allow the selection of dependent objects, values, and related
through EJB QL queries.

• We have added support for additional methods on the Home interface to implement bus
logic that is independent of a specific enterprise bean instance.

• We have added a run-as security identity functionality for enterprise beans. This function
allows for the declarative specification of the principal to be used for the run-as identity o
enterprise bean in terms of its security role.

• We have defined an interoperability protocol based on CORBA/IIOP to allow invocation
session and entity beans from J2EE components that are deployed in products from dif
vendors.

1.3 Acknowledgments

We would like to thank Vlada Matena and Mark Hapner for their generous help and encouragemen
for the invaluable input that they have provided in the design of the Enterprise JavaBeans 2.0 arc
ture.

The Enterprise JavaBeans architecture is a broad effort that includes contributions from nume
groups at Sun and at partner companies. In particular, we would like to thank the members of the
2.0 Expert Group for their contributions to this specification. The companies that have participate
the EJB 2.0 Expert Group include: Allaire, Art Technology Group, BEA, Bluestone Software, F
Fujitsu, GemStone, IBM, InLine, Inprise, IONA, iPlanet, Luna Information Systems, The ObjectPe
Oracle, Persistence, Progress Software, Secant, Siemens, SilverStream, Software AG, Sun Micros
Sybase, Tibco, Vitria.
 10/23/00 26

Organization Enterprise JavaBeans 2.0, Proposed Final Draft Introduction

Sun Microsystems, Inc.

ajmi,

cifica-
ment.

ation
ect to

ents the

nts the
L, the
Entity

y Bean
naged

n Bean

iron-

bean
rprise
We would also like to thank our colleagues at Sun Microsystems—Joseph Fialli, Shel Finkelstein, Alan
Frechette, Art Frechette, Ram Jeyaraman, Nick Kassem, Ron Monzillo, Vivek Nagar, Farrukh N
Kevin Osborn, Ken Saks, Bill Shannon, Rahul Sharma, and Peter Walker—for their feedback on design
and implementation issues and their suggestions to help improve the quality of the EJB 2.0 spe
tion. We would like to thank Beth Stearns for her editorial assistance in the production of this docu

1.4 Organization

Chapter 2, “Goals” discusses the advantages of Enterprise JavaBeans architecture.

Chapter 3, “Roles and Scenarios” discusses the responsibilities of the Bean Provider, Applic
Assembler, Deployer, EJB Container and Server Providers, and System Administrators with resp
the Enterprise JavaBeans architecture.

Chapter 4, “Fundamentals” defines the scope of the Enterprise JavaBeans specification.

Chapters 5 through 7 define Session Beans: Chapter 5 discusses the client view, Chapter 6 pres
Session Bean component contract, and Chapter 7 outlines an example Session Bean scenario.

Chapters 8 through 13 define Entity Beans: Chapter 8 discusses the client view; Chapter 9 prese
Entity Bean component contract for container managed persistence; Chapter 10 presents EJB Q
query language for Entity Beans with container managed persistence; Chapter 11 presents the
Bean component contract for bean managed persistence; Chapter 12 outlines an example Entit
scenario; and Chapter 13 specifies the EJB 1.1 Entity Bean component contract for container ma
persistence.

Chapters 14 through 15 define Message-driven Beans: Chapter 14 presents the Message-drive
component contract, and Chapter 15 outlines an example Message-driven Bean scenario.

Chapters 16 through 20 discuss transactions; exceptions; distribution and interoperability; env
ment; and security.

Chapters 21 and 22 describe the format of the ejb-jar file and its deployment descriptor.

Chapter 23 defines the runtime APIs that a compliant EJB container must provide to the enterprise
instances at runtime. The chapter also specifies the programming restrictions for portable ente
beans.

Chapter 24 summarizes the responsibilities of the individual EJB Roles.

Chapter 25 is the Enterprise JavaBeans API Reference.

Chapter 26 provides a list of related documents.
27 10/23/00

Introduction Enterprise JavaBeans 2.0, Proposed Final Draft Document conventions

Sun Microsystems, Inc.

scrib-
1.5 Document conventions

The regular Times font is used for information that is prescriptive by the EJB specification.

The italic Times font is used for paragraphs that contain descriptive information, such as notes de
ing typical use, or notes clarifying the text with prescriptive specification.

The Courier font is used for code examples.

The Helvetica font is used to specify the BNF of EJB QL.
 10/23/00 28

Overall goals Enterprise JavaBeans 2.0, Proposed Final Draft Goals

Sun Microsystems, Inc.

uild-
age.
ions

tion
tails,

phy
then

ntime
Chapter 2 Goals

2.1 Overall goals

The Enterprise JavaBeans (EJB) architecture has the following goals:

• The Enterprise JavaBeans architecture will be the standard component architecture for b
ing distributed object-oriented business applications in the Java™ programming langu
The Enterprise JavaBeans architecture will make it possible to build distributed applicat
by combining components developed using tools from different vendors.

• The Enterprise JavaBeans architecture will make it easy to write applications: Applica
developers will not have to understand low-level transaction and state management de
multi-threading, connection pooling, and other complex low-level APIs.

• Enterprise JavaBeans applications will follow the Write Once, Run Anywhere™” philoso
of the Java programming language. An enterprise Bean can be developed once, and
deployed on multiple platforms without recompilation or source code modification.

• The Enterprise JavaBeans architecture will address the development, deployment, and ru
aspects of an enterprise application’s life cycle.
29 10/23/00

Goals Enterprise JavaBeans 2.0, Proposed Final Draft EJB Releases 1.0 and 1.1

Sun Microsystems, Inc.

ltiple

Ven-

lan-

eans
ming

ese
• The Enterprise JavaBeans architecture will define the contracts that enable tools from mu
vendors to develop and deploy components that can interoperate at runtime.

• The Enterprise JavaBeans architecture will be compatible with existing server platforms.
dors will be able to extend their existing products to support Enterprise JavaBeans.

• The Enterprise JavaBeans architecture will be compatible with other Java programming
guage APIs.

• The Enterprise JavaBeans architecture will provide interoperability between enterprise B
and Java 2 Platform Enterprise Edition (J2EE) components as well as non-Java program
language applications.

• The Enterprise JavaBeans architecture will be compatible with the CORBA protocols.

2.2 EJB Releases 1.0 and 1.1

Enterprise JavaBeans Release 1.0 focused on the following aspects:

• Defined the distinct “EJB Roles” that are assumed by the component architecture.

• Defined the client view of enterprise Beans.

• Defined the enterprise Bean developer’s view.

• Defined the responsibilities of an EJB Container provider and server provider; together th
make up a system that supports the deployment and execution of enterprise Beans.

• Defined the format of the ejb-jar file, EJB’s unit of deployment.

Release 1.1 augmented this with a focus on the following:

• Provided better support for application assembly and deployment.

• Specified in greater detail the responsibilities of the individual EJB roles.

2.3 Goals for Release 2.0

Enterprise JavaBeans Release 2.0 focuses on the following aspects:

• Define the integration of EJB with the Java Message Service.

• Provide improved support for the persistence of entity beans.

• Provide improved support for the management of relationships among enterprise beans.
 10/23/00 30

Goals for Release 2.0 Enterprise JavaBeans 2.0, Proposed Final Draft Goals

Sun Microsystems, Inc.
• Provide a query syntax for entity bean finder methods.

• Provide support for additional methods in the home interface.

• Provide for network interoperability among EJB servers.
31 10/23/00

Goals Enterprise JavaBeans 2.0, Proposed Final Draft Goals for Release 2.0

Sun Microsystems, Inc.
 10/23/00 32

EJB Roles Enterprise JavaBeans 2.0, Proposed Final Draft EJB Roles and Scenarios

Sun Microsystems, Inc.

nt and
spec-

of the
rt the

r
y

Chapter 3 EJB Roles and Scenarios

3.1 EJB Roles

The Enterprise JavaBeans architecture defines seven distinct roles in the application developme
deployment life cycle. Each EJB Role may be performed by a different party. The EJB architecture
ifies the contracts that ensure that the product of each EJB Role is compatible with the product
other EJB Roles. The EJB specification focuses on those contracts that are required to suppo
development and deployment of ISV-written enterprise Beans.

In some scenarios, a single party may perform several EJB Roles. For example, the Containe
Provider and the EJB Server Provider may be the same vendor. Or a single programmer ma
perform the two EJB Roles of the Enterprise Bean Provider and the Application Assembler.

The following sections define the seven EJB Roles.
33 10/23/00

EJB Roles and Scenarios Enterprise JavaBeans 2.0, Proposed Final Draft EJB Roles

Sun Microsystems, Inc.

or her
ible for
bean’s
cludes
eclares
nterprise

lops

Bean
ices

mbler.

. The
. The

with
mbly

mpo-

at appli-

Beans.
rprise
d by
e of the

mbler
nt. The
3.1.1 Enterprise Bean Provider

The Enterprise Bean Provider (Bean Provider for short) is the producer of enterprise beans. His
output is an ejb-jar file that contains one or more enterprise beans. The Bean Provider is respons
the Java classes that implement the enterprise bean’s business methods; the definition of the
remote and home interfaces; and the bean’s deployment descriptor. The deployment descriptor in
the structural information (e.g. the name of the enterprise bean class) of the enterprise bean and d
all the enterprise bean’s external dependencies (e.g. the names and types of resources that the e
bean uses).

The Enterprise Bean Provider is typically an application domain expert. The Bean Provider deve
reusable enterprise beans that typically implement business tasks or business entities.

The Bean Provider is not required to be an expert at system-level programming. Therefore, the
Provider usually does not program transactions, concurrency, security, distribution, or other serv
into the enterprise Beans. The Bean Provider relies on the EJB Container for these services.

A Bean Provider of multiple enterprise beans often performs the EJB Role of the Application Asse

3.1.2 Application Assembler

The Application Assembler combines enterprise beans into larger deployable application units
input to the Application Assembler is one or more ejb-jar files produced by the Bean Provider(s)
Application Assembler outputs one or more ejb-jar files that contain the enterprise beans along
their application assembly instructions. The Application Assembler inserts the application asse
instructions into the deployment descriptors.

The Application Assembler can also combine enterprise beans with other types of application co
nents (e.g. Java ServerPages™) when composing an application.

The EJB specification describes the case in which the application assembly step occursbefore the
deployment of the enterprise beans. However, the EJB architecture does not preclude the case th
cation assembly is performedafter the deployment of all or some of the enterprise beans.

The Application Assembler is a domain expert who composes applications that use enterprise
The Application Assembler works with the enterprise Bean’s deployment descriptor and the ente
Bean’s client-view contract. Although the Assembler must be familiar with the functionality provide
the enterprise Bean’s remote and home interfaces, he or she does not need to have any knowledg
enterprise Bean’s implementation.

3.1.3 Deployer

The Deployer takes one or more ejb-jar files produced by a Bean Provider or Application Asse
and deploys the enterprise beans contained in the ejb-jar files in a specific operational environme
operational environment includes a specific EJB Server and Container.
 10/23/00 34

EJB Roles Enterprise JavaBeans 2.0, Proposed Final Draft EJB Roles and Scenarios

Sun Microsystems, Inc.

.g. the
ans are
onnec-

ssem-
uses

beans)
pecific

ent of
by the
nt in

s. The

ner to

onal

at their
lica-

buted
endor,

vider
Server
The Deployer must resolve all the external dependencies declared by the Bean Provider (e
Deployer must ensure that all resource manager connection factories used by the enterprise be
present in the operational environment, and he or she must bind them to the resource manager c
tion factory references declared in the deployment descriptor), and must follow the application a
bly instructions defined by the Application Assembler. To perform his or her role, the Deployer
tools provided by the EJB Container Provider.

The Deployer’s output are enterprise beans (or an assembled application that includes enterprise
that have been customized for the target operational environment, and that are deployed in a s
EJB Container.

The Deployer is an expert at a specific operational environment and is responsible for the deploym
enterprise Beans. For example, the Deployer is responsible for mapping the security roles defined
Application Assembler to the user groups and accounts that exist in the operational environme
which the enterprise beans are deployed.

The Deployer uses tools supplied by the EJB Container Provider to perform the deployment task
deployment process is typically two-stage:

• The Deployer first generates the additional classes and interfaces that enable the contai
manage the enterprise beans at runtime. These classes are container-specific.

• The Deployer performs the actual installation of the enterprise beans and the additi
classes and interfaces into the EJB Container.

In some cases, a qualified Deployer may customize the business logic of the enterprise Beans
deployment. Such a Deployer would typically use the container tools to write relatively simple app
tion code that wraps the enterprise Bean’s business methods.

3.1.4 EJB Server Provider

The EJB Server Provider is a specialist in the area of distributed transaction management, distri
objects, and other lower-level system-level services. A typical EJB Server Provider is an OS v
middleware vendor, or database vendor.

The current EJB architecture assumes that the EJB Server Provider and the EJB Container Pro
roles are the same vendor. Therefore, it does not define any interface requirements for the EJB
Provider.

3.1.5 EJB Container Provider

The EJB Container Provider (Container Provider for short) provides

• The deployment tools necessary for the deployment of enterprise beans.

• The runtime support for the deployed enterprise bean instances.
35 10/23/00

EJB Roles and Scenarios Enterprise JavaBeans 2.0, Proposed Final Draft EJB Roles

Sun Microsystems, Inc.

nviron-
y man-
that are

o be
n does
o split

some
lable,
vider
mple,
Beans

po-
ithout

and

for the
ols are
abase or

t objects
depen-
ethods

cle of
f SPIs

Con-

rise’s
ystem
appli-
From the perspective of the enterprise beans, the Container is a part of the target operational e
ment. The Container runtime provides the deployed enterprise beans with transaction and securit
agement, network distribution of clients, scalable management of resources, and other services
generally required as part of a manageable server platform.

The “EJB Container Provider’s responsibilities” defined by the EJB architecture are meant t
requirements for the implementation of the EJB Container and Server. Since the EJB specificatio
not architect the interface between the EJB Container and Server, it is left up to the vendor how t
the implementation of the required functionality between the EJB Container and Server.

The expertise of the Container Provider is system-level programming, possibly combined with
application-domain expertise. The focus of a Container Provider is on the development of a sca
secure, transaction-enabled container that is integrated with an EJB Server. The Container Pro
insulates the enterprise Bean from the specifics of an underlying EJB Server by providing a si
standard API between the enterprise Bean and the container. This API is the Enterprise Java
component contract.

The Container Provider typically provides support for versioning the installed enterprise Bean com
nents. For example, the Container Provider may allow enterprise Bean classes to be upgraded w
invalidating existing clients or losing existing enterprise Bean objects.

The Container Provider typically provides tools that allow the system administrator to monitor
manage the container and the Beans running in the container at runtime.

3.1.6 Persistence Manager Provider

For Entity Beans with container-managed persistence, the Persistence Manager is responsible
persistence of the Entity Beans installed in the container. The Persistence Manager Provider’s to
used at deployment time to generate code that moves data between the Entity Beans and a dat
an existing application.

The Persistence Manager manages the persistent state of the entity beans and the dependen
used by those beans, and the referential integrity of the relationships among the entity beans and
dent objects. The Persistence Manager is responsible for the execution of the finder and select m
for entity beans with container managed persistence.

The Persistence Manager interacts with the Container to receive notifications related to the lifecy
the managed beans. The current EJB architecture, however, does not architect the full set o
between the Container and the Persistence Manager: these interfaces are currenctly left to the
tainer Provider and Persistence Manager Provider.

3.1.7 System Administrator
The System Administrator is responsible for the configuration and administration of the enterp
computing and networking infrastructure that includes the EJB Server and Container. The S
Administrator is also responsible for overseeing the well-being of the deployed enterprise beans
cations at runtime.
 10/23/00 36

Scenario: Development, assembly, and deploymentEnterprise JavaBeans 2.0, Proposed Final Draft EJB Roles and Scenarios

Sun Microsystems, Inc.

he Sys-
erver

ss the

In the

service
loyee

t
erms

ess to

ause
uitable
an will
ill be

ents of
terprise
ans are
rprises

ll the

ompo-
prise
ole of

terms
The EJB architecture does not define the contracts for system management and administration. T
tem Administrator typically uses runtime monitoring and management tools provided by the EJB S
and Container Providers to accomplish these tasks.

3.2 Scenario: Development, assembly, and deployment

Aardvark Inc. specializes in application integration. Aardvark developed theAardvarkPayrollenter-
prise bean, which is a generic payroll access component that allows Java™ applications to acce
payroll modules of the leading ERP systems. Aardvark packages theAardvarkPayrollenterprise bean in
a standard ejb-jar file and markets it as a customizable enterprise bean to application developers.
terms of the EJB architecture, Aardvark is theBean Provider of theAardvarkPayroll bean.

Wombat Inc. is a Web-application development company. Wombat developed an employee self-
application. The application allows a target enterprise’s employees to access and update emp
record information. The application includes theEmployeeService, EmployeeServiceAdmin, and
EmployeeRecordenterprise beans. TheEmployeeRecordbean is a container-managed entity tha
allows deployment-time integration with an enterprise’s existing human resource applications. In t
of the EJB architecture, Wombat is theBean Providerof theEmployeeService, EmployeeServiceAd-
min, andEmployeeRecord enterprise beans.

In addition to providing access to employee records, Wombat would like to provide employee acc
the enterprise’s payroll and pension plan systems. To provide payroll access, Wombat licenses theAard-
varkPayrollenterprise bean from Aardvark, and includes it as part of the Wombat application. Bec
there is no available generic enterprise bean for pension plan access, Wombat decides that a s
pension plan enterprise bean will have to be developed at deployment time. The pension plan be
implement the necessary application integration logic, and it is likely that the pension plan bean w
specific to each Wombat customer.

In order to provide a complete solution, Wombat also develops the necessary non-EJB compon
the employee self-service application, such as the Java ServerPages™ (JSP) that invoke the en
beans and generate the HTML presentation to the clients. Both the JSP pages and enterprise be
customizable at deployment time because they are intended to be sold to a number of target ente
that are Wombat customers.

The Wombat application is packaged as a collection of JAR files. A single ejb-jar file contains a
enterprise beans developed by Wombat and also theAardvarkPayrollenterprise bean developed by
Aardvark; the other JAR files contain the non-EJB application components, such as the JSP c
nents. The ejb-jar file contains the application assembly instructions describing how the enter
beans are composed into an application. In terms of the EJB architecture, Wombat performs the r
theApplication Assembler.

Acme Corporation is a server software vendor. Acme developed an EJB Server and Container. In
of the EJB architecture, Acme performs theEJB Container Provider andEJB Server Providerroles.
37 10/23/00

EJB Roles and Scenarios Enterprise JavaBeans 2.0, Proposed Final Draft Scenario: Development, assembly, and

Sun Microsystems, Inc.

payroll
sys-
buys

h the
e EJB

a-

ting
such
payroll
nec-

C’s IT
icing
rms
The ABC Enterprise wants to enable its employees to access and update employee records,
information, and pension plan information over the Web. The information is stored in ABC’s ERP
tem. ABC buys the employee self-service application from Wombat. To host the application, ABC
the EJB Container and Server from Acme. ABC’s Information Technology (IT) department, wit
help of Wombat’s consulting services, deploys the Wombat self-service application. In terms of th
architecture, ABC’s IT department and Wombat consulting services perform theDeployerrole. ABC’s
IT department also develops theABCPensionPlanenterprise bean that provides the Wombat applic
tion with access to ABC’s existing pension plan application.

ABC’s IT staff is responsible for configuring the Acme product and integrating it with ABC’s exis
network infrastructure. The IT staff is responsible for the following tasks: security administration,
as adding and removing employee accounts; adding employees to user groups such as the
department; and mapping principals from digital certificates that identify employees on VPN con
tions from home computers to the Kerberos user accounts that are used on ABC’s intranet. AB
staff also monitors the well-being of the Wombat application at runtime, and is responsible for serv
any error conditions raised by the application. In terms of the EJB architecture, ABC’s IT staff perfo
the role of theSystem Administrator.
 10/23/00 38

Scenario: Development, assembly, and deploymentEnterprise JavaBeans 2.0, Proposed Final Draft EJB Roles and Scenarios

Sun Microsystems, Inc.
The following diagrams illustrates the products of the various EJB Roles.

Aardvark
Payroll

ejb-jar file

Employee
RecordEmployee

Service

Employee
ServiceAdmin

Aardvark
Payroll

ejb-jar file
with assembly instructions

JAR file
with JSP pages

Employee
Record

Employee
Service

Employee
ServiceAdmin

Aardvark
Payroll

deployed
 JSP pages

ACME EJB Container

ACME EJB Server

ABCPension
Plan

A Web Server

ABC’s ERP System

HR module

Payroll module

ABC’s pension
plan application

deployed enterprise beans

(a) Aardvark’s product is an ejb-jar file with an enterprise bean

(b) Wombat’s product is an ejb-jar file with several enterprise beans assembled into
an application. Wombat’s product also includes non-EJB components.

(c) Wombat’s application is deployed in ACME’s EJB Container at the ABC enterprise.
39 10/23/00

EJB Roles and Scenarios Enterprise JavaBeans 2.0, Proposed Final Draft Scenario: Development, assembly, and

Sun Microsystems, Inc.
The following table summarizes the EJB Roles of the organizations involved in the scenario.

Table 1 EJB Roles in the example scenarios

Organization EJB Roles

Aardvark Inc. Bean Provider

Wombat Inc. Bean Provider
Application Assembler

Acme Corporation EJB Container Provider
EJB Server Provider

ABC Enterprise’s IT staff Deployer
Bean Provider (ofABCPensionPlan)
System Administrator
 10/23/00 40

Enterprise Beans as components Enterprise JavaBeans 2.0, Proposed Final Draft Overview

Sun Microsystems, Inc.

beans

ta.

tries.
Chapter 4 Overview

This chapter provides an overview of the Enterprise JavaBeans specification.

4.1 Enterprise Beans as components

Enterprise JavaBeans is an architecture for component-based distributed computing. Enterprise
are components of distributed transaction-oriented enterprise applications.

4.1.1 Component characteristics

The essential characteristics of an enterprise bean are:

• An enterprise bean typically contains business logic that operates on the enterprise’s da

• An enterprise bean’s instances are created and managed at runtime by a Container.

• An enterprise bean can be customized at deployment time by editing its environment en
41 10/23/00

Overview Enterprise JavaBeans 2.0, Proposed Final Draft Enterprise JavaBeans contracts

Sun Microsystems, Inc.

e from
uring

rprise
ovide
n that
e.

code

manu-
ent
yed.
envi-

ing:

ven by

bjects

nts.

e order,
should

ple, it

ibed in
• Various services information, such as a transaction and security attributes, are separat
the enterprise bean class. This allows the services information to be managed by tools d
application assembly and deployment.

• Client access is mediated by the Container in which the enterprise Bean is deployed.

• If an enterprise Bean uses only the services defined by the EJB specification, the ente
Bean can be deployed in any compliant EJB Container. Specialized containers can pr
additional services beyond those defined by the EJB specification. An enterprise Bea
depends on such a service can be deployed only in a container that supports that servic

• An enterprise Bean can be included in an assembled application without requiring source
changes or recompilation of the enterprise Bean.

• The Bean Provider defines a client view of an enterprise Bean. The Bean developer can
ally define the client view or it can be generated automatically by application developm
tools. The client view is unaffected by the container and server in which the Bean is deplo
This ensures that both the Beans and their clients can be deployed in multiple execution
ronments without changes or recompilation.

4.1.2 Flexible component model

The enterprise Bean architecture is flexible enough to implement components such as the follow

• An object that represents a stateless service.

• An object that represents a stateless service and whose invocation is asynchronous, dri
the arrival of JMS messages.

• An object that represents a conversational session with a particular client. Such session o
automatically maintain their conversational state across multiple client-invoked methods.

• An entity object that represents a business object that can be shared among multiple clie

Enterprise beans are intended to be relatively coarse-grained business objects (e.g. purchas
employee record). Fine-grained objects (e.g. line item on a purchase order, employee’s address)
not be modeled as enterprise bean components.

Although the state management protocol defined by the Enterprise JavaBeans architecture is sim
provides an enterprise Bean developer great flexibility in managing a Bean’s state.

4.2 Enterprise JavaBeans contracts

This section provides an overview of the Enterprise JavaBeans contracts. The contracts are descr
detail in the following chapters of this document.
 10/23/00 42

Enterprise JavaBeans contracts Enterprise JavaBeans 2.0, Proposed Final Draft Overview

Sun Microsystems, Inc.

velop-
the use

terprise

t Con-
t view
nts that

’s client

JB
e busi-

nterface
ce. The

rectory

er; the
ds the

-
e EJB
4.2.1 Client-view contract

This is a contract between a client and a container. The client-view contract provides a uniform de
ment model for applications using enterprise Beans as components. This uniform model enables
of higher level development tools and allows greater reuse of components.

The enterprise bean client view is remotable—both local and remote programs can access an en
bean using the same view of the enterprise bean.

A client of an enterprise bean can be another enterprise bean deployed in the same or differen
tainer. Or it can be an arbitrary Java program, such as an application, applet, or servlet. The clien
of an enterprise bean can also be mapped to non-Java client environments, such as CORBA clie
are not written in the Java™ programming language.

The enterprise Bean Provider and the container provider cooperate to create the enterprise bean
view. The client view includes:

• Home interface

• Remote interface

• Object identity

• Metadata interface

• Handle

The enterprise bean’shome interfacedefines the methods for the client to create, remove, and find E
objects of the same type (i.e., they are implemented by the same enterprise bean) as well as hom
ness methods (business methods that are not specific to a particular bean instance). The home i
is specified by the Bean Provider; the Container creates a class that implements the home interfa
home interface extends thejavax.ejb.EJBHome interface.

A client can locate an enterprise Bean home interface through the standard Java Naming and Di
InterfaceTM (JNDI) API.

An EJB object is accessible via the enterprise bean’sremote interface. The remote interface defines the
business methods callable by the client. The remote interface is specified by the Bean Provid
Container creates a class that implements the remote interface. The remote interface exten
javax.ejb.EJBObject interface. Thejavax.ejb.EJBObject interface defines the opera
tions that allow the client to access the EJB object’s identity and create a persistent handle for th
object.
43 10/23/00

Overview Enterprise JavaBeans 2.0, Proposed Final Draft Enterprise JavaBeans contracts

Sun Microsystems, Inc.

e Con-
is not

ession
bject

cli-

pically
tion is
nt pro-

of this
deliv-

case of
rsistence
ents

rprise
cation

er to

The
ation,

istent
nt for

re to
nager
Each EJB object lives in a home, and has a unique identity within its home. For session beans, th
tainer is responsible for generating a new unique identifier for each session object. The identifier
exposed to the client. However, a client may test if two object references refer to the same s
object. For entity beans, the Bean Provider is responsible for supplying a primary key at entity o
creation time[1]; the Container uses the primary key to identify the entity object within its home. A
ent may obtain an entity object’s primary key via thejavax.ejb.EJBObject interface. The client
may also test if two object references refer to the same entity object.

A client may also obtain the enterprise bean’s metadata interface. The metadata interface is ty
used by clients who need to perform dynamic invocation of the enterprise bean. (Dynamic invoca
needed if the classes that provide the enterprise client view were not available at the time the clie
gram was compiled.)

Message-driven beans have no home or remote interface and hence no client view in the sense
section. A client can locate the JMS Destination to which it should send messages that are to be
ered to a message-driven bean by means of the standard JNDI API.

4.2.2 Component contract

This subsection describes the contract between an enterprise Bean and its Container, and, in the
an enterprise Bean with container managed persistence, between an enterprise Bean and its Pe
Manager. The main requirements of the contract follow. (This is only a partial list of requirem
defined by the specification.)

• The requirement for the Bean Provider to implement the business methods in the ente
bean class. The requirement for the Container provider to delegate the client method invo
to these methods.

• For message-driven beans, the requirement for the Bean Provider to implement theonMes-
sage method in the enterprise bean class. The requirement for the Container provid
invoke this method when a message has arrived for the bean to service.

• The requirement for the Bean Provider to implement theejbCreate<METHOD> , ejb-
PostCreate<METHOD> ,and ejbRemove methods, and to implement the
ejbFind<METHOD> methods if the bean is an entity with bean-managed persistence.
requirement for the Container provider to invoke these methods during an EJB object cre
removal, and lookup.

• The requirement for the Bean Provider to provide abstract accessor methods for pers
fields and relationships for an entity with container-managed persistence. The requireme
the Persistence Manager Provider to provide the implementation of these methods.

• The requirement for the Bean Provider to provide a description of the relationships that a
be implemented by the Persistence Manager. The requirement for the Persistence Ma
Provider to implement the relationships described by the Bean Provider.

[1] In some situations, the primary key type can be specified at deployment time (see subsection 9.10.1.3).
 10/23/00 44

Enterprise JavaBeans contracts Enterprise JavaBeans 2.0, Proposed Final Draft Overview

Sun Microsystems, Inc.

inter-
r Pro-

acks

r

tainer

acks
o

entity

ation

t con-

behalf

rfere

nce to
time

clar-
yment

r, and
• The requirement for the Bean Provider to define the enterprise bean’s home and remote
faces, if the bean is an entity bean or a session bean. The requirement for the Containe
vider to provide classes that implement these interfaces.

• For sessions, the requirement for the Bean Provider to implement the Container callb
defined in the javax.ejb.SessionBean interface, and optionally the
javax.ejb.SessionSynchronization interfaces. The requirement for the Containe
to invoke these callbacks at the appropriate times.

• For message-driven beans, the requirement for the Bean Provider to implement the Con
callbacks defined in thejavax.ejb.MessageDrivenBean interface.

• For entities, the requirement for the Bean Provider to implement the Container callb
defined in thejavax.ejb.EntityBean interface. The requirement for the Container t
invoke these callbacks at the appropriate times.

• The requirement for the Persistence Manager Provider to implement persistence for
beans with container-managed persistence.

• The requirement for the Container Provider to provide thejavax.ejb.SessionContext
interface to session bean instances, thejavax.ejb.EntityContext interface to entity
bean instances, and thejavax.ejb.MessageDrivenContext interface to mes-
sage-driven bean instances. The context interface allows the instance to obtain inform
from the container.

• The requirement for the Container to provide to the bean instances the JNDI context tha
tains the enterprise bean’s environment.

• The requirement for the Container to manage transactions, security, and exceptions on
of the enterprise bean instances.

• The requirement for the Bean Provider to avoid programming practices that would inte
with the Container’s runtime management of the enterprise bean instances.

• The requirement for the Bean Provider of entity beans with container-managed persiste
avoid programming practices that would interfere with the Persistence Manager’s run
management of the state of the entity beans.

4.2.3 Ejb-jar file

An ejb-jar file is a standard format used by EJB tools for packaging enterprise Beans with their de
ative information. The ejb-jar file is intended to be processed by application assembly and deplo
tools.

The ejb-jar file is a contract used both between the Bean Provider and the Application Assemble
between the Application Assembler and the Deployer.

The ejb-jar file includes:
45 10/23/00

Overview Enterprise JavaBeans 2.0, Proposed Final Draft Enterprise JavaBeans contracts

Sun Microsystems, Inc.

nd
ation
ons

cli-
er.
• Java class files for the enterprise Beans and their remote and home interfaces.

• An XML deployment descriptor. The deployment descriptor provides both the structural a
application assembly information about the enterprise beans in the ejb-jar file. The applic
assembly information is optional. (Typically, only ejb-jar files with assembled applicati
include this information.)

4.2.4 Contracts summary

The following figure illustrates the Enterprise JavaBeans contracts.

Figure 1 Enterprise JavaBeans Contracts

Note that while the figure illustrates only a remote client running outside of the Container, the
ent-view API is also applicable to clients that are enterprise Beans deployed in the same Contain

client Enterprise bean

deployment descriptor

Container

component
contract

client-view

EJB Server

instances
 10/23/00 46

Session, entity, and message-driven objects Enterprise JavaBeans 2.0, Proposed Final Draft Overview

Sun Microsystems, Inc.

pdate

ssion

ssion

l) Ses-

er. If
d, the
4.3 Session, entity, and message-driven objects

The Enterprise JavaBeans architecture defines three types of enterprise bean objects:

• A session object.

• An entity object.

• A message-driven object.

4.3.1 Session objects

A typical session object has the following characteristics:

• Executes on behalf of a single client.

• Can be transaction-aware.

• Updates shared data in an underlying database.

• Does not represent directly shared data in the database, although it may access and u
such data.

• Is relatively short-lived.

• Is removed when the EJB Container crashes. The client has to re-establish a new se
object to continue computation.

A typical EJB Container provides a scalable runtime environment to execute a large number of se
objects concurrently.

Session beans are intended to be stateful. The EJB specification also defines astateless Session beanas
a special case of a Session Bean. There are minor differences in the API between stateful (norma
sion beans and stateless Session beans.

4.3.2 Entity objects

A typical entity object has the following characteristics:

• Provides an object view of data in the database.

• Allows shared access from multiple users.

• Can be long-lived (lives as long as the data in the database).

• The entity, its primary key, and its remote reference survive the crash of the EJB Contain
the state of an entity was being updated by a transaction at the time the container crashe
47 10/23/00

Overview Enterprise JavaBeans 2.0, Proposed Final Draft Standard mapping to CORBA protocols

Sun Microsystems, Inc.

sh is
in a

con-

pdate

mes-

mes-

B 2.0
d on
their
addi-

2.0.
entity’s state is automatically reset to the state of the last committed transaction. The cra
not fully transparent to the client—the client may receive an exception if it calls an entity
container that has experienced a crash.

A typical EJB Container and Server provide a scalable runtime environment for a large number of
currently active entity objects.

4.3.3 Message-driven objects

A typical message-driven object has the following characteristics:

• Executes on receipt of a single client message.

• Can be transaction-aware.

• May update shared data in an underlying database.

• Does not represent directly shared data in the database, although it may access and u
such data.

• Is relatively short-lived.

• Is stateless.

• Is removed when the EJB Container crashes. The container has to re-establish a new
sage-driven object to continue computation.

A typical EJB Container provides a scalable runtime environment to execute a large number of
sage-driven objects concurrently.

4.4 Standard mapping to CORBA protocols

To help interoperability for EJB environments that include systems from multiple vendors, the EJ
specification requires compliant implementations to support the interoperability protocol base
CORBA/IIOP for invocations from J2EE clients on Sessions Beans and Entity Beans through
Home and Remote interfaces. Implementations may support other remote invocation protocols in
tion to IIOP.

Chapter 18 summarizes the support for distribution and the interoperability requirements of EJB
 10/23/00 48

Overview Enterprise JavaBeans 2.0, Proposed Final Draft Client View of a Session Bean

Sun Microsystems, Inc.

usiness
ctions,

tainer

ing on
t runs

ject that
a
.

t, the
er ser-
Chapter 5 Client View of a Session Bean

This chapter describes the client view of a session bean. The session bean itself implements the b
logic. The bean’s container provides functionality for remote access, security, concurrency, transa
and so forth.

While classes implemented by the container provide the client view of the session bean, the con
itself is transparent to the client.

5.1 Overview

For a client, a session object is a non-persistent object that implements some business logic runn
the server. One way to think of a session object is as a logical extension of the client program tha
on the server. A session object is not shared among multiple clients.

A client accesses a session object through the session bean’s remote interface. The Java ob
implements this remote interface is called a sessionEJBObject. A session EJBObject is a remote Jav
object accessible from a client through the standard Java™ APIs for remote object invocation [3]

From its creation until destruction, a session object lives in a container. Transparently to the clien
container provides security, concurrency, transactions, swapping to secondary storage, and oth
vices for the session object.
49 10/23/00

Client View of a Session Bean Enterprise JavaBeans 2.0, Proposed Final Draft EJB Container

Sun Microsystems, Inc.

-
the cli-

e ses-
chine.

ntainer;
a ses-
ot writ-

up the
ovides

n bean

eans.
r mak-
s, the

for the

beans
ns of
e bean.

Con-
ltiple
Each session object has an identity which, in general,does notsurvive a crash and restart of the con
tainer, although a high-end container implementation can mask container and server crashes to
ent.

The client view of a session bean is location-independent. A client running in the same JVM as th
sion object uses the same API as a client running in a different JVM on the same or different ma

A client of an session bean can be another enterprise bean deployed in the same or different Co
or it can be an arbitrary Java program, such as an application, applet, or servlet. The client view of
sion bean can also be mapped to non-Java client environments, such as CORBA clients that are n
ten in the Java programming language.

Multiple enterprise beans can be installed in a container. The container allows the clients to look
home interfaces of the installed enterprise beans via JNDI. A session bean’s home interface pr
methods to create and remove the session objects of a particular session bean.

The client view of an session object is the same, irrespective of the implementation of the sessio
and the container.

5.2 EJB Container

An EJB Container (container for short) is a system that functions as the “container” for enterprise b
Multiple enterprise beans can be deployed in the same container. The container is responsible fo
ing the home interfaces of its deployed enterprise beans available to the client through JNDI. Thu
client can look up the home interface for a specific enterprise bean using JNDI.

5.2.1 Locating a session bean’s home interface

A client locates a session bean’s home interface using JNDI. For example, the home interface
Cart session bean can be located using the following code segment:

Context initialContext = new InitialContext();
CartHome cartHome = (CartHome)javax.rmi.PortableRemoteObject.narrow(

initialContext.lookup(“java:comp/env/ejb/cart”),
CartHome.class);

A client’s JNDI name space may be configured to include the home interfaces of enterprise
installed in multiple EJB Containers located on multiple machines on a network. The actual locatio
an enterprise bean and EJB Container are, in general, transparent to the client using the enterpris

The lifecycle of the distributed object implementing the home interface (the EJBHome object) is
tainer-specific. A client application should be able to obtain a home interface, and then use it mu
times, during the client application’s lifetime.
 10/23/00 50

Home interface Enterprise JavaBeans 2.0, Proposed Final Draft Client View of a Session Bean

Sun Microsystems, Inc.

on can
ned via

object
ntainer
A client can pass a home interface object reference to another application. The receiving applicati
use the home interface in the same way that it would use a home interface object reference obtai
JNDI.

5.2.2 What a container provides

The following diagram illustrates the view that a container provides to clients of session beans.

Figure 2 Client View of session beans deployed in a Container

5.3 Home interface

A Container implements the home interface of the enterprise bean installed in the container. The
that implements a session bean’s home interface is called a session EJBHome object. The co
makes the session beans’ home interfaces available to the client through JNDI.

The home interface allows a client to do the following:

• Create a new session object.

client

EJB objects

EJBHome

container

EJB objectsEJBObjects

session bean 1

EJB objects

EJBHome

EJB objectsEJBObjects

session bean 2
51 10/23/00

Client View of a Session Bean Enterprise JavaBeans 2.0, Proposed Final Draft Home interface

Sun Microsystems, Inc.

e
to
d cli-

stable
orage

e
e-

e

• Remove a session object.

• Get the javax.ejb.EJBMetaData interface for the session bean. Th
javax.ejb.EJBMetaData interface is intended to allow application assembly tools
discover information about the session bean, and to allow loose client/server binding an
ent-side scripting.

• Obtain a handle for the home interface. The home handle can be serialized and written to
storage. Later, possibly in a different JVM, the handle can be deserialized from stable st
and used to obtain back a reference of the home interface.

5.3.1 Creating a session object

A home interface defines one or morecreate<METHOD>(...) methods, one for each way to creat
a session object. The arguments of thecreatemethods are typically used to initialize the state of the cr
ated session object.

The following example illustrates a home interface that defines twocreate<METHOD>(...) meth-
ods:

public interface CartHome extends javax.ejb.EJBHome {
Cart create(String customerName, String account)

throws RemoteException, BadAccountException,
CreateException;

Cart createLargeCart(String customerName, String account)
throws RemoteException, BadAccountException,

CreateException;
}

The following example illustrates how a client creates a new session object using acre-
ate<METHOD>(...) method of theCartHome interface:

cartHome.create(“John”, “7506”);

5.3.2 Removing a session object

A client may remove a session object using theremove() method on thejavax.ejb.EJBObject
interface, or the remove(Handle handle) method of thejavax.ejb.EJBHome interface.

Because session objects do not have primary keys that are accessible to clients, invoking the
javax.ejb.EJBHome.remove(Object primaryKey) method on a session results in th
javax.ejb.RemoveException .
 10/23/00 52

EJBObject Enterprise JavaBeans 2.0, Proposed Final Draft Client View of a Session Bean

Sun Microsystems, Inc.

session
on bean’s

n of a

:

For this
bjects,

home

to per-
as the

he ses-

e.
5.4 EJBObject

A client never directly accesses instances of the session bean’s class. A client always uses the
bean’s remote interface to access a session bean’s instance. The class that implements the sessi
remote interface is provided by the container; its instances are called sessionEJBObject s.

A session EJBObject supports:

• The business logic methods of the object. The session EJBObject delegates invocatio
business method to the session bean instance.

• The methods of thejavax.ejb.EJBObject interface. These methods allow the client to

• Get the session object’s home interface.

• Get the session object’s handle.

• Test if the session object is identical with another session object.

• Remove the session object.

The implementation of the methods defined in thejavax.ejb.EJBObject interface is provided by
the container. They are not delegated to the instances of the session bean class.

5.5 Session object identity

Session objects are intended to be private resources used only by the client that created them.
reason, session objects, from the client’s perspective, appear anonymous. In contrast to entity o
which expose their identity as a primary key, session objects hide their identity. As a result, theEJBOb-
ject.getPrimaryKey() method results in ajava.rmi.RemoteException , and theEJB-
Home.remove(Object primaryKey) method results in ajavax.ejb.RemoveException
if called on a session bean. If theEJBMetaData.getPrimaryKeyClass() method is invoked on
a EJBMetaData object for a Session bean, the method throws thejava.lang.RuntimeExcep-
tion .

Since all session objects hide their identity, there is no need to provide a finder for them. The
interface of a session bean must not define any finder methods.

A session object handle can be held beyond the life of a client process by serializing the handle
sistent store. When the handle is later deserialized, the session object it returns will work as long
session object still exists on the server. (An earlier timeout or server crash may have destroyed t
sion object.)

The client code must use thejavax.rmi.PortableRemoteObject.narrow(...) method to
convert the result of thegetEJBObject() method invoked on a handle to the remote interface typ
53 10/23/00

Client View of a Session Bean Enterprise JavaBeans 2.0, Proposed Final Draft Client view of session object’s life cycle

Sun Microsystems, Inc.

ht to
nd then
d on the

t has a
A handle is not a capability, in the security sense, that would automatically grant its holder the rig
invoke methods on the object. When a reference to a session object is obtained from a handle, a
a method on the session object is invoked, the container performs the usual access checks base
caller’s principal.

5.6 Client view of session object’s life cycle

From a client point of view, the life cycle of a session object is illustrated below.

Figure 3 Lifecycle of a session object.

A session object does not exist until it is created. When a client creates a session object, the clien
reference to the newly created session object’s remote interface.

A client that has a reference to a session object can then do any of the following:

• Invoke business methods defined in the session object’s remote interface.

• Get a reference to the session object’s home interface.

• Get a handle for the session object.

does not exist
and

not referenced

does not exist
and

referenced

exists
and

not referenced

exists
and

referenced

release reference

object.remove(),

release reference

client’s method on reference

client’s method on reference
generates NoSuchObjectException

home.remove(...),

Container crash,

handle.getEJBObject()

or
Container crash

system exception in bean,
bean timeout,

or bean timeout

home.create<METHOD>(...)
 10/23/00 54

Creating and using a session object Enterprise JavaBeans 2.0, Proposed Final Draft Client View of a Session Bean

Sun Microsystems, Inc.

tically

object

ct to

n tempo-
get-

later to
• Pass the reference as a parameter or return value within the scope of the client.

• Remove the session object. A container may also remove the session object automa
when the session object’s lifetime expires.

It is invalid to reference a session object that does not exist. Attempted invocations on a session
that does not exist result injava.rmi.NoSuchObjectException .

5.7 Creating and using a session object

An example of the session bean runtime objects is illustrated by the following diagram:

Figure 4 Session Bean Example Objects

A client creates aCart session object (which provides a shopping service) using acre-
ate<METHOD>(...) method of the Cart’s home interface. The client then uses this session obje
fill the cart with items and to purchase its contents.

Suppose that the end-user wishes to start the shopping session, suspend the shopping sessio
rarily for a day or two, and later complete the session. The client might implement this feature by
ting the session object’s handle, saving the serialized handle in persistent storage, then using it
reestablish access to the originalCart .

CartBeanclient

Cart

CartHome

container
55 10/23/00

Client View of a Session Bean Enterprise JavaBeans 2.0, Proposed Final Draft Object identity

Sun Microsystems, Inc.

the

art ses-

ct, and
For the following example, we start by looking up the Cart’s home interface in JNDI. We then use
home interface to create aCart session object and add a few items to it:

CartHome cartHome = (CartHome)javax.rmi.PortableRemoteObject.narrow(
initialContext.lookup(...), CartHome.class);

Cart cart = cartHome.createLargeCart(...);
cart.addItem(66);
cart.addItem(22);

Next we decide to complete this shopping session at a later time so we serialize a handle to this c
sion object and store it in a file:

Handle cartHandle = cart.getHandle();
// serialize cartHandle, store in a file...

Finally we deserialize the handle at a later time, re-create the reference to the cart session obje
purchase the contents of the shopping cart:

Handle cartHandle = ...; // deserialize from a file...
Cart cart = (Cart)javax.rmi.PortableRemoteObject.narrow(

cartHandle.getEJBObject(), Cart.class);
cart.purchase();
cart.remove();

5.8 Object identity

5.8.1 Stateful session beans
A stateful session object has a unique identity that is assigned by the container at create time.

A client can determine if two object references refer to the same session object by invoking theisI-
dentical(EJBObject otherEJBObject) method on one of the references.

The following example illustrates the use of theisIdentical method for a stateful session object.

FooHome fooHome = ...; // obtain home of a stateful session bean
Foo foo1 = fooHome.create(...);
Foo foo2 = fooHome.create(...);

if (foo1.isIdentical(foo1)) {// this test must return true
...

}

if (foo1.isIdentical(foo2)) {// this test must return false
...

}

 10/23/00 56

Type narrowing Enterprise JavaBeans 2.0, Proposed Final Draft Client View of a Session Bean

Sun Microsystems, Inc.

ect iden-
(each
ave a

to

t.

tions

o fail
5.8.2 Stateless session beans

All session objects of the same stateless session bean within the same home have the same obj
tity, which is assigned by the container. If a stateless session bean is deployed multiple times
deployment results in the creation of a distinct home), session objects from different homes will h
different identity.

The isIdentical(EJBObject otherEJBObject) method always returns true when used
compare object references of two session objects of the same stateless session bean.

The following example illustrates the use of theisIdentical method for a stateless session objec

FooHome fooHome = ...; // obtain home of a stateless session bean
Foo foo1 = fooHome.create();
Foo foo2 = fooHome.create();

if (foo1.isIdentical(foo1)) {// this test returns true
...

}

if (foo1.isIdentical(foo2)) {// this test returns true
...

}

5.8.3 getPrimaryKey()

The object identifier of a session object is, in general, opaque to the client. The result ofgetPrima-
ryKey() on a session EJBObject reference results injava.rmi.RemoteException .

5.9 Type narrowing

A client program that is intended to be interoperable with all compliant EJB Container implementa
must use the javax.rmi.PortableRemoteObject.narrow(...) method to perform
type-narrowing of the client-side representations of the home and remote interface.

Note: Programs using the cast operator for narrowing the remote and home interfaces are likely t
if the Container implementation uses RMI-IIOP as the underlying communication transport.
57 10/23/00

Client View of a Session Bean Enterprise JavaBeans 2.0, Proposed Final Draft Type narrowing

Sun Microsystems, Inc.
 10/23/00 58

Overview Enterprise JavaBeans 2.0, Proposed Final Draft Session Bean Component Contract

Sun Microsystems, Inc.

ycle of

respon-

ate.

te

ction,
Chapter 6 Session Bean Component Contract

This chapter specifies the contract between a session bean and its container. It defines the life c
the session bean instances.

This chapter defines the developer’s view of session bean state management and the container’s
sibility for managing session bean state.

6.1 Overview

A session bean instance is an instance of the session bean class. It holds the session object’s st

By definition, a session bean instance is an extension of the client that creates it:

• Its fields contain aconversational stateon behalf of the session object’s client. This sta
describes the conversation represented by a specific client/session object pair.

• It typically reads and updates data in a database on behalf of the client. Within a transa
some of this data may be cached in the instance.

• Its lifetime is controlled by the client.
59 10/23/00

Session Bean Component Contract Enterprise JavaBeans 2.0, Proposed Final Draft Goals

Sun Microsystems, Inc.

-

s

veloper
time of

on bean
refresh

ping the

n bean
imple-

en the

orarily
e trans-

e of the

thods;

tained
A container may also terminate a session bean instance’s life after a deployer-specified time
out or as a result of the failure of the server on which the bean instance is running. For this
reason, a client should be prepared to recreate a new session object if it loses the one it i
using.

Typically, a session object’s conversational state is not written to the database. A session bean de
simply stores it in the session bean instance’s fields and assumes its value is retained for the life
the instance.

On the other hand, the session bean must explicitly manage cached database data. A sessi
instance must write any cached database updates prior to a transaction completion, and it must
its copy of any potentially stale database data at the beginning of the next transaction.

6.2 Goals

The goal of the session bean model is to make developing a session bean as simple as develo
same functionality directly in a client.

The container manages the life cycle of the session bean instances. It notifies the instances whe
action may be necessary, and it provides a full range of services to ensure that the session bean
mentation is scalable and can support a large number of clients.

The remainder of this section describes the session bean life cycle in detail and the protocol betwe
bean and its container.

6.3 A container’s management of its working set

To efficiently manage the size of its working set, a session bean container may need to temp
transfer the state of an idle stateful session bean instance to some form of secondary storage. Th
fer from the working set to secondary storage is called instancepassivation. The transfer back is called
activation.

A container may only passivate a session bean instance when the instance isnot in a transaction.

To help the container manage its state, a session bean is specified at deployment as having on
following state management modes:

• STATELESS—the session bean instances contain no conversational state between me
any instance can be used for any client.

• STATEFUL—the session bean instances contain conversational state which must be re
across methods and transactions.
 10/23/00 60

Conversational state Enterprise JavaBeans 2.0, Proposed Final Draft Session Bean Component Contract

Sun Microsystems, Inc.

’s field
Java

as open
sion bean
s in the

s

.

nces

e
’s

t is pos-
6.4 Conversational state

The conversational state of a STATEFUL session object is defined as the session bean instance
values, plus the transitive closure of the objects from the instance’s fields reached by following
object references.

In advanced cases, a session object’s conversational state may contain open resources, such
sockets and open database cursors. A container cannot retain such open resources when a ses
instance is passivated. A developer of such a session bean must close and open the resource
ejbPassivate and ejbActivate notifications.

6.4.1 Instance passivation and conversational state

The Bean Provider is required to ensure that theejbPassivate method leaves the instance field
ready to be serialized by the Container. The objects that are assigned to the instance’s non-transient
fields after theejbPassivate method completes must be one of the following:

• A serializable object[2].

• A null .

• An enterprise bean’s remote interface reference, even if the stub class is not serializable

• An enterprise bean’s home interface reference, even if the stub class is not serializable.

• A reference to theSessionContext object, even if it is not serializable.

• A reference to the environment naming context (that is, thejava:comp/env JNDI context)
or any of its subcontexts.

• A reference to theUserTransaction interface.

• A reference to a resource manager connection factory.

• An object that is not directly serializable, but becomes serializable by replacing the refere
to an enterprise bean’s remote and home interfaces, the references to theSessionContext
object, the references to thejava:comp/env JNDI context and its subcontexts, and th
references to theUserTransaction interface by serializable objects during the object
serialization.

This means, for example, that the Bean Provider must close all JDBC™ connections inejbPassi-
vate and assign the instance’s fields storing the connections tonull .

[2] Note that the Java Serialization protocol dynamically determines whether or not an object is serializable. This means that i
sible to serialize an object of a serializable subclass of a non-serializable declared field type.
61 10/23/00

Session Bean Component Contract Enterprise JavaBeans 2.0, Proposed Final Draft Conversational state

Sun Microsystems, Inc.

versa-

a

uring

f the

terfaces
ct refer-

f the
and

o the

tance’s

o the
e the
with a

tance’s
alent

ents for

guage
excep-
The last bulleted item covers cases such as storing Collections of remote interfaces in the con
tional state.

The Bean Provider must assume that the content of transient fields may be lost between theejbPas-
sivate and ejbActivate notifications. Therefore, the Bean Provider should not store in
transient field a reference to any of the following objects:SessionContext object; environ-
ment JNDI naming context and any its subcontexts; home and remote interfaces; and theUserTrans-
action interface.

The restrictions on the use of transient fields ensure that Containers can use Java Serialization d
passivation and activation.

The following are the requirements for the Container.

The container performs the Java programming language Serialization (or its equivalent) o
instance’s state after it invokes theejbPassivate method on the instance.

The container must be able to properly save and restore the reference to the remote and home in
of the enterprise beans stored in the instance’s state even if the classes that implement the obje
ences are not serializable.

The container may use, for example, the object replacement technique that is part o
java.io.ObjectOutputStream and java.io.ObjectInputStream protocol to externalize the remote
home references.

If the session bean instance stores in its conversational state an object reference t
javax.ejb.SessionContext interface passed to the instance in thesetSessionCon-
text(...) method, the container must be able to save and restore the reference across the ins
passivation. The container can replace the originalSessionContext object with a different and
functionally equivalentSessionContext object during activation.

If the session bean instance stores in its conversational state an object reference t
java:comp/env JNDI context or its subcontext, the container must be able to save and restor
object reference across the instance’s passivation. The container can replace the original object
different and functionally equivalent object during activation.

If the session bean instance stores in its conversational state an object reference to theUserTransac-
tion interface, the container must be able to save and restore the object reference across the ins
passivation. The container can replace the original object with a different and functionally equiv
object during activation.

The container may destroy a session bean instance if the instance does not meet the requirem
serialization afterejbPassivate .

While the container is not required to use the Serialization protocol for the Java programming lan
to store the state of a passivated session instance, it must achieve the equivalent result. The one
tion is that containers are not required to reset the value oftransient fields during activation[3].
Declaring the session bean’s fields astransient is, in general, discouraged.
 10/23/00 62

Protocol between a session bean instance and its containerEnterprise JavaBeans 2.0, Proposed Final Draft Session Bean Component

Sun Microsystems, Inc.

s ini-

nd the
by the

ontainer
ations

ce
on-

con-
ses in

The
auto-
session
e open
ring an

ol
es, and
6.4.2 The effect of transaction rollback on conversational state

A session object’s conversational state is not transactional. It is not automatically rolled back to it
tial state if the transaction in which the object has participated rolls back.

If a rollback could result in an inconsistency between a session object’s conversational state a
state of the underlying database, the bean developer (or the application development tools used
developer) must use theafterCompletion notification to manually reset its state.

6.5 Protocol between a session bean instance and its container

Containers themselves make no actual service demands on the session bean instances. The c
makes calls on a bean instance to provide it with access to container services and to deliver notific
issued by the container.

6.5.1 The requiredSessionBean interface

All session beans must implement theSessionBean interface.

The bean’s container calls thesetSessionContext method to associate a session bean instan
with its context maintained by thecontainer. Typically, a session bean instance retains its session c
text as part of its conversational state.

The ejbRemove notification signals that the instance is in the process of being removed by the
tainer. In theejbRemove method, the instance typically releases the same resources that it relea
theejbPassivate method.

The ejbPassivate notification signals the intent of the container to passivate the instance.
ejbActivate notification signals the instance it has just been reactivated. Because containers
matically maintain the conversational state of a session bean instance when it is passivated, most
beans can ignore these notifications. Their purpose is to allow session beans to maintain thos
resources that need to be closed prior to an instance’s passivation and then reopened du
instance’s activation.

6.5.2 The SessionContext interface

A container provides the session bean instances with aSessionContext , which gives the session
bean instance access to the instance’s context maintained by the container. TheSessionContext
interface has the following methods:

• ThegetEJBObject method returns the session bean’s remote interface.

[3] This is to allow the Container to swap out an instance’s state through techniques other than the Java Serialization protoc. For
example, the Container’s Java Virtual Machine implementation may use a block of memory to keep the instance’s variabl
the Container swaps the whole memory block to the disk instead of performing Java Serialization on the instance.
63 10/23/00

Session Bean Component Contract Enterprise JavaBeans 2.0, Proposed Final Draft Protocol between a session bean instance

Sun Microsystems, Inc.

ular

uch
with

has
action

obtain
marca-

otifica-
y cache

. The
eces-

ion.

leted
ce. At
ause the

tion

need to
• ThegetEJBHome method returns the session bean’s home interface.

• The getCallerPrincipal method returns thejava.security.Principal that
identifies the invoker of the bean instance’s EJB object.

• The isCallerInRole method tests if the session bean instance’s caller has a partic
role.

• The setRollbackOnly method allows the instance to mark the current transaction s
that the only outcome of the transaction is a rollback. Only instances of a session bean
container-managed transaction demarcation can use this method.

• The getRollbackOnly method allows the instance to test if the current transaction
been marked for rollback. Only instances of a session bean with container-managed trans
demarcation can use this method.

• The getUserTransaction method returns thejavax.transaction.UserTrans-
action interface. The instance can use this interface to demarcate transactions and to
transaction status. Only instances of a session bean with bean-managed transaction de
tion can use this method.

6.5.3 The optional SessionSynchronization interface

A session bean class can optionally implement thejavax.ejb.SessionSynchronization
interface. This interface provides the session bean instances with transaction synchronization n
tions. The instances can use these notifications, for example, to manage database data they ma
within transactions.

The afterBegin notification signals a session bean instance that a new transaction has begun
container invokes this method before the first business method within a transaction (which is not n
sarily at the beginning of the transaction). TheafterBegin notification is invoked with the transac-
tion context. The instance may do any database work it requires within the scope of the transact

ThebeforeCompletion notification is issued when a session bean instance’s client has comp
work on its current transaction but prior to committing the resource managers used by the instan
this time, the instance should write out any database updates it has cached. The instance can c
transaction to roll back by invoking thesetRollbackOnly method on its session context.

TheafterCompletion notification signals that the current transaction has completed. A comple
status oftrue indicates that the transaction has committed; a status offalse indicates that a rollback
has occurred. Since a session bean instance’s conversational state is not transactional, it may
manually reset its state if a rollback occurred.

All container providers must supportSessionSynchronization . It is optional only for the bean
implementor. If a bean class implementsSessionSynchronization , the container must invoke
theafterBegin , beforeCompletion andafterCompletion notifications as required by the
specification.
 10/23/00 64

Protocol between a session bean instance and its containerEnterprise JavaBeans 2.0, Proposed Final Draft Session Bean Component

Sun Microsystems, Inc.

nt the

on call
ut to be

session
er tools.
usiness

oper; its

he bean
lls the
calls

ed to

its create
 use.

tances
ence of

usi-
Only a stateful Session bean with container-managed transaction demarcation may impleme
SessionSynchronization interface. A stateless Session bean must not implement theSes-
sionSynchronization interface.

There is no need for a Session bean with bean-managed transaction to rely on the synchronizati
backs because the bean is in control of the commit—the bean knows when the transaction is abo
committed and it knows the outcome of the transaction commit.

6.5.4 Business method delegation

The session bean’s remote interface defines the business methods callable by a client. The
bean’s remote interface is implemented by the session EJBObject class generated by the contain
The session EJBObject class delegates an invocation of a business method to the matching b
method that is implemented in the session bean class.

6.5.5 Session bean’s ejbCreate<METHOD>(...) methods

A client creates a session bean instance using one of thecreate<METHOD> methods defined in the
session bean’s home interface. The session bean’s home interface is provided by the bean devel
implementation is generated by the deployment tools provided by the container provider.

The container creates an instance of a session bean in three steps. First, the container calls t
class’newInstance method to create a new session bean instance. Second, the container ca
setSessionContext method to pass the context object to the instance. Third, the container
the instance’sejbCreate<METHOD> method whose signature matches the signature of thecre-
ate<METHOD>method invoked by the client. The input parameters sent from the client are pass
theejbCreate<METHOD> method.

Each session bean class must have at least oneejbCreate<METHOD> method. The number and sig-
natures of a session bean’screate<METHOD> methods are specific to each session bean class.

Since a session bean represents a specific, private conversation between the bean and its client,
parameters typically contain the information the client uses to customize the bean instance for its

6.5.6 Serializing session bean methods

A container serializes calls to each session bean instance. Most containers will support many ins
of a session bean executing concurrently; however, each instance sees only a serialized sequ
method calls. Therefore, a session bean does not have to be coded as reentrant.

The container must serialize all the container-invoked callbacks (that is, the methodsejbPassivate ,
beforeCompletion , and so on), and it must serialize these callbacks with the client-invoked b
ness method calls.
65 10/23/00

Session Bean Component Contract Enterprise JavaBeans 2.0, Proposed Final Draft STATEFUL Session Bean State Diagram

Sun Microsystems, Inc.

siness
client,
w the
s
an class.

e of a

e

c-
ecified

The
ing

 or
Clients are not allowed to make concurrent calls to a stateful session object. If a client-invoked bu
method is in progress on an instance when another client-invoked call, from the same or different
arrives at the same instance of a stateful session bean class, the container may thro
java.rmi.RemoteException to the second client[4]. This restriction does not apply to a stateles
session bean because the container routes each request to a different instance of the session be

6.5.7 Transaction context of session bean methods

The implementation of a business method defined in the remote interface is invoked in the scop
transaction determined by the transaction attribute specified in the deployment descriptor.

A session bean’safterBegin andbeforeCompletion methods are always called with the sam
transaction context as the business methods executed between theafterBegin andbeforeCom-
pletion methods.

A session bean’snewInstance, setSessionContext , ejbCreate , ejbRemove , ejbPas-
sivate , ejbActivate, andafterCompletion methods are called with an unspecified transa
tion context. Refer to Subsection 16.6.5 for how the Container executes methods with an unsp
transaction context.

For example, it would be wrong to perform database operations within a session bean’sejbCreate
or ejbRemove method and to assume that the operations are part of the client’s transaction.
ejbCreate andejbRemove methods are not controlled by a transaction attribute because handl
rollbacks in these methods would greatly complicate the session instance’s state diagram.

6.6 STATEFUL Session Bean State Diagram

The following figure illustrates the life cycle of a STATEFUL session bean instance.

[4] In certain special circumstances (e.g., to handle clustered web container architectures), the container may instead queue serial-
ize such concurrent requests. Clients, however, cannot rely on this behavior.
 10/23/00 66

STATEFUL Session Bean State Diagram Enterprise JavaBeans 2.0, Proposed Final Draft Session Bean Component Contract

Sun Microsystems, Inc.
Figure 5 Lifecycle of a STATEFUL Session bean instance

The following steps describe the life cycle of a STATEFUL session bean instance:

• A session bean instance’s life starts when a client invokes acreate<METHOD>(...)
method on the session bean’s home interface. This causes the container to invokenewIn-

tx method

commitafterBegin()

1. beforeCompletion()

does not
 exist

method ready passive

1. newInstance()
2. setSessionContext(sc)
3. ejbCreate<METHOD>(args)

ejbRemove()

remove(),
chosen as LRU victim

ejbPassivate()
non-tx method

create()
newInstance

action initiated by client
action initiated by container

method
ready in TX

ejbActivate()

method

2. afterCompletion(true)
afterCompletion(false)

rollback

tx method non-tx or different tx method
ERROR

timeout

or timeout

instance throws system
exception from any method

create<METHOD>(args)
67 10/23/00

Session Bean Component Contract Enterprise JavaBeans 2.0, Proposed Final Draft STATEFUL Session Bean State Diagram

Sun Microsystems, Inc.

ntainer

in the

saction
ciated
xt or
dia-

ction.

ss
trans-

to the
ct and

in a
or in

of the

uested

n

mit or

the
ginning

from
con-
the
transac-

ct after
r the
stance() on the session bean class to create a new session bean instance. Next, the co
calls setSessionContext() and ejbCreate<METHOD>(...) on the instance and
returns the remote reference of the session object to the client. The instance is now
method ready state.

• The session bean instance is now ready for client’s business methods. Based on the tran
attributes in the session bean’s deployment descriptor and the transaction context asso
with the client’s invocation, a business method is executed either in a transaction conte
with an unspecified transaction context (shown as tx method and non-tx method in the
gram). See Chapter 16 for how the container deals with transactions.

• A non-transactional method is executed while the instance is in the method ready state.

• An invocation of a transactional method causes the instance to be included in a transa
When the session bean instance is included in a transaction, the container issues theafter-
Begin() method on it. TheafterBegin is delivered to the instance before any busine
method is executed as part of the transaction. The instance becomes associated with the
action and will remain associated with the transaction until the transaction completes.

• Session bean methods invoked by the client in this transaction can now be delegated
bean instance. An error occurs if a client attempts to invoke a method on the session obje
the deployment descriptor for the method requires that the container invoke the method
different transaction context than the one with which the instance is currently associated
an unspecified transaction context.

• If a transaction commit has been requested, the transaction service notifies the container
commit request before actually committing the transaction, and the container issues abefor-
eCompletion on the instance. WhenbeforeCompletion is invoked, the instance
should write any cached updates to the database. If a transaction rollback had been req
instead, the rollback status is reached without the container issuing abeforeCompletion .
The container may not call thebeforeCompletion method if the transaction has bee
marked for rollback (nor does the instance write any cached updates to the database).

• The transaction service then attempts to commit the transaction, resulting in either a com
rollback.

• When the transaction completes, the container issuesafterCompletion on the instance,
specifying the status of the completion (either commit or rollback). If a rollback occurred,
bean instance may need to reset its conversational state back to the value it had at the be
of the transaction.

• The container’s caching algorithm may decide that the bean instance should be evicted
memory (this could be done at the end of each method, or by using an LRU policy). The
tainer issuesejbPassivate on the instance. After this completes, the container saves
instance’s state to secondary storage. A session bean can be passivated only between
tions, and not within a transaction.

• While the instance is in the passivated state, the Container may remove the session obje
the expiration of a timeout specified by the deployer. All object references and handles fo
 10/23/00 68

STATEFUL Session Bean State Diagram Enterprise JavaBeans 2.0, Proposed Final Draft Session Bean Component Contract

Sun Microsystems, Inc.

tainer

he con-
res the

ect,
ion
invoke

ove a
the
e

bean

ces can

t access is
session object become invalid. If a client attempts to invoke the session object, the Con
will throw the java.rmi.NoSuchObjectException to the client.

• If a client invokes a session object whose session bean instance has been passivated, t
tainer will activate the instance. To activate the session bean instance, the container resto
instance’s state from secondary storage and issuesejbActivate on it.

• The session bean instance is again ready for client methods.

• When the client callsremove on the home or remote interface to remove the session obj
the container issuesejbRemove() on the bean instance. This ends the life of the sess
bean instance and the associated session object. Any subsequent attempt by its client to
the session object causes thejava.rmi.NoSuchObjectException to be thrown. (This
exception is a subclass ofjava.rmi.RemoteException). TheejbRemove() method
cannot be called when the instance is participating in a transaction. An attempt to rem
session object while the object is in a transaction will cause the container to throw
javax.ejb.RemoveException to the client. Note that a container can also invoke th
ejbRemove() method on the instance without a client call toremove the session object
after the lifetime of the EJB object has expired.

Notes:

1. The Container must call theafterBegin , beforeCompletion , andafterComple-
tion methods if the session bean class implements, directly or indirectly, theSessionSyn-
chronization interface. The Container does not call these methods if the session
class does not implement theSessionSynchronization interface.

6.6.1 Operations allowed in the methods of a stateful session bean class

Table 2 defines the methods of a stateful session bean class from which the session bean instan
access the methods of thejavax.ejb.SessionContext interface, thejava:comp/env envi-
ronment naming context, resource managers, and other enterprise beans.

If a session bean instance attempts to invoke a method of theSessionContext interface, and that
access is not allowed in Table 2, the Container must throw thejava.lang.IllegalStateEx-
ception.

If a session bean instance attempts to access a resource manager or an enterprise bean, and tha
not allowed in Table 2, the behavior is undefined by the EJB architecture.
69 10/23/00

Session Bean Component Contract Enterprise JavaBeans 2.0, Proposed Final Draft STATEFUL Session Bean State Diagram

Sun Microsystems, Inc.

nspec-
thods
Notes:

• The ejbCreate<METHOD> , ejbRemove , ejbPassivate , andejbActivate meth-
ods of a session bean with container-managed transaction demarcation execute with an u
ified transaction context. Refer to Subsection 16.6.5 for how the Container executes me
with an unspecified transaction context.

Table 2 Operations allowed in the methods of a stateful session bean

Bean method

Bean method can perform the following operations

Container-managed transaction
demarcation

Bean-managed transaction
demarcation

constructor - -

setSessionContext
SessionContext methods:getEJBHome

JNDI access to java:comp/env

SessionContext methods:getEJBHome

JNDI access to java:comp/env

ejbCreate
ejbRemove
ejbActivate
ejbPassivate

SessionContext methods:getEJBHome,
getCallerPrincipal, isCallerInRole,
getEJBObject

JNDI access to java:comp/env

Resource manager access

Enterprise bean access

SessionContext methods:getEJBHome,
getCallerPrincipal, isCallerInRole,
getEJBObject, getUserTransaction

UserTransaction methods

JNDI access to java:comp/env

Resource manager access

Enterprise bean access

business method
from remote interface

SessionContext methods:getEJBHome,
getCallerPrincipal, getRollback-
Only, isCallerInRole, setRollback-
Only, getEJBObject

JNDI access to java:comp/env

Resource manager access

Enterprise bean access

SessionContext methods:getEJBHome,
getCallerPrincipal, isCallerInRole,
getEJBObject, getUserTransaction

UserTransaction methods

JNDI access to java:comp/env

Resource manager access

Enterprise bean access

afterBegin
beforeCompletion

SessionContext methods:getEJBHome,
getCallerPrincipal, getRollback-
Only, isCallerInRole, setRollback-
Only, getEJBObject

JNDI access to java:comp/env

Resource manager access

Enterprise bean access

N/A

(a bean with bean-managed transaction
demarcation cannot implement the Ses-
sionSynchronization interface)

afterCompletion

SessionContext methods:getEJBHome,
getCallerPrincipal, isCallerInRole,
getEJBObject

JNDI access to java:comp/env
 10/23/00 70

STATEFUL Session Bean State Diagram Enterprise JavaBeans 2.0, Proposed Final Draft Session Bean Component Contract

Sun Microsystems, Inc.

trans-

ich

t.

ontext,

ethods
con-

ged

ess
exist”

nt invo-
Additional restrictions:

• The getRollbackOnly and setRollbackOnly methods of theSessionContext
interface should be used only in the session bean methods that execute in the context of a
action. The Container must throw thejava.lang.IllegalStateException if the
methods are invoked while the instance is not associated with a transaction.

The reasons for disallowing the operations in Table 2 follow:

• Invoking thegetEJBObject methods is disallowed in the session bean methods in wh
there is no session object identity established for the instance.

• Invoking thegetCallerPrincipal and isCallerInRole methods is disallowed in
the session bean methods for which the Container does not have a client security contex

• Invoking thegetRollbackOnly andsetRollbackOnly methods is disallowed in the
session bean methods for which the Container does not have a meaningful transaction c
and to all session beans with bean-managed transaction demarcation.

• Accessing resource managers and enterprise beans is disallowed in the session bean m
for which the Container does not have a meaningful transaction context or client security
text.

• TheUserTransaction interface is unavailable to enterprise beans with container-mana
transaction demarcation.

6.6.2 Dealing with exceptions
A RuntimeException thrown from any method of the session bean class (including the busin
methods and the callbacks invoked by the Container) results in the transition to the “does not
state. Exception handling is described in detail in Chapter 17.

From the client perspective, the corresponding session object does not exist any more. Subseque
cations through the remote interface will result injava.rmi.NoSuchObjectException .

6.6.3 MissedejbRemove() calls

The Bean Provider cannot assume that the Container will always invoke theejbRemove() method on
a session bean instance. The following scenarios result inejbRemove() not being called on an
instance:

• A crash of the EJB Container.

• A system exception thrown from the instance’s method to the Container.

• A timeout of client inactivity while the instance is in thepassive state. The timeout is speci-
fied by the Deployer in an EJB Container implementation specific way.
71 10/23/00

Session Bean Component Contract Enterprise JavaBeans 2.0, Proposed Final Draft Object interaction diagrams for a STATE-

Sun Microsystems, Inc.

ession
s.

n bean
peri-

busi-
nt pro-

ke a
criptor
in an

e the
must

t to

es.

either
e classes
efore,

than as
If the session bean instance allocates resources in theejbCreate<METHOD>(...) method and/or
in the business methods, and normally releases the resources in theejbRemove() method, these
resources will not be automatically released in the above scenarios. The application using the s
bean should provide some clean up mechanism to periodically clean up the unreleased resource

For example, if a shopping cart component is implemented as a session bean, and the sessio
stores the shopping cart content in a database, the application should provide a program that runs
odically and removes “abandoned” shopping carts from the database.

6.6.4 Restrictions for transactions

The state diagram implies the following restrictions on transaction scoping of the client invoked
ness methods. The restrictions are enforced by the container and must be observed by the clie
grammer.

• A session bean instance can participate in at most a single transaction at a time.

• If a session bean instance is participating in a transaction, it is an error for a client to invo
method on the session object such that the transaction attribute in the deployment des
would cause the container to execute the method in a different transaction context or
unspecified transaction context. The container throws thejava.rmi.RemoteExcep-
tion to the client in such a case.

• If a session bean instance is participating in a transaction, it is an error for a client to invok
remove method on the session object’s remote or home interface object. The container
detect such an attempt and throw thejavax.ejb.RemoveException to the client. The
container should not mark the client’s transaction for rollback, thus allowing the clien
recover.

6.7 Object interaction diagrams for a STATEFUL session bean

This section contains object interaction diagrams (OID) that illustrates the interaction of the class

6.7.1 Notes

The object interaction diagrams illustrate a box labeled “container-provided classes.” These are
classes that are part of the container, or classes that were generated by the container tools. Thes
communicate with each other through protocols that are container-implementation specific. Ther
the communication between these classes is not shown in the diagrams.

The classes shown in the diagrams should be considered as an illustrative implementation rather
a prescriptive one.
 10/23/00 72

Object interaction diagrams for a STATEFUL session beanEnterprise JavaBeans 2.0, Proposed Final Draft Session Bean Component

Sun Microsystems, Inc.
6.7.2 Creating a session object

The following diagram illustrates the creation of a session object.

Figure 6 OID for Creation of a session object

6.7.3 Starting a transaction

The following diagram illustrates the protocol performed at the beginning of a transaction.

client instance transaction
service

EJB

ejbCreate(args)

session
context

EJB
Object

create(args)

container provided classes

new

synchro-
nization

new

setSessionContext()

new

Home
container
73 10/23/00

Session Bean Component Contract Enterprise JavaBeans 2.0, Proposed Final Draft Object interaction diagrams for a STATE-

Sun Microsystems, Inc.
Figure 7 OID for session object at start of a transaction.

6.7.4 Committing a transaction

The following diagram illustrates the transaction synchronization protocol for a session object.

business method

afterBegin

client instance transactiondatabase
service

EJB session
context

EJB
Object

container provided classes

synchro-
nization

javax.transaction.UserTransaction.begin()

If the instance was passivated it is reactivated

registerSynchronization(synchronization)

new

business method
business method

business method

read some data

Home
container

register resource manager
 10/23/00 74

Object interaction diagrams for a STATEFUL session beanEnterprise JavaBeans 2.0, Proposed Final Draft Session Bean Component

Sun Microsystems, Inc.

ivation
hen a
Figure 8 OID for session object transaction synchronization

6.7.5 Passivating and activating an instance between transactions

The following diagram illustrates the passivation and reactivation of a session bean instance. Pass
typically happens spontaneously based on the needs of the container. Activation typically occurs w
client calls a method.

write updates to DB

client instance transactiondatabase
service

EJB session
context

EJB
Object

container provided classes

synchro-
nization

UserTransaction.commit()

beforeCompletion()

prepare

commit

afterCompletion(status)

beforeCompletion()

afterCompletion(status)

Home
container
75 10/23/00

Session Bean Component Contract Enterprise JavaBeans 2.0, Proposed Final Draft Object interaction diagrams for a STATE-

Sun Microsystems, Inc.
Figure 9 OID for passivation and activation of a session object

6.7.6 Removing a session object

The following diagram illustrates the removal of a session object.

ejbActivate

ejbPassivate

read state

client instanceEJB session
context

containerEJB
Object

container provided classes

synchro-
nization

secondary store

write state

Activation:

Passivation:

Home
 10/23/00 76

Stateless session beans Enterprise JavaBeans 2.0, Proposed Final Draft Session Bean Component Contract

Sun Microsystems, Inc.

eans that
.

tance
f such

s

elegate a
dele-

hat the

d. Due
iva-

nstance if
to han-
Figure 10 OID for the removal of a session object

6.8 Stateless session beans

Stateless session beans are session beans whose instances have no conversational state. This m
all bean instances are equivalent when they are not involved in servicing a client-invoked method

The term “stateless” signifies that an instance has no state for a specific client. However, the ins
variables of the instance can contain the state across client-invoked method calls. Examples o
states include an open database connection and an object reference to an EJB object.

The home interface of a stateless session bean must have onecreate method that takes no argument
and returns the session bean’s remote interface. There can be no othercreate methods in the home
interface. The session bean class must define a singleejbCreate method that takes no arguments.

Because all instances of a stateless session bean are equivalent, the container can choose to d
client-invoked method to any available instance. This means, for example, that the Container may
gate the requests from the same client within the same transaction to different instances, and t
Container may interleave requests from multiple transactions to the same instance.

A container only needs to retain the number of instances required to service the current client loa
to client “think time,” this number is typically much smaller than the number of active clients. Pass
tion is not needed for stateless sessions. The container creates another stateless session bean i
one is needed to handle an increase in client work load. If a stateless session bean is not needed
dle the current client work load, the container can destroy it.

client instance

remove()

EJB session
context

containerEJB
Object

container provided classes

synchro-
nization

ejbRemove()

Home
77 10/23/00

Session Bean Component Contract Enterprise JavaBeans 2.0, Proposed Final Draft Stateless session beans

Sun Microsystems, Inc.

f clients,
ns may
t by the

the
ycle of

es a cli-
Because stateless session beans minimize the resources needed to support a large population o
depending on the implementation of the container, applications that use stateless session bea
scale somewhat better than those using stateful session beans. However, this benefit may be offse
increased complexity of the client application that uses the stateless beans.

Clients use thecreate andremove methods on the home interface of a stateless session bean in
same way as on a stateful session bean. To the client, it appears as if the client controls the life c
the session object. However, the container handles thecreate andremove calls without necessarily
creating and removing an EJB instance.

There is no fixed mapping between clients and stateless instances. The container simply delegat
ent’s work to any available instance that is method-ready.

A stateless session bean must not implement thejavax.ejb.SessionSynchronization inter-
face.

6.8.1 Stateless session bean state diagram

When a client calls a method on a stateless session object, the container selects one of itsmethod-ready
instances and delegates the method invocation to it.

The following figure illustrates the life cycle of a STATELESS session bean instance.
 10/23/00 78

Stateless session beans Enterprise JavaBeans 2.0, Proposed Final Draft Session Bean Component Contract

Sun Microsystems, Inc.

e

client.

educe
on it.

nces can
Figure 11 Lifecycle of a STATELESS Session bean

The following steps describe the lifecyle of a session bean instance:

• A stateless session bean instance’s life starts when the container invokesnewInstance()
on the session bean class to create a new instance. Next, the container callssetSession-
Context() followed by ejbCreate() on the instance. The container can perform th
instance creation at any time—there is no relationship to a client’s invocation of thecre-
ate() method.

• The session bean instance is now ready to be delegated a business method call from any

• When the container no longer needs the instance (usually when the container wants to r
the number of instances in the method-ready pool), the container invokes ejbRemove()
This ends the life of the stateless session bean instance.

6.8.2 Operations allowed in the methods of a stateless session bean class

Table 3 defines the methods of a stateless session bean class in which the session bean insta
access the methods of thejavax.ejb.SessionContext interface, thejava:comp/env envi-
ronment naming context, resource managers, and other enterprise beans.

does not
 exist

method-ready
 pool

1. newInstance()
2. setSessionContext(sc)
3. ejbCreate()

ejbRemove()

method

method()
ejbCreate()

action initiated by client
action initiated by container
79 10/23/00

Session Bean Component Contract Enterprise JavaBeans 2.0, Proposed Final Draft Stateless session beans

Sun Microsystems, Inc.

access is

trans-

ich

t.

ontext,
If a session bean instance attempts to invoke a method of theSessionContext interface, and the
access is not allowed in Table 3, the Container must throw thejava.lang.IllegalStateEx-
ception.

If a session bean instance attempts to access a resource manager or an enterprise bean and the
not allowed in Table 3, the behavior is undefined by the EJB architecture.

Additional restrictions:

• The getRollbackOnly and setRollbackOnly methods of theSessionContext
interface should be used only in the session bean methods that execute in the context of a
action. The Container must throw thejava.lang.IllegalStateException if the
methods are invoked while the instance is not associated with a transaction.

The reasons for disallowing operations in Table 3:

• Invoking thegetEJBObject method is disallowed in the session bean methods in wh
there is no session object identity associated with the instance.

• Invoking thegetCallerPrincipal and isCallerInRole methods is disallowed in
the session bean methods for which the Container does not have a client security contex

• Invoking thegetRollbackOnly andsetRollbackOnly methods is disallowed in the
session bean methods for which the Container does not have a meaningful transaction c
and for all session beans with bean-managed transaction demarcation.

Table 3 Operations allowed in the methods of a stateless session bean

Bean method

Bean method can perform the following operations

Container-managed transaction
demarcation

Bean-managed transaction
demarcation

constructor - -

setSessionContext
SessionContext methods:getEJBHome

JNDI access to java:comp/env

SessionContext methods:getEJBHome

JNDI access to java:comp/env

ejbCreate
ejbRemove

SessionContext methods:getEJBHome,
getEJBObject

JNDI access to java:comp/env

SessionContext methods:getEJBHome,
getEJBObject, getUserTransaction

JNDI access to java:comp/env

business method
from remote interface

SessionContext methods:getEJBHome,
getCallerPrincipal, getRollback-
Only, isCallerInRole, setRollback-
Only, getEJBObject

JNDI access to java:comp/env

Resource manager access

Enterprise bean access

SessionContext methods:getEJBHome,
getCallerPrincipal, isCallerInRole,
getEJBObject, getUserTransaction

UserTransaction methods

JNDI access to java:comp/env

Resource manager access

Enterprise bean access
 10/23/00 80

Object interaction diagrams for a STATELESS session beanEnterprise JavaBeans 2.0, Proposed Final Draft Session Bean Component

Sun Microsystems, Inc.

ethods
con-

ged

ess
exist”

ing the
• Accessing resource managers and enterprise beans is disallowed in the session bean m
for which the Container does not have a meaningful transaction context or client security
text.

• The UserTransaction interface is unavailable to session beans with container-mana
transaction demarcation.

6.8.3 Dealing with exceptions
A RuntimeException thrown from any method of the enterprise bean class (including the busin
methods and the callbacks invoked by the Container) results in the transition to the “does not
state. Exception handling is described in detail in Chapter 17.

From the client perspective, the session object continues to exist. The client can continue access
session object because the Container can delegate the client’s requests to another instance.

6.9 Object interaction diagrams for a STATELESS session
bean

This section contains object interaction diagrams that illustrates the interaction of the classes.

6.9.1 Client-invokedcreate()

The following diagram illustrates the creation of a stateless session object.

Figure 12 OID for creation of a STATELESS session object

client instance transaction
service

EJB session
context

EJB
Object

create()

container-provided classes

new

synchro-
nizationHome

container
81 10/23/00

Session Bean Component Contract Enterprise JavaBeans 2.0, Proposed Final Draft Object interaction diagrams for a STATE-

Sun Microsystems, Inc.
6.9.2 Business method invocation

The following diagram illustrates the invocation of a business method.

Figure 13 OID for invocation of business method on a STATELESS session object

6.9.3 Client-invoked remove()

The following diagram illustrates the destruction of a stateless session object.

business method

client instance transactiondatabase
service

EJB session
context

EJB
Object

container-provided classes

synchro-
nization

business method

read or update some data

Home
container

register resource manager
 10/23/00 82

Object interaction diagrams for a STATELESS session beanEnterprise JavaBeans 2.0, Proposed Final Draft Session Bean Component

Sun Microsystems, Inc.

-ready
Figure 14 OID for removal of a STATELESS session object

6.9.4 Adding instance to the pool

The following diagram illustrates the sequence for a container adding an instance to the method
pool.

Figure 15 OID for Container Adding Instance of a STATELESS session bean to a method-ready pool

client instance

remove()

EJB session
context

containerEJB
Object

container-provided classes

synchro-
nizationHome

instance transaction
service

EJB

ejbCreate()

session
context

EJB
Object

container-provided classes

synchro-
nization

setSessionContext()

new

Home
container

new
83 10/23/00

Session Bean Component Contract Enterprise JavaBeans 2.0, Proposed Final Draft The responsibilities of the bean provider

Sun Microsystems, Inc.

the

n can be
The following diagram illustrates the sequence for a container removing an instance from
method-ready pool.

Figure 16 OID for a Container Removing an Instance of a STATELESS Session bean from ready pool

6.10 The responsibilities of the bean provider

This section describes the responsibilities of session bean provider to ensure that a session bea
deployed in any EJB Container.

6.10.1 Classes and interfaces

The session bean provider is responsible for providing the following class files:

• Session bean class.

• Session bean’s remote interface.

• Session bean’s home interface.

6.10.2 Session bean class

The following are the requirements for session bean class:

• The class must implement, directly or indirectly, thejavax.ejb.SessionBean interface.

instance transaction
service

EJB session
context

EJB
Object

container-provided classes

synchro-
nizationHome

container

ejbRemove()
 10/23/00 84

The responsibilities of the bean provider Enterprise JavaBeans 2.0, Proposed Final Draft Session Bean Component Contract

Sun Microsystems, Inc.

this

ean has

thods
EJB

the

.1 or
xcep-

s.
• The class must be defined aspublic , must not befinal , and must not beabstract .

• The class must have apublic constructor that takes no parameters. The Container uses
constructor to create instances of the session bean class.

• The class must not define thefinalize() method.

• The class may, but is not required to, implement the session bean’s remote interface[5].

• The class must implement the business methods and theejbCreate methods.

• If the class is a stateful session bean, it may optionally implement thejavax.ejb.Ses-
sionSynchronization interface.

• The session bean class may have superclasses and/or superinterfaces. If the session b
superclasses, then the business methods, theejbCreate<METHOD> methods, the methods
of theSessionBean interface, and the methods of the optionalSessionSynchroniza-
tion interface may be defined in the session bean class, or in any of its superclasses.

• The session bean class is allowed to implement other methods (for example helper me
invoked internally by the business methods) in addition to the methods required by the
specification.

6.10.3 ejbCreate<METHOD>methods

The session bean class must define one or moreejbCreate<METHOD>(...) methods whose signa-
tures must follow these rules:

• The method name must haveejbCreate as its prefix.

• The method must be declared aspublic .

• The method must not be declared asfinal or static .

• The return type must bevoid .

• The method arguments must be legal types for RMI/IIOP.

• The throws clause may define arbitrary application exceptions, possibly including
javax.ejb.CreateException .

Compatibility Note: EJB 1.0 allowed the ejbCreate method to throw thejava.rmi.RemoteExcep-
tion to indicate a non-application exception. This practice was deprecated in EJB 1.1—an EJB 1
EJB 2.0 compliant enterprise bean should throw the javax.ejb.EJBException or another RuntimeE
tion to indicate non-application exceptions to the Container (see Section 17.2.2).

[5] If the session bean class does implement the remote interface, care must be taken to avoid passing ofthis as a method argument
or result. This potential error can be avoided by choosing not to implement the remote interface in the session bean clas
85 10/23/00

Session Bean Component Contract Enterprise JavaBeans 2.0, Proposed Final Draft The responsibilities of the bean provider

Sun Microsystems, Inc.

w these

with

.1 or
xcep-

heir
must

ubject

e ses-

sion
rface.
6.10.4 Business methods

The session bean class may define zero or more business methods whose signatures must follo
rules:

• The method names can be arbitrary, but they must not start with “ejb” to avoid conflicts
the callback methods used by the EJB architecture.

• The business method must be declared aspublic .

• The method must not be declared asfinal or static .

• The argument and return value types for a method must be legal types for RMI/IIOP.

• The throws clause may define arbitrary application exceptions.

Compatibility Note: EJB 1.0 allowed the business methods to throw thejava.rmi.RemoteExcep-
tion to indicate a non-application exception. This practice was deprecated in EJB 1.1—an EJB 1
EJB 2.0 compliant enterprise bean should throw the javax.ejb.EJBException or another RuntimeE
tion to indicate non-application exceptions to the Container (see Section 17.2.2).

6.10.5 Session bean’s remote interface

The following are the requirements for the session bean’s remote interface:

• The interface must extend thejavax.ejb.EJBObject interface.

• The methods defined in this interface must follow the rules for RMI/IIOP. This means that t
argument and return values must be of valid types for RMI/IIOP, and their throws clauses
include thejava.rmi.RemoteException .

• The remote interface is allowed to have superinterfaces. Use of interface inheritance is s
to the RMI/IIOP rules for the definition of remote interfaces.

• For each method defined in the remote interface, there must be a matching method in th
sion bean’s class. The matching method must have:

• The same name.

• The same number and types of arguments, and the same return type.

• All the exceptions defined in the throws clause of the matching method of the ses
bean class must be defined in the throws clause of the method of the remote inte

6.10.6 Session bean’s home interface

The following are the requirements for the session bean’s home interface:

• The interface must extend thejavax.ejb.EJBHome interface.
 10/23/00 86

The responsibilities of the container providerEnterprise JavaBeans 2.0, Proposed Final Draft Session Bean Component Contract

Sun Microsystems, Inc.

heir
uses

ject to

t the

ce

e con-
bean

iner, we
yment

lasses
of the
rovider
• The methods defined in this interface must follow the rules for RMI/IIOP. This means that t
argument and return values must be of valid types for RMI/IIOP, and that their throws cla
must include thejava.rmi.RemoteException .

• The home interface is allowed to have superinterfaces. Use of interface inheritance is sub
the RMI/IIOP rules for the definition of remote interfaces.

• A session bean’s home interface must define one or morecreate<METHOD>(...) meth-
ods. A stateless session bean must define exactly onecreate() method with no arguments.

• Eachcreate method must be named “create<METHOD>”, and it must match one of the
ejbCreate<METHOD> methods defined in the session bean class. The matchingejbCre-
ate<METHOD>method must have the same number and types of arguments. (Note tha
return type is different.) The methods for a stateless session bean must be named “create” and
“ejbCreate”.

• The return type for acreate<METHOD> method must be the session bean’s remote interfa
type.

• All the exceptions defined in the throws clause of anejbCreate<METHOD> method of the
session bean class must be defined in the throws clause of the matchingcreate<METHOD>
method of the home interface.

• The throws clause must includejavax.ejb.CreateException .

6.11 The responsibilities of the container provider

This section describes the responsibilities of the container provider to support a session bean. Th
tainer provider is responsible for providing the deployment tools and for managing the session
instances at runtime.

Because the EJB specification does not define the API between deployment tools and the conta
assume that the deployment tools are provided by the container provider. Alternatively, the deplo
tools may be provided by a different vendor who uses the container vendor’s specific API.

6.11.1 Generation of implementation classes

The deployment tools provided by the container are responsible for the generation of additional c
when the session bean is deployed. The tools obtain the information that they need for generation
additional classes by introspecting the classes and interfaces provided by the enterprise bean p
and by examining the session bean’s deployment descriptor.

The deployment tools must generate the following classes:

• A class that implements the session bean’s home interface (session EJBHome class).
87 10/23/00

Session Bean Component Contract Enterprise JavaBeans 2.0, Proposed Final Draft The responsibilities of the container pro-

Sun Microsystems, Inc.

he ses-
runtime.

ethods
wrap-
ot

bean’s

ession

passive

s home

client

client
t throw
• A class that implements the session bean’s remote interface (session EJBObject class).

The deployment tools may also generate a class that mixes some container-specific code with t
sion bean class. This code may, for example, help the container to manage the bean instances at
The tools can use subclassing, delegation, and code generation.

The deployment tools may also allow the generation of additional code that wraps the business m
and is used to customize the business logic to an existing operational environment. For example, a
per for adebit function on theAccountManager bean may check that the debited amount does n
exceed a certain limit.

6.11.2 Session EJBHome class

The session EJBHome class, which is generated by the deployment tools, implements the session
home interface. This class implements the methods of thejavax.ejb.EJBHome interface and the
create<METHOD> methods specific to the session bean.

The implementation of eachcreate<METHOD>(...) method invokes a matchingejbCre-
ate<METHOD>(...) method.

6.11.3 Session EJBObject class

The Session EJBObject class, which is generated by the deployment tools, implements the s
bean’s remote interface. It implements the methods of thejavax.ejb.EJBObject interface and the
business methods specific to the session bean.

The implementation of each business method must activate the instance (if the instance is in the
state) and invoke the matching business method on the instance.

6.11.4 Handle classes

The deployment tools are responsible for implementing the handle classes for the session bean’
and remote interfaces.

6.11.5 EJBMetaData class

The deployment tools are responsible for implementing the class that provides meta-data to the
view contract. The class must be a valid RMI Value class and must implement thejavax.ejb.EJB-
MetaData interface.

6.11.6 Non-reentrant instances

The container must ensure that only one thread can be executing an instance at any time. If a
request arrives for an instance while the instance is executing another request, the container mus
the java.rmi.RemoteException to the second request.
 10/23/00 88

The responsibilities of the container providerEnterprise JavaBeans 2.0, Proposed Final Draft Session Bean Component Contract

Sun Microsystems, Inc.

tance.

xcep-

’s remote
Note that a session object is intended to support only a single client. Therefore, it would be an
application error if two clients attempted to invoke the same session object.

One implication of this rule is that an application cannot make loopback calls to a session bean ins

6.11.7 Transaction scoping, security, exceptions

The container must follow the rules with respect to transaction scoping, security checking, and e
tion handling, as described in Chapters 16, 20, and 17, respectively.

6.11.8 SessionContext

The container must implement theSessionContext.getEJBContext() method such that the
bean instance can use the Java language cast to convert the returned value to the session bean
interface type. Specifically, the bean instance does not have to use thePortableRemoteOb-
ject.narrow(...) method for the type conversion.
89 10/23/00

Session Bean Component Contract Enterprise JavaBeans 2.0, Proposed Final Draft The responsibilities of the container pro-

Sun Microsystems, Inc.
 10/23/00 90

Overview Enterprise JavaBeans 2.0, Proposed Final Draft Example Session Scenario

Sun Microsystems, Inc.

use the

ustra-
ssion
per-

ro-

e fol-
Chapter 7 Example Session Scenario

This chapter describes an example development and deployment scenario of a session bean. We
scenario to explain the responsibilities of the bean provider and those of the container provider.

The classes generated by the container provider’s tools in this scenario should be considered ill
tive rather than prescriptive. Container providers are free to implement the contract between a se
bean and its container in a different way, provided that it achieves an equivalent effect (from the
spectives of the bean provider and the client-side programmer).

7.1 Overview

Wombat Inc. has developed theCartBean session Bean. The CartBean is deployed in a container p
vided by the Acme Corporation.

7.2 Inheritance relationship

An example of the inheritance relationship between the interfaces and classes is illustrated in th
lowing diagram:
91 10/23/00

Example Session Scenario Enterprise JavaBeans 2.0, Proposed Final Draft Inheritance relationship

Sun Microsystems, Inc.
Figure 17 Example of Inheritance Relationships Between EJB Classes

AcmeRemoteCart

Cart

CartBean

AcmeRemote

JDK

Enterprise
JavaBeans

enterprise bean
provider

container
provider

produced by
Acme tools

java.rmi.Remote

EJBObject

(Wombat Inc.)

(Acme)

EnterpriseBean

Java interface Java class

java.io.Serializable

CartHome

extends or implements interface

extends implementation, code generation, or delegation

AcmeCartHome

AcmeHome AcmeBean

SessionBean

AcmeCartBean

EJBHome

EJBMetaData

AcmeCartMetaData

AcmeMetaData
 10/23/00 92

Inheritance relationship Enterprise JavaBeans 2.0, Proposed Final Draft Example Session Scenario

Sun Microsystems, Inc.

siness
inter-
ust

s may,
prise
bCre-

st be
s for

n pro-
rkflow.

ge its
an may

hods.

erface.
arti-

Acme-
th the
d code
7.2.1 What the session Bean provider is responsible for

Wombat Inc. is responsible for providing the following:

• Define the session Bean’s remote interface (Cart). The remote interface defines the bu
methods callable by a client. The remote interface must extend the javax.ejb.EJBObject
face, and follow the standard rules for a RMI-IIOP remote interface. The remote interface m
be defined as public.

• Write the business logic in the session Bean class (CartBean). The enterprise Bean clas
but is not required to, implement the enterprise Bean’s remote interface (Cart). The enter
Bean must implement the javax.ejb.SessionBean interface, and define the ej
ate<METHOD>(...) method(s) invoked at EJB object creation.

• Define a home interface (CartHome) for the enterprise Bean. The home interface mu
defined as public, extend the javax.ejb.EJBHome interface, and follow the standard rule
RMI-IIOP remote interfaces.

• Define a deployment descriptor specifying any declarative metadata that the session Bea
vider wishes to pass with the Bean to the next stage of the development/deployment wo

7.2.2 Classes supplied by container provider

The following classes are supplied by the container provider Acme Corp:

The AcmeHome class provides the Acme implementation of the javax.ejb.EJBHome methods.

The AcmeRemote class provides the Acme implementation of the javax.ejb.EJBObject methods.

The AcmeBean class provides additional state and methods to allow Acme’s container to mana
session Bean instances. For example, if Acme’s container uses an LRU algorithm, then AcmeBe
include the clock count and methods to use it.

The AcmeMetaData class provides the Acme implementation of the javax.ejb.EJBMetaData met

7.2.3 What the container provider is responsible for

The tools provided by Acme Corporation are responsible for the following:

• Generate the class (AcmeRemoteCart) that implements the session bean’s remote int
The tools also generate the classes that implement the communication protocol specific
facts for the remote interface.

• Generate the implementation of the session Bean class suitable for the Acme container (
CartBean). AcmeCartBean includes the business logic from the CartBean class mixed wi
services defined in the AcmeBean class. Acme tools can use inheritance, delegation, an
generation to achieve a mix-in of the two classes.
93 10/23/00

Example Session Scenario Enterprise JavaBeans 2.0, Proposed Final Draft Inheritance relationship

Sun Microsystems, Inc.

e. The
ts for

inter-

imple-
ntime
• Generate the class (AcmeCartHome) that implements the session bean’s home interfac
tools also generate the classes that implement the communication protocol specific artifac
the home interface.

• Generate the class (AcmeCartMetaData) that implements the javax.ejb.EJBMetaData
face for the Cart Bean.

Many of the above classes and tools are container-specific (i.e., they reflect the way Acme Corp
mented them). Other container providers may use different mechanisms to produce their ru
classes, and these classes will likely be different from those generated by Acme’s tools.
 10/23/00 94

Overview Enterprise JavaBeans 2.0, Proposed Final Draft Client View of an Entity

Sun Microsystems, Inc.

on-
rprise

con-

ntities
g enter-

ntainer
imple-
ugh the
Chapter 8 Client View of an Entity

This chapter describes the client view of an entity bean. It is actually a contract fulfilled by the C
tainer in which the entity bean is deployed. Only the business methods are supplied by the ente
bean itself.

Although the client view of the deployed entity beans is provided by classes implemented by the
tainer, the container itself is transparent to the client.

8.1 Overview

For a client, an entity bean is a component that represents an object-oriented view of some e
stored in a persistent storage, such as a database, or entities that are implemented by an existin
prise application.

A client accesses an entity bean through the entity bean’s remote and home interfaces. The co
provides classes that implement the entity bean’s remote and home interfaces. The objects that
ment the home and remote objects are remote Java objects, and are accessible from a client thro
standard Java™ APIs for remote object invocation [3].
95 10/23/00

Client View of an Entity Enterprise JavaBeans 2.0, Proposed Final Draft EJB Container

Sun Microsystems, Inc.

lient,
e entity
client

an is

ner in
th the

ntity
on the

tainer;
iew of
written

tainer,

ell as
nt can
ake

nd its
ns in

rprise

a con-
ty
ethods,
home
in the

client:
con-
From its creation until its destruction, an entity object lives in a container. Transparently to the c
the container provides security, concurrency, transactions, persistence, and other services for th
objects that live in the container. The container is transparent to the client—there is no API that a
can use to manipulate the container.

Multiple clients can access an entity object concurrently. The container in which the entity be
deployed properly synchronizes access to the entity object’s state using transactions.

Each entity object has an identity which, in general, survives a crash and restart of the contai
which the entity object has been created. The object identity is implemented by the container wi
cooperation of the enterprise bean class.

The client view of an entity bean is location independent. A client running in the same JVM as an e
bean instance uses the same API to access the entity bean as a client running in a different JVM
same or different machine.

A client of an entity object can be another enterprise bean deployed in the same or different Con
or a client can be an arbitrary Java program, such as an application, applet, or servlet. The client v
an entity bean can also be mapped to non-Java client environments, such as CORBA clients not
in the Java programming language.

Multiple enterprise beans can be deployed in a container. For each entity bean deployed in a con
the container provides a class that implements the entity bean’shome interface.The home interface
allows the client to create, find, and remove entity objects within the enterprise bean’s home as w
execute home business methods, which are not specific to a particular entity bean object. A clie
look up the entity bean’s home interface through JNDI; it is the responsibility of the container to m
the entity bean’s home interface available in the JNDI name space.

A client view of an entity bean is the same, irrespective of the implementation of the entity bean a
container. This ensures that a client application is portable across all container implementatio
which the entity bean might be deployed.

8.2 EJB Container

An EJB Container (Container for short) is a system that functions as a runtime container for ente
beans.

Multiple enterprise beans can be deployed in a single container. For each entity bean deployed in
tainer, the container provides ahome interfacethat allows the client to create, find, and remove enti
objects that belong to the entity bean. The home interface may also provide home business m
which are not specific to a particular entity bean object. The container makes the entity beans’
interfaces (defined by the bean provider and implemented by the container provider) available
JNDI name space for clients.

An EJB Server may host one or multiple EJB Containers. The containers are transparent to the
there is no client API to manipulate the container, and there is no way for a client to tell in which
tainer an enterprise bean is installed.
 10/23/00 96

EJB Container Enterprise JavaBeans 2.0, Proposed Final Draft Client View of an Entity

Sun Microsystems, Inc.

r the

beans
ion of

eans
8.2.1 Locating an entity bean’s home interface

A client locates an entity bean’s home interface using JNDI. For example, the home interface fo
Account entity bean can be located using the following code segment:

Context initialContext = new InitialContext();
AccountHome accountHome = (AccountHome)

javax.rmi.PortableRemoteObject.narrow(
initialContext.lookup(“java:comp/env/ejb/accounts”),

AccountHome.class);

A client’s JNDI name space may be configured to include the home interfaces of enterprise
deployed in multiple EJB Containers located on multiple machines on a network. The actual locat
an EJB Container is, in general, transparent to the client.

8.2.2 What a container provides

The following diagram illustrates the view that a container provides to the clients of the entity b
deployed in the container.
97 10/23/00

Client View of an Entity Enterprise JavaBeans 2.0, Proposed Final Draft Entity bean’s home interface

Sun Microsystems, Inc.

in the
acces-
ed an
Figure 18 Client view of entity beans deployed in a container

8.3 Entity bean’s home interface

The container provides the implementation of the home interface for each entity bean deployed
container. The container makes the home interface of every entity bean deployed in the container
sible to the clients through JNDI. An object that implements an entity bean’s home interface is call
EJBHome object.

The entity bean’s home interface allows a client to do the following:

• Create new entity objects within the home.

• Find existing entity objects within the home.

• Remove an entity object from the home.

client

EJB objects

EJBHome

container

EJB objectsEJBObjects

entity bean 1

EJB objects

EJBHome

EJB objectsEJBObjects

entity bean 2

other enterprise beans
 10/23/00 98

Entity bean’s home interface Enterprise JavaBeans 2.0, Proposed Final Draft Client View of an Entity

Sun Microsystems, Inc.

inter-
ation
cript-

stable
orage

-

• Execute a home business method.

• Get the javax.ejb.EJBMetaData interface for the entity bean. The javax.ejb.EJBMetaData
face is intended to allow application assembly tools to discover the meta-data inform
about the entity bean. The meta-data information allows loose client/server binding and s
ing.

• Obtain a handle for the home interface. The home handle can be serialized and written to
storage; later, possibly in a different JVM, the handle can be deserialized from stable st
and used to obtain a reference to the home interface.

An entity bean’s home interface must extend thejavax.ejb.EJBHome interface and follow the stan-
dard rules for Java programming language remote interfaces.

8.3.1 create methods

An entity bean’s home interface can define zero or morecreate<METHOD>(...) methods, one for
each way to create an entity object. The arguments of thecreate methods are typically used to initial-
ize the state of the created entity object. The name of each create method starts with the prefix “create” .

The return type of acreate<METHOD> method is the entity bean’s remote interface.

The throws clause of everycreate<METHOD>method includes thejava.rmi.RemoteExcep-
tion and thejavax.ejb.CreateException . It may include additional application-level excep
tions.

The following home interface illustrates three possiblecreate methods:

public interface AccountHome extends javax.ejb.EJBHome {
public Account create(String firstName, String lastName,

double initialBalance)
 throws RemoteException, CreateException;

public Account create(String accountNumber,
double initialBalance)
 throws RemoteException, CreateException,

LowInitialBalanceException;
public Account createLargeAccount(String firstname,

String lastname, double initialBalance)
 throws RemoteException, CreateException;

 ...
}

The following example illustrates how a client creates a new entity object:

AccountHome accountHome = ...;
Account account = accountHome.create(“John”, “Smith”, 500.00);
99 10/23/00

Client View of an Entity Enterprise JavaBeans 2.0, Proposed Final Draft Entity bean’s home interface

Sun Microsystems, Inc.

with
d
finder
ts that

od is
pri-

he
y

ntity
8.3.2 finder methods

An entity bean’s home interface defines one or morefinder methods[6], one for each way to find an
entity object or collection of entity objects within the home. The name of each finder method starts
the prefix “find”, such asfindLargeAccounts(...) . The arguments of a finder method are use
by the entity bean implementation to locate the requested entity objects. The return type of a
method must be the entity bean’s remote interface, or a type representing a collection of objec
implement the entity bean’s remote interface (see Subsections 9.6.6 and 11.1.8).

The throws clause of every finder method includes thejava.rmi.RemoteException and the
javax.ejb.FinderException .

The home interface of every entity bean includes thefindByPrimaryKey(primaryKey)
method, which allows a client to locate an entity object using a primary key. The name of the meth
alwaysfindByPrimaryKey ; it has a single argument that is the same type as the entity bean’s
mary key type, and its return type is the entity bean’s remote interface. There is a uniquefindByPri-
maryKey(primaryKey) method for an entity bean; this method must not be overloaded. T
implementation of thefindByPrimaryKey(primaryKey) method must ensure that the entit
object exists.

The following example shows thefindByPrimaryKey method:

public interface AccountHome extends javax.ejb.EJBHome {
 ...
public Account findByPrimaryKey(String AccountNumber)

throws RemoteException, FinderException;
}

The following example illustrates how a client uses thefindByPrimaryKey method:

AccountHome = ...;
Account account = accountHome.findByPrimaryKey(“100-3450-3333”);

8.3.3 remove methods

Thejavax.ejb.EJBHome interface defines several methods that allow the client to remove an e
object.

public interface EJBHome extends Remote {
void remove(Handle handle) throws RemoteException,

RemoveException;
void remove(Object primaryKey) throws RemoteException,

RemoveException;
}

[6] ThefindByPrimaryKey(primaryKey)method is mandatory for all Entity Beans.
 10/23/00 100

Entity object’s life cycle Enterprise JavaBeans 2.0, Proposed Final Draft Client View of an Entity

Sun Microsystems, Inc.

client

ethods

puta-
value

inter-
After an entity object has been removed, subsequent attempts to access the entity object by a
result in thejava.rmi.NoSuchObjectException .

8.3.4 home methods

An entity bean’s home interface may define one or more home methods. Home methods are m
that the bean provider supplies for business logic that is not specific to an entity bean instance.

Home methods can have arbitrary method names, but they must not start with “create”, “ find”, or
“ remove” . The arguments of a home method are used by the entity bean implementation in com
tions that do not depend on a specific entity bean instance. The method arguments and return
types must be legal types for RMI-IIOP.

The throws clause of every home method includes thejava.rmi.RemoteException . It may also
include additional application-level exceptions.

The following example shows two home methods:

public interface EmployeeHome extends javax.ejb.EJBHome {
...
// this method returns a living index depending on
// the state and the base salary of an employee:
// the method is not specific to an instance
public float livingIndex(String state, float Salary)

throws RemoteException;

// this method adds a bonus to all of the employees
// based on a company profit sharing index
public void addBonus(float company_share_index)

throws RemoteException, ShareIndexOutOfRangeException;

...
}

8.4 Entity object’s life cycle

This section describes the life cycle of an entity object from the perspective of a client.

The following diagram illustrates a client’s point of view of an entity object life cycle. (The termrefer-
encedin the diagram means that the client program has a reference to the entity object’s remote
face.)
101 10/23/00

Client View of an Entity Enterprise JavaBeans 2.0, Proposed Final Draft Entity object’s life cycle

Sun Microsystems, Inc.

ted,
ass is
nce to

n are
r than
se
bject
e
abase

ays:
Figure 19 Client View of Entity Object Life Cycle

An entity object does not exist until it is created. Until it is created, it has no identity. After it is crea
it has identity. A client creates an entity object using the entity bean’s home interface whose cl
implemented by the container. When a client creates an entity object, the client obtains a refere
the newly created entity object.

In an environment with legacy data, entity objects may “exist” before the container and entity bea
deployed. In addition, an entity object may be “created” in the environment via a mechanism othe
by invoking acreate<METHOD>(...) method of the home interface (e.g. by inserting a databa
record), but still may be accessible by a container’s clients via the finder methods. Also, an entity o
may be deleted directly using other means than theremove() operation (e.g. by deletion of a databas
record). The “direct insert” and “direct delete” transitions in the diagram represent such direct dat
manipulation.

A client can get a reference to an existing entity object’s remote interface in any of the following w

does not exist
and

not referenced

does not exist
and

referenced

exists
and

not referenced

exists
and

referenced

release reference

home.remove(...)

object.remove()

release reference

object.businessMethod(...)

object.businessMethod(...)

direct
insert

direct delete
or

throws NoSuchObjectException

home.remove(...)
or

create()
direct delete

action initiated by client
action on database from outside EJB

direct delete
or

home.find(...)

home.businessMethod(...)

home.create<METHOD>(...)
 10/23/00 102

Primary key and object identity Enterprise JavaBeans 2.0, Proposed Final Draft Client View of an Entity

Sun Microsystems, Inc.

ntity

ash of
ously
ents.

the cli-

e and

l Value
imary
nt class

ject’s
t
at is,
nce.)
• Receive the reference as a parameter in a method call (input parameter or result).

• Find the entity object using a finder method defined in the entity bean’s home interface.

• Obtain the reference from the entity object’s handle. (see Section 8.7)

A client that has a reference to an entity object’s remote interface can do any of the following:

• Invoke business methods on the entity object through the remote interface.

• Obtain a reference to the enterprise Bean’s home interface.

• Pass the reference as a parameter or return value of a remote method call.

• Obtain the entity object’s primary key.

• Obtain the entity object’s handle.

• Remove the entity object.

All references to an entity object that does not exist are invalid. All attempted invocations on an e
object that does not exist result in anjava.rmi.NoSuchObjectException being thrown.

All entity objects are consideredpersistent objects. The lifetime of an entity object is not limited by the
lifetime of the Java Virtual Machine process in which the entity bean instance executes. While a cr
the Java Virtual Machine may result in a rollback of current transactions, it does not destroy previ
created entity objects nor invalidate the references to the remote and home interfaces held by cli

Multiple clients can access the same entity object concurrently. Transactions are used to isolate
ents’ work from each other.

8.5 Primary key and object identity

Every entity object has a unique identity within its home. If two entity objects have the same hom
the same primary key, they are considered identical.

The Enterprise JavaBeans architecture allows a primary key class to be any class that is a lega
Type in RMI-IIOP, subject to the restrictions defined in Subsections 9.7.12 and 11.2.10. The pr
key class may be specific to an entity Bean class (i.e., each entity bean class may define a differe
for its primary key, but it is possible that multiple entity beans use the same primary key class).

A client that holds a reference to an entity object’s remote interface can determine the entity ob
identity within its home by invoking thegetPrimaryKey() method on the reference. The objec
identity associated with a reference does not change over the lifetime of the reference. (Th
getPrimaryKey() always returns the same value when called on the same entity object refere
103 10/23/00

Client View of an Entity Enterprise JavaBeans 2.0, Proposed Final Draft Entity Bean’s remote interface

Sun Microsystems, Inc.

m
using

o

ct by

he
a pro-

ran-

emote
ss

ol-
A client can test whether two entity object references refer to the same entity object by using theisI-
dentical(EJBObject) method. Alternatively, if a client obtains two entity object references fro
the same home, it can determine if they refer to the same entity by comparing their primary keys
theequals method.

The following code illustrates using theisIdentical method to test if two object references refer t
the same entity object:

Account acc1 = ...;
Account acc2 = ...;

if (acc1.isIdentical(acc2)) {
acc1 and acc2 are the same entity object

} else {
acc2 and acc2 are different entity objects

}

A client that knows the primary key of an entity object can obtain a reference to the entity obje
invoking thefindByPrimaryKey(key) method on the entity bean’s home interface.

Note that the Enterprise JavaBeans architecture does not specify “object equality” (i.e. use of t==
operator) for entity object references. The result of comparing two object references using the Jav
gramming languageObject.equals(Object obj) method is unspecified. Performing the
Object.hashCode() method on two object references that represent the entity object is not gua
teed to yield the same result. Therefore, a client should always use theisIdentical method to deter-
mine if two entity object references refer to the same entity object.

8.6 Entity Bean’s remote interface

A client accesses an entity object through the entity bean’s remote interface. An entity bean’s r
interface must extend thejavax.ejb.EJBObject interface. A remote interface defines the busine
methods that are callable by clients.

The following example illustrates the definition of an entity bean’s remote interface:

public interface Account extends javax.ejb.EJBObject {
void debit(double amount)

throws java.rmi.RemoteException,
InsufficientBalanceException;

void credit(double amount)
throws java.rmi.RemoteException;

double getBalance()
throws java.rmi.RemoteException;

}

The javax.ejb.EJBObject interface defines the methods that allow the client to perform the f
lowing operations on an entity object’s reference:

• Obtain the home interface for the entity object.
 10/23/00 104

Entity bean’s handle Enterprise JavaBeans 2.0, Proposed Final Draft Client View of an Entity

Sun Microsystems, Inc.

.

iner to

as a
g the

t
refer-

te

gram
g in a
typi-

server

ents
of the
ile the

fica-

B Con-
• Remove the entity object.

• Obtain the entity object’s handle.

• Obtain the entity object’s primary key.

The container provides the implementation of the methods defined in thejavax.ejb.EJBObject
interface. Only the business methods are delegated to the instances of the enterprise bean class

Note that the entity object does not expose the methods of thejavax.ejb.EnterpriseBean
interface to the client. These methods are not intended for the client—they are used by the conta
manage the enterprise bean instances.

8.7 Entity bean’s handle

An entity object’s handle is an object that identifies the entity object on a network. A client that h
reference to an entity object’s remote interface can obtain the entity object’s handle by invokin
getHandle() method on the remote interface.

Since a handle class extendsjava.io.Serializable , a client may serialize the handle. The clien
may use the serialized handle later, possibly in a different process or even system, to re-obtain a
ence to the entity object identified by the handle.

The client code must use thejavax.rmi.PortableRemoteObject.narrow(...) method to
convert the result of thegetEJBObject() method invoked on a handle to the entity bean’s remo
interface type.

The lifetime and scope of a handle is specific to the handle implementation. At the minimum, a pro
running in one JVM must be able to obtain and serialize the handle, and another program runnin
different JVM must be able to deserialize it and re-create an object reference. An entity handle is
cally implemented to be usable over a long period of time—it must be usable at least across a
restart.

Containers that store long-lived entities will typically provide handle implementations that allow cli
to store a handle for a long time (possibly many years). Such a handle will be usable even if parts
technology used by the container (e.g. ORB, DBMS, server) have been upgraded or replaced wh
client has stored the handle. Support for this “quality of service” is not required by the EJB speci
tion.

An EJB Container is not required to accept a handle that was generated by another vendor’s EJ
tainer.
105 10/23/00

Client View of an Entity Enterprise JavaBeans 2.0, Proposed Final Draft Entity home handles

Sun Microsystems, Inc.

ht to
then a
caller’s

se the
eate the
erface

gram
erent
mple-
t.

tions
The use of a handle is illustrated by the following example:

// A client obtains a handle of an account entity object and
// stores the handle in stable storage.
//
ObjectOutputStream stream = ...;
Account account = ...;
Handle handle = account.getHandle();
stream.writeObject(handle);

// A client can read the handle from stable storage, and use the
// handle to resurrect an object reference to the
// account entity object.
//
ObjectInputStream stream = ...;
Handle handle = (Handle) stream.readObject(handle);
Account account = (Account)javax.rmi.PortableRemoteObject.narrow(

handle.getEJBObject(), Account.class);
account.debit(100.00);

A handle is not a capability, in the security sense, that would automatically grant its holder the rig
invoke methods on the object. When a reference to an object is obtained from a handle, and
method on the object is invoked, the container performs the usual access checks based on the
principal.

8.8 Entity home handles

The EJB specification allows the client to obtain a handle for the home interface. The client can u
home handle to store a reference to an entity bean’s home interface in stable storage, and re-cr
reference later. This handle functionality may be useful to a client that needs to use the home int
in the future, but does not know the JNDI name of the home interface.

A handle to a home interface must implement thejavax.ejb.HomeHandle interface.

The client code must use thejavax.rmi.PortableRemoteObject.narrow(...) method to
convert the result of thegetEJBHome() method invoked on a handle to the home interface type.

The lifetime and scope of a handle is specific to the handle implementation. At the minimum, a pro
running in one JVM must be able to serialize the handle, and another program running in a diff
JVM must be able to deserialize it and re-create an object reference. An entity handle is typically i
mented to be usable over a long period of time—it must be usable at least across a server restar

8.9 Type narrowing of object references

A client program that is intended to be interoperable with all compliant EJB Container implementa
must use the javax.rmi.PortableRemoteObject.narrow(...) method to perform
type-narrowing of the client-side representations of the home and remote interface.
 10/23/00 106

Type narrowing of object references Enterprise JavaBeans 2.0, Proposed Final Draft Client View of an Entity

Sun Microsystems, Inc.

fail if
Note: Programs that use the cast operator to narrow the remote and home interfaces are likely to
the Container implementation uses RMI-IIOP as the underlying communication transport.
107 10/23/00

Client View of an Entity Enterprise JavaBeans 2.0, Proposed Final Draft Type narrowing of object references

Sun Microsystems, Inc.
 10/23/00 108

Type narrowing of object references Enterprise JavaBeans 2.0, Proposed Final Draft Entity Bean Component Contract for Con-

Sun Microsystems, Inc.

n entity
es, the
ement
that an
B Con-

Con-
bean
Chapter 9 Entity Bean Component Contract for
Container Managed Persistence

The entity bean component contract for container managed persistence is the contract between a
bean, its container, and its persistence manager. It defines the life cycle of the entity bean instanc
model for method delegation of the client-invoked business methods, and the model for the manag
of the entity bean’s persistent state and relationships. The main goal of this contract is to ensure
entity bean component using container managed persistence is portable across all compliant EJ
tainers.

This chapter defines the enterprise Bean Provider’s view of this contract and responsibilities of the
tainer Provider and Persistence Manager Provider for managing the life cycle of the enterprise
instances and their persistent state and relationships.
109 10/23/00

Entity Bean Component Contract for Container Managed PersistenceEnterprise JavaBeans 2.0, Proposed Final Draft Overview

Sun Microsystems, Inc.

ps a set
g them.
thods for
pecifies

bean or
ethods

loyment
vider’s

ersistent
manager
he per-

ntially
ct for
r, the
entity
ntity

indful
stent
onent
remote
e EJB
y bean
sistence
an and
llows an
pila-
nagers
bean

with
9.1 Overview

In accordance with the architecture for container managed persistence, the Bean Provider develo
of beans and dependent object classes for an application and determines the relationships amon
For each bean, the bean provider specifies an abstract persistence schema that defines the me
accessing the bean’s container-managed fields and relationships. The bean provider likewise s
an abstract persistence schema for each dependent object class that is related to the bean. The
dependent object class accesses these fields and relationships at runtime by means of the m
defined for its abstract persistence schema.

The persistent fields and relationships of the abstract persistence schema are specified in the dep
descriptor that is produced by the bean provider. The deployer, using the persistence manager pro
tools, determines how the persistent fields and relationships are mapped to a database or other p
store, and generates the necessary additional classes and interfaces that enable the persistence
to manage the persistent fields and relationships of the beans and dependent objects at runtime. T
sistence for these fields and relationships is provided by the persistence manager at runtime.

The entity bean component contract for container managed persistence has been substa
changed in the EJB 2.0 specification. Entity beans that use the EJB 1.1 component contra
container managed persistence must still be supported in EJB 2.0 containers. Howeve
contracts are separate, and the bean provider must choose one or the other. The EJB 1.1
bean contract for container managed persistence is defined in Chapter 13 “EJB 1.1 E
Bean Component Contract for Container Managed Persistence” .

9.2 Data independence between the Client View, the Entity
Bean View, and the Persistence View

When designing an entity bean with container managed persistence, the Bean Provider must be m
of the distinction between the client view of the entity bean and the entity bean’s view of its persi
state. In particular, there need be no direct relationship between the two. While the EJB comp
model provides a separation between the client view of a bean (as presented by its home and
interfaces) and the entity bean instance (which provides the implementation of the client view), th
architecture for container managed persistence adds to this a separation between the entit
instance (as defined by the bean provider) and its persistent state. The container managed per
architecture thus provides not only a layer of data independence between the client view of a be
the bean instance, but also between the bean instance and its persistent representation. This a
entity bean to be evolved independently from its clients, without requiring the redefinition or recom
tion of those clients, and it allows an entity bean to be redeployed across different persistence ma
and different persistent data stores, without requiring the redefinition or recompilation of the entity
class.

Chapter 8 describes the Client View of an Entity Bean. This view is no different for an entity bean
container managed persistence than for an entity bean with bean managed persistence.
 10/23/00 110

Container-managed entity persistence Enterprise JavaBeans 2.0, Proposed Final Draft Entity Bean Component Contract for Con-

Sun Microsystems, Inc.

stence,
resenta-
, the
ider in

in an
frame
entity

oes not
Manager
ment
s tools
e entity

riptor for
vider of
ing the

on of the
ager.

hips by
ally by
cifies
ass for

endent
hema)

ptor as
ls typi-
t object
t object
d by the

se the
es the
le then
This chapter describes the component contract for an entity bean with container managed persi
and how data independence is maintained between the entity bean instance and its persistent rep
tion. It describes this contract from three viewpoints: from the viewpoint of the entity bean provider
persistence manager, and the container. It also describes the responsibilities of the bean prov
maintaining the independence of the client view of the entity bean from its persistence view.

The component contract for bean managed persistence is described in Chapter 11.

9.3 Container-managed entity persistence

An entity bean implements an object view of a business entity or set of business entities stored
underlying database or implemented by an existing enterprise application (for example, by a main
program or by an ERP application). The data access protocol for transferring the state of the
between the entity bean instances and the underlying database or application is referred to aspersis-
tence.

In container-managed persistence, unlike in bean-managed persistence, the Bean Provider d
write database access calls in the entity bean. Instead, persistence is handled by a Persistence
that is available to the Container at runtime. The entity Bean Provider must specify in the deploy
descriptor those persistent fields and relationships for which the Persistence Manager Provider’
must generate data access calls. The Persistence Manager Provider’s tools are then used at th
bean’s deployment time to generate the necessary database access calls. The deployment desc
the entity bean indicates that the entity bean uses container-managed persistence. The Bean Pro
an entity bean with container-manager persistence must code all persistent data access by us
accessor methods that are defined in the bean’s abstract persistence schema. The implementati
persistent fields and relationships, as well as all data access, is deferred to the Persistence Man

A dependent object class is a persistent helper class that is used in container managed relations
one or more entity beans to further model their persistent state. A dependent object is used intern
the entity bean(s) and is itself not directly exposed through the client view. The Bean Provider spe
in the deployment descriptor those persistent fields and relationships of the dependent object cl
which the persistence manager provider’s tools must generate data access calls.

It is the responsibility of the Deployer to map the abstract persistence schema of a bean or dep
object class into the physical schema used by the underlying data store (e.g., into a relational sc
by using the Persistence Manager Provider’s tools. The Deployer uses the deployment descri
input to the Persistence Manager’s tools to perform this mapping. The Persistence Manager’s too
cally are also used to generate the concrete implementation of the entity bean and dependen
classes, including the code that delegates calls to the methods of an entity bean or dependen
class’s abstract persistence schema to the runtime persistent data access layer that is generate
Persistence Manager Provider’s tools. Typically, the Persistence Manager Provider’s tools u
ejb-jar file produced by the Bean Provider or Assembler to generate a new ejb-jar file that includ
concrete implementations of the entity bean and dependent object classes. This new ejb-jar fi
serves as input to the Container Provider’s tools.
111 10/23/00

Entity Bean Component Contract for Container Managed PersistenceEnterprise JavaBeans 2.0, Proposed Final Draft Container-man-

Sun Microsystems, Inc.

ct
of the
respon-

ation-
pecific

ger to
e refer-

depen-
n gen-
ses that
plement
urce.
The EJB deployment descriptor describeslogical relationships involving beans and dependent obje
classes. It does not provide a mechanism for specifying how the abstract persistence schemas
entity bean and dependent object classes are to be mapped to an underlying database. This is the
sibility of the Deployer, who, using the Persistence Manager Provider’s tools, uses the logical rel
ships that are specified in the deployment descriptor to map to the physical relationships that are s
to the underlying resource or its implementation. It is the responsibility of the Persistence Mana
manage the mapping between the logical and physical relationships at runtime and to manage th
ential integrity of the relationships.

The advantage of using container-managed persistence is that the entity bean can be logically in
dent of the data source in which the entity is stored. The Persistence Manager Provider’s tools ca
erate classes that use JDBC or SQLJ to access the entity state in a relational database; clas
implement access to a non-relational data source, such as an IMS database; or classes that im
function calls to existing enterprise applications. These tools are typically specific to each data so

Figure 20 Client view of underlying data sources accessed through entity bean

container

client

Order 100

Order

container

client

Order 100

entity bean

existing

application

(a) Entity bean is an object view of a collection of related records

(b) Entity bean is an object view of an existing application

Order entity
bean Line item 2

 in the database

Line item 2
 10/23/00 112

The entity bean provider’s view of persistenceEnterprise JavaBeans 2.0, Proposed Final Draft Entity Bean Component Contract for

Sun Microsystems, Inc.

entity

ent iden-

reated
xist-
some

better
which it

al line
ns. An
number

ultiple

n on

mote
t go
ough

ction
be

endent
terface
as spec-

d can
e home
9.3.1 Granularity of entity beans

This section provides guidelines to the Bean Provider for the modeling of business objects as
beans.

In general, an entity bean should represent an independent business object that has an independ
tity and lifecycle, and is referenced by multiple enterprise beans and/or clients.

A dependent object can be characterized as follows. An object D is a dependent object, if D is c
by another object, if D can only be accessed through another object (and not remotely), or if D’s e
ence or removal is dependent on some other object: in other words, if D’s lifecycle is managed by
other object.

A dependent objectshould not be implemented as an entity bean. Instead, a dependent object is
implemented as a Java class (or several classes) and included with the entity bean or beans on
depends.

For example, whereas a purchase order might be implemented as an entity bean, the individu
items on the purchase order might be implemented as dependent objects, not as entity bea
employee record might be implemented as an entity bean, but the employee address and phone
might be implemented as dependent objects, rather than as entity beans.

The state of an entity object that has dependent objects is often stored in multiple records in m
database tables.

In addition, the Bean Provider must take the following into consideration when making a decisio
the granularity of an entity object:

Every method call to an entity object via the remote and home interface is potentially a re
call. Even if the calling and called entity bean are collocated in the same JVM, the call mus
through the container, which must create copies of all the parameters that are passed thr
the interface by value (i.e., all parameters that do not extend thejava.rmi.Remote inter-
face). The container is also required to check security and apply the declarative transa
attribute on the inter-component calls. The overhead of an inter-component call will likely
prohibitive for object interactions that are too fine-grained.

9.4 The entity bean provider’s view of persistence

An entity bean with container managed persistence consists of its class and a set of related dep
object classes; a remote interface which defines its client view business methods; a home in
which defines its create, remove, home, and finder methods; and its abstract persistence schema
ified in the deployment descriptor.

A client of an entity bean can control the lifecycle of a bean by using the bean’s home interface an
manipulate the bean as a business entity by using the methods defined by its remote interface. Th
and remote interfaces of a bean define its client view.
113 10/23/00

Entity Bean Component Contract for Container Managed PersistenceEnterprise JavaBeans 2.0, Proposed Final Draft The entity bean

Sun Microsystems, Inc.

fine the
of acces-
d rela-

y bean

class

e man-

man-

anaged
Man-

entity

sistent
an. The

e con-
d
r is

erprise
Section

y or
es:

asses
er.
The abstract persistence schema of an entity bean consists of a set of cmp- and cmr-fields that de
entity bean’s persistent state and relationships. The abstract persistence schema defines the set
sor methods for the persistent fields and relationships of the entity bean. The persistent fields an
tionships themselves are maintained by the persistence manager.

It is the responsibility of the bean provider to specify the abstract persistence schema of the entit
in the deployment descriptor. This responsibility is discussed further in Section 9.4.14.

9.4.1 The entity bean provider’ s programming contract

The bean provider must observe the following programming contract when defining an entity bean
that uses container managed persistence:

• The Bean Provider must define the entity bean class as an abstract class. The persistenc
ager provides the implementation class that is used for the entity bean at runtime.

• The container managed persistent fields and container managed relationship fields mustnot be
defined in the entity bean class. From the perspective of the Bean Provider, the container
aged persistent fields and container managed relationship fields arevirtual fields only, and are
accessed through get and set accessor methods. The implementation of the container m
persistent fields and container managed relationship fields is supplied by the Persistence
ager.

• The container managed persistent fields and container managed relationship fields of the
bean must be specified in the deployment descriptor using thecmp-field andcmr-field
elements respectively. The names of these fields must begin with a lowercase letter.

• The Bean Provider must define the accessor methods for the container managed per
fields and container managed relationship fields as get and set methods, as for a JavaBe
implementation of the accessor methods is supplied by the Persistence Manager.

• The accessor methods must be public, must be abstract, and must bear the name of th
tainer managed persistent field (cmp-field) or container managed relationship fiel
(cmr-field) that is specified in the deployment descriptor, and in which the first lette
uppercased, prefixed by “get” or “set”.

• The accessor methods for container managed relationship fields that reference other ent
beans must be defined in terms of the remote interfaces of those beans, as described in
9.4.2.

• The accessor methods for container managed relationship fields for one-to-man
many-to-many relationships must utilize one of the following Collection interfac
java.util.Collection or java.util.Set [7]. The Collection interfaces used by a
bean are specified in the deployment descriptor. The implementation of the collection cl
used for the container managed relationship fields is supplied by the Persistence Manag

[7] We expect to include java.util.List and java.util.Map in a later version of this specification.
 10/23/00 114

The entity bean provider’s view of persistenceEnterprise JavaBeans 2.0, Proposed Final Draft Entity Bean Component Contract for

Sun Microsystems, Inc.

except
epen-
persis-
ining

pt to

icted to
eans’

n be
ection
objects
thus are

that is
riptor).
anaged
unidi-
from
that is
with
.

ccessor

endent

of the

s of
remote

n

• The accessor methods of the bean must not be exposed in the client interface of the bean
in the cases that are defined in Section 9.4.11. This restriction is to ensure the data ind
dence between the client view of the bean and the persistent state that is managed by the
tence manager, and to allow flexibility to the Persistence Manager in loading and mainta
the persistent state of the bean.

• Once the primary key for an entity bean has been set, the Bean Provider must not attem
change it by use of the bean’s set accessor methods on the primary key fields.

• The Bean Provider must ensure that the Java types assigned to the cmp-fields are restr
the following: Java primitive types, Java serializable types, and references of enterprise b
remote or home interfaces.[8]

9.4.2 The entity bean provider’ s view of persistent relationships

A bean may have relationships both with other beans and with dependent object classes.

Relationships may be one-to-one, one-to-many, or many-to-many relationships.

Relationships may be either bidirectional or unidirectional. If a relationship is bidirectional, it ca
navigated in both directions, whereas a unidirectional relationship can be navigated in one dir
only. Bidirectional container managed relationships can exist only among beans and dependent
whose abstract persistence schemas are defined in the same deployment descriptor and which
managed by the same Persistence Manager.

A bean or dependent object class may have a unidirectional relationship with a target entity bean
“remote” (i.e., whose abstract persistence schema is not defined in the same deployment desc
This includes entity beans with bean managed persistence, EJB 1.1 entity beans with container m
persistence, and entity beans that are defined in another deployment descriptor and ejb-jar file. A
rectional relationship is implemented with a cmr-field on the entity bean or dependent object
which navigation can take place, and no related cmr-field on the entity bean or dependent object
the target of the relationship. Unidirectional relationships are typically used for relationships
“remote” beans as well as when the Bean Provider wishes to restrict the visibility of a relationship

The bean developer navigates or manipulates logical relationships by using the get and set a
methods for the container managed relationship fields and thejava.util.Collection API for
collection-valued container managed relationship fields.

The bean provider must consider the type and cardinality of relationships when the beans and dep
object classes are programmed.

• In a relationship between beans, the get method must return either the remote interface
related bean or a collection (more precisely, eitherjava.util.Collection or
java.util.Set), in which the members of the collection must be the remote interface
the related beans. The set method for the relationship must take as an argument the

[8] The Bean Provider should, however, avoid the use of storing references to enterprise beans’ remote or home interfaces i
cmp-fields in favor of the use of container managed relationships.
115 10/23/00

Entity Bean Component Contract for Container Managed PersistenceEnterprise JavaBeans 2.0, Proposed Final Draft The entity bean

Sun Microsystems, Inc.

of the

ses the
n (or a
he set
rface of
elated
turn the
object
endent

ts and
collec-

on-
s.
s
s

class,
h entity
nidirec-
d across
ltiple
t object

e value
ances)

is rec-

ument or
ializa
interface of the related bean or a collection whose members are the remote interfaces
related beans.

• In a relationship between a bean and dependent object class, the get method that acces
bean from the dependent object class must return the remote interface of the related bea
collection whose members must be the remote interfaces of the related beans), and t
method defined on the dependent object class must take as an argument the remote inte
the related bean (or a collection whose members must be the remote interfaces of the r
beans). The get method that accesses the dependent object class from the bean must re
dependent object class type (or a collection whose members must be of the dependent
class type), and the set method defined on the bean must take as an argument the dep
object class type (or a collection of the same).

• In a relationship between dependent object classes, the formal types of the argumen
results of the get and set methods must be the respective dependent object classes (or
tions of the same).

In EJB 1.1, the bean provider had to supply the code to explicitly locate related beans through
the JNDI lookup of their home interfaces and the execution of their finder methods. In EJB 2.0
container managed persistence, the bean provider accesses related beans by means of c
tainer managed relationships defined in terms of the remote interfaces of the related bean
The responsibility to locate the homes of the related beans and to execute their finder method
is shifted to the persistence manager, which automatically provides the related objects (bean
or dependent objects) at runtime.

9.4.3 The view of dependent classes

Two types of dependent classes must be distinguished:dependent object classesanddependent value
classes. This chapter has up to now considered only dependent object classes.

A dependent object classis defined in much the same way as an entity bean class: as an abstract
with an abstract persistence schema that defines the dependent object class’s relationships wit
beans and other dependent object classes. A dependent object class can participate in both u
tional and bidirectional container managed relationships. Dependent object classes can be share
multiple entity beans (of the same or different type) within the same ejb-jar file, and across mu
relationships of the same entity bean. For example, an Order entity bean might use the dependen
classAddress for both the cmr-fieldshippingAddress and the cmr-fieldbillingAddress .

A dependent object class instance (or a collection of dependent object class instances) can be th
of a cmr-field; a dependent object class instance (or a collection of dependent object class inst
cannot be the value of a cmp-field.

A dependent object class must not be exposed through the remote interface of an entity bean. It
ommended that the dependent object classes not be serializable.[9]

[9] If the dependent object class is serializable, care must be taken to avoid use of the dependent object class as a method arg
result in the remote interface. This potential error can be avoided by not implementing the dependent object class as serble.
 10/23/00 116

The entity bean provider’s view of persistenceEnterprise JavaBeans 2.0, Proposed Final Draft Entity Bean Component Contract for

Sun Microsystems, Inc.

d, but
an pro-
it may
ean. A
is

object

sistence
t runt-

tainer

er man-
istence

of the

er-

sistent
an. The

e con-
d
r is

beans
n 9.4.2.

y or
es:

of the
ersis-
A dependent value classis a concrete class. A dependent value class can be the value of a cmp-fiel
it cannot be the value of a cmr-field. A dependent value class may be a legacy class that the be
vider wishes to use internally within an entity bean with container managed persistence, and/or
be a class that the bean provider chooses to expose through the remote interface of the entity b
dependent value class must be serializable. The internal structure of a dependent value classnot
described in the EJB deployment descriptor.

9.4.4 The entity bean provider’ s programming contract for dependent object classes

The bean provider must observe the following programming contract when defining a dependent
class:

• The bean provider must define the dependent object class as an abstract class. The Per
Manager provides the implementation class for the dependent object class that is used a
ime.

• The container managed persistent fields and container managed relationship fields mustnot be
defined in the dependent object class. From the perspective of the Bean Provider, the con
managed persistent fields and container managed relationship fields arevirtual fields only, and
are accessed through get and set accessor methods. The implementation of the contain
aged persistent fields and container managed relationship fields is supplied by the Pers
Manager.

• The container managed persistent fields and container managed relationship fields
dependent object class must be specified in the deployment descriptor using thecmp-field
andcmr-field elements respectively. The names of these fields must begin with a low
case letter.

• The Bean Provider must define the accessor methods for the container managed per
fields and container managed relationship fields as get and set methods, as for a JavaBe
implementation of the accessor methods is supplied by the Persistence Manager.

• The accessor methods must be public, must be abstract, and must bear the name of th
tainer managed persistent field (cmp-field) or container managed relationship fiel
(cmr-field) that is specified in the deployment descriptor, and in which the first lette
uppercased, prefixed by “get” or “set”.

• The accessor methods for container managed relationship fields that reference enterprise
must be defined in terms of the remote interfaces of those beans, as described in Sectio

• The accessor methods for container managed relationship fields for one-to-man
many-to-many relationships must utilize one of the following Collection interfac
java.util.Collection or java.util.Set [10]. The Collection interfaces used by
a dependent object class are specified in the deployment descriptor. The implementation
collection classes used for the container managed relationship fields is supplied by the P
tence Manager.

[10] We expect to include java.util.List and java.util.Map in a later version of this specification.
117 10/23/00

Entity Bean Component Contract for Container Managed PersistenceEnterprise JavaBeans 2.0, Proposed Final Draft The entity bean

Sun Microsystems, Inc.

ttempt
elds.

ean

d so that

t class

t class.

on of

and

ng
ce
eth-

(or

and a
nded
-
ds as

-

imary
ovider
n-

ssor
t
values
the
• Once the primary key for a dependent object has been set, the Bean Provider must not a
to change it by use of the dependent object’s set accessor methods on the primary key fi

• If it is possible for the application to result in a loopback call to a dependent object, the B
Provider should program the dependent object class to handle loopback calls.

9.4.4.1 Creation protocol for dependent objects
Because the container-managed dependent object classes are abstract, a special API is neede
the Bean Provider can obtain a new instance of a dependent object class at runtime.

The Bean Provider defines the following methods, which enable an instance of a dependent objec
to be created and initialized from an entity bean or dependent object class.

• The Bean Provider defines an abstractcreate<METHOD>(...) method on any entity bean
or dependent object class which may need to create instances of the dependent objec
The result type of thecreate<METHOD>(...) method is the dependent object class.

The create<METHOD>(...) methods must be declared aspublic and must not be
declared asfinal or static .

The Bean Provider must not expose thecreate<METHOD>(...) methods of an entity bean
in the remote interface of the bean.

It is the responsibility of the Persistence Manager to provide the concrete implementati
the create<METHOD>(...) methods. The Persistence Manager’scre-
ate<METHOD>(...) method must create a new instance of the dependent object class
invoke the Bean Provider’s correspondingejbCreate<METHOD>(...) method on the
new instance, followed by the matchingejbPostCreate<METHOD>(...) method, pass-
ing thecreate<METHOD>(...) parameters to those matching methods. Prior to invoki
the ejbCreate<METHOD>(...) method provided by the Bean Provider, the Persisten
Manager must ensure that the values that will be initially returned by the instance’s get m
ods for container managed fields will be the Java language defaults (e.g. 0 for integer,null
for pointers), except for collection-valued cmr-fields, which will have the empty collection
set) as their value.

Since an entity bean may have relationships with multiple dependent object classes,
dependent object class may have relationships with multiple entity beans, it is recomme
that the names of thecreate<METHOD>(...) methods be chosen carefully to avoid nam
ing conflicts. For example, a typical naming protocol might be to name such create metho
create<DEPENDENTNAME>(...) , whereDEPENDENTNAMEis the value of thedepen-
dent-name deployment descriptor element for the dependent object class.

• The Bean Provider defines anejbCreate<METHOD>(...) method on the abstract depen
dent object class. TheejbCreate<METHOD>(...) method performs the initialization of
the dependent object class instance. It is invoked by the Persistence Manager. If the pr
key fields of the dependent object class are defined by the Bean Provider, the Bean Pr
must use theejbCreate<METHOD>(...) method to set the values of those fields. In ge
eral, the Bean Provider’s responsibility is to initialize the instance in theejbCre-
ate<METHOD>(...) method from the input arguments, using the get and set acce
methods, such that when theejbCreate<METHOD>(...) method returns, the persisten
representation of the instance can be created. The Bean Provider is guaranteed that the
that will be initially returned by the dependent object class instance’s get methods will be
 10/23/00 118

The entity bean provider’s view of persistenceEnterprise JavaBeans 2.0, Proposed Final Draft Entity Bean Component Contract for

Sun Microsystems, Inc.

ider
bject

lass
by the
tence

the
nt
es of

here

e of

a

nces of
epen-

y, and

will be
n EJB
L: EJB
Java language defaults (e.g. 0 for integer,null for pointers), except for collection-valued
cmr-fields, which will have the empty collection (or set) as their value. The Bean Prov
must not attempt to modify the values of cmr-fields or create instances of dependent o
classes in anejbCreate<METHOD(...) method; this should be done in theejbPost-
Create<METHOD(...) method instead.

• The Bean Provider defines anejbPostCreate<METHOD>(...) method on the abstract
dependent object class. This method is invoked by the Persistence Manager after theejbCre-
ate<METHOD>(...) method completes and after the identity of the dependent object c
instance has been established. If the primary key of the dependent object class is defined
Persistence Manager rather than the Bean Provider, it is the responsibility of the Persis
Manager to have established the identity of the dependent object instance before theejb-
PostCreate<METHOD>(...) method is called. The Bean Provider can make use of
ejbPostCreate<METHOD>(...) method to complete the initialization of the depende
object class instance, including the creation of related objects and the setting of the valu
cmr-fields.

For eachcreate<METHOD>(...) method defined on any entity bean or dependent object class t
must be a matchingejbCreate<METHOD>(...) and ejbPostCreate<METHOD>(...)
method on the dependent object class. The matching methods must have the same number and typ
arguments, and the same return type (i.e., the dependent object class).

The throws clause of thecreate<METHOD>(...) method must include thejavax.ejb.Cre-
ateException . The throws clause may define arbitrary application specific exceptions.

All the exceptions defined in the throws clause of the matchingejbCreate<METHOD> andejb-
PostCreate<METHOD> methods of the dependent object class must be included in thethrows
clause of the matchingcreate<METHOD>(...) methods (i.e., the set of exceptions defined for
create<METHOD>(...) method must be a superset of the union of exceptions defined for theejb-
Create<METHOD> andejbPostCreate<METHOD> methods).

The dependent object class instance must have a primary key value that is unique across all insta
the dependent object class. However, it is legal to reuse the primary key of a previously removed d
dent object instance. The Persistence Manager’screate<METHOD>(...) method may, but is not
required to, detect the attempt to create a dependent object instance with a duplicate primary ke
throw theDuplicateKeyException .

If a dependent object is created, but not assigned to any container managed relationship field, it
created in the data store by the Persistence Manager, but will not be reachable by navigation. A
QL query must be used to access such a “detached” dependent object. See Chapter 10 “EJB Q
Query Language for Container Managed Persistence Query Methods” .

9.4.4.2 Removal of dependent objects
The Bean Provider can specify the removal of dependent objects in two ways:

• By the use of aremove() method on the dependent object class.

• By the use of acascade-delete specification in the deployment descriptor.
119 10/23/00

Entity Bean Component Contract for Container Managed PersistenceEnterprise JavaBeans 2.0, Proposed Final Draft The entity bean

Sun Microsystems, Inc.

e con-
n of the
e as a
JB QL

he

of the
ates

l, acces-
tion-
any or

pendent
t
alue of a
ent to a

in the
ed, the

does
e auto-

ela-
object
e
method
Detaching a dependent object that has already been entered into the data source from all of th
tainer-managed relationships in which it participates does not cause the persistent representatio
dependent object to be removed. The dependent object will continue to exist in the data stor
“detached” dependent object. It will not be reachable by navigation but can be accessed by an E
query.

The Bean Provider must define an abstractremove() method on every dependent object class. T
Persistence Manager provides the concrete implementation of theremove() method. When the
remove method is invoked on a dependent object, the persistence manager’s implementation
remove() method must remove that dependent object from all relationships in which it particip
and remove its persistent representation.

When a dependent object has been removed from a relationship because of its persistent remova
sor methods for the relationship will return null (in the case of a one-to-one or many-to-one rela
ship) or a collection from which the dependent object has been removed (in the case of a one-to-m
many-to-many relationship).

The Persistence Manager must detect the attempt to invoke an accessor method on a deleted de
object and raise thejava.lang.IllegalStateException . The Persistence Manager mus
detect the attempt to assign an object whose persistent representation has been deleted as the v
cmr-field of another object (whether as an argument to a set accessor method or as an argum
method of thejava.util.Collection API) and raise thejava.lang.IllegalArgument-
Exception .

More than one relationship may be affected by the persistent removal of a dependent object, as
following example. Once the shipping address object used by the Order bean has been remov
billing address accessor method will also return null.

public void changeAddress()
Address a = createAddress();
setShippingAddress(a);
setBillingAddress(a);
//both relationships now reference the same dependent
//object instance
getShippingAddress.remove();
if (getBillingAddress() == null) //it must be

...
else ...

// this is impossible....

Theremove() method causes only the dependent object on which it is invoked to be removed. It
not cause the deletion to be cascaded to other objects. In order for the deletion of one object to b
matically cascaded to another object, use of thecascade-delete mechanism should be specified.

Thecascade-delete deployment descriptor element is used to specify that, within a particular r
tionship, the lifetime of one or more dependent objects is dependent upon the lifetime of another
(an entity bean or dependent object). Thecascade-delete element can only be used to specify th
cascaded deletion of a dependent object, not an entity bean. To delete an entity bean, the remove
of the entity bean’s home or remote interface must be used.
 10/23/00 120

The entity bean provider’s view of persistenceEnterprise JavaBeans 2.0, Proposed Final Draft Entity Bean Component Contract for

Sun Microsystems, Inc.

.

y rela-

ded to
t
for rela-

or
in the

ec-
hey are

identity

ne
both the
i-

g

is of the
The cascade-delete deployment descriptor element is contained within theejb-relation-
ship-role element. Thecascade-delete element can only be specified within anejb-rela-
tionship-role element in which therole-source element specifies a dependent object class

Thecascade-delete element can only be specified for anejb-relationship-role element
contained in anejb-relation element if theother ejb-relationship-role element in the
ejb-relation element specifies amultiplicity of One. That is, the deletion of one object can
only be cascaded to the deletion of other objects if the first object is in a one-to-one or one-to-man
tionship with those other objects.

If an entity bean or dependent object is deleted, and thecascade-delete deployment descriptor ele-
ment is specified for a cmr-field of that bean or dependent object class, then the removal is casca
cause the removal of the related object or objects. As with theremove() operation, when a dependen
object has been removed from a relationship because of a cascaded delete, accessor methods
tionships that formerly referenced that object will return null (in the case of a one-to-one
many-to-one relationship) or a collection from which the dependent object has been removed (
case of a one-to-many or many-to-many relationship).

The use ofcascade-delete causes only the object or objects in the relationship for which it is sp
ified to be deleted. It does not cause the deletion to be further cascaded to other objects, unless t
participants in relationship roles for whichcascade-delete has also been specified.

9.4.5 Identity of dependent object class instances
From the viewpoint of the Bean Provider, instances of a dependent object class have a persistent
that is maintained by the Persistence Manager.

For example, the Bean Provider may use the dependent object classAddress as the target of two dis-
tinct unidirectional relationships of the entity beanOrder : one to represent a shipping address and o
to represent a billing address. If the same dependent object class instance is set as the value of
shippingAddress andbillingAddress cmr-fields, as in the example below, it is the respons
bility of the persistence manager to ensure that the same object is returned bygetShippingAd-
dress() and getBillingAddress() , and the identity of the object is maintained, includin
acrossejbLoad() andejbStore() operations and across transactions.

public void setAddresses(){
Address a = createAddress();
...
setShippingAddress(a);
setBillingAddress(a);
a.setZipcode(“94303”);
// the single address object is modified
...

}

The Persistence Manager maintains the identity of a dependent object class instance on the bas
primary key fields of the dependent object as specified by the Bean Provider.
121 10/23/00

Entity Bean Component Contract for Container Managed PersistenceEnterprise JavaBeans 2.0, Proposed Final Draft The entity bean

Sun Microsystems, Inc.

class,
epen-
empt to

ect
o
-
a

s

ct class

an par-
r must

s deter-

ssign an

the

r-field.

or

pecial

hip

is
., it is
ere
sales

eld
ip
The primary key of a dependent object class may or may not be visible in the dependent object
depending on the way in which it is specified. The Bean Provider specifies the primary key of a d
dent object as described in Section 9.10.2. Once it has been set, the Bean Provider must not att
change the value of a visible primary key field of a dependent object.

Note that depending on the mapping of the abstract persistence schema of the dependent obj
class to the physical schema of the underlying data store, a visible primary key field may als
be used by the Persistence Manager in the implementation of a container-managed relation
ship (i.e., it may serve as the implementation of a cmr-field). This case corresponds to that of
compound primary key which contains a foreign key in a relational database. In this case, the
Persistence Manager must ensure that the visible primary key field is updated when change
are made to the relationship.

When a new instance of a dependent object whose primary keys are visible in the dependent obje
is created, the Bean Provider must use theejbCreate<METHOD>(...) method of the dependent
object class to set all the primary key fields of the dependent object before the dependent object c
ticipate in a relationship, e.g. be used in a set accessor method for a cmr-field. The Bean Provide
not reset a primary key value after it has been set.

9.4.6 Semantics of assignment for relationships
The assignment operations for container managed relationships have a special semantics that i
mined by the referential integrity semantics for the relationship multiplicity.

In the case of a one-to-one relationship, when the Bean Provider uses a set accessor method to a
object from a cmr-field of a givenrelationship type(as defined by theejb-relation and
ejb-relationship-role deployment descriptor elements) in one instance to a cmr-field of
same relationship typein another instance, the object is effectivelymovedand the value of the source
cmr-field is set to null in the same transaction context.

In the case of a one-to-many or many-to-many relationship, either thejava.util.Collection
API or a set accessor method may be used to manipulate the contents of a collection-valued cm
These two approaches are discussed below.

9.4.6.1 Use of the java.util.Collection API to update relationships
The methods of thejava.util.Collection API for the container managed collections used f
collection-valued cmr-fields have the usual semantics, with the following exception: theadd andadd-
All methods applied to container managed collections in one-to-many relationships have a s
semantics that is determined by the referential integrity of one-to-many relationships.

• If the argument to theadd method is already an element of a collection-valued relations
field of thesame relationship typeas the target collection (as defined by theejb-relation
andejb-relationship-role deployment descriptor elements), it is removed from th
first relationship and added, in the same transaction context, to the target relationship (i.e
in effect moved from one collection of the relationship type to the other). For example, if th
is a one-to-many relationship between field offices and sales representatives, adding a
representative to a new field office will have the effect of removing him from his current fi
office. If the argument to theadd method is not an element of a collection-valued relationsh
 10/23/00 122

The entity bean provider’s view of persistenceEnterprise JavaBeans 2.0, Proposed Final Draft Entity Bean Component Contract for

Sun Microsystems, Inc.

from

has

ts
.
a-
n-

ed
must
llec-

rrect

man-
ction

han by
er-

he

ct the
ere is
entative
of the same relationship type, it is simply added to the target collection and not removed
its current collection, if any.

• The addAll method, when applied to a target collection in a one-to-many relationship,
similar semantics, applied to the members of its collection argument individually.

Note that in the case of a many-to-many relationship, however, adding an element or elemen
to the contents of a collection-valued cmr-field has no effect on the source collection, if any
For example, if there is a many-to-many relationship between customers and sales represent
tives, a customer can be added to the set of customers handled by a particular sales represe
tative without affecting the set of customers handled by any other sales representative.

When thejava.util.Collection API is used to manipulate the contents of container manag
relationship fields, the argument to any Collection method defined with a single Object parameter
be of the element type of the collection defined for the target cmr-field. The argument for any co
tion-valued parameter must be ajava.util.Collection (or Set), all of whose elements are of
the element type of the collection defined for the target cmr-field. If an argument is not of the co
type for the relationship, the Persistence Manager must throw thejava.lang.IllegalArgumen-
tException .

The Bean Provider must exercise caution when using an Iterator over a collection in a container
aged relationship. In particular, the Bean Provider must not modify the container managed colle
while the iteration is in progress in any way that causes elements to be added or removed, other t
the java.util.Iterator.remove() method. If elements are added or removed from the und
lying container managed collection used by an iterator other than by thejava.util.Itera-
tor.remove() method, the persistence manager should throw t
java.lang.IllegalStateException on the next operation on the iterator.

The following example illustrates how operations on container managed relationships that affe
contents of a collection-valued cmr-field viewed through an iterator should be avoided. Because th
a one-to-many relationship between field offices and sales representatives, adding a sales repres
to a new field office causes him or her to be removed from the current field office.

Collection nySalesreps = nyOffice.getSalesreps();
Collection sfSalesreps = sfOffice.getSalesreps();

Iterator i = nySalesreps.iterator();
Salesrep salesrep;

// the wrong way to transfer the salesrep
while (i.hasNext()) {

salesrep = i.next();
sfSalesreps.add(salesrep); // removes salesrep from nyOffice

}

// this is a correct and safe way to transfer the salesrep
while (i.hasNext()) {

salesrep = i.next();
i.remove();
sfSalesreps.add(salesrep);

}

123 10/23/00

Entity Bean Component Contract for Container Managed PersistenceEnterprise JavaBeans 2.0, Proposed Final Draft The entity bean

Sun Microsystems, Inc.

deter-

of a
tance,
e

ins the
ollec-
ections
ethod,
the

rans-

r bean
re of the

a

f the
signed
but not
cessor
of the

tatives,
ill result
lly han-
ntative.

ment
9.4.6.2 Use of set accessor methods to update relationships
The semantics of a set accessor method, when applied to a collection-valued cmr-field, is also
mined by the referential integrity semantics associated with the multiplicity of the relationship.

In the case of a one-to-many relationship, if a collection of objects is assigned from a cmr-field
given relationship type in one instance to a cmr-field of the same relationship type in another ins
the objects in the collection are effectivelymoved. The contents of the collection of the target instanc
are replaced with the contents of the collection of the source instance, but theidentityof the collection
object containing the instances in the relationship does not change. The source cmr-field conta
same collection object as before (i.e., the identity of the collection object is preserved), but the c
tion is empty. The Bean Provider can thus use the set method to move objects between the coll
referenced by cmr-fields of the same relationship type in different instances. The set accessor m
when applied to a cmr-field in a one-to-many relationship thus has the semantics of
java.util.Collection methodsclear , followed byaddAll , applied to the target collection;
andclear , applied to the source collection. It is the responsibility of the persistence manager to t
fer the contents of the collection instances in the same transaction context.

In the following example, the telephone numbers associated with the billing address of an Orde
instance are transferred to the shipping address. Both the billing address and shipping address a
same dependent object class,Address . The dependent object classAddress is related to the depen-
dent object classTelephoneNumber in a one-to-many relationship. The example illustrates how
Bean Provider uses the set method to move a set of dependent object class instances.

public void changeTelephoneNumber() {
Address a = getShippingAddress();
Address b = getBillingAddress();
Collection c = b.getTelephoneNumbers();
a.setTelephoneNumbers(b.getTelephoneNumbers());
if (c.isEmpty()) {//must be true...
..

}

In the case of a many-to-many relationship, if the value of a cmr-field is assigned to a cmr-field o
same relationship type in another instance, the objects in the collection of the first instance are as
as the contents of the cmr-field of the second instance. The contents of the collections are shared,
the collections themselves and the identity of the collection objects is unchanged. The set ac
method, when applied to a cmr-field in a many-to-many relationship thus has the semantics
java.util.Collection methodsclear , followed byaddAll , applied to the target collection.

For example, if there is a many-to-many relationship between customers and sales represen
assigning the set of customers of one sales representative to the another sales representative w
in both sales representatives handling the customers. If the second sales representative origina
dled a different set of customers, those customers will no longer be handled by that sales represe

public void shareCustomers(SalesRep rep) {
setCustomers(rep.getCustomers());
// the customers are shared among the salesreps

}

The following section, 9.4.7 “Assignment rules for relationships” , defines the semantics of assign
for relationships in further detail and provides further examples.
 10/23/00 124

The entity bean provider’s view of persistenceEnterprise JavaBeans 2.0, Proposed Final Draft Entity Bean Component Contract for

Sun Microsystems, Inc.

-one,

” at the
ignated
9.4.7 Assignment rules for relationships
This section defines the semantics of assignment and collection manipulation in one-to
one-to-many, and many-to-many container managed relationships.

The figures make use of two dependent object classes, A and B. Instances ofA are typically designated
asa1 ,...,an ; instances ofB asb1 ,...,bm. ClassA has accessor methodsgetB andsetB for navigable
relationships withB: getB returns an instance ofB or a collection of instances ofB, depending on the
multiplicity of the relationship. Similarly, classB has accessor methodsgetA andsetA for navigable
relationships withA.

All changes in each subsection are assumed to be applied to the figure labeled “Before change
beginning of the subsection (i.e., changes are not cumulative). The results of changes are des
graphically as well as in conditional expressions written in the JavaTM programming language.

9.4.7.1 One-to-one bidirectional relationships

Before change:

B b1 = a1.getB();
B b2 = a2.getB();

Change:

a1.setB(a2.getB());

Expected result:

(a1.getB() == b2) && (a2.getB() == null) && (b1.getA() == null) &&
(b2.getA() == a1)

b1

0..1 0..1
A B

a1

b2a2

Before change:

A and B are in a one-to-one bidirectional relationship:
125 10/23/00

Entity Bean Component Contract for Container Managed PersistenceEnterprise JavaBeans 2.0, Proposed Final Draft The entity bean

Sun Microsystems, Inc.
9.4.7.2 One-to-one unidirectional relationships

Before change:

B b1 = a1.getB();
B b2 = a2.getB();

Change:

a1.setB(a2.getB());

b1a1

b2a2

After change:

b1

0..1 0..1
A B

a1

b2a2

Before change:

A and B are in a one-to-one unidirectional relationship:
 10/23/00 126

The entity bean provider’s view of persistenceEnterprise JavaBeans 2.0, Proposed Final Draft Entity Bean Component Contract for

Sun Microsystems, Inc.
Expected result:

(a1.getB() == b2) && (a2.getB() == null)

9.4.7.3 One-to-many bidirectional relationships

b1a1

b2a2

After change:

b1

0..1 0..*
A B

a1

b2a2

Before change:

A and B are in a one-to-many bidirectional relationship:

b1
b1

b1
b1

b2
b2

b2
b2

b2m

n

127 10/23/00

Entity Bean Component Contract for Container Managed PersistenceEnterprise JavaBeans 2.0, Proposed Final Draft The entity bean

Sun Microsystems, Inc.
Before change:

Collection b1 = a1.getB();
Collection b2 = a2.getB();
B b11, b12, ... , b1n; // members of b1
B b21, b22, ... , b2m; // members of b2

Change:

a1.setB(a2.getB());

Expected result:

(a2.getB().isEmpty()) &&
(b2.isEmpty()) &&
(b1 == a1.getB()) &&
(b2 == a2.getB()) &&
(a1.getB().contains(b21)) &&
(a1.getB().contains(b22)) && ... &&
(a1.getB().contains(b2m)) &&
(b11.getA() == null) &&
(b12.getA() == null) && ... &&
(b1n.getA() == null) &&
(b21.getA() == a1) &&
(b22.getA() == a1) && ...&&
(b2m.getA() == a1)

Change:

b2m.setA(b1n.getA());

a1

a2

After change:

b1
b1

b1
b1

b1n

b2
b2

b2
b2

b2
b2m
 10/23/00 128

The entity bean provider’s view of persistenceEnterprise JavaBeans 2.0, Proposed Final Draft Entity Bean Component Contract for

Sun Microsystems, Inc.
Expected result:

(b1.contains(b11)) &&
(b1.contains(b12)) && ... &&
(b1.contains(b1n)) &&
(b1.contains(b2m)) &&
(b2.contains(b21)) &&
(b2.contains(b22)) && ... &&
(b2.contains(b2m_1)) &&
(b11.getA() == a1) &&
(b12.getA() == a1) && ... &&
(b1n.getA() == a1) &&
(b21.getA() == a2) &&
(b22.getA() == a2) && ... &&
(b2m_1.getA() == a2) &&
(b2m.getA() == a1)

Change:

a1.getB().add(b2m);

b1a1

b2a2

After change:

b1
b1

b1
b1

b2
b2

b2
b2m-1

b2m

n

129 10/23/00

Entity Bean Component Contract for Container Managed PersistenceEnterprise JavaBeans 2.0, Proposed Final Draft The entity bean

Sun Microsystems, Inc.
Expected result:

(b1.contains(b11)) &&
(b1.contains(b12)) && ... &&
(b1.contains(b1n)) &&
(b1.contains(b2m)) &&
(b2.contains(b21)) &&
(b2.contains(b22)) && ... &&
(b2.contains(b2m_1)) &&
(b11.getA() == a1) &&
(b12.getA() == a1) && ... &&
(b1n.getA() == a1) &&
(b21.getA() == a2) &&
(b22.getA() == a2) && ... &&
(b2m_1.getA() == a2) &&
(b2m.getA() == a1)

Change:

a1.getB().remove(b1n);

Expected result:

(b1n.getA() == null) &&
(a1.getB() == b1) &&
(b1.contains(b11)) &&
(b1.contains(b12)) && ... &&
(b1.contains(b1n_1)) &&
!(b1.contains(b1n))

b1a1

b2a2

After change:

b1
b1

b1
b1

b2
b2

b2
b2m-1

b2m

n

 10/23/00 130

The entity bean provider’s view of persistenceEnterprise JavaBeans 2.0, Proposed Final Draft Entity Bean Component Contract for

Sun Microsystems, Inc.
9.4.7.4 One-to-many unidirectional relationships

b1a1

b2a2

After change:

b1
b1
b1n-1

b2
b2

b2
b2

b2m

b1n

b1

0..1 0..*
A B

a1

b2a2

Before change:

A and B are in a one-to-many unidirectional relationship:

b1
b1

b1
b1

b2
b2

b2
b2

b2m

n

131 10/23/00

Entity Bean Component Contract for Container Managed PersistenceEnterprise JavaBeans 2.0, Proposed Final Draft The entity bean

Sun Microsystems, Inc.
Before change:

Collection b1 = a1.getB();
Collection b2 = a2.getB();
B b11, b12, ... , b1n; // members of b1
B b21, b22, ... , b2m; // members of b2

Change:

a1.setB(a2.getB());

Expected result:

(a2.getB().isEmpty()) &&
(b2.isEmpty()) &&
(b1 == a1.getB()) &&
(b2 == a2.getB()) &&
(a1.getB().contains(b21)) &&
(a1.getB().contains(b22)) && ... &&
(a1.getB().contains(b2m))

Change:

a1.getB().add(b2m);

Expected result:

(a1.getB() == b1) &&
(b1.contains(b2m))

a1

a2

After change:

b1
b1

b1
b1

b1n

b2
b2

b2
b2

b2
b2m
 10/23/00 132

The entity bean provider’s view of persistenceEnterprise JavaBeans 2.0, Proposed Final Draft Entity Bean Component Contract for

Sun Microsystems, Inc.
Change:

a1.getB().remove(b1n);

Expected result:

(a1.getB().contains(b11)) &&
(a1.getB().contains(b12)) && ... &&
(a1.getB().contains(b1n_1)) &&
!(a1.getB().contains(b1n)) &&

b1a1

b2a2

After change:

b1
b1

b1
b1

b2
b2

b2
b2m-1

b2m

n

b1a1

b2a2

After change:

b1
b1

b1
b1

b2
b2

b2
b2

b2m

n-1

b1n
133 10/23/00

Entity Bean Component Contract for Container Managed PersistenceEnterprise JavaBeans 2.0, Proposed Final Draft The entity bean

Sun Microsystems, Inc.
9.4.7.5 Many-to-one unidirectional relationships

Before change:

B b11, b12, ... , b1n;
B b21, b22, ... , b2m;
// the following is true
// (b11.getA() == a1) && ... && (b1n.getA() == a1) &&
// (b21.getA() == a2) && ... && (b2m.getA() == a2)

Change:

b1j.setA(b2k.getA());

b1

0..1 0..*
A B

a1

b2a2

Before change:

A and B are in a many-to-one unidirectional relationship:

b1
b1

b1
b1

b2
b2

b2
b2

b2m

n

 10/23/00 134

The entity bean provider’s view of persistenceEnterprise JavaBeans 2.0, Proposed Final Draft Entity Bean Component Contract for

Sun Microsystems, Inc.
Expected result:

(b11.getA() == a1) &&
(b12.getA() == a1) &&
...
(b1j.getA() == a2) &&
...
(b1n.getA() == a1) &&
(b21.getA() == a2) &&
(b22.getA() == a2) &&
...
(b2k.getA() == a2) &&
...
(b2m.getA() == a2)

b1a1

b2a2

After change:

b1

b1j

b1
b1

b2
b2

b2
b2

b2m

n

135 10/23/00

Entity Bean Component Contract for Container Managed PersistenceEnterprise JavaBeans 2.0, Proposed Final Draft The entity bean

Sun Microsystems, Inc.
9.4.7.6 Many-to-many bidirectional relationships

b1

0..* 0..*
A B

a1

Before change:

A and B are in a many-to-many bidirectional relationship:

b2a2

b3a3

b4a4

b5a5
 10/23/00 136

The entity bean provider’s view of persistenceEnterprise JavaBeans 2.0, Proposed Final Draft Entity Bean Component Contract for

Sun Microsystems, Inc.
Before change the following holds:

(a1.getB().contains(b1)) &&
(a1.getB().contains(b2)) &&
(a2.getB().contains(b1)) &&
(a2.getB().contains(b2)) &&
(a2.getB().contains(b3)) &&
(a3.getB().contains(b2)) &&
(a3.getB().contains(b3)) &&
(a3.getB().contains(b4)) &&
(a4.getB().contains(b3)) &&
(a4.getB().contains(b4)) &&
(a4.getB().contains(b5)) &&
(a5.getB().contains(b4)) &&
(a5.getB().contains(b5)) &&
(b1.getA().contains(a1)) &&
(b1.getA().contains(a2)) &&
(b2.getA().contains(a1)) &&
(b2.getA().contains(a2)) &&
(b2.getA().contains(a3)) &&
(b3.getA().contains(a2)) &&
(b3.getA().contains(a3)) &&
(b3.getA().contains(a4)) &&
(b4.getA().contains(a3)) &&
(b4.getA().contains(a4)) &&
(b4.getA().contains(a5)) &&
(b5.getA().contains(a4)) &&
(b5.getA().contains(a5)) &&

Change:

a1.setB(a3.getB());

Expected result:

(a1.getB().contains(b2)) &&
(a1.getB().contains(b3)) &&
(a1.getB().contains(b4)) &&
(a3.getB().contains(b2)) &&
(a3.getB().contains(b3)) &&
(a3.getB().contains(b4)) &&
(b1.getA().contains(a2)) &&
(b2.getA().contains(a1)) &&
(b2.getA().contains(a2)) &&
(b2.getA().contains(a3)) &&
(b3.getA().contains(a1)) &&
(b3.getA().contains(a2)) &&
(b3.getA().contains(a3)) &&
(b3.getA().contains(a4)) &&
(b4.getA().contains(a1)) &&
(b4.getA().contains(a3)) &&
(b4.getA().contains(a4)) &&
(b4.getA().contains(a5))
137 10/23/00

Entity Bean Component Contract for Container Managed PersistenceEnterprise JavaBeans 2.0, Proposed Final Draft The entity bean

Sun Microsystems, Inc.
Change:

a1.getB().add(b3);

Expected result:

(a1.getB().contains(b1)) &&
(a1.getB().contains(b2)) &&
(a1.getB().contains(b3)) &&
(b3.getA().contains(a1)) &&
(b3.getA().contains(a2)) &&
(b3.getA().contains(a3)) &&
(b3.getA().contains(a4)) &&

b1a1

After change:

b2a2

b3a3

b4a4

b5a5
 10/23/00 138

The entity bean provider’s view of persistenceEnterprise JavaBeans 2.0, Proposed Final Draft Entity Bean Component Contract for

Sun Microsystems, Inc.
Change:

a2.getB().remove(b2);

Expected result:

(a2.getB().contains(b1)) &&
(a2.getB().contains(b3)) &&
(b2.getA().contains(a1)) &&
(b2.getA().contains(a3))

b1a1

After change:

b2a2

b3a3

b4a4

b5a5

b1a1

After change:

b2a2

b3a3

b4a4

b5a5
139 10/23/00

Entity Bean Component Contract for Container Managed PersistenceEnterprise JavaBeans 2.0, Proposed Final Draft The entity bean

Sun Microsystems, Inc.
9.4.7.7 Many-to-many unidirectional relationships

Before change the following holds:

(a1.getB().contains(b1)) &&
(a1.getB().contains(b2)) &&
(a2.getB().contains(b1)) &&
(a2.getB().contains(b2)) &&
(a2.getB().contains(b3)) &&
(a3.getB().contains(b2)) &&
(a3.getB().contains(b3)) &&
(a3.getB().contains(b4)) &&
(a4.getB().contains(b3)) &&
(a4.getB().contains(b4)) &&
(a4.getB().contains(b5)) &&
(a5.getB().contains(b4)) &&
(a5.getB().contains(b5)) &&

Change:

a1.setB(a3.getB());

b1

0..* 0..*
A B

a1

Before change:

A and B are in a many-to-many unidirectional relationship:

b2a2

b3a3

b4a4

b5a5
 10/23/00 140

The entity bean provider’s view of persistenceEnterprise JavaBeans 2.0, Proposed Final Draft Entity Bean Component Contract for

Sun Microsystems, Inc.
Expected Result:

(a1.getB().contains(b2)) &&
(a1.getB().contains(b3)) &&
(a1.getB().contains(b4)) &&
(a3.getB().contains(b2)) &&
(a3.getB().contains(b3)) &&
(a3.getB().contains(b4)) &&

Change:

a1.getB().add(b3);

Expected result:

(a1.getB().contains(b1)) &&
(a1.getB().contains(b2)) &&
(a1.getB().contains(b3))

b1a1

After change:

b2a2

b3a3

b4a4

b5a5
141 10/23/00

Entity Bean Component Contract for Container Managed PersistenceEnterprise JavaBeans 2.0, Proposed Final Draft The entity bean

Sun Microsystems, Inc.
Change:

a2.getB().remove(b2);

Expected result:

(a2.getB().contains(b1)) &&
(a2.getB().contains(b3))

b1a1

After change:

b2a2

b3a3

b4a4

b5a5

b1a1

After change:

b2a2

b3a3

b4a4

b5a5
 10/23/00 142

The entity bean provider’s view of persistenceEnterprise JavaBeans 2.0, Proposed Final Draft Entity Bean Component Contract for

Sun Microsystems, Inc.

r man-
mantics

llec-

ained

essor

, the
e ele-
lec-

rgu-
w the

class
assigned
p-field
ce. The

e target

e serial-

rsistent
9.4.8 Collections managed by the Persistence Manager
The collections that are used in the representation of one-to-many and many-to-many containe
aged relationships are implemented and managed by the Persistence Manager. The following se
apply to these collections:

• It is the responsibility of the Persistence Manager to preserve the runtime identity of the co
tion objects used in container-managed relationships.

• There is no constructor available to the Bean Provider for the collections that are maint
by the Persistence Manager.

• If there are no related values for a given container managed relationship, the get acc
method for that cmr-field returns an empty collection (and notnull).

• It is the responsibility of the Persistence Manager to raise thejava.lang.IllegalArgu-
mentException if the Bean Provider attempts to assignnull as the value of a collec-
tion-valued cmr-field by means of the set accessor method.

• It is the responsibility of the Persistence Manager to ensure that when thejava.util.Col-
lection API is used to manipulate the contents of container managed relationship fields
argument to any Collection method defined with a single Object parameter must be of th
ment type of the collection defined for the target cmr-field. The argument for any col
tion-valued parameter must be ajava.util.Collection (or Set), all of whose
elements are of the element type of the collection defined for the target cmr-field. If an a
ment is not of the correct type for the relationship, the Persistence Manager must thro
java.lang.IllegalArgumentException .

9.4.9 Dependent value classes

A dependent value class can only be the value of a cmp-field, not a cmr-field. A dependent value
cannot have a member that is a dependent object class. A dependent value class can always be
to a cmp-field of the corresponding dependent value class type. The get accessor method for a cm
that corresponds to a dependent value class returns a copy of the dependent value class instan
assignment of a dependent value class value to a cmp-field causes the value to be copied to th
cmp-field.

Dependent value classes that are referred to through container managed persistent fields must b
izable.

Descriptors for dependent value classes must not be specified in the deployment descriptor.

9.4.10 Non-persistent state
The Bean Provider may use instance variables in the entity bean instance to maintain the non-pe
state of the entity bean, e.g., a JMS connection.
143 10/23/00

Entity Bean Component Contract for Container Managed PersistenceEnterprise JavaBeans 2.0, Proposed Final Draft The entity bean

Sun Microsystems, Inc.

te of the
ust use
entity
jects. In
pendent

com-
, after
nent,

ce of the
t persis-

om the

ollec-
t envi-

e bean
ndent
lections

t not be

n two

ods cor-
of the

-jar

elds or
The Bean Provider can use instance variables to store values that depend on the persistent sta
entity bean or its dependent objects, although this use is not encouraged. The Bean Provider m
theejbLoad() method to resynchronize the values of any instance variables that depend on the
bean’s persistent state, such as references to dependent objects or collections of dependent ob
general, any non-persistent state that depends on the persistent state of an entity bean or its de
objects should be recomputed during theejbLoad() method.

9.4.11 The relationship between the persistence view and the client view

The Enterprise JavaBeans architecture defines a component model in which the client view of the
ponent hides the details of the internal implementation of the enterprise bean class. Typically
designing the client view of an entity bean, the bean provider will design the internals of the compo
deciding on its abstract persistence schema. The classes that are exposed by the remote interfa
bean may or may not be related to the classes that require persistence. In designing the abstrac
tence schema of the bean, the Bean Provider should therefore keep in mind the following:

• The classes and relationships that are exposed by the remote interface are decoupled fr
persistence layer. Instances of these classes are passed to and from the clientby value.

• The classes and relationships that are defined in the abstract persistence schema arepersistent
in nature. The concrete representation of these classes and relationships (including the C
tion types) is determined by the persistence manager that is used in the given deploymen
ronment.

• Because the persistence manager is free to optimize the delivery of persistent data to th
instance (for example, by the use of lazy loading strategies), the instances of the depe
object classes that are defined in the abstract persistence schema and the contents of col
managed by the persistence manager may not be fully materialized.

The Bean Provider must not expose the dependent object classes or the persistentCollection classes
that are used in container managed relationships through the remote interface of the bean.

This means that the get and set methods of the entity bean’s abstract persistence schema mus
exposed through the remote interface of the entity bean except in the following cases:

• When the relationship is defined as a one-to-one or many-to-one relationship betwee
entity beans.

• When the get and set accessor methods are methods for a cmp-field. Set accessor meth
responding to primary key fields, however, should not be exposed in the remote interface
bean.

Dependent value classescanbe exposed in the remote interface and can be included in the client ejb
file.

The Bean Provider is also free to expose get and set methods that do not correspond to cmp-fi
cmr-fields.
 10/23/00 144

The entity bean provider’s view of persistenceEnterprise JavaBeans 2.0, Proposed Final Draft Entity Bean Component Contract for

Sun Microsystems, Inc.

can use
ses that
ses that

pendent
w such

a and a
ated in

o make
where

nd
for the
Although dependent object classes cannot be exposed in the remote interface, the Bean Provider
the accessor methods to obtain instances of these persistent classes (including the collection clas
correspond to relationships), and can copy data to or from these instances to instances of the clas
are exposed in the remote interface.

9.4.12 Mapping data to a persistent store

This specification does not prescribe how the abstract persistence schema of an entity bean or de
object class should be mapped to a relational (or other) schema of a persistent store, or define ho
a mapping is described.

If the Bean Provider needs to characterize the mapping between an abstract persistence schem
database schema, we recommend the convention that an auxiliary deployment descriptor be cre
the same directory as the EJB 2.0 deployment descriptor and that the ID mechanism be used t
references to the elements of the EJB 2.0 deployment descriptor in order to add information
needed. See Section 21.5.

9.4.13 Example
Figure 21 illustrates an entity beanOrder with relationships to line items, credit cards, customers a
products. It shows the abstract persistence schema and relationships. The accessor methods
dependent object classes are not shown. Sample code for theOrderBean class follows the figure.
145 10/23/00

Entity Bean Component Contract for Container Managed PersistenceEnterprise JavaBeans 2.0, Proposed Final Draft The entity bean

Sun Microsystems, Inc.
Figure 21 Relationship example

Customer

Product

OrderBean

<<abstract>>

getOrderStatus
setOrderStatus
getLineItems
setLineItems
getCreditApproved
setCreditApproved
getCustomer
setCustomer
getCreditCard
setCreditCard
...

LineItemCreditCard

*

1

1

1

1

* *

1

<<abstract>> <<abstract>>

Order-CreditCard
Order-LineItem

Product-LineItem

Order-Customer
 10/23/00 146

The entity bean provider’s view of persistenceEnterprise JavaBeans 2.0, Proposed Final Draft Entity Bean Component Contract for

Sun Microsystems, Inc.

r entity
nt object

e

The sample code below illustrates how the relationships and the accessor methods of the Orde
bean’s abstract persistence schema are used. The code also illustrates the use of the depende
classesLineItem andCreditCard . The dependent value classClientLineItem is used only in
the client view. The dependent value classAddressToShip is used in both the client view and as th
value of a cmp-field ofLineItem .

package com.acme.order;

import java.util.Collection;
import java.util.Vector;
import java.util.Date;
...

public abstract class OrderBean implements javax.ejb.EntityBean{

 private EntityContext context;

// define status codes for processing

static final int BACKORDER = 1;
static final int SHIPPED = 2;
static final int UNSHIPPED = 3;

//

// getters and setters for the cmp fields

 public abstract int getOrderStatus();
 public abstract void setOrderStatus(int orderStatus);

 public abstract boolean getCreditApproved();
 public abstract void setCreditApproved(boolean creditapproved);

 public abstract Date getOrderDate();
 public abstract void setOrderDate(Date orderDate);

// getters and setters for the relationship fields

 public abstract Collection getLineItems();
 public abstract void setLineItems(Collection lineitems);

 public abstract Customer getCustomer();
 public abstract void setCustomer(Customer customer);

 public abstract CreditCard getCreditCard();
 public abstract void setCreditCard(CreditCard creditcard);

// methods to create instances of dependent object classes

public abstract CreditCard createCreditCard(String num,
String type) throws javax.ejb.CreateException;

public abstract LineItem createLineItem()
 throws javax.ejb.CreateException;
147 10/23/00

Entity Bean Component Contract for Container Managed PersistenceEnterprise JavaBeans 2.0, Proposed Final Draft The entity bean

Sun Microsystems, Inc.
// business methods.

 // Remote method setCustomerForOrder:

 public void setCustomerForOrder(Customer customer,
 String creditcardNum,
 String creditCardType,
 String expiration)

throws InvalidCreditCardException{

// CreditCard is a dependent object created by the entity bean

try {
CreditCard card = createCreditCard(creditcardNum,

 creditCardType);
card.setExpires(convertToDate(expiration));
card.setCustomer(customer);
setCustomer(customer);
setCreditCard(card);

} catch (javax.ejb.CreateException e) {
throw new InvalidCreditCardException();

}

}

// remote method addLineItem:

// This method is used to add a line item.
// Internally the bean code creates the persistent dependent
// object and adds it to the collection of line items that
// are already created.

 public void addLineItem(Product product,
integer quantity,
AddressToShip address)

 throws InsufficientInfoException, LineItemCreateException{

 // create a new line item

 if (validAddress(address)) {
// AddressToShip is a legacy class. It is a dependent
// value class that is available both in the client and
// in the entity bean and that is serializable.
// AddressToShip is used as the value of a cmp-field
// of LineItem.

 try {
 LineItem litem = createLineItem();

 } catch (javax.ejb.CreateException e) {
throw new LineItemCreateException();
}
litem.setProduct(product);

 litem.setQuantity(quantity);
 litem.setTax(calculateTax(product.getPrice(),
 quantity,
 address));
 litem.setStatus(UNSHIPPED);

//set the address for the line item to be shipped
 10/23/00 148

The entity bean provider’s view of persistenceEnterprise JavaBeans 2.0, Proposed Final Draft Entity Bean Component Contract for

Sun Microsystems, Inc.
 litem.setAddress(address);

// The entity bean uses a special dependent value class
// to represent the dates related to order status.
// This class holds shipment date, expected shipment
// date, credit approval date, and inventory dates which
// are internal to the order fulfillment process.
// Not all information represented in this class
// will be available to the client when
// the client requests to see the line items.

 Dates dates = new Dates();
 litem.setDates(dates);
 getLineItems().add(litem);
 } else {
 throw new InsufficientInfoException();
 }
 }

// remote method getOrderLineItems:

// This method returns a view of the line items in the
// order to the client. It makes only relevant
// information visible to the client and hides the
// internal details of the representation of the line items

 public Collection getOrderLineItems() {
 Vector clientlineitems = new Vector();
 Collection lineitems = getLineItems();
 java.util.Iterator iterator = lineitems.iterator();

// ClientLineItem is a value class that is available in the
// client and represents the client view of the persistent
// dependent object LineItem. It is not an abstract class.
// The entity bean provider abstracts information from the
// persistent representation of the line item to construct
// the client view

 ClientLineItem clitem;

while (iterator.hasNext()) {
LineItem litem = (LineItem)iterator.next();
clitem = new ClientLineItem();
// Only the name of the product is available in the
// client view

clitem.setProduct(litem.getProduct().getName());
clitem.setQuantity(litem.getQuantity());

// The client view gets a specific descriptive message
// depending on the line item status.
clitem.setCurrentStatus(

statusCodeToString(litem.getStatus()));

// Address is not copied to the client view.
// as this class includes other information with
// respect to the order handing that should not be
// available to the client. Only the relevant info
// is copied.
149 10/23/00

Entity Bean Component Contract for Container Managed PersistenceEnterprise JavaBeans 2.0, Proposed Final Draft The entity bean

Sun Microsystems, Inc.

endent

he rela-
clared

s:

te in
eclared

e
-

ide

e sche-
ersis-
at are
n

int lineitemStatus = litem.getStatus();
if (lineitemStatus == BACKORDER) {

 clitem.setShipDate(
litem.getDates().getExpectedShipDate());

} else if (lineitemStatus == SHIPPED) {
clitem.setShipDate(

litem.getDates().getShippedDate());
 }

//Add the new line item
clientlineitems.add(clitem);

 }
 // Return the value objects to the client
 return clientlineitems;

 }

// other methods
}

9.4.14 The Bean Provider’ s view of the deployment descriptor

The deployment descriptor provides information about the relationships among beans and dep
object classes and their abstract persistence schemas.

The persistent fields (cmp-fields) of both entity beans and dependent object classes, as well as t
tionships in which entity beans and dependent object classes participate (cmr-fields), must be de
in the deployment descriptor.

The deployment descriptor provides the following information about entity beans and relationship

• An ejb-name element for each entity bean. Theejb-name must be unique within the
ejb-jar file.

• A set ofdependent elements, which describe the dependent object classes that participa
container managed relationships. The cmp-fields of dependent object classes must be d
in the deployment descriptor and eachdependent element must be given adepen-
dent-name . Thedependent-name must be unique within the ejb-jar file and must not b
the same as anyejb-name within the ejb-jar file. The Bean Provider may optionally desig
nate the primary fields for the dependent object using thepk-field elements.

• A set ofejb-entity-ref elements, which describe remote entity beans and which prov
names for remote entity beans by means ofremote-ejb-name elements. Remote entity
beans are the entity beans that participate in relationships but whose abstract persistenc
mas are not available in the ejb-jar file. This includes entity beans with bean managed p
tence, EJB 1.1 entity beans with container managed persistence, and entity beans th
defined in another ejb-jar file. Theejb-entity-ref element provides a named abstractio
on top of theejb-ref element. Aremote-ejb-name element must be unique within the
ejb-jar file and must not be the same as anyejb-name or dependent-name within the
ejb-jar file.
 10/23/00 150

The entity bean provider’s view of persistenceEnterprise JavaBeans 2.0, Proposed Final Draft Entity Bean Component Contract for

Sun Microsystems, Inc.

lti-

lass).
of an

ch
dent
• A set of ejb-relation elements, each of which contains a pair ofejb-relation-
ship-role elements to describe the two roles in the relationship.[11]

• Eachejb-relationship-role element describes a relationship role: its name, its mu
plicity within a relation, and its navigability. It specifies the name of thecmr-field that is
used from the perspective of the relationship participant (a bean or its dependent object c
Each relationship role refers to an entity bean or a dependent object class by means
ejb-name , remote-ejb-name or dependent-name element contained in the
role-source element. The Bean Provider must ensure that the content of ea
role-source element refers to an existing entity bean, entity bean reference, or depen
object class.

[11] The relation names and the relationship role names are not used in the code provided by the bean provider.
151 10/23/00

Entity Bean Component Contract for Container Managed PersistenceEnterprise JavaBeans 2.0, Proposed Final Draft The entity bean

Sun Microsystems, Inc.

istence
tor ele-
The following example shows a deployment descriptor segment that defines the abstract pers
schema for a set of related entity beans and dependent object classes. The deployment descrip
ments for container managed persistence and relationships are described further in Chapter 21.

<ejb-jar>

...

<enterprise-beans>
....
</enterprise-beans>

<dependents>
<dependent>

<description>Line item dependent class</description>
<dependent-class>
com.acme.order.LineItem
</dependent-class>
<dependent-name>LineItem</dependent-name>
<cmp-field><field-name>quantity</field-name></cmp-field>
<cmp-field><field-name>tax</field-name></cmp-field>
<cmp-field><field-name>status</field-name></cmp-field>
<cmp-field><field-name>address</field-name></cmp-field>

</dependent>
<dependent>

<description>CreditCard dependent class </description>
<dependent-class>com.acme.order.CreditCard
</dependent-class>
<dependent-name>CreditCard</dependent-name>
<cmp-field><field-name>number</field-name></cmp-field>
<cmp-field><field-name>type</field-name></cmp-field>
<cmp-field><field-name>approved</field-name></cmp-field>
<cmp-field><field-name>expires</field-name></cmp-field>
<pk-field>number</pk-field>

</dependent>
</dependents>

<relationships>
<!-- Since OrderEJB and CustomerEJB are entity beans whose

abstract persistence schemas are included in this ejb-jar file, there
is no need to supply an ejb-entity-ref element to refer to them in the
relationships. Instead the relationships use the ejb-names of
OrderEJB and CustomerEJB to specify the role source. ProductEJB, how-
ever, is remote, and an ejb-entity-ref element must therefore be spec-
ified so that it can be used in relationships.
-->

<ejb-entity-ref>
<description>
This is a reference descriptor for a Product bean
</description>
<remote-ejb-name>ProductEJB</remote-ejb-name>
<home>com.commercewarehouse.catalog.ProductHome</home>
<remote>com.commercewarehouse.catalog.Product</remote>
<ejb-link>Product</ejb-link>

</ejb-entity-ref>
 10/23/00 152

The entity bean provider’s view of persistenceEnterprise JavaBeans 2.0, Proposed Final Draft Entity Bean Component Contract for

Sun Microsystems, Inc.
<!--
ONE-TO-MANY: Order LineItem
-->

<ejb-relation>
<ejb-relation-name>Order-LineItem</ejb-relation-name>
<ejb-relationship-role>

<ejb-relationship-role-name>
order-has-lineitems
</ejb-relationship-role-name>
<multiplicity>One</multiplicity>
<role-source>

<ejb-name>OrderEJB</ejb-name>
</role-source>
<cmr-field>

<cmr-field-name>lineItems</cmr-field-name>
<cmr-field-type>java.util.Collection
</cmr-field-type>

</cmr-field>
</ejb-relationship-role>

<ejb-relationship-role>
<ejb-relationship-role-name>lineitem_belongsto_order
</ejb-relationship-role-name>
<multiplicity>Many</multiplicity>
<cascade-delete/>
<role-source>

<dependent-name>LineItem<dependent-name>
</role-source>
<cmr-field>

<cmr-field-name>order</cmr-field-name>
</cmr-field>

</ejb-relationship-role>
</ejb-relation>

<!--
ONE-TO-MANY unidirectional relationship:
Product is not aware of its relationship with LineItem
-->

<ejb-relation>
<ejb-relation-name>Product-LineItem</ejb-relation-name>

<ejb-relationship-role>
<ejb-relationship-role-name>
product-has-lineitems
</ejb-relationship-role-name>
<multiplicity>One</multiplicity>
<role-source>

<ejb-name>ProductEJB</ejb-name>
</role-source>

 <!-- since Product does not know about LineItem
 there is no cmr field in Product for accessing

Lineitem
 -->

</ejb-relationship-role>

<ejb-relationship-role>
153 10/23/00

Entity Bean Component Contract for Container Managed PersistenceEnterprise JavaBeans 2.0, Proposed Final Draft The entity bean

Sun Microsystems, Inc.
<ejb-relationship-role-name>
line-item-product
</ejb-relationship-role-name>
<multiplicity>Many</multiplicity>
<role-source>

<dependent-name>LineItem</dependent-name>
</role-source>
<cmr-field>

<cmr-field-name>product</cmr-field-name>
</cmr-field>

</ejb-relationship-role>

</ejb-relation>

<!--
ONE-TO-MANY: Order Customer:
-->

<ejb-relation>
<ejb-relation-name>Order-Customer</ejb-relation-name>

<ejb-relationship-role>
<ejb-relationship-role-name>
customer-has-orders
</ejb-relationship-role-name>
<multiplicity>One</multiplicity>
<role-source>

<ejb-name>CustomerEJB</ejb-name>
</role-source>
<cmr-field>

<cmr-field-name>orders</cmr-field-name>
<cmr-field-type>java.util.Collection
</cmr-field-type>

</cmr-field>
</ejb-relationship-role>

<ejb-relationship-role>
<ejb-relationship-role-name>
order-belongsto-customer
</ejb-relationship-role-name>
<multiplicity>Many</multiplicity>
<role-source>

<ejb-name>OrderEJB
</ejb-name>

</role-source>
<cmr-field>

<cmr-field-name>customer</cmr-field-name>
</cmr-field>

</ejb-relationship-role>

</ejb-relation>

<!--
ONE-TO-ONE: Order CreditCard:
-->

<ejb-relation>
 10/23/00 154

The entity bean component contract Enterprise JavaBeans 2.0, Proposed Final Draft Entity Bean Component Contract for Con-

Sun Microsystems, Inc.

ntainer,

ontract
of the
<ejb-relation-name>Order-CreditCard</ejb-relation-name>

<ejb-relationship-role>
<ejb-relationship-role-name>order-paidby-creditcard
</ejb-relationship-role-name>
<multiplicity>One</multiplicity>
<role-source>

<ejb-name>OrderEJB</ejb-name>
</role-source>
<cmr-field>

<cmr-field-name>creditcard</cmr-field-name>
</cmr-field>

</ejb-relationship-role>

<ejb-relationship-role>
<ejb-relationship-role-name>creditcard-pays-order
</ejb-relationship-role-name>
<multiplicity>One</multiplicity>

<role-source>
<dependent-name>CreditCard</dependent-name>

</role-source>
<cmr-field>

<cmr-field-name>order</cmr-field-name>
</cmr-field>
</ejb-relationship-role>

</ejb-relation>

</relationships>

...

</ejb-jar>

9.5 The entity bean component contract

This section specifies the container managed persistence contract between an entity bean, its co
and its persistence manager.

9.5.1 Runtime execution model of entity beans

This subsection describes the runtime model and the classes used in the description of the c
between an entity bean, its container, and its persistence manager. Figure 22 shows an overview
runtime model.
155 10/23/00

Entity Bean Component Contract for Container Managed PersistenceEnterprise JavaBeans 2.0, Proposed Final Draft The entity bean

Sun Microsystems, Inc.

ntity
e persis-
Figure 22 Overview of the entity bean runtime execution model

An enterprise beanis an object whose class is provided by the Bean Provider. The class of an e
bean with container managed persistence is abstract; the concrete bean class is generated by th
tence manager provider’s tools at deployment time.

client

container

EJB objects

EJBHome

EJB objects
EJBObjects

EJB objects

EJBHome

EJB objects
EJBObjects

enterprise bean

instances

enterprise bean

 instances

enterprise bean 1

enterprise bean 2

container provided
classes

classes provided by

persistence manager
bean provider and
 10/23/00 156

The entity bean component contract Enterprise JavaBeans 2.0, Proposed Final Draft Entity Bean Component Contract for Con-

Sun Microsystems, Inc.

r Pro-
never
e class

cts
ity bean
ols at
t was

s. Any
e persis-
endent

ships of
tate. The
of the
hips.
An entity EJBObject is an object whose class was generated at deployment time by the Containe
vider’s tools. The entity EJBObject class implements the entity bean’s remote interface. A client
references an entity bean instance directly—a client always references an entity EJBObject whos
is generated by the Container Provider’s tools.

An entityEJBHomeobject provides the life cycle operations (create, remove, find) for its entity obje
as well as home business methods, which are business methods that are not specific to an ent
instance. The class for the entity EJBHome object is generated by the Container Provider’s to
deployment time. The entity EJBHome object implements the entity bean’s home interface tha
defined by the Bean Provider.

9.5.2 Relationships among the classes provided by the bean provider and persistence
manager

The entity bean provider is responsible for providing the entity bean class as an abstract clas
dependent object classes are also provided by the entity bean provider as abstract classes. Th
tence manager provider tools are responsible for providing the concrete entity bean and dep
object classes.

The classes provided by the persistence manager tools are responsible for managing the relation
the entity beans and dependent object classes and for managing the access to their persistent s
persistence manager provider tools are also responsible for providing the implementations
java.util.Collection classes that are used in maintaining the container managed relations

Figure 23 illustrates these relationships.
157 10/23/00

E
ntity B

ean C
om

ponent C
ontract for C

ontainer M
anaged P

ersistenceE
nterprise JavaB

eans 2.0, P
roposed F

inal D
raft

T
he

entity
bean

 10/23/00

S
un M

icrosystem
s, Inc.

F
igure 23

R
elationships am

ong the classes

Order

Status
ems
Status
ms

Approved
Approved
mer
mer
Card
Card

nce Manager
d Classes using
sing Technique

PMLineItem

MCreditCard

EntityBean

<<interface>>
1
5

8

Customer

Product
OrderBean

<<abstract>>

getOrderStatus
getLineItems
setOrderStatus
setLineItems
getCreditApproved
setCreditApproved
getCustomer
setCustomer
getCreditCard
setCreditCard

LineItem

CreditCard

*

1

1

1

1

* *

1

<<abstract>>

<<abstract>>

Order-CreditCard

Order-LineItem

Product-LineItem

Order-Customer

order-has-lineitems

lineitem-belongsto-order

Bean Provider Provided
Classes (entity Bean and
Dependent Objects)

PM

getOrder
getLineIt
setOrder
setLineIte
getCredit
setCredit
getCusto
setCusto
getCredit
setCredit

Beans Provided by others
which participate in
relationships

Persiste
Provide
Subclas

P

The entity bean component contract Enterprise JavaBeans 2.0, Proposed Final Draft Entity Bean Component Contract for Con-

Sun Microsystems, Inc.

tools to
e gener-
ger. The
derly-

t object
istence

mapping
persist-
eys or
e con-

erlying
e entity

hods, the
nization

of the
e

es.

ialize
riptor.
r the

f the
pe as

ded to
n (or
ndent
xt. Sec-

con
the
ed
f the
9.5.3 Persistence Manager responsibilities

9.5.3.1 Container-managed fields

An entity bean with container managed persistence relies on the Persistence Manager Provider’s
generate methods that perform persistent data access on behalf of the entity bean instances. Th
ated methods transfer data between an entity bean instance and the underlying resource mana
generated methods also implement the creation, removal, and lookup of the entity object in the un
ing database.

The Persistence Manager is responsible for implementing the entity bean classes and dependen
classes by providing the implementation of the get and set accessor methods of their abstract pers
schemas. In order to implement these methods, the Persistence Manager must also manage the
between primary keys or handles and EJBObjects. The Persistence Manager must be capable of
ing references to enterprise bean remote and home interfaces (for example, by storing primary k
handles). The Persistence Manager Provider is allowed to use Java serialization to store th
tainer-managed fields.

The Persistence Manager is responsible for transferring data between the entity bean and the und
data source. The data is transferred by the Persistence Manager as a result of the execution of th
bean’s methods. Because of the requirement that all data access occur through the accessor met
Persistence Manager can implement both eager and lazy loading and storing schemes. Synchro
between the Persistence Manager and the Container is achieved before or after the execution
ejbCreate<METHOD> , ejbRemove , ejbLoad , and ejbStore methods. These contracts ar
described in Section 9.6.

9.5.3.2 Container-managed relationships

The Persistence Manager maintains the relationships among beans and dependent object class

• For a relationship with a bean, it is the responsibility of the Persistence Manager to mater
the remote object for the bean based on the information provided in the deployment desc
This eliminates the need for the bean provider to look up and execute a finder method fo
related bean.

• It is the responsibility of the Persistence Manager to maintain the referential integrity o
container managed relationships in accordance with the semantics of the relationship ty
specified in the deployment descriptor. For example, if a bean (or dependent object) is ad
a collection corresponding to the container managed relationship field of another bea
dependent object), the container managed relationship field of the first bean (or depe
object) must also be updated by the Persistence Manager in the same transaction conte
tion 9.4.6 describes this semantics.

• It is the responsibility of the Persistence Manager to throw thejava.lang.IllegalAr-
gumentException when the argument to a set method in a relationship is a collection
taining instances of the wrong type, or when an argument to a method of
java.util.Collection API used to manipulate a collection-valued container manag
relationship field is an instance of the wrong type or a collection that contains instances o
wrong type (see Section 9.4.6).
159 10/23/00

Entity Bean Component Contract for Container Managed PersistenceEnterprise JavaBeans 2.0, Proposed Final Draft Instance life cycle

Sun Microsystems, Inc.

he bean

ances of
that the
con-

that

t object

and the
9.5.3.3 Container-managed dependent object classes

The Persistence Manager must provide the implementation of the dependent object classes that t
provider provides as abstract classes.

The Persistence Manager must implement thecreate<METHOD>(...) methods that are defined on
the entity bean’s class and dependent object classes to enable the Bean Provider to create inst
dependent object classes at runtime. It is the responsibility of the Persistence Manager to ensure
values that will be initially returned by the dependent object class instance’s get methods for
tainer-managed fields will be the Java language defaults (e.g. 0 for integer,null for pointers), except
for collection-valued cmr-fields, which must have the empty collection (or set) as their value, and
any non-persistent fields in the dependent object are set to their Java language defaults.

It is the responsibility of the Persistence Manager to implement theremove() methods that are defined
on the dependent object classes to enable the Bean Provider to delete instances of dependen
classes at runtime.

9.6 Instance life cycle contract between the bean, the container,
and the persistence manager

This section describes the part of the component contract between the entity bean, the container,
persistence manager that relates to the management of the entity bean instance’s lifecycle.
 10/23/00 160

Instance life cycle contract between the bean, the container, and the persistence managerEnterprise JavaBeans 2.0, Proposed Final

Sun Microsystems, Inc.

bject
9.6.1 Instance life cycle

Figure 24 Life cycle of an entity bean instance.

An entity bean instance is in one of the following three states:

• It does not exist.

• Pooled state. An instance in the pooled state is not associated with any particular entity o
identity.

• Ready state. An instance in the ready state is assigned an entity object identity.

The following steps describe the life cycle of an entity bean instance:

• An entity bean instance’s life starts when the container creates the instance usingnewIn-
stance() . The container then invokes thesetEntityContext() method to pass the
instance a reference to theEntityContext interface. TheEntityContext interface

does not
 exist

1. newInstance()
2. setEntityContext(ec)

ejbActivate()

pooled

1. unsetEntityContext()

ready

ejbPassivate()
ejbRemove()ejbPostCreate<METHOD>(args)

ejbStore()ejbLoad()

business method

ejbFind<METHOD>(args)

ejbCreate<METHOD>(args)

instance throws
system exception
from any method

ejbHome<METHOD>(args)

ejbSelect<METHOD>(args)

ejbSelect<METHOD>(args)
161 10/23/00

Entity Bean Component Contract for Container Managed PersistenceEnterprise JavaBeans 2.0, Proposed Final Draft Instance life cycle

Sun Microsystems, Inc.

ation

While
entity
tance
state.
any of

me
e

ts that
the

(i.e.,
tainer
ated
itable

pecific
e the

deter-

voca-
-
s

ssivate
e
w the
invokes

ossi-

r
the
iner
e.,
e

allows the instance to invoke services provided by the container and to obtain the inform
about the caller of a client-invoked method.

• The instance enters the pool of available instances. Each entity bean has its own pool.
the instance is in the available pool, the instance is not associated with any particular
object identity. All instances in the pool are considered equivalent, and therefore any ins
can be assigned by the container to any entity object identity at the transition to the ready
While the instance is in the pooled state, the container may use the instance to execute
the entity bean’s finder methods (shown asejbFind<METHOD>(...) in the diagram) or
any of the entity bean’s home methods (shownejbHome<METHOD>(...) in the diagram).
The instance doesnot move to the ready state during the execution of a finder or a ho
method. AnejbSelect<METHOD>(...) method may be called by an entity bean’s hom
method while the instance is in the pooled state.

• An instance transitions from the pooled state to the ready state when the container selec
instance to service a client call to an entity object. There are two possible transitions from
pooled to the ready state: through theejbCreate<METHOD>(...) andejbPostCre-
ate<METHOD>(...) methods, or through theejbActivate() method. The container
invokes the ejbCreate<METHOD>(...) and ejbPostCreate<METHOD>(...)
methods when the instance is assigned to an entity object during entity object creation
when the client invokes a create method on the entity bean’s home object). The con
invokes theejbActivate() method on an instance when an instance needs to be activ
to service an invocation on an existing entity object—this occurs because there is no su
instance in the ready state to service the client’s call.

• When an entity bean instance is in the ready state, the instance is associated with a s
entity object identity. While the instance is in the ready state, the container can synchroniz
state of the instance with the state of the entity in the underlying data source whenever it
mines the need to, in the process invoking theejbLoad() andejbStore() methods zero
or more times. A business method can be invoked on the instance zero or more times. In
tions of theejbLoad() andejbStore() methods can be arbitrarily mixed with invoca
tions of business methods. AnejbSelect<METHOD> method can be called by a busines
method (orejbLoad() or ejbStore() method) while the instance is in the ready state.

• The container can choose to passivate an entity bean instance within a transaction. To pa
an instance, the container first invokes theejbStore method to allow the instance to prepar
itself for the synchronization of the database state with the instance’s state, and to allo
persistence manager to store the instance’s state to the database, and then the container
theejbPassivate method to return the instance to the pooled state.

• Eventually, the container will transition the instance to the pooled state. There are three p
ble transitions from the ready to the pooled state: through theejbPassivate() method,
through theejbRemove() method, and because of a transaction rollback forejbCre-
ate() , ejbPostCreate() , or ejbRemove() (not shown in Figure 24). The containe
invokes theejbPassivate() method when the container wants to disassociate
instance from the entity object identity without removing the entity object. The conta
invokes theejbRemove() method when the container is removing the entity object (i.
when the client invoked theremove() method on the entity object’s remote interface or on
of the remove() methods on the entity bean’s home interface). IfejbCreate() , ejb-
 10/23/00 162

Instance life cycle contract between the bean, the container, and the persistence managerEnterprise JavaBeans 2.0, Proposed Final

Sun Microsystems, Inc.

er

bject
bean

, the

s

he
to the
ter a
ntity
mote

client’s

oling
ation.
.

ntity

.5 for
ity of
ccess
PostCreate() , or ejbRemove() is called and the transaction rolls back, the contain
will transition the bean instance to the pooled state.

• When the instance is put back into the pool, it is no longer associated with an entity o
identity. The container can assign the instance to any entity object within the same entity
home.

• The container can remove an instance in the pool by calling theunsetEntityContext()
method on the instance.

Notes:

1. TheEntityContext interface passed by the container to the instance in thesetEntity-
Context method is an interface, not a class that contains static information. For example
result of theEntityContext.getPrimaryKey() method might be different each time
an instance moves from the pooled state to the ready state, and the result of thegetCaller-
Principal() andisCallerInRole(...) methods may be different in each busines
method.

2. A RuntimeException thrown from any method of the entity bean class (including t
business methods and the callbacks invoked by the container) results in the transition
“does not exist” state. The container must not invoke any method on the instance af
RuntimeException has been caught. From the client perspective, the corresponding e
object continues to exist. The client can continue accessing the entity object through its re
interface because the container can use a different entity bean instance to delegate the
requests. Exception handling is described further in Chapter 17.

3. The container is not required to maintain a pool of instances in the pooled state. The po
approach is an example of a possible implementation, but it is not the required implement
Whether the container uses a pool or not has no bearing on the entity bean coding style

9.6.2 Bean Provider’ s entity bean instance’s view

The following describes the entity bean instance’s view of the contractas seen by the Bean Provider:

The entity Bean Provider is responsible for implementing the following methods in the abstract e
bean class:

• A public constructor that takes no arguments.

• public void setEntityContext(EntityContext ic) ;

A container uses this method to pass a reference to theEntityContext interface to the
entity bean instance. If the entity bean instance needs to use theEntityContext interface
during its lifetime, it must remember theEntityContext interface in an instance variable.

This method executes with an unspecified transaction context (Refer to Subsection 16.6
how the Container executes methods with an unspecified transaction context). An ident
an entity object is not available during this method. The entity bean must not attempt to a
163 10/23/00

Entity Bean Component Contract for Container Managed PersistenceEnterprise JavaBeans 2.0, Proposed Final Draft Instance life cycle

Sun Microsystems, Inc.

endent

pecific
erve

ct is
t state
during

by the

h
.

e

ssor
t
hat the
elds

tity
s of

ting
revi-

by

cts. The

y bea
res of the
its persistent state using the accessor methods or attempt to create instances of dep
object classes during this method.

The instance can take advantage of thesetEntityContext() method to allocate any
resources that are to be held by the instance for its lifetime. Such resources cannot be s
to an entity object identity because the instance might be reused during its lifetime to s
multiple entity object identities.

• public void unsetEntityContext();

A container invokes this method before terminating the life of the instance.

This method executes with an unspecified transaction context. An identity of an entity obje
not available during this method. The entity bean must not attempt to access its persisten
using the accessor methods or attempt to create instances of dependent object classes
this method.

The instance can take advantage of theunsetEntityContext() method to free any
resources that are held by the instance. (These resources typically had been allocated
setEntityContext() method.)

• public PrimaryKeyClass ejbCreate<METHOD>(...) ;

There are zero[12] or moreejbCreate<METHOD>(...) methods, whose signatures matc
the signatures of thecreate<METHOD>(...) methods of the entity bean home interface
The container invokes anejbCreate<METHOD>(...) method on an entity bean instanc
when a client invokes a matchingcreate<METHOD>(...) method to create an entity
object.

The entity Bean Provider’s responsibility is to initialize the instance in theejbCre-
ate<METHOD>(...) methods from the input arguments, using the get and set acce
methods, such that when theejbCreate<METHOD>(...) method returns, the persisten
representation of the instance can be created. The entity Bean Provider is guaranteed t
values that will be initially returned by the instance’s get methods for container managed fi
will be the Java language defaults (e.g. 0 for integer,null for pointers), except for collec-
tion-valued cmr-fields, which will have the empty collection (or set) as their value. The en
Bean Provider must not attempt to modify the values of cmr-fields or create instance
dependent object classes in anejbCreate<METHOD(...) method; this should be done in
theejbPostCreate<METHOD(...) method instead.

The entity object created by theejbCreate<METHOD> method must have a unique primary
key. This means that the primary key must be different from the primary keys of all the exis
entity objects within the same home. However, it is legal to reuse the primary key of a p
ously removed entity object. TheejbCreate<METHOD>(...) methods must be defined to
return the primary key class type. The implementation of the Bean Provider’sejbCre-
ate<METHOD>(...) methods should be coded to return anull .[13]

An ejbCreate<METHOD>(...) method executes in the transaction context determined
the transaction attribute of the matchingcreate<METHOD>(...) method, as described in

[12] An entity enterprise Bean has noejbCreate<METHOD>(...) andejbPostCreate<METHOD>(...) methods if it does not define
any create methods in its home interface. Such an entity enterprise Bean does not allow the clients to create new EJB obje
enterprise Bean restricts the clients to accessing entities that were created through direct database inserts.

[13] The above requirement is to allow the creation of an entity bean with bean-managed persistence by subclassing an entitn
with container-managed persistence. The Java language rules for overriding methods in subclasses requires the signatu
ejbCreate<METHOD>(...) methods in the subclass and the superclass to be the same.
 10/23/00 164

Instance life cycle contract between the bean, the container, and the persistence managerEnterprise JavaBeans 2.0, Proposed Final

Sun Microsystems, Inc.

anager

ue is

entity
.

entity

tializa-

as

from

in the

t not
stances

the
om-

ociate
vail-
any
ically
d
bean

bles to

t not
stances
subsection 16.6.2. The database insert operations are performed by the persistence m
within the same transaction context after the Bean Provider’sejbCreate<METHOD>(...)
method completes.

• public void ejbPostCreate<METHOD>(...);

For each ejbCreate<METHOD>(...) method, there is a matchingejbPostCre-
ate<METHOD>(...) method that has the same input parameters but whose return val
void . The container invokes the matchingejbPostCreate<METHOD>(...) method on
an instance after it invokes theejbCreate<METHOD>(...) method with the same argu-
ments. The entity Bean Provider is guaranteed that the persistent representation of the
has been created before theejbPostCreate<METHOD>(...) method has been called
The instance can discover the primary key by callinggetPrimaryKey() on its entity con-
text object.

The entity object identity is available during theejbPostCreate<METHOD>(...)
method. The instance may, for example, obtain the remote interface of the associated
object and pass it to another enterprise bean as a method argument.

The entity Bean Provider may use theejbPostCreate<METHOD>(...) to create
instances of dependent object classes and set the values of cmr-fields to complete the ini
tion of the entity bean instance.

An ejbPostCreate<METHOD>(...) method executes in the same transaction context
the previousejbCreate<METHOD>(...) method.

• public void ejbActivate();

The container invokes this method on the instance when the container picks the instance
the pool and assigns it to a specific entity object identity. TheejbActivate() method gives
the entity bean instance the chance to acquire additional resources that it needs while it is
ready state.

This method executes with an unspecified transaction context. The entity bean mus
attempt to access its persistent state using the accessor methods or attempt to create in
of dependent object classes during this method.

The instance can obtain the identity of the entity object via thegetPrimaryKey() or
getEJBObject() method on the entity context. The instance can rely on the fact that
primary key and entity object identity will remain associated with the instance until the c
pletion ofejbPassivate() or ejbRemove() .

• public void ejbPassivate() ;
The container invokes this method on an instance when the container decides to disass
the instance from an entity object identity, and to put the instance back into the pool of a
able instances. TheejbPassivate() method gives the instance the chance to release
resources that should not be held while the instance is in the pool. (These resources typ
had been allocated during theejbActivate() method.) If the Bean Provider has assigne
dependent objects to instance variables (i.e., to non-container-managed fields of the
instance), the Bean Provider should discard the references by setting the instance varia
null.

This method executes with an unspecified transaction context. The entity bean mus
attempt to access its persistent state using the accessor methods or attempt to create in
of dependent object classes during this method.
165 10/23/00

Entity Bean Component Contract for Container Managed PersistenceEnterprise JavaBeans 2.0, Proposed Final Draft Instance life cycle

Sun Microsystems, Inc.

o a
nce
n

t

rmined

a-

f this
stance

riables
iscard

ith the

ed just
se
that

collec-
n or its

ues

of the

ith the

g

ase.
The instance can still obtain the identity of the entity object via thegetPrimaryKey() or
getEJBObject() method of theEntityContext interface.

• public void ejbRemove() ;

The container invokes theejbRemove() method on an entity bean instance in response t
client-invokedremove operation on the entity bean’s home or remote interface. The insta
is in the ready state whenejbRemove() is invoked and it will be entered into the pool whe
the method completes.

The entity Bean Provider can use theejbRemove method to implement any actions that mus
be done before the entity object’s persistent representation is removed.

The container synchronizes the instance’s state before it invokes theejbRemove method.
This means that the state of the instance at the beginning of theejbRemove method is the
same as it would be at the beginning of a business method.

This method and the database delete operation(s) execute in the transaction context dete
by the transaction attribute of theremove method that triggered theejbRemove method.
The instance can still obtain the identity of the entity object via thegetPrimaryKey() or
getEJBObject() method of theEntityContext interface.

After the entity Bean Provider’sejbRemove returns, the entity object’s persistent represent
tion is removed in the same transaction context.

Since the instance will be entered into the pool, the state of the instance at the end o
method must be equivalent to the state of a passivated instance. This means that the in
must release any resource that it would normally release in theejbPassivate() method.
This means also that if the Bean Provider has assigned dependent objects to instance va
(i.e., to non-container-managed fields of the bean instance), the Bean Provider should d
the references by setting the instance variables to null.

• public void ejbLoad() ;

When the container needs to synchronize the state of an enterprise bean instance w
entity object’s persistent state, the container calls theejbLoad() method.

The entity Bean Provider can assume that the instance’s persistent state has been load
before theejbLoad() method is invoked. It is the responsibility of the Bean Provider to u
the ejbLoad() method to recompute or initialize the values of any instance variables
depend on the entity bean’s persistent state, such as references to dependent objects and
tions. In general, any transient state that depends on the persistent state of an entity bea
dependent objects should be recalculated using theejbLoad() method. The entity bean can
use theejbLoad() method, for instance, to perform some computation on the val
returned by the accessor methods (for example, uncompressing text fields).

This method executes in the transaction context determined by the transaction attribute
business method that triggered theejbLoad method.

• public void ejbStore();

When the container needs to synchronize the state of the entity object’s persistent state w
state of the enterprise bean instance, the container first calls theejbStore() method on the
instance.

The entity Bean Provider should use theejbStore() method to update the instance usin
the accessor methods before its persistent state is synchronized. For example, theejb-
Store() method may perform compression of text before the text is stored in the datab
 10/23/00 166

Instance life cycle contract between the bean, the container, and the persistence managerEnterprise JavaBeans 2.0, Proposed Final

Sun Microsystems, Inc.

e

vious

te the

stence

apter
 .

nce to
e
ainer

ans-
n

r meth-
ause a

l type
r typ-

istence

EJB

the
The Bean Provider can assume that after theejbStore() method returns, the persistent stat
of the instance is synchronized.

This method executes in the same transaction context as the previousejbLoad or ejbCre-
ate method invoked on the instance. All business methods invoked between the pre
ejbLoad or ejbCreate<METHOD> method and thisejbStore method are also invoked
in the same transaction context.

• public primary key type or collectionejbFind<METHOD>(...) ;

The Bean Provider of an entity bean with container managed persistence does not wri
finder (ejbFind<METHOD>(...)) methods.

The finder methods are generated at the entity bean deployment time using the Persi
Manager Provider’s tools.

The syntax for the Bean Provider’s specification of finder methods is described in Ch
10 “EJB QL: EJB Query Language for Container Managed Persistence Query Methods”

• public typeejbHome<METHOD>(...) ;

The container invokes this method on the instance when the container selects the insta
execute a matching client-invoked<METHOD>(...) home method. The instance is in th
pooled state (i.e., it is not assigned to any particular entity object identity) when the cont
selects the instance to execute theejbHome<METHOD>method on it, and it is returned to the
pooled state when the execution of theejbHome<METHOD> method completes.

TheejbHome<METHOD>method executes in the transaction context determined by the tr
action attribute of the matching<METHOD>(...) home method, as described in Sectio
16.6.2.

The entity bean provider provides the implementation of theejbHome<METHOD>(...)
method. The entity bean must not attempt to access its persistent state using the accesso
ods or attempt to create instances of dependent object classes during this method bec
home method is not specific to a particular bean instance.

• public typeejbSelect<METHOD>(...) ;

The Bean Provider may provide zero or more select methods. A select method is a specia
of query method that is not exposed to the client in the home interface. The Bean Provide
ically calls a select method within a business method.

The Bean Provider defines the select methods asabstract methods.

The select methods are generated at the entity bean deployment time using the Pers
Manager Provider’s tools.

The syntax for the specification of select methods is described in Chapter 10 “EJB QL:
Query Language for Container Managed Persistence Query Methods” .

The ejbSelect<METHOD> method executes in the transaction context determined by
transaction attribute of the invoking business method.
167 10/23/00

Entity Bean Component Contract for Container Managed PersistenceEnterprise JavaBeans 2.0, Proposed Final Draft Instance life cycle

Sun Microsystems, Inc.

bean
that is
ntation
r uses a
an Pro-
roperly

entity

nd the

on its

that
rdless

-

r how
of an

pecific
erve

ct is

by the
9.6.3 Persistence Manager’s view

The Persistence Manager is responsible for providing the concrete implementation of the entity
class. The entity bean class provided by the Persistence Manager is the only entity bean class
seen by the container. The Persistence Manager is free to use various techniques in its impleme
of the concrete entity bean class, such as subclassing and delegation. If the Persistence Manage
delegation strategy rather than a simple subclassing of the abstract bean class provided by the Be
vider, it must guarantee that the business methods defined by the abstract bean class are p
invoked.

The Persistence Manager must be aware of the lifecycle of an entity bean in order to manage the
bean’s persistent state and relationships.

The Persistence Manager is responsible for providing an implementation of a public constructor a
ejbCreate<METHOD> , ejbRemove , ejbFind<METHOD>, andejbSelect<METHOD> meth-
ods. The Persistence Manager may additionally implement the following methods, depending
caching strategies: setEntityContext , unsetEntityContext , ejbPostCre-
ate<METHOD>, ejbLoad , ejbStore , ejbActivate , ejbPassivate . The Persistence Man-
ager does not implement theejbHome<METHOD>methods. The Persistence Manager must ensure
the methods that are provided by the Bean Provider are invoked according to this contract rega
which of these methods it implements.

The following describes the entity bean instance’s view of the contractas seen by the persistence man
ager’s implementation of the concrete bean instance class.

• A public constructor that takes no arguments.

• public void setEntityContext(EntityContext ic) ;

A container uses this method to pass a reference to theEntityContext interface to the
entity bean instance. If the entity bean instance needs to use theEntityContext interface
during its lifetime, it must remember theEntityContext interface in an instance variable.

This method executes with an unspecified transaction context (Refer to Section 16.6.5 fo
the Container executes methods with an unspecified transaction context). An identity
entity object is not available during this method.

The instance can take advantage of thesetEntityContext() method to allocate any
resources that are to be held by the instance for its lifetime. Such resources cannot be s
to an entity object identity because the instance might be reused during its lifetime to s
multiple entity object identities.

• public void unsetEntityContext();

A container invokes this method before terminating the life of the instance.

This method executes with an unspecified transaction context. An identity of an entity obje
not available during this method.

The instance can take advantage of theunsetEntityContext() method to free any
resources that are held by the instance. (These resources typically had been allocated
setEntityContext() method.)

• public PrimaryKeyClass ejbCreate<METHOD>(...) ;
 10/23/00 168

Instance life cycle contract between the bean, the container, and the persistence managerEnterprise JavaBeans 2.0, Proposed Final

Sun Microsystems, Inc.

e
e
n

o
r-
’s get
teger,
lec-

ss

ntity
usly

medi-

on

by

sistent

e is

as

from

in the
There are zero or moreejbCreate<METHOD>(...) methods, whose signatures match th
signatures of thecreate<METHOD>(...) methods of the entity bean home interface. Th
container invokes anejbCreate<METHOD>(...) method on an entity bean instance whe
a client invokes a matchingcreate<METHOD>(...) method to create an entity object.

The Persistence Manager’sejbCreate<METHOD>(...) method must invoke the corre-
spondingejbCreate<METHOD>(...) method provided by the Bean Provider. Prior t
invoking theejbCreate<METHOD>(...) method provided by the Bean Provider, the Pe
sistence Manager must ensure that the values that will be initially returned by the instance
methods for container-managed fields will be the Java language defaults (e.g. 0 for in
null for pointers), except for collection-valued cmr-fields, which must have the empty col
tion (or set) as their value.

TheejbCreate<METHOD>(...) methods must be defined to return the primary key cla
type. The entity object created by theejbCreate<METHOD> method must have a unique
primary key, which must be returned by theejbCreate<METHOD>(...) method. This
means that the primary key must be different from the primary keys of all the existing e
objects within the same home. However, it is legal to reuse the primary key of a previo
removed entity object. The Persistence Manager’sejbCreate<METHOD>(...) method
may, but is not required to, throw theDuplicateKeyException on the Bean Provider’s
attempt to create an entity object with a duplicate primary key.

The Persistence Manager may create the representation of the entity in the database im
ately, or it can defer it to a later time (for example to the time after the matchingejbPost-
Create<METHOD>(...) has been called, or to the end of the transaction), depending
the caching strategy that it uses.

An ejbCreate<METHOD>(...) method executes in the transaction context determined
the transaction attribute of the matchingcreate<METHOD>(...) method, as described in
subsection 16.6.2.

It is the responsibility of the Persistence Manager to create the representation of the per
instance in the database in the same transaction context as theejbCre-
ate<METHOD>(...) method.

• public void ejbPostCreate<METHOD>(...);

For each ejbCreate<METHOD>(...) method, there is a matchingejbPostCre-
ate<METHOD>(...) method that has the same input parameters but the return valu
void . The container invokes the matchingejbPostCreate<METHOD>(...) method on
an instance after it invokes theejbCreate<METHOD>(...) method with the same argu-
ments. The instance can discover the primary key by callinggetPrimaryKey() on its
entity context object.

The entity object identity is available during theejbPostCreate<METHOD>(...)
method.

An ejbPostCreate<METHOD>(...) method executes in the same transaction context
the previousejbCreate<METHOD>(...) method.

• public void ejbActivate();

The container invokes this method on the instance when the container picks the instance
the pool and assigns it to a specific entity object identity. TheejbActivate() method gives
the entity bean instance the chance to acquire additional resources that it needs while it is
ready state.
169 10/23/00

Entity Bean Component Contract for Container Managed PersistenceEnterprise JavaBeans 2.0, Proposed Final Draft Instance life cycle

Sun Microsystems, Inc.

in the

iden-

ociate
vail-
any
ically

in the

o a
nce
n

t
istence
d
ntity

of the
e

istent

f this
stance

ith the

ching
e
-

This method executes with an unspecified transaction context. The instance can obta
identity of the entity object via thegetPrimaryKey() or getEJBObject() method on
the entity context. The instance can rely on the fact that the primary key and entity object
tity will remain associated with the instance until the completion ofejbPassivate() or
ejbRemove() .

• public void ejbPassivate() ;
The container invokes this method on an instance when the container decides to disass
the instance from an entity object identity, and to put the instance back into the pool of a
able instances. TheejbPassivate() method gives the instance the chance to release
resources that should not be held while the instance is in the pool. (These resources typ
had been allocated during theejbActivate() method.)

This method executes with an unspecified transaction context. The instance can still obta
identity of the entity object via thegetPrimaryKey() or getEJBObject() method of
theEntityContext interface.

• public void ejbRemove() ;

The container invokes theejbRemove() method on an entity bean instance in response t
client-invokedremove operation on the entity bean’s home or remote interface.The insta
is in the ready state whenejbRemove() is invoked and it will be entered into the pool whe
the method completes.

The container synchronizes the instance’s state before it invokes theejbRemove method.
This means that the state of the instance at the beginning of theejbRemove method is the
same as it would be at the beginning of a business method.

The entity Bean Provider can use theejbRemove method to implement any actions that mus
be done before the entity object’s representation is removed from the database. The Pers
Manager must therefore invoke theejbRemove method provided by the Bean Provider an
after that ejbRemove method returns, the Persistence Manager must remove the e
object’s persistent representation.

This method executes in the transaction context determined by the transaction attribute
remove method that triggered theejbRemove method. The instance can still obtain th
identity of the entity object via thegetPrimaryKey() or getEJBObject() method of
theEntityContext interface.

It is the responsibility of the Persistence Manager to remove the representation of the pers
object from the database in the same transaction context as theejbRemove method.

Since the instance will be entered into the pool, the state of the instance at the end o
method must be equivalent to the state of a passivated instance. This means that the in
must release any resource that it would normally release in theejbPassivate() method.

• public void ejbLoad() ;

When the container needs to synchronize the state of an enterprise bean instance w
entity object’s persistent state, the container calls theejbLoad() method. The Persistence
Manager may first read the entity object’s state from the database, depending on its ca
strategy. It must then invoke theejbLoad() method provided by the Bean Provider. Not
that the Persistence Manager must call theejbLoad() method provided by the Bean Pro
vider regardless of the caching strategy that it uses.
 10/23/00 170

Instance life cycle contract between the bean, the container, and the persistence managerEnterprise JavaBeans 2.0, Proposed Final

Sun Microsystems, Inc.

of the

ith the

.
stent
g strat-

the

f the
ndent

nce to

ainer

ans-

entity
the

t time
ment

home

ute of

entity

t time
This method executes in the transaction context determined by the transaction attribute
business method that triggered theejbLoad method.

• public void ejbStore();

When the container needs to synchronize the state of the entity object in the database w
state of the enterprise bean instance, the container calls theejbStore() method on the
instance.

The Persistence Manager must call theejbStore method provided by the Bean Provider
After that ejbStore() method returns, the Persistence Manager may store the persi
state of the instance and its dependent objects to the database, depending on its cachin
egy.

This method executes in the same transaction context as the previousejbLoad or ejbCre-
ate<METHOD>method invoked on the instance. All business methods invoked between
previousejbLoad or ejbCreate <METHOD> method and thisejbStore method are also
invoked in the same transaction context.

If the Persistence Manager uses a lazy storing caching strategy, it is the responsibility o
Persistence Manager to write the representation of the persistent object and all of its depe
objects to the database in the same transaction context as theejbStore method.

• public primary key type or collectionejbFind<METHOD>(...) ;

The container invokes this method on the instance when the container selects the insta
execute a matching client-invokedfind<METHOD>(...) method. The instance is in the
pooled state (i.e., it is not assigned to any particular entity object identity) when the cont
selects the instance to execute theejbFind<METHOD> method on it, and it is returned to the
pooled state when the execution of theejbFind<METHOD> method completes.

TheejbFind<METHOD> method executes in the transaction context determined by the tr
action attribute of the matchingfind(...) method, as described in subsection 16.6.2.

The Persistence Manager is responsible for ensuring that updates to the states of all
beans (and their dependent objects) in the same transaction context as
ejbFind<METHOD> method are visible in the results of theejbFind<METHOD>
method .

The implementations of the finder methods are generated at the entity bean deploymen
based on the declarative specification provided by the Bean Provider in the deploy
descriptor using the Persistence Manager Provider’s tools.

• public type ejbSelect<METHOD>(...) ;

A select method is a special type of query method that is not exposed to the client in the
interface.. The Bean Provider typically calls a select method within a business method.

A select method executes in the transaction context determined by the transaction attrib
the invoking business method.

The Persistence Manager is responsible for ensuring that all updates to the states of all
beans (and their dependent objects) in the same transaction context as theejbSe-
lect<METHOD> method are visible in the results of theejbSelect<METHOD> method.

The implementations of the select methods are generated at the entity bean deploymen
using the Persistence Manager provider’s tools.
171 10/23/00

Entity Bean Component Contract for Container Managed PersistenceEnterprise JavaBeans 2.0, Proposed Final Draft Instance life cycle

Sun Microsystems, Inc.

r must

tance,

, the

tances

lt of a

s

nta-
The

n the
must
if the

must
9.6.4 Container’s view

This subsection describes the container’s view of the state management contract. The containe
call the following methods:

• public void setEntityContext(ec) ;

The container invokes this method to pass a reference to theEntityContext interface to
the entity bean instance. The container must invoke this method after it creates the ins
and before it puts the instance into the pool of available instances.

The container invokes this method with an unspecified transaction context. At this point
EntityContext is not associated with any entity object identity.

• public void unsetEntityContext() ;

The container invokes this method when the container wants to reduce the number of ins
in the pool. After this method completes, the container must not reuse this instance.

The container invokes this method with an unspecified transaction context.

• public PrimaryKeyClass ejbCreate<METHOD>(...) ;
public void ejbPostCreate<METHOD>(...) ;

The container invokes these two methods during the creation of an entity object as a resu
client invoking acreate<METHOD>(...) method on the entity bean’s home interface.

The container invokes theejbCreate<METHOD>(...) method whose signature matche
thecreate<METHOD>(...) method invoked by the client.

The container is responsible for calling theejbCreate<METHOD>(...) method, for
obtaining from it the primary key fields of the newly created entity object persistent represe
tion, and for creating an entity EJBObject reference for the newly created entity object.
Container must establish the primary key before it invokes theejbPostCre-
ate<METHOD>(...) method.

The container then invokes the matchingejbPostCreate<METHOD>(...) method on
the instance. The instance can discover the primary key by callinggetPrimaryKey() on its
entity context object.

The container must invokeejbCreate<METHOD> andejbPostCreate<METHOD> in
the transaction context determined by the transaction attribute of the matchingcre-
ate<METHOD>(...) method, as described in subsection 16.6.2.

• public void ejbActivate() ;

The container invokes this method on an entity bean instance at activation time (i.e., whe
instance is taken from the pool and assigned to an entity object identity). The container
ensure that the primary key of the associated entity object is available to the instance
instance invokes thegetPrimaryKey() or getEJBObject() method on itsEnti-
tyContext interface.

The container invokes this method with an unspecified transaction context.

Note that instance is not yet ready for the delivery of a business method. The container
still invoke theejbLoad() method prior to a business method.

• public void ejbPassivate() ;
 10/23/00 172

Instance life cycle contract between the bean, the container, and the persistence managerEnterprise JavaBeans 2.0, Proposed Final

Sun Microsystems, Inc.

en the
The

o the

invoke

le to

-

ith the

e exact
nd
call

action

ith the

also
en it
same

ce
yn-

ously
The container invokes this method on an entity bean instance at passivation time (i.e., wh
instance is being disassociated from an entity object identity and moved into the pool).
container must ensure that the identity of the associated entity object is still available t
instance if the instance invokes thegetPrimaryKey() or getEJBObject() method
on its entity context.

The container invokes this method with an unspecified transaction context.

Note that if the instance state has been updated by a transaction, the container must first
theejbStore() method on the instance before it invokesejbPassivate() on it.

• public void ejbRemove();

The container invokes theejbRemove() method in response to a client-invokedremove
operation on the entity bean’s home or remote interface.

The container synchronizes the instance’s state before it invokes theejbRemove method.
This means that the persistent state of the instance at the beginning of theejbRemove
method is the same as it would be at the beginning of a business method.

The container must ensure that the identity of the associated entity object is still availab
the instance in theejbRemove() method (i.e., the instance can invoke thegetPrima-
ryKey() or getEJBObject() method on itsEntityContext in theejbRemove()
method).

The container must ensure that theejbRemove method is performed in the transaction con
text determined by the transaction attribute of the invokedremove method, as described in
subsection 16.6.2.

• public void ejbLoad() ;

When the container needs to synchronize the state of an enterprise bean instance w
entity object’s state in the database, the container invokes theejbLoad() method to allow
the Persistence Manager to read the entity object’s persistent state from the database. Th
times that the container invokesejbLoad depend on the configuration of the component a
the container, and are not defined by the EJB architecture. Typically, the container will
ejbLoad before the first business method within a transaction.

The container must invoke this method in the transaction context determined by the trans
attribute of the business method that triggered theejbLoad method.

• public void ejbStore() ;

When the container needs to synchronize the state of the entity object in the database w
state of the enterprise bean instance, the container calls theejbStore() method. This syn-
chronization always happens at the end of a transaction. However, the container may
invoke this method when it passivates the instance in the middle of a transaction, or wh
needs to transfer the most recent state of the entity object to another instance for the
entity object in the same transaction.

The container must call theejbStore() method before the container calls the persisten
manager’sbeforeCompletion() method if the persistence manager has registered a s
chronization object with the container, as described in Section 9.11.

The container must invoke this method in the same transaction context as the previ
invokedejbLoad or ejbCreate<METHOD> method.

• public primary key type or collectionejbFind<METHOD>(...) ;
173 10/23/00

Entity Bean Component Contract for Container Managed PersistenceEnterprise JavaBeans 2.0, Proposed Final Draft Instance life cycle

Sun Microsystems, Inc.

t
e
ciated

-
ontext

led
y the

t

er
f the
ner

the
for-

t
he
ciated

led
The container invokes theejbFind<METHOD>(...) method on an instance when a clien
invokes a matchingfind<METHOD>(...) method on the entity bean’s home interface. Th
container must pick an instance that is in the pooled state (i.e., the instance is not asso
with any entity object identity) for the execution of theejbFind<METHOD>(...) method.
If there is no instance in the pooled state, the container creates one and calls thesetEntity-
Context(...) method on the instance before dispatching the finder method.

Before invoking theejbFind<METHOD>(...) method, the container must first synchro
nize the state of any entity bean instances that are participating in the same transaction c
as is used to execute theejbFind<METHOD>(...) by invoking theejbStore() method
on those entity bean instances.

After theejbFind<METHOD>(...) method completes, the instance remains in the poo
state. The container may, but is not required to, activate the objects that were located b
finder using the transition through theejbActivate() method.

The container must invoke theejbFind<METHOD>(...) method in the transaction contex
determined by the transaction attribute of the matchingfind(...) method, as described in
subsection 16.6.2.

If the ejbFind<METHOD> method is declared to return a single primary key, the contain
creates an entity EJBObject reference for the primary key and returns it to the client. I
ejbFind<METHOD> method is declared to return a collection of primary keys, the contai
creates a collection of entity EJBObject references for the primary keys returned from
ejbFind<METHOD> , and returns the collection to the client. (See Subsection 9.6.6 for in
mation on collections.)

• public type ejbHome<METHOD>(...) ;

The container invokes theejbHome<METHOD>(...) method on an instance when a clien
invokes a matching<METHOD>(...) home method on the entity bean’s home interface. T
container must pick an instance that is in the pooled state (i.e., the instance is not asso
with any entity object identity) for the execution of theejbHome<METHOD>(...) method.
If there is no instance in the pooled state, the container creates one and calls thesetEntity-
Context(...) method on the instance before dispatching the home method.

After theejbHome<METHOD>(...) method completes, the instance remains in the poo
state.
 10/23/00 174

Instance life cycle contract between the bean, the container, and the persistence managerEnterprise JavaBeans 2.0, Proposed Final

Sun Microsystems, Inc.

t

cess the

access is
The container must invoke theejbHome<METHOD>(...) method in the transaction contex
determined by the transaction attribute of the matching<METHOD>(...) home method, as
described in subsection 16.6.2.

9.6.5 Operations allowed in the methods of the entity bean class

Table 4 defines the methods of an entity bean class in which the enterprise bean instances can ac
methods of thejavax.ejb.EntityContext interface, thejava:comp/env environment nam-
ing context, resource managers, and other enterprise beans.

If an entity bean instance attempts to invoke a method of theEntityContext interface, and the
access is not allowed in Table 4, the Container must throw thejava.lang.IllegalStateEx-
ception.

If an entity bean instance attempts to access a resource manager or an enterprise bean, and the
not allowed in Table 4, the behavior is undefined by the EJB architecture.

Table 4 Operations allowed in the methods of an entity bean

Bean method Bean method can perform the following operations

constructor -

setEntityContext
unsetEntityContext

EntityContext methods: getEJBHome
JNDI access to java:comp/env

ejbCreate

EntityContext methods: getEJBHome, getCallerPrincipal,
getRollbackOnly, isCallerInRole, setRollbackOnly
JNDI access to java:comp/env
Resource manager access
Enterprise bean access

ejbPostCreate

EntityContext methods: getEJBHome, getCallerPrincipal,
getRollbackOnly, isCallerInRole, setRollbackOnly, getEJBObject,
getPrimaryKey
JNDI access to java:comp/env
Resource manager access
Enterprise bean access

ejbRemove

EntityContext methods: getEJBHome, getCallerPrincipal,
getRollbackOnly, isCallerInRole, setRollbackOnly, getEJBObject,
getPrimaryKey
JNDI access to java:comp/env
Resource manager access
Enterprise bean access

ejbFind*
ejbSelect*
ejbHome

EntityContext methods: getEJBHome, getCallerPrincipal,
getRollbackOnly, isCallerInRole, setRollbackOnly
JNDI access to java:comp/env
Resource manager access
Enterprise bean access
175 10/23/00

Entity Bean Component Contract for Container Managed PersistenceEnterprise JavaBeans 2.0, Proposed Final Draft Instance life cycle

Sun Microsystems, Inc.

xt of a

text.

state of
does
* Applies to methods implemented by the Persistence Manager only.

Additional restrictions:

• The getRollbackOnly and setRollbackOnly methods of theEntityContext
interface should be used only in the enterprise bean methods that execute in the conte
transaction. The Container must throw thejava.lang.IllegalStateException if
the methods are invoked while the instance is not associated with a transaction.

Reasons for disallowing operations:

• Invoking thegetEJBObject and getPrimaryKey methods is disallowed in the entity
bean methods in which there is no entity object identity associated with the instance.

• Invoking thegetCallerPrincipal and isCallerInRole methods is disallowed in
the entity bean methods for which the Container does not have a client security context.

• Invoking thegetRollbackOnly andsetRollbackOnly methods is disallowed in the
entity bean methods for which the Container does not have a meaningful transaction con

• Accessing resource managers and enterprise beans, including accessing the persistent
an entity bean instance, is disallowed in the entity bean methods for which the Container
not have a meaningful transaction context or client security context.

ejbActivate
ejbPassivate

EntityContext methods: getEJBHome, getEJBObject, getPrimaryKey
JNDI access to java:comp/env

ejbLoad
ejbStore

EntityContext methods: getEJBHome, getCallerPrincipal,
getRollbackOnly, isCallerInRole, setRollbackOnly, getEJBObject,
getPrimaryKey
JNDI access to java:comp/env
Resource manager access
Enterprise bean access

business method
from remote interface

EntityContext methods: getEJBHome, getCallerPrincipal,
getRollbackOnly, isCallerInRole, setRollbackOnly, getEJBObject,
getPrimaryKey
JNDI access to java:comp/env
Resource manager access
Enterprise bean access

Table 4 Operations allowed in the methods of an entity bean

Bean method Bean method can perform the following operations
 10/23/00 176

Instance life cycle contract between the bean, the container, and the persistence managerEnterprise JavaBeans 2.0, Proposed Final

Sun Microsystems, Inc.

with
d

finder
nor-

t.

nding
tity

bject.
o the
Bean

mary
as a

rs, the
ol-
nding
ass
9.6.6 Finder methods
An entity bean’s home interface defines one or morefinder methods[14], one for each way to find an
entity object or collection of entity objects within the home. The name of each finder method starts
the prefix “find”, such asfindLargeAccounts(...) . The arguments of a finder method are use
by the entity bean implementation to locate the requested entity objects.

Every finder method exceptejbFindByPrimaryKey(key) must be associated with aquery ele-
ment in the deployment descriptor. The entity Bean Provider declaratively specifies the EJB QL
query and associates it with the finder method in the deployment descriptor. A finder method is
mally characterized by an EJB QL query string specified in thequery element. EJB QL is described in
Chapter 10 “EJB QL: EJB Query Language for Container Managed Persistence Query Methods”

9.6.6.1 Single-object finder

Some finder methods (such asfindByPrimaryKey) are designed to return at most one entity objec
For these single-object finders, the result type of thefind<METHOD>(...) method defined in the
entity bean’s home interface is the entity bean’s remote interface. The result type of the correspo
ejbFind<METHOD>(...) method defined in the entity bean’s implementation class is the en
bean’s primary key type.

The following code illustrates the definition of a single-object finder.

// Entity’s home interface
public AccountHome extends javax.ejb.EJBHome {

...
Account findByPrimaryKey(AccountPrimaryKey primkey)

throws FinderException, RemoteException;
...

}

In general, when defining a single-object finder method other thanfindByPrimaryKey(...) , the
entity Bean Provider should be sure that the finder method will always return only a single entity o
This may occur, for example, if the EJB QL query string that is used to specify the finder query t
Persistence Manager includes an equality test on the entity bean’s primary key fields. If the entity
Provider wishes to provide more flexibility to the Persistence Manager by using an unknown pri
key class (see Section 9.10.1.3), the Bean Provider will typically define the finder method
multi-object finder.

9.6.6.2 Multi-object finders

Some finder methods are designed to return multiple entity objects. For these multi-object finde
result type of thefind<METHOD>(...) method defined in the entity bean’s home interface is a c
lection of objects implementing the entity bean’s remote interface. The result type of the correspo
ejbFind<METHOD>(...) implementation method defined in the entity bean’s implementation cl
is a collection of objects of the entity bean’s primary key type.

[14] ThefindByPrimaryKey(primaryKey)method is mandatory for all Entity Beans.
177 10/23/00

Entity Bean Component Contract for Container Managed PersistenceEnterprise JavaBeans 2.0, Proposed Final Draft Instance life cycle

Sun Microsystems, Inc.

erface

ance or
entity

n entity
r remote

string.
f any
lause

ject
entity
The Bean Provider uses the Java™ 2java.util.Collection interface to define a collection type
for the result type of a finder method for an entity bean with container managed persistence.

The Persistence Manager must ensure that the objects in thejava.util.Collection returned
from theejbFind<METHOD>(...) method are instances of the entity bean’s primary key class.

A client program must use thePortableRemoteObject.narrow(...) method to convert the
objects contained in the collections returned by the finder method to the entity bean’s remote int
type.

The following is an example of a multi-object finder method definition:

// Entity’s home interface
public AccountHome extends javax.ejb.EJBHome {

...
java.util.Collection findLargeAccounts(double limit)

throws FinderException, RemoteException;
...

}

9.6.7 Select methods
Select methods are special query methods for use by the Bean Provider within an entity bean inst
dependent object class instance. Unlike finder methods, select methods are not specified in the
bean’s home interface. A select method is an abstract method defined by the Bean Provider on a
bean class or dependent object class. A select method must not be exposed through the home o
interface of an entity bean.

The semantics of a select method, like those of a finder method, are defined by an EJB QL query
A select method is similar to a finder method, but unlike a finder method, it can return values o
cmp- or cmr-field type. The EJB QL string specified for a select method must have a SELECT c
that designates the result type.

An ejbSelect<METHOD> is not based on the identity of the entity bean instance or dependent ob
class instance on which it is invoked. However, the Bean Provider can use the primary key of an
bean or a dependent object class as an argument to anejbSelect<METHOD> to define a query that is
logically scoped to a particular entity bean or dependent object class instance.

The following table illustrates the semantics of finder and select methods.
 10/23/00 178

Instance life cycle contract between the bean, the container, and the persistence managerEnterprise JavaBeans 2.0, Proposed Final

Sun Microsystems, Inc.

-object
only a
esig-

ds, the

of the
If the
e
ans or

he
Table 5 Comparison of finder and select methods

9.6.7.1 Single-object select methods

Some select methods are designed to return at most one value. In general, when defining a single
select method, the entity Bean Provider must be sure that the select method will always return
single object or value. If the query specified by the select method returns multiple values of the d
nated type, the Persistence Manager must throw aFinderException .

The Bean Provider will typically define a select method as a multi-object select method.

9.6.7.2 Multi-object select methods

Some select methods are designed to return multiple values. For these multi-object select metho
result type of theejbSelect<METHOD>(...) method is a collection of objects.

The Bean Provider uses the Java™ 2java.util.Collection interface orjava.util.Set
interface to define a collection type for the result type of a select method. The type of the elements
collection is determined by the type of the SELECT clause of the corresponding EJB QL query.
Bean Provider uses thejava.util.Collection interface, the collection of values returned by th
Persistence Manager may contain duplicates if the elements of the collection are not entity be
dependent objects.

If the select method returns a collection of entity objects, the Bean Provider must use thePorta-
bleRemoteObject.narrow(...) method to convert the objects contained in the collection to t
entity bean’s remote interface type.

The following is an example of a multi-object select method definition in theOrderBean class:

// OrderBean implementation class
public abstract class OrderBean implements javax.ejb.EntityBean{

...
public abstract java.util.Collection

ejbSelectAllOrderedProducts(Date date)
throws FinderException;
// internal finder method to find all products ordered

Finder methods Select methods

method ejbFind<METHOD> ejbSelect<METHOD>

visibility exposed to client internal only

EJB QL SELECT clause optional SELECT clause required

instance
arbitrary bean instance in pooled state instance: current instance (could be bean

instance in pooled state, bean instance in ready
state, or dependent object class instance)

return value entity objects of the same type as bean any value that can be selected by EJB QL
179 10/23/00

Entity Bean Component Contract for Container Managed PersistenceEnterprise JavaBeans 2.0, Proposed Final Draft Instance life cycle

Sun Microsystems, Inc.

istence.
he Per-

reated
sac-
ng the

ion
llback

nly if
eEx-
xam-
the

.

y
pendent
be the
9.6.8 Standard application exceptions for Entities

The EJB specification defines the following standard application exceptions:

• javax.ejb.CreateException

• javax.ejb.DuplicateKeyException

• javax.ejb.FinderException

• javax.ejb.ObjectNotFoundException

• javax.ejb.RemoveException

This section describes the use of these exceptions by entity beans with container managed pers
The responsibilities for throwing the exceptions apply to the data access methods generated by t
sistence Manager Provider’s tools.

9.6.8.1 CreateException

From the client’s perspective, aCreateException (or a subclass ofCreateException) indi-
cates that an application level error occurred during thecreate<METHOD>(...) operation. If a cli-
ent receives this exception, the client does not know, in general, whether the entity object was c
but not fully initialized, or not created at all. Also, the client does not know whether or not the tran
tion has been marked for rollback. (However, the client may determine the transaction status usi
UserTransaction interface.)

Both the Persistence Manager and the Bean Provider may throw theCreateException (or subclass
of CreateException) from the ejbCreate<METHOD>(...) and ejbPostCre-
ate<METHOD>(...) methods to indicate an application-level error from the create or initializat
operation. Optionally, the Persistence Manager or Bean Provider may mark the transaction for ro
before throwing this exception.

The Persistence Manager or Bean Provider is encouraged to mark the transaction for rollback o
data integrity would be lost if the transaction were committed by the client. Typically, when a Creat
ception is thrown, it leaves the database in a consistent state, allowing the client to recover. For e
ple, the ejbCreate<METHOD>method may throw the CreateException to indicate that the some of
arguments to the create<METHOD>(...) methods are invalid.

The Container treats theCreateException as any other application exception. See Section 17.3

9.6.8.2 DuplicateKeyException

The DuplicateKeyException is a subclass ofCreateException . It may be thrown by the
Persistence Manager’sejbCreate<METHOD>(...) method to indicate to the client that the entit
object (or dependent object class instance) cannot be created because an entity object (or de
object class instance) with the same key already exists. The unique key causing the violation may
primary key, or another key defined in the underlying database.
 10/23/00 180

Instance life cycle contract between the bean, the container, and the persistence managerEnterprise JavaBeans 2.0, Proposed Final

Sun Microsystems, Inc.

g the

-

rk the

.

excep-
lect

.

client
rmine

ra-
this

ould
wn, it

.

Normally, the Persistence Manager should not mark the transaction for rollback before throwin
exception.

When the client receives aDuplicateKeyException , the client knows that the entity was not cre
ated, and that the client’s transaction has not typically been marked for rollback.

9.6.8.3 FinderException

From the client’s perspective, aFinderException (or a subclass ofFinderException) indi-
cates that an application level error occurred during thefind(...) operation. Typically, the client’s
transaction has not been marked for rollback because of theFinderException .

The Persistence Manager throws theFinderException (or subclass ofFinderException) from
an ejbFind<METHOD>(...) or ejbSelect<METHOD>(..) method to indicate an applica-
tion-level error in the finder or select method. The Persistence Manager should not, typically, ma
transaction for rollback before throwing theFinderException .

The Container treats theFinderException as any other application exception. See Section 17.3

9.6.8.4 ObjectNotFoundException

The ObjectNotFoundException is a subclass ofFinderException . The Persistence Man-
ager throws theObjectNotFoundException from anejbFind<METHOD>(...) or ejbSe-
lect<METHOD>(...) method to indicate that the requested object does not exist.

Only single-object finder or select methods (see Subsections 9.6.6 and 9.6.7) should throw this
tion. Multi-object finder or select methods must not throw this exception. Multi-object finder or se
methods should return an empty collection as an indication that no matching objects were found

9.6.8.5 RemoveException

From the client’s perspective, aRemoveException (or a subclass ofRemoveException) indi-
cates that an application level error occurred during aremove(...) operation. If a client receives this
exception, the client does not know, in general, whether the entity object was removed or not. The
also does not know if the transaction has been marked for rollback. (However, the client may dete
the transaction status using theUserTransaction interface.)

The Persistence Manager throws theRemoveException (or subclass ofRemoveException) from
theejbRemove() method to indicate an application-level error from the entity object removal ope
tion. Optionally, the Persistence Manager may mark the transaction for rollback before throwing
exception.

The Persistence Manager is encouraged to mark the transaction for rollback only if data integrity w
be lost if the transaction were committed by the client. Typically, when a RemoveException is thro
leaves the database in a consistent state, allowing the client to recover.

The Container treats theRemoveException as any other application exception. See Section 17.3
181 10/23/00

Entity Bean Component Contract for Container Managed PersistenceEnterprise JavaBeans 2.0, Proposed Final Draft Instance life cycle

Sun Microsystems, Inc.

f the
e the

ainer
storage.
sistent

ption
to the

ze the

Con-
leted.

n com-

bean
vider

ns in
9.6.9 Commit options

The Entity Bean protocol is designed to give the Container the flexibility to select the disposition o
instance state at transaction commit time. This flexibility allows the Container to optimally manag
association of an entity object identity with the enterprise bean instances.

The Container can select from the following commit-time options:

• Option A : The Container caches a “ready” instance between transactions. The Cont
ensures that the instance has exclusive access to the state of the object in the persistent
Therefore, the Container does not have to synchronize the instance’s state from the per
storage at the beginning of the next transaction.

• Option B: The Container caches a “ready” instance between transactions. In contrast to O
A, in this option the Container does not ensure that the instance has exclusive access
state of the object in the persistent storage. Therefore, the Container must synchroni
instance’s state from the persistent storage at the beginning of the next transaction.

• Option C: The Container does not cache a “ready” instance between transactions. The
tainer returns the instance to the pool of available instances after a transaction has comp

The following table provides a summary of the commit-time options.

Note that the container synchronizes the instance’s state with the persistent storage at transactio
mit for all three options.

The selection of the commit option is transparent to the entity bean implementation—the entity
will work correctly regardless of the commit-time option chosen by the Container. The Bean Pro
writes the entity bean in the same way.

The object interaction diagrams in Section 9.12.4 illustrate the three alternative commit optio
detail.

Table 6 Summary of commit-time options

Write instance state
to database

Instance stays
ready

Instance state
remains valid

Option A Yes Yes Yes

Option B Yes Yes No

Option C Yes No No
 10/23/00 182

Instance life cycle contract between the bean, the container, and the persistence managerEnterprise JavaBeans 2.0, Proposed Final

Sun Microsystems, Inc.

t

-
-

g

oncur-
persis-
rrently

chro-

which
tically
y the

all the
hroni-
on-
Note: The Bean Provider relies on theejbLoad() method to be invoked when commit
options B and C are used in order to resynchronize the bean’s transient state with its persisten
state. It is the responsibility of the container to call theejbLoad() method at the beginning
of a new transaction when commit option B or C is used and the responsibility of the persis
tence manager to utilize this method according to its caching strategies. The Persistence Man
ager may also use knowledge of the which commit option is used by a container in managin
its caching strategies and logical transaction isolation options.

9.6.10 Concurrent access from multiple transactions

When writing the entity bean business methods, the Bean Provider does not have to worry about c
rent access from multiple transactions. The Bean Provider may assume that the container and
tence manager will ensure appropriate synchronization for entity objects that are accessed concu
from multiple transactions.

The container typically uses one of the following implementation strategies to achieve proper syn
nization. (These strategies are illustrative, not prescriptive.)

• The container activates multiple instances of the entity bean, one for each transaction in
the entity object is being accessed. The transaction synchronization is performed automa
by the underlying Persistence Manager during the accessor method calls performed b
business methods, and by theejbLoad , ejbCreate<METHOD> , ejbStore , andejbRe-
move methods. The Persistence Manager, together with the database system, provides
necessary transaction synchronization; the container does not have to perform any sync
zation logic. The commit-time options B and C in Subsection 9.12.4 apply to this type of c
tainer.

Figure 25 Multiple clients can access the same entity object using multiple instances

Account 100
in TX 1

Account 100
in TX 2

Container

Client 1

Client 2

Account 100Entity object
Account 100

TX 1

TX 2

enterprise bean instances
183 10/23/00

Entity Bean Component Contract for Container Managed PersistenceEnterprise JavaBeans 2.0, Proposed Final Draft Instance life cycle

Sun Microsystems, Inc.

cache
exclu-
ld be
, then

h may
nager
te the
f the

t will
egies

e con-
to this
r.

-reen-
ith the
the

ro-
With this strategy, the type of lock acquired by ejbLoad or get accessor method (if a lazy loading
management strategy is used) leads to a trade-off. If ejbLoad or the accessor method acquires an
sive lock on the instance's state in the database, the throughput of read-only transactions cou
impacted. If ejbLoad or the accessor method acquires a shared lock and the instance is updated
either ejbStore or a set accessor method will need to promote the lock to an exclusive lock (whic
cause a deadlock if it happens concurrently under multiple transactions), or, if the Persistence Ma
uses an optimistic cache concurrency control strategy, the Persistence Manager will need to valida
state of the cache against the database at transaction commit (which may result in a rollback o
transaction).

It is expected that Persistence Managers will provide deployment-time configuration options tha
allow control to be exercised over the logical transaction isolation levels that their caching strat
provide.

• The container acquires exclusive access to the entity object’s state in the database. Th
tainer activates a single instance and serializes the access from multiple transactions
instance. The commit-time option A in Subsection 9.12.4 applies to this type of containe

Figure 26 Multiple clients can access the same entity object using single instance

9.6.11 Non-reentrant and re-entrant instances

An entity Bean Provider can specify that an entity bean is non-reentrant. If an instance of a non
trant entity bean executes a client request in a given transaction context, and another request w
same transaction context arrives for the same entity object, the container will throw
java.rmi.RemoteException to the second request. This rule allows the Bean Provider to p
gram the entity bean as single-threaded, non-reentrant code.

Account 100
in TX 1

Container

Client 1

Client 2

Account 100

container blocks Client 2
until Client 1 finishes

Entity object
Account 100

TX 1

TX 2

enterprise bean instance
 10/23/00 184

Responsibilities of the Enterprise Bean ProviderEnterprise JavaBeans 2.0, Proposed Final Draft Entity Bean Component Contract for

Sun Microsystems, Inc.

t. An
ack
urrent

ethod

ject an
uting a
e bean,
ck call

e

er must
n gen-
reful

d may
al con-
backs.
criptor,

e

n with
The functionality of some entity beans may require loopbacks in the same transaction contex
example of a loopback is when the client calls entity object A, A calls entity object B, and B calls b
A in the same transaction context. The entity bean’s method invoked by the loopback shares the c
execution context (which includes the transaction and security contexts) with the Bean’s m
invoked by the client.

If the entity bean is specified as non-reentrant in the deployment descriptor, the Container must re
attempt to re-enter the instance via the entity bean’s remote interface while the instance is exec
business method. (This can happen, for example, if the instance has invoked another enterpris
and the other enterprise bean tries to make a loopback call.) The container must reject the loopba
and throw thejava.rmi.RemoteException to the caller. The container must allow the call if th
Bean’s deployment descriptor specifies that the entity bean is re-entrant.

Re-entrant entity beans must be programmed and used with great caution. First, the Bean Provid
code the entity bean with the anticipation of a loopback call. Second, since the container cannot, i
eral, tell a loopback from a concurrent call from a different client, the client programmer must be ca
to avoid code that could lead to a concurrent call in the same transaction context.

Concurrent calls in the same transaction context targeted at the same entity object are illegal an
lead to unpredictable results. Since the container cannot, in general, distinguish between an illeg
current call and a legal loopback, application programmers are encouraged to avoid using loop
Entity beans that do not need callbacks should be marked as non-reentrant in the deployment des
allowing the container to detect and prevent illegal concurrent calls from clients.

Note that anejbSelect<METHOD> method that returns the same type as the entity bean on
which it is defined may lead to a subsequent loopback call. Such methods should therefore b
used with caution.

9.7 Responsibilities of the Enterprise Bean Provider

This section describes the responsibilities of an entity Bean Provider to ensure that an entity bea
container managed persistence can be deployed in any EJB Container.

9.7.1 Classes and interfaces

The entity Bean Provider is responsible for providing the following class files:

• Entity bean class and any dependent classes

• Entity bean’s remote interface

• Entity bean’s home interface

• Primary key class
185 10/23/00

Entity Bean Component Contract for Container Managed PersistenceEnterprise JavaBeans 2.0, Proposed Final Draft Responsibilities

Sun Microsystems, Inc.

of the
e

e
tance in
e.g., the
s).

t persis-

rclasses,

r in

voked

f
ersis-
9.7.2 Enterprise bean class

The following are the requirements for an entity bean class:

The class must implement, directly or indirectly, thejavax.ejb.EntityBean interface.

The class must be defined aspublic and must beabstract .

The class must define a public constructor that takes no arguments.

The class must not define thefinalize() method.

The class may, but is not required to, implement the entity bean’s remote interface[15]. If the class
implements the entity bean’s remote interface, the class must provide no-op implementations
methods defined in thejavax.ejb.EJBObject interface. The container will never invoke thes
methods on the bean instances at runtime.

The entity bean class must implement the business methods, and theejbCreate<METHOD> and
ejbPostCreate<METHOD> methods as described later in this section.

The entity bean class must implement theejbHome<METHOD>methods that correspond to the hom
business methods specified in the bean’s home interface. These methods are executed on an ins
the pooled state; hence they must not access state that is particular to a specific bean instance (
accessor methods of the bean’s abstract persistence schema must not be used by these method

The entity bean class must implement the get and set accessor methods of the bean’s abstrac
tence schema asabstract methods.

The entity bean class may have superclasses and/or superinterfaces. If the entity bean has supe
the business methods, theejbCreate<METHOD> and ejbPostCreate<METHOD> methods,
and the methods of theEntityBean interface may be implemented in the enterprise bean class o
any of its superclasses.

The entity bean class is allowed to implement other methods (for example helper methods in
internally by the business methods) in addition to the methods required by the EJB specification.

The entity bean class does not implement theejbFind<METHOD> methods. The implementations o
theejbFind<METHOD> methods are generated at the entity bean deployment time using the P
tence Manager Provider’s tools.

The entity bean class must implement anyejbSelect<METHOD> methods as abstract methods.

9.7.3 Dependent object classes

The following are the requirements for a dependent object class:

[15] If the entity bean class does implement the remote interface, care must be taken to avoid passing ofthis as a method argument
or result. This potential error can be avoided by choosing not to implement the remote interface in the entity bean class.
 10/23/00 186

Responsibilities of the Enterprise Bean ProviderEnterprise JavaBeans 2.0, Proposed Final Draft Entity Bean Component Contract for

Sun Microsystems, Inc.

ema as

type of

.

.1 or
Runt-
The class must be defined aspublic and must beabstract .

The class must implement the get and set accessor methods of its abstract persistence sch
abstract methods.

The class must implement theremove() method as an abstract method.

The class must not define thefinalize() method.

The dependent object class must define anejbCreate<METHOD>(...) method andejbPost-
Create<METHOD>(...) method for every matchingcreate<METHOD>(...) method whose
result type is the dependent object class. The matching methods must have the same number and
arguments, and the same return type (i.e., the dependent object class).

The dependent object class must implement anyejbSelect<METHOD> methods as abstract methods

9.7.4 Dependent value classes

The following are the requirements for a dependent value class:

The class must be defined aspublic and must not beabstract .

The class must be serializable.

9.7.5 ejbCreate<METHOD> methods

The entity bean class may define zero or moreejbCreate<METHOD>(...) methods whose signa-
tures must follow these rules:

The method name must haveejbCreate as its prefix.

The method must be declared aspublic .

The method must not be declared asfinal or static .

The return type must be the entity bean’s primary key type.

The method arguments and return value types must be legal types for RMI-IIOP.

The throws clause must define thejavax.ejb.CreateException . The throws clause may define
arbitrary application specific exceptions.

Compatibility Note: EJB 1.0 allowed the ejbCreate method to throw thejava.rmi.RemoteExcep-
tion to indicate a non-application exception. This practice was deprecated in EJB 1.1—an EJB 1
EJB 2.0 compliant enterprise bean should throw the javax.ejb.EJBException or another java.lang.
imeException to indicate non-application exceptions to the Container (see Section 17.2.2).
187 10/23/00

Entity Bean Component Contract for Container Managed PersistenceEnterprise JavaBeans 2.0, Proposed Final Draft Responsibilities

Sun Microsystems, Inc.

the

EJB
ther
ction

follow-

gnatures
9.7.6 ejbPostCreate<METHOD> methods

For eachejbCreate<METHOD>(...) method, the entity bean class must define a matchingejb-
PostCreate<METHOD>(...) method, using the following rules:

The method name must haveejbPostCreate as its prefix.

The method must be declared aspublic .

The method must not be declared asfinal or static .

The return type must bevoid .

The method arguments must be the same as the arguments of the matchingejbCre-
ate<METHOD>(...) method.

The throws clause may define arbitrary application specific exceptions, including
javax.ejb.CreateException .

Compatibility Note: EJB 1.0 allowed the ejbPostCreate method to throw thejava.rmi.RemoteEx-
ception to indicate a non-application exception. This practice was deprecated in EJB 1.1—an
1.1 or EJB 2.0 compliant enterprise bean should throw the javax.ejb.EJBException or ano
java.lang.RuntimeException to indicate non-application exceptions to the Container (see Se
17.2.2).

9.7.7 ejbHome<METHOD> methods

The entity bean class may define zero or more home methods whose signatures must follow the
ing rules:

The method name must haveejbHome as its prefix.

The method must be declared aspublic .

The method must not be declared asstatic .

The method argument and return value types must be legal types for RMI-IIOP.

The throws clause may define arbitrary application specific exceptions.

9.7.8 ejbSelect<METHOD> methods

The entity bean class or dependent object class may define one or more select methods whose si
must follow the following rules:

The method name must haveejbSelect as its prefix.

The method must be declared aspublic .
 10/23/00 188

Responsibilities of the Enterprise Bean ProviderEnterprise JavaBeans 2.0, Proposed Final Draft Entity Bean Component Contract for

Sun Microsystems, Inc.

scrip-
stence

the
L.
 QL.

these

back

.1 or
Runt-

their
must

to the
The method must be declared asabstract .

The return value type of anejbSelect<METHOD> method must not be an entity bean class type.

The throws clause must define thejavax.ejb.FinderException . The throws clause may define
arbitrary application specific exceptions.

Every select method must either be associated with an EJB QL query string in the deployment de
tor or a description must be given to indicate the semantics of the query to the user of the Persi
Manager Provider’s tools. EJB QL is defined in Chapter 10. The Bean Provider must use
description element of thequery element to specify a query that is not expressed in EJB Q
The Bean Provider must only use description-based queries if the query is not expressible in EJB

The EJB QL string associated with a select method must include a SELECT clause.

9.7.9 Business methods

The entity bean class may define zero or more business methods whose signatures must follow
rules:

The method names can be arbitrary, but they must not start with ‘ejb’ to avoid conflicts with the call
methods used by the EJB architecture.

The business method must be declared aspublic .

The method must not be declared asfinal or static .

The method argument and return value types must be legal types for RMI-IIOP.

The throws clause may define arbitrary application specific exceptions.

Compatibility Note: EJB 1.0 allowed the business methods to throw thejava.rmi.RemoteExcep-
tion to indicate a non-application exception. This practice was deprecated in EJB 1.1—an EJB 1
EJB 2.0 compliant enterprise bean should throw the javax.ejb.EJBException or another java.lang.
imeException to indicate non-application exceptions to the Container (see Section 17.2.2).

9.7.10 Entity bean’s remote interface

The following are the requirements for the entity bean’s remote interface:

The interface must extend thejavax.ejb.EJBObject interface.

The methods defined in the remote interface must follow the rules for RMI-IIOP. This means that
argument and return value types must be valid types for RMI-IIOP, and their throws clauses
include thejava.rmi.RemoteException .

The remote interface is allowed to have superinterfaces. Use of interface inheritance is subject
RMI-IIOP rules for the definition of remote interfaces.
189 10/23/00

Entity Bean Component Contract for Container Managed PersistenceEnterprise JavaBeans 2.0, Proposed Final Draft Responsibilities

Sun Microsystems, Inc.

bean’s

Bean

ersistent

through

n two

anager

rgu-
e the

to the

its
For each method defined in the remote interface, there must be a matching method in the entity
class. The matching method must have:

• The same name.

• The same number and types of its arguments, and the same return type.

• All the exceptions defined in the throws clause of the matching method of the enterprise
class must be defined in the throws clause of the method of the remote interface.

The Bean Provider must not expose the dependent object classes that comprise the abstract p
schema of an entity bean in the remote interface of the bean.

The get and set methods of the entity bean’s abstract persistence schema must not be exposed
the remote interface except in the following cases:

• When the relationship is defined as a one-to-one or many-to-one relationship betwee
entity beans.

• When the get and set accessor methods are methods for acmp-field.

The Bean Provider must not expose the persistent Collection classes that are used in container m
relationships.

9.7.11 Entity bean’s home interface

The following are the requirements for the entity bean’s home interface:

The interface must extend thejavax.ejb.EJBHome interface.

The methods defined in this interface must follow the rules for RMI-IIOP. This means that their a
ment and return types must be of valid types for RMI-IIOP, and their throws clauses must includ
java.rmi.RemoteException .

The home interface is allowed to have superinterfaces. Use of interface inheritance is subject
RMI-IIOP rules for the definition of remote interfaces.

Each method defined in the home interface must be one of the following:

• A create method.

• A finder method.

• A home method.

Eachcreate method must be named “create<METHOD>”, e.g.createLargeAccounts . Each
create method name must match one of theejbCreate<METHOD> methods defined in the enterprise
bean class. The matchingejbCreate<METHOD> method must have the same number and types of
arguments. (Note that the return type is different.)
 10/23/00 190

Responsibilities of the Enterprise Bean ProviderEnterprise JavaBeans 2.0, Proposed Final Draft Entity Bean Component Contract for

Sun Microsystems, Inc.

ause

r a

ws

turn the

partic-

re
emas are
The return type for acreate<METHOD> method must be the entity bean’s remote interface type.

All the exceptions defined in the throws clause of the matchingejbCreate<METHOD> andejb-
PostCreate<METHOD> methods of the enterprise Bean class must be included in the throws cl
of the matchingcreate method of the home interface (i.e., the set of exceptions defined for thecre-
ate method must be a superset of the union of exceptions defined for theejbCreate<METHOD> and
ejbPostCreate<METHOD> methods).

The throws clause of acreate<METHOD> method must include thejavax.ejb.CreateExcep-
tion .

Eachfinder method must be named “find <METHOD>” (e.g. findLargeAccounts).

The return type for afind<METHOD> method must be the entity bean’s remote interface type (fo
single-object finder), or a collection thereof (for a multi-object finder).

The home interface must always include thefindByPrimaryKey method, which is always a sin-
gle-object finder. The method must declare the primary key class as the method argument.

The throws clause of afinder method must include thejavax.ejb.FinderException .

Home methods can have arbitrary names, but they must not start with “create ”, “ find ”, or
“ remove ”. Their argument and return types must be of valid types for RMI-IIOP, and their thro
clauses must include thejava.rmi.RemoteException . The matchingejbHome method speci-
fied in the entity bean class must have the same number and types of arguments and must re
same type as the home method as specified in the home interface of the bean.

9.7.12 Entity bean’s primary key class

The Bean Provider must specify a primary key class in the deployment descriptor.

The primary key type must be a legal Value Type in RMI-IIOP.

The class must provide suitable implementation of thehashCode() and equals(Object
other) methods to simplify the management of the primary keys by the Persistence Manager.

9.7.13 Entity bean’s deployment descriptor

The Bean Provider must specify the dependent objects classes in thedependents element.

The Bean Provider must specify the relationships in which the entity bean and dependent objects
ipate in therelationships element.

The Bean Provider must specify in theejb-entity-ref element the remote entity beans that a
used in relationships. Remote entity beans are those entity beans whose abstract persistence sch
not available in the ejb-jar file and that participate in one way navigable relationships.
191 10/23/00

Entity Bean Component Contract for Container Managed PersistenceEnterprise JavaBeans 2.0, Proposed Final Draft The responsibili-

Sun Microsystems, Inc.

s, and

jb-jar

used

ng the

using

on

r 10.

ent, it

n entity
ce Man-
te the

itional
tools

lasses
ment

to the
The Bean Provider must provide unique names to designate entity beans, remote entity bean
dependent object classes as follows, and as described in Section 9.4.14.

• The Bean Provider must specify unique names for entity beans which are defined in the e
file by using theejb-name element.

• The Bean Provider must specify aremote-ejb-name element in theejb-entity-ref
deployment descriptor element to provide a unique name for a remote entity bean that is
in a container managed relationship.

• The Bean Provider must specify a unique abstract schema name for an entity bean usi
abstract-schema-name deployment descriptor element.

• The Bean Provider must specify a unique dependent name for a dependent object class
thedependent-name deployment descriptor element.

The Bean Provider should not use reserved identifiers asejb-names , remote-ejb-names ,
dependent-names , or abstract-schema-names . Reserved identifiers are discussed in Secti
10.2.4.1.

The Bean Provider must define a query for each finder or select method exceptfindByPrima-
ryKey(key) . Typically this will be provided as the content of theejb-ql element contained in the
query element for the entity or dependent object class. The syntax of EJB QL is defined in Chapte

Since EJB QL query strings are embedded in the deployment descriptor, which is an XML docum
may be necessary to encode the following characters in the query string: “>”, “ <“.

9.8 The responsibilities of the Persistence Manager

This section describes the responsibilities of the Persistence Manager Provider to ensure that a
bean with container managed persistence can be deployed in any EJB Container. The Persisten
ager is responsible for providing tools to prepare the entity bean for deployment and to genera
code to manage the persistent state and relationships of the entity bean instances at runtime.

9.8.1 Generation of implementation classes

The tools provided by the Persistence Manager Provider are responsible for the generation of add
classes when the entity bean is prepared for deployment in the operational environment. The
obtain the information that they need for generation of additional classes by introspecting the c
and interfaces provided by the entity Bean Provider and by examining the entity bean’s deploy
descriptor.

These tools must generate the following classes:

• A class that implements the entity bean class (i.e., a concrete class corresponding
abstract entity bean class that was provided by the Bean Provider).
 10/23/00 192

The responsibilities of the Persistence ManagerEnterprise JavaBeans 2.0, Proposed Final Draft Entity Bean Component Contract for

Sun Microsystems, Inc.

g to the

-
.

ips of the

es

rclasses,

r in
• Classes that implement the dependent object classes (i.e., concrete classes correspondin
abstract dependent object classes that were provided by the Bean Provider).

• Classes that implement thejava.util.Collection interfaces that are used for the rela
tionships of the abstract persistence schema of an entity bean or dependent object class

These classes are used by the persistence manager to manage the persistent state and relationsh
entity bean instances at runtime. Tools can use subclassing, delegation, and code generation.

9.8.2 Classes and interfaces

The Persistence Manager is responsible for providing the following class files:

• Implementation of the concrete entity bean class

• Implementation of the concrete dependent object classes

9.8.3 Enterprise bean class

The following are the requirements for a concrete entity bean class:

The class must implement, directly or indirectly, thejavax.ejb.EntityBean interface.

The class must be defined aspublic and must not beabstract .

The class must not be defined asfinal .

The class must define a public constructor that takes no arguments.

The class must implement the get and set methods of the bean’s abstract persistence schema.

The class must implement thecreate<METHOD>(...) methods for the dependent object class
that can be created by the class.

The class must not define thefinalize() method.

The entity bean class must implement, directly or indirectly, the business methods, and theejbCre-
ate<METHOD> and ejbPostCreate<METHOD> methods as described later in this section.

The entity bean class must implement theejbFind<METHOD>(...) and ejbSe-
lect<METHOD>(...) methods.

The entity bean class may have superclasses and/or superinterfaces. If the entity bean has supe
the business methods, theejbCreate<METHOD> and ejbPostCreate<METHOD> methods,
and the methods of theEntityBean interface may be implemented in the enterprise bean class o
any of its superclasses.
193 10/23/00

Entity Bean Component Contract for Container Managed PersistenceEnterprise JavaBeans 2.0, Proposed Final Draft The responsibili-

Sun Microsystems, Inc.

by the

sistence

es

quired

e a

ntity

ver,
The entity bean class is allowed to implement other methods in addition to the methods required
EJB specification.

9.8.4 Dependent object classes

The following are the requirements for a concrete dependent object class:

The class must be defined aspublic and must not beabstract .

The class must not be defined asfinal .

The class must implement the get and set methods of the dependent object class’s abstract per
schema.

The class must implement theremove() method.

The class must implement theejbSelect<METHOD>(...) methods.

The class must not define thefinalize() method.

The class must implement thecreate<METHOD>(...) methods for the dependent object class
that can be created by the class.

The dependent object class is allowed to implement other methods in addition to the methods re
by the EJB specification.

9.8.5 ejbCreate<METHOD> methods

The concrete entity bean class must define zero or moreejbCreate<METHOD>(...) methods
whose signatures must follow these rules:

For eachejbCreate<METHOD>(...) method in the abstract entity bean class, there must b
method with the same argument and result types in the concrete entity bean class.

The method must be declared aspublic .

The method must not be declared asfinal or static .

The throws clause must define thejavax.ejb.CreateException . The throws clause may define
any application specific exceptions that are defined in the correspondingejbCre-
ate<METHOD>(...) method of the abstract entity bean class.

The entity object created by theejbCreate<METHOD>(...) method must have a unique primary
key. This means that the primary key must be different from the primary keys of all the existing e
objects within the same home. TheejbCreate<METHOD>(...) method may throw theDupli-
cateKeyException on an attempt to create an entity object with a duplicate primary key. Howe
it is legal to reuse the primary key of a previously removed entity object.
 10/23/00 194

The responsibilities of the Persistence ManagerEnterprise JavaBeans 2.0, Proposed Final Draft Entity Bean Component Contract for

Sun Microsystems, Inc.

ete

onding
he

cor-
tity

mary

t is the

ject
an class
9.8.6 ejbPostCreate<METHOD> methods

For eachejbPostCreate<METHOD>(...) method in the abstract entity bean class, the concr
entity bean class may define a matchingejbPostCreate<METHOD>(...) method, using the fol-
lowing rules:

The method must be declared aspublic .

The method must not be declared asfinal or static .

The return type must bevoid .

The method arguments must be the same as the arguments of the matchingejbPostCre-
ate<METHOD>(...) method of the abstract entity bean class.

The throws clause may define any application specific exceptions that are defined in the corresp
ejbPostCreate<METHOD>(...) method of the abstract entity bean class, including t
javax.ejb.CreateException .

9.8.7 ejbFind<METHOD> methods

For eachfind<METHOD>(...) method in the home interface of the entity bean, there must be a
respondingejbFind<METHOD>(...) method with the same argument types in the concrete en
bean class.

The method name must haveejbFind as its prefix.

The method must be declared aspublic .

The method argument and return value types must be legal types for RMI-IIOP.

The return type of a finder method must be the entity bean’s primary key type, or a collection of pri
keys.

The throws clause must define thejavax.ejb.FinderException . The throws clause may define
arbitrary application specific exceptions.

Every finder method exceptejbFindByPrimaryKey(key) is specified in thequery deployment
descriptor element for the entity. The Persistence Manager must use the EJB QL query string tha
content of theejb-ql element or the descriptive query specification contained in thedescription
element as the definition of the query of the correspondingejbFind<METHOD>(...) method.

9.8.8 ejbSelect<METHOD> methods

For eachejbSelect<METHOD>(...) method in the abstract entity bean class (or dependent ob
class), there must be a method with the same argument and result types in the concrete entity be
(or dependent object class).
195 10/23/00

Entity Bean Component Contract for Container Managed PersistenceEnterprise JavaBeans 2.0, Proposed Final Draft The responsibili-

Sun Microsystems, Inc.

is-

n

elected
od.

d if the

Con-
bean

iner, we
Alter-
ndor’s

addi-
r gen-
istence

).

s).

e entity
at runt-

ds and
ple, a
ot
t.
Every select method is specified in aquery deployment descriptor element for the entity. The Pers
tence Manager must use the EJB QL query string that is the content of theejb-ql element or the
descriptive query specification that is contained in thedescription element as the definition of the
query of the correspondingejbSelect<METHOD>(...) method.

The Persistence Manager must throw aFinderException when a select method returns more tha
one value if it is defined as a single-object select method.

The Persistence Manager must use the corresponding EJB QL string and the type of the values s
as specified by the SELECT clause to determine the type of the values returned by a select meth

The Persistence Manager must ensure that there are no duplicates returned by a select metho
return type isjava.util.Set.

9.9 The responsibilities of the Container Provider

This section describes the responsibilities of the Container Provider to support entity beans. The
tainer Provider is responsible for providing the deployment tools, and for managing the entity
instances at runtime.

Because the EJB specification does not define the API between deployment tools and the conta
assume that the deployment tools described in this section are provided by the container provider.
natively, the deployment tools may be provided by a different vendor who uses the container ve
specific API.

9.9.1 Generation of implementation classes

The deployment tools provided by the container provider are responsible for the generation of
tional classes when the entity bean is deployed. The tools obtain the information that they need fo
eration of the additional classes by introspecting the classes and interfaces provided by the Pers
Manager Provider, and by examining the entity bean’s deployment descriptor.

The deployment tools must generate the following classes:

• A class that implements the entity bean’s home interface (i.e., the entity EJBHome class

• A class that implements the entity bean’s remote interface (i.e., the entity EJBObject clas

The deployment tools may also generate a class that mixes some container-specific code with th
bean class. The code may, for example, help the container to manage the entity bean instances
ime. Tools can use subclassing, delegation, and code generation.

The deployment tools may also allow generation of additional code that wraps the business metho
that is used to customize the business logic for an existing operational environment. For exam
wrapper for adebit function on theAccount Bean may check that the debited amount does n
exceed a certain limit, or perform security checking that is specific to the operational environmen
 10/23/00 196

The responsibilities of the Container ProviderEnterprise JavaBeans 2.0, Proposed Final Draft Entity Bean Component Contract for

Sun Microsystems, Inc.

home

e
as the

.

ean’s

ady in

handle

le class
9.9.2 Entity EJBHome class

The entity EJBHome class, which is generated by deployment tools, implements the entity bean’s
interface. This class implements the methods of thejavax.ejb.EJBHome interface, and the
type-specificcreate andfinder methods specific to the entity bean.

The implementation of eachcreate<METHOD>(...) method invokes a matchingejbCre-
ate<METHOD>(...) method, followed by the matchingejbPostCreate<METHOD>(...)
method, passing thecreate<METHOD>(...) parameters to these matching methods.

The implementation of theremove(...) methods defined in thejavax.ejb.EJBHome interface
must activate an instance (if an instance is not already in the ready state) and invoke theejbRemove
method on the instance.

The implementation of each find<METHOD>(...) method invokes a matching
ejbFind<METHOD>(...) method. The implementation of thefind<METHOD>(...) method
must create an entity object reference for the primary key returned from theejbFind<METHOD> and
return the entity object reference to the client. If theejbFind<METHOD> method returns a collection
of primary keys, the implementation of thefind<METHOD>(...) method must create a collection
of entity object references for the primary keys and return the collection to the client.

Before invoking theejbFind<METHOD>(...) method, the container must first synchronize th
state of any entity bean instances that are participating in the same transaction context
ejbFind<METHOD>(...) by invoking theejbStore() method on those entity bean instances.

The implementation of each<METHOD>(...) home method invokes a matchingejb-
Home<METHOD>(...) method, passing the<METHOD>(...) parameters to the matching method

9.9.3 Entity EJBObject class

The entity EJBObject class, which is generated by deployment tools, implements the entity b
remote interface. It implements the methods of thejavax.ejb.EJBObject interface and the busi-
ness methods specific to the entity bean.

The implementation of theremove(...) method (defined in thejavax.ejb.EJBObject inter-
face) must activate an instance (if an instance is not already in the ready state) and invoke theejbRe-
move method on the instance.

The implementation of each business method must activate an instance (if an instance is not alre
the ready state) and invoke the matching business method on the instance.

9.9.4 Handle class

The deployment tools are responsible for implementing the handle class for the entity bean. The
class must be serializable by the Java Serialization protocol.

As the handle class is not entity bean specific, the container may, but is not required to, use a sing
for all deployed entity beans.
197 10/23/00

Entity Bean Component Contract for Container Managed PersistenceEnterprise JavaBeans 2.0, Proposed Final Draft The responsibili-

Sun Microsystems, Inc.

e han-

o, use a

tion to
t the

, use a

ption

h that
r a long
sh and
ed, or
a dif-

lient
ethod
ct ref-
9.9.5 Home Handle class

The deployment tools responsible for implementing the home handle class for the entity bean. Th
dle class must be serializable by the Java Serialization protocol.

Because the home handle class is not entity bean specific, the container may, but is not required t
single class for the home handles of all deployed entity beans.

9.9.6 Meta-data class

The deployment tools are responsible for implementing the class that provides meta-data informa
the client view contract. The class must be a valid RMI-IIOP Value Type, and must implemen
javax.ejb.EJBMetaData interface.

Because the meta-data class is not entity bean specific, the container may, but is not required to
single class for all deployed enterprise beans.

9.9.7 Instance’s re-entrance

The container runtime must enforce the rules defined in Section 9.6.11.

9.9.8 Transaction scoping, security, exceptions

The container runtime must follow the rules on transaction scoping, security checking, and exce
handling described in Chapters 16, 20, and 17.

9.9.9 Implementation of object references

The container should implement the distribution protocol between the client and the container suc
the object references of the home and remote interfaces used by entity bean clients are usable fo
period of time. Ideally, a client should be able to use an object reference across a server cra
restart. An object reference should become invalid only when the entity object has been remov
after a reconfiguration of the server environment (for example, when the entity bean is moved to
ferent EJB server or container).

The motivation for this is to simplify the programming model for the entity bean client. While the c
code needs to have a recovery handler for the system exceptions thrown from the individual m
invocations on the home and remote interface, the client should not be forced to re-obtain the obje
erences.
 10/23/00 198

Primary Keys Enterprise JavaBeans 2.0, Proposed Final Draft Entity Bean Component Contract for Con-

Sun Microsystems, Inc.

te inter-

rimary
ction,

ersis-

ient for
d in a

e
ust be

anaged
aged
9.9.10 EntityContext

The container must implement theEntityContext.getEJBObject() method such that the bean
instance can use the Java language cast to convert the returned value to the entity bean’s remo
face type. Specifically, the bean instance does not have to use thePortableRemoteObject.nar-
row(...) method for the type conversion.

9.10 Primary Keys

9.10.1 Entity bean’s primary key type

The container must be able to manipulate the primary key type of an entity bean. Therefore, the p
key type for an entity bean with container-managed persistence must follow the rules in this subse
in addition to those specified in Subsection 9.7.12.

There are two ways to specify a primary key class for an entity bean with container-managed p
tence:

• Primary key that maps to a single field in the entity bean class.

• Primary key that maps to multiple fields in the entity bean class.

The second method is necessary for implementing compound keys, and the first method is conven
single-field keys. Without the first method, simple types such as String would have to be wrappe
user-defined class.

9.10.1.1 Primary key that maps to a single field in the entity bean class

The Bean Provider uses theprimkey-field element of the deployment descriptor to specify th
container-managed field of the entity bean class that contains the primary key. The field’s type m
the primary key type.

9.10.1.2 Primary key that maps to multiple fields in the entity bean class

The primary key class must bepublic , and must have apublic constructor with no parameters.

All fields in the primary key class must be declared as public.

The names of the fields in the primary key class must be a subset of the names of the container-m
fields. (This allows the container to extract the primary key fields from an instance’s container-man
fields, and vice versa.)
199 10/23/00

Entity Bean Component Contract for Container Managed PersistenceEnterprise JavaBeans 2.0, Proposed Final Draft Primary Keys

Sun Microsystems, Inc.

for an
an does
ersis-
ean’s
sys-

n to the

nager
r-man-
e pri-
s).

ent

velops
when

ram-
neral,

e meth-
cause

object’s

ne or
ry key

y. The
aged
9.10.1.3 Special case: Unknown primary key class

In special situations, the entity Bean Provider may choose not to specify the primary key class
entity bean with container-managed persistence. This case usually happens when the entity be
not have a natural primary key, and/or the Bean Provider wants to allow the Deployer using the P
tence Manager Provider’s tools to select the primary key fields at deployment time. The entity b
primary key type will usually be derived from the primary key type used by the underlying database
tem that stores the entity objects. The primary key used by the database system may not be know
Bean Provider.

When defining the primary key for the enterprise bean, the Deployer using the Persistence Ma
Provider’s tools may sometimes need to subclass the entity bean class to add additional containe
aged fields (this typically happens for entity beans that do not have a natural primary key, and th
mary keys are system-generated by the underlying database system that stores the entity object

In this special case, the type of the argument of thefindByPrimaryKey method must be declared as
java.lang.Object , and the return value ofejbCreate<METHOD>() must be declared as
java.lang.Object. The Bean Provider must specify the primary key class in the deploym
descriptor as of the typejava.lang.Object.

The primary key class is specified at deployment time in the situations when the Bean Provider de
an entity bean that is intended to be used with multiple back-ends that provide persistence, and
these multiple back-ends require different primary key structures.

Use of entity beans with a deferred primary key type specification limits the client application prog
ming model, because the clients written prior to deployment of the entity bean may not use, in ge
the methods that rely on the knowledge of the primary key type.

The implementation of the enterprise bean class methods must be done carefully. For example, th
ods should not depend on the type of the object returned from EntityContext.getPrimaryKey(), be
the return type is determined by the Deployer after the EJB class has been written.

9.10.2 Dependent object’s primary key type

The Persistence Manager uses the primary key of a dependent object to maintain the dependent
persistent identity.

The Bean Provider can either specify the primary key of a dependent object class in terms of o
more persistent fields of the dependent object class or can defer the implementation of the prima
to the Persistence Manager.

9.10.2.1 Primary key that maps to one or more fields in the dependent object class

The Bean Provider uses thepk-field elements of thedependent deployment descriptor element to
specify the container-managed fields of the dependent object class that contain the primary ke
names of the fields in thepk-field elements must be a subset of the names of the container-man
fields.
 10/23/00 200

Other contracts between the Persistence Manager and ContainerEnterprise JavaBeans 2.0, Proposed Final Draft Entity Bean Compo-

Sun Microsystems, Inc.

s case
an Pro-
imary

the
primary

Man-
nal con-

devel-
persis-

nce, the
nce has
transac-

or set

nly on
ods of

t when

C is

on
e
ca-
ntext
9.10.2.2 Unspecified dependent object primary key

The Bean Provider may choose not to specify the primary key for a dependent object class. Thi
usually happens when the dependent object does not have a natural primary key, and/or the Be
vider wants to allow the Deployer using the Persistence Manager Provider’s tools to select the pr
key fields at deployment time. The dependent object’s primary key type will usually be derived from
primary key type used by the underlying database system that stores the dependent objects. The
key used by the database system may not be known to the Bean Provider.

When defining the primary key for a dependent object class, the Deployer using the Persistence
ager Provider’s tools may sometimes need to subclass the dependent object class to add additio
tainer-managed fields.

The primary key should be specified at deployment time in the situations when the Bean Provider
ops a dependent object class that is intended to be used with multiple back-ends that provide
tence, and when these multiple back-ends require different primary key structures.

9.11 Other contracts between the Persistence Manager and
Container

This section describes other contracts between the Persistence Manager and the Container.

9.11.1 Transaction context

In order to manage the access to the persistent state that it has cached on behalf of a bean insta
persistence manager needs to keep track of when the transaction context for the bean insta
changed. There are various strategies that the Persistence Manager can use to detect when the
tion context for a bean instance has changed. The following are illustrative:

• The Persistence Manager can check which transaction context is in effect on each get
accessor method access to the state of the bean instance.

• Because the transaction context of a bean instance can be changed by the container o
remote method call boundaries, the persistence manager can wrapper the remote meth
the entity bean to identify when a new remote method has been called, and hence detec
the transaction context may have changed.

• The Persistence Manager can use theejbLoad , ejbStore , ejbCreate , andejbFind
method invocations to keep track of changes in transaction context. If Commit Option B or
used, the Persistence Manager needs to check the transaction context in theejbLoad , ejb-
Create , andejbFind methods only. If Commit Option A is used, however, the transacti
context may have changed even thoughejbLoad was not invoked. In this case, it is possibl
to use theejbStore method to note that the immediately following accessor method invo
tion on the bean instance might occur in a different transaction context. The transaction co
of the next accessor method invocation must be checked accordingly.
201 10/23/00

Entity Bean Component Contract for Container Managed PersistenceEnterprise JavaBeans 2.0, Proposed Final Draft Othercontracts

Sun Microsystems, Inc.

od
ans-

e Man-

ew con-

in the

arate
source

persis-
rovide
ratively

e

ed to

,
n
ns to
of the
trans-

n-
action
t. The
e-adap-
gy are
n that
onsibil-
The Persistence Manager can use thejavax.transaction.TransactionMan-
ager.getTransaction() method to identify the transaction context in effect for a given meth
invocation. ThegetTransaction() method returns the transaction object that represents the tr
action context of the calling thread.

The Container provides an implementation of the TransactionManager interface to the Persistenc
ager through JNDI. The Persistence Manager can locate theTransactionManager through the
standard JNDI API asjava:pm/TransactionManager .

9.11.2 Connection management

When there is a change in transaction context, the Persistence Manager may need to obtain a n
nection from the container for use in accessing the persistent state of the bean.

The Persistence Manager may need to request from the Container a connection that is enlisted
current transaction or a connection that is not enlisted.

The Container should typically provide to the Persistence Manager the ability to specify sep
resource manager connection factories for these two types of connections, and make those re
manager connection factories available to the persistence manager through JNDI. As part of the
tence manager configuration process, the Persistence Manager Provider’s tools will typically p
mechanisms that allow these resource manager connection factory dependencies to be decla
expressed.

Note: This specification does not prescribe how the Persistence Manager obtains the resourc
manager connection factories, but recommends that thejava:pm/env subcontext be used
for this purpose. We expect to standardize this use in a later release of this specification.

Only Persistence Managers that use an optimistic concurrency control strategy will typically ne
obtain connections that have not been enlisted in the current transaction context.

• The Persistence Manager calls thegetConnection method (e.g., in the case of JDBC
javax.sql.DataSource.getConnection()) on the resource manager connectio
factory that provides container management of the transactional enlistment of connectio
obtain a connection that has been enlisted by the container in the transaction context
calling thread. It is the container (not the persistence manager) that is responsible for the
action management of the connection.

• The Persistence Manager calls thegetConnection method on the resource manager co
nection factory that provides connections that have not been enlisted in the current trans
context to obtain a connection that has been not been enlisted in any transaction contex
persistence manager can manage transactions on the connection using the resourc
tor-specific API. Persistence managers that use an optimistic concurrency control strate
expected to make use of such non-enlisted connections for that portion of the transactio
precedes the commit phase. The transaction management on this connection is the resp
ity of the persistence manager.
 10/23/00 202

Other contracts between the Persistence Manager and ContainerEnterprise JavaBeans 2.0, Proposed Final Draft Entity Bean Compo-

Sun Microsystems, Inc.

n fac-
n facto-

persis-

se. The

ust run
nection

on.

s to be
of the

ks on
that has

current

t been

anager
calling
ro-

ger, the
to the

e Man-
The container is responsible for providing the implementations of the resource manager connectio
tory methods that the persistence manager uses, and for making the resource manager connectio
ries for these methods available to the persistence manager through JNDI.

The persistence manager should assume that the container is doing pooling of connections. The
tence manager should therefore hold a connection no longer than necessary.

9.11.3 Connection management scenarios

There are a variety of connection management strategies that the Persistence Manager might u
following scenarios are intended to be illustrative rather than prescriptive.

9.11.3.1 Scenario: Pessimistic concurrency control

When a persistence manager method (e.g., accessor method,ejbStore() method, etc.) is executing
in a transaction, the connection that is used to access the database on behalf of that method m
under that same transaction. The Persistence Manager requests the Container to provide a con
that runs in the current transaction context, and caches the connection for use with that transacti

9.11.3.2 Scenario: Optimistic concurrency control

In general, with an optimistic concurrency control caching strategy, the Persistence Manager need
able to use separate connections for the pre-commit phase of the transaction (i.e., the portion
transaction that precedes the invocation of theSynchronization.beforeCompletion()
method) and for the commit phase of the transaction, in order to avoid holding long-term read loc
data. During the transaction commit phase, the Persistence Manager needs to use a connection
been enlisted by the container in the current transaction context.

The persistence manager obtains a connection that has not been enlisted by the container in the
transaction context for use during the pre-commit phase of the transaction, by calling thegetConnec-
tion method on the resource manager connection factory that provides connections that have no
enlisted in the current transaction context.

When the persistence manager enters the commit phase of the transaction, the persistence m
obtains a connection that has been enlisted by the container in the transaction context of the
thread by invoking thegetConnection method on the resource manager connection factory that p
vides container management of the transactional enlistment of connections.

9.11.4 Synchronization notifications

If an optimistic concurrency control cache management strategy is used by the Persistence Mana
Persistence Manager typically needs to be notified when it is necessary to flush its cached state
database or other persistent store prior to a transaction commit. In order to do so, the Persistenc
ager registers ajavax.transaction.Synchronization object with the container by using the
javax.transaction.Transaction.registerSynchronization() method.
203 10/23/00

Entity Bean Component Contract for Container Managed PersistenceEnterprise JavaBeans 2.0, Proposed Final Draft Othercontracts

Sun Microsystems, Inc.

o-

the
usiness
is noti-
ociated
rsistence

anager
lose the

e

to per-

as

the
(JTA)
gy on

(e.g.,
JNDI

er. In a
ctory
thread
in [11]

ll con-
gement
If the Persistence Manager has registered a synchronization object, the container will invoke theSyn-
chronization.beforeCompletion() method at the start of the transaction completion pr
cess. This will typically occur after thebeforeCompletion() method is invoked on the
Synchronization object registered by the container with the Transaction Manager in use by
container. (See Section 9.12.4.) This method executes in the same transaction context as the b
method on behalf of which the commit is being executed. The Persistence Manager should use th
fication to validate the cached persistent state of the transaction’s entity beans and their ass
dependent objects against the database state. If the respective states are not consistent, the Pe
Manager should mark the transaction for rollback using theTransaction .setRollbackOnly()
method on the transaction object for the transaction. If the states are consistent, the Persistence M
must flush the persistent state of the entity beans to the database or other persistent store and c
connections that it is using for the given transaction context.

TheSynchronization.afterCompletion() method will be invoked by the container after th
transaction is committed or rolled back. Thestatus argument of theafterCompletion()
method indicates the outcome of the transaction. The Persistence Manager can use this method
form cleanup tasks or other management of its cached state.

9.11.5 Container responsibilities

The Container must provide an implementation of thejavax.transaction.TransactionMan-
ager interface for use by the persistence manager. The Container must make theTransaction-
Manager interface available to the persistence manager in the JNDI name space
java:pm/TransactionManager .

The container must ensure that thegetTransaction() method returns a valid (non-null)
javax.transaction.Transaction object that the Persistence Manager can use to identify
transaction context that is in effect, independent of whether the container is using distributed
transactions or a local transaction optimization. The use of a local transaction optimization strate
the part of the container is not visible to the persistence manager.

The container is responsible for making the resource manager connection factories
javax.sql.DataSource) available to the persistence manager in the persistence manager’s
context.

The container must provide the implementation of thegetConnection methods as part of the
resource manager connection factory implementation that is provided to the persistence manag
typical implementation, the container’s implementation of the resource manager connection fa
interface should note the transactional context and identity of the persistence manager’s calling
and delegate to the resource-specific resource manager connection factory interface, described
and [12].

It is the responsibility of the container (not the persistence manager) to manage transactions on a
nections acquired from any resource manager connection factory that provides container mana
of the transactional enlistment of connections.
 10/23/00 204

Object interaction diagrams Enterprise JavaBeans 2.0, Proposed Final Draft Entity Bean Component Contract for Con-

Sun Microsystems, Inc.

y

es on
for the
ersis-

hat are
rovides

otifica-
es not
ces are

ner to

by the
er the
ontext

bean
9.11.6 Persistence manager responsibilities

The persistence manager may register ajavax.transaction.Synchronization object with
the transaction manager.

The persistence manager may only use thegetTransaction() andgetStatus() methods of the
javax.transaction.TransactionManager interface. If the persistence manager calls an
other method of thejavax.transaction.TransactionManager interface, the container must
raise thejava.lang.IllegalStateException .

The persistence manager may only use thegetStatus() , registerSynchronization() , and
setRollbackOnly() methods of thejavax.transaction.Transaction interface. If the
persistence manager calls any other method of thejavax.transaction.Transaction inter-
face, the container must raise thejava.lang.IllegalStateException .

The persistence manager must not use any of the low-level XA and connection pooling interfac
any resource manager connection factory or connection. These low-level interfaces are intended
integration of a resource adaptor (e.g., JDBC driver) with the container and are not for use by the p
tence manager.

The persistence manager is responsible for the transaction management of all connections t
obtained by the persistence manager from any resource manager connection factory that p
non-enlisted transactions.

9.11.7 Additional contracts between the Container and the Persistence Manager
As described in Section 9.6, the Persistence Manager interacts with the Container to receive n
tions related to the lifecycle of the managed beans. The current EJB architecture, however, do
architect the full set of SPIs between the Container and the Persistence Manager: these interfa
currently left to the Container Provider and Persistence Manager Provider.

The EJB 2.0 architecture, however, assumes that certain functionality is provided by the Contai
the Persistence Manager through such SPIs.

For example, given a primary key for an entity whose abstract persistence schema is managed
Persistence Manager, the Persistence Manager will typically need to request from the Contain
EJBObject that corresponds to that primary key and entity bean instance in the given transaction c
in order to implement the get accessor methods for cmr-fields and theejbSelect methods that return
EJBObjects. (Note that it is not sufficient for the Persistence Manager to invoke thefindByPrima-
ryKey method in this case, since that method may run in a different transaction context.)

9.12 Object interaction diagrams

This section uses object interaction diagrams to illustrate the interactions between an entity
instance, its persistence manager, and its container.
205 10/23/00

Entity Bean Component Contract for Container Managed PersistenceEnterprise JavaBeans 2.0, Proposed Final Draft Object interac-

Sun Microsystems, Inc.

es are
te with
ication

anager
r

e entity
ted code

than as
9.12.1 Notes

The object interaction diagrams illustrate a box labeled “container-provided classes.” These class
either part of the container or are generated by the container tools. These classes communica
each other through protocols that are container implementation specific. Therefore, the commun
between these classes is not shown in the diagrams.

The class labeled “Transaction object” denotes the transaction object that the persistence m
obtains from the container by invoking thegetTransaction() method on the transaction manage
object provided to the persistence manager by the container.

The classes labeled “instance” and “persistence manager instance” denote those portions of th
bean class as seen or provided by the Bean Provider and the persistence manager’s genera
respectively.

The classes shown in the diagrams should be considered as an illustrative implementation rather
a prescriptive one.
 10/23/00 206

Object interaction diagrams Enterprise JavaBeans 2.0, Proposed Final Draft Entity Bean Component Contract for Con-

Sun Microsystems, Inc.
9.12.2 Creating an entity object

Figure 27 OID of creation of an entity object with container-managed persistence

client persistence
transactiondatabase

javax.transaction.UserTransaction.begin()

service
EJB entity

context
EJB

Object

create(args)

container-provided classes

business method
business method

synchro-
nization

ejbCreate(args)

new

Home

ejbPostCreate(args)

Transaction instance

ejbCreate(args)

manager

ejbPostCreate(args)

instance

registerSynchronization(synchronization)

new

registerSynchronization(synchronization)

setXX()

setYY()

object
207 10/23/00

Entity Bean Component Contract for Container Managed PersistenceEnterprise JavaBeans 2.0, Proposed Final Draft Object interac-

Sun Microsystems, Inc.

ce
9.12.3 Passivating and activating an instance in a transaction

Figure 28 OID of passivation and reactivation of an entity bean instance with container managed persisten

business method
ejbActivate()

ejbStore()

ejbPassivate()

business method

ejbLoad()

business method
business method

client
persistence

EJB entity
context

containerEJB
Object

container-provided classes

synchro-
nizationHome

manager instance database

ejbStore()

ejbPassivate()

ejbActivate()

ejbLoad()

instance

getXX()
getConnection()

read entity state
from database
 10/23/00 208

Object interaction diagrams Enterprise JavaBeans 2.0, Proposed Final Draft Entity Bean Component Contract for Con-

Sun Microsystems, Inc.

ce
9.12.4 Committing a transaction

Figure 29 OID of transaction commit protocol for an entity bean instance with container-managed persisten

ejbStore()

client instance transactiondatabase
service

entity
context

EJB
Object

container-provided classes

synchro-
nization

javax.transaction.UserTransaction.commit()

beforeCompletion()

prepare

commit

afterCompletion(status)

ejbPassivate()

Option C:

Option A: mark “not registered”

Option B: mark “invalid state”

container

verify cache and update entity state in database

synchro-
nization

persistence
manager
instance

persistence manager
provided classes

ejbStore()

before
Completion()

getConnection()

close connection

after
Completion(status)

ejbPassivate()
209 10/23/00

Entity Bean Component Contract for Container Managed PersistenceEnterprise JavaBeans 2.0, Proposed Final Draft Object interac-

Sun Microsystems, Inc.

con-
in the
9.12.5 Starting the next transaction

The following diagram illustrates the protocol performed for an entity bean instance with
tainer-managed persistence at the beginning of a new transaction. The three options illustrated
diagram correspond to the three commit options in the previous subsection.
 10/23/00 210

Object interaction diagrams Enterprise JavaBeans 2.0, Proposed Final Draft Entity Bean Component Contract for Con-

Sun Microsystems, Inc.
Figure 30 OID of start of transaction for an entity bean instance with container-managed persistence

business method

business method

client instance transaction database
service

containerEJB
Object

container-provided classes

synchro-
nization

javax.transaction.UserTransaction.begin()

ejbActivate()
Option C:

Option A:
do nothing

Option B:
ejbLoad()

registerSynchronization(synchronization)

new

Transaction

registerSynchronization(synchronization)

persistence
manager
instance

ejbLoad()

ejbActivate()

ejbLoad()

registerSynchronization(synchronization)

ejbLoad()

getXX()
registerSynchronization(synchronization)

if option A was used

getConnection()
read entity state from database

object
211 10/23/00

Entity Bean Component Contract for Container Managed PersistenceEnterprise JavaBeans 2.0, Proposed Final Draft Object interac-

Sun Microsystems, Inc.
9.12.6 Removing an entity object

Figure 31 OID of removal of an entity bean object with container-managed persistence

client instance transactiondatabase
service

remove()

EJB entity
context

EJB
Object

container-provided classes

synchro-
nization

ejbRemove()

ejbRemove()

Home
container persistence

manager
instance
 10/23/00 212

Object interaction diagrams Enterprise JavaBeans 2.0, Proposed Final Draft Entity Bean Component Contract for Con-

Sun Microsystems, Inc.

nce

oes not
9.12.7 Finding an entity object

Figure 32 OID of execution of a finder method on an entity bean instance with container-managed persiste

9.12.8 Adding and removing an instance from the pool

The diagrams in Subsections 9.12.2 through 9.12.7 did not show the sequences between the “d
exist” and “pooled” state (see the diagram in Section 9.6.1).

client instance transactiondatabase
service

EJB

search database

entity
context

EJB
Object

find<METHOD>(args)

container-provided classes

synchro-
nizationHome

new

container persistence
manager
instance

ejbFind<METHOD>(args)
213 10/23/00

Entity Bean Component Contract for Container Managed PersistenceEnterprise JavaBeans 2.0, Proposed Final Draft Object interac-

Sun Microsystems, Inc.
Figure 33 OID of a container adding an instance to the pool

Figure 34 OID of a container removing an instance from the pool

instance transactiondatabase
service

EJB entity
context

EJB
Object

container-provided classes

synchro-
nizationHome

container

new

new

setEntityContext(ec)

persistence
manager
instance

setEntityContext(ec)

instance transactiondatabase
service

EJB entity
context

EJB
Object

container-provided classes

synchro-
nizationHome

container

unsetEntityContext()

persistence
manager
instance

unsetEntityContext()
 10/23/00 214

Overview Enterprise JavaBeans 2.0, Proposed Final Draft EJB QL: EJB Query Language for Con-

Sun Microsystems, Inc.

ethods)
ey are

nguage
e man-
n over

th con-
ds in a
Chapter 10 EJB QL: EJB Query Language for
Container Managed Persistence Query
Methods

The Enterprise Java Beans query language (EJB QL) defines query methods (finder and select m
for entity beans with container managed persistence. EJB QL defines query methods so that th
portable across containers and persistence managers. EJB QL is a declarative, SQL-like la
intended to be compiled to the target language of the persistent data store used by a persistenc
ager. It is based on a subset of SQL92 which is enhanced by path expressions that allow navigatio
the relationships defined for entity beans and dependent object classes.

10.1 Overview

The Enterprise JavaBeans query language, EJB QL, is used to define queries for entity beans wi
tainer managed persistence. EJB QL lets the Bean Provider specify the semantics of query metho
portable way.
215 10/23/00

EJB QL: EJB Query Language for Container Managed Persistence Query MethodsEnterprise JavaBeans 2.0, Proposed Final Draft

Sun Microsystems, Inc.

persis-
s to be
ad of
beans’

eans and
rs and

the rela-
sed on
objects.
jects or

uery if
criptor as

entity
ty beans
mas are
emote
such

invoke

face.
ntity

ject’s
alues
he cli-

ERE
EJB QL is a specification language that can be compiled to a target language, such as SQL, of a
tent store used by a persistence manager. This allows the responsibility for the execution of querie
shifted to the native language facilities provided for the persistent store (e.g., RDBMS), inste
requiring queries to be executed directly on the persistent manager’s representation of the entity
state. As a result, query methods are optimizable as well as portable.

The Enterprise JavaBeans query language uses the abstract persistence schemas of entity b
dependent object classes, including their relationships, for its data model. It defines operato
expressions based on this data model.

The Bean Provider uses EJB QL to write queries based on the abstract persistence schemas and
tionships defined in the deployment descriptor. EJB QL depends on navigation and selection ba
the cmp-fields and cmr-fields of the abstract schema types of related entity beans and dependent
The Bean Provider can navigate from an entity bean or dependent object to other dependent ob
beans by using the names of cmr-fields in EJB QL queries.

EJB QL allows the Bean Provider to use the abstract schema types of related entity beans in a q
the abstract persistence schemas of the related beans are defined in the same deployment des
the query. The Bean Provider can navigate both to such locally-defined entity beans and to remote
beans. (In this context, remote entity beans are entity beans with bean managed persistence, enti
using EJB 1.1 container managed persistence, and beans whose abstract persistence sche
defined in a different deployment descriptor.) Although the abstract persistence schemas of r
entity beans are not available to the Bean Provider, it is still possible to use EJB QL to navigate to
remote entity beans. In addition, special expressions in the language allow the Bean Provider to
the finder methods of remote entity beans in queries.

EJB QL queries can be used in two different ways:

• as queries for selecting existing entity objects through finder methods in the home inter
This use of EJB QL allows the results of a finder query to be usable by the clients of an e
bean.

• as queries for selecting objects or values derived from an entity bean or dependent ob
abstract schema type. This use of EJB QL allows the Bean Provider to find objects or v
related to the state of an entity bean or dependent object without exposing the results to t
ent.

An EJB QL query is a string which may contain a SELECT clause, a FROM clause, and a WH
clause.
 10/23/00 216

EJB QL Definition Enterprise JavaBeans 2.0, Proposed Final Draft EJB QL: EJB Query Language for Con-

Sun Microsystems, Inc.

nd rela-
n
entity

h the

ROM

B QL is

xpres-
le dec-
. The
e

n pro-
erived

as fol-

s v
10.2 EJB QL Definition

EJB QL uses a SQL-like syntax to select objects or values based on the abstract schema types a
tionships of entity beans and dependent objects[16]. The path expressions of EJB QL allow the Bea
Provider to navigate over relationships defined by the cmr-fields of the abstract schema types of
beans and dependent object classes.

This chapter provides the full definition of the language.

An EJB QL query is a string which may consist of the following three clauses:

• a SELECT clause, which indicates the types of the objects or values to be selected.

• a FROM clause, which provides navigation declarations that designate the domain to whic
conditional expression specified in the WHERE clause of the query applies.

• a WHERE clause, which restricts the results that are returned by the query.

Of these three clauses, only the FROM clause is always required.

In BNF syntax, an EJB QL query is defined as:

EJB QL :: = [select_clause] from_clause [where_clause]

The clauses shown in the square brackets [] are optional. An EJB QL query must always have a F
clause. There must be a SELECT clause when a query is defined for anejbSelect method.

It is possible to parse and validate EJB QL queries before entity beans are deployed because EJ
based on the abstract schema types of entity beans and dependent object classes.

EJB QL is a typed expression language. Every expression in EJB QL has a type. The type of the e
sion is derived from the structure of the expression; the abstract schema types of the range variab
larations; the types to which the cmp-fields and cmr-fields evaluate; and the types of literals
allowable types in EJB QL are theabstract schema typesof entity beans and dependent objects, th
defined types of cmp-fields, and the entity object types of remote entity beans.

The abstract schema type of an entity bean is derived from its entity bean type and the informatio
vided in the deployment descriptor. Similarly, the abstract schema type of a dependent object is d
from its dependent object class and the deployment descriptor information.

Informally, the abstract schema type of an entity bean or dependent object can be characterized
lows:

[16] Arbitrary constructors which allow the Bean Provider to create new objects, flatten structures, map dependent object clasalues
to dependent value class values, etc., are not within the current design goals of EJB QL.
217 10/23/00

EJB QL: EJB Query Language for Container Managed Persistence Query MethodsEnterprise JavaBeans 2.0, Proposed Final Draft EJB

Sun Microsystems, Inc.

ds to a
e is

ds to a
is

ired to

return

client.
depen-
entity

it is

her a
a col-
ntity
fore

xposed
hich

result

od for
• For every get accessor method of the entity bean (dependent object class) that correspon
cmp-field element in the deployment descriptor, there is a field (“cmp-field”) whose typ
the same as that designated by thecmp-field element.

• For every get accessor method of the entity bean (dependent object class) that correspon
cmr-field element in the deployment descriptor, there is a field (“cmr-field”) whose type
as follows:

• if the role-source element specifies adependent-name element, the abstract
schema type of the dependent object class designated by thedependent-name ele-
ment (or, if the role has a multiplicity ofMany, a collection of such).

• if the role-source element specifies anejb-name element, the abstract schema
type of the entity bean designated by theejb-name element (or, if the role has a
multiplicity ofMany, a collection of such).

• if the role-source element specifies aremote-ejb-name element, the remote
interface type of the entity bean designated by theremote-ejb-name element (or,
if the role has a multiplicity ofMany, a collection of such).

These types are specific to the EJB QL data model only. The Persistence Manager is not requ
implement or otherwise materialize the abstract schema types.

As noted in Section 10.1, EJB QL is used for two types of query methods:

• Finder methods—Finder methods are defined in the home interface of an entity bean and
entity objects.

• Select methods—Select methods are a special type of query method not exposed to the
The Bean Provider uses select methods to select the persistent state of an entity bean or
dent object class or to select entity objects or dependent objects that are related to the
bean or dependent object for which the query is defined.

The syntax of an EJB QL query differs slightly depending on the type of query method for which
defined. In particular,

• A finder method, which is defined in the home interface of an entity bean, must return eit
remote object representing an entity object or a collection of remote objects representing
lection of entity objects. The result type of such a finder method is determined by the e
bean for which it is defined. The EJB QL query string for such a finder method may there
not require a SELECT clause. (See Section 10.2.8.)

• A select method is defined on an entity bean class or dependent object class and is not e
to the client of the entity bean. A query for a select method must have a SELECT clause w
specifies the type of values to be selected.

For a more detailed discussion of the different types of query methods and restrictions on their
types, see Section 9.6.7.

An EJB QL query has parameters that correspond to the parameters of the finder or select meth
which it is defined.
 10/23/00 218

EJB QL Definition Enterprise JavaBeans 2.0, Proposed Final Draft EJB QL: EJB Query Language for Con-

Sun Microsystems, Inc.

ntainer
bstract
mote.”
deploy-
mas are
elds)
s.

e same

eploy-
ploy-
d

a
-
ity
d

er

r
bject’s
select
queries
An EJB QL query is statically defined in theejb-ql deployment descriptor element.

10.2.1 Abstract schema types and query domains

EJB QL is a typed expression language whose design is based on the type model of EJB 2.0 co
managed persistence, with one difference. That difference is as follows: EJB QL queries use the a
schema types of entity beans that are “local” and the remote types of the entity beans that are “re
“Local” entity beans are those whose abstract persistence schemas are defined within the same
ment descriptor as the query. “Remote” entity beans are those whose abstract persistence sche
not specified within the same deployment descriptor. Navigation within local beans (using cmr-fi
results in values of the related entity beans’ abstract schema types rather than their remote type

The domain of an EJB QL query is

• The abstract schema types of all entity beans and dependent object classes defined in th
deployment descriptor. These entity beans are considered to be local.

• All entity beans whose abstract persistence schemas are not defined within the same d
ment descriptor as the query, but which participate in relationships defined within the de
ment descriptor. These entity beans are considered to beremotebecause they are accesse
remotely via finder methods on their home interface.

The Bean Provider creates an ejb-jar file which contains a deployment descriptor describing
several entity beans, their relationships and their dependent objects. EJB QL assumes that
single deployment descriptor in an ejb-jar file constitutes a nondecomposable unit for the per
sistence manager responsible for implementing the abstract persistence schemas of the ent
beans, their dependent objects, and the relationships defined in the deployment descriptor an
the ejb-jar file. Therefore, queries can be written by utilizing navigation over the cmr-fields of
related beans (and dependent object classes) supplied in the same ejb-jar by the Bean Provid
because they are implemented and managed by the same persistence manager.

The domain of a query may be restricted by thenavigability of the relationships of the entity bean o
dependent object class on which it is based. The cmr-fields of an entity bean or dependent o
abstract schema type determine navigability. Using the cmr-fields and their values, a query can
related dependent objects and entity beans and use their abstract schema types in the query. The
can be specified over the navigable relationships described in the deployment descriptor.
219 10/23/00

EJB QL: EJB Query Language for Container Managed Persistence Query MethodsEnterprise JavaBeans 2.0, Proposed Final Draft EJB

Sun Microsystems, Inc.

defined
n’s

y its

les that

rovider
d within

differs
values

n as a
sig-
10.2.2 Naming

Entity beans and dependent object classes are designated in EJB QL query strings as follows:

• The abstract schema type of an entity bean that has an abstract persistence schema
within the same deployment descriptor is designated by the bea
abstract-schema-name , such asOrderBean .

• The abstract schema type of a dependent object class is designated by itsdependent-name .

• A remote entity bean that is referenced by a finder expression is designated b
remote-ejb-name (as contained in theejb-entity-ref deployment descriptor ele-
ment).

• A local entity bean that is referenced by a finder expression is designated by itsejb-name.

Table 7 illustrates the naming convention recommended for an entity bean and used in the examp
follow.

Table 7 Entity Bean Naming Conventions

The development process includes the naming of local and remote entity beans. The Bean P
assigns unique names to entity beans and to dependent object classes so that they can be use
queries. These unique names are scoped within the deployment descriptor file.

To enable queries to be written, the EJB 2.0 specification introduces a naming approach that
slightly from the EJB 1.1 naming approach. The application assembler must not change the
assigned to any of the following deployment descriptor elements when resolvingejb-links :
abstract-schema-name , dependent-name , ejb-name , and remote-ejb-name . The
linking convention for resolving ejb-names is discussed in Section 19.3.2.

10.2.3 Examples

The following naming convention refers to entity beans in subsequent examples: An entity bea
whole is designated by<name>EJB and its implementation class and abstract schema type are de
nated by<name>Bean.

Entity bean for an Order As used in EJB QL

Entity bean’s name

(ejb-name)

OrderEJB

Abstract schema name

(abstract-schema-name)

OrderBean

Implementation class com.acme.ecommerce.OrderBean (not used)

entity bean’s remote type com.acme.ecommerce.Order

(implicitly inferred but not explicitly named in EJB QL)
 10/23/00 220

EJB QL Definition Enterprise JavaBeans 2.0, Proposed Final Draft EJB QL: EJB Query Language for Con-

Sun Microsystems, Inc.

le.

ns
of the

-

ne
tems.)

ear in

on the
a type

ch the
The first example, case (1), assumes that the Bean Provider provides two entity beans,OrderEJB and
ProductEJB . The same deployment descriptor defines the entity beansOrderEJB and Pro-
ductEJB ; their abstract schema types,OrderBean and ProductBean , respectively; and the
dependent object classesLineItem , ShippingAddress , andBillingAddress (with abstract
schema typesLineItem , ShippingAddress , andBillingAddress respectively). These beans
are logically in the same ejb-jar file, as shown in Figure 35.

Figure 35 Two beans, OrderEJB and ProductEJB, with abstract persistence schemas in the same ejb-jar fi

In this example,ProductEJB is co-located withOrderEJB . The abstract schema types of both bea
are available to the Bean Provider and the Bean Provider can use the cmp-fields and cmr-fields
abstract schema types of the related beans in queries. The dependent object classesShippingAd-
dress andBillingAddress are used in two different one-to-one relationships byOrderBean .
There is also a one-to-many relationship betweenOrderBean andLineitem . The dependent object
classLineItem is related toProductEJB in a one-to-one relationship.

EJB QL allows the Bean Provider to specify finder queries forOrderEJB by navigating over the
cmr-fields defined inOrderBean andLineItem . A finder method query to find all orders with pend
ing line items might be written as follows:

FROM OrderBean o, l IN o.lineItems
WHERE l.shipped = FALSE

This query navigates over the cmr-fieldlineItems of the abstract schema typeOrderBean to find
line items, and uses the cmp-fieldshipped of LineItem to select those orders that have at least o
line item that has not yet shipped. (Note that this query does not select orders that have no line i

Note that although predefined reserved identifiers, such as FALSE, FROM, WHERE and IN app
upper case in this example, they are case insensitive.

This example does not use a SELECT clause because the query is defined for a finder method
entity bean’s home interface and it contains only one reference to the entity bean’s abstract schem
using a range variable. Such queries must always return entity objects of the bean type for whi
query is defined.

OrderBean

LineItem

ProductBean

Shipping
Address

Billing
Address

1
m

1

1

1
1

1

1

221 10/23/00

EJB QL: EJB Query Language for Container Managed Persistence Query MethodsEnterprise JavaBeans 2.0, Proposed Final Draft EJB

Sun Microsystems, Inc.

ans, the

for

naviga-

d

ed
se
o-

e

d in the
such

e remote
ferencing

y beans
bstract

r.
Because the same deployment descriptor defines the abstract persistence schemas of both be
Bean Provider can also specify a query forOrderEJB that utilizes the abstract schema type ofPro-
ductEJB , and hence the cmp-fields and cmr-fields of the abstract schema typesOrderBean and
ProductBean . This can be done because the abstract schema typesOrderBean andProduct-
Bean are related to each other by means of their relationships withLineItem . For example, if the
abstract schema typeProductBean has a cmp-field namedproduct_type , a finder query for
OrderEJB can be specified using this cmp-field. Such a finder query might be: “Find all orders
products which have the product typeoffice supplies”. An EJB QL query string for this might be:

FROM OrderBean o, l IN o.lineItems
WHERE l.product.product_type = ‘office_supplies’

This query is specified by using theabstract-schema-name for OrderEJB , namelyOrder-
Bean, which designates the abstract schema type over which the query ranges. The basis for the
tion is provided by the cmr-fieldslineItems and product of the abstract schema types
OrderBean andLineItem respectively.

Note that the deployment descriptor describes the relationships between entity beans an
dependent objects using the name of the entity bean, namely theejb-name element defined
for an entity bean. In this example,OrderEJB and ProductEJB are the ejb-names of the
entity beans. Container managed persistence allows one-way navigable relationships from
dependent objects and entity beans to remote entity beans (entity beans with bean manag
persistence, entity beans using EJB 1.1 container managed persistence, and beans who
abstract persistence schemas are defined in a different deployment descriptor). The Bean Pr
vider designates a unique name for such a remote bean by using theremote-ejb-name
deployment descriptor element. See Section 9.4.14 for a discussion of the use of th
ejb-name and remote-ejb-name deployment descriptor elements in defining relation-
ships.

EJB QL also allows navigation to entity beans whose abstract persistence schemas are not define
same deployment descriptor. The Bean Provider can write queries that utilize relationships to
remote entity beans. The Bean Provider, however, cannot access the abstract schema types of th
beans because the abstract schema types are not available, but he or she can define queries re
remote entity beans using special navigation expressions within EJB QL.

Figure 36 illustrates referencing remote entity beans. This example, case (2), uses the same entit
as in the previous example. However, in this case a different deployment descriptor defines the a
persistence schema ofProductEJB . The relationship toProductEJB is defined using a
remote-ejb-name . The Bean Provider can utilize the abstract schema typeOrderBean and the
dependent object classesLineItem , ShippingAddress , andBillingAddress in queries, but
cannot use the abstract schema typeProductBean because it is not known by the Bean Provide
However, the Bean Provider can find related remote objects ofProductEJB and can also utilize finder
methods defined onProductEJB to locate remote entity objects.
 10/23/00 222

EJB QL Definition Enterprise JavaBeans 2.0, Proposed Final Draft EJB QL: EJB Query Language for Con-

Sun Microsystems, Inc.

riptors,

on the

g sec-

vari-
expres-

e. The

ROM
clara-
Figure 36 The abstract persistence schemas of OrderEJB and ProductEJB are in different deployment desc
and hence two different ejb-jar files.

The remainder of this chapter illustrates the capabilities of EJB QL using sample queries based
extended examples in case (1) and case (2). By usingProductEJB in different ways, the sample que-
ries illustrate the EJB QL usage differences between local beans and remote beans. The followin
tions cover the use of abstract schema types and remote types within EJB QL in detail.

10.2.4 The FROM clause and navigational declarations

In an EJB QL query, the FROM clause defines the scope of the query by declaring identification
ables. The FROM clause designates the domain of the query, which may be constrained by path
sions.

The identification variables declared in the FROM clause designate instances of a particular typ
FROM clause can contain multiple identification variable declarations separated by a comma (,).

from_clause::=FROM identification_variable_declaration
[, identification_variable_declaration]*

identification_variable_declaration ::= collection_member_declaration |
 range_variable_declaration

collection_member_declaration ::= identifier IN collection_valued_path_expression |
identifier IN collection_valued_reference_expression

range_variable_declaration :: { abstract_schema_name | dependent_name} [AS] identifier

We discuss identifiers and identification variables first because they are key constructs in the F
clause. Following this discussion, we turn to collection member declarations and range variable de
tions.

OrderBean

deployment descriptor 1 (ejb-jar 1)

LineItem

ProductBean

Shipping
Address

1
m

OrderBean

BillingAddress

Product

deployment descriptor 2 (ejb-jar 2)
223 10/23/00

EJB QL: EJB Query Language for Container Managed Persistence Query MethodsEnterprise JavaBeans 2.0, Proposed Final Draft EJB

Sun Microsystems, Inc.

a Java
ntifier

An

other

er or

vari-

endent
EJB

ne of
10.2.4.1 Identifiers

An identifier is a character sequence of unlimited length. The character sequence must begin with
identifier start character and all other characters must be Java identifier part characters. An ide
start character is any character for which the methodCharacter.isJavaIdentifierStart
returns true. This includes the underscore (_) character and the dollar sign ($) character. An identifier
part character is any character for which the methodCharacter.isJavaIdentifierPart
returns true. The question mark (?) character is reserved for use by EJB QL.

The following are the reserved identifiers in EJB QL:SELECT, FROM, WHERE, NULL, TRUE, FALSE,
NOT, AND, OR, BETWEEN, LIKE, IN, AS, FROM, WHERE, UNKNOWN, EMPTY,andIS.

10.2.4.2 Identification variables

An identification variable is a valid identifier declared in the FROM clause of an EJB QL query.
identification variable may be declared using the special operators IN and, optionally, AS.

All identification variables must be declared in the FROM clause. They cannot be declared in
clauses.

Identification variables are identifiers. An identification variable must not be a reserved identifi
have the same name as any of the following:

• ejb-name

• remote-ejb-name

• abstract-schema-name

• dependent-name

Like other identifiers, identification variables are case insensitive.

An identification variable evaluates to a value of the type of the expression used in declaring the
able. For example, recall the FROM clause of the example EJB QL finder query forOrderEJB :

FROM OrderBean o, l IN o.lineItems

In the declarationl IN o.lineItems, the identification variablel evaluates to anyLineItem
value directly reachable fromOrderBean . The cmr-fieldlineItems is a reference to the collection
of LineItem dependent objects and the identification variablel refers to an element of this collec-
tion. The type of l is the abstract schema type ofLineItem .

Identification variables designate a member of an abstract schema type of an entity bean or dep
object class or an element of a collection. Identification variables are existentially quantified in an
QL query.

An identification variable thus always designates a reference to a single value. It is declared in o
two ways:
 10/23/00 224

EJB QL Definition Enterprise JavaBeans 2.0, Proposed Final Draft EJB QL: EJB Query Language for Con-

Sun Microsystems, Inc.

endent
are the

res-

iden-
of the

endent
SQL;

y navi-
ts may
an uti-

rdless of
rovider

mpare

igation
class.
use the
Section

r, the
nce
o a col-
1. A range variable is declared using the abstract schema name of an entity bean or the dep
name of a dependent object class, where abstract schema name and dependent name
values of theabstract-schema-name and dependent-name deployment descriptor
elements of the entity bean or dependent object class respectively.

2. A collection member identification variable is declared using a collection-valued path exp
sion or collection-valued reference expression.

The identification variable declarations are evaluated from left to right in the FROM clause, and an
tification variable declaration can use the result of a preceding identification variable declaration
query string.

10.2.4.3 Range variable declarations

An identification variable can range over the abstract schema type of an entity bean or a dep
object class. The syntax for declaring an identification variable as a range variable is similar to
optionally, it uses theAS operator.

Objects or values that are related to an entity bean or a dependent object are typically obtained b
gation using path expressions. However, navigation does not reach all objects. Dependent objec
be “detached,” that is, not related to other dependent objects or entity beans. The Bean Provider c
lize a range variable (i.e., an identification variable declared by arange_variable_declaration) to range
over all instances of a dependent object abstract schema type to select dependent objects rega
whether they can be reached using navigation. Range variable declarations thus allow the Bean P
to designate a “root” for objects which may not be reachable by navigation.

Multiple range variable declarations are useful for queries where the Bean Provider needs to co
multiple values ranging over the same abstract schema type. See Section 10.2.6.

10.2.4.4 Collection member declarations

An identification variable, when declared by acollection_member_declaration, ranges over values of
a collection obtained by navigation using a path expression. A path expression represents a nav
involving the cmr-fields of the abstract schema type of a local entity bean or a dependent object
Because a path expression can be based on another path expression, the navigation can
cmr-fields of related entity beans and dependent object classes. Path expressions are covered in
10.2.4.6.

An identification variable of a collection member declaration is declared using a special operato
reserved identifierIN , followed by a collection-valued path expression or a collection-valued refere
expression. The path expression evaluates to a collection type specified as a result of navigation t
lection-valued cmr-field in the abstract schema type of an entity bean or dependent object class.

For example, the FROM clause for a query defined forOrderEJB might contain the following identifi-
cation variable declaration clause:

l IN o.lineItems
225 10/23/00

EJB QL: EJB Query Language for Container Managed Persistence Query MethodsEnterprise JavaBeans 2.0, Proposed Final Draft EJB

Sun Microsystems, Inc.

the

g col-

ation
s

to

ath

can
ndent
r nav-

using
ions
ing to
is, the
s in a

expres-
ference
ibed in

as fol-
In this example,lineItems is the name of a cmr-field whose value is a collection of instances of
abstract schema type of theLineItem dependent object class. The identification variablel designates
a member of this collection, asingleLineItem instance. In this example,o is an identification vari-
able of the abstract schema type of OrderBean.

Note, however, that the identification variable declarationp IN lineItems.product is illegal
becauselineItems evaluates to a collection and path expressions cannot be further defined usin
lection-valued path expressions.

10.2.4.5 Example

The following FROM clause contains two identification variable declaration clauses. The identific
variable declared in the first clause is used in the second clause. The clauses declare the variableo and
l respectively. The range variable declarationOrderBean AS o designates the identification vari-
ableo as a range variable whose type is the abstract schema type ofOrderBean . The identification
variablel has the abstract schema type ofLineItem . Because the clauses are evaluated from left
right, the identification variable l can utilize the results of the navigation ono.

FROM OrderBean AS o, l IN o.lineItems

10.2.4.6 Path expressions

An identification variable followed by a navigation operator and a cmp-field or cmr-field is a p
expression.

EJB QL has two navigation operators used in constructing a path expression:

• The dot operator (.) designates navigation to cmr-fields and cmp-fields. The dot operator
only be used for navigation within the abstract schema type of an entity bean or depe
object class. It cannot be used for navigation to entity objects; hence, it cannot be used fo
igation to remote entity beans.

• The=> operator designates navigation to remote beans (entity objects).

Depending on navigability, a path expression that leads to a cmr-field may be further composed
the navigation operators (. and=>). Path expressions can be composed from other path express
only if the original path expression evaluates to a single valued type (not a collection) correspond
a cmr-field. The type of the path expression is the type computed as the result of navigation; that
type of a cmp-field or a cmr-field to which the expression navigates. A path expression that end
cmp-field is terminal and cannot be further composed.

Path expressions comprise not only single-valued path expressions and collection-valued path
sions, as described below, but also single-valued reference expressions and collection-valued re
expressions. These latter path expressions allow navigation to remote types and are descr
Section10.2.4.7 “Path expressions that reference remote interface types” .

The syntax for single valued path expressions and collection valued path expressions is defined
lows:
 10/23/00 226

EJB QL Definition Enterprise JavaBeans 2.0, Proposed Final Draft EJB QL: EJB Query Language for Con-

Sun Microsystems, Inc.

ion-
d entity
related

la-
endent

deploy-
igation
bean
criptor.
not
d in the
wever
ean.

pe

tor, as in
-

p-field.

collec-

en
st be

uery, as
single_valued_path_expression ::=
{single_valued_navigation|identification_variable}.cmp_field |

single_valued_navigation
single_valued_navigation ::=

identification_variable.[single_valued_cmr_field.]* single_valued_cmr_field
collection_valued_path_expression ::=

identification_variable.[single_valued_cmr_field.]*collection_valued_cmr_field)

A single_valued_cmr_field is designated by a cmr-field name in a one-to-one or many-to-one relat
ship. This type of expression evaluates to a single value of the abstract schema type of the relate
bean or dependent object class. The type of the expression is the abstract schema type of the
entity bean or dependent object.

A collection_valued_cmr_field is designated by a cmr-field in a one-to-many or a many-to-many re
tionship. The type of the expression is the abstract schema type of the related entity bean or dep
object. The type of acollection_valued_cmr_field is a collection of values of the designated type.

Navigation to related entity beans whose abstract persistence schemas are defined in the same
ment descriptor always results in a value of the related entity bean’s abstract schema type. Nav
using the dot (.) operator in a path expression can be used to a cmr-field that refers to an entity
only if that entity bean’s abstract persistence schema is defined within the same deployment des
Navigation using the dot (.) operator to cmr-fields that refer to entity bean remote interface types is
allowed. This is because the abstract persistence schema of an entity bean that is not co-locate
same deployment descriptor is unavailable. Navigation to a remote entity bean is possible ho
using the=> operator, which provides navigation to the remote interface type of a related entity b
See Section 10.2.4.7.

In the example, where the abstract persistence schemas ofProductEJB andOrderEJB are defined
in the same deployment descriptor, ifl is an identification variable representing an instance of ty
LineItem , the path expressionl.product has the abstract schema typeProductBean . If the
abstract persistence schemas of the two beans are not defined in the same deployment descrip
case (2) of Section 10.2.1, the path expressionl.product is invalid because the dot navigation opera
tor (.) cannot be used to navigate to the remote interface type of an entity bean.

The evaluation of a path expression to a cmp-field results in the Java type designated by the cm
The expressionl.product.name in the example thus has the typejava.lang.String as a
result of navigational composition to the cmp-fieldname.

It is syntactically illegal to compose a path expression from a path expression that evaluates to a
tion. For example, ifo designatesOrderBean, the path expressiono.lineItems.product is
illegal since navigation tolineItems results in a collection. This case should produce an error wh
the EJB QL query string is verified. To handle such a navigation, an identification variable mu
declared to range over the elements of thelineItems collection in the FROM clause. Another path
expression must be designated to navigate over each such element in the WHERE clause of the q
follows:

FROM OrderBean AS o, l in o.lineItems
WHERE l.product.name = ‘widget’
227 10/23/00

EJB QL: EJB Query Language for Container Managed Persistence Query MethodsEnterprise JavaBeans 2.0, Proposed Final Draft EJB

Sun Microsystems, Inc.

The
ty bean
tity
sing the

s entity
same

s that

iables.
of que-

es that

n EJB

gle
Java
10.2.4.7 Path expressions that reference remote interface types

The EJB QL navigation operator=> is used to navigate to instances of an entity bean’s remote type.
Bean Provider uses this operator in an expression to obtain the remote interface of a related enti
(that is, the entity object). The=> operator is used to navigate to remote entity beans or to local en
beans that are to be treated as remote. References to remote interfaces can only be handled by u
=> operator.

In the example, when the identification variablel designates an instance of typeLineItem , the
expressionl=>product evaluates to the type of the remote interface forProductEJB , namely
Product . Its value is an instance ofProduct ; that is, an entity object.

The Bean Provider can use path expressions that reference remote interface types to acces
objectsremotely, even if the abstract persistence schema of the entity bean is defined in the
deployment descriptor as the query. Therefore, the expressionl=>product is valid for both case (1)
and case (2) discussed in Section 10.2.2.

EJB QL does not allow further navigation from remote entity beans. Therefore, path expression
reference remote interface types are terminal.

Note that only collection-valued reference expressions can be used in declaring identification var
Single-valued reference expressions can be used in the SELECT clause and the WHERE clause
ries.

Path expressions that reference remote interface types have the following form:

single_valued_reference_expression ::=
{single_valued_navigation | identification_variable} => single_valued_cmr_field

collection_valued_reference_expression ::=
{single_valued_navigation | identification_variable} => collection_valued_cmr_field

10.2.5 WHERE clause and conditional cxpressions

The WHERE clause of a query consists of a conditional expression used to select objects or valu
satisfy the expression. Thus, the WHERE clause restricts the result of a query.

A WHERE clause is defined as follows:

where_clause ::= WHERE conditional_expression

The following sections describe the language constructs used in the conditional expressions of a
QL query.

10.2.5.1 Literals

A string literal is enclosed in single quotes—for example: ‘literal’. A string literal that includes a sin
quote is represented by two single quotes—for example: ‘literal’’s’. EJB QL string literals are like
String literals in that they use unicode character encoding.
 10/23/00 228

EJB QL Definition Enterprise JavaBeans 2.0, Proposed Final Draft EJB QL: EJB Query Language for Con-

Sun Microsystems, Inc.

xact
r

or a
ers in

ccor-

the

tifica-
bject’s

l

-

An exact numeric literal is a numeric value without a decimal point, such as 57, -957, +62. E
numeric literals support numbers in the range of Javalong . Exact numeric literals use the Java intege
literal syntax.

An approximate numeric literal is a numeric value in scientific notation, such as 7E3, -57.9E2,
numeric value with a decimal, such as 7., -95.7, +6.2. Approximate numeric literals support numb
the range of Javadouble . Approximate literals use the Java floating point literal syntax.

The Bean Provider may utilize appropriate suffixes to indicate the specific type of the literal in a
dance with the Java Language Specification.

The boolean literals areTRUE andFALSE.

Although predefined reserved literals appear in upper case, they arecase insensitive.

10.2.5.2 Identification variables

All identification variables used in the WHERE clause of an EJB QL query must be declared in
FROM clause, as described in Section 10.2.4.2.

Identification variables are existentially quantified in the WHERE clause. This means that an iden
tion variable represents a member of a collection or an instance of an entity bean or dependent o
abstract schema type. An identification variable never designates a collection in its entirety.

10.2.5.3 Path expressions

It is illegal to use acollection_valued_path_expression within a WHERE clause as part of a conditiona
expression except in anempty_collection_comparison_expression.

It is illegal to use acollection_valued_reference_expression within a WHERE clause as part of a condi
tional expression except in anempty_collection_comparison_expression.
229 10/23/00

EJB QL: EJB Query Language for Container Managed Persistence Query MethodsEnterprise JavaBeans 2.0, Proposed Final Draft EJB

Sun Microsystems, Inc.

lause

er of
se all

signa-

path

s, path

s, arith-
10.2.5.4 Input parameters
The following rules apply to input parameters. Input parameters can only be used in the WHERE c
of a query.

• Input parameters are designated by the question mark (?) prefix followed by an integer. For
example:?1 .

• The number of distinct input parameters in an EJB QL query must not exceed the numb
input parameters for the finder or select method. It is not required that the EJB QL query u
input parameters for the finder or select method.

• Input parameters must be numbered starting from 1.

• An input parameter evaluates to the type of the corresponding parameter defined in the
ture of the finder or select method with which the query is associated.

• Input parameters can only be used in conditional expressions involving single-valued
expressions or single-valued reference expressions.

10.2.5.5 Conditional expression composition

Conditional expressions are composed of themselves, comparison operations, logical operation
expressions that evaluate to boolean values, and boolean literals.

Arithmetic expressions can be used in comparison expressions and are composed of themselve
metic operations, path expressions that evaluate to numeric values, and numeric literals.

A finder expression can be used only within a conditional expression.

Standard bracketing() for ordering expression evaluation is supported.

Conditional expressions are defined as follows:

conditional_expression ::= conditional_term | conditional_exp OR conditional_term
conditional_term ::= conditional_factor | conditional_term AND conditional_factor
conditional_factor ::= [NOT] conditional-test
conditional_test :: = conditional_primary [IS [NOT] {TRUE | FALSE | UNKNOWN}]
conditional_primary ::= simple_cond_expression | (conditional_expression)
simple_cond_expression ::= comparison_expression | between_expression | like_expression |

in_expression | null_comparison_expression |
empty_collection_comparison_expression

10.2.5.6 Operators and operator precedence

The operators are listed below in order of increasing precedence.
 10/23/00 230

EJB QL Definition Enterprise JavaBeans 2.0, Proposed Final Draft EJB QL: EJB Query Language for Con-

Sun Microsystems, Inc.

is as

f the

lows:
• Logical operators in precedence order are:NOT, AND, OR

• Comparison operators are :=, >, >=, <, <=, <> (not equal)

• Arithmetic operators in precedence order:

+, - unary

*, / multiplication and division

+, - addition and subtraction

Arithmetic operations must use Java numeric promotion.

• Navigation operator (.)

• Remote interface reference operator=>

The following sections describe other operators used in specific expressions.

10.2.5.7 Between expressions

The syntax for the use of the comparison operator [NOT] BETWEEN in an arithmetic expression
follows:

arithmetic_expression [NOT] BETWEEN arithmetic-expr AND arithmetic-expr

Examples are:

p.age BETWEEN 15 and 19 is equivalent top.age >= 15 AND p.age <= 19

p.age NOT BETWEEN 15 and 19 is equivalent top.age < 15 OR p.age > 19

If the value of an arithmetic expression used in a between expression is NULL, the value o
BETWEEN expression is unknown.

10.2.5.8 In expressions

The syntax for the use of the comparison operator [NOT] IN in a comparison expression is as fol

single_valued_path_expression [NOT] IN (string-literal1, string-literal2,...) |
single_valued_reference_expression [NOT] IN (finder_expression)

Thesingle_valued_path_expression must have aString value.

Thesingle_valued_reference_expression must have a remote interface object type value.

Examples are:

o.country IN (’UK’, ’US’, ’France’) is true forUKand false forPeru , and is equivalent
to the expression(o.country = ’UK’) OR (o.country = ’US’) OR (o.country = ’
France’) .
231 10/23/00

EJB QL: EJB Query Language for Container Managed Persistence Query MethodsEnterprise JavaBeans 2.0, Proposed Final Draft EJB

Sun Microsystems, Inc.

set of

NOT

of the

fol-

e
s. The
ng of

ws:
o.country NOT IN (’UK’, ’US’, ’France’) is false forUKand true forPeru , and is
equivalent to the expressionNOT ((o.country = ’UK’) OR (o.country = ’US’) OR
(o.country = ’France’)) .

There must be at least one string-literal in the comma separated string literal list that defines the
values for theIN expression.

If the value of a single-valued path expression or single-valued reference expression in an IN or
IN expression isNULL, the value of the expression is unknown.

See Section 10.2.5.11 for information on finder expressions. See Section 10.3.3 for an example
use of IN expressions with finder expressions.

10.2.5.9 Like expressions

The syntax for the use of the comparison operator [NOT] LIKE in a conditional expression is as
lows:

single_valued_path_expression [NOT] LIKE pattern-value [ESCAPE escape-character]

The single_valued_path_expression must have aString value. Thepattern-value is a string literal in
which an underscore (_) stands for any single character, a percent (%) character stands for any sequenc
of characters (including the empty sequence), and all other characters stand for themselve
optionalescape-character is a single character string literal and is used to escape the special meani
the underscore and percent characters inpattern-value.

Examples are:

• address.phone LIKE ‘12%3’ is true for ‘123’ ‘12993’ and false for ‘1234’

• asentence.word LIKE ‘l_se’ is true for ‘lose’ and false for ‘loose’

• aword.underscored LIKE ‘_%’ ESCAPE ‘\’ is true for ‘_foo’ and false for ‘bar’

• address.phone NOT LIKE ‘12%3’ is false for ‘123’ and ‘12993’ and true for ‘1234’

If the value of thesingle_valued_path_expression is NULL, the value of the LIKE expression is
unknown.

10.2.5.10 Null comparison expressions

The syntax for the use of the comparison operator IS NULL in a conditional expression is as follo

single_valued_path_expression IS NULL | single_valued_path_expression IS NOT NULL

A null comparison expression tests whether or not the single valued path expression is aNULL value.

Path expressions containingNULL values during evaluation returnNULL values.
 10/23/00 232

EJB QL Definition Enterprise JavaBeans 2.0, Proposed Final Draft EJB QL: EJB Query Language for Con-

Sun Microsystems, Inc.

an

ession

used in

mpar-
iable.

e of a
e, the

in an
is

ueries

or a

ean.
10.2.5.11 Empty collection comparison expressions

The syntax for the use of the comparison operator IS EMPTY in
empty_collection_comparison_expression is as follows:

collection_valued_path_expression IS [NOT] EMPTY|
collection_valued_reference_expression IS [NOT] EMPTY

This expression tests whether or not the collection designated by the collection-valued path expr
or collection-valued reference expression is empty (that is, it has no elements).

This is the only type of expression where a collection-valued path or reference expression can be
the WHERE clause.

The collection designated by the collection-valued path expression used in an empty collection co
ison expression must not be used in the FROM clause for the declaration of an identification var
An identification variable declared as a member of a collection implicitly designates the existenc
non-empty relationship; testing whether the same collection is empty is contradictory. Therefor
following query is invalid.

FROM OrderBean o, l in o.lineItems
WHERE o.lineItems IS EMPTY

If the value of the collection-valued path expression or collection-valued reference expression
empty collection comparison expression isNULL, the value of the empty comparison expression
unknown.

10.2.5.12 Finder expressions

A finder expression is used to evaluate an entity bean’s finder method. Finder expressions allow q
to invoke the finder methods of an entity bean’s home interface. A finder expression, however,cannotbe
used to invoke the select method of an entity bean or dependent object class.

A finder expression has the following syntax:

EjbName>>finder_method_name(arg1, ..., argn).

EjbName designates an entity bean. It must correspond to either anejb-name that specifies an entity
bean whose abstract persistence schema is defined in the deployment descriptor
remote-ejb-name that specifies an entity bean in anejb-entity-ref element. The operator
>> locates the home interface of the bean and calls the finder method on the designated entity b

The finder method of the entity bean is designated byfinder_method_name. The arguments must match
those of the signature of the finder method of the entity bean designated byEjbName.
233 10/23/00

EJB QL: EJB Query Language for Container Managed Persistence Query MethodsEnterprise JavaBeans 2.0, Proposed Final Draft EJB

Sun Microsystems, Inc.

values
uctor

this is

type

expres-

’s own
Finder method arguments must be literals representing numeric values, string values, the boolean
TRUEand FALSE, constructor expressions, or input variables. The constructors used in constr
expressions are restricted to the following:Boolean , Byte , Integer , Long , Short , Float , and
Double . These constructors in finder expressions take only literals as arguments. (Note that
more restrictive than their Java definitions.)

For example, the following is a valid finder expression: the argument to the finder is an object of
Integer .

ProductEJB >> findByQuantity(new Integer(13000))

The Bean Provider must not use other types of arguments, such as path expressions, in finder
sions. For example, the following query is illegal.

SELECT o
FROM OrderBean AS o, l IN o.lineItems
WHERE l=>product IN

(ProductEJB >> findByMakerAndCity(?1,o.shipping_address.city))

The Bean Provider must not write a finder query that includes a finder expression using the bean
finder methods.

10.2.5.13 Functional expressions

EJB QL includes the following built-in functions[17].

String Functions:

• CONCAT(String, String) returns aString

• SUBSTRING(String, start, length) returns aString

• LOCATE(String, String [, start]) returns anint

• LENGTH(String) returns anint

Note thatstart andlength designate the positions in a string defined by anint .

Arithmetic Functions:

• ABS(number) returns a number (int , float , ordouble)

• SQRT(double) returns adouble

[17] These functions are a subset of the functions defined for JDBC 2.0 drivers, as described in Appendix A in JDBCAPI API tutorial
and Reference, Second Edition.
 10/23/00 234

EJB QL Definition Enterprise JavaBeans 2.0, Proposed Final Draft EJB QL: EJB Query Language for Con-

Sun Microsystems, Inc.

use is
er the
LECT

e for a
,

valued
entity

g

te

owing

e Java

s one
ct val-
10.2.6 SELECT clause
An EJB QL query string used for a select method requires a SELECT clause. The SELECT cla
optional for a finder query if the FROM clause contains a single range variable that ranges ov
abstract schema type of the entity bean for which the finder method is defined. Otherwise, a SE
clause is required for a finder query.

The SELECT clause defines the types of values to be returned by the query. The valid return typ
SELECT clause is determined by theejbSelect<METHOD> method, as described in Section 9.6.7
or by the entity bean with which the finder method is associated.

The SELECT clause has the following syntax:

select_clause ::=
SELECT {single_valued_path_expression |

single_valued_reference_expression |
identification_variable |
@@identification_variable}

The SELECT clause determines the type of the values returned by a query. The type of a single-
path expression or identification variable specified in the body of a SELECT clause cannot be an
bean’s abstract schema type. For example, the following query is illegal:

SELECT l.product FROM OrderBean AS o, l IN o.lineItems

The Bean Provider, however, can returnremoteobjects (that is, entity object types), as in the followin
query:

SELECT l=>product FROM OrderBean AS o, l IN o.lineItems

The ejbSelect<METHOD> method for which this query is specified returns a collection of remo
objects of typeProduct .

Note that the SELECT clause must be specified to return a single-valued expression. The foll
query returns a collection of all line items that are related to some order.

SELECT l FROM OrderBean AS o, l IN o.lineItems

The query below, however, is not valid:

SELECT o.lineItems FROM OrderBean AS o

It is the responsibility of the Persistence Manager to map the types returned by the query to th
types that are returned by theejbFind or ejbSelect method with which the query is associated.

Unlike select methods, finder methods always return entity objects. If the FROM clause contain
identification variable designating the entity bean’s abstract schema type, the selected entity obje
ues are implicit in the query definition and the finder query does not require a SELECT clause.
235 10/23/00

EJB QL: EJB Query Language for Container Managed Persistence Query MethodsEnterprise JavaBeans 2.0, Proposed Final Draft EJB

Sun Microsystems, Inc.

entity
his case
entity
bean’s

his is
ond to

ed val-
s to

ity for
stract

bean.

efined
entity
object

ed to
However, if the Bean Provider wants to select values by comparing more than one instance of an
bean abstract schema type, the query string requires a SELECT clause to designate the result. T
is identified by the use of more than one range variable declaration in the FROM clause of the
bean’s abstract schema type. When there is more than one range variable designating the entity
abstract schema type in the FROM clause, the finder query must have a SELECT clause.

An EJB QL query cannot return an entity bean’s abstract schema type in the SELECT clause. T
because finder and select methods cannot return values (or collections of values) that corresp
entity bean abstract schema types in the programming model. To ensure proper typing of return
ues, EJB QL uses the@@operator to designate casting of an identification variable that correspond
an entity bean’s abstract schema type to an entity object.

The following finder method query returns orders whose quantity is greater than the order quant
John Smith. This example illustrates the use of two different range variables, both of the ab
schema typeOrderBean , and the use of the@@ operator.

SELECT @@o1
FROM OrderBean o1, OrderBean o2
WHERE o1.quantity > o2.quantity AND

o2.customer.lastname = ‘Smith’ AND
o2.customer.firstname= ‘John’

In EJB QL, this type of casting is used only to designate the appropriate return type for an entity

Because finder methods cannot return arbitrary types, the SELECT clause of an EJB QL query d
for a finder method must always have the same type as that of the remote interface type of the
bean for which the finder method is defined. In contrast, select methods can return dependent
types or other values, in addition to entity bean remote types.

For example, the following EJB QL returns all line items regardless of whether a line item is relat
an order or a product:

SELECT l
FROM LineItems AS l

The following example returns all line items related to an order:

SELECT l
FROM OrderBean o, l IN o.lineItems
 10/23/00 236

EJB QL Definition Enterprise JavaBeans 2.0, Proposed Final Draft EJB QL: EJB Query Language for Con-

Sun Microsystems, Inc.

lue.
10.2.7 Null values

When the target of a reference does not exist in the persistent store, its value is regarded asNULL. SQL
92 NULL semantics [21] defines the evaluation of conditional expressions containingNULL values.
The following is a brief description of these semantics:

• Comparison or arithmetic operations with an unknown value always yield an unknown va

• Path expressions that containNULL values during evaluation returnNULL values.

• The IS NULL and IS NOT NULL operators convert aNULL cmp-field or single-valued
cmr-field value into the respective TRUE or FALSE value.

• Boolean operators use three valued logic, defined by Table 8, Table 9, and Table 10.

• Conditional tests use three valued logic, defined by Table 11.

Table 8 Definition of the AND operator

AND T F U

T T F U

F F F F

U U F U

Table 9 Definition of the OR operator

OR T F U

T T T T

F T F U

U T U U

Table 10 Definition of the NOT operator

NOT

T F

F T

U U
237 10/23/00

EJB QL: EJB Query Language for Container Managed Persistence Query MethodsEnterprise JavaBeans 2.0, Proposed Final Draft EJB

Sun Microsystems, Inc.

d to
motion
g the

senta-
umeric
l-
t types

rimary

me pri-

same

milli-

r this
ith a
10.2.8 Equality semantics

EJB QL only permitslike type values to be compared. There is one exception to this rule. It is vali
compare exact numeric values and approximate numeric values (the rules of Java numeric pro
define the required type conversion). The conditional expression is disallowed when attemptin
comparison of non-like type values except for this numeric case.

According to the semantics of value comparison, values are compared with respect to their repre
tion in Java, not according to their representation in the persistent data source. For example, n
primitive types cannot be assumed to haveNULLvalues. If the Bean Provider wishes to allow null va
ues for cmp-fields, he or she should specify those cmp-fields to have the equivalent Java objec
instead of primitive types; for example,Integer rather thanint .

String andBoolean comparison is restricted to= and<>. Two strings are equal if and only if they
contain the same sequence of characters. This is different from SQL.

Two entity beans of the same abstract schema type are equal if and only if they have the same p
key value.

Two dependent objects of the same abstract schema type are equal if and only if they have the sa
mary key value.

Two remote objects of the same type are considered equal if and only if the entity objects have the
primary key value.

10.2.9 Restrictions

Date and time values should use the standard Javalong millisecond value. A date or time literal in an
EJB QL query should be an integer literal for a millisecond value. The standard way to produce
second values is to usejava.util.Calendar .

Although SQL supports fixed decimal comparison in arithmetic expressions, EJB QL does not. Fo
reason EJB QL restricts exact numeric literals to those without a decimal point (and numerics w
decimal point as an alternate representation for approximate numeric values).

Table 11 Definition of the conditional test

conditional test

expression value

T F U

expression IS TRUE T F F

expression IS FALSE F T F

expression IS UNKNOWN F F T
 10/23/00 238

Examples Enterprise JavaBeans 2.0, Proposed Final Draft EJB QL: EJB Query Language for Con-

Sun Microsystems, Inc.

, entity
ries that

sed on
EJB QL does not support the use of comments.

The container managed persistence data model does not currently support inheritance. Therefore
beans, dependent objects, or value classes of different types cannot be compared. EJB QL que
contain such comparisons are invalid.

10.3 Examples

The following examples illustrate the syntax and semantics of EJB QL. These examples are ba
the example presented in Section 10.2.3.

10.3.1 Simple queries
Find all orders:

FROM OrderBean o

Find all orders that need to be shipped to California:

FROM OrderBean o
WHERE o.shipping_address.state = ‘CA’

10.3.2 Queries with dependent object classes

Find all orders which have line items:

FROM OrderBean o, l in o.lineItems

Note that the result of this query does not include orders with no associated line items.

The above query can also be written as:

FROM OrderBean o
WHERE o.lineItems IS NOT EMPTY

Find all orders that have no line items:

FROM OrderBean o
WHERE o.lineItems IS EMPTY

Find all pending orders:

FROM OrderBean o, l in o.lineItems
WHERE l.shipped = FALSE
239 10/23/00

EJB QL: EJB Query Language for Container Managed Persistence Query MethodsEnterprise JavaBeans 2.0, Proposed Final Draft

Sun Microsystems, Inc.

umes
billing

ty rules

to an

po-

ry and
abstract

ame
sriptor.

uct.
bean
of
Find all orders in which the shipping address differs from the billing address. This example ass
that the Bean Provider uses two distinct dependent object classes to designate shipping and
addresses.

FROM OrderBean o
WHERE
NOT (o.shipping_address.state = o.billing_address.state AND

 o.shipping_address.city = o.billing_address.city AND
 o.shipping_address.street = o.billing_address.street)

If the Bean Provider uses a single classAddress in two different relationships for both the shipping
address and the billing address, the above expression can be simplified based on the equali
defined in Section 10.2.8. The query can then be written as:

FROM OrderBean o
WHERE o.shipping_address <> o.billing_address

The query checks whether the same dependent object (identified by its primary key) is related
order through two distinct relationships.

10.3.3 Queries that refer to other entity beans
Consider the query: “Find all orders for a book titled ‘Applying Enterprise JavaBeans: Com
nent-Based Development for the J2EE Platform’”.

The following example illustrates the case where the same deployment descriptor defines the que
the abstract persistence schemas of OrderEJB and ProductEJB. The Bean Provider can use the
schema types of both entity beans. This is similar to Case (1) in 10.2.2.

FROM OrderBean o, l IN o.lineItems
WHERE l.product.type = ‘book’ AND

l.product.name = ‘Applying Enterprise JavaBeans:
Component-Based Development for the J2EE Platform’

The query below is written using a finder method of ProductEJB. This query finds a book by its n
and its author. The ProductEJB bean may or may not be co-located in the same deployment de
The finder expression locates the required entity object in either case.

FROM OrderBean o, l IN o.lineItems
WHERE l=>product IN (ProductEJB >> findByNameAndType(‘Applying Enter-
prise

JavaBeans: Component-Based Development for the J2EE Platform’,
‘book’))

The expressionl=>product evaluates to the remote interface type of ProductEJB, which is Prod
The finder expression evaluates to a collection of instances of the remote interface of the entity
ProductEJB. The comparison operatorIN is evaluated by testing equality based on the primary keys
the respective entity objects.
 10/23/00 240

Examples Enterprise JavaBeans 2.0, Proposed Final Draft EJB QL: EJB Query Language for Con-

Sun Microsystems, Inc.

d, as

thods

to the
The

s. The
ed by

pendent
dupli-

when

ype of
10.3.4 Queries using input parameters

A query similar to the previous one may be written using the input parameters of the finder metho
follows:

FROM OrderBean o, l IN o.lineItems
WHERE l=>product IN (ProductEJB>>findByNameAndType(?1, ?2))

The following query finds the orders for a product designated by an input parameter:

FROM OrderBean o, l IN lineItems
WHERE l=>product = ?1

For this query, the input parameter must be the remote type of theProductEJB entity bean.

10.3.5 Queries for select methods
The following select queries illustrate the selection of values other than entity objects. Select me
are internal to an entity bean or dependent object’s implementation class.

The following EJB QL query selects all products that have been ordered.

SELECT l=>product
FROM OrderBean o, l IN o.lineItems

To restrict this query, the Bean Provider may provide parameters to the select method, and hence
query. The following query finds all products in the order specified by a particular order number.
order number is specified by a parameter that corresponds to the primary key of OrderBean.

SELECT l=>product
FROM OrderBean o, l IN o.lineItems
WHERE o.ordernumber = ?1

Depending on the return type of the select method, the returned collection may contain duplicate
collection returned by a finder or select method should not contain duplicates when the type return
the query corresponds to an entity object or a dependent object class, since entity objects and de
object classes are identified by a primary key. However, collections of other types may contain
cates. It is the responsibility of the Persistence Manager to ensure that duplicates are removed
necessary (that is, when the result type of the method isjava.util.Set).

Consider the following example:

SELECT o.shipping_address.city
FROM OrderBean o

This query returns the names of all the cities of the shipping addresses of all orders. The result t
the ejbSelect<METHOD> method, which is either java.util.Collection or
java.util.Set , determines whether the query may return duplicate city names.
241 10/23/00

EJB QL: EJB Query Language for Container Managed Persistence Query MethodsEnterprise JavaBeans 2.0, Proposed Final Draft

Sun Microsystems, Inc.

aution
The

lts of
e vari-
does not
ether

items
of the

pendent
apping
g and

might
ionships
lation-
elated

s. How-
ible to

ize a
s or
s if the

cts to
t object

key
the
ip.
10.3.6 EJB QL and SQL

EJB QL, like SQL, treats the FROM clause as a cartesian product. The Bean Provider must use c
in defining identification variables and restricting the domain of the query in the FROM clause.
FROM clause is similar to that of SQL in that the declared identification variables affect the resu
the query even if they are not used in the WHERE clause. Even if the Bean Provider defines rang
ables that have types other than the entity beans’ abstract schema types and the Bean Provider
use identification variables in the WHERE clause, the domain of the query still depends on wh
there are any values of the declared type.

The FROM clause in the following example defines a query over all OrderBeans that have line
and existing products. If there is no ProductBean instance in the persistent store, the domain
query is empty and no OrderBean is selected.

FROM OrderBean AS o, l in o.lineItems, ProductBean p

The Persistence Manager can represent the abstract schemas of a set of entity beans and de
object classes in an application using a relational database. There are multiple ways to define a m
to RDBMS tables. Although this area is beyond the scope of this specification, a sample mappin
translation of EJB QL to SQL is provided to clarify the semantics of EJB QL.

A typical mapping strategy from a set of entity beans and dependent object classes to a RDBMS
be to map each entity bean and dependent object class to a separate table. One-to-many relat
may be represented by foreign keys in the related table from the many side and many-to-many re
ships may be represented by using an auxiliary table that contains the primary keys of the r
objects.

Because the FROM clause represents a cartesian product, the SQL result may contain duplicate
ever, since every entity bean and dependent object has a primary key and is unique, it is poss
eliminate duplicates from the result. Therefore, the Persistence Manager would typically util
SELECT DISTINCT clause in translating an EJB QL query to SQL when selecting entity bean
dependent objects. Collections of other values, such as primitive Java types, can contain duplicate
return type of theejbSelect<METHOD> is java.util.Collection .

The following translation example illustrates the mapping of entity beans and dependent obje
RDBMS tables. The entity bean OrderEJB is represented by the table ORDER and the dependen
class LineItem is represented by the table LINEITEM. The column OKEY represents the primary
for OrderBean, FKEY represents the foreign key column of LINEITEM that holds the values of
ORDER primary keys. FKEY is defined in the LINEITEM table to model the one-to-many relationsh

Using this mapping, the following EJB QL finder query

FROM OrderBean o, l in o.lineItems
WHERE l.quantity > 5

may be represented in SQL as

SELECT DISTINCT o.OKEY
FROM ORDERBEAN o, LINEITEM l
WHERE o.OKEY = l.FKEY AND l.QUANTITY > 5
 10/23/00 242

EJB QL BNF Enterprise JavaBeans 2.0, Proposed Final Draft EJB QL: EJB Query Language for Con-

Sun Microsystems, Inc.
10.4 EJB QL BNF

EJB QL BNF notation summary:

• { ... } grouping

• [...] optional constructs

• boldface keywords

The following is the complete BNK notation for EJB QL:

EJB QL :: = [select_clause] from_clause [where_clause]
from_clause::=FROM identification_variable_declaration

[, identification_variable_declaration]*
identification_variable_declaration ::= collection_member_declaration |

 range_variable_declaration
collection_member_declaration ::= identifier IN collection_valued_path_expression |

identifier IN collection_valued_reference_expression
range_variable_declaration ::{abstract_schema_name | dependent_name } [AS] identifier
single_valued_path_expression ::=

{single_valued_navigation|identification_variable}.cmp_field |
single_valued_navigation

single_valued_navigation ::=
identification_variable.[single_valued_cmr_field.]* single_valued_cmr_field

collection_valued_path_expression ::=
identification_variable.[single_valued_cmr_field.]*collection_valued_cmr_field

single_valued_reference_expression::=
{single_valued_navigation | identification_variable} => single_valued_cmr_field

collection_valued_reference_expression::=
{single_valued_navigation | identification_variable} => collection_valued_cmr_field

select_clause ::= SELECT {single_valued_path_expression |
single_valued_reference_expression |
identification_variable |
@@identification_variable }

where_clause ::= WHERE conditional_expression
conditional_expression ::= conditional_term | conditional_exp OR conditional_term
conditional_term ::= conditional_factor | conditional_term AND conditional_factor
conditional_factor ::= [NOT] conditional-test
conditional_test :: = conditional_primary [IS [NOT] {TRUE | FALSE | UNKNOWN}]
conditional_primary ::= simple_cond_expression |(conditional_expression)
simple_cond_expression ::= comparison_expression | between_expression | like_expression |

in_expression | null_comparison_expression |
empty_collection_comparison_expression

between_expression ::=
arithmetic-expression [NOT] BETWEEN

arithmetic-expression AND arithmetic-expression
in_expression ::=

single_valued_path_expression [NOT] IN (string-literal1, string-literal2,...) |
243 10/23/00

EJB QL: EJB Query Language for Container Managed Persistence Query MethodsEnterprise JavaBeans 2.0, Proposed Final Draft EJB

Sun Microsystems, Inc.
single_valued_reference_expression [NOT] IN (finder_expression)
like_expression ::=

single_valued_path_expression [NOT] LIKE pattern-value [ESCAPE escape-character]
null_comparison_expression ::=

single_valued_path_expression IS NULL |
single_valued_path_expression IS NOT NULL

finder_expression ::= EjbName>>finder_method_name(arg1, ..., argn)
argi = { input_parameter | literal | constructor_expression}
constructor_expression = new object_constructor(Literal)
object_constructor = {Boolean | Byte | Integer | Long | Short | Float | Double }
empty_collection_comparison_expression ::=

{collection_valued_path_expression | collection_valued_reference_expression}
IS [NOT] EMPTY

comparison_expression ::=
string_expression {=|<>} string_expression |
boolean_expression {=|<>} boolean_expression |
datetime_expression { = | <> | > | <} datetime_expression |
reference_expression { = | <> } reference_expression |
single_value_designator comparison-operator single_value_designator

single_value_designator :: = scalar_expression
comparison_operator ::=

= | > | >= | < | <= | <>
scalar_expression ::= arithmetic_expression
arithmetic_expression ::= arithmetic_term | arithmetic_expression { + | -} arithmetic_term
arithmetic_term :: = arithmetic_factor | arithmetic-term { * | /} arithmetic_factor
arithmetic_factor :: = {+ |-} arithmetic_primary
arithmetic_primary ::= single_valued_path_expression | literal | (arithmetic_expression) |
input_parameter | functions_returning_numerics
string_expression ::= string_primary
string_primary ::= single_valued_path_expression | literal | (string_expression) |
functions_returning_strings | input_parameter
datetime_expression ::= single_valued_path_expression | input_parameter
boolean_expression ::= single_valued_path_expression | input_parameter | literal
reference_expression ::= single_valued_reference_expression | input_parameter
functions_returning_strings ::= CONCAT(string_expression, string_expression) |

SUBSTRING(string_expression,arithmetic_expression,arithmetic_expression)|
functions_returning_numerics::=

LENGTH(string_expression) |
LOCATE(string_expression, string_expression[, arithmetic_expression])
ABS(arithmetic_expression) |
SQRT(arithmetic_expression)
 10/23/00 244

Overview of Bean Managed Entity PersistenceEnterprise JavaBeans 2.0, Proposed Final Draft Entity Bean Component Contract for

Sun Microsystems, Inc.

n entity
d del-

ompo-

ider’s
Bean

entity
ERP
bean
Chapter 11 Entity Bean Component Contract for Bean
Managed Persistence

The entity bean component contract for bean managed persistence is the contract between a
bean and its container. It defines the life cycle of the entity bean instances and the model for metho
egation of the client-invoked business methods. The main goal of this contract is to ensure that a c
nent using bean managed persistence is portable across all compliant EJB Containers.

This chapter defines the enterprise Bean Provider’s view of this contract and the Container Prov
responsibility for managing the life cycle of the enterprise bean instances. It also describes the
Provider’s responsibilities when persistence is provided by the Bean Provider.

11.1 Overview of Bean Managed Entity Persistence

An entity bean implements an object view of an entity stored in an underlying database, or an
implemented by an existing enterprise application (for example, by a mainframe program or by an
application). The data access protocol for transferring the state of the entity between the entity
instances and the underlying database is referred to as object persistence.
245 10/23/00

Entity Bean Component Contract for Bean Managed PersistenceEnterprise JavaBeans 2.0, Proposed Final Draft Overview of Bean

Sun Microsystems, Inc.

ider to
lasses
istence.

ent of
Chapter

.

 beans.

ent iden-
The entity bean component protocol for bean managed persistence allows the entity Bean Prov
implement the entity bean’s persistence directly in the entity bean class or in one or more helper c
provided with the entity bean class. This chapter describes the contracts for bean managed pers
Container managed persistence, which allows the entity Bean Provider to delegate the managem
the entity bean’s persistence to the Container Provider and Persistence Manager, is discussed in
9.

In many cases, the underlying data source may be an existing application rather than a database

Figure 37 Client view of underlying data sources accessed through entity bean

11.1.1 Granularity of entity beans

This section provides guidelines to the Bean Providers for modeling of business objects as entity

In general, an entity bean should represent an independent business object that has an independ
tity and lifecycle, and is referenced by multiple enterprise beans and/or clients.

Account

container

client
Account 100

entity bean

Account

container

client
Account 100

entity bean

existing

application

(a) Entity bean is an object view of a record in the database

(b) Entity bean is an object view of an existing application
 10/23/00 246

Overview of Bean Managed Entity PersistenceEnterprise JavaBeans 2.0, Proposed Final Draft Entity Bean Component Contract for

Sun Microsystems, Inc.

better
hich it

ct A, if
s when
ccess
le of

ms on
e record

imple-

ultiple

n on

mote
st go
rough

ction
y be

g. using
in the

ted in a
ty bean
ferent
A dependent objectshould not be implemented as an entity bean. Instead, a dependent object is
implemented as a Java class (or several classes) and included as part of the entity bean on w
depends.

A dependent object can be characterized as follows. An object B is a dependent object of an obje
B is created by A, accessed only by A, and removed by A. This implies, for example, that if B exist
A is being removed, B is automatically removed as well. It also implies that other programs can a
the object B only indirectly through object A. In other words, the object A fully manages the lifecyc
the object B.

For example, a purchase order might be implemented as an entity bean, but the individual line ite
the purchase order should be implemented as helper classes, not as entity beans. An employe
might be implemented as an entity bean, but the employee address and phone number should be
mented as helper classes, not as entity beans.

The state of an entity object that has dependent objects is often stored in multiple records in m
database tables.

In addition, the Bean Provider must take into consideration the following when making a decisio
the granularity of an entity object:

Every method call to an entity object via the remote and home interface is potentially a re
call. Even if the calling and called entity bean are collocated in the same JVM, the call mu
through the container, which must create copies of all the parameters that are passed th
the interface by value (i.e., all parameters that do not extend thejava.rmi.Remote inter-
face). The container is also required to check security and apply the declarative transa
attribute on the inter-component calls. The overhead of an inter-component call will likel
prohibitive for object interactions that are too fine-grained.

11.1.2 Entity Bean Provider’ s view of persistence and relationships

Using bean-managed persistence, the entity Bean Provider writes database access calls (e.
JDBCTM or SQLJ) directly in the entity bean component. The data access calls are performed
ejbCreate<METHOD>(...) , ejbRemove() , ejbFind<METHOD>() , ejbLoad() , andejb-
Store() methods; and/or in the business methods.

The data access calls can be coded directly into the entity bean class, or they can be encapsula
data access component that is part of the entity bean. Directly coding data access calls in the enti
class may make it more difficult to adapt the entity bean to work with a database that has a dif
schema, or with a different type of database.
247 10/23/00

Entity Bean Component Contract for Bean Managed PersistenceEnterprise JavaBeans 2.0, Proposed Final Draft Overview of Bean

Sun Microsystems, Inc.

ication
ponents
data
dapting
es not
com-

tion of
tence, it
sup-

etween
We expect that most enterprise beans with bean managed persistence will be created by appl
development tools which will encapsulate data access in components. These data access com
will probably not be the same for all tools. Further, if the data access calls are encapsulated in
access components, the data access components may require deployment interfaces to allow a
data access to different schemas or even to a different database type. This EJB specification do
define the architecture for data access objects, strategies for tailoring and deploying data access
ponents or ensuring portability of these components for bean managed persistence.

In contrast to container managed persistence, the entity bean provider does not provide a descrip
the relationships and dependent classes in the deployment descriptor. With bean managed persis
is the responsibility of the bean provider to maintain relationships within the code that he or she
plies and to locate related beans by utilizing JNDI lookup.

11.1.3 Runtime execution model

This section describes the runtime model and the classes used in the description of the contract b
an entity bean with bean managed persistence and its container.
 10/23/00 248

Overview of Bean Managed Entity PersistenceEnterprise JavaBeans 2.0, Proposed Final Draft Entity Bean Component Contract for

Sun Microsystems, Inc.

r Pro-
never
e class

cts
for the

entity
ider.
Figure 38 Overview of the entity bean runtime execution model

An enterprise bean instanceis an object whose class was provided by the Bean Provider.

An entity EJBObject is an object whose class was generated at deployment time by the Containe
vider’s tools. The entity EJBObject class implements the entity bean’s remote interface. A client
references an entity bean instance directly—a client always references an entity EJBObject whos
is generated by the Container Provider’s tools.

An entityEJBHomeobject provides the life cycle operations (create, remove, find) for its entity obje
as well as home business methods, which are not specific to an entity bean instance. The class
entity EJBHome object is generated by the Container Provider’s tools at deployment time. The
EJBHome object implements the entity bean’s home interface that was defined by the Bean Prov

Classes are provided by
Bean Provider

Classes are generated by
Container Provider tools

client

container

EJB objects

EJBHome

EJB objectsEJBObjects

enterprise bean
instances

EJB objects

EJBHome

EJB objectsEJBObjects

enterprise bean
instances

enterprise bean 1

enterprise bean 2
249 10/23/00

Entity Bean Component Contract for Bean Managed PersistenceEnterprise JavaBeans 2.0, Proposed Final Draft Overview of Bean

Sun Microsystems, Inc.

bject
11.1.4 Instance life cycle

Figure 39 Life cycle of an entity bean instance.

An entity bean instance is in one of the following three states:

• It does not exist.

• Pooled state. An instance in the pooled state is not associated with any particular entity o
identity.

• Ready state. An instance in the ready state is assigned an entity object identity.

The following steps describe the life cycle of an entity bean instance:

• An entity bean instance’s life starts when the container creates the instance usingnewIn-
stance() . The container then invokes thesetEntityContext() method to pass the
instance a reference to theEntityContext interface. TheEntityContext interface

does not
 exist

1. newInstance()
2. setEntityContext(ec)

ejbActivate()

pooled

1. unsetEntityContext()

ready

ejbPassivate()
ejbRemove()

ejbCreate<METHOD>(args)

ejbStore()ejbLoad()

business method

ejbFind<METHOD>(...)

ejbPostCreate<METHOD>(args)

instance throws
system exception
from any method

ejbHome<METHOD>(...)
 10/23/00 250

Overview of Bean Managed Entity PersistenceEnterprise JavaBeans 2.0, Proposed Final Draft Entity Bean Component Contract for

Sun Microsystems, Inc.

ation

While
entity
tance
state.
any of

ts that
the

(i.e.,
e
be
is no

pecific
the

be

pur-
ith
thods

ssivate
-

ossi-

r
nce
the
ient
he

ill
allows the instance to invoke services provided by the container and to obtain the inform
about the caller of a client-invoked method.

• The instance enters the pool of available instances. Each entity bean has its own pool.
the instance is in the available pool, the instance is not associated with any particular
object identity. All instances in the pool are considered equivalent, and therefore any ins
can be assigned by the container to any entity object identity at the transition to the ready
While the instance is in the pooled state, the container may use the instance to execute
the entity bean’s finder methods (shown asejbFind<METHOD>(...) in the diagram or
home methods (shown asejbHome<METHOD>(...) in the diagram). The instance doesnot
move to the ready state during the execution of a finder or a home method.

• An instance transitions from the pooled state to the ready state when the container selec
instance to service a client call to an entity object. There are two possible transitions from
pooled to the ready state: through theejbCreate<METHOD>(...) andejbPostCre-
ate<METHOD>(...) methods, or through theejbActivate() method. The container
invokes the ejbCreate<METHOD>(...) and ejbPostCreate<METHOD>(...)
methods when the instance is assigned to an entity object during entity object creation
when the client invokes acreate<METHOD> method on the entity bean’s home object). Th
container invokes theejbActivate() method on an instance when an instance needs to
activated to service an invocation on an existing entity object—this occurs because there
suitable instance in the ready state to service the client’s call.

• When an entity bean instance is in the ready state, the instance is associated with a s
entity object identity. While the instance is in the ready state, the container can invoke
ejbLoad() and ejbStore() methods zero or more times. A business method can
invoked on the instance zero or more times. Invocations of theejbLoad() and ejb-
Store() methods can be arbitrarily mixed with invocations of business methods. The
pose of theejbLoad andejbStore methods is to synchronize the state of the instance w
the state of the entity in the underlying data source—the container can invoke these me
whenever it determines a need to synchronize the instance’s state.

• The container can choose to passivate an entity bean instance within a transaction. To pa
an instance, the container first invokes theejbStore method to allow the instance to syn
chronize the database state with the instance’s state, and then the container invokes theejb-
Passivate method to return the instance to the pooled state.

• Eventually, the container will transition the instance to the pooled state. There are three p
ble transitions from the ready to the pooled state: through theejbPassivate() method,
through theejbRemove() method, and because of a transaction rollback forejbCre-
ate() , ejbPostCreate() , or ejbRemove() (not shown in Figure 39). The containe
invokes theejbPassivate() method when the container wants to disassociate the insta
from the entity object identity without removing the entity object. The container invokes
ejbRemove() method when the container is removing the entity object (i.e., when the cl
invoked the remove() method on the entity object’s remote interface, or one of t
remove() methods on the entity bean’s home interface). IfejbCreate() , ejbPost-
Create() , or ejbRemove() is called and the transaction rolls back, the container w
transition the bean instance to the pooled state.
251 10/23/00

Entity Bean Component Contract for Bean Managed PersistenceEnterprise JavaBeans 2.0, Proposed Final Draft Overview of Bean

Sun Microsystems, Inc.

bject
bean

, the

s

he
to the
ter a
ntity
mote

client’s

oling
ation.
.

its con-

ean

reate
• When the instance is put back into the pool, it is no longer associated with an entity o
identity. The container can assign the instance to any entity object within the same entity
home.

• An instance in the pool can be removed by calling theunsetEntityContext() method
on the instance.

Notes:

1. TheEntityContext interface passed by the container to the instance in thesetEntity-
Context method is an interface, not a class that contains static information. For example
result of theEntityContext.getPrimaryKey() method might be different each time
an instance moves from the pooled state to the ready state, and the result of thegetCaller-
Principal() andisCallerInRole(...) methods may be different in each busines
method.

2. A RuntimeException thrown from any method of the entity bean class (including t
business methods and the callbacks invoked by the container) results in the transition
“does not exist” state. The container must not invoke any method on the instance af
RuntimeException has been caught. From the client perspective, the corresponding e
object continues to exist. The client can continue accessing the entity object through its re
interface because the container can use a different entity bean instance to delegate the
requests. Exception handling is described further in Chapter 17.

3. The container is not required to maintain a pool of instances in the pooled state. The po
approach is an example of a possible implementation, but it is not the required implement
Whether the container uses a pool or not has no bearing on the entity bean coding style

11.1.5 The entity bean component contract

This section specifies the contract between an entity bean with bean managed persistence and
tainer.

11.1.5.1 Entity bean instance’s view

The following describes the entity bean instance’s view of the contract:

The entity Bean Provider is responsible for implementing the following methods in the entity b
class:

• A public constructor that takes no arguments. The Container uses this constructor to c
instances of the entity bean class.

• public void setEntityContext(EntityContext ic) ;

A container uses this method to pass a reference to theEntityContext interface to the
entity bean instance. If the entity bean instance needs to use theEntityContext interface
during its lifetime, it must remember theEntityContext interface in an instance variable.
 10/23/00 252

Overview of Bean Managed Entity PersistenceEnterprise JavaBeans 2.0, Proposed Final Draft Entity Bean Component Contract for

Sun Microsystems, Inc.

.5 for
ity of

pecific
erve

ct is

by the

h
.

e

abase.

by

e is

entity

as

cts. The
This method executes with an unspecified transaction context (Refer to Subsection 16.6
how the Container executes methods with an unspecified transaction context). An ident
an entity object is not available during this method.

The instance can take advantage of thesetEntityContext() method to allocate any
resources that are to be held by the instance for its lifetime. Such resources cannot be s
to an entity object identity because the instance might be reused during its lifetime to s
multiple entity object identities.

• public void unsetEntityContext();

A container invokes this method before terminating the life of the instance.

This method executes with an unspecified transaction context. An identity of an entity obje
not available during this method.

The instance can take advantage of theunsetEntityContext() method to free any
resources that are held by the instance. (These resources typically had been allocated
setEntityContext() method.)

• public PrimaryKeyClass ejbCreate<METHOD>(...) ;

There are zero[18] or moreejbCreate<METHOD>(...) methods, whose signatures matc
the signatures of thecreate<METHOD>(...) methods of the entity bean home interface
The container invokes anejbCreate<METHOD>(...) method on an entity bean instanc
when a client invokes a matchingcreate<METHOD>(...) method to create an entity
object.

The implementation of theejbCreate<METHOD>(...) method typically validates the cli-
ent-supplied arguments, and inserts a record representing the entity object into the dat
The method also initializes the instance’s variables. TheejbCreate<METHOD>(...)
method must return the primary key for the created entity object.

An ejbCreate<METHOD>(...) method executes in the transaction context determined
the transaction attribute of the matchingcreate<METHOD>(...) method, as described in
subsection 16.6.2.

• public void ejbPostCreate<METHOD>(...);

For each ejbCreate<METHOD>(...) method, there is a matchingejbPostCre-
ate<METHOD>(...) method that has the same input parameters but the return valu
void . The container invokes the matchingejbPostCreate<METHOD>(...) method on
an instance after it invokes theejbCreate<METHOD>(...) method with the same argu-
ments. The entity object identity is available during theejbPostCreate<METHOD>(...)
method. The instance may, for example, obtain the remote interface of the associated
object and pass it to another enterprise bean as a method argument.

An ejbPostCreate<METHOD>(...) method executes in the same transaction context
the previousejbCreate<METHOD>(...) method.

• public void ejbActivate();

[18] An entity enterprise Bean has noejbCreate<METHOD>(...) andejbPostCreate<METHOD>(...) methods if it does not define
any create methods in its home interface. Such an entity enterprise Bean does not allow the clients to create new EJB obje
enterprise Bean restricts the clients to accessing entities that were created through direct database inserts.
253 10/23/00

Entity Bean Component Contract for Bean Managed PersistenceEnterprise JavaBeans 2.0, Proposed Final Draft Overview of Bean

Sun Microsystems, Inc.

from

in the

in the

iden-

ociate
vail-
any
ically

in the

of the
e

ion in

f this
stance

e that
in the
y time
The container invokes this method on the instance when the container picks the instance
the pool and assigns it to a specific entity object identity. TheejbActivate() method gives
the entity bean instance the chance to acquire additional resources that it needs while it is
ready state.

This method executes with an unspecified transaction context. The instance can obta
identity of the entity object via thegetPrimaryKey() or getEJBObject() method on
the entity context. The instance can rely on the fact that the primary key and entity object
tity will remain associated with the instance until the completion ofejbPassivate() or
ejbRemove() .

Note that the instance should not use theejbActivate() method to read the state of the
entity from the database; the instance should load its state only in theejbLoad() method.

• public void ejbPassivate() ;
The container invokes this method on an instance when the container decides to disass
the instance from an entity object identity, and to put the instance back into the pool of a
able instances. TheejbPassivate() method gives the instance the chance to release
resources that should not be held while the instance is in the pool. (These resources typ
had been allocated during theejbActivate() method.)

This method executes with an unspecified transaction context. The instance can still obta
identity of the entity object via thegetPrimaryKey() or getEJBObject() method of
theEntityContext interface.

Note that an instance should not use theejbPassivate() method to write its state to the
database; an instance should store its state only in theejbStore() method.

• public void ejbRemove() ;

The container invokes this method on an instance as a result of a client’s invoking aremove
method. The instance is in the ready state whenejbRemove() is invoked and it will be
entered into the pool when the method completes.

This method executes in the transaction context determined by the transaction attribute
remove method that triggered theejbRemove method. The instance can still obtain th
identity of the entity object via thegetPrimaryKey() or getEJBObject() method of
theEntityContext interface.

The container synchronizes the instance’s state before it invokes theejbRemove method.
This means that the state of the instance variables at the beginning of theejbRemove method
is the same as it would be at the beginning of a business method.

An entity bean instance should use this method to remove the entity object’s representat
the database.

Since the instance will be entered into the pool, the state of the instance at the end o
method must be equivalent to the state of a passivated instance. This means that the in
must release any resource that it would normally release in theejbPassivate() method.

• public void ejbLoad() ;

The container invokes this method on an instance in the ready state to inform the instanc
it must synchronize the entity state cached in its instance variables from the entity state
database. The instance must be prepared for the container to invoke this method at an
that the instance is in the ready state.
 10/23/00 254

Overview of Bean Managed Entity PersistenceEnterprise JavaBeans 2.0, Proposed Final Draft Entity Bean Component Contract for

Sun Microsystems, Inc.

ot use
advan-
the

of the

must
iables.
t the

in the

the

nce to

ainer

ans-

-
. The

bsec-

nce to
e
ainer

ans-
n

If the instance is caching the entity state (or parts of the entity state), the instance must n
the previously cached state in the subsequent business method. The instance may take
tage of theejbLoad method, for example, to refresh the cached state by reading it from
database.

This method executes in the transaction context determined by the transaction attribute
business method that triggered theejbLoad method.

• public void ejbStore();

The container invokes this method on an instance to inform the instance that the instance
synchronize the entity state in the database with the entity state cached in its instance var
The instance must be prepared for the container to invoke this method at any time tha
instance is in the ready state.

An instance must write any updates cached in the instance variables to the database
ejbStore() method.

This method executes in the same transaction context as the previousejbLoad or ejbCre-
ate<METHOD>method invoked on the instance. All business methods invoked between
previousejbLoad or ejbCreate<METHOD> method and thisejbStore method are also
invoked in the same transaction context.

• public primary key type or collectionejbFind<METHOD>(...) ;

The container invokes this method on the instance when the container selects the insta
execute a matching client-invokedfind<METHOD>(...) method. The instance is in the
pooled state (i.e., it is not assigned to any particular entity object identity) when the cont
selects the instance to execute theejbFind<METHOD> method on it, and it is returned to the
pooled state when the execution of theejbFind<METHOD> method completes.

TheejbFind<METHOD> method executes in the transaction context determined by the tr
action attribute of the matchingfind(...) method, as described in subsection 16.6.2.

The implementation of anejbFind<METHOD> method typically uses the method’s argu
ments to locate the requested entity object or a collection of entity objects in the database
method must return a primary key or a collection of primary keys to the container (see Su
tion 11.1.8).

• public type ejbHome<METHOD>(...) ;

The container invokes this method on any instance when the container selects the insta
execute a matching client-invoked<METHOD>(...) home method. The instance is in th
pooled state (i.e., it is not assigned to any particular entity object identity) when the cont
selects the instance to execute theejbHome<METHOD>method on it, and it is returned to the
pooled state when the execution of theejbHome<METHOD> method completes.

TheejbHome<METHOD>method executes in the transaction context determined by the tr
action attribute of the matching<METHOD>(...) home method, as described in subsectio
16.6.2.

The entity bean provider provides the implementation of theejbHome<METHOD>(...) .
255 10/23/00

Entity Bean Component Contract for Bean Managed PersistenceEnterprise JavaBeans 2.0, Proposed Final Draft Overview of Bean

Sun Microsystems, Inc.

r must

tance,

, the

tances

lt of a

on-
kes a

ce to

tion
n

n the
must
if the

must

en the
The

o the
11.1.5.2 Container’s view:

This subsection describes the container’s view of the state management contract. The containe
call the following methods:

• public void setEntityContext(ec) ;

The container invokes this method to pass a reference to theEntityContext interface to
the entity bean instance. The container must invoke this method after it creates the ins
and before it puts the instance into the pool of available instances.

The container invokes this method with an unspecified transaction context. At this point
EntityContext is not associated with any entity object identity.

• public void unsetEntityContext() ;

The container invokes this method when the container wants to reduce the number of ins
in the pool. After this method completes, the container must not reuse this instance.

The container invokes this method with an unspecified transaction context.

• public PrimaryKeyClass ejbCreate<METHOD>(...) ;
public void ejbPostCreate<METHOD>(...) ;

The container invokes these two methods during the creation of an entity object as a resu
client invoking acreate<METHOD>(...) method on the entity bean’s home interface.

The container first invokes theejbCreate<METHOD>(...) method whose signature
matches thecreate<METHOD>(...) method invoked by the client. TheejbCre-
ate<METHOD>(...) method returns a primary key for the created entity object. The c
tainer creates an entity EJBObject reference for the primary key. The container then invo
matchingejbPostCreate<METHOD>(...) method to allow the instance to fully initial-
ize itself. Finally, the container returns the entity object’s remote interface (i.e., a referen
the entity EJBObject) to the client.

The container must invoke theejbCreate<METHOD>(...) and ejbPostCre-
ate<METHOD>(...) methods in the transaction context determined by the transac
attribute of the matchingcreate<METHOD>(...) method, as described in subsectio
16.6.2.

• public void ejbActivate() ;

The container invokes this method on an entity bean instance at activation time (i.e., whe
instance is taken from the pool and assigned to an entity object identity). The container
ensure that the primary key of the associated entity object is available to the instance
instance invokes thegetPrimaryKey() or getEJBObject() method on itsEnti-
tyContext interface.

The container invokes this method with an unspecified transaction context.

Note that instance is not yet ready for the delivery of a business method. The container
still invoke theejbLoad() method prior to a business method.

• public void ejbPassivate() ;

The container invokes this method on an entity bean instance at passivation time (i.e., wh
instance is being disassociated from an entity object identity and moved into the pool).
container must ensure that the identity of the associated entity object is still available t
 10/23/00 256

Overview of Bean Managed Entity PersistenceEnterprise JavaBeans 2.0, Proposed Final Draft Entity Bean Component Contract for

Sun Microsystems, Inc.

invoke

a cli-

ction

le to

data-
o-

for the
hat the
ner,

ached

s been
e via

action

for the
is syn-

also
en it
same

ously

t
e
ciated
instance if the instance invokes thegetPrimaryKey() or getEJBObject() method
on its entity context.

The container invokes this method with an unspecified transaction context.

Note that if the instance state has been updated by a transaction, the container must first
theejbStore() method on the instance before it invokesejbPassivate() on it.

• public void ejbRemove();

The container invokes this method before it ends the life of an entity object as a result of
ent invoking aremove operation.

The container invokes this method in the transaction context determined by the transa
attribute of the invokedremove method.
The container must ensure that the identity of the associated entity object is still availab
the instance in theejbRemove() method (i.e., the instance can invoke thegetPrima-
ryKey() or getEJBObject() method on itsEntityContext in theejbRemove()
method).

The container must ensure that the instance’s state is synchronized from the state in the
base before invoking theejbRemove() method (i.e., if the instance is not already synchr
nized from the state in the database, the container must invokeejbLoad before it invokes
ejbRemove).

• public void ejbLoad() ;

The container must invoke this method on the instance whenever it becomes necessary
instance to synchronize its instance state from its state in the database. The exact times t
container invokesejbLoad depend on the configuration of the component and the contai
and are not defined by the EJB architecture. Typically, the container will callejbLoad before
the first business method within a transaction to ensure that the instance can refresh its c
state of the entity object from the database. After the firstejbLoad within a transaction, the
container is not required to recognize that the state of the entity object in the database ha
changed by another transaction, and it is not required to notify the instance of this chang
anotherejbLoad call.

The container must invoke this method in the transaction context determined by the trans
attribute of the business method that triggered theejbLoad method.

• public void ejbStore() ;

The container must invoke this method on the instance whenever it becomes necessary
instance to synchronize its state in the database with the state of the instance’s fields. Th
chronization always happens at the end of a transaction. However, the container may
invoke this method when it passivates the instance in the middle of a transaction, or wh
needs to transfer the most recent state of the entity object to another instance for the
entity object in the same transaction (see Subsection 16.7).

The container must invoke this method in the same transaction context as the previ
invokedejbLoad or ejbCreate<METHOD> method.

• public primary key type or collectionejbFind<METHOD>(...) ;

The container invokes theejbFind<METHOD>(...) method on an instance when a clien
invokes a matchingfind<METHOD>(...) method on the entity bean’s home interface. Th
container must pick an instance that is in the pooled state (i.e., the instance is not asso
257 10/23/00

Entity Bean Component Contract for Bean Managed PersistenceEnterprise JavaBeans 2.0, Proposed Final Draft Overview of Bean

Sun Microsystems, Inc.

-
ontext

led
y the

t

er
f the
ner
from
for

t
he
ciated

led

t

access

access is
with any entity object identity) for the execution of theejbFind<METHOD>(...) method.
If there is no instance in the pooled state, the container creates one and calls thesetEntity-
Context(...) method on the instance before dispatching the finder method.

Before invoking theejbFind<METHOD>(...) method, the container must first synchro
nize the state of any entity bean instances that are participating in the same transaction c
as is used to execute theejbFind<METHOD>(...) by invoking theejbStore() method
on those entity bean instances.

After theejbFind<METHOD>(...) method completes, the instance remains in the poo
state. The container may, but is not required to, activate the objects that were located b
finder using the transition through theejbActivate() method.

The container must invoke theejbFind<METHOD>(...) method in the transaction contex
determined by the transaction attribute of the matchingfind(...) method, as described in
subsection 16.6.2.

If the ejbFind<METHOD> method is declared to return a single primary key, the contain
creates an entity EJBObject reference for the primary key and returns it to the client. I
ejbFind<METHOD> method is declared to return a collection of primary keys, the contai
creates a collection of entity EJBObject references for the primary keys returned
ejbFind<METHOD> , and returns the collection to the client. (See Subsection 11.1.8
information on collections.)

• public type ejbHome<METHOD>(...) ;

The container invokes theejbHome<METHOD>(...) method on an instance when a clien
invokes a matching<METHOD>(...) home method on the entity bean’s home interface. T
container must pick an instance that is in the pooled state (i.e., the instance is not asso
with any entity object identity) for the execution of theejbHome<METHOD>(...) method.
If there is no instance in the pooled state, the container creates one and calls thesetEntity-
Context(...) method on the instance before dispatching the home method.

After theejbHome<METHOD>(...) method completes, the instance remains in the poo
state.

The container must invoke theejbHome<METHOD>(...) method in the transaction contex
determined by the transaction attribute of the matching<METHOD>(...) home method, as
described in subsection 16.6.2.

11.1.6 Operations allowed in the methods of the entity bean class

Table 12 defines the methods of an entity bean class in which the enterprise bean instances can
the methods of thejavax.ejb.EntityContext interface, thejava:comp/env environment
naming context, resource managers, and other enterprise beans.

If an entity bean instance attempts to invoke a method of theEntityContext interface, and the
access is not allowed in Table 12, the Container must throw thejava.lang.IllegalStateEx-
ception.

If an entity bean instance attempts to access a resource manager or an enterprise bean, and the
not allowed in Table 12, the behavior is undefined by the EJB architecture.
 10/23/00 258

Overview of Bean Managed Entity PersistenceEnterprise JavaBeans 2.0, Proposed Final Draft Entity Bean Component Contract for

Sun Microsystems, Inc.
Table 12 Operations allowed in the methods of an entity bean

Bean method Bean method can perform the following operations

constructor -

setEntityContext
unsetEntityContext

EntityContext methods:getEJBHome

JNDI access to java:comp/env

ejbCreate

EntityContext methods:getEJBHome, getCallerPrincipal, getRollbackOnly,
isCallerInRole, setRollbackOnly

JNDI access to java:comp/env

Resource manager access

Enterprise bean access

ejbPostCreate

EntityContext methods:getEJBHome, getCallerPrincipal, getRollbackOnly,
isCallerInRole, setRollbackOnly, getEJBObject, getPrimaryKey

JNDI access to java:comp/env

Resource manager access

Enterprise bean access

ejbRemove

EntityContext methods:getEJBHome, getCallerPrincipal, getRollbackOnly,
isCallerInRole, setRollbackOnly, getEJBObject, getPrimaryKey

JNDI access to java:comp/env

Resource manager access

Enterprise bean access

ejbFind
ejbHome

EntityContext methods:getEJBHome, getCallerPrincipal, getRollbackOnly,
isCallerInRole, setRollbackOnly

JNDI access to java:comp/env

Resource manager access

Enterprise bean access

ejbActivate
ejbPassivate

EntityContext methods:getEJBHome, getEJBObject, getPrimaryKey

JNDI access to java:comp/env

ejbLoad
ejbStore

EntityContext methods:getEJBHome, getCallerPrincipal, getRollbackOnly,
isCallerInRole, setRollbackOnly, getEJBObject, getPrimaryKey

JNDI access to java:comp/env

Resource manager access

Enterprise bean access

business method
from remote interface

EntityContext methods:getEJBHome, getCallerPrincipal, getRollbackOnly,
isCallerInRole, setRollbackOnly, getEJBObject, getPrimaryKey

JNDI access to java:comp/env

Resource manager access

Enterprise bean access
259 10/23/00

Entity Bean Component Contract for Bean Managed PersistenceEnterprise JavaBeans 2.0, Proposed Final Draft Overview of Bean

Sun Microsystems, Inc.

xt of a

ntext.

ods for
ntext.

etween
part of

t of

all
vokes
hen

state

rd
ached

e the

hed
Additional restrictions:

• The getRollbackOnly and setRollbackOnly methods of theEntityContext
interface should be used only in the enterprise bean methods that execute in the conte
transaction. The Container must throw thejava.lang.IllegalStateException if
the methods are invoked while the instance is not associated with a transaction.

Reasons for disallowing operations:

• Invoking thegetEJBObject and getPrimaryKey methods is disallowed in the entity
bean methods in which there is no entity object identity associated with the instance.

• Invoking thegetCallerPrincipal and isCallerInRole methods is disallowed in
the entity bean methods for which the Container does not have a client security context.

• Invoking thegetRollbackOnly andsetRollbackOnly methods is disallowed in the
entity bean methods for which the Container does not have a meaningful transaction co
These are the methods that have theNotSupported , Never , or Supports transaction
attribute.

• Accessing resource managers and enterprise beans is disallowed in the entity bean meth
which the Container does not have a meaningful transaction context or client security co

11.1.7 Caching of entity state and theejbLoad and ejbStore methods

An instance of an entity bean with bean-managed persistence can cache the entity object’s state b
business method invocations. An instance may choose to cache the entire entity object’s state,
the state, or no state at all.

The container-invokedejbLoad andejbStore methods assist the instance with the managemen
the cached entity object’s state. The instance must handle theejbLoad andejbStore methods as
follows:

• When the container invokes theejbStore method on the instance, the instance must push
cached updates of the entity object’s state to the underlying database. The container in
theejbStore method at the end of a transaction, and may also invoke it at other times w
the instance is in the ready state. (For example the container may invokeejbStore when
passivating an instance in the middle of a transaction, or when transferring the instance’s
to another instance to support distributed transactions in a multi-process server.)

• When the container invokes theejbLoad method on the instance, the instance must disca
any cached entity object’s state. The instance may, but is not required to, refresh the c
state by reloading it from the underlying database.

The following examples, which are illustrative but not prescriptive, show how an instance may cach
entity object’s state:

• An instance loads the entire entity object’s state in theejbLoad method and caches it until
the container invokes theejbStore method. The business methods read and write the cac
 10/23/00 260

Overview of Bean Managed Entity PersistenceEnterprise JavaBeans 2.0, Proposed Final Draft Entity Bean Component Contract for

Sun Microsystems, Inc.

the

usiness

access
ovide

ce

od,
xt (See

bound-

er
uaran-
ransac-

e

n con-

should
entity state. TheejbStore method writes the updated parts of the entity object’s state to
database.

• An instance loads the most frequently used part of the entity object’s state in theejbLoad
method and caches it until the container invokes theejbStore method. Additional parts of
the entity object’s state are loaded as needed by the business methods. TheejbStore method
writes the updated parts of the entity object’s state to the database.

• An instance does not cache any entity object’s state between business methods. The b
methods access and modify the entity object’s state directly in the database. TheejbLoad
andejbStore methods have an empty implementation.

We expect that most entity developers will not manually code the cache management and data
calls in the entity bean class. We expect that they will rely on application development tools to pr
various data access components that encapsulate data access and provide state caching.

11.1.7.1 ejbLoad and ejbStore with the NotSupported transaction attribute

The use of theejbLoad andejbStore methods for caching an entity object’s state in the instan
works well only if the Container can use transaction boundaries to drive theejbLoad andejbStore
methods. When theNotSupported [19] transaction attribute is assigned to a remote interface meth
the corresponding enterprise bean class method executes with an unspecified transaction conte
Subsection 16.6.5). This means that the Container does not have any well-defined transaction
aries to drive theejbLoad andejbStore methods on the instance.

Therefore, theejbLoad andejbStore methods are “unreliable” for the instances that the Contain
uses to dispatch the methods with an unspecified transaction context. The following are the only g
tees that the Container provides for the instances that execute the methods with an unspecified t
tion context:

• The Container invokes at least oneejbLoad betweenejbActivate and the first business
method in the instance.

• The Container invokes at least oneejbStore between the last business method on th
instance and theejbPassivate method.

Because the entity object’s state accessed between theejbLoad andejbStore method pair is not
protected by a transaction boundary for the methods that execute with an unspecified transactio
text, the Bean Provider should not attempt to use theejbLoad andejbStore methods to control
caching of the entity object’s state in the instance. Typically, the implementation of theejbLoad and
ejbStore methods should be a no-op (i.e., an empty method), and each business method
access the entity object’s state directly in the database.

[19] This applies also to theNever andSupports attribute.
261 10/23/00

Entity Bean Component Contract for Bean Managed PersistenceEnterprise JavaBeans 2.0, Proposed Final Draft Overview of Bean

Sun Microsystems, Inc.

ty

pond-
ity

rs, the

nding
ass

lients
11.1.8 Finder method return type

11.1.8.1 Single-object finder

Some finder methods (such asejbFindByPrimaryKey) are designed to return at most one enti
object. For these single-object finders, the result type of thefind<METHOD>(...) method defined in
the entity bean’s home interface is the entity bean’s remote interface. The result type of the corres
ing ejbFind<METHOD>(...) method defined in the entity’s implementation class is the ent
bean’s primary key type.

The following code illustrates the definition of a single-object finder.

// Entity’s home interface
public AccountHome extends javax.ejb.EJBHome {

...
Account findByPrimaryKey(AccountPrimaryKey primkey)

throws FinderException, RemoteException;
...

}

// Entity’s implementation class
public AccountBean implements javax.ejb.EntityBean {

...
public AccountPrimaryKey ejbFindByPrimaryKey(

AccountPrimaryKey primkey)
throws FinderException

{
...

}
...

}

11.1.8.2 Multi-object finders

Some finder methods are designed to return multiple entity objects. For these multi-object finde
result type of thefind<METHOD>(...) method defined in the entity bean’s home interface is acol-
lectionof objects implementing the entity bean’s remote interface. The result type of the correspo
ejbFind<METHOD>(...) implementation method defined in the entity bean’s implementation cl
is a collection of objects of the entity bean’s primary key type.

The Bean Provider can choose two types to define a collection type for a finder:

• the Java™ 2java.util.Collection interface

• the JDK™ 1.1java.util.Enumeration interface

A Bean Provider targeting containers and clients based on Java 2 should use thejava.util.Col-
lection interface for the finder’s result type.

A Bean Provider who wants to ensure that the entity bean is compatible with containers and c
based on JDK 1.1 must use thejava.util.Enumeration interface for the finder’s result type[20].
 10/23/00 262

Overview of Bean Managed Entity PersistenceEnterprise JavaBeans 2.0, Proposed Final Draft Entity Bean Component Contract for

Sun Microsystems, Inc.

erface

ain-

and
The Bean Provider must ensure that the objects in thejava.util.Enumeration or
java.util.Collection returned from theejbFind<METHOD>(...) method are instances of
the entity bean’s primary key class.

A client program must use thePortableRemoteObject.narrow(...) method to convert the
objects contained in the collections returned by the finder method to the entity bean’s remote int
type.

The following is an example of a multi-object finder method definition that is compatible with cont
ers and clients based on Java 2:

// Entity’s home interface
public AccountHome extends javax.ejb.EJBHome {

...
java.util.Collection findLargeAccounts(double limit)

throws FinderException, RemoteException;
...

}

// Entity’s implementation class
public AccountBean implements javax.ejb.EntityBean {

...
public java.util.Collection ejbFindLargeAccounts(

double limit) throws FinderException
{

...
}
...

}

The following is an example of a multi-object finder method definition compatible with containers
clients that are based on both JDK 1.1 and Java 2:

// Entity’s home interface
public AccountHome extends javax.ejb.EJBHome {

...
java.util.Enumeration findLargeAccounts(double limit)

throws FinderException, RemoteException;
...

}

// Entity’s implementation class
public AccountBean implements javax.ejb.EntityBean {

...
public java.util.Enumeration ejbFindLargeAccounts(

double limit) throws FinderException
{

...
}
...

}

[20] The finder will be also compatible with Java 2-based Containers and Clients.
263 10/23/00

Entity Bean Component Contract for Bean Managed PersistenceEnterprise JavaBeans 2.0, Proposed Final Draft Overview of Bean

Sun Microsystems, Inc.

reated
sac-
ng the

may

be
n, it

e may

.

ted
ay be

cep-

t

11.1.9 Standard application exceptions for Entities

The EJB specification defines the following standard application exceptions:

• javax.ejb.CreateException

• javax.ejb.DuplicateKeyException

• javax.ejb.FinderException

• javax.ejb.ObjectNotFoundException

• javax.ejb.RemoveException

11.1.9.1 CreateException

From the client’s perspective, aCreateException (or a subclass ofCreateException) indi-
cates that an application level error occurred during thecreate<METHOD>(...) operation. If a cli-
ent receives this exception, the client does not know, in general, whether the entity object was c
but not fully initialized, or not created at all. Also, the client does not know whether or not the tran
tion has been marked for rollback. (However, the client may determine the transaction status usi
UserTransaction interface.)

The Bean Provider throws theCreateException (or subclass ofCreateException) from the
ejbCreate<METHOD>(...) and ejbPostCreate<METHOD>(...) methods to indicate an
application-level error from the create or initialization operation. Optionally, the Bean Provider
mark the transaction for rollback before throwing this exception.

The Bean Provider is encouraged to mark the transaction for rollback only if data integrity would
lost if the transaction were committed by the client. Typically, when a CreateException is throw
leaves the database in a consistent state, allowing the client to recover. For example, ejbCreat
throw the CreateException to indicate that the some of the arguments to the create<METHOD>(...) meth-
ods are invalid.

The Container treats theCreateException as any other application exception. See Section 17.3

11.1.9.2 DuplicateKeyException

The DuplicateKeyException is a subclass ofCreateException . It is thrown by theejb-
Create<METHOD>(...) methods to indicate to the client that the entity object cannot be crea
because an entity object with the same key already exists. The unique key causing the violation m
the primary key, or another key defined in the underlying database.

Normally, the Bean Provider should not mark the transaction for rollback before throwing the ex
tion.

When the client receives theDuplicateKeyException , the client knows that the entity was no
created, and that the client’s transaction has not typically been marked for rollback.
 10/23/00 264

Overview of Bean Managed Entity PersistenceEnterprise JavaBeans 2.0, Proposed Final Draft Entity Bean Component Contract for

Sun Microsystems, Inc.

he

.

ders
ation

client
rmine

ion.
n.

be
wn, it

.

f the
e the
bean
11.1.9.3 FinderException

From the client’s perspective, aFinderException (or a subclass ofFinderException) indi-
cates that an application level error occurred during thefind(...) operation. Typically, the client’s
transaction has not been marked for rollback because of theFinderException .

The Bean Provider throws theFinderException (or subclass ofFinderException) from the
ejbFind<METHOD>(...) methods to indicate an application-level error in the finder method. T
Bean Provider should not, typically, mark the transaction for rollback before throwing theFinderEx-
ception .

The Container treats theFinderException as any other application exception. See Section 17.3

11.1.9.4 ObjectNotFoundException

The ObjectNotFoundException is a subclass ofFinderException . It is thrown by the
ejbFind<METHOD>(...) methods to indicate that the requested entity object does not exist.

Only single-object finders (see Subsection 11.1.8) should throw this exception. Multi-object fin
must not throw this exception. Multi-object finders should return an empty collection as an indic
that no matching objects were found.

11.1.9.5 RemoveException

From the client’s perspective, aRemoveException (or a subclass ofRemoveException) indi-
cates that an application level error occurred during aremove(...) operation. If a client receives this
exception, the client does not know, in general, whether the entity object was removed or not. The
also does not know if the transaction has been marked for rollback. (However, the client may dete
the transaction status using theUserTransaction interface.)

The Bean Provider throws theRemoveException (or subclass ofRemoveException) from the
ejbRemove() method to indicate an application-level error from the entity object removal operat
Optionally, the Bean Provider may mark the transaction for rollback before throwing this exceptio

The Bean Provider is encouraged to mark the transaction for rollback only if data integrity would
lost if the transaction were committed by the client. Typically, when a RemoveException is thro
leaves the database in a consistent state, allowing the client to recover.

The Container treats theRemoveException as any other application exception. See Section 17.3

11.1.10 Commit options

The Entity Bean protocol is designed to give the Container the flexibility to select the disposition o
instance state at transaction commit time. This flexibility allows the Container to optimally manag
caching of entity object’s state and the association of an entity object identity with the enterprise
instances.

The Container can select from the following commit-time options:
265 10/23/00

Entity Bean Component Contract for Bean Managed PersistenceEnterprise JavaBeans 2.0, Proposed Final Draft Overview of Bean

Sun Microsystems, Inc.

ainer
storage.
sistent

ption
to the

ze the

Con-
leted.

n com-

bean
vider

ns in

oncur-
ensure
ctions.

chro-

which
tically
s meth-
• Option A : The Container caches a “ready” instance between transactions. The Cont
ensures that the instance has exclusive access to the state of the object in the persistent
Therefore, the Container does not have to synchronize the instance’s state from the per
storage at the beginning of the next transaction.

• Option B: The Container caches a “ready” instance between transactions. In contrast to O
A, in this option the Container does not ensure that the instance has exclusive access
state of the object in the persistent storage. Therefore, the Container must synchroni
instance’s state from the persistent storage at the beginning of the next transaction.

• Option C: The Container does not cache a “ready” instance between transactions. The
tainer returns the instance to the pool of available instances after a transaction has comp

The following table provides a summary of the commit-time options.

Note that the container synchronizes the instance’s state with the persistent storage at transactio
mit for all three options.

The selection of the commit option is transparent to the entity bean implementation—the entity
will work correctly regardless of the commit-time option chosen by the Container. The Bean Pro
writes the entity bean in the same way.

The object interaction diagrams in subsection 11.4.4 illustrate the three alternative commit optio
detail.

11.1.11 Concurrent access from multiple transactions

When writing the entity bean business methods, the Bean Provider does not have to worry about c
rent access from multiple transactions. The Bean Provider may assume that the container will
appropriate synchronization for entity objects that are accessed concurrently from multiple transa

The container typically uses one of the following implementation strategies to achieve proper syn
nization. (These strategies are illustrative, not prescriptive.)

• The container activates multiple instances of the entity bean, one for each transaction in
the entity object is being accessed. The transaction synchronization is performed automa
by the underlying database during the database access calls performed by the busines

Table 13 Summary of commit-time options

Write instance state
to database

Instance stays
ready

Instance state
remains valid

Option A Yes Yes Yes

Option B Yes Yes No

Option C Yes No No
 10/23/00 266

Overview of Bean Managed Entity PersistenceEnterprise JavaBeans 2.0, Proposed Final Draft Entity Bean Component Contract for

Sun Microsystems, Inc.

er does
sec-

s an
could

eed to
r mul-

e con-
to this
r.
ods; and by theejbLoad , ejbCreate<METHOD> , ejbStore , andejbRemove methods.
The database system provides all the necessary transaction synchronization; the contain
not have to perform any synchronization logic. The commit-time options B and C in Sub
tion 11.4.4 apply to this type of container.

Figure 40 Multiple clients can access the same entity object using multiple instances

With this strategy, the type of lock acquired by ejbLoad leads to a trade-off. If ejbLoad acquire
exclusive lock on the instance's state in the database, then throughput of read-only transactions
be impacted. If ejbLoad acquires a shared lock and the instance is updated, then ejbStore will n
promote the lock to an exclusive lock. This may cause a deadlock if it happens concurrently unde
tiple transactions.

• The container acquires exclusive access to the entity object’s state in the database. Th
tainer activates a single instance and serializes the access from multiple transactions
instance. The commit-time option A in Subsection 11.4.4 applies to this type of containe

Account 100
in TX 1

Account 100
in TX 2

Container

Client 1

Client 2

Account 100Entity object
Account 100

TX 1

TX 2

enterprise bean instances
267 10/23/00

Entity Bean Component Contract for Bean Managed PersistenceEnterprise JavaBeans 2.0, Proposed Final Draft Overview of Bean

Sun Microsystems, Inc.

of a
request

the
ro-

t. An
ack
urrent

ethod

ject an
uting a
e bean,
ck call

e

er must
n gen-
reful
Figure 41 Multiple clients can access the same entity object using single instance

11.1.12 Non-reentrant and re-entrant instances

An entity Bean Provider entity can specify that an entity bean is non-reentrant. If an instance
non-reentrant entity bean executes a client request in a given transaction context, and another
with the same transaction context arrives for the same entity object, the container will throw
java.rmi.RemoteException to the second request. This rule allows the Bean Provider to p
gram the entity bean as single-threaded, non-reentrant code.

The functionality of some entity beans may require loopbacks in the same transaction contex
example of a loopback is when the client calls entity object A, A calls entity object B, and B calls b
A in the same transaction context. The entity bean’s method invoked by the loopback shares the c
execution context (which includes the transaction and security contexts) with the Bean’s m
invoked by the client.

If the entity bean is specified as non-reentrant in the deployment descriptor, the Container must re
attempt to re-enter the instance via the entity bean’s remote interface while the instance is exec
business method. (This can happen, for example, if the instance has invoked another enterpris
and the other enterprise bean tries to make a loopback call.) The container must reject the loopba
and throw thejava.rmi.RemoteException to the caller. The container must allow the call if th
Bean’s deployment descriptor specifies that the entity bean is re-entrant.

Re-entrant entity beans must be programmed and used with great caution. First, the Bean Provid
code the entity bean with the anticipation of a loopback call. Second, since the container cannot, i
eral, tell a loopback from a concurrent call from a different client, the client programmer must be ca
to avoid code that could lead to a concurrent call in the same transaction context.

Account 100
in TX 1

Container

Client 1

Client 2

Account 100

container blocks Client 2
until Client 1 finishes

Entity object
Account 100

TX 1

TX 2

enterprise bean instance
 10/23/00 268

Responsibilities of the Enterprise Bean ProviderEnterprise JavaBeans 2.0, Proposed Final Draft Entity Bean Component Contract for

Sun Microsystems, Inc.

d may
al con-
backs.
criptor,

ensure

of the
e

Concurrent calls in the same transaction context targeted at the same entity object are illegal an
lead to unpredictable results. Since the container cannot, in general, distinguish between an illeg
current call and a legal loopback, application programmers are encouraged to avoid using loop
Entity beans that do not need callbacks should be marked as non-reentrant in the deployment des
allowing the container to detect and prevent illegal concurrent calls from clients.

11.2 Responsibilities of the Enterprise Bean Provider

This section describes the responsibilities of a bean managed persistence entity Bean Provider to
that the entity bean can be deployed in any EJB Container.

11.2.1 Classes and interfaces

The entity Bean Provider is responsible for providing the following class files:

• Entity bean class and any dependent classes.

• Entity bean’s remote interface

• Entity bean’s home interface

• Primary key class

11.2.2 Enterprise bean class

The following are the requirements for an entity bean class:

The class must implement, directly or indirectly, thejavax.ejb.EntityBean interface.

The class must be defined aspublic and must not beabstract .

The class must not be defined asfinal .

The class must define a public constructor that takes no arguments.

The class must not define thefinalize() method.

The class may, but is not required to, implement the entity bean’s remote interface[21]. If the class
implements the entity bean’s remote interface, the class must provide no-op implementations
methods defined in thejavax.ejb.EJBObject interface. The container will never invoke thes
methods on the bean instances at runtime.

[21] If the entity bean class does implement the remote interface, care must be taken to avoid passing ofthis as a method argument
or result. This potential error can be avoided by choosing not to implement the remote interface in the entity bean class.
269 10/23/00

Entity Bean Component Contract for Bean Managed PersistenceEnterprise JavaBeans 2.0, Proposed Final Draft Responsibilities of the

Sun Microsystems, Inc.

bstract.

e
tance in

rclasses,
e
y of

voked

the

.1 or
Runt-

is
jects

al to
A no-op implementation of these methods is required to avoid defining the entity bean class as a

The entity bean class must implement the business methods, and theejbCreate<METHOD>, ejb-
PostCreate<METHOD>, ejbFind<METHOD> and ejbHome<METHOD>methods as described
later in this section.

The entity bean class must implement theejbHome<METHOD>methods that correspond to the hom
business methods specified in the bean’s home interface. These methods are executed on an ins
the pooled state; hence they must not access state that is particular to a specific bean instance.

The entity bean class may have superclasses and/or superinterfaces. If the entity bean has supe
the business methods, theejbCreate and ejbPostCreate methods, the finder methods, and th
methods of theEntityBean interface may be implemented in the enterprise bean class or in an
its superclasses.

The entity bean class is allowed to implement other methods (for example helper methods in
internally by the business methods) in addition to the methods required by the EJB specification.

11.2.3 ejbCreate<METHOD> methods

The entity bean class may define zero or moreejbCreate<METHOD>(...) methods whose signa-
tures must follow these rules:

The method name must haveejbCreate as its prefix.

The method must be declared aspublic .

The method must not be declared asfinal or static .

The return type must be the entity bean’s primary key type.

The method argument and return value types must be legal types for RMI-IIOP.

The throws clause may define arbitrary application specific exceptions, including
javax.ejb.CreateException .

Compatibility Note: EJB 1.0 allowed the ejbCreate method to throw thejava.rmi.RemoteExcep-
tion to indicate a non-application exception. This practice was deprecated in EJB 1.1—an EJB 1
EJB 2.0 compliant enterprise bean should throw the javax.ejb.EJBException or another java.lang.
imeException to indicate non-application exceptions to the Container (see Section 17.2.2).

The entity object created by theejbCreate<METHOD> method must have a unique primary key. Th
means that the primary key must be different from the primary keys of all the existing entity ob
within the same home. TheejbCreate<METHOD> method should throw theDuplicateKeyEx-
ception on an attempt to create an entity object with a duplicate primary key. However, it is leg
reuse the primary key of a previously removed entity object.
 10/23/00 270

Responsibilities of the Enterprise Bean ProviderEnterprise JavaBeans 2.0, Proposed Final Draft Entity Bean Component Contract for

Sun Microsystems, Inc.

the

EJB
ther
ction

mary

the
11.2.4 ejbPostCreate<METHOD> methods

For eachejbCreate<METHOD>(...) method, the entity bean class must define a matchingejb-
PostCreate<METHOD>(...) method, using the following rules:

The method name must haveejbPostCreate as its prefix.

The method must be declared aspublic .

The method must not be declared asfinal or static .

The return type must bevoid .

The method arguments must be the same as the arguments of the matchingejbCre-
ate<METHOD>(...) method.

The throws clause may define arbitrary application specific exceptions, including
javax.ejb.CreateException .

Compatibility Note: EJB 1.0 allowed the ejbPostCreate method to throw thejava.rmi.RemoteEx-
ception to indicate a non-application exception. This practice was deprecated in EJB 1.1—an
1.1 or EJB 2.0 compliant enterprise bean should throw the javax.ejb.EJBException or ano
java.lang.RuntimeException to indicate non-application exceptions to the Container (see Se
17.2.2).

11.2.5 ejbFind methods

The entity bean class may also define additionalejbFind<METHOD>(...) finder methods.

The signatures of the finder methods must follow the following rules:

A finder method name must start with the prefix “ejbFind” (e.g. ejbFindByPrimaryKey ,
ejbFindLargeAccounts , ejbFindLateShipments).

A finder method must be declared aspublic .

The method must not be declared asfinal or static .

The method argument types must be legal types for RMI-IIOP.

The return type of a finder method must be the entity bean’s primary key type, or a collection of pri
keys (see Subsection 11.1.8).

The throws clause may define arbitrary application specific exceptions, including
javax.ejb.FinderException .
271 10/23/00

Entity Bean Component Contract for Bean Managed PersistenceEnterprise JavaBeans 2.0, Proposed Final Draft Responsibilities of the

Sun Microsystems, Inc.

.1 or
Runt-

t

follow-

these

back

.1 or
Runt-
Compatibility Note: EJB 1.0 allowed the finder methods to throw thejava.rmi.RemoteExcep-
tion to indicate a non-application exception. This practice was deprecated in EJB 1.1—an EJB 1
EJB 2.0 compliant enterprise bean should throw the javax.ejb.EJBException or another java.lang.
imeException to indicate non-application exceptions to the Container (see Section 17.2.2).

Every entity bean must define theejbFindByPrimaryKey method. The result type for this method
must be the primary key type (i.e., theejbFindByPrimaryKey method must be a single-objec
finder).

11.2.6 ejbHome<METHOD> methods
The entity bean class may define zero or more home methods whose signatures must follow the
ing rules:

The method name must haveejbHome as its prefix.

The method must be declared aspublic .

The method must not be declared asstatic .

The method argument and return value types must be legal types for RMI-IIOP.

The throws clause may define arbitrary application specific exceptions.

11.2.7 Business methods

The entity bean class may define zero or more business methods whose signatures must follow
rules:

The method names can be arbitrary, but they must not start with ‘ejb’ to avoid conflicts with the call
methods used by the EJB architecture.

The business method must be declared aspublic .

The method must not be declared asfinal or static .

The method argument and return value types must be legal types for RMI-IIOP.

The throws clause may define arbitrary application specific exceptions.

Compatibility Note: EJB 1.0 allowed the business methods to throw thejava.rmi.RemoteExcep-
tion to indicate a non-application exception. This practice was deprecated in EJB 1.1—an EJB 1
EJB 2.0 compliant enterprise bean should throw the javax.ejb.EJBException or another java.lang.
imeException to indicate non-application exceptions to the Container (see Section 17.2.2).
 10/23/00 272

Responsibilities of the Enterprise Bean ProviderEnterprise JavaBeans 2.0, Proposed Final Draft Entity Bean Component Contract for

Sun Microsystems, Inc.

their
must

to the

bean’s

Bean

rgu-
clude

to the

return
11.2.8 Entity bean’s remote interface

The following are the requirements for the entity bean’s remote interface:

The interface must extend thejavax.ejb.EJBObject interface.

The methods defined in the remote interface must follow the rules for RMI-IIOP. This means that
argument and return value types must be valid types for RMI-IIOP, and their throws clauses
include thejava.rmi.RemoteException .

The remote interface is allowed to have superinterfaces. Use of interface inheritance is subject
RMI-IIOP rules for the definition of remote interfaces.

For each method defined in the remote interface, there must be a matching method in the entity
class. The matching method must have:

• The same name.

• The same number and types of its arguments, and the same return type.

• All the exceptions defined in the throws clause of the matching method of the enterprise
class must be defined in the throws clause of the method of the remote interface.

11.2.9 Entity bean’s home interface

The following are the requirements for the entity bean’s home interface:

The interface must extend thejavax.ejb.EJBHome interface.

The methods defined in this interface must follow the rules for RMI-IIOP. This means that their a
ment and return types must be of valid types for RMI-IIOP, and that their throws clauses must in
the java.rmi.RemoteException .

The home interface is allowed to have superinterfaces. Use of interface inheritance is subject
RMI-IIOP rules for the definition of remote interfaces.

Each method defined in the home interface must be one of the following:

• A create method.

• A finder method.

• A home method.

Eachcreate method must be the named “create<METHOD>”, and it must match one of theejb-
Create<METHOD> methods defined in the enterprise Bean class. The matchingejbCre-
ate<METHOD>method must have the same number and types of its arguments. (Note that the
type is different.)
273 10/23/00

Entity Bean Component Contract for Bean Managed PersistenceEnterprise JavaBeans 2.0, Proposed Final Draft Responsibilities of the

Sun Microsystems, Inc.

ause

d

r a

e

and

nd must
The return type for acreate<METHOD> method must be the entity bean’s remote interface type.

All the exceptions defined in the throws clause of the matchingejbCreate<METHOD> andejb-
PostCreate<METHOD> methods of the enterprise Bean class must be included in the throws cl
of the matchingcreate method of the home interface (i.e., the set of exceptions defined for thecre-
ate<METHOD> method must be a superset of the union of exceptions defined for theejbCre-
ate<METHOD> andejbPostCreate<METHOD> methods).

The throws clause of acreate<METHOD> method must include thejavax.ejb.CreateExcep-
tion .

Each finder method must be named “find <METHOD>” (e.g. findLargeAccounts), and it
must match one of theejbFind<METHOD> methods defined in the entity bean class (e.g.ejbFind-
LargeAccounts). The matchingejbFind<METHOD> method must have the same number an
types of arguments. (Note that the return type may be different.)

The return type for afind<METHOD> method must be the entity bean’s remote interface type (fo
single-object finder), or a collection thereof (for a multi-object finder).

The home interface must always include thefindByPrimaryKey method, which is always a sin-
gle-object finder. The method must declare the primary key class as the method argument.

All the exceptions defined in the throws clause of anejbFind method of the entity bean class must b
included in the throws clause of the matchingfind method of the home interface.

The throws clause of afinder method must include thejavax.ejb.FinderException .

Home methods can have arbitrary names, provided that they do not clash withcreate, find and
remove method names. Their argument and return types must be of valid types for RMI-IIOP,
their throws clauses must include thejava.rmi.RemoteException . The matchingejbHome
method specified in the entity bean class must have the same number and types of arguments a
return the same type as the home method as specified in the home interface of the bean.

11.2.10 Entity bean’s primary key class

The Bean Provider must specify a primary key class in the deployment descriptor.

The primary key type must be a legal Value Type in RMI-IIOP.

The class must provide suitable implementation of thehashCode() and equals(Object
other) methods to simplify the management of the primary keys by client code.
 10/23/00 274

The responsibilities of the Container ProviderEnterprise JavaBeans 2.0, Proposed Final Draft Entity Bean Component Contract for

Sun Microsystems, Inc.

persis-
nd for

iner, we
yment

addi-
r gen-

y Bean

).

s).

e entity
at runt-

ds and
ple, a
ot
t.

home
11.3 The responsibilities of the Container Provider

This section describes the responsibilities of the Container Provider to support bean managed
tence entity beans. The Container Provider is responsible for providing the deployment tools, a
managing entity bean instances at runtime.

Because the EJB specification does not define the API between deployment tools and the conta
assume that the deployment tools are provided by the container provider. Alternatively, the deplo
tools may be provided by a different vendor who uses the container vendor’s specific API.

11.3.1 Generation of implementation classes

The deployment tools provided by the container provider are responsible for the generation of
tional classes when the entity bean is deployed. The tools obtain the information that they need fo
eration of the additional classes by introspecting the classes and interfaces provided by the entit
Provider and by examining the entity bean’s deployment descriptor.

The deployment tools must generate the following classes:

• A class that implements the entity bean’s home interface (i.e., the entity EJBHome class

• A class that implements the entity bean’s remote interface (i.e., the entity EJBObject clas

The deployment tools may also generate a class that mixes some container-specific code with th
bean class. The code may, for example, help the container to manage the entity bean instances
ime. Tools can use subclassing, delegation, and code generation.

The deployment tools may also allow generation of additional code that wraps the business metho
that is used to customize the business logic for an existing operational environment. For exam
wrapper for adebit function on theAccount Bean may check that the debited amount does n
exceed a certain limit, or perform security checking that is specific to the operational environmen

11.3.2 Entity EJBHome class

The entity EJBHome class, which is generated by deployment tools, implements the entity bean’s
interface. This class implements the methods of thejavax.ejb.EJBHome interface, and the
type-specificcreate andfinder methods specific to the entity bean.

The implementation of eachcreate<METHOD>(...) method invokes a matchingejbCre-
ate<METHOD>(...) method, followed by the matchingejbPostCreate<METHOD>(...)
method, passing thecreate<METHOD>(...) parameters to these matching methods.

The implementation of theremove(...) methods defined in thejavax.ejb.EJBHome interface
must activate an instance (if an instance is not already in the ready state) and invoke theejbRemove
method on the instance.
275 10/23/00

Entity Bean Component Contract for Bean Managed PersistenceEnterprise JavaBeans 2.0, Proposed Final Draft The responsibilities of

Sun Microsystems, Inc.

e
to exe-

ean’s

ady in

handle

le class

e han-

o, use a
The implementation of each find<METHOD>(...) method invokes a matching
ejbFind<METHOD>(...) method. The implementation of thefind<METHOD>(...) method
must create an entity object reference for the primary key returned from theejbFind<METHOD> and
return the entity object reference to the client. If theejbFind<METHOD> method returns a collection
of primary keys, the implementation of thefind<METHOD>(...) method must create a collection
of entity object references for the primary keys and return the collection to the client.

Before invoking theejbFind<METHOD>(...) method, the container must first synchronize th
state of any entity bean instances that are participating in the same transaction context as is used
cute theejbFind<METHOD>(...) by invoking theejbStore() method on those entity bean
instances.

The implementation of each<METHOD>(...) home method invokes a matchingejb-
Home<METHOD>(...) method defined in the entity bean’s class.

The implementation of theejbHome<METHOD>(...) methods are provided by the bean provider.

11.3.3 Entity EJBObject class

The entity EJBObject class, which is generated by deployment tools, implements the entity b
remote interface. It implements the methods of thejavax.ejb.EJBObject interface and the busi-
ness methods specific to the entity bean.

The implementation of theremove(...) method (defined in thejavax.ejb.EJBObject inter-
face) must activate an instance (if an instance is not already in the ready state) and invoke theejbRe-
move method on the instance.

The implementation of each business method must activate an instance (if an instance is not alre
the ready state) and invoke the matching business method on the instance.

11.3.4 Handle class

The deployment tools are responsible for implementing the handle class for the entity bean. The
class must be serializable by the Java Serialization protocol.

As the handle class is not entity bean specific, the container may, but is not required to, use a sing
for all deployed entity beans.

11.3.5 Home Handle class

The deployment tools responsible for implementing the home handle class for the entity bean. Th
dle class must be serializable by the Java Serialization protocol.

Because the home handle class is not entity bean specific, the container may, but is not required t
single class for the home handles of all deployed entity beans.
 10/23/00 276

Object interaction diagrams Enterprise JavaBeans 2.0, Proposed Final Draft Entity Bean Component Contract for Bean

Sun Microsystems, Inc.

tion to
t the

, use a

ption

h that
r a long
sh and
ed, or
a dif-

lient
ethod
ct ref-

remote

ed per-
11.3.6 Meta-data class

The deployment tools are responsible for implementing the class that provides meta-data informa
the client view contract. The class must be a valid RMI-IIOP Value Type, and must implemen
javax.ejb.EJBMetaData interface.

Because the meta-data class is not entity bean specific, the container may, but is not required to
single class for all deployed enterprise beans.

11.3.7 Instance’s re-entrance

The container runtime must enforce the rules defined in Section 11.1.12.

11.3.8 Transaction scoping, security, exceptions

The container runtime must follow the rules on transaction scoping, security checking, and exce
handling described in Chapters 16, 20, and 17.

11.3.9 Implementation of object references

The container should implement the distribution protocol between the client and the container suc
the object references of the home and remote interfaces used by entity bean clients are usable fo
period of time. Ideally, a client should be able to use an object reference across a server cra
restart. An object reference should become invalid only when the entity object has been remov
after a reconfiguration of the server environment (for example, when the entity bean is moved to
ferent EJB server or container).

The motivation for this is to simplify the programming model for the entity bean client. While the c
code needs to have a recovery handler for the system exceptions thrown from the individual m
invocations on the home and remote interface, the client should not be forced to re-obtain the obje
erences.

11.3.10 EntityContext

The container must implement theEntityContext.getEJBContext() method such that the
bean instance can use the Java language cast to convert the returned value to the entity bean’s
interface type. Specifically, the bean instance does not have to use thePortableRemoteOb-
ject.narrow(...) method for the type conversion.

11.4 Object interaction diagrams

This section uses object interaction diagrams to illustrate the interactions between a bean manag
sistence entity bean instance and its container.
277 10/23/00

Entity Bean Component Contract for Bean Managed PersistenceEnterprise JavaBeans 2.0, Proposed Final Draft Object interaction dia-

Sun Microsystems, Inc.

es are
te with
ication

than as
11.4.1 Notes

The object interaction diagrams illustrate a box labeled “container-provided classes.” These class
either part of the container or are generated by the container tools. These classes communica
each other through protocols that are container implementation specific. Therefore, the commun
between these classes is not shown in the diagrams.

The classes shown in the diagrams should be considered as an illustrative implementation rather
a prescriptive one.
 10/23/00 278

Object interaction diagrams Enterprise JavaBeans 2.0, Proposed Final Draft Entity Bean Component Contract for Bean

Sun Microsystems, Inc.
11.4.2 Creating an entity object

Figure 42 OID of Creation of an entity object with bean-managed persistence

client instance transactiondatabase

javax.transaction.UserTransaction.begin()

service
EJB

registerSynchronization(synchronization)

ejbCreate(args)

entity
context

EJB
Object

create(args)

container-provided classes

create representation in DB

new

business method
business method

synchro-
nization

new

Home

ejbPostCreate(args)

container

register resource manager
279 10/23/00

Entity Bean Component Contract for Bean Managed PersistenceEnterprise JavaBeans 2.0, Proposed Final Draft Object interaction dia-

Sun Microsystems, Inc.
11.4.3 Passivating and activating an instance in a transaction

Figure 43 OID of passivation and reactivation of an entity bean instance with bean-managed persistence

business method
ejbActivate()

ejbStore()

write state to DB

ejbPassivate()

business method

ejbLoad()

read state from DB

business method
business method

business method
business method

client instance transactiondatabase
service

EJB entity
context

containerEJB
Object

container-provided classes

synchro-
nizationHome
 10/23/00 280

Object interaction diagrams Enterprise JavaBeans 2.0, Proposed Final Draft Entity Bean Component Contract for Bean

Sun Microsystems, Inc.

aged
corre-
11.4.4 Committing a transaction

Figure 44 OID of transaction commit protocol for an entity bean instance with bean-managed persistence

11.4.5 Starting the next transaction

The following diagram illustrates the protocol performed for an entity bean instance with bean-man
persistence at the beginning of a new transaction. The three options illustrated in the diagram
spond to the three commit options in the previous subsection.

ejbStore()

write state to DB

client instance transactiondatabase
service

EJB entity
context

containerEJB
Object

container-provided classes

synchro-
nization

javax.transaction.UserTransaction.commit()

beforeCompletion()

prepare

commit

afterCompletion(status)

ejbPassivate()Option C:

Option A: mark “not registered”

Option B: mark “invalid state”

Home
281 10/23/00

Entity Bean Component Contract for Bean Managed PersistenceEnterprise JavaBeans 2.0, Proposed Final Draft Object interaction dia-

Sun Microsystems, Inc.
Figure 45 OID of start of transaction for an entity bean instance with bean-managed persistence

business method

business method

read state from DB

client instance transactiondatabase
service

EJB entity
context

EJB
Object

container-provided classes

synchro-
nization

javax.transaction.UserTransaction.begin()

ejbActivate()Option C:

Option A: do nothing

Option B: ejbLoad()

read state from DB
ejbLoad()

registerSynchronization(synchronization)

new

business method
business method

Home
container

register resource manager

register resource manager
 10/23/00 282

Object interaction diagrams Enterprise JavaBeans 2.0, Proposed Final Draft Entity Bean Component Contract for Bean

Sun Microsystems, Inc.
11.4.6 Removing an entity object

Figure 46 OID of removal of an entity bean object with bean-managed persistence

client instance transactiondatabase
service

remove()

EJB entity
context

EJB
Object

container-provided classes

synchro-
nization

remove representation
in DB

ejbRemove()

Home
container
283 10/23/00

Entity Bean Component Contract for Bean Managed PersistenceEnterprise JavaBeans 2.0, Proposed Final Draft Object interaction dia-

Sun Microsystems, Inc.

oes not
11.4.7 Finding an entity object

Figure 47 OID of execution of a finder method on an entity bean instance with bean-managed persistence

11.4.8 Adding and removing an instance from the pool

The diagrams in Subsections 11.4.2 through 11.4.7 did not show the sequences between the “d
exist” and “pooled” state (see the diagram in Section 11.1.4).

client instance transactiondatabase
service

EJB

ejbFind<METHOD>(args)

entity
context

EJB
Object

find<METHOD>(args)

container-provided classes

search DB

synchro-
nizationHome

new

container
 10/23/00 284

Object interaction diagrams Enterprise JavaBeans 2.0, Proposed Final Draft Entity Bean Component Contract for Bean

Sun Microsystems, Inc.
Figure 48 OID of a container adding an instance to the pool

Figure 49 OID of a container removing an instance from the pool

instance transactiondatabase
service

EJB entity
context

EJB
Object

container-provided classes

synchro-
nizationHome

container

new

new

setEntityContext(ec)

instance transactiondatabase
service

EJB entity
context

EJB
Object

container-provided classes

synchro-
nizationHome

container

unsetEntityContext()
285 10/23/00

Entity Bean Component Contract for Bean Managed PersistenceEnterprise JavaBeans 2.0, Proposed Final Draft Object interaction dia-

Sun Microsystems, Inc.
 10/23/00 286

Overview Enterprise JavaBeans 2.0, Proposed Final Draft Example bean managed persistence entity

Sun Microsystems, Inc.

y

g bean
er and

ustra-
ntity
of the

ed
Chapter 12 Example bean managed persistence entit
scenario

This chapter describes an example development and deployment scenario for an entity bean usin
managed persistence. We use the scenario to explain the responsibilities of the entity Bean Provid
those of the container provider.

The classes generated by the container provider’s tools in this scenario should be considered ill
tive rather than prescriptive. Container providers are free to implement the contract between an e
bean and its container in a different way that achieves an equivalent effect (from the perspectives
entity Bean Provider and the client-side programmer).

12.1 Overview

Wombat Inc. has developed theAccountBean entity bean. The AccountBean entity bean is deploy
in a container provided by the Acme Corporation.
287 10/23/00

Example bean managed persistence entity scenarioEnterprise JavaBeans 2.0, Proposed Final Draft Inheritance relationship

Sun Microsystems, Inc.
12.2 Inheritance relationship

Figure 50 Example of the inheritance relationship between the interfaces and classes:

AcmeRemoteAccount

Account

AccountBean

AcmeRemote

EJBHome

AcmeHome

JDK

Enterprise
JavaBeans

enterprise Bean
provider

container
provider

produced by
Acme tools

java.rmi.Remote

EJBObject

(Wombat Inc.)

(Acme)

EnterpriseBean

Java interface Java class

java.io.Serializable

extends or implements interface

extends implementation, code generation, or delegation

AcmeAccountHome

AcmeBean

EntityBean

AcmeAccountBean

AccountHome

AcmeAccountMetaData

AcmeMetaData

EJBMetaData
 10/23/00 288

Inheritance relationship Enterprise JavaBeans 2.0, Proposed Final Draft Example bean managed persistence entity

Sun Microsystems, Inc.

siness
inter-
ust

y, but
must

th-

s the
public,
ote

bean
yment

thods.

ethods.

man-
then

Data

bean’s
proto-
12.2.1 What the entity Bean Provider is responsible for

Wombat Inc. is responsible for providing the following:

• Define the entity bean’s remote interface (Account). The remote interface defines the bu
methods callable by a client. The remote interface must extend the javax.ejb.EJBObject
face, and follow the standard rules for a RMI-IIOP remote interface. The remote interface m
be defined as public.

• Write the business logic in the entity bean class (AccountBean). The entity bean class ma
is not required to, implement the entity bean’s remote interface (Account). The entity bean
implement the methods of the javax.ejb.EntityBean interface, the ejbCreate<METHOD>(...) and
ejbPostCreate<METHOD>(...) methods invoked at entity object creation, and the finder me
ods.

• Define a home interface (AccountHome) for the entity bean. The home interface define
entity bean’s specific create and finder methods. The home interface must be defined as
extend the javax.ejb.EJBHome interface, and follow the standard rules for RMI-IIOP rem
interfaces.

• Define a deployment descriptor that specifies any declarative information that the entity
provider wishes to pass with the entity bean to the next stage of the development/deplo
workflow.

12.2.2 Classes supplied by Container Provider

The following classes are supplied by the container provider, Acme Corp:

• The AcmeHome class provides the Acme implementation of the javax.ejb.EJBHome me

• The AcmeRemote class provides the Acme implementation of the javax.ejb.EJBObject m

• The AcmeBean class provides additional state and methods to allow Acme’s container to
age its entity bean instances. For example, if Acme’s container uses an LRU algorithm,
AcmeBean may include the clock count and methods to use it.

• The AcmeMetaData class provides the Acme implementation of the javax.ejb.EJBMeta
methods.

12.2.3 What the container provider is responsible for

The tools provided by Acme Corporation are responsible for the following:

• Generate the entity EJBOBject class (AcmeRemoteAccount) that implements the entity
remote interface. The tools also generate the classes that implement the communication
col specific artifacts for the remote interface.
289 10/23/00

Example bean managed persistence entity scenarioEnterprise JavaBeans 2.0, Proposed Final Draft Inheritance relationship

Sun Microsystems, Inc.

eAc-
mixed
ation,

ments
s that

inter-

ented
s, and
• Generate the implementation of the entity bean class suitable for the Acme container (Acm
countBean). AcmeAccountBean includes the business logic from the AccountBean class
with the services defined in the AcmeBean class. Acme tools can use inheritance, deleg
and code generation to achieve mix-in of the two classes.

• Generate the entity EJBHome class (AcmeAccountHome) for the entity bean. that imple
the entity bean’s home interface (AccountHome). The tools also generate the classe
implement the communication protocol specific artifacts for the home interface.

• Generate a class (AcmeAccountMetaData) that implements the javax.ejb.EJBMetaData
face for the Account Bean.

The above classes and tools are container-specific (i.e., they reflect the way Acme Corp implem
them). Other container providers may use different mechanisms to produce their runtime classe
the generated classes most likely will be different from those generated by Acme’s tools.
 10/23/00 290

EJB 1.1 Entity beans with container-managed persistenceEnterprise JavaBeans 2.0, Proposed Final Draft EJB 1.1 Entity Bean Compo-

Sun Microsystems, Inc.

tence.

with
t Bean
ed in
that it

ompo-
y bean
anaged
Chapter 13 EJB 1.1 Entity Bean Component Contract
for Container Managed Persistence

This chapter specifies the EJB 1.1 entity bean component contract for container managed persis

While we require container providers to support backward compatibility for EJB 1.1 entity beans
container managed persistence by the implementation of this contract, we highly recommend tha
Providers use the Entity Bean Component Contract for Container Managed Persistence specifi
Chapter 9 for the development of new entity beans because of the more complete functionality
provides.

13.1 EJB 1.1 Entity beans with container-managed persistence

Chapter 11 “Entity Bean Component Contract for Bean Managed Persistence” describes the c
nent contract for entity beans with bean-managed persistence. The contract for an EJB 1.1 entit
with container-managed persistence is the same as the contract for an entity bean with bean-m
persistence as described in Chapter 11, except for the differences described in this chapter.
291 10/23/00

EJB 1.1 Entity Bean Component Contract for Container Managed PersistenceEnterprise JavaBeans 2.0, Proposed Final Draft EJB1.1

Sun Microsystems, Inc.

ols to
d meth-
ager at

eation,

access

efined

nd the

le for

e indi-

con-

tity

ce can

elds are
es of

con-
effect

f per-
toring

r the
with
ill be

state in
13.1.1 Container-managed fields

An EJB 1.1 entity bean with container-managed persistence relies on the Container Provider’s to
generate methods that perform data access on behalf of the entity bean instances. The generate
ods transfer data between the entity bean instance’s variables and the underlying resource man
the times defined by the EJB specification. The generated methods also implement the cr
removal, and lookup of the entity object in the underlying database.

An entity bean with container-manager persistence must not code explicit data access—all data
must be deferred to the Container.

The EJB 1.1 entity Bean Provider is responsible for using thecmp-field elements of the deploy-
ment descriptor to declare the instance’s fields that the Container must load and store at the d
times. The fields must be defined in the entity bean class aspublic , and must not be defined as
transient .

The container is responsible for transferring data between the entity bean’s instance variables a
underlying data source before or after the execution of theejbCreate , ejbRemove , ejbLoad , and
ejbStore methods, as described in the following subsections. The container is also responsib
the implementation of the finder methods.

The EJB 2.0 deployment descriptor for an EJB 1.1 entity bean with container managed persistenc
cates that the entity bean uses container-managed persistence and that the value of itscmp-version
element is1.x .

The EJB 1.1 component contract does not architect support for relationships for entity beans with
tainer managed persistence. EJB 2.0 does not support the use of thecmr-field , dependents ,
ejb-relation , or query deployment descriptor elements or their subelements for EJB 1.1 en
beans.

The following requirements ensure that an EJB 1.1 entity bean with container managed persisten
be deployed in any compliant container.

• The Bean Provider must ensure that the Java types assigned to the container-managed fi
restricted to the following: Java primitive types, Java serializable types, and referenc
enterprise beans’ remote or home interfaces.

• The Container Provider may, but is not required to, use Java Serialization to store the
tainer-managed fields in the database. If the container chooses a different approach, the
should be equivalent to that of Java Serialization. The Container must also be capable o
sisting references to enterprise beans’ remote and home interfaces (for example, by s
their handle or primary key).

Although the above requirements allow the Bean Provider to specify almost any arbitrary type fo
container-managed fields, we expect that in practice the Bean Provider of EJB 1.1 entity beans
container managed persistence will use relatively simple Java types, and that most Containers w
able to map these simple Java types to columns in a database schema to externalize the entity
the database, rather than use Java serialization.
 10/23/00 292

EJB 1.1 Entity beans with container-managed persistenceEnterprise JavaBeans 2.0, Proposed Final Draft EJB 1.1 Entity Bean Compo-

Sun Microsystems, Inc.

, he or
s con-
by the
pically
s, pos-

of the
r may

con-
lar map-
managed

nt the

same
e data
f the
le to
item.)

con-
i-
rts of

hould
ead.

inserts
r-

nguage

the

rt them

en-
If the Bean Provider expects that the container-managed fields will be mapped to database fields
she should provide mapping instructions to the Deployer. The mapping between the instance’
tainer-managed fields and the schema of the underlying database manager will be then realized
data access classes generated by the container provider’s tools. Because entity beans are ty
coarse-grained objects, the content of the container-managed fields may be stored in multiple row
sibly spread across multiple database tables. These mapping techniques are beyond the scope
EJB specification, and do not have to be supported by an EJB compliant container. (The containe
simply use the Java serialization protocol in all cases).

Because a compliant EJB Container is not required to provide any support for mapping the
tainer-managed fields to a database schema, a Bean Provider of entity beans that need a particu
ping to an underlying database schema should use bean managed persistence or the container
persistence contract specified in Chapter 9 of this specification instead.

The provider of EJB 1.1 entity beans with container-managed persistence must take into accou
following limitations of the EJB 1.1 container-managed persistence protocol:

• Data aliasing problems. If container-managed fields of multiple entity beans map to the
data item in the underlying database, the entity beans may see an inconsistent view of th
item if the multiple entity beans are invoked in the same transaction. (That is, an update o
data item done through a container-managed field of one entity bean may not be visib
another entity bean in the same transaction if the other entity bean maps to the same data

• Eager loading of state. The Container loads the entire entity object state into the
tainer-managed fields before invoking theejbLoad method. This approach may not be opt
mal for entity objects with large state if most business methods require access to only pa
the state.

An entity bean designer who runs into the limitations of EJB 1.1 container-managed persistence s
use the container managed persistence contracts specified in Chapter 9 of this specification inst

13.1.2 ejbCreate, ejbPostCreate

With bean-managed persistence, the entity Bean Provider is responsible for writing the code that
a record into the database in theejbCreate(...) methods. However, with container-managed pe
sistence, the container performs the database insert after theejbCreate(...) method completes.

The Container must ensure that the values of the container-managed fields are set to the Java la
defaults (e.g. 0 for integer,null for pointers) prior to invoking anejbCreate(...) method on an
instance.

The EJB 1.1 entity Bean Provider’s responsibility is to initialize the container-managed fields in
ejbCreate(...) methods from the input arguments such that when anejbCreate(...)
method returns, the container can extract the container-managed fields from the instance and inse
into the database.

TheejbCreate(...) methods must be defined to return the primary key class type. The implem
tation of theejbCreate(...) methods should be coded to return anull . The returned value is
ignored by the Container.
293 10/23/00

EJB 1.1 Entity Bean Component Contract for Container Managed PersistenceEnterprise JavaBeans 2.0, Proposed Final Draft EJB1.1

Sun Microsystems, Inc.

tence
les for
bclass

base,
e, and
must

ed
te

ne

base.

text
n

object’s
e con-
Note: The above requirement is to allow the creation of an entity bean with bean-managed persis
by subclassing an EJB 1.1 entity bean with container-managed persistence. The Java language ru
overriding methods in subclasses requires the signatures of the ejbCreate(...) methods in the su
and the superclass be the same.

The container is responsible for creating the entity object’s representation in the underlying data
extracting the primary key fields of the newly created entity object representation in the databas
for creating an entity EJBObject reference for the newly created entity object. The Container
establish the primary key before it invokes theejbPostCreate(...) method. The container may
create the representation of the entity in the database immediately afterejbCreate(...) returns, or
it can defer it to a later time (for example to the time after the matchingejbPostCreate(...) has
been called, or to the end of the transaction).

The container then invokes the matchingejbPostCreate(...) method on the instance. The
instance can discover the primary key by callinggetPrimaryKey() on its entity context object.

The container must invokeejbCreate , perform the database insert operation, and invokeejbPost-
Create in the transaction context determined by the transaction attribute of the matchingcre-
ate(...) method, as described in subsection 16.6.2.

The Container throws theDuplicateKeyException if the newly created entity object would have
the same primary key as one of the existing entity objects within the same home.

13.1.3 ejbRemove

The container invokes theejbRemove() method on an entity bean instance with container-manag
persistence in response to a client-invokedremove operation on the entity bean’s home or remo
interface.

The entity Bean Provider can use theejbRemove method to implement any actions that must be do
before the entity object’s representation is removed from the database.

The container synchronizes the instance’s state before it invokes theejbRemove method. This means
that the state of the instance variables at the beginning of theejbRemove method is the same as it
would be at the beginning of a business method.

After ejbRemove returns, the container removes the entity object’s representation from the data

The container must performejbRemove and the database delete operation in the transaction con
determined by the transaction attribute of the invokedremove method, as described in subsectio
16.6.2.

13.1.4 ejbLoad

When the container needs to synchronize the state of an enterprise bean instance with the entity
state in the database, the container reads the entity object’s state from the database into th
tainer-managed fields and then it invokes theejbLoad() method on the instance.
 10/23/00 294

EJB 1.1 Entity beans with container-managed persistenceEnterprise JavaBeans 2.0, Proposed Final Draft EJB 1.1 Entity Bean Compo-

Sun Microsystems, Inc.

s from
e
were

tate of

-

vider’s
ts the

hods

pro-
n of

tainer
e bean

t of the
e the

s
s speci-

fication
The entity Bean Provider can rely on the container’s having loaded the container-managed field
the database just before the container invokes theejbLoad() method. The entity bean can use th
ejbLoad() method, for instance, to perform some computation on the values of the fields that
read by the container (for example, uncompressing text fields).

13.1.5 ejbStore

When the container needs to synchronize the state of the entity object in the database with the s
the enterprise bean instance, the container first calls theejbStore() method on the instance, and
then it extracts the container-managed fields and writes them to the database.

The entity Bean Provider should use theejbStore() method to set up the values of the con
tainer-managed fields just before the container writes them to the database. For example, theejb-
Store() method may perform compression of text before the text is stored in the database.

13.1.6 finder methods

The entity Bean Provider does not write the finder (ejbFind<METHOD>(...)) methods.

The finder methods are generated at the entity bean deployment time using the container pro
tools. The tools can, for example, create a subclass of the entity bean class that implemen
ejbFind<METHOD>() methods, or the tools can generate the implementation of the finder met
directly in the class that implements the entity bean’s home interface.

Note that theejbFind<METHOD> names and parameter signatures of EJB 1.1 entity beans do not
vide the container tools with sufficient information for automatically generating the implementatio
the finder methods for methods other thanejbFindByPrimaryKey . Therefore, the bean provider is
responsible for providing a description of each finder method. The entity bean Deployer uses con
tools to generate the implementation of the finder methods based in the description supplied by th
provider.

The EJB1.1 component contract for container managed persistence does not specify the forma
finder method description. A Bean Provider of entity beans that needs this functionality should us
container managed persistence contract specified in Chapter 9 of this specification instead.

13.1.7 home methods
The EJB1.1 entity bean contract does not supportejbHome methods. A Bean Provider of entity bean
that need the home method functionality should use the container managed persistence contract
fied in Chapter 9 of this specification instead.

13.1.8 create methods

The EJB1.1 entity bean contract does not supportcreate<METHOD> methods. A Bean Provider of
entity beans that needs the flexibility in method naming thatcreate<METHOD> methods provide
should use the container managed persistence contracts specified in Chapter 9 of this speci
instead.
295 10/23/00

EJB 1.1 Entity Bean Component Contract for Container Managed PersistenceEnterprise JavaBeans 2.0, Proposed Final Draft EJB1.1

Sun Microsystems, Inc.

for an
ion to

ersis-

ient for
d in a

e
ust be

anaged
aged

for an
an does
imary
pri-
ry key

bclass
beans
erlying
13.1.9 primary k ey type

The container must be able to manipulate the primary key type. Therefore, the primary key type
entity bean with container-managed persistence must follow the rules in this subsection, in addit
those specified in Subsection 11.2.10.

There are two ways to specify a primary key class for an entity bean with container-managed p
tence:

• Primary key that maps to a single field in the entity bean class.

• Primary key that maps to multiple fields in the entity bean class.

The second method is necessary for implementing compound keys, and the first method is conven
single-field keys. Without the first method, simple types such as String would have to be wrappe
user-defined class.

13.1.9.1 Primary key that maps to a single field in the entity bean class

The Bean Provider uses theprimkey-field element of the deployment descriptor to specify th
container-managed field of the entity bean class that contains the primary key. The field’s type m
the primary key type.

13.1.9.2 Primary key that maps to multiple fields in the entity bean class

The primary key class must bepublic , and must have apublic constructor with no parameters.

All fields in the primary key class must be declared as public.

The names of the fields in the primary key class must be a subset of the names of the container-m
fields. (This allows the container to extract the primary key fields from an instance’s container-man
fields, and vice versa.)

13.1.9.3 Special case: Unknown primary key class

In special situations, the entity Bean Provider may choose not to specify the primary key class
entity bean with container-managed persistence. This case usually happens when the entity be
not have a natural primary key, and the Bean Provider wants to allow the Deployer to select the pr
key fields at deployment time. The entity bean’s primary key type will usually be derived from the
mary key type used by the underlying database system that stores the entity objects. The prima
used by the database system may not be known to the Bean Provider.

When defining the primary key for the enterprise bean, the Deployer may sometimes need to su
the entity bean class to add additional container-managed fields (this typically happens for entity
that do not have a natural primary key, and the primary keys are system-generated by the und
database system that stores the entity objects).
 10/23/00 296

Object interaction diagrams Enterprise JavaBeans 2.0, Proposed Final Draft EJB 1.1 Entity Bean Component Contract

Sun Microsystems, Inc.

ent

velops
when

ram-
neral,

e meth-
cause

entity

es are
te with
ication

than as
In this special case, the type of the argument of thefindByPrimaryKey method must be declared as
java.lang.Object , and the return value ofejbCreate() must be declared as
java.lang.Object. The Bean Provider must specify the primary key class in the deploym
descriptor as of the typejava.lang.Object.

The primary key class is specified at deployment time in the situations when the Bean Provider de
an entity bean that is intended to be used with multiple back-ends that provide persistence, and
these multiple back-ends require different primary key structures.

Use of entity beans with a deferred primary key type specification limits the client application prog
ming model, because the clients written prior to deployment of the entity bean may not use, in ge
the methods that rely on the knowledge of the primary key type.

The implementation of the enterprise bean class methods must be done carefully. For example, th
ods should not depend on the type of the object returned from EntityContext.getPrimaryKey(), be
the return type is determined by the Deployer after the EJB class has been written.

13.2 Object interaction diagrams

This section uses object interaction diagrams to illustrate the interactions between an EJB 1.1
bean instance and its container.

13.2.1 Notes

The object interaction diagrams illustrate a box labeled “container-provided classes.” These class
either part of the container or are generated by the container tools. These classes communica
each other through protocols that are container implementation specific. Therefore, the commun
between these classes is not shown in the diagrams.

The classes shown in the diagrams should be considered as an illustrative implementation rather
a prescriptive one
297 10/23/00

EJB 1.1 Entity Bean Component Contract for Container Managed PersistenceEnterprise JavaBeans 2.0, Proposed Final Draft Object

Sun Microsystems, Inc.
13.2.2 Creating an entity object
 10/23/00 298

Object interaction diagrams Enterprise JavaBeans 2.0, Proposed Final Draft EJB 1.1 Entity Bean Component Contract

Sun Microsystems, Inc.
Figure 51 OID of creation of an entity object with EJB 1.1 container-managed persistence

client instance transactiondatabase

javax.transaction.UserTransaction.begin()

service
EJB

registerSynchronization(synchronization)

entity
context

EJB
Object

create(args)

container-provided classes

extract container-managed fields

business method
business method

synchro-
nization

new

ejbCreate(args)

new

Home

ejbPostCreate(args)

container

register resource manager

create entity representation in DB
299 10/23/00

EJB 1.1 Entity Bean Component Contract for Container Managed PersistenceEnterprise JavaBeans 2.0, Proposed Final Draft Object

Sun Microsystems, Inc.
13.2.3 Passivating and activating an instance in a transaction
 10/23/00 300

Object interaction diagrams Enterprise JavaBeans 2.0, Proposed Final Draft EJB 1.1 Entity Bean Component Contract

Sun Microsystems, Inc.
Figure 52 OID of passivation and reactivation of an entity bean instance with EJB 1.1 CMP

business method
ejbActivate()

ejbStore()

extract container-managed fields

ejbPassivate()

business method

ejbLoad()

read entity state from DB

business method
business method

business method
business method

client instance transactiondatabase
service

EJB entity
context

containerEJB
Object

container-provided classes

synchro-
nizationHome

update entity state in DB

set container-managed fields
301 10/23/00

EJB 1.1 Entity Bean Component Contract for Container Managed PersistenceEnterprise JavaBeans 2.0, Proposed Final Draft Object

Sun Microsystems, Inc.
13.2.4 Committing a transaction

Figure 53 OID of transaction commit protocol for an entity bean instance with EJB 1.1 container-managed
persistence

ejbStore()

extract container-managed fields

client instance transactiondatabase
service

EJB entity
context

EJB
Object

container-provided classes

synchro-
nization

javax.transaction.UserTransaction.commit()

beforeCompletion()

prepare

commit

afterCompletion(status)

ejbPassivate()Option C:

Option A: mark “not registered”

Option B: mark “invalid state”

Home
container

update entity state in DB
 10/23/00 302

Object interaction diagrams Enterprise JavaBeans 2.0, Proposed Final Draft EJB 1.1 Entity Bean Component Contract

Sun Microsystems, Inc.

con-
in the
13.2.5 Starting the next transaction

The following diagram illustrates the protocol performed for an entity bean instance with EJB 1.1
tainer-managed persistence at the beginning of a new transaction. The three options illustrated
diagram correspond to the three commit options in the previous subsection.
303 10/23/00

EJB 1.1 Entity Bean Component Contract for Container Managed PersistenceEnterprise JavaBeans 2.0, Proposed Final Draft Object

Sun Microsystems, Inc.

ce
Figure 54 OID of start of transaction for an entity bean instance with EJB 1.1 container-managed persisten

business method

business method

read state from DB

client instance transactiondatabase
service

EJB entity
context

EJB
Object

container-provided classes

synchro-
nization

javax.transaction.UserTransaction.begin()

ejbActivate()Option C:

Option A:
do nothing

Option B:

ejbLoad()

registerSynchronization(synchronization)

new

business method
business method

ejbLoad()

read entity state from DB

Home
container

register resource manager

register resource manager

set container managed fields

set container managed fields
 10/23/00 304

Object interaction diagrams Enterprise JavaBeans 2.0, Proposed Final Draft EJB 1.1 Entity Bean Component Contract

Sun Microsystems, Inc.
13.2.6 Removing an entity object

Figure 55 OID of removal of an entity bean object with EJB 1.1 container-managed persistence

client instance transactiondatabase
service

remove()

EJB entity
context

EJB
Object

container-provided classes

synchro-
nization

remove representation in DB

ejbRemove()

Home
container
305 10/23/00

EJB 1.1 Entity Bean Component Contract for Container Managed PersistenceEnterprise JavaBeans 2.0, Proposed Final Draft Object

Sun Microsystems, Inc.

oes not
13.2.7 Finding an entity object

Figure 56 OID of execution of a finder method on an entity bean instance with EJB 1.1 container-managed
persistence

13.2.8 Adding and removing an instance from the pool

The diagrams in Subsections 13.2.7 through 13.2.7 did not show the sequences between the “d
exist” and “pooled” state (see the diagram in Section 11.1.4).

client instance transactiondatabase
service

EJB

search DB

entity
context

EJB
Object

find<METHOD>(args)

container-provided classes

synchro-
nizationHome

new

container
 10/23/00 306

Object interaction diagrams Enterprise JavaBeans 2.0, Proposed Final Draft EJB 1.1 Entity Bean Component Contract

Sun Microsystems, Inc.
Figure 57 OID of a container adding an instance to the pool

Figure 58 OID of a container removing an instance from the pool

instance transactiondatabase
service

EJB entity
context

EJB
Object

container-provided classes

synchro-
nizationHome

container

new

new

setEntityContext(ec)

instance transactiondatabase
service

EJB entity
context

EJB
Object

container-provided classes

synchro-
nizationHome

container

unsetEntityContext()
307 10/23/00

EJB 1.1 Entity Bean Component Contract for Container Managed PersistenceEnterprise JavaBeans 2.0, Proposed Final Draft Object

Sun Microsystems, Inc.
 10/23/00 308

Overview Enterprise JavaBeans 2.0, Proposed Final Draft Message-driven Bean Component Contract

Sun Microsystems, Inc.

ct

the life

tainer’s

oked by
ome nor
ass.

ss logic
es to the
ner.

ces are
Chapter 14 Message-driven Bean Component Contra

This chapter specifies the contract between a message-driven bean and its container. It defines
cycle of the message-driven bean instances.

This chapter defines the developer’s view of message-driven bean state management and the con
responsibility for managing it.

14.1 Overview

A message-driven bean is an asynchronous message consumer. A message-driven bean is inv
the container as a result of the arrival of a JMS message. A message-driven bean has neither a h
a remote interface. A message-driven bean instance is an instance of a message-driven bean cl

To a client, a message-driven bean is a JMS message consumer that implements some busine
running on the server. A client accesses a message-driven bean through JMS by sending messag
JMS Destination (Queue or Topic) for which the message-driven bean class is the MessageListe

Message-driven bean instances have no conversational state. This means that all bean instan
equivalent when they are not involved in servicing a client message.

Message-driven beans are anonymous. They have no client-visible identity.
309 10/23/00

Message-driven Bean Component Contract Enterprise JavaBeans 2.0, Proposed Final Draft Goals

Sun Microsystems, Inc.

ages for

s of the
ples of

ynchro-
e same

am of

l
i-

es to the
would
dles the

behind
agram
A message-driven bean instance is created by the container to handle the processing of the mess
which the message-driven bean is the consumer. Its lifetime is controlled by the container.

A message-driven bean instance has no state for a specific client. However, the instance variable
message-driven bean instance can contain state across the handling of client messages. Exam
such state include an open database connection and an object reference to an EJB object.

14.2 Goals

The goal of the message-driven bean model is to make developing an enterprise bean that is as
nously invoked to handle the processing of incoming JMS messages as simple as developing th
functionality in any other JMS MessageListener.

A further goal of the message-driven bean model is to allow for the concurrent processing of a stre
messages by means of container-provided pooling of message-driven bean instances.

While the EJB 2.0 specification requires support for only JMS-based messaging, a future goa
of the message-driven bean model is to provide support for other types of messaging in add
tion to JMS, and to allow for message-driven beans that are written to their APIs.

14.3 Client view of a message-driven bean

To a client, a message-driven bean is simply a JMS message consumer. The client sends messag
Destination (Queue or Topic) for which the message-driven bean is the MessageListener just as it
to any other Destination. The message-driven bean, like any other JMS message consumer, han
processing of the messages.

From the perspective of the client, the existence of a message-driven bean is completely hidden
the JMS destination for which the message-driven bean is the message listener. The following di
illustrates the view that is provided to a message-driven bean’s clients.
 10/23/00 310

Client view of a message-driven bean Enterprise JavaBeans 2.0, Proposed Final Draft Message-driven Bean Component Contract

Sun Microsystems, Inc.

exam-
seg-
Figure 59 Client view of message-driven beans deployed in a container

A client locates the JMS Destination associated with a message-driven bean by using JNDI. For
ple, the Queue for theStockInfo message-driven bean can be located using the following code
ment:

Context initialContext = new InitialContext();
Queue stockInfoQueue = (javax.jms.Queue)initialContext.lookup

(“java:comp/env/jms/stockInfoQueue”);

Client Destination

Container

Message-driven
bean

Message-
driven bean
instances
311 10/23/00

Message-driven Bean Component Contract Enterprise JavaBeans 2.0, Proposed Final Draft Protocol between a message-driven bean

Sun Microsystems, Inc.

riven
l loca-

enter-

otocol

ntainer
he con-
n bean
n bean

sages.

es. It is
en the
essage

bean is
to be

the EJB
crip-

mes-
vice the
essages

ple, if

The calls
otifica-

d to any
A client’s JNDI name space may be configured to include the JMS Destinations of message-d
beans installed in multiple EJB Containers located on multiple machines on a network. The actua
tions of an enterprise bean and EJB Container are, in general, transparent to the client using the
prise bean.

The remainder of this section describes the message-driven bean life cycle in detail and the pr
between the message-driven bean and its container.

14.4 Protocol between a message-driven bean instance and its
container

From its creation until destruction, a message-driven bean instance lives in a container. The co
provides security, concurrency, transactions, and other services for the message-driven bean. T
tainer manages the life cycle of the message-driven bean instances, notifying the instances whe
action may be necessary, and providing a full range of services to ensure that the message-drive
implementation is scalable and can support the concurrent processing of a large number of mes

From the Bean Provider’s point of view, a message-driven bean exists as long as its container do
the container’s responsibility to ensure that the message-driven bean comes into existence wh
container is started up and that instances of the bean are ready to receive an asynchronous m
delivery before the delivery of messages is started.

The Bean Provider can use the deployment descriptor to indicate whether a message-driven
intended for use with a topic or queue, and, if the former, whether or not topic subscriptions are
durable.

Durable topic subscriptions, as well as queues, ensure that messages are not missed even if
server is not running. Reliable applications will typically make use of queues or durable topic subs
tions rather than non-durable topic subscriptions.

If a non-durable topic subscription is used, it is the container’s responsibility to make sure that the
sage driven bean subscription is active (i.e., that there is a message driven bean available to ser
message) in order to ensure that messages are not missed as long as the EJB server is running. M
may be missed, however, when a bean is not available to service them. This will occur, for exam
the EJB server goes down for any period of time.

Containers themselves make no actual service demands on the message-driven bean instances.
a container makes on a bean instance provide it with access to container services and deliver n
tions issued by the container.

Since all instances of a message-driven bean are equivalent, a client message can be delivere
available instance.

14.4.1 The requiredMessageDrivenBean interface

All message-driven beans must implement theMessageDrivenBean interface.
 10/23/00 312

Protocol between a message-driven bean instance and its containerEnterprise JavaBeans 2.0, Proposed Final Draft Message-driven

Sun Microsystems, Inc.

es-

con-

an to
mes-

e not per-

ntainer.

uch
bean

has
naged

action
rcation

s-

en

ean
The setMessageDrivenContext method is called by the bean’s container to associate a m
sage-driven bean instance with its context maintained by thecontainer. Typically a message-driven
bean instance retains its message-driven context as part of its state.

The ejbRemove notification signals that the instance is in the process of being removed by the
tainer. In theejbRemove method, the instance releases the resources that it is holding.

14.4.2 The required javax.jms.MessageListener interface

All message-driven beans must implement thejavax.jms.MessageListener interface.

TheonMessage method is called by the bean’s container when a message has arrived for the be
service. TheonMessage method contains the business logic that handles the processing of the
sage. TheonMessage method has a single argument, the incoming message.

Only message-driven beans can asynchronously receive messages. Session and entity beans ar
mitted to be JMS MessageListeners.

14.4.3 The MessageDrivenContext interface

The container provides the message-driven bean instance with aMessageDrivenContext . This
gives the message-driven bean instance access to the instance’s context maintained by the co
TheMessageDrivenContext interface has the following methods:

• The setRollbackOnly method allows the instance to mark the current transaction s
that the only outcome of the transaction is a rollback. Only instances of a message-driven
with container-managed transaction demarcation can use this method.

• The getRollbackOnly method allows the instance to test if the current transaction
been marked for rollback. Only instances of a message-driven bean with container-ma
transaction demarcation can use this method.

• The getUserTransaction method returns thejavax.transaction.UserTrans-
action interface that the instance can use to demarcate transactions, and to obtain trans
status. Only instances of a message-driven bean with bean-managed transaction dema
can use this method.

• The getCallerPrincipal method is inherited from the EJBContext interface. Me
sage-driven bean instances must not call this method.

• The isCallerInRole method is inherited from the EJBContext interface. Message-driv
bean instances must not call this method.

• ThegetEJBHome method is inherited from the EJBContext interface. Message-driven b
instances must not call this method.
313 10/23/00

Message-driven Bean Component Contract Enterprise JavaBeans 2.0, Proposed Final Draft Protocol between a message-driven bean

Sun Microsystems, Inc.

calls the
con-
e.

t many
a serial-
eentrant.

ly, thus
he exact
ugh the
f mes-
are out of
ssage to

ction
naged

uses
ansac-

 tr
14.4.4 Message-driven bean’sejbCreate() method

The container creates an instance of a message-driven bean in three steps. First, the container
bean class’newInstance method to create a new message-driven bean instance. Second, the
tainer calls thesetMessageDrivenContext method to pass the context object to the instanc
Third, the container calls the instance’sejbCreate method.

Each message-driven bean class must have oneejbCreate method, with no arguments.

14.4.5 Serializing message-driven bean methods

A container serializes calls to each message-driven bean instance. Most containers will suppor
instances of a message-driven bean executing concurrently; however, each instance sees only
ized sequence of method calls. Therefore, a message-driven bean does not have to be coded as r

The container must serialize all the container-invoked callbacks (i.e.,ejbRemove methods), and it
must serialize these callbacks with theonMessage method calls.

14.4.6 Concurrency of message processing

A container allows many instances of a message-driven bean class to be executing concurrent
allowing for the concurrent processing of a stream of messages. No guarantees are made as to t
order in which messages are delivered to the instances of the message-driven bean class, altho
container should attempt to deliver messages in order when it does not impair the concurrency o
sage processing. Message-driven beans should therefore be prepared to handle messages that
sequence: for example, the message to cancel a reservation may be delivered before the me
make the reservation.

14.4.7 Transaction context of message-driven bean methods

The onMessage method is invoked in the scope of a transaction determined by the transa
attribute specified in the deployment descriptor. If the bean is specified as using container-ma
transaction demarcation, either theRequired or theNotSupported transaction attribute must be
used.[22]

When a message-driven bean using bean-managed transaction demarcation uses thejavax.trans-
action.UserTransaction interface to demarcate transactions, the message receipt that ca
the bean to be invoked is not part of the transaction. If the message receipt is to be part of the tr
tion, container-managed transaction demarcation with theRequired transaction attribute must be
used.

[22] Use of the other transaction attributes is not meaningful for message-driven beans, because there can be no pre-existingansac-
tion context and no client to handle exceptions.
 10/23/00 314

Protocol between a message-driven bean instance and its containerEnterprise JavaBeans 2.0, Proposed Final Draft Message-driven

Sun Microsystems, Inc.

.5 for

cause a

essage
ntainer
rt of the
nnot be
ainer. If
n the
an-

.

ean is
bean

Queue.
tribued

tended

dicate

r the

, throw
A message-driven bean’snewInstance,setMessageDrivenContext , ejbCreate , and
ejbRemove methods are called with an unspecified transaction context. Refer to Subsection 16.6
how the Container executes methods with an unspecified transaction context.

There is never a client transaction context available when a message-driven bean is invoked be
transaction context does not flow with a JMS message.

14.4.8 Message acknowledgment

Message-driven beans should not attempt to use the JMS API for message acknowledgment. M
acknowledgment is automatically handled by the container. If the message-driven bean uses co
managed transaction demarcation, message acknowledgment is handled automatically as a pa
transaction commit. If bean managed transaction demarcation is used, the message receipt ca
part of the bean-managed transaction, and, in this case, the receipt is acknowledged by the cont
bean managed transaction demarcation is used, the Bean Provider can indicate i
acknowedge-mode deployment descriptor element whether JMS AUTO_ACKNOWLEDGE sem
tics or DUPS_OK_ACKNOWLEDGE semantics should apply. If theacknowledge-mode deploy-
ment descriptor element is not specified, JMS AUTO_ACKNOWLEDGE semantics are assumed

14.4.9 Association of a message-driven bean with a destination
A message-driven bean is associated with a JMS Destination (Queue or Topic) when the b
deployed in the container. It is the responsibility of the Deployer to associate the message-driven
with a Queue or Topic.

The Deployer should avoid associating more than one message-driven bean with the same JMS
If there are multiple JMS consumers for a queue, JMS does not define how messages are dis
between the queue receivers.

The Bean Provider may provide advice to the Deployer as to whether a message-driven bean is in
to be associated with a queue or a topic by using themessage-driven-destination deployment
descriptor element.

If the message-driven bean is intended to be used with a topic, the Bean Provider may further in
whether a durable or non-durable subscription should be used by specifying thesubscrip-
tion-durability element. If a topic subscription is specified and thesubscription-dura-
bility element is not specified, a non-durable subscription is assumed.

14.4.10 Dealing with exceptions
The onMessage method of a message-driven bean must not throw application exceptions o
java.rmi.RemoteException .

Message-driven beans, like other well-behaved JMS MessageListeners, should not, in general
RuntimeExceptions .
315 10/23/00

Message-driven Bean Component Contract Enterprise JavaBeans 2.0, Proposed Final Draft Message-driven bean state diagram

Sun Microsystems, Inc.

the
does

ending
essages

mes-
leased

mer, the
A RuntimeException thrown from any method of the message-driven bean class (including
onMessage method and the callbacks invoked by the Container) results in the transition to the “
not exist” state. Exception handling is described in detail in Chapter 17.

From the client perspective, the message consumer continues to exist. If the client continues s
messages to the Destination associated with the bean, the Container can delegate the client’s m
to another instance.

14.4.11 Missed ejbRemove() calls

The Bean Provider cannot assume that the Container will always invoke theejbRemove() method on
a message-driven bean instance. The following scenarios result inejbRemove() not being called on
an instance:

• A crash of the EJB Container.

• A system exception thrown from the instance’s method to the Container.

If the message-driven bean instance allocates resources in theejbCreate() method and/or in the
onMessage method, and releases normally the resources in theejbRemove() method, these
resources will not be automatically released in the above scenarios. The application using the
sage-driven bean should provide some clean up mechanism to periodically clean up the unre
resources.

14.5 Message-driven bean state diagram

When a client sends a message to a Destination for which a message-driven bean is the consu
container selects one of itsmethod-ready instances and invokes the instance’sonMessage method.

The following figure illustrates the life cycle of a MESSAGE-DRIVEN bean instance.
 10/23/00 316

Message-driven bean state diagram Enterprise JavaBeans 2.0, Proposed Final Draft Message-driven Bean Component Contract

Sun Microsystems, Inc.

estina-

tainer
vokes

n bean
Figure 60 Lifecycle of a MESSAGE-DRIVEN bean.

The following steps describe the lifecyle of a message-driven bean instance:

• A message-driven bean instance’s life starts when the container invokesnewInstance on
the message-driven bean class to create a new instance. Next, the container callssetMes-
sageDrivenContext followed byejbCreate on the instance.

• The message-driven bean instance is now ready to be delivered a message sent to its D
tion by any client.

• When the container no longer needs the instance (which usually happens when the con
wants to reduce the number of instances in the method-ready pool), the container in
ejbRemove on it. This ends the life of the message-driven bean instance.

14.5.1 Operations allowed in the methods of a message-driven bean class

Table 14 defines the methods of a message-driven bean class in which the message-drive
instances can access the methods of thejavax.ejb.MessageDrivenContext interface, the
java:comp/env environment naming context, resource managers, and other enterprise beans.

does not
 exist

method-ready
 pool

1. newInstance()
2. setMessageDrivenContext(mdc)
3. ejbCreate()

ejbRemove()

onMessage(msg)

onMessage(msg)
ejbCreate()

action resulting from client message arrival
action initiated by container
317 10/23/00

Message-driven Bean Component Contract Enterprise JavaBeans 2.0, Proposed Final Draft Message-driven bean state diagram

Sun Microsystems, Inc.

the

ss is not

ute in

tion.

ity con-

action
If a message-driven bean instance attempts to invoke a method of theMessageDrivenContext
interface, and the access is not allowed in Table 14, the Container must throw and log
java.lang.IllegalStateException.

If a bean instance attempts to access a resource manager or an enterprise bean and the acce
allowed in Table 14, the behavior is undefined by the EJB architecture.

Additional restrictions:

• The getRollbackOnly and setRollbackOnly methods of theMessageDriven-
Context interface should be used only in the message-driven bean methods that exec
the context of a transaction. The Container must throw thejava.lang.IllegalState-
Exception if the methods are invoked while the instance is not associated with a transac

The reasons for disallowing operations in Table 14:

• Invoking thegetCallerPrincipal and isCallerInRole methods is disallowed in
the message-driven bean methods because the Container does not have a client secur
text. The Container must throw and log thejava.lang.IllegalStateException if
either of these methods is invoked.

• Invoking thegetRollbackOnly andsetRollbackOnly methods is disallowed in the
message-driven bean methods for which the Container does not have a meaningful trans
context, and for all message-driven beans with bean-managed transaction demarcation.

Table 14 Operations allowed in the methods of a message-driven bean

Bean method

Bean method can perform the following operations

Container-managed transaction
demarcation

Bean-managed transaction
demarcation

constructor - -

setMessageDriven-
Context

JNDI access to java:comp/env JNDI access to java:comp/env

ejbCreate
ejbRemove

JNDI access to java:comp/env MessageDrivenContext methods:
getUserTransaction

JNDI access to java:comp/env

onMessage

MessageDrivenContext methods:
getRollbackOnly, setRollbackOnly

JNDI access to java:comp/env

Resource manager access

Enterprise bean access

MessageDrivenContext methods:
getUserTransaction

UserTransaction methods

JNDI access to java:comp/env

Resource manager access

Enterprise bean access
 10/23/00 318

Object interaction diagrams for a MESSAGE-DRIVEN beanEnterprise JavaBeans 2.0, Proposed Final Draft Message-drivenBean

Sun Microsystems, Inc.

on-

re no
the

-ready
• The UserTransaction interface is unavailable to message-driven beans with c
tainer-managed transaction demarcation.

• Invoking getEJBHome is disallowed in message-driven bean methods because there a
EJBHome objects for message-driven beans. The Container must throw and log
java.lang.IllegalStateException if this method is invoked.

14.6 Object interaction diagrams for a MESSAGE-DRIVEN
bean

This section contains object interaction diagrams that illustrate the interaction of the classes.

14.6.1 Message receipt:onMessage method invocation

The following diagram illustrates the invocation of theonMessage method.

Figure 61 OID for invocation of onMessage method on MESSAGE-DRIVEN bean instance

14.6.2 Adding instance to the pool

The following diagram illustrates the sequence for a container adding an instance to the method
pool.

message

client instancemessage-
driven

container-provided classes

synchro-
nization

onMessage method

containerdestination

context
319 10/23/00

Message-driven Bean Component Contract Enterprise JavaBeans 2.0, Proposed Final Draft Object interaction diagrams for a MES-

Sun Microsystems, Inc.

the
Figure 62 OID for container adding instance of a MESSAGE-DRIVEN bean to a method-ready pool

14.6.3 Removing instance from the pool

The following diagram illustrates the sequence for a container removing an instance from
method-ready pool.

instance transaction
service

ejbCreate()

message-
driven

container-provided classes

synchro-
nization

setMessageDrivenContext(mdc)

new

container

new

context
 10/23/00 320

The responsibilities of the bean provider Enterprise JavaBeans 2.0, Proposed Final Draft Message-driven Bean Component Contract

Sun Microsystems, Inc.

a mes-

uctor
Figure 63 OID for a container removing an instance of MESSAGE-DRIVEN bean from ready pool

14.7 The responsibilities of the bean provider

This section describes the responsibilities of the message-driven bean provider to ensure that
sage-driven bean can be deployed in any EJB Container.

14.7.1 Classes and interfaces

The message-driven bean provider is responsible for providing the following class files:

• Message-driven bean class.

14.7.2 Message-driven bean class

The following are the requirements for the message-driven bean class:

The class must implement, directly or indirectly, thejavax.ejb.MessageDrivenBean interface.

The class must implement, directly or indirectly, thejavax.jms.MessageListener interface.

The class must be defined aspublic , must not befinal , and must not beabstract .

The class must have apublic constructor that takes no arguments. The Container uses this constr
to create instances of the message-driven bean class.

instance transaction
service

message-
driven

container-provided classes

synchro-
nization

container

ejbRemove()

context
321 10/23/00

Message-driven Bean Component Contract Enterprise JavaBeans 2.0, Proposed Final Draft The responsibilities of the bean provider

Sun Microsystems, Inc.

e-driven

uper-

ethods
ifi-
The class must not define thefinalize() method.

The class must implement theejbCreate() method.

The message-driven bean class may have superclasses and/or superinterfaces. If the messag
bean has superclasses, theejbCreate method, and the methods of theMessageDrivenBean and
MessageListener interfaces may be defined in the message-driven bean class or in any of its s
classes.

The message-driven bean class is allowed to implement other methods (for example, helper m
invoked internally by theonMessage method) in addition to the methods required by the EJB spec
cation.

14.7.3 ejbCreate method

The message-driven bean class must define oneejbCreate() method whose signature must follow
these rules:

The method name must beejbCreate .

The method must be declared aspublic .

The method must not be declared asfinal or static .

The return type must bevoid .

The method must have no arguments.

The throws clause must not define any application exceptions.

14.7.4 onMessage method

The message-driven bean class must define oneonMessage method whose signature must follow
these rules:

The method must be declared aspublic .

The method must not be declared asfinal or static .

The return type must bevoid .

The method must have a single argument of typejavax.jms.Message .

The throws clause must not define any application exceptions.
 10/23/00 322

The responsibilities of the container providerEnterprise JavaBeans 2.0, Proposed Final Draft Message-driven Bean Component Con-

Sun Microsystems, Inc.

bean.
mes-

iner, we
yment

lasses
enera-
e bean

mes-
ances at

er of a
14.7.5 ejbRemove method

The message-driven bean class must define oneejbRemove() method whose signature must follow
these rules:

The method name must beejbRemove .

The method must be declared aspublic .

The method must not be declared asfinal or static .

The return type must bevoid .

The method must have no arguments.

The throws clause must not define any application exceptions.

14.8 The responsibilities of the container provider

This section describes the responsibilities of the container provider to support a message-driven
The container provider is responsible for providing the deployment tools, and for managing the
sage-driven bean instances at runtime.

Because the EJB specification does not define the API between deployment tools and the conta
assume that the deployment tools are provided by the container provider. Alternatively, the deplo
tools may be provided by a different vendor who uses the container vendor’s specific API.

14.8.1 Generation of implementation classes

The deployment tools provided by the container are responsible for the generation of additional c
when the message-driven bean is deployed. The tools obtain the information that they need for g
tion of the additional classes by introspecting the classes and interfaces provided by the enterpris
provider and by examining the message-driven bean’s deployment descriptor.

The deployment tools may generate a class that mixes some container-specific code with the
sage-driven bean class. This code may, for example, help the container to manage the bean inst
runtime. Subclassing, delegation, and code generation can be used by the tools.

14.8.2 Deployment of message-driven beans.

The container provider must support the deployment of a message-driven bean as the consum
JMS queue or a durable subscription.
323 10/23/00

Message-driven Bean Component Contract Enterprise JavaBeans 2.0, Proposed Final Draft The responsibilities of the container pro-

Sun Microsystems, Inc.

xcep-
14.8.3 Non-reentrant instances

The container must ensure that only one thread can be executing an instance at any time.

14.8.4 Transaction scoping, security, exceptions

The container must follow the rules with respect to transaction scoping, security checking, and e
tion handling, as described in Chapters 16, 20, and 17.
 10/23/00 324

Overview Enterprise JavaBeans 2.0, Proposed Final Draft Example Message-driven Bean Scenario

Sun Microsystems, Inc.

ean. We
ovider.

ustra-
mes-
effect

is

e fol-
Chapter 15 Example Message-driven Bean Scenario

This chapter describes an example development and deployment scenario of a message-driven b
use the scenario to explain the responsibilities of the bean provider and those of the container pr

The classes generated by the container provider’s tools in this scenario should be considered ill
tive rather than prescriptive. Container providers are free to implement the contract between a
sage-driven bean and its container in a different way, provided that it achieves an equivalent
(from the perspectives of the bean provider and the client-side programmer).

15.1 Overview

Wombat Inc. has developed theStockInfoBean message-driven Bean. The StockInfoBean
deployed in a container provided by the Acme Corporation.

15.2 Inheritance relationship

An example of the inheritance relationship between the interfaces and classes is illustrated in th
lowing diagram:
325 10/23/00

Example Message-driven Bean Scenario Enterprise JavaBeans 2.0, Proposed Final Draft Inheritance relationship

Sun Microsystems, Inc.
Figure 64 Example of Inheritance Relationships Between EJB Classes

StockInfoBean

JDK

Enterprise
JavaBeans

enterprise bean
provider

container
provider

produced by
Acme tools

(Wombat Inc.)

(Acme)

EnterpriseBean

Java interface Java class

java.io.Serializable

extends or implements interface

extends implementation, code generation, or delegation

AcmeBean

MessageDrivenBean

AcmeStockInfoBean

javax.jms.MessageListener JMS
 10/23/00 326

Inheritance relationship Enterprise JavaBeans 2.0, Proposed Final Draft Example Message-driven Bean Scenario

Sun Microsystems, Inc.

g the
e mes-
ssage-
.

mes-
velop-

man-

tainer
foBean
itance,

imple-
ntime
15.2.1 What the message-driven Bean provider is responsible for

Wombat Inc. is responsible for providing the following:

• Write the business logic in the message-driven Bean class (StockInfoBean), definin
onMessage method that is invoked when the bean is to service a JMS message. Th
sage-driven Bean must implement the javax.ejb.MessageDrivenBean and javax.jms.Me
Listener interfaces, and define the ejbCreate() method invoked at an EJB object creation

• Define a deployment descriptor that specifies any declarative metadata that the
sage-driven Bean provider wishes to pass with the Bean to the next stage of the de
ment/deployment workflow.

15.2.2 Classes supplied by container provider

The following classes are supplied by the container provider Acme Corp:

• The AcmeBean class provides additional state and methods to allow Acme’s container to
age its message-driven Bean instances.

15.2.3 What the container provider is responsible for

The tools provided by Acme Corporation are responsible for the following:

• Generate the implementation of the message-driven Bean class suitable for the Acme con
(AcmeStockInfoBean). AcmeStockInfoBean includes the business logic from the StockIn
class mixed with the services defined in the AcmeBean class. Acme tools can use inher
delegation, and code generation to achieve a mix-in of the two classes.

Many of the above classes and tools are container-specific (i.e., they reflect the way Acme Corp
mented them). Other container providers may use different mechanisms to produce their ru
classes, which will likely be different from those generated by Acme’s tools.
327 10/23/00

Example Message-driven Bean Scenario Enterprise JavaBeans 2.0, Proposed Final Draft Inheritance relationship

Sun Microsystems, Inc.
 10/23/00 328

Overview Enterprise JavaBeans 2.0, Proposed Final Draft Support for Transactions

Sun Microsystems, Inc.

ansac-
on that
e sites

narios

the
pro-
ion’s
fully
ram-
Chapter 16 Support for Transactions

One of the key features of the Enterprise JavaBeans™ architecture is support for distributed tr
tions. The Enterprise JavaBeans architecture allows an application developer to write an applicati
atomically updates data in multiple databases which may be distributed across multiple sites. Th
may use EJB Servers from different vendors.

16.1 Overview

This section provides a brief overview of transactions and illustrates a number of transaction sce
in EJB.

16.1.1 Transactions

Transactions are a proven technique for simplifying application programming. Transactions free
application programmer from dealing with the complex issues of failure recovery and multi-user
gramming. If the application programmer uses transactions, the programmer divides the applicat
work into units called transactions. The transactional system ensures that a unit of work either
completes, or the work is fully rolled back. Furthermore, transactions make it possible for the prog
mer to design the application as if it ran in an environment that executes units of work serially.
329 10/23/00

Support for Transactions Enterprise JavaBeans 2.0, Proposed Final Draft Overview

Sun Microsystems, Inc.

e enter-
istrib-
arcation

ns using

instruc-
alled
rise
by the
f the

demarca-
ovider.
as the
rovider,

nager
source
uted
ordi-
ation
man-
se of

ve any

n
a-
-

ment
e

Support for transactions is an essential component of the Enterprise JavaBeans architecture. Th
prise Bean Provider and the client application programmer are not exposed to the complexity of d
uted transactions. The Bean Provider can choose between using programmatic transaction dem
in the enterprise bean code (this style is calledbean-managed transaction demarcation) or declarative
transaction demarcation performed automatically by the EJB Container (this style is calledcon-
tainer-managed transaction demarcation).

With bean-managed transaction demarcation, the enterprise bean code demarcates transactio
the javax.transaction.UserTransaction interface. All resource manager[23] accesses
between theUserTransaction.begin and UserTransaction.commit calls are part of a
transaction.

With container-managed transaction demarcation, the Container demarcates transactions per
tions provided by the Application Assembler in the deployment descriptor. These instructions, c
transaction attributes, tell the container whether it should include the work performed by an enterp
bean method in a client’s transaction, run the enterprise bean method in a new transaction started
Container, or run the method with “no transaction” (Refer to Subsection 16.6.5 for the description o
“no transaction” case).

Regardless whether an enterprise bean uses bean-managed or container-managed transaction
tion, the burden of implementing transaction management is on the EJB Container and Server Pr
The EJB Container and Server implement the necessary low-level transaction protocols, such
two-phase commit protocol between a transaction manager and a database system or JMS p
transaction context propagation, and distributed two-phase commit.

Many applications will consist of one or several enterprise beans that all use a single resource ma
(typically a relational database management system). The EJB Container can make use of re
manager local transactions as an optimization technique for enterprise beans for which distrib
transactions are not needed. A resource manager local transaction does not involve control or co
nation by an external transaction manager. The container’s use of local transactions as an optimiz
technique for enterprise beans with either container managed transaction demarcation or bean
aged transaction demarcation is not visible to the enterprise beans. For a discussion of the u
resource manager local transactions as a container optimization strategy, refer to [9] and [12].

16.1.2 Transaction model

The Enterprise JavaBeans architecture supports flat transactions. A flat transaction cannot ha
child (nested) transactions.

Note: The decision not to support nested transactions allows vendors of existing transactio
processing and database management systems to incorporate support for Enterprise Jav
Beans. If these vendors provide support for nested transactions in the future, Enterprise Java
Beans may be enhanced to take advantage of nested transactions.

[23] The termsresourceandresource managerused in this chapter refer to the resources declared in the enterprise bean’s deploy
descriptor using theresource-ref element. This includes not only database resources, but also JMS Connections. Thes
resources are considered to be “managed” by the Container.
 10/23/00 330

Sample scenarios Enterprise JavaBeans 2.0, Proposed Final Draft Support for Transactions

Sun Microsystems, Inc.

nager
grams,

rvice
ol for
ansac-
use a

archi-

f the

data in

abase
calls

updates
16.1.3 Relationship to JTA and JTS
The Java™ Transaction API (JTA) [5] is a specification of the interfaces between a transaction ma
and the other parties involved in a distributed transaction processing system: the application pro
the resource managers, and the application server.

The Java Transaction Service (JTS) [6] API is a Java binding of the CORBA Object Transaction Se
(OTS) 1.1 specification. JTS provides transaction interoperability using the standard IIOP protoc
transaction propagation between servers. The JTS API is intended for vendors who implement tr
tion processing infrastructure for enterprise middleware. For example, an EJB Server vendor may
JTS implementation as the underlying transaction manager.

The EJB architecture does not require the EJB Container to support the JTS interfaces. The EJB
tecture requires that the EJB Container support the JTA API defined in [5] and theConnector APIs
defined in [12].

16.2 Sample scenarios

This section describes several scenarios that illustrate the distributed transaction capabilities o
Enterprise JavaBeans architecture.

16.2.1 Update of multiple databases
The Enterprise JavaBeans architecture makes it possible for an application program to update
multiple databases in a single transaction.

In the following figure, a client invokes the enterprise Bean X. Bean X updates data using two dat
connections that the Deployer configured to connect with two different databases, A and B. Then X
another enterprise Bean Y. Bean Y updates data in database C. The EJB Server ensures that the
to databases A, B, and C are either all committed or all rolled back.
331 10/23/00

Support for Transactions Enterprise JavaBeans 2.0, Proposed Final Draft Sample scenarios

Sun Microsystems, Inc.

enter-
cenes,

n com-
atomic

sages to
tabases

queue
with a
tabase
olled
Figure 65 Updates to Simultaneous Databases

The application programmer does not have to do anything to ensure transactional semantics. The
prise Beans X and Y perform the database updates using the standard JDBC™ API. Behind the s
the EJB Server enlists the database connections as part of the transaction. When the transactio
mits, the EJB Server and the database systems perform a two-phase commit protocol to ensure
updates across all three databases.

16.2.2 Messages sent or received over JMS sessions and update of multiple databases
The Enterprise JavaBeans architecture makes it possible for an application program to send mes
or receive messages from one or more JMS Destinations and/or to update data in one or more da
in a single transaction.

In the following figure, a client invokes the enterprise Bean X. Bean X sends a message to a JMS
A and updates data in a database B using connections that the Deployer configured to connect
JMS provider and a database. Then X calls another enterprise Bean Y. Bean Y updates data in da
C. The EJB Server ensures that the operations on A, B, and C are either all committed, or all r
back.

X

client EJB Server

Y

database A database Bdatabase C
 10/23/00 332

Sample scenarios Enterprise JavaBeans 2.0, Proposed Final Draft Support for Transactions

Sun Microsystems, Inc.

enter-
MS and

S pro-
e EJB
atomic

-driven
onnect
essage,
 back.
Figure 66 Message sent to JMS queue and updates to multiple databases

The application programmer does not have to do anything to ensure transactional semantics. The
prise Beans X and Y perform the message send and database updates using the standard J
JDBC™ APIs. Behind the scenes, the EJB Server enlists the session on the connection to the JM
vider and the database connections as part of the transaction. When the transaction commits, th
Server and the messaging and database systems perform a two-phase commit protocol to ensure
updates across all the three resources.

In the following figure, a client sends a message to the JMS queue A serviced by the message
Bean X. Bean X updates data using two database connections that the Deployer configured to c
with two different databases, B and C. The EJB Server ensures that the dequeueing of the JMS m
its receipt by Bean X, and the updates to databases B and C are either all committed or all rolled

X

client EJB Server

Y

queue A database B database C
333 10/23/00

Support for Transactions Enterprise JavaBeans 2.0, Proposed Final Draft Sample scenarios

Sun Microsystems, Inc.

es

a sin-

, and
ata in
data-
Figure 67 Message sent to JMS queue serviced by message-driven bean and updates to multiple databas

16.2.3 Update of databases via multiple EJB Servers
The Enterprise JavaBeans architecture allows updates of data at multiple sites to be performed in
gle transaction.

In the following figure, a client invokes the enterprise Bean X. Bean X updates data in database A
then calls another enterprise Bean Y that is installed in a remote EJB Server. Bean Y updates d
database B. The Enterprise JavaBeans architecture makes it possible to perform the updates to
bases A and B in a single transaction.

Figure 68 Updates to Multiple Databases in Same Transaction

X

client EJB Server
queue A

database B database C

X

client EJB Server

database A

Y

EJB Server

database B
 10/23/00 334

Sample scenarios Enterprise JavaBeans 2.0, Proposed Final Draft Support for Transactions

Sun Microsystems, Inc.

Y. This

if the

nts in

tomic
figure.
When X invokes Y, the two EJB Servers cooperate to propagate the transaction context from X to
transaction context propagation is transparent to the application-level code.

At transaction commit time, the two EJB Servers use a distributed two-phase commit protocol (
capability exists) to ensure the atomicity of the database updates.

16.2.4 Client-managed demarcation

A Java client can use thejavax.transaction.UserTransaction interface to explicitly
demarcate transaction boundaries. The client program obtains thejavax.transaction.User-
Transaction interface using JNDI as defined in the Java 2, Enterprise Edition specification [9].

The EJB specification does not imply that thejavax.transaction.UserTransaction is avail-
able to all Java clients. The Java 2, Enterprise Edition specification specifies the client environme
which thejavax.transaction.UserTransaction interface is available.

A client program using explicit transaction demarcation may perform, via enterprise beans, a
updates across multiple databases residing at multiple EJB Servers, as illustrated in the following

Figure 69 Updates on Multiple Databases on Multiple Servers

Xclient

EJB Server

database A

Y

EJB Server

database B

begin

commit
335 10/23/00

Support for Transactions Enterprise JavaBeans 2.0, Proposed Final Draft Sample scenarios

Sun Microsystems, Inc.

r the
tes to

n. The

tion

e Con-
d that
cludes

Bean
ent
g the
other
tomat-
).
The application programmer demarcates the transaction withbegin andcommit calls. If the enter-
prise beans X and Y are configured to use a client transaction (i.e., their methods have eithe
Required, Mandatory, or Supports transaction attribute), the EJB Server ensures that the upda
databases A and B are made as part of the client’s transaction.

16.2.5 Container-managed demarcation

Whenever a client invokes an enterprise Bean, the container interposes on the method invocatio
interposition allows the container to control transaction demarcation declaratively through thetransac-
tion attribute set by the Application Assembler. (See [16.4.1] for a description of transac
attributes.)

For example, if an enterprise Bean method is configured with theRequired transaction attribute, the
container behaves as follows: If the client request is not associated with a transaction context, th
tainer automatically initiates a transaction whenever a client invokes an enterprise bean metho
requires a transaction context. If the client request contains a transaction context, the container in
the enterprise bean method in the client transaction.

The following figure illustrates such a scenario. A non-transactional client invokes the enterprise
X, and the invoked method has theRequiredtransaction attribute. Because the message from the cli
does not include a transaction context, the container starts a new transaction before dispatchin
remote method on X. Bean X’s work is performed in the context of the transaction. When X calls
enterprise Beans (Y in our example), the work performed by the other enterprise Beans is also au
ically included in the transaction (subject to the transaction attribute of the other enterprise Bean

Figure 70 Update of Multiple Databases from Non-Transactional Client

The container automatically commits the transaction at the time X returns a reply to the client.

X

client EJB Server

Y

database A database B

begin

commit
 10/23/00 336

Bean Provider’s responsibilities Enterprise JavaBeans 2.0, Proposed Final Draft Support for Transactions

Sun Microsystems, Inc.

s
an, the
, hence,

anagers

espon-

an will
emarca-

arcation

e bean’s
ersis-

ch there
ge 175,

ansaction
me way
nsaction

nsaction
saction
JB
bsection
If a message-driven bean is configured with theRequired transaction attribute, the container behave
as follows: Because there is never a client transaction context available for a message-driven be
container automatically starts a new transaction before the dequeuing of the JMS message and
before the invocation of the message-driven bean’sonMessage method. The Container automatically
enlists the resource manager associated with the arriving message and all the resource m
accessed by theonMessage method with the transaction.

16.3 Bean Provider’s responsibilities

This section describes the Bean Provider’s view of transactions and defines the Bean Provider’s r
sibilities.

16.3.1 Bean-managed versus container-managed transaction demarcation
When designing an enterprise bean, the Bean Provider must decide whether the enterprise be
demarcate transactions programmatically in the business methods (bean-managed transaction d
tion), or whether the transaction demarcation is to be performed by the Container based on thetransac-
tion attributes in the deployment descriptor (container-managed transaction demarcation).

A Session Bean or a Message-driven Bean can be designed with bean-managed transaction dem
or with container-managed transaction demarcation. (But it cannot be both at the same time.)

An Entity Bean must always be designed with container-managed transaction demarcation.

An enterprise bean instance can access resource managers in a transaction only in the enterpris
methods in which there is a transaction context available. An entity bean with container managed p
tence can access its persistent state in a transaction only in the enterprise bean’s methods in whi
is a transaction context available. Refer to Table 2 on page 70, Table 3 on page 80, Table 4 on pa
Table 12 on page 259, and Table 14 on page 318.

16.3.1.1 Non-transactional execution

Some enterprise beans may need to access resource managers that do not support an external tr
coordinator. The Container cannot manage the transactions for such enterprise beans in the sa
that it can for the enterprise beans that access resource managers that support an external tra
coordinator.

If an enterprise bean needs to access a resource manager that does not support an external tra
coordinator, the Bean Provider should design the enterprise bean with container-managed tran
demarcation and assign theNotSupported transaction attribute to all the bean’s methods. The E
architecture does not specify the transactional semantics of the enterprise bean methods. See Su
16.6.5 for how the Container implements this case.
337 10/23/00

Support for Transactions Enterprise JavaBeans 2.0, Proposed Final Draft Bean Provider’s responsibilities

Sun Microsystems, Inc.

work

tion is

EJB

e same
nter-

rce man-

agers
same

may
ne so

tion, the
prise
er can

by the
he tools
classes
sac-

ager in

n-man-

a Mes-

tion.
16.3.2 Isolation levels

Transactions not only make completion of a unit of work atomic, but they also isolate the units of
from each other, provided that the system allows concurrent execution of multiple units of work.

The isolation leveldescribes the degree to which the access to a resource manager by a transac
isolated from the access to the resource manager by other concurrently executing transactions.

The following are guidelines for managing isolation levels in enterprise beans.

• The API for managing an isolation level is resource-manager specific. (Therefore, the
architecture does not define an API for managing isolation level.)

• If an enterprise bean uses multiple resource managers, the Bean Provider may specify th
or different isolation level for each resource manager. This means, for example, that if an e
prise bean accesses multiple resource managers in a transaction, access to each resou
ager may be associated with a different isolation level.

• The Bean Provider must take care when setting an isolation level. Most resource man
require that all accesses to the resource manager within a transaction are done with the
isolation level. An attempt to change the isolation level in the middle of a transaction
cause undesirable behavior, such as an implicit sync point (a commit of the changes do
far).

• For session beans and message-driven beans with bean-managed transaction demarca
Bean Provider can specify the desirable isolation level programmatically in the enter
bean’s methods, using the resource-manager specific API. For example, the Bean Provid
use thejava.sql.Connection.setTransactionIsolation(...) method to set
the appropriate isolation level for database access.

• For entity beans with container-managed persistence, transaction isolation is managed
data access classes that are generated by the persistence manager provider’s tools. T
must ensure that the management of the isolation levels performed by the data access
will not result in conflicting isolation level requests for a resource manager within a tran
tion.

• Additional care must be taken if multiple enterprise beans access the same resource man
the same transaction. Conflicts in the requested isolation levels must be avoided.

16.3.3 Enterprise beans using bean-managed transaction demarcation
This subsection describes the requirements for the Bean Provider of an enterprise bean with bea
aged transaction demarcation.

The enterprise bean with bean-managed transaction demarcation must be a Session bean or
sage-driven bean.

An instance that starts a transaction must complete the transaction before it starts a new transac
 10/23/00 338

Bean Provider’s responsibilities Enterprise JavaBeans 2.0, Proposed Final Draft Support for Transactions

Sun Microsystems, Inc.

to

, the
(e.g. it

a busi-
he Con-
lls until

r of a
cation.
The Bean Provider uses theUserTransaction interface to demarcate transactions. All updates
the resource managers between theUserTransaction.begin() and UserTransac-
tion.commit() methods are performed in a transaction. While an instance is in a transaction
instance must not attempt to use the resource-manager specific transaction demarcation API
must not invoke thecommit() or rollback() method on thejava.sql.Connection interface
or on thejavax.jms.Session interface).

A stateful Session Bean instance may, but is not required to, commit a started transaction before
ness method returns. If a transaction has not been completed by the end of a business method, t
tainer retains the association between the transaction and the instance across multiple client ca
the instance eventually completes the transaction.

The bean-managed transaction demarcation programming model presented to the programme
stateful Session Bean is natural because it is the same as that used by a stand-alone Java appli

A stateless session bean instance must commit a transaction before a business method returns.

A message-driven bean instance must commit a transaction before theonMessage method returns.
339 10/23/00

Support for Transactions Enterprise JavaBeans 2.0, Proposed Final Draft Bean Provider’s responsibilities

Sun Microsystems, Inc.

abase
The following example illustrates a business method that performs a transaction involving two dat
connections.

public class MySessionEJB implements SessionBean {
EJBContext ejbContext;

public void someMethod(...) {
javax.transaction.UserTransaction ut;
javax.sql.DataSource ds1;
javax.sql.DataSource ds2;
java.sql.Connection con1;
java.sql.Connection con2;
java.sql.Statement stmt1;
java.sql.Statement stmt2;

InitialContext initCtx = new InitialContext();

// obtain con1 object and set it up for transactions
ds1 = (javax.sql.DataSource)

initCtx.lookup(“java:comp/env/jdbc/Database1”);
con1 = ds1.getConnection();

stmt1 = con1.createStatement();

// obtain con2 object and set it up for transactions
ds2 = (javax.sql.DataSource)

initCtx.lookup(“java:comp/env/jdbc/Database2”);
con2 = ds2.getConnection();

stmt2 = con2.createStatement();

//
// Now do a transaction that involves con1 and con2.
//
ut = ejbContext.getUserTransaction();

// start the transaction
ut.begin();

// Do some updates to both con1 and con2. The Container
// automatically enlists con1 and con2 with the transaction.
stmt1.executeQuery(...);
stmt1.executeUpdate(...);
stmt2.executeQuery(...);
stmt2.executeUpdate(...);
stmt1.executeUpdate(...);
stmt2.executeUpdate(...);

// commit the transaction
ut.commit();

// release connections
stmt1.close();
stmt2.close();
con1.close();
con2.close();

}
...

}

 10/23/00 340

Bean Provider’s responsibilities Enterprise JavaBeans 2.0, Proposed Final Draft Support for Transactions

Sun Microsystems, Inc.

data-
The following example illustrates a business method that performs a transaction involving both a
base connection and a JMS connection.

public class MySessionEJB implements SessionBean {
EJBContext ejbContext;

public void someMethod(...) {
javax.transaction.UserTransaction ut;
javax.sql.DataSource ds;
java.sql.Connection dcon;
java.sql.Statement stmt;
javax.jms.QueueConnectionFactory qcf;
javax.jms.QueueConnection qcon;
javax.jms.Queue q;
javax.jms.QueueSession qsession;
javax.jms.QueueSender qsender;
javax.jms.Message message;

InitialContext initCtx = new InitialContext();

// obtain db conn object and set it up for transactions

ds = (javax.sql.DataSource)
initCtx.lookup(“java:comp/env/jdbc/Database”);

dcon = ds.getConnection();

stmt = dcon.createStatement();

// obtain jms conn object and set up session for transactions
qcf = (javax.jms.QueueConnectionFactory)

initCtx.lookup(“java:comp/env/jms/qConnFactory”);
qcon = qcf.createQueueConnection();
qsession = qcon.createQueueSession(true,0);
q = (javax.jms.Queue)

initCtx.lookup(“java:comp/env/jms/jmsQueue”);
qsender = qsession.createSender(q);
message = qsession.createTextMessage();
message.setText(“some message”);

//
// Now do a transaction that involves the two connections.
//
ut = ejbContext.getUserTransaction();

// start the transaction
ut.begin();

// Do database updates and send message. The Container
// automatically enlists dcon and qsession with the
// transaction.
stmt.executeQuery(...);
stmt.executeUpdate(...);
stmt.executeUpdate(...);
qsender.send(message);

// commit the transaction
ut.commit();
341 10/23/00

Support for Transactions Enterprise JavaBeans 2.0, Proposed Final Draft Bean Provider’s responsibilities

Sun Microsystems, Inc.
// release connections
stmt.close();
qsender.close();
qsession.close();
dcon.close();
qcon.close();

}
...

}

 10/23/00 342

Bean Provider’s responsibilities Enterprise JavaBeans 2.0, Proposed Final Draft Support for Transactions

Sun Microsystems, Inc.

client
The following example illustrates a stateful Session Bean that retains a transaction across three
calls, invoked in the following order:method1, method2, andmethod3.

public class MySessionEJB implements SessionBean {
EJBContext ejbContext;
javax.sql.DataSource ds1;
javax.sql.DataSource ds2;
java.sql.Connection con1;
java.sql.Connection con2;

public void method1(...) {
java.sql.Statement stmt;

InitialContext initCtx = new InitialContext();

// obtain user transaction interface
ut = ejbContext.getUserTransaction();

// start a transaction
ut.begin();

// make some updates on con1
ds1 = (javax.sql.DataSource)

initCtx.lookup(“java:comp/env/jdbc/Database1”);
con1 = ds1.getConnection();
stmt = con1.createStatement();
stmt.executeUpdate(...);
stmt.executeUpdate(...);

//
// The Container retains the transaction associated with the
// instance to the next client call (which is method2(...)).

}

public void method2(...) {
java.sql.Statement stmt;

InitialContext initCtx = new InitialContext();

// make some updates on con2
ds2 = (javax.sql.DataSource)

initCtx.lookup(“java:comp/env/jdbc/Database2”);
con2 = ds2.getConnection();
stmt = con2.createStatement();
stmt.executeUpdate(...);
stmt.executeUpdate(...);

// The Container retains the transaction associated with the
// instance to the next client call (which is method3(...)).

}

public void method3(...) {
java.sql.Statement stmt;

// obtain user transaction interface
ut = ejbContext.getUserTransaction();

// make some more updates on con1 and con2
stmt = con1.createStatement();
343 10/23/00

Support for Transactions Enterprise JavaBeans 2.0, Proposed Final Draft Bean Provider’s responsibilities

Sun Microsystems, Inc.
stmt.executeUpdate(...);
stmt = con2.createStatement();
stmt.executeUpdate(...);

// commit the transaction
ut.commit();

// release connections
stmt.close();
con1.close();
con2.close();

}
...

}

 10/23/00 344

Bean Provider’s responsibilities Enterprise JavaBeans 2.0, Proposed Final Draft Support for Transactions

Sun Microsystems, Inc.

method
e cli-

e

It is possible for an enterprise bean to open and close a database connection in each business
(rather than hold the connection open until the end of transaction). In the following example, if th
ent executes the sequence of methods (method1, method2, method2, method2, andmethod3), all the
database updates done by the multiple invocations ofmethod2are performed in the scope of the sam
transaction, which is the transaction started inmethod1 and committed inmethod3.

public class MySessionEJB implements SessionBean {
EJBContext ejbContext;
InitialContext initCtx;

public void method1(...) {
java.sql.Statement stmt;

// obtain user transaction interface
ut = ejbContext.getUserTransaction();

// start a transaction
ut.begin();

}

public void method2(...) {
javax.sql.DataSource ds;
java.sql.Connection con;
java.sql.Statement stmt;

// open connection
ds = (javax.sql.DataSource)

initCtx.lookup(“java:comp/env/jdbc/Database”);
con = ds.getConnection();

// make some updates on con
stmt = con.createStatement();
stmt.executeUpdate(...);
stmt.executeUpdate(...);

// close the connection
stmt.close();
con.close();

}

public void method3(...) {
// obtain user transaction interface
ut = ejbContext.getUserTransaction();

// commit the transaction
ut.commit();

}
...

}

16.3.3.1 getRollbackOnly() and setRollbackOnly() method

An enterprise bean with bean-managed transaction demarcation must not use thegetRollback-
Only() andsetRollbackOnly() methods of theEJBContext interface.
345 10/23/00

Support for Transactions Enterprise JavaBeans 2.0, Proposed Final Draft Bean Provider’s responsibilities

Sun Microsystems, Inc.

ethods,

s of a

action

g con-

er
ion of
ethods

e

An enterprise bean with bean-managed transaction demarcation has no need to use these m
because of the following reasons:

• An enterprise bean with bean-managed transaction demarcation can obtain the statu
transaction by using thegetStatus() method of thejavax.transaction.User-
Transaction interface.

• An enterprise bean with bean-managed transaction demarcation can rollback a trans
using the rollback() method of the javax.transaction.UserTransaction
interface.

16.3.4 Enterprise beans using container-managed transaction demarcation
This subsection describes the requirements for the Bean Provider of an enterprise bean usin
tainer-managed transaction demarcation.

The enterprise bean’s business methods oronMessage method must not use any resource-manag
specific transaction management methods that would interfere with the Container’s demarcat
transaction boundaries. For example, the enterprise bean methods must not use the following m
of the java.sql.Connection interface: commit() , setAutoCommit(...) , and roll-
back() or the following methods of thejavax.jms.Session interface:commit() androll-
back() .

The enterprise bean’s business methods oronMessage method must not attempt to obtain or use th
javax.transaction.UserTransaction interface.
 10/23/00 346

Bean Provider’s responsibilities Enterprise JavaBeans 2.0, Proposed Final Draft Support for Transactions

Sun Microsystems, Inc.

trans-
he Con-

nt the

ver
efore
e Con-
The following is an example of a business method in an enterprise bean with container-managed
action demarcation. The business method updates two databases using JDBC™ connections. T
tainer provides transaction demarcation per the Application Assembler’s instructions.

public class MySessionEJB implements SessionBean {
EJBContext ejbContext;

public void someMethod(...) {
java.sql.Connection con1;
java.sql.Connection con2;
java.sql.Statement stmt1;
java.sql.Statement stmt2;

// obtain con1 and con2 connection objects
con1 = ...;
con2 = ...;

stmt1 = con1.createStatement();
stmt2 = con2.createStatement();

//
// Perform some updates on con1 and con2. The Container
// automatically enlists con1 and con2 with the container-
// managed transaction.
//
stmt1.executeQuery(...);
stmt1.executeUpdate(...);

stmt2.executeQuery(...);
stmt2.executeUpdate(...);

stmt1.executeUpdate(...);
stmt2.executeUpdate(...);

// release connections
con1.close();
con2.close();

}
...

}

16.3.4.1 javax.ejb.SessionSynchronization interface

A stateful Session Bean with container-managed transaction demarcation can optionally impleme
javax.ejb.SessionSynchronization interface. The use of theSessionSynchroniza-
tion interface is described in Subsection 6.5.3.

16.3.4.2 javax.ejb.EJBContext.setRollbackOnly() method

An enterprise bean with container-managed transaction demarcation can use thesetRollback-
Only() method of itsEJBContext object to mark the transaction such that the transaction can ne
commit. Typically, an enterprise bean marks a transaction for rollback to protect data integrity b
throwing an application exception, because application exceptions do not automatically cause th
tainer to rollback the transaction.
347 10/23/00

Support for Transactions Enterprise JavaBeans 2.0, Proposed Final Draft Application Assembler’s responsibilities

Sun Microsystems, Inc.

could
ilure

oll-
other
on pro-

ssage,
use a

of the

ean, the

e

n con-
ner can

or con-
yment

e con-

option-
For example, an AccountTransfer bean which debits one account and credits another account
mark a transaction for rollback if it successfully performs the debit operation, but encounters a fa
during the credit operation.

16.3.4.3 javax.ejb.EJBContext.getRollbackOnly() method

An enterprise bean with container-managed transaction demarcation can use thegetRollback-
Only() method of itsEJBContext object to test if the current transaction has been marked for r
back. The transaction might have been marked for rollback by the enterprise bean itself, by
enterprise beans, or by other components (outside of the EJB specification scope) of the transacti
cessing infrastructure.

16.3.5 Use of JMS APIs in transactions
The Bean Provider must not make use of the JMS request/reply paradigm (sending of a JMS me
followed by the synchronous receipt of a reply to that message) within a single transaction. Beca
JMS message is not delivered to its final destination until the transaction commits, the receipt
reply within the same transaction will never take place.

Because the container manages the transactional enlistment of JMS sessions on behalf of a b
parameters of thecreateQueueSession(boolean transacted, int acknowledgeMode)
andcreateTopicSession(boolean transacted, int acknowledgeMode) methods are
ignored. It is recommended that the Bean Provider specify that a session is transacted, but provid0 for
the value of the acknowledgment mode.

The Bean Provider should not use the JMSacknowledge() method either within a transaction or
within an unspecified transaction context. Message acknowledgment in an unspecified transactio
text is handled by the container. Section 16.6.5 describes some of the techniques that the contai
use for the implementation of a method invocation with an unspecified transaction context.

16.3.6 Declaration in deployment descriptor

The Bean Provider of a Session Bean or a Message-driven Bean must use thetransaction-type
element to declare whether the Session Bean or Message-driven Bean is of the bean-managed
tainer-managed transaction demarcation type. (See Chapter 21 for information about the deplo
descriptor.)

The transaction-type element is not supported for Entity beans because all Entity beans must us
tainer-managed transaction demarcation.

The Bean Provider of an enterprise bean with container-managed transaction demarcation may
ally specify the transaction attributes for the enterprise bean’s methods. See Subsection 16.4.1.

16.4 Application Assembler’s responsibilities

This section describes the view and responsibilities of the Application Assembler.
 10/23/00 348

Application Assembler’s responsibilities Enterprise JavaBeans 2.0, Proposed Final Draft Support for Transactions

Sun Microsystems, Inc.

naged
enter-

e
.

ation

r home
ifies

via the
rival of

in the
rface,

in the
rface,

direct

cation
value

the
ter-
There is no mechanism for an Application Assembler to affect enterprise beans with bean-ma
transaction demarcation. The Application Assembler must not define transaction attributes for an
prise bean with bean-managed transaction demarcation.

The Application Assembler can use thetransaction attributemechanism described below to manag
transaction demarcation for enterprise beans using container-managed transaction demarcation

16.4.1 Transaction attributes

Note: The transaction attributes may be specified either by the Bean Provider or by the Applic
Assembler.

A transaction attribute is a value associated with a method of a session or entity bean’s remote o
interface or with theonMessage method of a message-driven bean. The transaction attribute spec
how the Container must manage transactions for a method when a client invokes the method
enterprise bean’s home or remote interface or when the method is invoked as the result of the ar
a JMS message.

The transaction attribute must be specified for the following methods:

• For a session bean, the transaction attributes must be specified for the methods defined
bean’s remote interface and all the direct and indirect superinterfaces of the remote inte
excluding the methods of thejavax.ejb.EJBObject interface. Transaction attributes
must not be specified for the methods of a session bean’s home interface.

• For an entity bean, the transaction attributes must be specified for the methods defined
bean’s remote interface and all the direct and indirect superinterfaces of the remote inte
excluding thegetEJBHome , getHandle , getPrimaryKey , and isIdentical meth-
ods; and for the methods defined in the bean’s home interface and all the direct and in
superinterfaces of the home interface, excluding thegetEJBMetaData andgetHomeHan-
dle methods.

• For a message-driven bean, the transaction attribute must be specified for the bean’sonMes-
sage method.

Providing the transaction attributes for an enterprise bean is an optional requirement for the Appli
Assembler, because, for a given enterprise bean, the Application Assembler must either specify a
of the transaction attribute forall the methods for which a transaction attribute must be specified, or
Assembler must specifynone. If the transaction attributes are not specified for the methods of an en
prise bean, the Deployer will have to specify them.

Enterprise JavaBeans defines the following values for the transaction attribute:

• NotSupported

• Required

• Supports
349 10/23/00

Support for Transactions Enterprise JavaBeans 2.0, Proposed Final Draft Application Assembler’s responsibilities

Sun Microsystems, Inc.

ts the

the
luding

e inter-

an’s

tion. If
ction

the
PI

uses
e inter-
of

n

tribute

ee legal
• RequiresNew

• Mandatory

• Never

Refer to Subsection 16.6.2 for the specification of how the value of the transaction attribute affec
transaction management performed by the Container.

For message-driven beans, only theRequired and NotSupported transaction attributes may be
used.

For entity beans that use EJB 2.0 container managed persistence, only theRequired ,
RequiresNew , or Mandatory transaction attributes may be used for the methods defined in
bean’s remote interface and all the direct and indirect superinterfaces of the remote interface, exc
thegetEJBHome , getHandle , getPrimaryKey , andisIdentical methods; and for the meth-
ods defined in the bean’s home interface and all the direct and indirect superinterfaces of the hom
face, excluding thegetEJBMetaData andgetHomeHandle methods.

If an enterprise bean implements thejavax.ejb.SessionSynchronization interface, the
Application Assembler can specify only the following values for the transaction attributes of the be
methods:Required , RequiresNew , orMandatory .

The above restriction is necessary to ensure that the enterprise bean is invoked only in a transac
the bean were invoked without a transaction, the Container would not be able to send the transa
synchronization calls.

The tools used by the Application Assembler can determine if the bean implements
javax.ejb.SessionSynchronization interface, for example, by using the Java reflection A
on the enterprise bean’s class.

The following is the description of the deployment descriptor rules that the Application Assembler
to specify transaction attributes for the methods of the session and entity beans’ remote and hom
faces and message-driven beans’onMessage methods. (See Section 21.5 for the complete syntax
the deployment descriptor.)

The Application Assembler uses thecontainer-transaction elements to define the transactio
attributes for the methods of session and entity bean remote and home interfaces and for theonMes-
sage methods of message-driven beans. Eachcontainer-transaction element consists of a list
of one or moremethod elements, and thetrans-attribute element. Thecontainer-trans-
action element specifies that all the listed methods are assigned the specified transaction at
value. It is required that all the methods specified in a singlecontainer-transaction element be
methods of the same enterprise bean.

The method element uses theejb-name , method-name , and method-params elements to
denote one or more methods of an enterprise bean’s home and remote interfaces. There are thr
styles of composing themethod element:
 10/23/00 350

Application Assembler’s responsibilities Enterprise JavaBeans 2.0, Proposed Final Draft Support for Transactions

Sun Microsystems, Inc.

s for

f the
e, this

r

ame.
rprise
r

3 ele-

ame
Style 1:
<method>

<ejb-name> EJBNAME</ejb-name>
<method-name>*</method-name>

</method>

This style is used to specify a default value of the transaction attribute for the method
which there is no Style 2 or Style 3 element specified. There must be at most onecon-
tainer-transaction element that uses the Style 1method element for a given enter-
prise bean.

Style 2:
<method>

<ejb-name> EJBNAME</ejb-name>
<method-name> METHOD</method-name>

</method>

This style is used for referring to a specified method of the remote or home interface o
specified enterprise bean. If there are multiple methods with the same overloaded nam
style refers to all the methods with the same name. There must be at most onecon-
tainer-transaction element that uses the Style 2method element for a given method
name. If there is also acontainer-transaction element that uses Style 1 element fo
the same bean, the value specified by the Style 2 element takes precedence.

Style 3:
<method>

<ejb-name> EJBNAME</ejb-name>
<method-name> METHOD</method-name>
<method-params>

<method-param> PARAMETER_1</method-param>
...
<method-param> PARAMETER_N</method-param>

</method-params>
</method>

This style is used to refer to a single method within a set of methods with an overloaded n
The method must be one defined in the remote or home interface of the specified ente
bean. If there is also acontainer-transaction element that uses the Style 2 element fo
the method name, or the Style 1 element for the bean, the value specified by the Style
ment takes precedence.

The optionalmethod-intf element can be used to differentiate between methods with the s
name and signature that are defined in both the remote and home interfaces.
351 10/23/00

Support for Transactions Enterprise JavaBeans 2.0, Proposed Final Draft Deployer’s responsibilities

Sun Microsystems, Inc.

scrip-
e

h con-
saction
ployer.
The following is an example of the specification of the transaction attributes in the deployment de
tor. TheupdatePhoneNumber method of theEmployeeRecord enterprise bean is assigned th
transaction attributeMandatory ; all other methods of theEmployeeRecord bean are assigned the
attributeRequired . All the methods of the enterprise beanAardvarkPayroll are assigned the
attributeRequiresNew .

<ejb-jar>
...
<assembly-descriptor>

...
<container-transaction>

<method>
<ejb-name>EmployeeRecord</ejb-name>
<method-name>*</method-name>

</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>

<container-transaction>
<method>

<ejb-name>EmployeeRecord</ejb-name>
<method-name>updatePhoneNumber</method-name>

</method>
<trans-attribute>Mandatory</trans-attribute>

</container-transaction>

<container-transaction>
<method>

<ejb-name>AardvarkPayroll</ejb-name>
<method-name>*</method-name>

</method>
<trans-attribute>RequiresNew</trans-attribute>

</container-transaction>
</assembly-descriptor>

</ejb-jar>

16.5 Deployer’s responsibilities

The Deployer is responsible for ensuring that the methods of the deployed enterprise beans wit
tainer-managed transaction demarcation have been assigned a transaction attribute. If the tran
attributes have not been assigned previously by the Assembler, they must be assigned by the De

16.6 Container Provider responsibilities

This section defines the responsibilities of the Container Provider.
 10/23/00 352

Container Provider responsibilities Enterprise JavaBeans 2.0, Proposed Final Draft Support for Transactions

Sun Microsystems, Inc.

inter-
the
via the

bean’s

ed by
n fac-
f the
llows

pecifi-
muni-

erprise

demar-
ction

d trans-
bean’s
e client
started
ion with

n-

the

action
retain
stance
tainer

ross all
criptor
12] f
Every client method invocation on a session or entity bean object via the bean’s remote and home
face and every invocation of theonMessage method on a message-driven bean is interposed by
Container, and every connection to a resource manager used by an enterprise bean is obtained
Container. This managed execution environment allows the Container to affect the enterprise
transaction management.

This does not imply that the Container must interpose on every resource manager access perform
the enterprise bean. Typically, the Container interposes only on the resource manager connectio
tory (e.g. a JDBC data source) JNDI look up by registering the container-specific implementation o
resource manager connection factory object. The resource manager connection factory object a
the Container to obtain the javax.transaction.xa.XAResource interface as described in the JTA s
cation and pass it to the transaction manager. After the set up is done, the enterprise bean com
cates with the resource manager without going through the Container.

16.6.1 Bean-managed transaction demarcation
This subsection defines the Container’s responsibilities for the transaction management of ent
beans with bean-managed transaction demarcation.

Note that only Session and Message-driven beans can be used with bean-managed transaction
cation. A Bean Provider is not allowed to provide an Entity bean with bean-managed transa
demarcation.

The Container must manage client invocations to an enterprise bean instance with bean-manage
action demarcation as follows. When a client invokes a business method via the enterprise
remote or home interface, the Container suspends any transaction that may be associated with th
request. If there is a transaction associated with the instance (this would happen if the instance
the transaction in some previous business method), the Container associates the method execut
this transaction.

The Container must make thejavax.transaction.UserTransaction interface available to
the enterprise bean’s business method oronMessage method via thejavax.ejb.EJBContext
interface and under the environment entryjava:comp/UserTransaction . When an instance uses
the javax.transaction.UserTransaction interface to demarcate a transaction, the Co
tainer must enlist all the resource managers used by the instance between thebegin() and com-
mit() —or rollback() — methods with the transaction. When the instance attempts to commit
transaction, the Container is responsible for the global coordination of the transaction commit[24].

In the case of astatefulsession bean, it is possible that the business method that started a trans
completes without committing or rolling back the transaction. In such a case, the Container must
the association between the transaction and the instance across multiple client calls until the in
commits or rolls back the transaction. When the client invokes the next business method, the Con
must invoke the business method in this transaction context.

[24] The Container typically relies on a transaction manager that is part of the EJB Server to perform the two-phase commit ac
the enlisted resource managers. If only a single resource manager is involved in the transaction and the deployment des
indicates that connection sharing may be used, the Container may use the local transaction optimization. See [9] and [or
further discussion.
353 10/23/00

Support for Transactions Enterprise JavaBeans 2.0, Proposed Final Draft Container Provider responsibilities

Sun Microsystems, Inc.

ansac-
ion was

h a

arized
is cur-
evious

with a
ith an

trans-
d with
If a statelesssession bean instance starts a transaction in a business method, it must commit the tr
tion before the business method returns. The Container must detect the case in which a transact
started, but not completed, in the business method, and handle it as follows:

• Log this as an application error to alert the system administrator.

• Roll back the started transaction.

• Discard the instance of the session bean.

• Throw thejava.rmi.RemoteException to the client.

If a message-driven bean instance starts a transaction in theonMessage method, it must commit the
transaction before theonMessage method returns. The Container must detect the case in whic
transaction was started, but not completed, in theonMessage method, and handle it as follows:

• Log this as an application error to alert the system administrator.

• Roll back the started transaction.

• Discard the instance of the message-driven bean.

The actions performed by the Container for an instance with bean-managed transaction are summ
by the following table. T1 is a transaction associated with a client request, T2 is a transaction that
rently associated with the instance (i.e. a transaction that was started but not completed by a pr
business method).

The following items describe each entry in the table:

• If the client request is not associated with a transaction and the instance is not associated
transaction, or if the bean is a message-driven bean, the container invokes the instance w
unspecified transaction context.

• If the client is associated with a transaction T1, and the instance is not associated with a
action, the container suspends the client’s transaction association and invokes the metho

Table 15 Container’s actions for methods of beans with bean-managed transaction

Client’s transaction
Transaction currently
associated with instance

Transaction associated
with the method

none none none

T1 none none

none T2 T2

T1 T2 T2
 10/23/00 354

Container Provider responsibilities Enterprise JavaBeans 2.0, Proposed Final Draft Support for Transactions

Sun Microsystems, Inc.

ciation
an.

ciated
ciated

Mes-

with a
es the
tainer
se can

s in a

ac-

beans
terprise
by the

of an
remote

n con-
tainer

d transac-
that are
an unspecified transaction context. The container resumes the client’s transaction asso
(T1) when the method completes. This case can never happen for a Message-driven Be

• If the client request is not associated with a transaction and the instance is already asso
with a transaction T2, the container invokes the instance with the transaction that is asso
with the instance (T2). This case can never happen for a stateless Session Bean or a
sage-driven Bean.

• If the client is associated with a transaction T1, and the instance is already associated
transaction T2, the container suspends the client’s transaction association and invok
method with the transaction context that is associated with the instance (T2). The con
resumes the client’s transaction association (T1) when the method completes. This ca
never happen for a stateless Session Bean or a Message-driven Bean.

The Container must allow the enterprise bean instance to serially perform several transaction
method.

When an instance attempts to start a transaction using thebegin() method of thejavax.trans-
action.UserTransaction interface while the instance has not committed the previous trans
tion, the Container must throw thejavax.transaction.NotSupportedException in the
begin() method.

The Container must throw thejava.lang.IllegalStateException if an instance of a bean
with bean-managed transaction demarcation attempts to invoke thesetRollbackOnly() or
getRollbackOnly() method of thejavax.ejb.EJBContext interface.

16.6.2 Container-managed transaction demarcation for Session and Entity Beans

The Container is responsible for providing the transaction demarcation for the session and entity
that the Bean Provider declared with container-managed transaction demarcation. For these en
beans, the Container must demarcate transactions as specified in the deployment descriptor
Application Assembler. (See Chapter 21 for more information about the deployment descriptor.)

The following subsections define the responsibilities of the Container for managing the invocation
enterprise bean business method when the method is invoked via the enterprise bean’s home or
interface. The Container’s responsibilities depend on the value of the transaction attribute.

16.6.2.1 NotSupported

The Container invokes an enterprise Bean method whose transaction attribute is set toNotSup-
ported with an unspecified transaction context.

If a client calls with a transaction context, the container suspends the association of the transactio
text with the current thread before invoking the enterprise bean’s business method. The con
resumes the suspended association when the business method has completed. The suspende
tion context of the client is not passed to the resource managers or other enterprise Bean objects
invoked from the business method.
355 10/23/00

Support for Transactions Enterprise JavaBeans 2.0, Proposed Final Draft Container Provider responsibilities

Sun Microsystems, Inc.

ext with

ntext,

ction
to the
nagers
terprise
to com-
t proto-

s as

ps as

sac-
at will

et to

ction
to the
nagers
terprise
to com-
t proto-
If the business method invokes other enterprise beans, the Container passes no transaction cont
the invocation.

Refer to Subsection 16.6.5 for more details of how the Container can implement this case.

16.6.2.2 Required

The Container must invoke an enterprise Bean method whose transaction attribute is set toRequired
with a valid transaction context.

If a client invokes the enterprise Bean’s method while the client is associated with a transaction co
the container invokes the enterprise Bean’s method in the client’s transaction context.

If the client invokes the enterprise Bean’s method while the client is not associated with a transa
context, the container automatically starts a new transaction before delegating a method call
enterprise Bean business method. The Container automatically enlists all the resource ma
accessed by the business method with the transaction. If the business method invokes other en
beans, the Container passes the transaction context with the invocation. The Container attempts
mit the transaction when the business method has completed. The container performs the commi
col before the method result is sent to the client.

16.6.2.3 Supports

The Container invokes an enterprise Bean method whose transaction attribute is set toSupports as
follows.

• If the client calls with a transaction context, the Container performs the same step
described in theRequired case.

• If the client calls without a transaction context, the Container performs the same ste
described in theNotSupported case.

TheSupportstransaction attribute must be used with caution. This is because of the different tran
tional semantics provided by the two possible modes of execution. Only the enterprise beans th
execute correctly in both modes should use theSupports transaction attribute.

16.6.2.4 RequiresNew

The Container must invoke an enterprise Bean method whose transaction attribute is s
RequiresNew with a new transaction context.

If the client invokes the enterprise Bean’s method while the client is not associated with a transa
context, the container automatically starts a new transaction before delegating a method call
enterprise Bean business method. The Container automatically enlists all the resource ma
accessed by the business method with the transaction. If the business method invokes other en
beans, the Container passes the transaction context with the invocation. The Container attempts
mit the transaction when the business method has completed. The container performs the commi
col before the method result is sent to the client.
 10/23/00 356

Container Provider responsibilities Enterprise JavaBeans 2.0, Proposed Final Draft Support for Transactions

Sun Microsystems, Inc.

n con-
d. The
transac-

s as

action

ps as

e busi-
nsaction
ile T2
If a client calls with a transaction context, the container suspends the association of the transactio
text with the current thread before starting the new transaction and invoking the business metho
container resumes the suspended transaction association after the business method and the new
tion have been completed.

16.6.2.5 Mandatory

The Container must invoke an enterprise Bean method whose transaction attribute is set toMandatory
in a client’s transaction context. The client is required to call with a transaction context.

• If the client calls with a transaction context, the Container performs the same step
described in theRequired case.

• If the client calls without a transaction context, the Container throws thejavax.transac-
tion.TransactionRequiredException exception.

16.6.2.6 Never

The Container invokes an enterprise Bean method whose transaction attribute is set toNever without
a transaction context defined by the EJB specification. The client is required to call without a trans
context.

• If the client calls with a transaction context, the Container throws thejava.rmi.Remote-
Exception exception.

• If the client calls without a transaction context, the Container performs the same ste
described in theNotSupported case.

16.6.2.7 Transaction attribute summary

The following table provides a summary of the transaction context that the Container passes to th
ness method and resource managers used by the business method, as a function of the tra
attribute and the client’s transaction context. T1 is a transaction passed with the client request, wh
is a transaction initiated by the Container.

Table 16 Transaction attribute summary

Transaction attribute Client’s transaction
Transaction associated
with business method

Transaction associated
with resource managers

NotSupported
none none none

T1 none none

Required
none T2 T2

T1 T1 T1
357 10/23/00

Support for Transactions Enterprise JavaBeans 2.0, Proposed Final Draft Container Provider responsibilities

Sun Microsystems, Inc.

te inter-
ill be

iner

ethod
tainer

trans-
, the
Con-
If the enterprise bean’s business method invokes other enterprise beans via their home and remo
faces, the transaction indicated in the column “Transaction associated with business method” w
passed as part of the client context to the target enterprise bean.

See Subsection 16.6.5 for how the Container handles the “none” case in Table 16.

16.6.2.8 Handling ofsetRollbackOnly() method

The Container must handle theEJBContext.setRollbackOnly() method invoked from a busi-
ness method executing with theRequired , RequiresNew , or Mandatory transaction attribute as
follows:

• The Container must ensure that the transaction will never commit. Typically, the Conta
instructs the transaction manager to mark the transaction for rollback.

• If the Container initiated the transaction immediately before dispatching the business m
to the instance (as opposed to the transaction being inherited from the caller), the Con
must note that the instance has invoked thesetRollbackOnly() method. When the busi-
ness method invocation completes, the Container must roll back rather than commit the
action. If the business method has returned normally or with an application exception
Container must pass the method result or the application exception to the client after the
tainer performed the rollback.

The Container must throw thejava.lang.IllegalStateException if the EJBCon-
text.setRollbackOnly() method is invoked from a business method executing with theSup-
ports , NotSupported , orNever transaction attribute.

Supports
none none none

T1 T1 T1

RequiresNew
none T2 T2

T1 T2 T2

Mandatory
none error N/A

T1 T1 T1

Never
none none none

T1 error N/A

Table 16 Transaction attribute summary

Transaction attribute Client’s transaction
Transaction associated
with business method

Transaction associated
with resource managers
 10/23/00 358

Container Provider responsibilities Enterprise JavaBeans 2.0, Proposed Final Draft Support for Transactions

Sun Microsystems, Inc.

invoke

ss

he
ack by

come.

beans
enter-

r by the

of a
of

en
ecause
16.6.2.9 Handling ofgetRollbackOnly() method

The Container must handle theEJBContext.getRollbackOnly() method invoked from a busi-
ness method executing with theRequired , RequiresNew , orMandatory transaction attribute.

The Container must throw thejava.lang.IllegalStateException if the EJBCon-
text.getRollbackOnly() method is invoked from a business method executing with theSup-
ports , NotSupported , orNever transaction attribute.

16.6.2.10 Handling ofgetUserTransaction() method

If an instance of an enterprise bean with container-managed transaction demarcation attempts to
thegetUserTransaction() method of theEJBContext interface, the Container must throw the
java.lang.IllegalStateException .

16.6.2.11 javax.ejb.SessionSynchronization callbacks

If a Session Bean class implements thejavax.ejb.SessionSynchronization interface, the
Container must invoke theafterBegin() , beforeCompletion() , and afterComple-
tion(...) callbacks on the instance as part of the transaction commit protocol.

The Container invokes theafterBegin() method on an instance before it invokes the first busine
method in a transaction.

The Container invokes thebeforeCompletion() method to give the enterprise bean instance t
last chance to cause the transaction to rollback. The instance may cause the transaction to roll b
invoking theEJBContext.setRollbackOnly() method.

The Container invokes theafterCompletion(Boolean committed) method after the comple-
tion of the transaction commit protocol to notify the enterprise bean instance of the transaction out

16.6.3 Container-managed transaction demarcation for Message-driven Beans

The Container is responsible for providing the transaction demarcation for the message-driven
that the Bean Provider declared as with container-managed transaction demarcation. For these
prise beans, the Container must demarcate transactions as specified in the deployment descripto
Application Assembler. (See Chapter 21 for more information about the deployment descriptor.)

The following subsections define the responsibilities of the Container for managing the invocation
message-driven bean’sonMessage method. The Container’s responsibilities depend on the value
the transaction attribute.

Only the NotSupported and Required transaction attributes may be used for message-driv
beans. The use of the other transaction attributes is not meanigful for message-driven beans b
there can be no pre-existing transaction context (RequiresNew , Supports) and no client to handle
exceptions (Mandatory , Never).
359 10/23/00

Support for Transactions Enterprise JavaBeans 2.0, Proposed Final Draft Container Provider responsibilities

Sun Microsystems, Inc.

ontext

set to
avail-
equeu-

essage

xt with

ack

iner

it the
16.6.3.1 NotSupported

The Container invokes a message-driven Bean method whose transaction attribute is set toNotSup-
ported with an unspecified transaction context.

If the onMessage method invokes other enterprise beans, the Container passes no transaction c
with the invocation.

16.6.3.2 Required

The Container must invoke a message-driven Bean method whose transaction attribute is
Required with a valid transaction context. Because there is never a client transaction context
able for a message-driven bean, the container automatically starts a new transaction before the d
ing of the JMS message and, hence, before the invocation of the message-driven bean’sonMessage
method. The Container automatically enlists the resource manager associated with the arriving m
and all the resource managers accessed by theonMessage method with the transaction. If the
onMessage method invokes other enterprise beans, the Container passes the transaction conte
the invocation. The Container attempts to commit the transaction when theonMessage method has
completed. If theonMessage method does not successfully complete or the transaction is rolled b
by the Container, JMS message redelivery semantics apply.

16.6.3.3 Handling ofsetRollbackOnly() method

The Container must handle theEJBContext.setRollbackOnly() method invoked from a
onMessage method executing with theRequired transaction attribute as follows:

• The Container must ensure that the transaction will never commit. Typically, the Conta
instructs the transaction manager to mark the transaction for rollback.

• The Container must note that the instance has invoked thesetRollbackOnly() method.
When the method invocation completes, the Container must roll back rather than comm
transaction.

The Container must throw and log thejava.lang.IllegalStateException if the EJBCon-
text.setRollbackOnly() method is invoked from anonMessage method executing with the
NotSupported transaction attribute

16.6.3.4 Handling ofgetRollbackOnly() method

The Container must handle theEJBContext.getRollbackOnly() method invoked from an
onMessage method executing with theRequired transaction attribute.

The Container must throw and log thejava.lang.IllegalStateException if the EJBCon-
text.getRollbackOnly() method is invoked from anonMessage method executing with the
NotSupported transaction attribute.
 10/23/00 360

Container Provider responsibilities Enterprise JavaBeans 2.0, Proposed Final Draft Support for Transactions

Sun Microsystems, Inc.

mpts to

escrip-
ration of
ges the

con-
anaged
i-

ses in
ethod

arca-

ation.

ethod
emen-
ethod
gies):

 trans-
16.6.3.5 Handling ofgetUserTransaction() method

If an instance of a message-driven bean with container-managed transaction demarcation atte
invoke thegetUserTransaction() method of theEJBContext interface, the Container must
throw and log thejava.lang.IllegalStateException .

16.6.4 Local transaction optimization

The container may use a local transaction optimization for enterprise beans whose deployment d
tor indicates that connections to a resource manager are shareable (see Section 19.4.1.2 “Decla
resource manager connection factory references in deployment descriptor”). The container mana
use of the local transaction optimization transparent to the application.

The container may use the optimization for transactions initiated by the container for a bean with
tainer managed transaction demarcation and for transactions initiated by a bean with bean m
transaction demarcation with theUserTransaction interface. The container cannot apply the opt
mization for transactions imported from a different container.

The use of local transaction optimization approach is discussed in [9] and [12].

16.6.5 Handling of methods that run with “an unspecified transaction context”

The term “an unspecified transaction context” is used in the EJB specification to refer to the ca
which the EJB architecture does not fully define the transaction semantics of an enterprise bean m
execution.

This includes the following cases:

• The execution of a method of an enterprise bean with container-managed transaction dem
tion for which the value of the transaction attribute isNotSupported , Never , or Sup-
ports [25].

• The execution of theejbCreate<METHOD> , ejbRemove, ejbPassivate, and
ejbActivate methods of a session bean with container-managed transaction demarc

• The execution of theejbCreate<METHOD> andejbRemove methods of a message-driven
bean with container-managed transaction demarcation.

The EJB specification does not prescribe how the Container should manage the execution of a m
with an unspecified transaction context—the transaction semantics are left to the Container impl
tation. Some techniques for how the Container may choose to implement the execution of a m
with an unspecified transaction context are as follows (the list is not inclusive of all possible strate

[25] For theSupports attribute, the handling described in this section applies only to the case when the client calls without a
action context.
361 10/23/00

Support for Transactions Enterprise JavaBeans 2.0, Proposed Final Draft Access from multiple clients in the same

Sun Microsystems, Inc.

ithout a

saction

single

into a

re also
e the

se bean

ction
he EJB

r such a

tainer’s

ram A
it the

eates a
• The Container may execute the method and access the underlying resource managers w
transaction context.

• The Container may treat each call of an instance to a resource manager as a single tran
(e.g. the Container may set the auto-commit option on a JDBC connection).

• The Container may merge multiple calls of an instance to a resource manager into a
transaction.

• The Container may merge multiple calls of an instance to multiple resource managers
single transaction.

• If an instance invokes methods on other enterprise beans, and the invoked methods a
designated to run with an unspecified transaction context, the Container may merg
resource manager calls from the multiple instances into a single transaction.

• Any combination of the above.

Since the enterprise bean does not know which technique the Container implements, the enterpri
must be written conservatively not to rely on any particular Container behavior.

A failure that occurs in the middle of the execution of a method that runs with an unspecified transa
context may leave the resource managers accessed from the method in an unpredictable state. T
architecture does not define how the application should recover the resource managers’ state afte
failure.

16.7 Access from multiple clients in the same transaction context

This section describes a more complex distributed transaction scenario, and specifies the Con
behavior required for this scenario.

16.7.1 Transaction “diamond” scenario with an entity object

An entity object may be accessed by multiple clients in the same transaction. For example, prog
may start a transaction, call program B and program C in the transaction context, and then comm
transaction. If programs B and C access the same entity object, the topology of the transaction cr
diamond.
 10/23/00 362

Access from multiple clients in the same transaction contextEnterprise JavaBeans 2.0, Proposed Final Draft Support for Transactions

Sun Microsystems, Inc.

dif-
s pur-

ss an
imple-
ltiple

ferent
transac-
of the

ibuted
le net-

access
ming

in all

trans-
Figure 71 Transaction diamond scenario with entity object

An example (not realistic in practice) is a client program that tries to perform two purchases at two
ferent stores within the same transaction. At each store, the program that is processing the client’
chase request debits the client’s bank account.

It is difficult to implement an EJB server that handles the case in which programs B and C acce
entity object through different network paths. This case is challenging because many EJB servers
ment the EJB Container as a collection of multiple processes, running on the same or mu
machines. Each client is typically connected to a single process. If clients B and C connect to dif
EJB Container processes, and both B and C need to access the same entity object in the same
tion, the issue is how the Container can make it possible for B and C to see a consistent state
entity object within the same transaction[26].

The above example illustrates a simple diamond. We use the term diamond to refer to any distr
transaction scenario in which an entity object is accessed in the same transaction through multip
work paths.

Note that in the diamond scenario the clients B and C access the entity object serially. Concurrent
to an entity object in the same transaction context would be considered an application program
error, and it would be handled in a Container-specific way.

Note that the issue of handling diamonds is not unique to the EJB architecture. This issue exists
distributed transaction processing systems.

The following subsections define the responsibilities of the EJB Roles when handling distributed
action topologies that may lead to a diamond involving an entity object.

[26] This diamond problem applies only to the case when B and C are in the same transaction.

Program A

Program C

Program B

Entity
object

TX1

TX1

TX1

TX1

EJB Container
363 10/23/00

Support for Transactions Enterprise JavaBeans 2.0, Proposed Final Draft Access from multiple clients in the same

Sun Microsystems, Inc.

involv-

l dia-

istrib-
rough
in the

detect

t view
veral

, and
ll the

se the
me

d
t the
ansac-

the
16.7.2 Container Provider’ s responsibilities
This Subsection specifies the EJB Container’s responsibilities with respect to the diamond case
ing an entity object.

The EJB specification requires that the Container provide support for local diamonds. In a loca
mond, components A, B, C, and D are deployed in the same EJB Container.

The EJB specification does not require an EJB Container to support distributed diamonds. In a d
uted diamond, a target entity object is accessed from multiple clients in the same transaction th
multiple network paths, and the clients (programs B and C) are not enterprise beans deployed
same EJB Container as the target entity object.

If the Container Provider chooses not to support distributed diamonds, and if the Container can
that a client invocation would lead to a diamond, the Container should throw thejava.rmi.Remo-
teException to the client.

If the Container Provider chooses to support distributed diamonds, it should provide a consisten
of the entity state within a transaction. The Container Provider can implement the support in se
ways. (The options that follow are illustrative, not prescriptive.)

• Always instantiate the entity bean instance for a given entity object in the same process
route all clients’ requests to this process. Within the process, the Container routes a
requests within the same transaction to the same enterprise bean instance.

• Instantiate the entity bean instance for a given entity object in multiple processes, and u
ejbStore andejbLoad methods to synchronize the state of the instances within the sa
transaction. For example, the Container can issueejbStore after each business method, an
issueejbLoad before the start of the next business method. This technique ensures tha
instance used by a one client sees the updates done by other clients within the same tr
tion.

An illustration of the second approach follows. The illustration is illustrative, not prescriptive for
Container implementors.
 10/23/00 364

Access from multiple clients in the same transaction contextEnterprise JavaBeans 2.0, Proposed Final Draft Support for Transactions

Sun Microsystems, Inc.

to an
te
hod.
te

uted to
te
s 1.
ontainer

object

involv-
Figure 72 Handling of diamonds by a multi-process container

Program B makes a call to an entity object representing Account 100. The request is routed
instance in process 1. The Container invokesejbLoad on the instance. The instance loads the sta
from the database in theejbLoad method. The instance updates the state in the business met
When the method completes, the Container invokesejbStore . The instance writes the updated sta
to the database in theejbStore method.

Now program C makes a call to the same entity object in the same transaction. The request is ro
a different process (2). The Container invokesejbLoad on the instance. The instance loads the sta
from the database in theejbLoad method. The loaded state was written by the instance in proces
The instance updates the state in the business method. When the method completes, the C
invokesejbStore . The instance writes the updated state to the database in theejbStore method.

In the above scenario, the Container presents the business methods operating on the entity
Account 100 with a consistent view of the entity object’s state within the transaction.

Another implementation of the EJB Container might avoid callingejbLoad andejbStore on each
business method by using a distributed lock manager.

16.7.3 Bean Provider’ s responsibilities
This Subsection specifies the Bean Provider’s responsibilities with respect to the diamond case
ing an entity object.

Program C

Program B

TX1

TX1

Multi-process EJB Container

Account 100
instance 1

Account 100
instance 2

ejbLoad/ejbStore

ejbLoad/ejbStore

process 1

process 2
365 10/23/00

Support for Transactions Enterprise JavaBeans 2.0, Proposed Final Draft Access from multiple clients in the same

Sun Microsystems, Inc.

ode the
prob-
s of the

to the

ur. In
s.

er-spe-
os.

at use
nd then

) across
rrect

session
etween
The diamond case is transparent to the Bean Provider—the Bean Provider does not have to c
enterprise bean differently for the bean to participate in a diamond. Any solution to the diamond
lem implemented by the Container is transparent to the bean and does not change the semantic
bean.

16.7.4 Application Assembler and Deployer’s responsibilities
This Subsection specifies the Application Assembler and Deployer’s responsibilities with respect
diamond case involving an entity object.

The Application Assembler and Deployer should be aware that distributed diamonds might occ
general, the Application Assembler should try to avoid creating unnecessary distributed diamond

If a distributed diamond is necessary, the Deployer should advise the Container (using a Contain
cific API) that an entity objects of the entity bean may be involved in distributed diamond scenari

16.7.5 Transaction diamonds involving session objects
While it is illegal for two clients to access the same session object, it is possible for applications th
session beans to encounter the diamond case. For example, program A starts a transaction a
invokes two different session objects.

Figure 73 Transaction diamond scenario with a session bean

If the session bean instances cache the same data item (e.g. the current balance of Account 100
method invocations in the same transaction, most likely the program is going to produce inco
results.

The problem may exist regardless of whether the two session objects are the same or different
beans. The problem may exist (and may be harder to discover) if there are intermediate objects b
the transaction initiator and the session objects that cache the data.

Program A

Session
instance 1

TX1

TX1

EJB Container

Session
instance 2

read and cache
Account 100

read and cache
Account 100
 10/23/00 366

Access from multiple clients in the same transaction contextEnterprise JavaBeans 2.0, Proposed Final Draft Support for Transactions

Sun Microsystems, Inc.

detect

ult in
There are no requirements for the Container Provider because it is impossible for the Container to
this problem.

The Bean Provider and Application Assembler must avoid creating applications that would res
inconsistent caching of data in the same transaction by multiple session objects.
367 10/23/00

Support for Transactions Enterprise JavaBeans 2.0, Proposed Final Draft Access from multiple clients in the same

Sun Microsystems, Inc.
 10/23/00 368

Overview and Concepts Enterprise JavaBeans 2.0, Proposed Final Draft Exception handling

Sun Microsystems, Inc.

rise

pplica-
client

port-
Chapter 17 Exception handling

17.1 Overview and Concepts

17.1.1 Application exceptions

An application exceptionis an exception defined in the throws clause of a method of the enterp
Bean’s home and remote interfaces, other than thejava.rmi.RemoteException .

Enterprise bean business methods use application exceptions to inform the client of abnormal a
tion-level conditions, such as unacceptable values of the input arguments to a business method. A
can typically recover from an application exception. Application exceptions are not intended for re
ing system-level problems.

For example, theAccountenterprise bean may throw an application exception to report that adebit
operation cannot be performed because of an insufficient balance. TheAccountbean should not use an
application exception to report, for example, the failure to obtain a database connection.
369 10/23/00

Exception handling Enterprise JavaBeans 2.0, Proposed Final Draft Bean Provider’s responsibilities

Sun Microsystems, Inc.

ptions

ules on

client

roll-
nsac-

rlying

n han-

remote
d not by
ot for

iness
es not
fol-

bean

it the
appli-
tance

that
The javax.ejb.CreateException , javax.ejb.RemoveException , javax.ejb.Fin-
derException , and subclasses thereof are considered to be application exceptions. These exce
are used as standard application exceptions to report errors to the client from thecreate , remove ,
andfinder methods (see Subsections 9.6.8 and 11.1.9). These exceptions are covered by the r
application exceptions that are defined in this chapter.

17.1.2 Goals for exception handling

The EJB specification for exception handling is designed to meet these high-level goals:

• An application exception thrown by an enterprise bean instance should be reported to the
precisely (i.e., the client gets the same exception).

• An application exception thrown by an enterprise bean instance should not automatically
back a client’s transaction. The client should typically be given a chance to recover a tra
tion from an application exception.

• An unexpected exception that may have left the instance’s state variables and/or unde
persistent data in an inconsistent state can be handled safely.

17.2 Bean Provider’s responsibilities

This section describes the view and responsibilities of the Bean Provider with respect to exceptio
dling.

17.2.1 Application exceptions

The Bean Provider defines the application exceptions in the throws clauses of the methods of the
and home interfaces. Because application exceptions are intended to be handled by the client, an
the system administrator, they should be used only for reporting business logic exceptions, n
reporting system level problems.

The Bean Provider is responsible for throwing the appropriate application exception from the bus
method to report a business logic exception to the client. Because the application exception do
automatically result in marking the transaction for rollback, the Bean Provider must do one of the
lowing to ensure data integrity before throwing an application exception from an enterprise
instance:

• Ensure that the instance is in a state such that a client’s attempt to continue and/or comm
transaction does not result in loss of data integrity. For example, the instance throws an
cation exception indicating that the value of an input parameter was invalid before the ins
performed any database updates.

• Mark the transaction for rollback using theEJBContext.setRollbackOnly() method
before throwing an application exception. Marking the transaction for rollback will ensure
the transaction can never commit.
 10/23/00 370

Bean Provider’s responsibilities Enterprise JavaBeans 2.0, Proposed Final Draft Exception handling

Sun Microsystems, Inc.

ns

tions

stances
o the

ns and
ty bean
g.

n-
, this
rovider

tain a

w the
that is
exact

catch

n applies
An application exception class must be a subclass (direct or indirect) ofjava.lang.Exception .
An application exception class must not be defined as a subclass of thejava.lang.RuntimeEx-
ception , or of the java.rmi.RemoteException . These are reserved for system exceptio
(See next subsection).

The Bean Provider is also responsible for using the standard EJB application excep
(javax.ejb.CreateException , javax.ejb.RemoveException , javax.ejb.Find-
erException , and subclasses thereof) as described in Subsections 9.6.8 and 11.1.9.

Bean Providers may define subclasses of the standard EJB application exceptions and throw in
of the subclasses in the entity bean methods. A subclass will typically provide more information t
client that catches the exception.

17.2.2 System exceptions

This subsection describes how the Bean Provider should handle various system-level exceptio
errors that an enterprise bean instance may encounter during the execution of a session or enti
business method, a message-driven beanonMessage method, or a container callback method (e.
ejbLoad).

The enterprise bean business method,onMessage method, or container callback method may encou
ter various exceptions or errors that prevent the method from successfully completing. Typically
happens because the exception or error is unexpected, or the exception is expected but the EJB P
does not know how to recover from it. Examples of such exceptions and errors are: failure to ob
database connection, JNDI exceptions, unexpectedRemoteException from invocation of other
enterprise beans[27], unexpectedRuntimeException , JVM errors, and so on.

If the enterprise bean method encounters a system-level exception or error that does not allo
method to successfully complete, the method should throw a suitable non-application exception
compatible with the method’s throws clause. While the EJB specification does not prescribe the
usage of the exception, it encourages the Bean Provider to follow these guidelines:

• If the bean method encounters aRuntimeException or error, it should simply propagate
the error from the bean method to the Container (i.e., the bean method does not have to
the exception).

• If the bean method performs an operation that results in a checked exception[28] that the bean
method cannot recover, the bean method should throw thejavax.ejb.EJBException
that wraps the original exception.

• Any other unexpected error conditions should be reported using thejavax.ejb.EJBEx-
ception.

[27] Note that the enterprise bean business method may attempt to recover from a RemoteException. The text in this subsectio
only to the case when the business method does not wish to recover from the RemoteException.

[28] A checked exception is one that is not a subclass ofjava.lang.RuntimeException .
371 10/23/00

Exception handling Enterprise JavaBeans 2.0, Proposed Final Draft Container Provider responsibilities

Sun Microsystems, Inc.

stem

form

ing a

e EJB

home
hods:
Note that thejavax.ejb.EJBException is a subclass of thejava.lang.RuntimeExcep-
tion , and therefore it does not have to be listed in the throws clauses of the business methods.

The Container catches a non-application exception, logs it (which can result in alerting the Sy
Administrator), and, unless the bean is a message-driven bean, throws thejava.rmi.RemoteEx-
ception (or subclass thereof) to the client. The Bean Provider can rely on the Container to per
the following tasks when catching a non-application exception:

• The transaction in which the bean method participated will be rolled back.

• No other method will be invoked on an instance that threw a non-application exception.

This means that the Bean Provider does not have to perform any cleanup actions before throw
non-application exception. It is the Container that is responsible for the cleanup.

17.2.2.1 javax.ejb.NoSuchEntityException

TheNoSuchEntityException is a subclass ofEJBException . It should be thrown by the entity
bean class methods to indicate that the underlying entity has been removed from the database.

An entity bean class typically throws this exception from theejbLoad andejbStore methods, and
from the methods that implement the business methods defined in the remote interface.

17.3 Container Provider responsibilities

This section describes the responsibilities of the Container Provider for handling exceptions. Th
architecture specifies the Container’s behavior for the following exceptions:

• Exceptions from the business methods of session and entity beans.

• Exceptions from message-driven bean methods

• Exceptions from container-invoked callbacks on the enterprise bean.

• Exceptions from management of container-managed transaction demarcation.

17.3.1 Exceptions from a session or entity bean’s business methods

Business methodsare considered to be the methods defined in the enterprise bean’s remote and
interface (including all their superinterfaces); and the following session bean or entity bean met
ejbCreate<METHOD>(...) , ejbPostCreate<METHOD>(...) , ejbRemove() , and the
ejbFind<METHOD> methods.
 10/23/00 372

Container Provider responsibilities Enterprise JavaBeans 2.0, Proposed Final Draft Exception handling

Sun Microsystems, Inc.

ods for
ion as a
by the
client

ion
Table 17 specifies how the Container must handle the exceptions thrown by the business meth
beans with container-managed transaction demarcation. The table specifies the Container’s act
function of the condition under which the business method executes and the exception thrown
business method. The table also illustrates the exception that the client will receive and how the
can recover from the exception. (Section 17.4 describes the client’s view of exceptions in detail.)

Table 17 Handling of exceptions thrown by a business method of a bean with container-managed transact
demarcation

 Method condition Method exception Container’s action Client’s view

Bean method runs in the
context of the caller’s
transaction [Note A].
This case may happen
with Required , Man-
datory , andSup-
ports attributes.

AppException Re-throw AppException Receives AppException.

Can attempt to continue
computation in the trans-
action, and eventually
commit the transaction
(the commit would fail if
the instance calledset-
RollbackOnly()).

all other exceptions and
errors

Log the exception or
error [Note B].

Mark the transaction for
rollback.

Discard instance
[Note C].

Throw Transaction-
RolledBackException to
the client.

ReceivesTransaction-
RolledBackException .

Continuing transaction is
fruitless.

Bean method runs in the
context of a transaction
that the Container started
immediately before dis-
patching the business
method.
This case may happen
with Required and
RequiresNew
attributes.

AppException If the instance called set-
RollbackOnly(), then
rollback the transaction,
and re-throw AppExcep-
tion.

Otherwise, attempt to
commit the transaction,
and then re-throw
AppException.

Receives AppException.

If the client executes in a
transaction, the client’s
transaction is not marked
for rollback, and client
can continue its work.

all other exceptions Log the exception or
error.

Rollback the con-
tainer-started transaction.

Discard instance.

Throw RemoteException .

ReceivesRemoteExcep-
tion .

If the client executes in a
transaction, the client’s
transaction is not marked
for rollback, and client
can continue its work.
373 10/23/00

Exception handling Enterprise JavaBeans 2.0, Proposed Final Draft Container Provider responsibilities

Sun Microsystems, Inc.

ods for
a func-
busi-

nt can

min-

acks

n

ion
Table 18 specifies how the Container must handle the exceptions thrown by the business meth
beans with bean-managed transaction demarcation. The table specifies the Container’s action as
tion of the condition under which the business method executes and the exception thrown by the
ness method. The table also illustrates the exception that the client will receive and how the clie
recover from the exception. (Section 17.4 describes the client’s view of exceptions in detail.)

Bean method runs with
an unspecified transac-
tion context.
This case may happen
with theNotSup-
ported , Never , and
Supports attributes.

AppException Re-throw AppException. Receives AppException.

If the client executes in a
transaction, the client’s
transaction is not marked
for rollback, and client
can continue its work.

all other exceptions Log the exception or
error.

Discard instance.

Throw RemoteException .

ReceivesRemoteExcep-
tion .

If the client executes in a
transaction, the client’s
transaction is not marked
for rollback, and client
can continue its work.

Notes:

[A] The caller can be another enterprise bean or an arbitrary client program.

[B] Log the exception or errormeans that the Container logs the exception or error so that the System Ad
istrator is alerted of the problem.

[C] Discard instance means that the Container must not invoke any business methods or container callb
on the instance.

Table 18 Handling of exceptions thrown by a business method of a session with bean-managed transactio
demarcation

Bean method condition Bean method exception Container action Client receives

Bean is stateful or state-
less Session.

AppException Re-throw AppException Receives AppException.

all other exceptions Log the exception or
error.

Mark for rollback a
transaction that has been
started, but not yet com-
pleted, by the instance.

Discard instance.

Throw RemoteException .

ReceivesRemoteExcep-
tion .

Table 17 Handling of exceptions thrown by a business method of a bean with container-managed transact
demarcation

 Method condition Method exception Container’s action Client’s view
 10/23/00 374

Container Provider responsibilities Enterprise JavaBeans 2.0, Proposed Final Draft Exception handling

Sun Microsystems, Inc.

ean’s

ction
ch the
like the
t throw

 on
17.3.2 Exceptions from message-driven bean methods

This section specifies the Container’s handling of exceptions thrown from a message-driven b
onMessage , ejbCreate() , andejbRemove() methods.

Table 19 specifies how the Container must handle the exceptions thrown by theonMessage , ejb-
Create , and ejbRemove methods for message-driven beans with container-managed transa
demarcation. The table specifies the Container’s action as a function of the condition under whi
method executes and the exception thrown by the method. Message-driven bean methods, un
business methods of session or entity beans, do not throw application exceptions and canno
exceptions to the client.

Table 19 Handling of exceptions thrown by a method of a message-driven bean with container-managed
transaction demarcation.

 Method condition Method exception Container’s action

Bean method runs in the
context of a transaction
that the Container started
immediately before dis-
patching the method.
This case happens with
Required attribute.

system exceptions Log the exception or
error[Note A].

Rollback the con-
tainer-started transaction.

Discardinstance[NoteB].

Notes:

[A] Log the exception or error means that the Container logs the exception or
error so that the System Administrator is alerted of the problem.

[B] Discard instance means that the Container must not invoke any methods
the instance.

Bean method runs with
an unspecified transac-
tion context.
This case happens with
theNotSupported
attribute.

system exceptions Log the exception or
error.

Discard instance.
375 10/23/00

Exception handling Enterprise JavaBeans 2.0, Proposed Final Draft Container Provider responsibilities

Sun Microsystems, Inc.

mar-
ethod

oked

tor.

tainer

action
Table 20 specifies how the Container must handle the exceptions thrown by theonMessage , ejb-
Create , andejbRemove methods for message-driven beans with bean-managed transaction de
cation. The table specifies the Container’s action as a function of the condition under which the m
executes and the exception thrown by method.

17.3.3 Exceptions from container-invoked callbacks

This subsection specifies the Container’s handling of exceptions thrown from the container-inv
callbacks on the enterprise bean. This subsection applies to the following callback methods:

• The ejbActivate() , ejbLoad() , ejbPassivate() , ejbStore() , setEntity-
Context(EntityContext) , and unsetEntityContext() methods of theEnti-
tyBean interface.

• The ejbActivate() , ejbPassivate() , and setSessionContext(Session-
Context) methods of theSessionBean interface.

• The setMessageDrivenContext(MessageDrivenContext) method of theMes-
sageDrivenBean interface.

• The afterBegin(), beforeCompletion() and afterCompletion(boolean)
methods of theSessionSynchronization interface.

The Container must handle all exceptions or errors from these methods as follows:

• Log the exception or error to bring the problem to the attention of the System Administra

• If the instance is in a transaction, mark the transaction for rollback.

• Discard the instance (i.e., the Container must not invoke any business methods or con
callbacks on the instance).

Table 20 Handling of exceptions thrown by a method of a message-driven bean with bean-managed trans
demarcation.

Bean method condition Bean method exception Container action

Bean is message-driven
bean

system exceptions Log the exception or
error.

Mark for rollback a
transaction that has been
started, but not yet com-
pleted, by the instance.

Discard instance.
 10/23/00 376

Container Provider responsibilities Enterprise JavaBeans 2.0, Proposed Final Draft Exception handling

Sun Microsystems, Inc.

w the
s-

hat

the

w the

ns, as
excep-

w the
m-
ow and

siness

e cli-
• If the exception or error happened during the processing of a client invoked method, thro
java.rmi.RemoteException to the client. If the instance executed in the client’s tran
action, the Container should throw thejavax.transaction.TransactionRolled-
BackException because it provides more information to the client. (The client knows t
it is fruitless to continue the transaction.)

17.3.4 javax.ejb.NoSuchEntityException

TheNoSuchEntityException is a subclass ofEJBException . If it is thrown by a method of an
entity bean class, the Container must handle the exception using the rules forEJBException
described in Sections 17.3.1, 17.3.2, and 17.3.3.

To give the client a better indication of the cause of the error, the Container should throw
java.rmi.NoSuchObjectException to the client (which is a subclass ofjava.rmi.Remo-
teException).

17.3.5 Non-existing session object

If a client makes a call to a session object that has been removed, the Container should thro
java.rmi.NoSuchObjectException to the client (which is a subclass ofjava.rmi.Remo-
teException).

17.3.6 Exceptions from the management of container-managed transactions

The container is responsible for starting and committing the container-managed transactio
described in Subsection 16.6.2. This subsection specifies how the Container must deal with the
tions that may be thrown by the transaction start and commit operations.

If the Container fails to start or commit a container-managed transaction, the Container must thro
java.rmi.RemoteException to the client. In the case where the Container fails to start or co
mit a container-managed transaction on behalf of a message-driven bean, the Container must thr
log thejavax.ejb.EJBException .

However, the Container should not throw thejava.rmi.RemoteException if the Container per-
forms a transaction rollback because the instance has invoked thesetRollbackOnly() method on
its EJBContext object. In this case, the Container must rollback the transaction and pass the bu
method result or the application exception thrown by the business method to the client.

Note that some implementations of the Container may retry a failed transaction transparently to th
ent and enterprise bean code. Such a Container would throw thejava.rmi.RemoteException
after a number of unsuccessful tries.
377 10/23/00

Exception handling Enterprise JavaBeans 2.0, Proposed Final Draft Client’s view of exceptions

Sun Microsystems, Inc.

lease all
in the

stance
r can-
JDK

ations
gar-

d in

rit-

of the

the

d

n.

Both of
luding
17.3.7 Release of resources

When the Container discards an instance because of a system exception, the Container should re
the resources held by the instance that were acquired through the resource factories declared
enterprise bean environment (See Subsection 19.4).

Note: While the Container should release the connections to the resource managers that the in
acquired through the resource factories declared in the enterprise bean environment, the Containe
not, in general, release “unmanaged” resources that the instance may have acquired through the
APIs. For example, if the instance has opened a TCP/IP connection, most Container implement
will not be able to release the connection. The connection will be eventually released by the JVM
bage collector mechanism.

17.3.8 Support for deprecated use ofjava.rmi.RemoteException

The EJB 1.0 specification allowed the business methods,ejbCreate , ejbPostCreate ,
ejbFind<METHOD> , ejbRemove , and the container-invoked callbacks (i.e., the methods define
the EntityBean , SessionBean , andSessionSynchronization interfaces) implemented in
the enterprise bean class to use thejava.rmi.RemoteException to report non-application excep-
tions to the Container.

This use of thejava.rmi.RemoteException was deprecated in EJB 1.1—enterprise beans w
ten for the EJB 2.0 or EJB 1.1 specification should use thejavax.ejb.EJBException instead.

The EJB 2.0 and EJB 1.1 specification require that a Container support the deprecated use
java.rmi.RemoteException . The Container should treat thejava.rmi.RemoteExcep-
tion thrown by an enterprise bean method in the same way as it is specified for
javax.ejb.EJBException .

Note: The use of thejava.rmi.RemoteException is deprecated only in the above-mentione
methods. The methods of the remote and home interface still must use thejava.rmi.RemoteEx-
ception as required by the EJB specification.

17.4 Client’s view of exceptions

This section describes the client’s view of exceptions received from an enterprise bean invocatio

A client accesses an enterprise Bean through the enterprise Bean’s remote and home interfaces.
these interfaces are Java RMI interfaces, and therefore the throws clauses of all their methods (inc
those inherited from superinterfaces) include the mandatoryjava.rmi.RemoteException. The
throws clauses may include an arbitrary number of application exceptions.
 10/23/00 378

Client’s view of exceptions Enterprise JavaBeans 2.0, Proposed Final Draft Exception handling

Sun Microsystems, Inc.

nt can
e EJB

client
lication

t

rown
bean
ation

home
plica-
row-

arca-

Con-

been

r the
e been
thod

cuting
17.4.1 Application exception

If a client program receives an application exception from an enterprise bean invocation, the clie
continue calling the enterprise bean. An application exception does not result in the removal of th
object.

If a client program receives an application exception from an enterprise bean invocation while the
is associated with a transaction, the client can typically continue the transaction because an app
exception does not automatically causes the Container to mark the transaction for rollback.

For example, if a client receives theExceedLimitExceptionapplication exception from thedebitmethod
of anAccountbean, the client may invoke thedebitmethod again, possibly with a lower debit amoun
parameter. If the client executed in a transaction context, throwing theExceedLimitExceptionexception
would not automatically result in rolling back, or marking for rollback, the client’s transaction.

Although the Container does not automatically mark for rollback a transaction because of a th
application exception, the transaction might have been marked for rollback by the enterprise
instance before it threw the application exception. There are two ways to learn if a particular applic
exception results in transaction rollback or not:

• Statically. Programmers can check the documentation of the enterprise bean’s remote or
interface. The Bean Provider may have specified (although he is not required to) the ap
tion exceptions for which the enterprise bean marks the transaction for rollback before th
ing the exception.

• Dynamically. Clients that are enterprise beans with container-managed transaction dem
tion can use thegetRollbackOnly() method of thejavax.ejb.EJBContext object
to learn if the current transaction has been marked for rollback; other clients may use theget-
Status() method of the javax.transaction.UserTransaction interface to
obtain the transaction status.

17.4.2 java.rmi.RemoteException

The client receives thejava.rmi.RemoteException as an indication of a failure to invoke an
enterprise bean method or to properly complete its invocation. The exception can be thrown by the
tainer or by the communication subsystem between the client and the Container.

If the client receives thejava.rmi.RemoteException exception from a method invocation, the
client, in general, does not know if the enterprise Bean’s method has been completed or not.

If the client executes in the context of a transaction, the client’s transaction may, or may not, have
marked for rollback by the communication subsystem or target bean’s Container.

For example, the transaction would be marked for rollback if the underlying transaction service o
target Bean’s Container doubted the integrity of the data because the business method may hav
partially completed. Partial completion could happen, for example, when the target bean’s me
returned with a RuntimeException exception, or if the remote server crashed in the middle of exe
the business method.
379 10/23/00

Exception handling Enterprise JavaBeans 2.0, Proposed Final Draft Client’s view of exceptions

Sun Microsystems, Inc.

n the
.

k its
roll-
prise

other
was

atus to
enter-

an

orting

e cli-

rprise
The transaction may not necessarily be marked for rollback. This might occur, for example, whe
communication subsystem on the client-side has not been able to send the request to the server

When a client executing in a transaction context receives aRemoteException from an enterprise
bean invocation, the client may use either of the following strategies to deal with the exception:

• Discontinue the transaction. If the client is the transaction originator, it may simply rollbac
transaction. If the client is not the transaction originator, it can mark the transaction for
back or perform an action that will cause a rollback. For example, if the client is an enter
bean, the enterprise bean may throw aRuntimeException which will cause the Container
to rollback the transaction.

• Continue the transaction. The client may perform additional operations on the same or
enterprise beans, and eventually attempt to commit the transaction. If the transaction
marked for rollback at the time theRemoteException was thrown to the client, the commit
will fail.

If the client chooses to continue the transaction, the client can first inquire about the transaction st
avoid fruitless computation on a transaction that has been marked for rollback. A client that is an
prise bean with container-managed transaction demarcation can use theEJBContext.getRoll-
backOnly() method to test if the transaction has been marked for rollback; a client that is
enterprise bean with bean-managed transaction demarcation, and other client types, can use theUser-
Transaction.getStatus() method to obtain the status of the transaction.

Some implementations of EJB Servers and Containers may provide more detailed exception rep
by throwing an appropriate subclass of thejava.rmi.RemoteException to the client. The fol-
lowing subsections describe the several subclasses of thejava.rmi.RemoteException that may
be thrown by the Container to give the client more information.

17.4.2.1 javax.transaction.TransactionRolledbackException

The javax.transaction.TransactionRolledbackException is a subclass of the
java.rmi.RemoteException. It is defined in the JTA standard extension.

If a client receives thejavax.transaction.TransactionRolledbackException , the cli-
ent knows for certain that the transaction has been marked for rollback. It would be fruitless for th
ent to continue the transaction because the transaction can never commit.

17.4.2.2 javax.transaction.TransactionRequiredException

The javax.transaction.TransactionRequiredException is a subclass of the
java.rmi.RemoteException. It is defined in the JTA standard extension.

Thejavax.transaction.TransactionRequiredException informs the client that the tar-
get enterprise bean must be invoked in a client’s transaction, and that the client invoked the ente
bean without a transaction context.

This error usually indicates that the application was not properly formed.
 10/23/00 380

System Administrator’s responsibilities Enterprise JavaBeans 2.0, Proposed Final Draft Exception handling

Sun Microsystems, Inc.

ect no

and
excep-

JB 1.0

llbacks
e

the

back
1.0,

threw

y roll-
en an
ner. In
17.4.2.3 java.rmi.NoSuchObjectException

The java.rmi.NoSuchObjectException is a subclass of thejava.rmi.RemoteExcep-
tion. It is thrown to the client if a remote business method cannot complete because the EJB obj
longer exists.

17.5 System Administrator’s responsibilities

The System Administrator is responsible for monitoring the log of the non-application exceptions
errors logged by the Container, and for taking actions to correct the problems that caused these
tions and errors.

17.6 Differences from EJB 1.0

The EJB 2.0 and EJB 1.1 specification of exception handling preserve the rules defined in the E
specification, with the following exceptions:

• EJB 1.0 specified that the enterprise bean business methods and container-invoked ca
use thejava.rmi.RemoteException to report non-application exceptions. This practic
was deprecated in EJB 1.1—the enterprise bean methods should use
javax.ejb.EJBException , or other suitable RuntimeException to report
non-application exceptions.

• In EJB 2.0 and 1.1, all non-application exceptions thrown by the instance result in the roll
of the transaction in which the instance executed, and in discarding the instance. In EJB
the Container would not rollback a transaction and discard the instance if the instance
the java.rmi.RemoteException .

• In EJB 2.0 and 1.1, an application exception does not cause the Container to automaticall
back a transaction. In EJB 1.0, the Container was required to rollback a transaction wh
application exception was passed through a transaction boundary started by the Contai
EJB 1.1, the Container performs the rollback only if the instance have invoked thesetRoll-
backOnly() method on itsEJBContext object.
381 10/23/00

Exception handling Enterprise JavaBeans 2.0, Proposed Final Draft Differences from EJB 1.0

Sun Microsystems, Inc.
 10/23/00 382

Support for distribution Enterprise JavaBeans 2.0, Proposed Final Draft Support for Distribution and Interoperabil-

Sun Microsystems, Inc.

a net-
at are

] inter-

e bean
sed over

s to be
as
Chapter 18 Support for Distribution and
Interoperability

This chapter describes the support for accessing enterprise beans from clients distributed over
work, and the interoperability requirements for invocations on enterprise beans from clients th
Java 2 Platform, Enterprise Edition (J2EE) components.

18.1 Support for distribution

The home and remote interfaces of the enterprise bean’s client view are defined as Java™ RMI [3
faces. This allows the Container to implement the home and remote interfaces asdistributed objects. A
client using the home and remote interfaces can reside on a different machine than the enterpris
(location transparency), and the object references of the home and remote interfaces can be pas
the network to other applications.

The EJB specification further constrains the Java RMI types that can be used by enterprise bean
legal RMI-IIOP types [7]. This makes it possible for EJB Container implementors to use RMI-IIOP
the object distribution protocol.
383 10/23/00

Support for Distribution and InteroperabilityEnterprise JavaBeans 2.0, Proposed Final Draft Interoperability overview

Sun Microsystems, Inc.

with
ote

deploy-
wire

d to be
fines a

Addi-

dors to
18.1.1 Client-side objects in distributed envir onment

When the RMI-IIOP protocol or similar distribution protocols are used, the client communicates
the enterprise bean usingstubsfor the server-side objects. The stubs implement the home and rem
interfaces.

Figure 74 Location of EJB Client Stubs.

The communication stubs used on the client side are artifacts generated at the enterprise bean’s
ment time by the EJB Container provider’s tools. The stubs used on the client are specific to the
protocol used for the remote invocation.

18.2 Interoperability overview

Session beans and entity beans that are deployed in one vendor’s server product often nee
accessed from J2EE client components that are deployed in another vendor’s product. EJB 2.0 de
standard interoperability protocol based on CORBA/IIOP to address this need.

The interoperability protocols described here must be supported by compatible EJB products.
tional vendor-specific protocols may also be supported.

Figure 75 below shows a heterogeneous environment that includes systems from several ven
illustrate the interoperability enabled by EJB 2.0.

enterprise Bean

container address space (i.e. JVM)

EJB home object

EJB object

remote

client address space (i.e. JVM)

client

EJB object stub

EJB home stub container
 10/23/00 384

Interoperability overview Enterprise JavaBeans 2.0, Proposed Final Draft Support for Distribution and Interoperabil-

Sun Microsystems, Inc.

, and

er to
n EJB

Pages
r pro-
d on a

per.
Figure 75 Heterogeneous EJB Environment

The following sections in this chapter

• describe the goals for EJB invocation interoperability

• provide illustrative scenarios

• describe the interoperability requirements for remote invocations, transactions, naming
security.

18.2.1 Inter operability goals

The goals of the interoperability requirements specified in this chapter are as follows:

• To allow clients in one application deployed in J2EE containers from one server provid
access services from session and entity beans in another application that is deployed in a
container from a different server provider. For example, web components (JavaServer
and Servlets) that are deployed on a J2EE-compliant web server provided by one serve
vider must be able to invoke the business methods of enterprise beans that are deploye
J2EE-compliant EJB server from another server provider.

• To achieve interoperability without any new requirements on the J2EE application develo

Enterprise
JavaBeans

EJB
server

Enterprise
JavaBeans

EJB
server

JSP/
Servlet
client

Application
client

CORBA
client

vendor 4 vendor 5

vendor 3

vendor1

vendor 2

IIOP
IIOP

IIOP

IIOP
385 10/23/00

Support for Distribution and InteroperabilityEnterprise JavaBeans 2.0, Proposed Final Draft Interoperability Scenarios

Sun Microsystems, Inc.

ossi-
rver
vers,

, and
ndard

E com-
ernet
the

, or

echa-
riptive.
anner

more

s static

ime,
nter-

r types.

ternet.
• To ensure out-of-the-box interoperability between compliant J2EE products. It must be p
ble for an enterprise customer to install multiple J2EE server products from different se
providers (on potentially different operating systems), deploy applications in the J2EE ser
and have the multiple applications interoperate.

• To leverage the interoperability work done by standards bodies (including the IETF, W3C
OMG) where possible, so that customers can work with industry standards and use sta
protocols to access enterprise beans.

This specification does not address interoperability issues between enterprise beans and non-J2E
ponents. The J2EE platform specification [9] describes requirements for interoperability with Int
clients (using HTTP and XML) and interoperability with enterprise information systems (using
J2EE Connector architecture).

Since the interoperability protocol is based on CORBA/IIOP, CORBA clients written in Java, C++
other languages can also invoke methods on enterprise beans.

This chapter subsumes the previous EJB1.1-to-CORBA mapping document [13].

18.3 Interoperability Scenarios

This section presents a number of interoperability scenarios that motivate the interoperability m
nisms described in later sections of this chapter. These scenarios are illustrative rather than presc
There is no requirement that a J2EE product should support these scenarios in exactly the m
described here.

J2EE applications are multi-tier, web-enabled applications. Each application consists of one or
components, which are deployed in containers. The four types of containers are:

• EJB containers, which host enterprise beans.

• Web containers, which host JavaServer Pages (JSPs) and Servlet components as well a
documents including HTML pages.

• Application client containers, which host standalone applications.

• Applet containers, which host applets which may be downloaded from a web site. At this t
there is no requirement for an applet to be able to directly invoke the remote methods of e
prise beans.

The scenarios below describe interactions between components hosted in these various containe

18.3.1 Interactions between web containers and EJB containers for e-commerce
applications

This scenario occurs for business-to-business and business-to-consumer interactions over the In
 10/23/00 386

Interoperability Scenarios Enterprise JavaBeans 2.0, Proposed Final Draft Support for Distribution and Interoperabil-

Sun Microsystems, Inc.

con-
plica-
Ps and

ed in
criptor
rvice.

nts for
TTPS
book
e book
ip with

attacks.

enter-

mutual
ides to
in the

erprise
e EJB
ommits

desk-
ed on
J2EE
The

tected

n the
Home
ns. The

cli-
ary cli-
Scenario 1:A customer wants to buy a book from an Internet bookstore. The bookstore’s web site
sists of a J2EE application containing JSPs that form the presentation layer, and another J2EE ap
tion containing enterprise beans that have the business logic and database access code. The JS
enterprise beans are deployed in containers from different vendors.

At deployment time:The enterprise beans are deployed, and their EJBHome objects are publish
the EJB server’s name service. The deployer links the EJB reference in the JSP’s deployment des
to the URL of the enterprise bean’s EJBHome object, which can be looked up from the name se
The transaction attribute specified in the enterprise bean’s deployment descriptor isRequiresNew
for all business methods. Because the “checkout” JSP requires secure access to set up payme
purchases, the bookstore’s administrator configures the “checkout” JSP to require access over H
with only server authentication. Customer authentication is done using form-based login. The “
search” JSP is accessed over normal HTTP. Both JSPs talk with enterprise beans which access th
database. The web and EJB containers use the same customer realm and have a trust relationsh
each other. The network between the web and EJB servers is not guaranteed to be secure from

At runtime: The customer accesses the book search JSP using a browser. The JSP looks up the
prise bean’s EJBHome object in a name service, and callsfindBooks(...) with the search criteria
as parameters. The web container establishes a secure session with the EJB container with
authentication between the containers, and invokes the enterprise bean. The customer then dec
buy a book, and accesses the “checkout” JSP. The customer enters the necessary information
login form, which is used by the web server to authenticate the customer. The JSP invokes the ent
bean to update the book and customer databases. The customer’s principal is propagated to th
container and used for authorization checks. The enterprise bean completes the updates and c
the transaction. The JSP sends back a confirmation page to the customer.

18.3.2 Interactions between application client containers and EJB containers within an
enterprise’s intranet

Scenario 2.1:An enterprise has an expense accounting application used by employees from their
tops. The server-side consists of a J2EE application containing enterprise beans that are deploy
one vendor's J2EE product, which is hosted in a datacenter. The client side consists of another
application containing an application client deployed using another vendor's J2EE infrastructure.
network between the application client and the EJB container is insecure and needs to be pro
against spoofing and other attacks.

At deployment time:The enterprise beans are deployed and their EJBHome objects are published i
enterprise’s name service. The application clients are configured with the names of the EJB
objects. The deployer maps employees to roles that are allowed access to the enterprise bea
administrator configures the security settings of the application client and EJB container to require
ent and server authentication and message protection. The administrator also does the necess
ent-side configuration to allow client authentication.
387 10/23/00

Support for Distribution and InteroperabilityEnterprise JavaBeans 2.0, Proposed Final Draft Interoperability Scenarios

Sun Microsystems, Inc.

r may
tials.
ean’s
re pro-
guar-
rmation
JB con-

infra-
sword

ith a
m dif-
s data-
across
bases.

ase
ayroll
ribute
y be
ly set
henti-
r also
secure.

s the
me

tabase
es the
loyee
. The
con-

. If an
estore
At runtime: The employee logs on using username and password. The application client containe
interact with the enterprise’s authentication service infrastructure to set up the employee’s creden
The client application does a remote invocation to the name server to look up the enterprise b
EJBHome object, and creates the enterprise beans. The application client container uses a secu
tocol to interact with the name server and EJB server, which does mutual authentication and also
antees the confidentiality and integrity of messages. The employee then enters the expense info
and submits it. This causes remote business methods of the enterprise beans to be invoked. The E
tainer performs authorization checks and, if they succeed, executes the business methods.

Scenario 2.2:This is the same as Scenario 2.1, except that there is no client-side authentication
structure set up by the administrator. At runtime the client container needs to send the user’s pas
to the server during the method invocation to authenticate the employee.

18.3.3 Interactions between two EJB containers in an enterprise’s intranet

Scenario 3:An enterprise has an expense accounting application which needs to communicate w
payroll application. The applications use enterprise beans and are deployed on J2EE servers fro
ferent vendors. The J2EE servers and naming/authentication services may be in the enterprise'
center with a physically secure private network between them, or they may need to communicate
the intranet, which may be less secure. The applications need to update accounts and payroll data
The employee (client) accesses the expense accounting application as described in Scenario 2.

At deployment time:The deployer configures both applications with the appropriate datab
resources. The accounts application is configured with the name of the EJBHome object of the p
application. The payroll bean’s deployment descriptor specifies the RequiresNew transaction att
for all methods. The applications use the same principal-to-role mappings (e.g. the roles ma
Employee, PayrollDept, AccountsDept). The deployer of these two applications has administrative
up a trust relationship between the two EJB containers, so that the containers do not need to aut
cate principals propagated on calls to enterprise beans from the other container. The administrato
sets up the message protection parameters of the two containers if the network is not physically

At runtime: An employee makes a request to the accounts application which requires it to acces
payroll application. The accounts application does a lookup of the payroll application’s EJBHo
object in the naming/directory service and creates enterprise beans. It updates the accounts da
and invokes a remote method of the payroll bean. The accounts bean’s container propagat
employee’s principal on the method call. The payroll bean’s container maps the propagated emp
principal to a role, does authorization checks, and sets up the payroll bean’s transaction context
container starts a new transaction, then the payroll bean updates the payroll database, and the
tainer commits the transaction. The accounts bean receives a status reply from the payroll bean
error occurs in the payroll bean, the accounts bean executes code to recover from the error and r
the databases to a consistent state.
 10/23/00 388

Interoperability Scenarios Enterprise JavaBeans 2.0, Proposed Final Draft Support for Distribution and Interoperabil-

Sun Microsystems, Inc.

lica-
nd con-
hrough
sults

ccess
lm and

xpense
ation is
erating
reden-
tainer

denti-

rences

cribed

ction

.7):

h as

iner
side

er to
8.7.

eans
nship
18.3.4 Intranet application interactions between web containers and EJB containers

Scenario 4:This is the same as scenario 2.1, except that instead of using a “fat-client” desktop app
tion to access the enterprise’s expense accounting application, employees use a web browser a
nect to a web server in the intranet that hosts JSPs. The JSPs gather input from the user (e.g., t
an HTML form), invoke enterprise beans that contain the actual business logic, and format the re
returned by the enterprise beans (using HTML).

At deployment time:The enterprise deployer configures its expense accounting JSPs to require a
over HTTPS with mutual authentication. The web and EJB containers use the same customer rea
have a trust relationship with each other.

At run-time: The employee logs in to the client desktop, starts the browser, and accesses the e
accounting JSP. The browser establishes an HTTPS session with the web server. Client authentic
performed (for example) using the employee’s credentials which have been established by the op
system at login time (the browser interacts with the operating system to obtain the employee’s c
tials). The JSP looks up the enterprise bean’s EJBHome object in a name service. The web con
establishes a secure session with the EJB container with mutual authentication and integrity/confi
ality protection between the containers, and invokes methods on the enterprise beans.

18.3.5 Overview of interoperability r equirements

The following interoperable mechanisms are used to support the scenarios described above:

1. Remote method invocation on an enterprise bean’s EJBObject and EJBHome object refe
(scenarios 1,2,3,4), described in section 18.4.

2. Name service lookup of the enterprise bean’s EJBHome object (scenarios 1,2,3,4), des
in section 18.6.

3. Integrity and confidentiality protection of messages (scenarios 1,2,3,4), described in se
18.7.

4. Authentication between an application client and EJB container (described in section 18

4.1 Mutual authentication when there is client-side authentication infrastructure suc
certificates (scenario 2.1).

4.2 Propagation of the user’s authentication data from application client to EJB conta
to allow the EJB container to authenticate the client when there is no client-
authentication infrastructure (scenario 2.2).

5. Mutual authentication between two EJB containers or between a web and EJB contain
establish trust before principals are propagated (scenarios 1,3,4), described in section 1

6. Propagation of the Internet or intranet user’s principal name for invocations on enterprise b
from web or EJB containers when the client and server containers have a trust relatio
(scenarios 1,3,4), described in section 18.7.
389 10/23/00

Support for Distribution and InteroperabilityEnterprise JavaBeans 2.0, Proposed Final Draft Remote Invocation Interoperability

Sun Microsystems, Inc.

bject
ferent

oca-
P 1.2

cifica-

must
ble to
ectional
ives an

port the

Home
rted by
ts
J2EE

ssages
as

pping

remote
L Map-

ap-
EE
e the
ts for

rms
18.4 Remote Invocation Interoperability

This section describes the interoperability mechanisms that enable remote invocations on EJBO
and EJBHome object references when client containers and EJB containers are provided by dif
vendors. This is needed to satisfy interoperability requirement one in section 18.3.5.

All EJB, web, and application client containers must support the IIOP 1.2 protocol for remote inv
tions on EJBObject and EJBHome references. EJB containers must be capable of servicing IIO
based invocations on EJBObject and EJBHome objects. IIOP 1.2 is part of the CORBA 2.3.1 spe
tion [14] from the OMG[29]. Containers may additionally support vendor-specific protocols.

CORBA Interoperable Object References (IORs) for EJBObject and EJBHome object references
include the GIOP version number 1.2. The IIOP infrastructure in all J2EE containers must be a
accept fragmented GIOP messages, although sending fragmented messages is optional. Bidir
GIOP messages may optionally be supported by J2EE clients and servers: if a J2EE server rece
IIOP message from a client which contains theBiDirIIOPServiceContextstructure, it may or may not
use the same connection for sending requests back to the client.

Since Java applications use Unicode characters by default, J2EE containers are required to sup
Unicode UTF16 code set for transmission of character and string data (in the IDLwchar andwstring
datatypes). J2EE containers may optionally support additional code sets. EJBObject and EJB
IORs must have the TAG_CODE_SETS tagged component which declares the codesets suppo
the EJB container. IIOP messages which includewcharandwstringdatatypes must have the code se
service context field. The CORBA 2.3.1 requirements for code set support must be followed by
containers.

EJB containers are required to translate Java types to their on-the-wire representation in IIOP me
using the Java Language to IDL mapping specification [7] with the wire formats for IDL types
described in the GIOP specification in CORBA 2.3. The following subsections describe the ma
details for Java types.

18.4.1 Mapping Java Remote Interfaces to IDL

For each session bean or entity bean that is deployed in a container, there are two Java RMI
interfaces—the bean’s home interface and the bean’s remote interface. The Java Language to ID
ping specification [7] describes precisely how these remote interfaces are mapped to IDL. This m
ping to IDL is typically implicit when Java RMI over IIOP is used to invoke enterprise beans. J2
clients use only the Java RMI APIs to invoke enterprise beans. The client container may us
CORBA portable Stub APIs for the client-side stubs. EJB containers may create CORBA Tie objec
each EJBObject or EJBHome object.

[29] CORBA APIs and earlier versions of the IIOP protocol are already included in the J2SE1.2, J2SE1.3 and J2EE1.2 platfo
through JavaIDL and RMI-IIOP.
 10/23/00 390

Remote Invocation Interoperability Enterprise JavaBeans 2.0, Proposed Final Draft Support for Distribution and Interoperabil-

Sun Microsystems, Inc.

ns are

es.
lues on
e meth-
types

ed to
the cli-

in the
L map-
18.4.2 Mapping value objects to IDL

The Java interfaces that are passed by value during remote invocations on enterprise bea
javax.ejb.Handle , javax.ejb.HomeHandle , and javax.ejb.EJBMetaData . The
Enumeration or Collection objects returned by entity bean finder methods are value typ
There may also be application-specific value types that are passed as parameters or return va
enterprise bean invocations. In addition, several Java exception classes that are thrown by remot
ods also result in concrete IDL value types. All these value types are mapped to IDL abstract value
or abstract interfaces using the rules in the Java Language to IDL Mapping.

18.4.3 Mapping of system exceptions

Java system exceptions, including thejava.rmi.RemoteException and its subclasses, may be
thrown by the EJB container. If the client’s invocation was made over IIOP, the EJB server is requir
map these exceptions to CORBA system exceptions and send them in the IIOP reply message to
ent, as specified in the following table

For EJB clients, the ORB’s unmarshalling machinery maps CORBA system exceptions received
IIOP reply message to the appropriate Java exception as specified in the Java Language to ID
ping. This results in the original Java exception being received by the client J2EE component.

System exception thrown by EJB
container

CORBA system exception
received by client ORB

javax.transaction.
TransactionRolledbackException

TRANSACTION_ROLLEDBACK

javax.transaction.
TransactionRequiredException

TRANSACTION_REQUIRED

javax.transaction.
InvalidTransactionException

INVALID_TRANSACTION

java.rmi.NoSuchObjectException OBJECT_NOT_EXIST

java.rmi.AccessException NO_PERMISSION

java.rmi.MarshalException MARSHAL

java.rmi.RemoteException UNKNOWN
391 10/23/00

Support for Distribution and InteroperabilityEnterprise JavaBeans 2.0, Proposed Final Draft Transaction interoperability

Sun Microsystems, Inc.

e to an
ation
me or
eter or
he stub

he con-

nent’s
of the
and
efer-
value

ontainer
ample,
ing the
yment

d J2EE
emen-
it must
classes

con-
Object
n.

refer-
how

embed-
halled
ure

ure in
bility.
ents

ability
18.4.4 Obtaining stub and client view classes

When a J2EE component (application client, JSP, servlet or enterprise bean) receives a referenc
EJBObject or EJBHome object through JNDI lookup or as a parameter or return value of an invoc
on an enterprise bean, an instance of an RMI-IIOP stub class (proxy) for the enterprise bean’s ho
remote RMI interface needs to be created. When a component receives a value object as a param
return value of an enterprise bean invocation, an instance of the value class needs to be created. T
class, value class, and other client view classes must be available to the referencing container (t
tainer hosting the component that receives the reference or value type).

The client view classes, including value classes, must be packaged with the referencing compo
application, as described in Section 22.3. System value classes, including implementations
javax.ejb.Handle, javax.ejb.HomeHandle, javax.ejb.EJBMetaData, java.util.Collection,
java.util.Iterator interfaces, must be provided in the form of a JAR file by the container hosting the r
enced bean. For interoperability scenarios, if a referencing component would use such system
classes at runtime, the deployer must ensure that these system value clases provided by the c
hosting the referenced bean are available to the referencing component. This may be done, for ex
by including these system value classes in the classpath of the referencing container, or by deploy
system value classes with the referencing component’s application by providing them to the deplo
tool.

Implementations of these system value classes must be portable (they must use only J2SE an
APIs) so that they can be instantiated in another vendor’s container. If the system value class impl
tation needs to load application-specific classes (such as home or remote interfaces) at runtime,
use the thread context class loader. The referencing container must make application-specific
available to the system value class instance at runtime through the thread context class loader.

Stubs for invoking on EJBHome and EJBObject references must be provided by the referencing
tainer, for example, by generating stub classes at deployment time for the EJBHome and EJB
interfaces of the referenced beans that are packaged with the referencing component’s applicatio

Containers may optionally support run-time downloading of stub and value classes needed by the
encing container. The CORBA 2.3.1 specification and the Java Language to IDL Mapping specify
stub and value type implementations are to be downloaded: using codebase URLs that are either
ded in the EJBObject or EJBHome’s IOR, or sent in the IIOP message service context, or mars
with the value type. The URLs for downloading may optionally include an HTTPS URL for sec
downloading.

18.5 Transaction interoperability

Transaction interoperability between containers provided by different vendors is an optional feat
this version of the EJB specification. Vendors may choose to not implement transaction interopera
However, vendors who choose to implement transaction interoperability must follow the requirem
in sections 18.5.1 and 18.5.2, and vendors who choose not to implement transaction interoper
must follow the requirements in section 18.5.2.
 10/23/00 392

Transaction interoperability Enterprise JavaBeans 2.0, Proposed Final Draft Support for Distribution and Interoperabil-

Sun Microsystems, Inc.

e invo-
s must

anism

erabil-
s in the
ity are

over

tainer
n-Java
e OTS

or
B con-
refer-

t and
object

arious
18.5.1 Transaction interoperability r equirements

A distributed transaction started by a web or EJB container must be able to propagate in a remot
cation to an enterprise bean in an EJB container provided by a different vendor, and the container
participate in the distributed two-phase commit protocol.

18.5.1.1 Transaction context wire format

Transaction context propagation from client to EJB container uses the implicit propagation mech
described in the CORBA Object Transaction Service (OTS) v1.2 specification [8].

The transaction context format in IIOP messages is specified in theCosTransactions::PropagationCon-
textstructure described in the OTS specification. EJB containers that support transaction interop
ity are required to be capable of producing and consuming transaction contexts in IIOP message
format described in the OTS specification. Web containers that support transaction interoperabil
required to include client-side libraries which can produce the OTS transaction context for sending
IIOP.

Note that it is not necessary for containers to include the Java mappings of the OTS APIs. A con
may implement the requirements in the OTS specification in any manner, for example using a no
OTS implementation, or an on-the-wire bridge between an existing transaction manager and th
protocol, or an OTS wrapper around an existing transaction manager.

TheCosTransactions::PropagationContextstructure must be included in IIOP messages sent by web
EJB containers when required by the rules described in the OTS 1.2 specification. The target EJ
tainer must process IIOP invocations based on the transaction policies of EJBObject or EJBHome
ences using the rules described in the OTS 1.2 specification [8].

18.5.1.2 Two-phase commit protocol

The object interaction diagram below (Figure 76) illustrates the interactions between the clien
server transaction managers for transaction context propagation, resource and synchronization
registration, and two-phase commit. This diagram is an example of the interactions between the v
entities; it is not intended to be prescriptive.
393 10/23/00

Support for Distribution and InteroperabilityEnterprise JavaBeans 2.0, Proposed Final Draft Transaction interoperability

Sun Microsystems, Inc.

OTS
agated
server

er
es per-
tion.
Figure 76 Transaction context propagation

Containers that perform transactional work within the scope of a transaction must register an
Resource object with the transaction coordinator whose object reference is included in the prop
transaction context (step 3), and may also register an OTS Synchronization object (step 2). If the
container does not register an OTS Synchronization object, it must still ensure that thebeforeCom-
pletion method of session beans andejbStore method of entity beans are called with the prop
transaction context. Containers must participate in the two-phase commit and recovery procedur
formed by the transaction coordinator / terminator (steps 6,7), as described by the OTS specifica

client
client’s
transaction
manager

server’s
transaction
managercontainer

EJB
container

IIOP request message with transaction context

register resource

EJB
instance

Resource

enlist resource

invoke bean

access resource

IIOP reply message

commit

commit

commit

before_completion

before_completion

prepare

prepare

register synchronization

register synchronization (optional)

ejbStore

flush state

Manager

sending request

received request

sending reply

received reply

1

2

3

4

5

6

7

 10/23/00 394

Transaction interoperability Enterprise JavaBeans 2.0, Proposed Final Draft Support for Distribution and Interoperabil-

Sun Microsystems, Inc.

rences

entire
ontext
n con-
s trans-

t ref-

S1.2

or-

he

OA)
er c
Compliant J2EE containers must not use nested transactions in interoperability scenarios.

18.5.1.3 Transactional policies of enterprise bean references

The OTS1.2 specification describes theCosTransactions::OTSPolicyandCosTransactions::Invocation-
Policy structures that are encoded in IORs as tagged components. EJBObject and EJBHome refe
must contain these tagged components[30] with policy values as described below.

The transaction attributes of enterprise beans can be specified per method, while in OTS the
CORBA object has the same OTS transaction policy. The rules below ensure that the transaction c
will be propagated if any method of an enterprise bean needs to execute in the client’s transactio
text. However, in some cases there may be extra performance overhead of propagating the client’
action context even if it will not be used by the enterprise bean method.

EJBObject and EJBHome references may have the InvocationPolicy value as eitherCosTransac-
tions::SHAREDor CosTransactions::EITHER[31].

The following rules list the OTSPolicy values which must be assigned to EJBHome and EJBObjec
erences:

• For session beans that use bean-managed transactions, the OTSPolicy value must beCosTrans-
actions::ADAPTS.

• If all methods of an EJB interface (Home or Remote) have the transaction attributeManda-
tory , the CORBA object for that interface must have the OTSPolicy valueCosTransac-
tions::REQUIRES.

• If all methods of an EJB interface (Home or Remote) have the transaction attributeNever , the
CORBA object for that interface must have the OTSPolicy valueCosTransactions::FORBIDS.

• CORBA objects for all other EJB interfaces must have the OTSPolicy valueCosTransac-
tions::ADAPTS.

The OTSPolicy and InvocationPolicy values must be a valid combination as described in the OT
specification.

TheCosTransactions::Synchronizationobject registered by the EJB container with the transaction co
dinator should have the OTSPolicy valueCosTransactions::ADAPTSand InvocationPolicy valueCos-
Transactions::SHARED to allow enterprise beans to do transactional work during t
beforeCompletion notification from the transaction coordinator.

Client and EJB containers must set the NonTxTargetPolicy policy toCosTransactions::PREVENT.

[30] One way to include the tagged components in IORs is to create the object references using a Portable Object Adapter (P
which is initialized with the appropriate transaction policies. Note that POA APIs are not required to be supported by servon-
tainers.

[31] If the InvocationPolicy is not present in the IOR, it is interpreted by the client as if the policy value wasCosTransac-
tions::EITHER.
395 10/23/00

Support for Distribution and InteroperabilityEnterprise JavaBeans 2.0, Proposed Final Draft Transaction interoperability

Sun Microsystems, Inc.

cular,
xtend
ess-
cep-
y the

support
tion’s
xpects
satisfy
li-

tion to
terprise
trans-

global
ext
t

y if the
upport

col, it

is
have
tion

of this
om-
18.5.1.4 Exception handling behavior

The exception handling behavior described in the OTS1.2 specification must be followed. In parti
if an application exception (an exception which is not a CORBA system exception and does not e
java.rmi.RemoteException) is returned by the server, the request is defined as being succ
ful; hence the client-side OTS library must not roll back the transaction. This allows application ex
tions to be propagated back to the client without rolling back the transaction, as required b
exception handling rules in Chapter 17.

18.5.2 Inter operating with containers that do not implement transaction
interoperability

The requirements in this subsection are designed to ensure that when a J2EE container does not
transaction interoperability, the failure modes are well defined so that the integrity of an applica
data is not compromised: at worst the transaction is rolled back. When a J2EE client component e
the client’s transaction to propagate to the enterprise bean but the client or EJB container cannot
this expectation, ajava.rmi.RemoteException or subclass is thrown, which ensures that the c
ent’s transaction will roll back.

In addition, the requirements below allow a container that does not support transaction propaga
interoperate with a container that does support transaction propagation in the cases where the en
bean method’s transaction attribute indicates that the method would not be executed in the client’s
action.

18.5.2.1 Client container requirements

If the client in another container invokes an enterprise bean’s method when there is no active
transaction associated with the client’s thread, the client container does not include a transaction cont
in the IIOP request message to the EJB server, i.e., there is noCosTransactions::PropagationContex
structure in the IIOP request header.

The client application component expects a global transaction to be propagated to the server onl
client’s thread has an active global transaction. In this scenario, if the client container does not s
transaction interoperability, it has two options:

1. If the client container does not support transaction propagation or uses a non-OTS proto
must include the OTSCosTransactions::PropagationContextstructure in the IIOP request to
the server (step 1 in the object interaction diagram above), with theCosTransactions::Coordi-
nator andCosTransactions::Terminatorobject references as null. The remaining fields in th
“null transaction context,” such as the transaction identifier, are not interpreted and may
any value. The “null transaction context” indicates that there is a global client transac
active but the client container is not capable of propagating it to the server. The presence
“null transaction context” allows the EJB container to determine whether the J2EE client c
ponent expects the client’s global transaction to propagate to the server.
 10/23/00 396

Transaction interoperability Enterprise JavaBeans 2.0, Proposed Final Draft Support for Distribution and Interoperabil-

Sun Microsystems, Inc.

nsac-

r’s

, it must

the

must

sage,
eEx-

ger

st mes-

the
2. Client containers that use the OTS transaction context format but still do not support tra
tion interoperability with other vendor’s containers must reject theCoordina-
tor::register_resourcecall (step 3 in the object interaction diagram above) if the serve
Resource object reference indicates that it belongs to another vendor’s container.

18.5.2.2 EJB container requirements

All EJB containers (including those that do not support transaction propagation) must include theCos-
Transactions::OTSPolicyand optionally theCosTransactions::InvocationPolicytagged component in
the IOR for EJBObject and EJBHome references as described in section 18.5.1.3.

18.5.2.2.1 Requirements for EJB containers supporting transaction interoperability

When an EJB container that supports transaction propagation receives the IIOP request message
behave as follows:

• If there is no OTS transaction context in the IIOP message, the container must follow
behavior described in Section 16.6.

• If there is a valid, complete OTS transaction context in the IIOP message, the container
follow the behavior described in Section 16.6.

• If there is a null transaction context (as defined in section 18.5.2.1 above) in the IIOP mes
the container’s required behavior is described in the table below. The entry “throw Remot
ception” indicates that the EJB container must throw thejava.rmi.RemoteException
to the client after the“ received request” interaction with the server’s transaction mana
(after step 1 in the object interaction diagram above).

18.5.2.2.2 Requirements for EJB containers not supporting transaction interoperability

When an EJB container that does not support transaction interoperability receives the IIOP reque
sage, it must behave as follows:

• If there is no OTS transaction context in the IIOP message, the container must follow
behavior described in Section 16.6.

EJB method’s
Transaction
Attribute

EJB container behavior on receiving
null OTS transaction context

Mandatory throw RemoteException

Required throw RemoteException

RequiresNew follow Section 16.6

Supports throw RemoteException

NotSupported follow Section 16.6

Never follow Section 16.6

Bean Managed follow Section 16.6
397 10/23/00

Support for Distribution and InteroperabilityEnterprise JavaBeans 2.0, Proposed Final Draft Naming Interoperability

Sun Microsystems, Inc.

iner’s

e, the
y not

ability
TS
d cli-

r look-

aming
dule

spec-
os-
rtised
• If there is a valid, complete OTS transaction context in the IIOP message, the conta
required behavior is described in the table below.

• If there is a null transaction context (as defined in section 18.5.2.1) in the IIOP messag
container’s required behavior is described in the table below. Note that the container ma
know whether the received transaction context in the IIOP message is valid or null.

EJB containers that accept the OTS transaction context format but still do not support interoper
with other vendors’ client containers must follow the column in the table above for “null or valid O
transaction context” if the transaction identity or the Coordinator object reference in the propagate
ent transaction context indicate that the client belongs to a different vendor’s container.

18.6 Naming Interoperability

This section describes the requirements for supporting interoperable access to naming services fo
ing up EJBHome object references (interoperability requirement two in section 18.3.5).

EJB containers are required to be able to publish EJBHome object references in a CORBA CosN
service [15]. The CosNaming service must implement the IDL interfaces in the CosNaming mo
defined in [15] and allow clients to invoke theresolve andlist operations over IIOP.

The CosNaming service must follow the requirements in the CORBA Interoperable Name Service
ification [16] for providing the host, port, and object key for its root NamingContext object. The C
Naming service must be able to service IIOP invocations on the root NamingContext at the adve
host, port, and object key.

EJB method’s
Transaction
Attribute

EJB container behavior on receiving
null or valid OTS transaction context

Mandatory throw RemoteException

Required throw RemoteException

RequiresNew follow Section 16.6

Supports throw RemoteException

NotSupported follow Section 16.6

Never follow Section 16.6

Bean Managed follow Section 16.6
 10/23/00 398

Security Interoperability Enterprise JavaBeans 2.0, Proposed Final Draft Support for Distribution and Interoperabil-

Sun Microsystems, Inc.

Cos-
ecifica-
ndard
itec-
Cos-
L

or by

Cos-
erver’s
he
to

s the
aming

that is
ient and

eady
ers.

ctory

cribed
root

e Cos-
and

e beans

cribed
d to be
certifi-
Client containers (i.e., EJB, web, or application client containers) are required to include a JNDI
Naming service provider that uses the mechanisms defined in the Interoperable Name Service sp
tion to contact the server’s CosNaming service, and to resolve the EJBHome object using sta
CosNaming APIs. The JNDI CosNaming service provider may or may not use the JNDI SPI arch
ture. The JNDI CosNaming service provider must access the root NamingContext of the server’s
Naming service by creating an object reference from the UR
corbaloc:iiop:1.2@<host>:<port>/<objectkey>(where<host>, <port>, and<objectkey>are the val-
ues corresponding to the root NamingContext advertised by the server’s CosNaming service),
using an equivalent mechanism.

At deployment time, the deployer of the client container should obtain the host/port of the server’s
Naming service and the CosNaming name of the server EJBHome object (e.g. by browsing the s
namespace) for eachejb-ref element in the client component’s deployment descriptor. T
ejb-ref-name (which is used by the client code in the JNDI lookup call) should then be linked
the EJBHome object’s CosNaming name. At run-time, the client component’s JNDI lookup call use
CosNaming service provider, which contacts the server’s CosNaming service, resolves the CosN
name, and returns the EJBHome object reference to the client component.

Since the EJBHome object’s name is scoped within the namespace of the CosNaming service
accessible at the provided host and port, it is not necessary to federate the namespaces of the cl
server containers.

The advantage of using CosNaming is better integration with the IIOP infrastructure that is alr
required for interoperability, as well as interoperability with non-J2EE CORBA clients and serv
Since CosNaming stores only CORBA objects it is likely that vendors will use other enterprise dire
services for storing other resources.

Security of CosNaming service access is achieved using the security interoperability protocol des
in Section 18.7. The CosNaming service must support this protocol. Clients which construct the
NamingContext object reference from a URL should send an IIOP LocateRequest message to th
Naming service to obtain the complete IOR (with SSL information) of the root NamingContext,
then initiate an SSL session with the CosNaming service.

18.7 Security Interoperability

This section describes the interoperable mechanisms that support secure invocations on enterpris
in intranets. These mechanisms are based on the CORBA/IIOP protocol.

18.7.1 Intr oduction

The goal of the secure invocation mechanisms is to support the interoperability requirements des
earlier in this chapter, as well as be capable of supporting security technologies that are expecte
widely deployed in enterprises, including Kerberos-based secret key mechanisms and X.509
cate-based public key mechanisms.
399 10/23/00

Support for Distribution and InteroperabilityEnterprise JavaBeans 2.0, Proposed Final Draft Security Interoperability

Sun Microsystems, Inc.

user
a-
y the
n inter-
mpo-
curity

client
e user’s
(e.g.,
ator at
mpo-
.

rmedi-
roof of
atisfied
gated
while
prise
e over-

t rela-

e net-
B con-
ediate
e a

 th

ip
The authentication identity (i.e. principal) associated with a J2EE component is usually that of the
on whose behalf the component is executing[32]. The principal under which an enterprise bean invoc
tion is performed is either that of the bean’s caller or the run-as principal which was configured b
deployer. When there is a chain of invocations across a web component and enterprise beans, a
mediate component may use the principal of the caller (the initiating client) or the intermediate co
nent may use its run-as principal to perform an invocation on the callee, depending on the se
identity specified for the intermediate component in its deployment descriptor.

The security principal associated with a container depends on the type of container. Application
containers usually do not have a separate principal associated with them (they operate under th
principal). Web and EJB containers are typically associated with a security principal of their own
the operating system user for the container’s process) which may be configured by the administr
deployment time. When the client is a web or EJB container, the difference between the client co
nent’s principal and the client container’s principal is significant for interoperability considerations

18.7.1.1 Trust relationships between containers, principal propagation

When there is a chain of multiple invocations across web components and enterprise beans, inte
ate components may not have access to the authentication data of the initiating client to provide p
the client’s identity to the target. In such cases, the target’s authentication requirements can be s
if the target container trusts the intermediate container to vouch for the authenticity of the propa
principal. The call is made using the intermediate container’s principal and authentication data,
also carrying the propagated principal of the initiating client. The invocation on the target enter
bean is authorized and performed using the propagated principal. This procedure also avoids th
head associated with authentication of clients on every remote invocation in a chain.

EJB containers are required to provide deployers or administrators with the tools to configure trus
tionships for interactions with intermediate web or EJB containers[33]. If a trust relationship is set up,
the containers are usually configured to perform mutual authentication, unless the security of th
work can be ensured by some physical means. After a trust relationship is set up, the target EJ
tainer does not need to independently authenticate the initiating client principal sent by the interm
container on invocations. Thus only the principal name of the initiating client (which may includ
realm) needs to be propagated.

[32] When there are concurrent invocations on a component from multiple clients, a different principal may be associated withe
thread of execution for each invocation.

[33] One way to achieve this is to configure a “trusted container list” (TCL) for each EJB container which contains the list of interme-
diate client containers that are trusted. If the TCL is empty, then the target EJB container does not have a trust relationsh with
any intermediate container.

C S1 S2

application client
or web client

EJB or web
container

EJB container

(initiating client) (intermediate)
(target)
 10/23/00 400

Security Interoperability Enterprise JavaBeans 2.0, Proposed Final Draft Support for Distribution and Interoperabil-

Sun Microsystems, Inc.

, such
y the

B con-
princi-
hip) is

lient’s
os 1, 3
ntainer.

s) can

C) in

ating

login
asso-
made

d its
tes the
similar

rotec-
. The
. Since
er con-

o Con-
hich
For the current interoperability needs of J2EE, it is assumed that trust relationships are transitive
that if a target container trusts an intermediate container, it implicitly trusts all containers trusted b
intermediate container.

If no trust relationship has been set up between a target EJB container and intermediate web or EJ
tainer, the target container needs to have access to and independently verify the initiating client
pal’s authentication data. Support for this scenario (where containers do not have a trust relations
not currently required.

Web and EJB containers are required to support at least caller propagation (where the initiating c
principal is propagated down the chain of calls on enterprise beans). This is needed for scenari
and 4 where the internet or intranet user’s principal needs to be propagated to the target EJB co

18.7.1.2 Application Client Authentication

Application client containers that have authentication infrastructure (such as certificates, Kerbero

• authenticate the user by interacting with an authentication service (e.g. the Kerberos KD
the enterprise

• inherit an authentication context which was established at system login time from the oper
system process, or

• obtain the user’s certificate from a client-side store.

These may be achieved by plugging in a Java Authentication and Authorization Service (JAAS)
module for the particular authentication service. After authentication is completed, a credential is
ciated with the client’s thread of execution, which is used for all invocations on enterprise beans
from that thread.

If there is no authentication infrastructure installed in the client’s environment, the client may sen
private credentials (e.g. password) over a secure connection to the EJB server, which authentica
user by interacting with an authentication service (e.g. a secure user/password database). This is
to the basic authentication feature of HTTP.

18.7.2 Securing EJB invocations

This subsection describes the interoperable protocol requirements for providing authentication, p
tion of integrity and confidentiality, and principal propagation for invocations on enterprise beans
invocation takes place over an enterprise’s intranet as described in the scenarios in section 18.3
EJB invocations use the IIOP protocol, we need to secure IIOP messages between client and serv
tainers. The client may be any of the J2EE containers and the server is an EJB container.

The secure interoperability requirements for EJB2.0 and other J2EE1.3 containers correspond t
formance Level 0 of the Common Secure Interoperability version 2 (CSIv2) specification [20] w
was developed by the OMG.
401 10/23/00

Support for Distribution and InteroperabilityEnterprise JavaBeans 2.0, Proposed Final Draft Security Interoperability

Sun Microsystems, Inc.

Layer
grity
only
nisms
ble of
ises.

ecurity
blic

d at the
n con-

ssion
data.
unica-
layer.

e and
orted

efer-
18.7.2.1 Secure transport protocol

The Secure Sockets Layer (SSL 3.0) protocol [19] and the related IETF standard Transport
Security (TLS 1.0) protocol [17] provide authentication and message protection (that is, inte
and/or confidentiality) at the transport layer. The original SSL and TLS specifications supported
X.509 certificates for authenticating principals. Recently, Kerberos-based authentication mecha
and cipher suites have been defined for TLS (RFC 2712 [18]). Thus the TLS specification is capa
supporting the two main security technologies that are expected to be widely deployed in enterpr

EJB, web and application client containers are required to support both SSL3.0 and TLS1.0 as s
protocols for IIOP. This satisfies interoperability requirement 3 in section 18.3.5. The following pu
key SSL/TLS ciphersuites are required to be supported by compliant containers:

• TLS_RSA_WITH_RC4_128_MD5

• SSL_RSA_WITH_RC4_128_MD5

• TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA[34]

• SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA

• TLS_RSA_EXPORT_WITH_RC4_40_MD5

• SSL_RSA_EXPORT_WITH_RC4_40_MD5

• TLS_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA

• SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA

Support for Kerberos ciphersuites is not specified.

When using IIOP over SSL, a secure channel between client and server containers is establishe
SSL layer. The SSL handshake layer handles authentication (either mutual or server-only) betwee
tainers, negotiation of cipher suite for bulk data encryption, and optionally provides a compre
method. The SSL record layer performs confidentiality and integrity protection on application
Since compliant J2EE products are already required to support SSL (HTTPS for Internet comm
tion), the use of SSL/TLS provides a relatively easy route to interoperable security at the transport

18.7.2.2 Security information in IORs

Before initiating a secure connection to the EJB container, the client needs to know the hostnam
port number at which the server is listening for SSL connections, and the security protocols supp
or required by the server object. This information is obtained from the EJBObject or EJBHome r
ence’s IOR.

[34] This ciphersuite is mandatory for compliant TLS implementations as specified in [17].
 10/23/00 402

Security Interoperability Enterprise JavaBeans 2.0, Proposed Final Draft Support for Distribution and Interoperabil-

Sun Microsystems, Inc.

hich

tar-
This
urity

s for
ttings.
ifica-

r unpro-

ediate
prop-
mes-

is also
sed by

the
ction
nter-
have

urity
The CSIv2 specification [20] describes the TAG_CSI_SEC_MECH_LIST tagged component w
must be included in EJBHome and EJBObject IORs.[35] This component contains a sequence ofCSI-
IOP::CompoundSecMechstructures (in decreasing order of the server’s preference) that contain the
get object’s security information for transport layer and service context layer mechanisms.
information includes the server’s SSL/TLS port, its security principal and supported/required sec
mechanisms.

EJB containers must be capable of inserting the information in these structures into the IOR
EJBObject and EJBHome references, based on the deployer or administrator’s security policy se
Compliant EJB containers must follow the Conformance Level 0 rules described in the CSIv2 spec
tion for constructing these IORs.

EJB containers must also be capable of creating IORs that allow access to enterprise beans ove
tected IIOP, based on the security policies set by the deployer or administrator.

18.7.2.3 Propagating principals and authentication data in IIOP messages

In scenarios where client authentication does not occur at the transport layer or where an interm
client container does not have authentication data for the initiating client, it is necessary to support
agation of client principals and transfer of authentication data between two containers in the IIOP
sage service context.

It is assumed that all information exchanged between client and server at the transport layer
available to the containers: e.g. the certificates used for authentication at the SSL layer may be u
the server container for authorization.

The following cases are required to be supported:

1. Application client invocations on enterprise beans with mutual authentication between
application client and EJB container (C and S1) at the SSL layer (scenario 2.1 in se
18.3.2, interoperability requirement 4.1 in section 18.3.5). E.g. this is possible when the e
prise has a Kerberos-based authentication infrastructure or when client-side certificates
been installed. In this case no additional information is required to be included in the sec
context of the IIOP message sent from C to S1.

[35] The standard tagged component and service context identifier values assigned by OMG are available at
http://cgi.omg.org/cgi-bin/doc?standard-tags.

C S1 S2

application client
or web client

EJB or web
container

EJB container

IIOP/SSLHTTP(S)

IIOP/SSL
403 10/23/00

Support for Distribution and InteroperabilityEnterprise JavaBeans 2.0, Proposed Final Draft Security Interoperability

Sun Microsystems, Inc.

n the
ction
ere is
ble of
that

ed the
the

t and
r cli-
cation
rform

e cli-
quire-
te the
IIOP
rinci-
X.509
using
s fol-

r C
C’s

not

ken

tication
cipal

ient’s

tica-
-pass-

text:

in-

hed
2. Application client invocations on enterprise beans with server-only authentication betwee
application client and EJB container (C and S1) at the SSL layer (scenario 2.2 in se
18.3.2, interoperability requirement 4.2 in section 18.3.5). This usually happens when th
no client-side authentication infrastructure. In this case, the client container must be capa
inserting into the IIOP message a CSIv2 security context with a client authentication token
contains the client C’s authentication data. Once the EJB container S1 has authenticat
client, it may or may not maintain state about the client, so subsequent invocations from
client on the same network connection may need to be authenticated again. The clien
server containers must follow the Conformance Level 0 rules in the CSIv2 specification fo
ent authentication. In particular, support for the GSSUP username-password authenti
mechanism is required. Support for other GSSAPI mechanisms (such as Kerberos) to pe
client authentication at the IIOP layer is optional.

3. Invocations from Web/EJB clients to enterprise beans with a trust relationship between th
ent container S1 and server container S2 (scenario 3 in section 18.3.3, interoperability re
ments five and six in section 18.3.5). S2 does not need to independently authentica
initiating client C. In this case the client container S1 must be capable of inserting into the
message a CSIv2 security context with an identity token. The identity token contains a p
pal name and realm (authentication domain). The principal may be propagated as an
certificate chain or as a X.501 distinguished name or as a typed principal name encoded
the formats described in the CSIv2 specification. The identity propagated is determined a
lows:

• If the client Web/EJB component is configured to use caller identity, and the calle
authenticated itself to S1, then the identity token contains the initiating client
identity.

• If the client component is configured to use caller identity, and the caller C did
authenticate itself to S1, then the identity token contains the anonymous type.

• If the client component is configured to use a run-as identity then the identity to
contains the run-as identity.

J2EE containers are required to support the stateless mode of propagating principal and authen
information defined in CSIv2 (where the server does not store any state for a particular client prin
across invocations), and may optionally support the stateful mode.

The caller principal String provided byEJBContext.getCallerPrincipal().getName() is
defined as follows:

• For case one, the principal is derived from the distinguished name obtained from the cl
X.509 certificate that was provided to the server during SSL mutual authentication.

• For case two, the principal is derived from the username obtained from the client authen
tion token in the CSIv2 security context of the IIOP message. For the GSSUP username
word mechanism, the principal is derived from theSecurity::ScopedName structure.

• For case three, the principal depends on the identity token type in the CSIv2 security con

• If the type is X.509 certificate chain, then the principal is derived from the dist
guished name from the first certificate in the chain.

• If the type is distinguished name, then the principal is derived from the distinguis
name.
 10/23/00 404

Security Interoperability Enterprise JavaBeans 2.0, Proposed Final Draft Support for Distribution and Interoperabil-

Sun Microsystems, Inc.

echa-
echa-

-

t and
enter-

may
may be
).

the

ticated
ween
twork

mon
rver

nter-
nt to

ng the
prise
ise
or the
server.
lud-

figura-
data
l rules
• If the type is principal name propagated as a GSS exported name, then the m
nism-specific principal name is returned. For the GSSUP username-password m
nism, the principal is derived from theSecurity::ScopedNamestructure.

• If the anonymous or absent principal type was propagated, thenEJBCon-
text.getCallerPrincipal().getName() returns a product-specific unau
thenticated principal name.

18.7.2.4 Security configuration for containers

Since the interoperability scenarios involve IIOP/SSL usage in intranets, it is assumed that clien
server container administrators cooperatively configure a consistent set of security policies for the
prise.

At product installation or application deployment time, client and server container administrators
optionally configure the container and SSL infrastructure as described below. These preferences
specified at any level of granularity (e.g. per host or per container process or per enterprise bean

• Configure the list of supported SSL cipher suites in preference order.

• For server containers, configure a list of trusted client container principals with whom
server has a trust relationship.

• Configure authentication preferences and requirements (e.g. if the server prefers authen
clients to anonymous clients). In particular, if a trust relationship has been configured bet
two servers, then mutual authentication should be required unless there is physical ne
security.

• If the client and server are using certificates for authentication, configure a trusted com
certificate authority for both client and server. If using Kerberos, configure the client and se
with the same KDC or cooperating KDCs.

• Configure a restricted list of trusted server principals that a client container is allowed to i
act with, to prevent the client’s private credentials such as password from being se
untrusted servers.

18.7.2.5 Runtime behavior

Client containers should determine whether to use SSL for an enterprise bean invocation by usi
security policies configured by the client administrator for interactions with the target host or enter
bean, and the “target_requires” information in the CSIv2 tagged component in the target enterpr
bean’s IOR. If either the client configuration requires secure interactions with the enterprise bean,
enterprise bean requires a secure transport, the client should initiate an SSL connection to the
The client must follow the rules described in the CSIv2 specification Conformance Level 0 for inc
ing security context information in IIOP messages.

When an EJB container receives an IIOP message, its behavior depends on deployment time con
tion, run-time information exchanged with the client at the SSL layer, and principal/authentication
contained in the IIOP message service context. EJB containers are required to follow the protoco
prescribed by the CSIv2 specification Conformance Level 0.
405 10/23/00

Support for Distribution and InteroperabilityEnterprise JavaBeans 2.0, Proposed Final Draft Security Interoperability

Sun Microsystems, Inc.

Rs for
ended

y to the
sing
When the administrator changes the security policies associated with an enterprise bean, the IO
EJB references should be updated. When the bean has existing clients holding IORs, it is recomm
that the security policy change should be handled by the client and server containers transparentl
client application if the old security policy is compatible with the new one. This may be done by u
interoperable GIOP 1.2 forwarding mechanisms.
 10/23/00 406

Overview Enterprise JavaBeans 2.0, Proposed Final Draft Enterprise bean environment

Sun Microsystems, Inc.

siness

m the
ccess
xternal
tar-

nment.
zation
Chapter 19 Enterprise bean environment

This chapter specifies the interfaces for accessing the enterprise bean environment.

19.1 Overview

The Application Assembler and Deployer should be able to customize an enterprise bean’s bu
logic without accessing the enterprise bean’s source code.

In addition, ISVs typically develop enterprise beans that are, to a large degree, independent fro
operational environment in which the application will be deployed. Most enterprise beans must a
resource managers and external information. The key issue is how enterprise beans can locate e
information without prior knowledge of how the external information is named and organized in the
get operational environment.

The enterprise bean environment mechanism attempts to address both of the above issues.

This chapter is organized as follows.

• Section 19.2 defines the interfaces that specify and access the enterprise bean’s enviro
The section illustrates the use of the enterprise bean’s environment for generic customi
of the enterprise bean’s business logic.
407 10/23/00

Enterprise bean environment Enterprise JavaBeans 2.0, Proposed Final Draft Enterprise bean’s environment as a JNDI

Sun Microsystems, Inc.

bean
on-

sing a
r-

d with

bean’s
erprise

bean

es. The
enter-

nter-
reate

s that
odify

bean
he val-

e bean
ed with
ment at

in the
nment
• Section 19.3 defines the interfaces for obtaining the home interface of another enterprise
using anEJB reference. An EJB reference is a special entry in the enterprise bean’s envir
ment.

• Section 19.4 defines the interfaces for obtaining a resource manager connection factory u
resource manager connection factory reference. A resource manager connection factory refe
ence is a special entry in the enterprise bean’s environment.

• Section 19.5 defines the interfaces for obtaining an administered object that is associate
a resource (e.g., a JMS destination) using aresource environment reference. A resource envi-
ronment reference is a special entry in the enterprise bean’s environment.

19.2 Enterprise bean’s environment as a JNDI naming context

The enterprise bean’s environment is a mechanism that allows customization of the enterprise
business logic during deployment or assembly. The enterprise bean’s environment allows the ent
bean to be customized without the need to access or change the enterprise bean’s source code.

The Container implements the enterprise bean’s environment, and provides it to the enterprise
instance through the JNDI interfaces. The enterprise bean’s environment is used as follows:

1. The enterprise bean’s business methods access the environment using the JNDI interfac
Bean Provider declares in the deployment descriptor all the environment entries that the
prise bean expects to be provided in its environment at runtime.

2. The Container provides an implementation of the JNDI naming context that stores the e
prise bean environment. The Container also provides the tools that allow the Deployer to c
and manage the environment of each enterprise bean.

3. The Deployer uses the tools provided by the Container to create the environment entrie
are declared in the enterprise bean’s deployment descriptor. The Deployer can set and m
the values of the environment entries.

4. The Container makes the environment naming context available to the enterprise
instances at runtime. The enterprise bean’s instances use the JNDI interfaces to obtain t
ues of the environment entries.

Each enterprise bean defines its own set of environment entries. All instances of an enterpris
within the same home share the same environment entries; the environment entries are not shar
other enterprise beans. Enterprise bean instances are not allowed to modify the bean’s environ
runtime.

If an enterprise bean is deployed multiple times in the same Container, each deployment results
creation of a distinct home. The Deployer may set different values for the enterprise bean enviro
entries for each home.
 10/23/00 408

Enterprise bean’s environment as a JNDI naming contextEnterprise JavaBeans 2.0, Proposed Final Draft Enterprise bean environment

Sun Microsystems, Inc.

ron-

s his or

s. An
-

ent

yment
Terminology warning: The enterprise bean’s “environment” should not be confused with the “envi
ment properties” defined in the JNDI documentation.

The following subsections describe the responsibilities of each EJB Role.

19.2.1 Bean Provider’ s responsibilities
This section describes the Bean Provider’s view of the enterprise bean’s environment, and define
her responsibilities.

19.2.1.1 Access to enterprise bean’s environment

An enterprise bean instance locates the environment naming context using the JNDI interface
instance creates ajavax.naming.InitialContext object by using the constructor with no argu
ments, and looks up the environment naming via theInitialContext under the name
java:comp/env . The enterprise bean’s environment entries are stored directly in the environm
naming context, or in any of its direct or indirect subcontexts.

The value of an environment entry is of the Java type declared by the Bean Provider in the deplo
descriptor.
409 10/23/00

Enterprise bean environment Enterprise JavaBeans 2.0, Proposed Final Draft Enterprise bean’s environment as a JNDI

Sun Microsystems, Inc.

.

’s code.

the
f the

e, and
The following code example illustrates how an enterprise bean accesses its environment entries

public class EmployeeServiceBean implements SessionBean {

...
public void setTaxInfo(int numberOfExemptions, ...)

throws InvalidNumberOfExemptionsException {
...

// Obtain the enterprise bean’s environment naming context.
Context initCtx = new InitialContext();
Context myEnv = (Context)initCtx.lookup("java:comp/env");

// Obtain the maximum number of tax exemptions
// configured by the Deployer.
Integer max = (Integer)myEnv.lookup(“maxExemptions”);

// Obtain the minimum number of tax exemptions
// configured by the Deployer.
Integer min = (Integer)myEnv.lookup(“minExemptions”);

// Use the environment entries to customize business logic.
if (numberOfExeptions > Integer.intValue(max) ||

numberOfExemptions < Integer.intValue(min))
throw new InvalidNumberOfExemptionsException();

// Get some more environment entries. These environment
// entries are stored in subcontexts.
String val1 = (String)myEnv.lookup(“foo/name1”);
Boolean val2 = (Boolean)myEnv.lookup(“foo/bar/name2”);

// The enterprise bean can also lookup using full pathnames.
Integer val3 = (Integer)

initCtx.lookup("java:comp/env/name3");
Integer val4 = (Integer)

initCtx.lookup("java:comp/env/foo/name4");
...

}
}

19.2.1.2 Declaration of environment entries

The Bean Provider must declare all the environment entries accessed from the enterprise bean
The environment entries are declared using theenv-entry elements in the deployment descriptor.

Eachenv-entry element describes a single environment entry. Theenv-entry element consists of
an optional description of the environment entry, the environment entry name relative to
java:comp/env context, the expected Java type of the environment entry value (i.e., the type o
object returned from the JNDIlookup method), and an optional environment entry value.

An environment entry is scoped to the enterprise bean whose declaration contains theenv-entry ele-
ment. This means that the environment entry is inaccessible from other enterprise beans at runtim
that other enterprise beans may defineenv-entry elements with the sameenv-entry-name with-
out causing a name conflict.
 10/23/00 410

Enterprise bean’s environment as a JNDI naming contextEnterprise JavaBeans 2.0, Proposed Final Draft Enterprise bean environment

Sun Microsystems, Inc.

t be a
The environment entry values may be one of the following Java types:String , Integer , Boolean ,
Double , Byte , Short , Long , andFloat .

If the Bean Provider provides a value for an environment entry using theenv-entry-value ele-
ment, the value can be changed later by the Application Assembler or Deployer. The value mus
string that is valid for the constructor of the specified type that takes a singleString parameter.
411 10/23/00

Enterprise bean environment Enterprise JavaBeans 2.0, Proposed Final Draft Enterprise bean’s environment as a JNDI

Sun Microsystems, Inc.
The following example is the declaration of environment entries used by theEmployeeService-
Bean whose code was illustrated in the previous subsection.

<enterprise-beans>
<session>

...
<ejb-name>EmployeeService</ejb-name>
<ejb-class>

com.wombat.empl.EmployeeServiceBean
</ejb-class>
...
<env-entry>

<description>
The maximum number of tax exemptions
allowed to be set.

</description>
<env-entry-name>maxExemptions</env-entry-name>
<env-entry-type>java.lang.Integer</env-entry-type>
<env-entry-value>15</env-entry-value>

</env-entry>
<env-entry>

<description>
The minimum number of tax exemptions
allowed to be set.

</description>
<env-entry-name>minExemptions</env-entry-name>
<env-entry-type>java.lang.Integer</env-entry-type>
<env-entry-value>1</env-entry-value>

</env-entry>
<env-entry>

<env-entry-name>foo/name1</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>
<env-entry-value>value1</env-entry-value>

</env-entry>
<env-entry>

<env-entry-name>foo/bar/name2</env-entry-name>
<env-entry-type>java.lang.Boolean</env-entry-type>
<env-entry-value>true</env-entry-value>

</env-entry>
<env-entry>

<description>Some description.</description>
<env-entry-name>name3</env-entry-name>
<env-entry-type>java.lang.Integer</env-entry-type>

</env-entry>
<env-entry>

<env-entry-name>foo/name4</env-entry-name>
<env-entry-type>java.lang.Integer</env-entry-type>
<env-entry-value>10</env-entry-value>

</env-entry>
...

</session>
</enterprise-beans>
...
 10/23/00 412

EJB references Enterprise JavaBeans 2.0, Proposed Final Draft Enterprise bean environment

Sun Microsystems, Inc.

Bean
er has

e bean

by the
ies for

the

nter-

r-
ntries
r set
con-

to their

n Pro-

JB ref-

-jar file
at the
19.2.2 Application Assembler’s responsibility
The Application Assembler is allowed to modify the values of the environment entries set by the
Provider, and is allowed to set the values of those environment entries for which the Bean Provid
not specified any initial values.

19.2.3 Deployer’s responsibility
The Deployer must ensure that the values of all the environment entries declared by an enterpris
are set to meaningful values.

The Deployer can modify the values of the environment entries that have been previously set
Bean Provider and/or Application Assembler, and must set the values of those environment entr
which no value has been specified.

The description elements provided by the Bean Provider or Application Assembler help
Deployer with this task.

19.2.4 Container Provider responsibility
The container provider has the following responsibilities:

• Provide a deployment tool that allows the Deployer to set and modify the values of the e
prise bean’s environment entries.

• Implement thejava:comp/env environment naming context, and provide it to the ente
prise bean instances at runtime. The naming context must include all the environment e
declared by the Bean Provider, with their values supplied in the deployment descriptor o
by the Deployer. The environment naming context must allow the Deployer to create sub
texts if they are needed by an enterprise bean.

• The Container must ensure that the enterprise bean instances have only read access
environment variables. The Container must throw thejavax.naming.OperationNot-
SupportedException from all the methods of thejavax.naming.Context interface
that modify the environment naming context and its subcontexts.

19.3 EJB references

This section describes the programming and deployment descriptor interfaces that allow the Bea
vider to refer to the homes of other enterprise beans using “logical” names calledEJB references. The
EJB references are special entries in the enterprise bean’s environment. The Deployer binds the E
erences to the enterprise bean’s homes in the target operational environment.

The deployment descriptor also allows the Application Assembler tolink an EJB reference declared in
one enterprise bean to another enterprise bean contained in the same ejb-jar file, or in another ejb
in the same J2EE application unit. The link is an instruction to the tools used by the Deployer th
EJB reference must be bound to the home of the specified target enterprise bean.
413 10/23/00

Enterprise bean environment Enterprise JavaBeans 2.0, Proposed Final Draft EJB references

Sun Microsystems, Inc.

rences.

eans as

9.3.1.2

rprise
e

viron-

home

i-
ter-

ust not
nces

(i.e.
an.
19.3.1 Bean Provider’ s responsibilities
This subsection describes the Bean Provider’s view and responsibilities with respect to EJB refe

19.3.1.1 EJB reference programming interfaces

The Bean Provider must use EJB references to locate the home interfaces of other enterprise b
follows.

• Assign an entry in the enterprise bean’s environment to the reference. (See subsection 1
for information on how EJB references are declared in the deployment descriptor.)

• The EJB specification recommends, but does not require, that all references to other ente
beans be organized in theejb subcontext of the bean’s environment (i.e., in th
java:comp/env/ejb JNDI context).

• Look up the home interface of the referenced enterprise bean in the enterprise bean’s en
ment using JNDI.

The following example illustrates how an enterprise bean uses an EJB reference to locate the
interface of another enterprise bean.

public class EmployeeServiceBean implements SessionBean {

public void changePhoneNumber(...) {
...

// Obtain the default initial JNDI context.
Context initCtx = new InitialContext();

// Look up the home interface of the EmployeeRecord
// enterprise bean in the environment.
Object result = initCtx.lookup(

"java:comp/env/ejb/EmplRecord");

// Convert the result to the proper type.
EmployeeRecordHome emplRecordHome = (EmployeeRecordHome)

javax.rmi.PortableRemoteObject.narrow(result,
EmployeeRecordHome.class);

...
}

}

In the example, the Bean Provider of theEmployeeServiceBean enterprise bean assigned the env
ronment entryejb/EmplRecord as the EJB reference name to refer to the home of another en
prise bean.

19.3.1.2 Declaration of EJB references in deployment descriptor

Although the EJB reference is an entry in the enterprise bean’s environment, the Bean Provider m
use aenv-entry element to declare it. Instead, the Bean Provider must declare all the EJB refere
using theejb-ref elements of the deployment descriptor. This allows the ejb-jar consumer
Application Assembler or Deployer) to discover all the EJB references used by the enterprise be
 10/23/00 414

EJB references Enterprise JavaBeans 2.0, Proposed Final Draft Enterprise bean environment

Sun Microsystems, Inc.

an has

entry
f

.

at other
Eachejb-ref element describes the interface requirements that the referencing enterprise be
for the referenced enterprise bean. Theejb-ref element contains an optionaldescription ele-
ment; and the mandatoryejb-ref-name, ejb-ref-type , home, andremote elements.

The ejb-ref-name element specifies the EJB reference name; its value is the environment
name used in the enterprise bean code. Theejb-ref-type element specifies the expected type o
the enterprise bean; its value must be eitherEntity or Session . Thehome andremote elements
specify the expected Java types of the referenced enterprise bean’s home and remote interfaces

An EJB reference is scoped to the enterprise bean whose declaration contains theejb-ref element.
This means that the EJB reference is not accessible to other enterprise beans at runtime, and th
enterprise beans may defineejb-ref elements with the sameejb-ref-name without causing a
name conflict.

The following example illustrates the declaration of EJB references in the deployment descriptor.

...
<enterprise-beans>

<session>
...
<ejb-name>EmployeeService</ejb-name>
<ejb-class>

com.wombat.empl.EmployeeServiceBean
</ejb-class>
...
<ejb-ref>

<description>
This is a reference to the entity bean that
encapsulates access to employee records.

</description>
<ejb-ref-name>ejb/EmplRecord</ejb-ref-name>
<ejb-ref-type>Entity</ejb-ref-type>
<home>com.wombat.empl.EmployeeRecordHome</home>
<remote>com.wombat.empl.EmployeeRecord</remote>

</ejb-ref>

<ejb-ref>
<ejb-ref-name>ejb/Payroll</ejb-ref-name>
<ejb-ref-type>Entity</ejb-ref-type>
<home>com.aardvark.payroll.PayrollHome</home>
<remote>com.aardvark.payroll.Payroll</remote>

</ejb-ref>

<ejb-ref>
<ejb-ref-name>ejb/PensionPlan</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<home>com.wombat.empl.PensionPlanHome</home>
<remote>com.wombat.empl.PensionPlan</remote>

</ejb-ref>
...

</session>
...

</enterprise-beans>
...
415 10/23/00

Enterprise bean environment Enterprise JavaBeans 2.0, Proposed Final Draft EJB references

Sun Microsystems, Inc.

n

t

as the

in an
the

bler
n and
ame
with
ot

e with
e indi-

rget
rence.
19.3.2 Application Assembler’s responsibilities

The Application Assembler can use theejb-link element in the deployment descriptor to link a
EJB reference to a target enterprise bean. The link will be observed by the deployment tools.

The Application Assembler specifies the link between two enterprise beans as follows:

• The Application Assembler uses the optionalejb-link element of theejb-ref element of
the referencing enterprise bean. The value of theejb-link element is the name of the targe
enterprise bean. (It is the name defined in theejb-name element of the target enterprise
bean.) The target enterprise bean can be in any ejb-jar file in the same J2EE application
referencing application component.

• Alternatively, to avoid the need to rename enterprise beans to have unique names with
entire J2EE application, the Application Assembler may use the following syntax in
ejb-link element of the referencing application component. The Application Assem
specifies the path name of the ejb-jar file containing the referenced enterprise bea
appends theejb-name of the target bean separated from the path name by # . The path n
is relative to the referencing application component jar file. In this manner, multiple beans
the sameejb-name may be uniquely identified when the Application Assembler cann
change ejb-names.

• The Application Assembler must ensure that the target enterprise bean is type-compatibl
the declared EJB reference. This means that the target enterprise bean must be of the typ
cated in theejb-ref-type element, and that the home and remote interfaces of the ta
enterprise bean must be Java type-compatible with the interfaces declared in the EJB refe
 10/23/00 416

EJB references Enterprise JavaBeans 2.0, Proposed Final Draft Enterprise bean environment

Sun Microsystems, Inc.

l-
The following illustrates anejb-link in the deployment descriptor.

...
<enterprise-beans>

<session>
...

<ejb-name>EmployeeService</ejb-name>
<ejb-class>

com.wombat.empl.EmployeeServiceBean
</ejb-class>
...
<ejb-ref>

<ejb-ref-name>ejb/EmplRecord</ejb-ref-name>
<ejb-ref-type>Entity</ejb-ref-type>
<home>com.wombat.empl.EmployeeRecordHome</home>
<remote>com.wombat.empl.EmployeeRecord</remote>
<ejb-link>EmployeeRecord</ejb-link>

</ejb-ref>
...

</session>
...

<entity>
<ejb-name>EmployeeRecord</ejb-name>
<home>com.wombat.empl.EmployeeRecordHome</home>
<remote>com.wombat.empl.EmployeeRecord</remote>
...

</entity>
...

</enterprise-beans>
...

The Application Assembler uses theejb-link element to indicate that the EJB reference “Emp
Record” declared in theEmployeeService enterprise bean has been linked to theEmploy-
eeRecord enterprise bean.
417 10/23/00

Enterprise bean environment Enterprise JavaBeans 2.0, Proposed Final Draft EJB references

Sun Microsystems, Inc.

ce
-jar

es of
mple,

rget

types
e indi-
rget
ared in

t.

tasks
ovider
-

The following example illustrates using theejb-link element to indicate an enterprise bean referen
to theProductEJB enterprise bean that is in the same J2EE application unit but in a different ejb
file.

<entity>
...

<ejb-name>OrderEJB</ejb-name>
<ejb-class>

com.wombat.orders.OrderBean
</ejb-class>
...
<ejb-ref>

<ejb-ref-name>ejb/Product</ejb-ref-name>
<ejb-ref-type>Entity</ejb-ref-type>
<home>com.acme.orders.ProductHome</home>
<remote>com.acme.orders.Product</remote>
<ejb-link>../products/product.jar#ProductEJB</ejb-link>

</ejb-ref>
...

</entity>

19.3.3 Deployer’s responsibility
The Deployer is responsible for the following:

• The Deployer must ensure that all the declared EJB references are bound to the hom
enterprise beans that exist in the operational environment. The Deployer may use, for exa
the JNDILinkRef mechanism to create a symbolic link to the actual JNDI name of the ta
enterprise bean’s home.

• The Deployer must ensure that the target enterprise bean is type-compatible with the
declared for the EJB reference. This means that the target enterprise bean must of the typ
cated in theejb-ref-type element, and that the home and remote interfaces of the ta
enterprise bean must be Java type-compatible with the home and remote interfaces decl
the EJB reference.

• If an EJB reference declaration includes theejb-link element, the Deployer must bind the
enterprise bean reference to the home of the enterprise bean specified as the link’s targe

19.3.4 Container Provider’ s responsibility
The Container Provider must provide the deployment tools that allow the Deployer to perform the
described in the previous subsection. The deployment tools provided by the EJB Container pr
must be able to process the information supplied in theejb-ref elements in the deployment descrip
tor.

At the minimum, the tools must be able to:

• Preserve the application assembly information in theejb-link elements by binding an EJB
reference to the home interface of the specified target session or entity bean.
 10/23/00 418

Resource manager connection factory referencesEnterprise JavaBeans 2.0, Proposed Final Draft Enterprise bean environment

Sun Microsystems, Inc.

EJB

ce man-

a

t allow

ies in
y refer-
ecause

ent, the

nnec-

or her

tions to

n fac-
ection

ection
ferent
nces
-
ht
n

ment
• Inform the Deployer of any unresolved EJB references, and allow him or her to resolve an
reference by binding it to a specified compatible target session or entity bean.

19.4 Resource manager connection factory references

A resource manager connection factory is an object that is used to create connections to a resour
ager. For example, an object that implements thejavax.sql.DataSource interface is a resource
manager connection factory forjava.sql.Connection objects which implement connections to
database management system.

This section describes the enterprise bean programming and deployment descriptor interfaces tha
the enterprise bean code to refer to resource factories using logical names calledresource manager con-
nection factory references. The resource manager connection factory references are special entr
the enterprise bean’s environment. The Deployer binds the resource manager connection factor
ences to the actual resource manager connection factories that are configured in the Container. B
these resource manager connection factories allow the Container to affect resource managem
connections acquired through the resource manager connection factory references are calledmanaged
resources(e.g., these resource manager connection factories allow the Container to implement co
tion pooling and automatic enlistment of the connection with a transaction).

19.4.1 Bean Provider’ s responsibilities
This subsection describes the Bean Provider’s view of locating resource factories and defines his
responsibilities.

19.4.1.1 Programming interfaces for resource manager connection factory references

The Bean Provider must use resource manager connection factory references to obtain connec
resources as follows.

• Assign an entry in the enterprise bean’s environment to the resource manager connectio
tory reference. (See subsection 19.4.1.2 for information on how resource manager conn
factory references are declared in the deployment descriptor.)

• The EJB specification recommends, but does not require, that all resource manager conn
factory references be organized in the subcontexts of the bean’s environment, using a dif
subcontext for each resource manager type. For example, all JDBC™ DataSource refere
might be declared in thejava:comp/env/jdbc subcontext, and all JMS connection facto
ries in thejava:comp/env/jms subcontext. Also, all JavaMail connection factories mig
be declared in thejava:comp/env/mail subcontext and all URL connection factories i
the java:comp/env/url subcontext.

• Lookup the resource manager connection factory object in the enterprise bean’s environ
using the JNDI interface.
419 10/23/00

Enterprise bean environment Enterprise JavaBeans 2.0, Proposed Final DraftResource manager connection factory refer-

Sun Microsystems, Inc.

nnec-
btain

anager
terprise
rovider

are not

e the

the

. In
od that

nvokes
ation

o

ation)
• Invoke the appropriate method on the resource manager connection factory to obtain a co
tion to the resource. The factory method is specific to the resource type. It is possible to o
multiple connections by calling the factory object multiple times.

The Bean Provider can control the shareability of the connections acquired from the resource m
connection factory. By default, connections to a resource manager are shareable across other en
beans in the application that use the same resource in the same transaction context. The Bean P
can specify that connections obtained from a resource manager connection factory reference
shareable by specifying the value of theres-sharing-scope deployment descriptor element to be
Unshareable . The sharing of connections to a resource manager allows the container to optimiz
use of connections and enables the container’s use of local transaction optimizations.

The Bean Provider has two choices with respect to dealing with associating a principal with
resource manager access:

• Allow the Deployer to set up principal mapping or resource manager sign-on information
this case, the enterprise bean code invokes a resource manager connection factory meth
has no security-related parameters.

• Sign on to the resource manager from the bean code. In this case, the enterprise bean i
the appropriate resource manager connection factory method that takes the sign-on inform
as method parameters.

The Bean Provider uses theres-auth deployment descriptor element to indicate which of the tw
resource manager authentication approaches is used.

We expect that the first form (i.e., letting the Deployer set up the resource manager sign-on inform
will be the approach used by most enterprise beans.
 10/23/00 420

Resource manager connection factory referencesEnterprise JavaBeans 2.0, Proposed Final Draft Enterprise bean environment

Sun Microsystems, Inc.

nviron-

s in the
e.
ences

. The

ean’s

enter-
rms
anager
s the
The following code sample illustrates obtaining a JDBC connection.

public class EmployeeServiceBean implements SessionBean {
EJBContext ejbContext;

public void changePhoneNumber(...) {
...

// obtain the initial JNDI context
Context initCtx = new InitialContext();

// perform JNDI lookup to obtain resource manager
// connection factory
javax.sql.DataSource ds = (javax.sql.DataSource)

initCtx.lookup("java:comp/env/jdbc/EmployeeAppDB");

// Invoke factory to obtain a connection. The security
// principal is not given, and therefore
// it will be configured by the Deployer.
java.sql.Connection con = ds.getConnection();
...

}
}

19.4.1.2 Declaration of resource manager connection factory references in deployment
descriptor

Although a resource manager connection factory reference is an entry in the enterprise bean’s e
ment, the Bean Provider must not use anenv-entry element to declare it.

Instead, the Bean Provider must declare all the resource manager connection factory reference
deployment descriptor using theresource-ref elements. This allows the ejb-jar consumer (i.
Application Assembler or Deployer) to discover all the resource manager connection factory refer
used by an enterprise bean.

Eachresource-ref element describes a single resource manager connection factory reference
resource-ref element consists of thedescription element; the mandatoryres-ref-name ,
res-type , and res-auth elements; and the optionalres-sharing-scope element. The
res-ref-name element contains the name of the environment entry used in the enterprise b
code. The name of the environment entry is relative to thejava:comp/env context (e.g., the name
should bejdbc/EmployeeAppDB rather thanjava:comp/env/jdbc/EmployeeAppDB). The
res-type element contains the Java type of the resource manager connection factory that the
prise bean code expects. Theres-auth element indicates whether the enterprise bean code perfo
resource manager sign-on programmatically, or whether the Container signs on to the resource m
using the principal mapping information supplied by the Deployer. The Bean Provider indicate
sign-on responsibility by setting the value of theres-auth element toApplication or Con-
421 10/23/00

Enterprise bean environment Enterprise JavaBeans 2.0, Proposed Final DraftResource manager connection factory refer-

Sun Microsystems, Inc.

ager
hether

to

laration
efer-
y define

n fac-

urce.

by the
tainer . Theres-sharing-scope element indicates whether connections to the resource man
obtained through the given resource manager connection factory reference can be shared or w
connections are unshareable. The value of theres-sharing-scope element isShareable or
Unshareable . If the res-sharing-scope element is not specified, connections are assumed
be shareable.

A resource manager connection factory reference is scoped to the enterprise bean whose dec
contains theresource-ref element. This means that the resource manager connection factory r
ence is not accessible from other enterprise beans at runtime, and that other enterprise beans ma
resource-ref elements with the sameres-ref-name without causing a name conflict.

The type declaration allows the Deployer to identify the type of the resource manager connectio
tory.

Note that the indicated type is the Java type of the resource factory, not the Java type of the reso

The following example is the declaration of resource manager connection factory references used
EmployeeService enterprise bean illustrated in the previous subsection.

...
<enterprise-beans>

<session>
...

<ejb-name>EmployeeService</ejb-name>
<ejb-class>

com.wombat.empl.EmployeeServiceBean
</ejb-class>
...
<resource-ref>

<description>
A data source for the database in which
the EmployeeService enterprise bean will
record a log of all transactions.

</description>
<res-ref-name>jdbc/EmployeeAppDB</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Container</res-auth>
<res-sharing-scope>Shareable</res-sharing-scope>

</resource-ref>
...

</session>
</enterprise-beans>
...
 10/23/00 422

Resource manager connection factory referencesEnterprise JavaBeans 2.0, Proposed Final Draft Enterprise bean environment

Sun Microsystems, Inc.

ry ref-

y

e
y

the
e

obtain

s to the
The following example illustrates the declaration of the JMS resource manager connection facto
erences used by the example on page 341.

...
<enterprise-beans>

<session>
...

...
<resource-ref>

<description>
A queue connection factory used by the
MySession enterprise bean to send
notifications.

</description>
<res-ref-name>jms/qConnFactory</res-ref-name>
<res-type>javax.jms.QueueConnectionFactory

</res-type>
<res-auth>Container</res-auth>
<res-sharing-scope>Unshareable</res-sharing-scope>

</resource-ref>
...

</session>
</enterprise-beans>
...

19.4.1.3 Standard resource manager connection factory types

The Bean Provider must use thejavax.sql.DataSource resource manager connection factor
type for obtaining JDBC connections, and thejavax.jms.QueueConnectionFactory or the
javax.jms.TopicConnectionFactory for obtaining JMS connections.

The Bean Provider must use thejavax.mail.Session resource manager connection factory typ
for obtaining JavaMail connections, and thejava.net.URL resource manager connection factor
type for obtaining URL connections.

It is recommended that the Bean Provider names JDBC data sources in thejava:comp/env/jdbc
subcontext, and JMS connection factories in thejava:comp/env/jms subcontext. It is also recom-
mended that the Bean Provider names all JavaMail connection factories in
java:comp/env/mail subcontext, and all URL connection factories in th
java:comp/env/url subcontext.

The Connector mechanism allows an enterprise bean to use the API described in this section to
resource objects that provide access to additional back-end systems. See [12].

19.4.2 Deployer’s responsibility
The Deployer uses deployment tools to bind the resource manager connection factory reference
actual resource factories configured in the target operational environment.
423 10/23/00

Enterprise bean environment Enterprise JavaBeans 2.0, Proposed Final DraftResource manager connection factory refer-

Sun Microsystems, Inc.

rence

on fac-
JNDI

an-
atible

ening
, and is

-
ecific

t the
ager,
anner
cifica-

pre-

r the

ce
tic

-
ns

gn-on

ass-
y the
or user

ction fac-
The Deployer must perform the following tasks for each resource manager connection factory refe
declared in the deployment descriptor:

• Bind the resource manager connection factory reference to a resource manager connecti
tory that exists in the operational environment. The Deployer may use, for example, the
LinkRef mechanism to create a symbolic link to the actual JNDI name of the resource m
ager connection factory. The resource manager connection factory type must be comp
with the type declared in theres-type element.

• Provide any additional configuration information that the resource manager needs for op
and managing the resource. The configuration mechanism is resource-manager specific
beyond the scope of this specification.

• If the value of theres-auth element isContainer , the Deployer is responsible for config
uring the sign-on information for the resource manager. This is performed in a manner sp
to the EJB Container and resource manager; it is beyond the scope of this specification.

For example, if principals must be mapped from the security domain and principal realm used a
enterprise beans application level to the security domain and principal realm of the resource man
the Deployer or System Administrator must define the mapping. The mapping is performed in a m
specific to the EJB Container and resource manager; it is beyond the scope of the current EJB spe
tion.

19.4.3 Container provider responsibility
The EJB Container provider is responsible for the following:

• Provide the deployment tools that allow the Deployer to perform the tasks described in the
vious subsection.

• Provide the implementation of the resource manager connection factory classes fo
resource managers that are configured with the EJB Container.

• If the Bean Provider sets theres-auth of a resource manager connection factory referen
to Application , the Container must allow the bean to perform explicit programma
sign-on using the resource manager’s API.

• If the Bean Provider sets theres-sharing-scope of a resource manager connection fac
tory reference toUnshareable , the Container must not attempt to share the connectio
obtained from the resource manager connection factoryreference[36].

• The Container must provide tools that allow the Deployer to set up resource manager si
information for the resource manager references whoseres-auth element is set toCon-
tainer . The minimum requirement is that the Deployer must be able to specify the user/p
word information for each resource manager connection factory reference declared b
enterprise bean, and the Container must be able to use the user/password combination f

[36] Connections obtained from the same resource manager connection factory through a different resource manager conne
tory reference may be shareable.
 10/23/00 424

Resource environment references Enterprise JavaBeans 2.0, Proposed Final Draft Enterprise bean environment

Sun Microsystems, Inc.

nager

of a
ntainer
rop-
n.

wing

er for

e man-
erprise

n Pro-
ations)
re
nt ref-

envi-
authentication when obtaining a connection to the resource by invoking the resource ma
connection factory.

Although not required by the EJB specification, we expect that Containers will support some form
single sign-on mechanism that spans the application server and the resource managers. The Co
will allow the Deployer to set up the resource managers such that the EJB caller principal can be p
agated (directly or through principal mapping) to a resource manager, if required by the applicatio

While not required by the EJB specification, most EJB Container providers also provide the follo
features:

• A tool to allow the System Administrator to add, remove, and configure a resource manag
the EJB Server.

• A mechanism to pool connections to the resources for the enterprise beans and otherwis
age the use of resources by the Container. The pooling must be transparent to the ent
beans.

19.4.4 System Administrator’s responsibility

The System Administrator is typically responsible for the following:

• Add, remove, and configure resource managers in the EJB Server environment.

In some scenarios, these tasks can be performed by the Deployer.

19.5 Resource environment references

This section describes the programming and deployment descriptor interfaces that allow the Bea
vider to refer to administered objects that are associated with resources (for example, JMS Destin
by using “logical” names calledresource environment references. Resource environment references a
special entries in the enterprise bean’s environment. The Deployer binds the resource environme
erences to administered objects in the target operational environment.

19.5.1 Bean Provider’ s responsibilities
This subsection describes the Bean Provider’s view and responsibilities with respect to resource
ronment references.
425 10/23/00

Enterprise bean environment Enterprise JavaBeans 2.0, Proposed Final Draft Resource environment references

Sun Microsystems, Inc.

such as

9.5.1.2
ment

refer-
ource

nce to

vi-
MS

e Bean
all

ment

bean
l

19.5.1.1 Resource environment reference programming interfaces

The Bean Provider must use resource environment references to locate administered objects,
JMS Destinations, which are associated with resources, as follows.

• Assign an entry in the enterprise bean’s environment to the reference. (See subsection 1
for information on how resource environment references are declared in the deploy
descriptor.)

• The EJB specification recommends, but does not require, that all resource environment
ences be organized in the appropriate subcontext of the bean’s environment for the res
type (e.g. in the java:comp/env/jms JNDI context for JMS Destinations).

• Look up the administered object in the enterprise bean’s environment using JNDI.

The following example illustrates how an enterprise bean uses a resource environment refere
locate a JMS Destination .

public class StockServiceBean implements SessionBean {

public void processStockInfo(...) {
...

// Obtain the default initial JNDI context.
Context initCtx = new InitialContext();

// Look up the JMS StockQueue in the environment.
Object result = initCtx.lookup(

"java:comp/env/jms/StockQueue");

// Convert the result to the proper type.
javax.jms.Queue queue = (javax.jms.Queue)result;

}
}

In the example, the Bean Provider of theStockServiceBean enterprise bean has assigned the en
ronment entryjms/StockQueue as the resource environment reference name to refer to a J
queue.

19.5.1.2 Declaration of resource environment references in deployment descriptor

Although the resource environment reference is an entry in the enterprise bean’s environment, th
Provider must not use aenv-entry element to declare it. Instead, the Bean Provider must declare
references to administered objects associated with resources using theresource-env-ref elements
of the deployment descriptor. This allows the ejb-jar consumer to discover all the resource environ
references used by the enterprise bean.

Eachresource-env-ref element describes the requirements that the referencing enterprise
has for the referenced administered object. Theresource-env-ref element contains an optiona
description element; and the mandatory resource-env-ref-name and
resource-env-ref-type elements.
 10/23/00 426

Resource environment references Enterprise JavaBeans 2.0, Proposed Final Draft Enterprise bean environment

Sun Microsystems, Inc.

; its
nment

e must

ins the
ssible

yment

und to
, for
of

d for
e indi-
The resource-env-ref-name element specifies the resource environment reference name
value is the environment entry name used in the enterprise bean code. The name of the enviro
entry is relative to thejava:comp/env context (e.g., the name should bejms/StockQueue rather
thanjava:comp/env/jms/StockQueue). Theresource-env-ref-type element specifies
the expected type of the referenced object. For example, in the case of a JMS Destination, its valu
be eitherjavax.jms.Queue or javax.jms.Topic .

A resource environment reference is scoped to the enterprise bean whose declaration conta
resource-env-ref element. This means that the resource environment reference is not acce
to other enterprise beans at runtime, and that other enterprise beans may defineresource-env-ref
elements with the sameresource-env-ref-name without causing a name conflict.

The following example illustrates the declaration of resource environment references in the deplo
descriptor.

...
<enterprise-beans>

<session>
...
<ejb-name>EmployeeService</ejb-name>
<ejb-class>

com.wombat.empl.EmployeeServiceBean
</ejb-class>
...
<resource-env-ref>

<description>
This is a reference to a JMS queue used in the
processing of Stock info

</description>
<resource-env-ref-name>

jms/StockInfo
</resource-env-ref-name>
<resource-env-ref-type>

javax.jms.Queue
</resource-env-ref-type>

</resource-env-ref>
...

</session>
...

</enterprise-beans>
...

19.5.2 Deployer’s responsibility
The Deployer is responsible for the following:

• The Deployer must ensure that all the declared resource environment references are bo
administered objects that exist in the operational environment. The Deployer may use
example, the JNDILinkRef mechanism to create a symbolic link to the actual JNDI name
the target object.

• The Deployer must ensure that the target object is type-compatible with the type declare
the resource environment reference. This means that the target object must be of the typ
cated in theresource-env-ref-type element.
427 10/23/00

Enterprise bean environment Enterprise JavaBeans 2.0, Proposed Final Draft DeprecatedEJBContext.getEnvironment()

Sun Microsystems, Inc.

tasks
ovider

ment
ecified

style
unt-

viron-
hould

ould

e

19.5.3 Container Provider’ s responsibility
The Container Provider must provide the deployment tools that allow the Deployer to perform the
described in the previous subsection. The deployment tools provided by the EJB Container pr
must be able to process the information supplied in theresource-env-ref elements in the deploy-
ment descriptor.

At the minimum, the tools must be able to inform the Deployer of any unresolved resource environ
references, and allow him or her to resolve a resource environment reference by binding it to a sp
compatible target object in the environment.

19.6 DeprecatedEJBContext.getEnvironment() method

The environment naming contextintroduced in EJB 1.1 replaces the EJB 1.0 concept ofenvironment
properties.

An EJB 2.0 or EJB 1.1 compliant Container is not required to implement support for the EJB 1.0
environment properties. If the Container does not implement the functionality, it should throw a R
imeException (or subclass thereof) from theEJBContext.getEnvironment() method.

If an EJB 2.0 or EJB 1.1 compliant Container chooses to provide support for the EJB 1.0 style en
ment properties (so that it can support enterprise beans written to the EJB 1.0 specification), it s
implement the support as described below.

When the tools convert the EJB 1.0 deployment descriptor to the EJB 1.1 XML format, they sh
place the definitions of the environment properties into theejb10-properties subcontext of the
environment naming context. Theenv-entry elements should be defined as follows: th
env-entry-name element contains the name of the environment property, theenv-entry-type
must be java.lang.String , and the optionalenv-entry-value contains the environment
property value.

For example, an EJB 1.0 enterprise bean with two environment propertiesfoo andbar , should declare
the followingenv-entry elements in its EJB 1.1 format deployment descriptor.

...
<env-entry>

env-entry-name>ejb10-properties/foo</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>

</env-entry>
<env-entry>

<description>bar’s description</description>
<env-entry-name>ejb10-properties/bar</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>
<env-entry-value>bar value</env-entry-value>

</env-entry>
...

The Container should provide the entries declared in theejb10-properties subcontext to the
instances as ajava.util.Properties object that the instances obtain by invoking theEJBCon-
text.getEnvironment() method.
 10/23/00 428

UserTransaction interface Enterprise JavaBeans 2.0, Proposed Final Draft Enterprise bean environment

Sun Microsystems, Inc.

ample.

prise
other

re
saction

at
The enterprise bean uses the EJB 1.0 API to access the properties, as shown by the following ex

public class SomeBean implements SessionBean {
SessionContext ctx;
java.util.Properties env;

public void setSessionContext(SessionContext sc) {
ctx = sc;
env = ctx.getEnvironment();

}

public someBusinessMethod(...) ... {
String fooValue = env.getProperty("foo");
String barValue = env.getProperty("bar");

}
...

}

19.7 UserTransaction interface

Note: The requirement for the Container to publish the UserTransaction interface in the enter
bean’s JNDI context was added to make the requirements on UserTransaction uniform with the
Java 2, Enterprise Edition application component types.

The Container must make theUserTransaction interface available to the enterprise beans that a
allowed to use this interface (only session and message-driven beans with bean-managed tran
demarcation are allowed to use this interface) in JNDI under the namejava:comp/UserTransac-
tion.

The Container must not make theUserTransaction interface available to the enterprise beans th
are not allowed to use this interface. The Container should throwjavax.naming.NameNotFoun-
dException if an instance of an enterprise bean that is not allowed to use theUserTransaction
interface attempts to look up the interface in JNDI.

The following code example

public MySessionBean implements SessionBean {
...
public someMethod()
{

Context initCtx = new InitialContext();
UserTransaction utx = (UserTransaction)initCtx.lookup(

“java:comp/UserTransaction”);
utx.begin();
...
utx.commit();

}
...

}

429 10/23/00

Enterprise bean environment Enterprise JavaBeans 2.0, Proposed Final Draft UserTransaction interface

Sun Microsystems, Inc.
is functionally equivalent to

public MySessionBean implements SessionBean {
SessionContext ctx;
...
public someMethod()
{

UserTransaction utx = ctx.getUserTransaction();
utx.begin();
...
utx.commit();

}
...

}

 10/23/00 430

Overview Enterprise JavaBeans 2.0, Proposed Final Draft Security management

Sun Microsystems, Inc.

ppli-
pro-
stem

han

e dif-
Chapter 20 Security management

This chapter defines the EJB support for security management.

20.1 Overview

We set the following goals for the security management in the EJB architecture:

• Lessen the burden of the application developer (i.e. the Bean Provider) for securing the a
cation by allowing greater coverage from more qualified EJB roles. The EJB Container
vider provides the implementation of the security infrastructure; the Deployer and Sy
Administrator define the security policies.

• Allow the security policies to be set by the Application Assembler or Deployer rather t
being hard-coded by the Bean Provider at development time.

• Allow the enterprise bean applications to be portable across multiple EJB Servers that us
ferent security mechanisms.
431 10/23/00

Security management Enterprise JavaBeans 2.0, Proposed Final Draft Overview

Sun Microsystems, Inc.

without
e enter-
yer to

tional

as the
ns.
must
tively

r-
rfaces.
nter-
ents

po-
ipal
ns that
r the

ean’s

nt of
t

, the

tion of

n the
enter-
als for
le for
apping

the
invoke

tools
y dur-

simple
usiness
The EJB architecture encourages the Bean Provider to implement the enterprise bean class
hard-coding the security policies and mechanisms into the business methods. In most cases, th
prise bean’s business methods should not contain any security-related logic. This allows the Deplo
configure the security policies for the application in a way that is most appropriate for the opera
environment of the enterprise.

To make the Deployer’s task easier, the Application Assembler (which could be the same party
Bean Provider) may definesecurity rolesfor an application composed of one or more enterprise bea
A security role is a semantic grouping of permissions that a given type of users of the application
have in order to successfully use the application. The Applications Assembler can define (declara
in the deployment descriptor)method permissionsfor each security role. A method permission is a pe
mission to invoke a specified group of methods of the enterprise beans’ home and remote inte
The security roles defined by the Application Assembler present a simplified security view of the e
prise beans application to the Deployer—the Deployer’s view of the application’s security requirem
is the small set of security roles rather than a large number of individual methods.

The security principal under which a method invocation is performed is typically that of the com
nent’s caller. By specifying a run-as identity, however, it is possible to specify that a different princ
be substituted for the execution of the bean’s methods and any methods of other enterprise bea
the bean may call. The Application Assembler specifies in the deployment descriptor whethe
caller’s security identity or a run-as security identity should be used for the execution of the b
methods. See section 20.3.4.

The Application Assembler should specify the requirements for the caller’s principal manageme
enterprise bean invocations by means of thesecurity-identity deployment descriptor elemen
and as part of the description. Ifuse-caller-identity is specified as the value of thesecu-
rity-identity element, the caller principal is propagated from the caller to the callee. (That is
called enterprise bean will see the same returned value of theEJBContext.getCallerPrinci-
pal() as the calling enterprise bean.) If therun-as-specified-identity element is specified,
a security principal that has been assigned to the specified security role will be used for the execu
the bean’s methods.

The Deployer is responsible for assigning principals, or groups of principals, which are defined i
target operational environment, to the security roles defined by the Application Assembler for the
prise beans in the deployment descriptor. The Deployer is also responsible for assigning princip
the run-as identities specified by the Application Assembler. The Deployer is further responsib
configuring other aspects of the security management of the enterprise beans, such as principal m
for inter-enterprise bean calls, and principal mapping for resource manager access.

At runtime, a client will be allowed to invoke a business method only if the principal associated with
client call has been assigned by the Deployer to have at least one security role that is allowed to
the business method.

The Container Provider is responsible for enforcing the security policies at runtime, providing the
for managing security at runtime, and providing the tools used by the Deployer to manage securit
ing deployment.

Because not all security policies can be expressed declaratively, the EJB architecture provides a
programmatic interface that the Bean Provider may use to access the security context from the b
methods.
 10/23/00 432

Bean Provider’s responsibilities Enterprise JavaBeans 2.0, Proposed Final Draft Security management

Sun Microsystems, Inc.

urity

y, and

mote or
rprise

-
Pro-

cipal

r secu-

meth-
derly-

uch as
hould

ies in
mecha-
efine

secu-
riate
The following sections define the responsibilities of the individual EJB roles with respect to sec
management.

20.2 Bean Provider’s responsibilities

This section defines the Bean Provider’s perspective of the EJB architecture support for securit
defines his or her responsibilities.

20.2.1 Invocation of other enterprise beans

An enterprise bean business method can invoke another enterprise bean via the other bean’s re
home interface. The EJB architecture provides no programmatic interfaces for the invoking ente
bean to control the principal passed to the invoked enterprise bean.

The management of caller principals passed oninter-enterprisebean invocations (i.e. principal delega
tion) is set up by the Deployer and System Administrator in a Container-specific way. The Bean
vider and Application Assembler should describe all the requirements for the caller’s prin
management of inter-enterprise bean invocations as part of the description.

20.2.2 Resource access
Section 19.4 defines the protocol for accessing resource managers, including the requirements fo
rity management.

20.2.3 Access of underlying OS resources
The EJB architecture does not define the operating system principal under which enterprise bean
ods execute. Therefore, the Bean Provider cannot rely on a specific principal for accessing the un
ing OS resources, such as files. (See subsection 20.6.8 for the reasons behind this rule.)

We believe that most enterprise business applications store information in resource managers s
relational databases rather than in resources at the operating system levels. Therefore, this rule s
not affect the portability of most enterprise beans.

20.2.4 Programming style recommendations

The Bean Provider should neither implement security mechanisms nor hard-code security polic
the enterprise beans’ business methods. Rather, the Bean Provider should rely on the security
nisms provided by the EJB Container, and should let the Application Assembler and Deployer d
the appropriate security policies for the application.

The Bean Provider and Application Assembler may use the deployment descriptor to convey
rity-related information to the Deployer. The information helps the Deployer to set up the approp
security policy for the enterprise bean application.
433 10/23/00

Security management Enterprise JavaBeans 2.0, Proposed Final Draft Bean Provider’s responsibilities

Sun Microsystems, Inc.

trans-
uld be
access

that
enter-

pecified
ey are

as fol-

row a

lue
20.2.5 Programmatic access to caller’s security context

Note: In general, security management should be enforced by the Container in a manner that is
parent to the enterprise beans’ business methods. The security API described in this section sho
used only in the less frequent situations in which the enterprise bean business methods need to
the security context information.

The javax.ejb.EJBContext interface provides two methods (plus two deprecated methods
were defined in EJB 1.0) that allow the Bean Provider to access security information about the
prise bean’s caller.

public interface javax.ejb.EJBContext {
...

//
// The following two methods allow the EJB class
// to access security information.
//
java.security.Principal getCallerPrincipal();
boolean isCallerInRole(String roleName);

//
// The following two EJB 1.0 methods are deprecated.
//
java.security.Identity getCallerIdentity();
boolean isCallerInRole(java.security.Identity role);

...

}

The Bean Provider can invoke thegetCallerPrincipal andisCallerInRole methods only in
the enterprise bean’s business methods for which the Container has a client security context, as s
in Table 2 on page 70, Table 3 on page 80, Table 4 on page 175, and Table 12 on page 259 . If th
invoked when no security context exists, they should throw thejava.lang.IllegalStateEx-
ception runtime exception.

The getCallerIdentity() and isCallerInRole(Identity role) methods were depre-
cated in EJB 1.1. The Bean Provider must use thegetCallerPrincipal() and isCallerIn-
Role(String roleName) methods for new enterprise beans.

An EJB 2.0 or 1.1 compliant container may choose to implement the two deprecated methods
lows.

• A Container that does not want to provide support for this deprecated method should th
RuntimeException (or subclass ofRuntimeException) from the getCallerI-
dentity() method.

• A Container that wants to provide support for thegetCallerIdentity() method should
return an instance of a subclass of thejava.security.Identity abstract class from the
method. ThegetName() method invoked on the returned object must return the same va
thatgetCallerPrincipal().getName() would return.
 10/23/00 434

Bean Provider’s responsibilities Enterprise JavaBeans 2.0, Proposed Final Draft Security management

Sun Microsystems, Inc.

row a

in the
ation

in the

,

. The
aller
ay be

then-
ise’s
per-
the
rn
g, is
• A Container that does not want to provide support for this deprecated method should th
RuntimeException (or subclass ofRuntimeException) from the isCallerIn-
Role(Identity identity) method.

• A Container that wants to implement theisCallerInRole(Identity identity)
method should implement it as follows:

public isCallerInRole(Identity identity) {
return isCallerInRole(identity.getName());

}

20.2.5.1 Use ofgetCallerPrincipal()

The purpose of the getCallerPrincipal() method is to allow the enterprise bean methods to obta
current caller principal’s name. The methods might, for example, use the name as a key to inform
in a database.

An enterprise bean can invoke thegetCallerPrincipal() method to obtain ajava.secu-
rity.Principal interface representing the current caller. The enterprise bean can then obta
distinguished name of the caller principal using thegetName() method of thejava.secu-
rity.Principal interface.

Note thatgetCallerPrincipal() returns the principal that represents the caller of the
enterprise bean, not the principal that corresponds to the run-as security identity for the bean
if any.

The meaning of thecurrent caller, the Java class that implements thejava.security.Principal
interface, and the realm of the principals returned by thegetCallerPrincipal() method depend
on the operational environment and the configuration of the application.

An enterprise may have a complex security infrastructure that includes multiple security domains
security infrastructure may perform one or more mapping of principals on the path from an EJB c
to the EJB object. For example, an employee accessing his or her company over the Internet m
identified by a userid and password (basic authentication), and the security infrastructure may au
ticate the principal and then map the principal to a Kerberos principal that is used on the enterpr
intranet before delivering the method invocation to the EJB object. If the security infrastructure
forms principal mapping, the getCallerPrincipal() method returns the principal that is the result of
mapping, not the original caller principal. (In the previous example, getCallerPrincipal() would retu
the Kerberos principal.) The management of the security infrastructure, such as principal mappin
performed by the System Administrator role; it is beyond the scope EJB specification.
435 10/23/00

Security management Enterprise JavaBeans 2.0, Proposed Final Draft Bean Provider’s responsibilities

Sun Microsystems, Inc.

uses it
a-
iden-

code
using

end on

pplica-
pals or
The following code sample illustrates the use of thegetCallerPrincipal() method.

public class EmployeeServiceBean implements SessionBean {
EJBContext ejbContext;

public void changePhoneNumber(...) {
...

// Obtain the default initial JNDI context.
Context initCtx = new InitialContext();

// Look up the home interface of the EmployeeRecord
// enterprise bean in the environment.
Object result = initCtx.lookup(

"java:comp/env/ejb/EmplRecord");

// Convert the result to the proper type.
EmployeeRecordHome emplRecordHome = (EmployeeRecordHome)

javax.rmi.PortableRemoteObject.narrow(result,
EmployeeRecordHome.class);

// obtain the caller principal.
callerPrincipal = ejbContext.getCallerPrincipal();

// obtain the caller principal’s name.
callerKey = callerPrincipal.getName();

// use callerKey as primary key to EmployeeRecord finder
EmployeeRecord myEmployeeRecord =

emplRecordHome.findByPrimaryKey(callerKey);

// update phone number
myEmployeeRecord.changePhoneNumber(...);

...
}

}

In the previous example, the enterprise bean obtains the principal name of the current caller and
as the primary key to locate anEmployeeRecord Entity object. This example assumes that applic
tion has been deployed such that the current caller principal contains the primary key used for the
tification of employees (e.g., employee number).

20.2.5.2 Use ofisCallerInRole(String roleName)

The main purpose of the isCallerInRole(String roleName) method is to allow the Bean Provider to
the security checks that cannot be easily defined declaratively in the deployment descriptor
method permissions. Such a check might impose a role-based limit on a request, or it might dep
information stored in the database.

The enterprise bean code uses theisCallerInRole(String roleName) method to test whether
the current caller has been assigned to a given security role. Security roles are defined by the A
tion Assembler in the deployment descriptor (see Subsection 20.3.1), and are assigned to princi
principal groups that exist in the operational environment by the Deployer.
 10/23/00 436

Bean Provider’s responsibilities Enterprise JavaBeans 2.0, Proposed Final Draft Security management

Sun Microsystems, Inc.

ty roles
curity

e

-

Note thatisCallerInRole(String roleName) tests the principal that represents the
caller of the enterprise bean, not the principal that corresponds to the run-as security identity
for the bean, if any.

The following code sample illustrates the use of theisCallerInRole(String roleName)
method.

public class PayrollBean ... {
EntityContext ejbContext;

public void updateEmployeeInfo(EmplInfo info) {

oldInfo = ... read from database;

// The salary field can be changed only by callers
// who have the security role "payroll"
if (info.salary != oldInfo.salary &&

!ejbContext.isCallerInRole("payroll")) {
throw new SecurityException(...);

}
...

}
...

}

20.2.5.3 Declaration of security roles referenced from the bean’s code

The Bean Provider is responsible for declaring in thesecurity-role-ref elements of the deploy-
ment descriptor all the security role names used in the enterprise bean code. Declaring the securi
references in the code allows the Application Assembler or Deployer to link the names of the se
roles used in the code to the security roles defined for an assembled application through thesecu-
rity-role elements.

The Bean Provider must declare each security role referenced in the code using thesecu-
rity-role-ref element as follows:

• Declare the name of the security role using therole-name element. The name must be th
security role name that is used as a parameter to theisCallerInRole(String role-
Name) method.

• Optional: Provide a description of the security role in thedescription element.

A security role reference, including the name defined by therole-name element, is scoped to the ses
sion or entity bean element whose declaration contains thesecurity-role-ref element.
437 10/23/00

Security management Enterprise JavaBeans 2.0, Proposed Final Draft Application Assembler’s responsibilities

Sun Microsystems, Inc.

red in

ment

ans is
eeds
, the
l it. The
ployer,

-
ication.

s
inter-

of an
cepts
The following example illustrates how an enterprise bean’s references to security roles are decla
the deployment descriptor.

...
<enterprise-beans>

...
<entity>

<ejb-name>AardvarkPayroll</ejb-name>
<ejb-class>com.aardvark.payroll.PayrollBean</ejb-class>
...
<security-role-ref>

<description>
This security role should be assigned to the
employees of the payroll department who are
allowed to update employees’ salaries.

</description>
<role-name>payroll</role-name>

</security-role-ref>
...

</entity>
...

</enterprise-beans>
...

The deployment descriptor above indicates that the enterprise beanAardvarkPayroll makes the
security check usingisCallerInRole("payroll") in its business method.

20.3 Application Assembler’s responsibilities

The Application Assembler (which could be the same party as the Bean Provider) may define asecurity
viewof the enterprise beans contained in the ejb-jar file. Providing the security view in the deploy
descriptor is optional for the Bean Provider and Application Assembler.

The main reason for the Application Assembler’s providing the security view of the enterprise be
to simplify the Deployer’s job. In the absence of a security view of an application, the Deployer n
detailed knowledge of the application in order to deploy the application securely. For example
Deployer would have to know what each business method does to determine which users can cal
security view defined by the Application Assembler presents a more consolidated view to the De
allowing the Deployer to be less familiar with the application.

The security view consists of a set ofsecurity roles. A security role is a semantic grouping of permis
sions that a given type of users of an application must have in order to successfully use the appl

The Application Assembler definesmethod permissionsfor each security role. A method permission i
a permission to invoke a specified group of methods of the enterprise beans’ home and remote
faces.

It is important to keep in mind that the security roles are used to define the logical security view
application. They should not be confused with the user groups, users, principals, and other con
that exist in the target enterprise’s operational environment.
 10/23/00 438

Application Assembler’s responsibilities Enterprise JavaBeans 2.0, Proposed Final Draft Security management

Sun Microsystems, Inc.

ation,
to the

e inter-

pera-
e

ment to

pass

d

curity
In special cases, a qualified Deployer may change the definition of the security roles for an applic
or completely ignore them and secure the application using a different mechanism that is specific
operational environment.

If the Bean Provider has declared any security role references using thesecurity-role-ref ele-
ments, the Application Assembler must link all the security role references listed in thesecu-
rity-role-ref elements to the security roles defined in thesecurity-role elements. This is
described in more detail in subsection 20.3.3.

20.3.1 Security roles
The Application Assembler can define one or moresecurity rolesin the deployment descriptor. The
Application Assembler then assigns groups of methods of the enterprise beans’ home and remot
faces to the security roles to define the security view of the application.

Because the Application Assembler does not, in general, know the security environment of the o
tional environment, the security roles are meant to belogical roles (or actors), each representing a typ
of user that should have the same access rights to the application.

The Deployer then assigns user groups and/or user accounts defined in the operational environ
the security roles defined by the Application Assembler.

Defining the security roles in the deployment descriptor is optional[37]l for the Application Assembler.
Their omission in the deployment descriptor means that the Application Assembler chose not to
any security deployment related instructions to the Deployer in the deployment descriptor.

The Application Assembler is responsible for the following:

• Define each security role using asecurity-role element.

• Use therole-name element to define the name of the security role.

• Optionally, use thedescription element to provide a description of a security role.

The security roles defined by thesecurity-role elements are scoped to the ejb-jar file level, an
apply to all the enterprise beans in the ejb-jar file.

[37] If the Application Assembler does not define security roles in the deployment descriptor, the Deployer will have to define se
roles at deployment time.
439 10/23/00

Security management Enterprise JavaBeans 2.0, Proposed Final Draft Application Assembler’s responsibilities

Sun Microsystems, Inc.

he or
wed to
The following example illustrates a security role definition in a deployment descriptor.

...
<assembly-descriptor>

<security-role>
<description>

This role includes the employees of the
enterprise who are allowed to access the
employee self-service application. This role
is allowed only to access his/her own
information.

</description>
<role-name>employee</role-name>

</security-role>

<security-role>
<description>

This role includes the employees of the human
resources department. The role is allowed to
view and update all employee records.

</description>
<role-name>hr-department</role-name>

</security-role>

<security-role>
<description>

This role includes the employees of the payroll
department. The role is allowed to view and
update the payroll entry for any employee.

</description>
<role-name>payroll-department</role-name>

</security-role>

<security-role>
<description>

This role should be assigned to the personnel
authorized to perform administrative functions
for the employee self-service application.
This role does not have direct access to
sensitive employee and payroll information.

</description>
<role-name>admin</role-name>

</security-role>
...

</assembly-descriptor>

20.3.2 Method permissions

If the Application Assembler has defined security roles for the enterprise beans in the ejb-jar file,
she can also specify the methods of the remote and home interface that each security role is allo
invoke.
 10/23/00 440

Application Assembler’s responsibilities Enterprise JavaBeans 2.0, Proposed Final Draft Security management

Sun Microsystems, Inc.

secu-
luding

using

list
eth-

efined

ler has
assume
t to be
rmitted

ee legal

cified

f the
e, this
Method permissions are defined in the deployment descriptor as a binary relation from the set of
rity roles to the set of methods of the home and remote interfaces of session and entity beans, inc
all their superinterfaces (including the methods of theEJBHomeand EJBObject interfaces). The
method permissions relation includes the pair (R, M) if and only if the security roleR is allowed to
invoke the methodM.

The Application Assembler defines the method permissions relation in the deployment descriptor
themethod-permission elements as follows.

• Eachmethod-permission element includes a list of one or more security roles and a
of one or more methods. All the listed security roles are allowed to invoke all the listed m
ods. Each security role in the list is identified by therole-name element, and each method
(or a set of methods, as described below) is identified by themethod element. An optional
description can be associated with amethod-permission element using thedescrip-
tion element.

• The method permissions relation is defined as the union of all the method permissions d
in the individualmethod-permission elements.

• A security role or a method may appear in multiplemethod-permission elements.

It is possible that some methods are not assigned to any security roles. If the Application Assemb
assigned some methods (but not all) of an enterprise bean to security roles, the Deployer should
that the Application Assembler’s intent is that the methods not assigned to security roles are no
callable. The Deployer should configure the enterprise bean’s security such that no access is pe
to any method that is not associated with at least one security role.

The method element uses theejb-name , method-name , and method-params elements to
denote one or more methods of an enterprise bean’s home and remote interfaces. There are thr
styles for composing themethod element:

Style 1:
<method>

<ejb-name> EJBNAME</ejb-name>
<method-name>*</method-name>

</method>

This style is used for referring to all of the remote and home interface methods of a spe
enterprise bean.

Style 2: :
<method>

<ejb-name> EJBNAME</ejb-name>
<method-name> METHOD</method-name>

</method>

This style is used for referring to a specified method of the remote or home interface o
specified enterprise bean. If there are multiple methods with the same overloaded nam
style refers to all of the overloaded methods.
441 10/23/00

Security management Enterprise JavaBeans 2.0, Proposed Final Draft Application Assembler’s responsibilities

Sun Microsystems, Inc.

aded
erface.

sig-
Style 3:
<method>

<ejb-name> EJBNAME</ejb-name>
<method-name> METHOD</method-name>
<method-params>

<method-param> PARAMETER_1</method-param>
...
<method-param> PARAMETER_N</method-param>

</method-params>
</method>

This style is used to refer to a specified method within a set of methods with an overlo
name. The method must be defined in the specified enterprise bean’s remote or home int

The optionalmethod-intf element can be used to differentiate methods with the same name and
nature that are defined in both the remote and home interfaces.
 10/23/00 442

Application Assembler’s responsibilities Enterprise JavaBeans 2.0, Proposed Final Draft Security management

Sun Microsystems, Inc.

ploy-
The following example illustrates how security roles are assigned method permissions in the de
ment descriptor:

...
<method-permission>

<role-name>employee</role-name>
<method>

<ejb-name>EmployeeService</ejb-name>
<method-name>*</method-name>

</method>
</method-permission>

<method-permission>
<role-name>employee</role-name>
<method>

<ejb-name>AardvarkPayroll</ejb-name>
<method-name>findByPrimaryKey</method-name>

</method>
<method>

<ejb-name>AardvarkPayroll</ejb-name>
<method-name>getEmployeeInfo</method-name>

</method>
<method>

<ejb-name>AardvarkPayroll</ejb-name>
<method-name>updateEmployeeInfo</method-name>

</method>
</method-permission>

<method-permission>
<role-name>payroll-department</role-name>
<method>

<ejb-name>AardvarkPayroll</ejb-name>
<method-name>findByPrimaryKey</method-name>

</method>
<method>

<ejb-name>AardvarkPayroll</ejb-name>
<method-name>getEmployeeInfo</method-name>

</method>
<method>

<ejb-name>AardvarkPayroll</ejb-name>
<method-name>updateEmployeeInfo</method-name>

</method>
<method>

<ejb-name>AardvarkPayroll</ejb-name>
<method-name>updateSalary</method-name>

</method>
</method-permission>

<method-permission>
<role-name>admin</role-name>
<method>

<ejb-name>EmployeeServiceAdmin</ejb-name>
<method-name>*</method-name>

</method>
</method-permission>
...
443 10/23/00

Security management Enterprise JavaBeans 2.0, Proposed Final Draft Application Assembler’s responsibilities

Sun Microsystems, Inc.

e

d in

med

d for
e used.

r

bler.
pass
20.3.3 Linking security r ole references to security roles
If the Application Assembler defines thesecurity-role elements in the deployment descriptor, h
or she is also responsible for linking all the security role references declared in thesecu-
rity-role-ref elements to the security roles defined in thesecurity-role elements.

The Application Assembler links each security role reference to a security role using therole-link
element. The value of therole-link element must be the name of one of the security roles define
asecurity-role element.

A role-link element must be used even if the value ofrole-name is the same as the value of the
role-link reference.

The following deployment descriptor example shows how to link the security role reference na
payroll to the security role namedpayroll-department .

...
<enterprise-beans>

...
<entity>

<ejb-name>AardvarkPayroll</ejb-name>
<ejb-class>com.aardvark.payroll.PayrollBean</ejb-class>
...
<security-role-ref>

<description>
This role should be assigned to the
employees of the payroll department.
Members of this role have access to
anyone’s payroll record.
The role has been linked to the
payroll-department role.

</description>
<role-name>payroll</role-name>
<role-link>payroll-department</role-link>

</security-role-ref>
...

</entity>
...

</enterprise-beans>
...

20.3.4 Specification of security identities in the deployment descriptor
The Application Assembler typically specifies whether the caller’s security identity should be use
the execution of the methods of an enterprise bean or whether a specific run-as identity should b

The Application Assembler uses thesecurity-identity deployment descriptor element for this
purpose. The value of thesecurity-identity element is eitheruse-caller-identity or
run-as-specified-identity . Theuse-caller-identity element cannot be specified fo
message-driven beans.

Defining the security identities in the deployment descriptor is optional for the Application Assem
Their omission in the deployment descriptor means that the Application Assembler chose not to
any instructions related to security identities to the Deployer in the deployment descriptor.
 10/23/00 444

Deployer’s responsibilities Enterprise JavaBeans 2.0, Proposed Final Draft Security management

Sun Microsystems, Inc.

rprise
r to the
ght in

pera-
e

as the
cipal

:

cted

been
with
20.3.4.1 Run-as
The Application Assembler can use therun-as-specified-identity element to define a run-as
identity for an enterprise bean in the deployment descriptor. The run-as identity applies to the ente
bean as a whole, that is, to all methods of the enterprise bean’s home and remote interfaces o
onMessage method of a message-driven bean, and all internal methods of the bean that they mi
turn call.

Because the Application Assembler does not, in general, know the security environment of the o
tional environment, the run-as identity is designated by alogical role-name, which corresponds to on
of the security roles defined by the Application Assembler in the deployment descriptor.

The Deployer then assigns a security principal defined in the operational environment to be used
principal for the run-as identity. The security principal assigned by the Deployer should be a prin
that has been assigned to the security role specified by therole-name element.

The Application Assembler is responsible for the following in the specification of run-as identities

• Use therole-name element to define the name of the security role.

• Optionally, use the description element to provide a description of the principal that is expe
to be bound to the run-as identity in terms of its security role.

The following example illustrates the definition of a run-as identity in the deployment descriptor.

...
<enterprise-beans>

...
<session>

<ejb-name>EmployeeService</ejb-name>
...
<security-identity>

<run-as-specified-identity>
<role-name>admin</role-name>

</run-as-specified-identity>
</security-identity>
...

</session>
...

</enterprise-beans>
...

20.4 Deployer’s responsibilities

The Deployer is responsible for ensuring that an assembled application is secure after it has
deployed in the target operational environment. This section defines the Deployer’s responsibility
respect to EJB security management.
445 10/23/00

Security management Enterprise JavaBeans 2.0, Proposed Final Draft Deployer’s responsibilities

Sun Microsystems, Inc.

view
yer’s
s and
oyer’s

ent.
Con-

bean

the
exam-

roups)

rity role

curity
rin-

secu-
the
ipal

al

cture.
ment
iron-
e user
on a
ame,
The Deployer uses deployment tools provided by the EJB Container Provider to read the security
of the application supplied by the Application Assembler in the deployment descriptor. The Deplo
job is to map the security view that was specified by the Application Assembler to the mechanism
policies used by the security domain in the target operational environment. The output of the Depl
work includes an application security policy descriptor that is specific to the operational environm
The format of this descriptor and the information stored in the descriptor are specific to the EJB
tainer.

The following subsections describe the security related tasks performed by the Deployer.

20.4.1 Security domain and principal realm assignment
The Deployer is responsible for assigning the security domain and principal realm to an enterprise
application.

Multiple principal realms within the same security domain may exist, for example, to separate
realms of employees, trading partners, and customers. Multiple security domains may exist, for
ple, in application hosting scenarios.

20.4.2 Assignment of security roles
The Deployer assigns principals and/or groups of principals (such as individual users or user g
used for managing security in the operational environment to the security roles defined in thesecu-
rity-role elements of the deployment descriptor.

Typically, the Deployer does not need to change the method permissions assigned to each secu
in the deployment descriptor.

The Application Assembler linked all the security role references used in the bean’s code to the se
roles defined in thesecurity-role elements. The Deployer does not assign principals and/or p
cipal groups to the security role references—the principals and/or principals groups assigned to a
rity role apply also to all the linked security role references. For example, the Deployer of
AardvarkPayroll enterprise bean in subsection 20.3.3 would assign principals and/or princ
groups to the security-rolepayroll-department , and the assigned principals and/or princip
groups would be implicitly assigned also to the linked security rolepayroll .

The EJB architecture does not specify how an enterprise should implement its security archite
Therefore, the process of assigning the logical security roles defined in the application’s deploy
descriptor to the operational environment’s security concepts is specific to that operational env
ment. Typically, the deployment process consists of assigning to each security role one or mor
groups (or individual users) defined in the operational environment. This assignment is done
per-application basis. (That is, if multiple independent ejb-jar files use the same security role n
each may be assigned differently.)
 10/23/00 446

EJB Client Responsibilities Enterprise JavaBeans 2.0, Proposed Final Draft Security management

Sun Microsystems, Inc.

The
d in

m-
to the

truc-

pal.

rprise
as the

rincipal
further

in sub-

er and
adapt

tion
Appli-
ing in
for the
b-jar

ontext
e EJB
20.4.3 Principal delegation
The Deployer is responsible for configuring the principal delegation for inter-component calls.
Deployer must follow any instructions supplied by the Application Assembler (for example, provide
the run-as-specified-identity elements of the deployment descriptor, in thedescrip-
tion elements of the deployment descriptor, or in a deployment manual).

If the use-caller-identity element is specified, the caller principal is propagated from one co
ponent to another (i.e., the caller principal of the first enterprise bean in a call-chain is passed
enterprise beans down the chain). This ensures that the returned value ofgetCallerPrincipal()
will be the same for all the enterprise beans involved in a call chain. Note that if the security infras
ture performs principal mapping in the course of the call chain, however, thegetCallerPrinci-
pal() method returns the principal that is the result of the mapping, not the original caller princi

If the Application Assembler specifies that a run-as identity be used on behalf of a particular ente
bean, the Deployer must configure the enterprise beans such that the run-as principal is used
caller principal on any calls that the enterprise bean makes to other beans, and that the run-as p
is propagated along the call-chain of those other beans (in the absence of the specification of any
run-as-specified-identity elements).

20.4.4 Security management of resource access

The Deployer’s responsibilities with respect to securing resource managers access are defined
section 19.4.2.

20.4.5 General notes on deployment descriptor processing

The Deployer can use the security view defined in the deployment descriptor by the Bean Provid
Application Assembler merely as “hints” and may change the information whenever necessary to
the security policy to the operational environment.

Since providing the security information in the deployment descriptor is optional for the Applica
Assembler, the Deployer is responsible for performing any tasks that have not been done by the
cation Assembler. (For example, if the definition of security roles and method permissions is miss
the deployment descriptor, the Deployer must define the security roles and method permissions
application.) It is not required that the Deployer store the output of this activity in the standard ej
file format.

20.5 EJB Client Responsibilities

This section defines the rules that the EJB client program must follow to ensure that the security c
passed on the client calls, and possibly imported by the enterprise bean, do not conflict with th
Server’s capabilities for association between a security context and transactions.

These rules are:
447 10/23/00

Security management Enterprise JavaBeans 2.0, Proposed Final Draft EJB Container Provider’s responsibilities

Sun Microsystems, Inc.

rule
curity

com-
ecurity

secu-

hap-
uests

n use

ation
or her
age-

ntime

beans.
n, and

ple, the
eros.

may be
e.

ulti-
• A transactional client cannot change its principal association within a transaction. This
ensures that all calls from the client within a transaction are performed with the same se
context.

• A Session Bean’s client must not change its principal association for the duration of the
munication with the session object. This rule ensures that the server can associate a s
identity with the session instance at instance creation time, and never have to change the
rity association during the session instance lifetime.

• If transactional requests within a single transaction arrive from multiple clients (this could
pen if there are intermediary objects or programs in the transaction call-chain), all req
within the same transaction must be associated with the same security context.

20.6 EJB Container Provider’s responsibilities

This section describes the responsibilities of the EJB Container and Server Provider.

20.6.1 Deployment tools
The EJB Container Provider is responsible for providing the deployment tools that the Deployer ca
to perform the tasks defined in Section 20.4.

The deployment tools read the information from the deployment descriptor and present the inform
to the Deployer. The tools guide the Deployer through the deployment process, and present him
with choices for mapping the security information in the deployment descriptor to the security man
ment mechanisms and policies used in the target operational environment.

The deployment tools’ output is stored in an EJB Container specific manner, and is available at ru
to the EJB Container.

20.6.2 Security domain(s)
The EJB Container provides a security domain and one or more principal realms to the enterprise
The EJB architecture does not specify how an EJB Server should implement a security domai
does not define the scope of a security domain.

A security domain can be implemented, managed, and administered by the EJB Server. For exam
EJB Server may store X509 certificates or it might use an external security provider such as Kerb

The EJB specification does not define the scope of the security domain. For example, the scope
defined by the boundaries of the application, EJB Server, operating system, network, or enterpris

The EJB Server can, but is not required to, provide support for multiple security domains, and/or m
ple principal realms.
 10/23/00 448

EJB Container Provider’s responsibilities Enterprise JavaBeans 2.0, Proposed Final Draft Security management

Sun Microsystems, Inc.

r appli-
man-

ecurity
ust be

loyer
iner is

ingle
rprise

rinci-

used

rprise

of a
le 2 on

me and
m the
The case of multiple domains on the same EJB Server can happen when a large server is used fo
cation hosting. Each hosted application can have its own security domain to ensure security and
agement isolation between applications owned by multiple organizations.

20.6.3 Security mechanisms
The EJB Container Provider must provide the security mechanisms necessary to enforce the s
policies set by the Deployer. The EJB specification does not specify the exact mechanisms that m
implemented and supported by the EJB Server.

The typical security functions provided by the EJB Server include:

• Authentication of principals.

• Access authorization for EJB calls and resource manager access.

• Secure communication with remote clients (privacy, integrity, etc.).

20.6.4 Passing principals on EJB calls
The EJB Container Provider is responsible for providing the deployment tools that allow the Dep
to configure the principal delegation for calls from one enterprise bean to another. The EJB Conta
responsible for performing the principal delegation as specified by the Deployer.

The EJB Container must be capable of allowing the Deployer to specify that, for all calls from a s
application within a single J2EE product, the caller principal is propagated on calls from one ente
bean to another (i.e., the multiple beans in the call chain will see the same return value fromgetCall-
erPrincipal()).

This requirement is necessary for applications that need a consistent return value of getCallerP
pal() across a chain of calls between enterprise beans.

The EJB Container must be capable of allowing the Deployer to specify that a run-as principal be
for the execution of the home and remote methods of a session or entity bean or for theonMessage
method of a message-driven bean.

20.6.5 Security methods injavax.ejb.EJBContext

The EJB Container must provide access to the caller’s security context information from the ente
beans’ instances via thegetCallerPrincipal() and isCallerInRole(String role-
Name) methods. The EJB Container must provide this context information during the execution
business method invoked via the enterprise bean’s remote or home interface, as defined in Tab
page 70, Table 3 on page 80, Table 4 on page 175, and Table 12 on page 259.

The Container must ensure that all enterprise bean method invocations received through the ho
remote interface are associated with some principal. The Container must never return a null fro
getCallerPrincipal() method.
449 10/23/00

Security management Enterprise JavaBeans 2.0, Proposed Final Draft EJB Container Provider’s responsibilities

Sun Microsystems, Inc.

ers as

tiple
r Pro-
ed by

nter-

ntime
iner
enta-

princi-
from

. The
EJB

cement

d the
load
g sys-

olicy
rin-
er-

od, the

other
enter-
se bean
20.6.6 Secure access to resource managers
The EJB Container Provider is responsible for providing secure access to resource manag
described in Subsection 19.4.3.

20.6.7 Principal mapping
If the application requires that its clients are deployed in a different security domain, or if mul
applications deployed across multiple security domains need to interoperate, the EJB Containe
vider is responsible for the mechanism and tools that allow mapping of principals. The tools are us
the System Administrator to configure the security for the application’s environment.

20.6.8 System principal
The EJB specification does not define the “system” principal under which the JVM running an e
prise bean’s method executes.

Leaving the principal undefined makes it easier for the EJB Container vendors to provide the ru
support for EJB on top of their existing server infrastructures. For example, while one EJB Conta
implementation can execute all instances of all enterprise beans in a single JVM, another implem
tion can use a separate JVM per ejb-jar per client. Some EJB Containers may make the system
pal the same as the application-level principal; others may use different principals, potentially
different principal realms and even security domains.

20.6.9 Runtime security enforcement
The EJB Container is responsible for enforcing the security policies defined by the Deployer
implementation of the enforcement mechanism is EJB Container implementation specific. The
Container may, but does not have to, use the Java programming language security as the enfor
mechanism.

For example, to isolate multiple executing enterprise bean instances, the EJB Container can loa
multiple instances into the same JVM and isolate them via using multiple class loaders, or it can
each instance into its own JVM and rely on the address space protection provided by the operatin
tem.

The general security enforcement requirements for the EJB Container follow:

• The EJB Container must provide enforcement of the client access control per the p
defined by the Deployer. A caller is allowed to invoke a method if, and only if, the caller p
cipal is assignedat least oneof the security roles that includes the method in its method p
missions definition. (That is, it is not meant that the caller must be assignedall the roles
associated with the method.) If the Container denies a client access to a business meth
Container must throw thejava.rmi.RemoteExcetion to the client.

• The EJB Container must isolate an enterprise bean instance from other instances and
application components running on the server. The EJB Container must ensure that other
prise bean instances and other application components are allowed to access an enterpri
only via the enterprise bean’s remote and home interfaces.
 10/23/00 450

System Administrator’s responsibilities Enterprise JavaBeans 2.0, Proposed Final Draft Security management

Sun Microsystems, Inc.

stance
ludes
ntext
source
that the
archi-

ns.

beans
yer.

ultiple

typ-
ner,

some
ployer

inis-

r to a

ator is
rprise
• The EJB Container must isolate an enterprise bean instance at runtime such that the in
does not gain unauthorized access to privileged system information. Such information inc
the internal implementation classes of the container, the various runtime state and co
maintained by the container, object references of other enterprise bean instances, or re
managers used by other enterprise bean instances. The EJB Container must ensure
interactions between the enterprise beans and the container are only through the EJB
tected interfaces.

• The EJB Container must ensure the security of the persistent state of the enterprise bea

• The EJB Container must manage the mapping of principals on calls to other enterprise
or on access to resource managers according to the security policy defined by the Deplo

• The Container must allow the same enterprise bean to be deployed independently m
times, each time with a different security policy[38]. The Container must allow multi-
ple-deployed enterprise beans to co-exist at runtime.

20.6.10 Audit trail
The EJB Container may provide a security audit trail mechanism. A security audit trail mechanism
ically logs all java.security.Exceptions. It also logs all denials of access to EJB Servers, EJB Contai
EJB remote interfaces, and EJB home interfaces.

20.7 System Administrator’s responsibilities

This section defines the security-related responsibilities of the System Administrator. Note that
responsibilities may be carried out by the Deployer instead, or may require cooperation of the De
and the System Administrator.

20.7.1 Security domain administration
The System Administrator is responsible for the administration of principals. Security domain adm
tration is beyond the scope of the EJB specification.

Typically, the System Administrator is responsible for creating a new user account, adding a use
user group, removing a user from a user group, and removing or freezing a user account.

20.7.2 Principal mapping
If the client is in a different security domain than the target enterprise bean, the system administr
responsible for mapping the principals used by the client to the principals defined for the ente
bean. The result of the mapping is available to the Deployer.

The specification of principal mapping techniques is beyond the scope of the EJB architecture.

[38] The enterprise bean is installed each time using a different JNDI name.
451 10/23/00

Security management Enterprise JavaBeans 2.0, Proposed Final Draft System Administrator’s responsibilities

Sun Microsystems, Inc.

an-
20.7.3 Audit trail r eview
If the EJB Container provides an audit trail facility, the System Administrator is responsible for its m
agement.
 10/23/00 452

Overview Enterprise JavaBeans 2.0, Proposed Final Draft Deployment descriptor

Sun Microsystems, Inc.

es an
n the
tion.

r. This
mbler,

y does
bler
enter-

ined in
Chapter 21 Deployment descriptor

This chapter defines the deployment descriptor that is part of the ejb-jar file. Section 21.1 provid
overview of the deployment descriptor. Sections 21.2 through 21.4 describe the information i
deployment descriptor from the perspective of the EJB roles responsible for providing the informa
Section 21.5 defines the deployment descriptor’s XML DTD.

21.1 Overview

The deployment descriptor is part of the contract between the ejb-jar file producer and consume
contract covers both the passing of enterprise beans from the Bean Provider to Application Asse
and from the Application Assembler to the Deployer.

An ejb-jar file produced by the Bean Provider contains one or more enterprise beans and typicall
not contain application assembly instructions. An ejb-jar file produced by an Application Assem
contains one or more enterprise beans, plus application assembly information describing how the
prise beans are combined into a single application deployment unit.

The J2EE specification defines how enterprise beans and other application components conta
multiple ejb-jar files can be assembled into an application.
453 10/23/00

Deployment descriptor Enterprise JavaBeans 2.0, Proposed Final Draft Bean Provider’s responsibilities

Sun Microsystems, Inc.

at is
r file.

an
ructural
ruc-
rprise

er-
unit.
file
ean’s

in the

e

rise
JNDI
s the

va
fies the

e
-

d
a

iven.
The role of the deployment descriptor is to capture the declarative information (i.e. information th
not included directly in the enterprise beans’ code) that is intended for the consumer of the ejb-ja

There are two basic kinds of information in the deployment descriptor:

• Enterprise beans’ structuralinformation. Structural information describes the structure of
enterprise bean and declares an enterprise bean’s external dependencies. Providing st
information in the deployment descriptor is mandatory for the ejb-jar file producer. The st
tural information cannot, in general, be changed because doing so could break the ente
bean’s function.

• Application assemblyinformation. Application assembly information describes how the ent
prise bean (or beans) in the ejb-jar file is composed into a larger application deployment
Providing assembly information in the deployment descriptor is optional for the ejb-jar
producer. Assembly level information can be changed without breaking the enterprise b
function, although doing so may alter the behavior of an assembled application.

21.2 Bean Provider’s responsibilities

The Bean Provider is responsible for providing the structural information for each enterprise bean
deployment descriptor.

The Bean Provider must use theenterprise-beans element to list all the enterprise beans in th
ejb-jar file.

The Bean Provider must provide the following information for each enterprise bean:

• Enterprise bean’s name. The Bean Provider must assign a logical name to each enterp
bean in the ejb-jar file. There is no architected relationship between this name and the
name that the Deployer will assign to the enterprise bean. The Bean Provider specifie
enterprise bean’s name in theejb-name element.

• Enterprise bean’s class. The Bean Provider must specify the fully-qualified name of the Ja
class that implements the enterprise bean’s business methods. The Bean Provider speci
enterprise bean’s class name in theejb-class element.

• Enterprise bean’s home interfaces. The Bean Provider must specify the fully-qualified nam
of the enterprise bean’s home interface in thehome element, unless the bean is a Mes
sage-driven bean.

• Enterprise bean’s remote interfaces. The Bean Provider must specify the fully-qualifie
name of the enterprise bean’s remote interface in theremote element, unless the bean is
Message-driven bean.

• Enterprise bean’s type. The enterprise bean types are: session, entity, and message-dr
The Bean Provider must use the appropriatesession , entity , or message-driven ele-
ment to declare the enterprise bean’s structural information.
 10/23/00 454

Bean Provider’s responsibilities Enterprise JavaBeans 2.0, Proposed Final Draft Deployment descriptor

Sun Microsystems, Inc.

rant

an
eful

or by

an
ge-

er
the

er
ct

ed
the

rsis-
ses

-
-

ed

ent

e
section
• Re-entrancy indication. The Bean Provider must specify whether an entity bean is re-ent
or not. Session beans and Message-driven beans are never re-entrant.

• Session bean’s state management type. If the enterprise bean is a Session bean, the Be
Provider must use thesession-type element to declare whether the session bean is stat
or stateless.

• Session or Message-driven bean’s transaction demarcation type. If the enterprise bean is a
Session or a Message-driven bean, the Bean Provider must use thetransaction-type
element to declare whether transaction demarcation is performed by the enterprise bean
the Container.

• Entity bean’s persistence management. If the enterprise bean is an Entity bean, the Be
Provider must use thepersistence-type element to declare whether persistence mana
ment is performed by the enterprise bean or by the Persistence Manager.

• Entity bean’s primary key class. If the enterprise bean is an Entity bean, the Bean Provid
specifies the fully-qualified name of the Entity bean’s primary key class in
prim-key-class element. The Bean Providermustspecify the primary key class for an
Entity with bean-managed persistence.

• Entity Bean’s abstract schema name.If the enterprise bean is an Entity Bean with contain
managed persistence andcmp-version 2.x , the Bean Provider must specify the abstra
schema name of the entity bean using theabstract-schema-name element.

• Container-managed fields. If the enterprise bean is an Entity bean with container-manag
persistence, the Bean Provider must specify the container-managed fields using
cmp-fields elements.

• Dependent classes.If the enterprise bean is an Entity bean with container-managed pe
tence andcmp-version 2.x , the Bean Provider must specify any dependent object clas
involved in container-managed relationships using thedependents element.

• Container-managed relationships. If the enterprise bean is an Entity bean with con
tainer-managed persistence andcmp-version 2.x , the Bean Provider must specify the con
tainer-managed relationships using therelationships element.

• Finder and select queries.If the enterprise bean is an Entity bean with container-manag
persistence andcmp-version 2.x , the Bean Provider must use thequery element to spec-
ify any EJB QL finder or select query other than that forfindByPrimaryKey .

• Environment entries. The Bean Provider must declare all the enterprise bean’s environm
entries as specified in Subsection 19.2.1.

• Resource manager connection factory references.The Bean Provider must declare all th
enterprise bean’s resource manager connection factory references as specified in Sub
19.4.1.
455 10/23/00

Deployment descriptor Enterprise JavaBeans 2.0, Proposed Final Draft Application Assembler’s responsibility

Sun Microsystems, Inc.

n’s
section

o the

ces

er

ge
ve.

S
man-

, and
form
eploy-

cation
tput is
to a

put
ation

case,
sec-

Pro-

or
• Resource environment references. The Bean Provider must declare all the enterprise bea
references to administered objects that are associated with resources as specified in Sub
19.5.1.

• EJB references. The Bean Provider must declare all the enterprise bean’s references t
homes of other enterprise beans as specified in Subsection 19.3.1.

• Security role references. The Bean Provider must declare all the enterprise bean’s referen
to security roles as specified in Subsection 20.2.5.3.

• Message-driven bean’s destination.The Bean Provider may provide advice to the Deploy
as to the destination type to which a Message-driven bean should be assigned.

• Message-driven bean’s message selector. The Bean Provider may declare the JMS messa
selector to be used in determining which messages the Message-driven bean is to recei

• Message-driven bean’s acknowledgment mode. The Bean Provider may declare the JM
acknowledgment mode option that should be used for a message-driven bean with bean
aged transaction demarcation.

The deployment descriptor produced by the Bean Provider must be well formed in the XML sense
valid with respect to the DTD in Section 21.5. The content of the deployment descriptor must con
to the semantics rules specified in the DTD comments and elsewhere in this specification. The d
ment descriptor must refer to the DTD using the following statement:

<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise
JavaBeans 2.0//EN" "http://java.sun.com/dtd/ejb-jar_2_0.dtd">

21.3 Application Assembler’s responsibility

The Application Assembler assembles enterprise beans into a single deployment unit. The Appli
Assembler’s input is one or more ejb-jar files provided by one or more Bean Providers, and the ou
also one or more ejb-jar files. The Application Assembler can combine multiple input ejb-jar files in
single output ejb-jar file, or split an input ejb-jar file into multiple output ejb-jar files. Each out
ejb-jar file is either a deployment unit intended for the Deployer, or a partially assembled applic
that is intended for another Application Assembler.

The Bean Provider and Application Assembler may be the same person or organization. In such a
the person or organization performs the responsibilities described both in this and the previous
tions.

The Application Assembler may modify the following information that was specified by the Bean
vider:

• Values of environment entries. The Application Assembler may change existing and/
define new values of environment properties.
 10/23/00 456

Application Assembler’s responsibility Enterprise JavaBeans 2.0, Proposed Final Draft Deployment descriptor

Sun Microsystems, Inc.

ew

are
ify

n’s
t of

he
ele-

ise

an

ame
fy all

21.2

e
cation

or the
bler
com-
bler
anner,

cu-
he
• Description fields. The Application Assembler may change existing or create n
description elements.

• Relationship names.If multiple ejb-jar files use the same names for relationships and
merged into a single ejb-jar file, it is the responsibility of the Application Assembler to mod
the relationship names defined in theejb-relation-name elements.

In general, the Application Assembler should never modify any of the following.

• Enterprise bean’s name. The Application Assembler should not change the enterprise bea
name defined in theejb-name element since EJB QL queries may depend on the conten
this element.

• Dependent class name.The Application Assembler should not change the value of t
dependent-name element since EJB QL queries may depend on the content of this
ment.

• Remote enterprise bean’s name.The Application Assembler should not change an enterpr
bean’s name designated by theremote-ejb-name element since EJB QL queries may
depend on the content of this element.

• Role source element. The Application Assembler should not change the content of
ejb-name , remote-ejb-name or adependent-name element in therole-source
element since they are used as references.

If any of these elements must be modified by the Application Assembler in order to resolve n
clashes during the merging two ejb-jar files into one, the Application Assembler must also modi
ejb-ql query strings that depend on the value of the modified element(s).

The Application Assembler must not, in general, modify any other information listed in Section
that was provided in the input ejb-jar file.

The Application Assembler may, but is not required to, specify any of the followingapplication assem-
bly information:

• Binding of enterprise bean references. The Application Assembler may link an enterpris
bean reference to another enterprise bean in the ejb-jar file or in the same J2EE appli
unit. The Application Assembler creates the link by adding theejb-link element to the ref-
erencing bean. The Application Assembler uses the ejb-name of the referenced bean f
link. If there are multiple enterprise beans with the same ejb-name, the Application Assem
uses the path name specifying the location of the ejb-jar file that contains the referenced
ponent. The path name is relative to the referencing ejb-jar file. The Application Assem
appends the ejb-name of the referenced bean to the path name separated by “#”. In this m
multiple beans with the same name may be uniquely identified.

• Security roles. The Application Assembler may define one or more security roles. The se
rity roles define therecommendedsecurity roles for the clients of the enterprise beans. T
Application Assembler defines the security roles using thesecurity-role elements.
457 10/23/00

Deployment descriptor Enterprise JavaBeans 2.0, Proposed Final Draft Container Provider’s responsibilities

Sun Microsystems, Inc.

od
e and
rmis-

e
ces

these

n-
ecific

ion
s that
d Mes-

t

wed
ppen

, and
form
eploy-

ML
• Method permissions. The Application Assembler may define method permissions. Meth
permission is a binary relation between the security roles and the methods of the remot
home interfaces of the enterprise beans. The Application Assembler defines method pe
sions using themethod-permission elements.

• Linking of security role references. If the Application Assembler defines security roles in th
deployment descriptor, the Application Assembler must link the security role referen
declared by the Bean Provider to the security roles. The Application Assembler defines
links using therole-link element.

• Security identity. The Application Assembler may specify whether the caller’s security ide
tity should be used for the execution of the methods of an enterprise bean or whether a sp
run-as security identity should be used.

• Transaction attributes. The Application Assembler may define the value of the transact
attributes for the methods of the remote and home interfaces of the enterprise bean
require container-managed transaction demarcation. All Entity beans and the Session an
sage-driven beans declared by the Bean Provider as transaction-typeContainer require
container-managed transaction demarcation. The Application Assembler uses thecon-
tainer-transaction elements to declare the transaction attributes.

• Message-driven bean message selector. The Application Assembler may further restrict, bu
not replace, the value of themessage-selector element of a Message-driven bean.

If an input ejb-jar file contains application assembly information, the Application Assembler is allo
to change the application assembly information supplied in the input ejb-jar file. (This could ha
when the input ejb-jar file was produced by another Application Assembler.)

The deployment descriptor produced by the Bean Provider must be well formed in the XML sense
valid with respect to the DTD in Section 21.5. The content of the deployment descriptor must con
to the semantic rules specified in the DTD comments and elsewhere in this specification. The d
ment descriptor must refer to the DTD using the following statement:

<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise
JavaBeans 2.0//EN" "http://java.sun.com/dtd/ejb-jar_2_0.dtd">

21.4 Container Provider’s responsibilities

The Container provider provides tools that read and import the information contained in the X
deployment descriptor.

All EJB 2.0 implementations must support EJB 1.1 as well as EJB 2.0 deployment descriptors.

The EJB 1.1 deployment descriptor is defined in Appendix B.
 10/23/00 458

Deployment descriptor DTD Enterprise JavaBeans 2.0, Proposed Final Draft Deployment descriptor

Sun Microsystems, Inc.

DTD
by the
21.5 Deployment descriptor DTD

This section defines the XML DTD for the EJB 2.0 deployment descriptor. The comments in the
specify additional requirements for the syntax and semantics that cannot be easily expressed
DTD mechanism.

The content of the XML elements is in general case sensitive. This means, for example, that

<reentrant>True</reentrant>

must be used, rather than:

<reentrant>true</reentrant>.

All valid ejb-jar deployment descriptors must contain the following DOCTYPE declaration:

<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise
JavaBeans 2.0//EN" "http://java.sun.com/dtd/ejb-jar_2_0.dtd">
459 10/23/00

Deployment descriptor Enterprise JavaBeans 2.0, Proposed Final Draft Deployment descriptor DTD

Sun Microsystems, Inc.

sem-
b-jar
We plan to provide an ejb-jar file verifier that can be used by the Bean Provider and Application As
bler Roles to ensure that an ejb-jar is valid. The verifier would check all the requirements for the ej
file and the deployment descriptor stated by this specification.

<!--
This is the XML DTD for the EJB 2.0 deployment descriptor.
-->

<!--
The abstract-schema-name element specifies the name of the abstract
schema type of an entity bean with cmp-version 2.x. It is used in EJB
QL queries.

For example, the abstract-schema-name for an entity bean whose entity
bean class is com.acme.commerce.OrderBean might be OrderBean.

Used in: entity.
-->
<!ELEMENT abstract-schema-name (#PCDATA)>

<!--
The acknowledge-mode element specifies whether JMS AUTO_ACKNOWLEDGE
or DUPS_OK_ACKNOWLEDGE message acknowledgment semantics should be
used for the onMessage message of a message-driven bean that uses bean
managed transaction demarcation.

The acknowledge-mode element must be one of the two following:
<acknowledge-mode>Auto-acknowledge</acknowledge-mode>
<acknowledge-mode>Dups-ok-acknowledge</acknowledgemode>

Used in: message-driven
-->
<!ELEMENT acknowledge-mode (#PCDATA)>

<!--
The assembly-descriptor element contains application-assembly infor-
mation.

The application-assembly information consists of the following parts:
the definition of security roles, the definition of method permis-
sions, and the definition of transaction attributes for enterprise
beans with container-managed transaction demarcation.

All the parts are optional in the sense that they are omitted if the
lists represented by them are empty.

Providing an assembly-descriptor in the deployment descriptor is
optional for the ejb-jar file producer.

Used in: ejb-jar
-->
<!ELEMENT assembly-descriptor (security-role*, method-permission*,

container-transaction*)>

<!--
The cascade-delete element specifies that, within a particular rela-
tionship, the lifetime of a dependent object (or a collection of
dependent objects) is dependent upon the lifetime of an entity bean or
 10/23/00 460

Deployment descriptor DTD Enterprise JavaBeans 2.0, Proposed Final Draft Deployment descriptor

Sun Microsystems, Inc.
dependent object. The cascade-delete element can only be specified in
an ejb-relationship-role element in which the role-source element
specifies a dependent object class. The cascade-delete element can
only be specified for an ejb-relationship-role element contained in
an ejb-relation element in which the other ejb-relationship-role ele-
ment specifies a multiplicity of One.

Used in: ejb-relationship-role
-->
<!ELEMENT cascade-delete EMPTY>

<!--
The cmp-field element describes a container-managed field. The field
element includes an optional description of the field, and the name of
the field.

Used in: entity
-->
<!ELEMENT cmp-field (description?, field-name)>

<!--
The cmp-version element specifies the version of an entity bean with
container-managed persistence.

The cmp-version element must be one of the two following:
<cmp-version>1.x</cmp-version>
<cmp-version>2.x</cmp-version>

The default value of the cmp-version element is 2.x.

Used in: entity
-->
<!ELEMENT cmp-version (#PCDATA)>

<!--
The cmr-field element describes the bean provider’s view of a rela-
tionship. It consists of an optional description, and the name and the
class type of a field in the source of a role of a relationship. The
cmr-field-name element corresponds to the name used for the get and
set accessor methods for the relationship. The cmr-field-type element
is used only for collection-valued cmr-fields. It specifies the type
of the collection that is used.

Used in: ejb-relationship-role
-->
<!ELEMENT cmr-field (description?, cmr-field-name, cmr-field-type?)>

<!--
The cmr-field-name element specifies the name of a relationship field
in the entity bean or dependent object class. The name of the
cmr-field must begin with a lowercase letter. This field is accessed
by methods whose names consists of the name of the field specified by
cmr-field-name in which the first letter is uppercased, prefixed by
“get” or “set”.

Used in: cmr-field
-->
<!ELEMENT cmr-field-name (#PCDATA)>
461 10/23/00

Deployment descriptor Enterprise JavaBeans 2.0, Proposed Final Draft Deployment descriptor DTD

Sun Microsystems, Inc.
<!--
The cmr-field-type element specifies the class of a collection-valued
relationship field in the entity bean or dependent class. The value of
the cmr-field-type element must be either: java.util.Collection or
java.util.Set.

Used in: cmr-field
-->
<!ELEMENT cmr-field-type (#PCDATA)>

<!--
The container-transaction element specifies how the container must
manage transaction scopes for the enterprise bean’s method invoca-
tions. The element consists of an optional description, a list of
method elements, and a transaction attribute. The transaction
attribute is to be applied to all the specified methods.

Used in: assembly-descriptor
-->
<!ELEMENT container-transaction (description?, method+,

trans-attribute)>

<!--
The dependent element specifies a dependent object class of an entity
bean with container managed persistence. The element consists of an
optional description; the dependent object’s class; the unique name
that is used for the dependent object class; a list of the con-
tainer-managed fields of the dependent object class; a list of
pk-field elements if the Bean Provider wishes to specify the primary
key fields of the dependent object; and an optional list of query ele-
ments. The values specified by the pk-field elements must be a subset
of the field-names of the cmp-field elements. The query elements, if
present, must specify ejbSelect methods.

Used in: dependents.

Example:
<dependent>

<dependent-class>com.acme.Address</dependent-class>
<dependent-name>Address</dependent-name>
<cmp-field><field-name>street</field-name></cmp-field>
<cmp-field><field-name>city</field-name></cmp-field>
<cmp-field><field-name>zip</field-name></cmp-field>
<cmp-field><field-name>country</field-name></cmp-field>

</dependent>

-->
<!ELEMENT dependent (description?, dependent-class, dependent-name,
cmp-field*, pk-field*, query*)>

<!--
The dependents element contains an optional description and the dec-
laration of one or more dependent object classes that are used
(directly or indirectly) in relationships with entity beans with con-
tainer managed persistence.

Used in: ejb-jar.
-->
<!ELEMENT dependents (description?, dependent+)>
 10/23/00 462

Deployment descriptor DTD Enterprise JavaBeans 2.0, Proposed Final Draft Deployment descriptor

Sun Microsystems, Inc.
<!--
The dependent-class element contains the fully qualified name of the
dependent object class.

Used in: dependent.
-->
<!ELEMENT dependent-class (#PCDATA)>

<!--
The dependent-name element specifies a name that uniquely designates
a dependent object class.

Used in: dependent, role-source.
-->
<!ELEMENT dependent-name (#PCDATA)>

<!--
The description element is used by the ejb-jar file producer to pro-
vide text describing the parent element.

The description element should include any information that the
ejb-jar file producer wants to provide to the consumer of the ejb-jar
file (i.e. to the Deployer). Typically, the tools used by the ejb-jar
file consumer will display the description when processing the parent
element.

Used in: cmp-field, cmr-field, container-transaction, dependent,
dependents, ejb-entity-ref, ejb-jar, ejb-ref, ejb-relation, ejb-rela-
tionship-role, entity, env-entry, message-driven, method, method-per-
mission, relationships, role-source, run-as-specified-identity,
resource-env-ref, resource-ref, security-identity, security-role,
security-role-ref, and session.
-->
<!ELEMENT description (#PCDATA)>

<!--
The destination-type element specifies the type of the JMS destina-
tion. The type is specified by the Java interface expected to be
implemented by the destination.

The destination-type element must be one of the two following:
<destination-type>javax.jms.Queue</destination-type>
<destination-type>javax.jms.Topic</destination-type>

Used in: message-driven-destination
-->
<!ELEMENT destination-type (#PCDATA)>

<!--
The display-name element contains a short name that is intended to be
displayed by tools.

Used in: ejb-jar, session, entity, and message-driven

Example:
<display-name>Employee Self Service</display-name>

-->
<!ELEMENT display-name (#PCDATA)>
463 10/23/00

Deployment descriptor Enterprise JavaBeans 2.0, Proposed Final Draft Deployment descriptor DTD

Sun Microsystems, Inc.
<!--
The ejb-class element contains the fully-qualified name of the enter-
prise bean’s class.

Used in: entity, message-driven, and session

Example:
<ejb-class>com.wombat.empl.EmployeeServiceBean</ejb-class>

-->
<!ELEMENT ejb-class (#PCDATA)>

<!--
The optional ejb-client-jar element specifies a JAR file that con-
tains the class files necessary for a client program to access the
enterprise beans in the ejb-jar file.

Used in: ejb-jar

Example:
<ejb-client-jar>employee_service_client.jar</ejb-client-jar>

-->
<!ELEMENT ejb-client-jar (#PCDATA)>

<!--
The ejb-entity-ref element, like the ejb-ref element, is used for
declaring a reference to an enterprise bean’s home and remote. How-
ever, the ejb-entity-ref element also contains the remote-ejb-name
element, which provides a name for the remote entity bean. This name
is used within relationships and EJB QL queries to refer to the entity
bean specified by the ejb-entity-ref element.

The declaration consists of an optional description; the
remote-ejb-name element; the expected home and remote interfaces of
the referenced enterprise bean; and an optional ejb-link element,
which is used to specify the referenced enterprise bean.

Used in: relationships

Example:
<ejb-entity-ref>

<description>
This is a reference descriptor for an order bean
</description>
<remote-ejb-name>OrderEJB</remote-ejb-name>
<home>com.commercewarehouse.catalog.OrderHome</home>
<remote>com.commercewarehouse.catalog.Order</remote>
<ejb-link>../orders/orders.jar#OrderEJB</ejb-link>

</ejb-entity-ref>
-->
<!ELEMENT ejb-entity-ref (description?, remote-ejb-name,

home, remote, ejb-link?)>

<!--
The ejb-jar element is the root element of the EJB deployment descrip-
tor. It contains an optional description of the ejb-jar file; optional
display name; optional small icon file name; optional large icon file
name; mandatory structural information about all included enterprise
beans; structural information about any dependent object classes used
 10/23/00 464

Deployment descriptor DTD Enterprise JavaBeans 2.0, Proposed Final Draft Deployment descriptor

Sun Microsystems, Inc.
in container-managed relationships; a descriptor for container man-
aged relationships, if any; an optional application-assembly descrip-
tor; and an optional name of an ejb-client-jar file for the ejb-jar.
-->
<!ELEMENT ejb-jar (description?, display-name?, small-icon?,

large-icon?, enterprise-beans, dependents?,
relationships?, assembly-descriptor?, ejb-client-jar?)>

<!--
The ejb-link element is used in the ejb-ref and ejb-entity-ref ele-
ments to specify that an EJB reference is linked to another enterprise
bean.

The value of the ejb-link element must be the ejb-name of an enter-
prise bean in the same ejb-jar file or in another ejb-jar file in the
same J2EE application unit.

Alternatively, the name in the ejb-link element may be composed of a
path name specifying the ejb-jar containing the referenced enterprise
bean with the ejb-name of the target bean appended and separated from
the path name by “#”. The path name is relative to the jar file con-
taining the referencing component. This allows multiple enterprise
beans with the same ejb-name to be uniquely identified.

Used in: ejb-entity-ref, ejb-ref

Examples:
<ejb-link>EmployeeRecord</ejb-link>
<ejb-link>../products/product.jar#ProductEJB</ejb-link>

-->
<!ELEMENT ejb-link (#PCDATA)>

<!--
The ejb-name element specifies an enterprise bean’s name. This name is
assigned by the ejb-jar file producer to name the enterprise bean in
the ejb-jar file’s deployment descriptor. The name must be unique
among the names of the enterprise beans in the same ejb-jar file.

There is no architected relationship between the ejb-name in the
deployment descriptor and the JNDI name that the Deployer will assign
to the enterprise bean’s home.

The name for an entity bean with cmp-version 2.x must conform to the
lexical rules for an NMTOKEN. The name for an entity bean with
cmp-version 2.x must not be a reserved literal in EJB QL.

Used in: entity, message-driven, session, method, and role-source.

Example:
<ejb-name>EmployeeService</ejb-name>

-->
<!ELEMENT ejb-name (#PCDATA)>

<!--
The ejb-ql element contains the EJB QL query string that defines a
finder or select query. This element is defined within the scope of a
query element whose contents specify the finder or the select method
that uses the query. The content must be a valid EJB QL query string
465 10/23/00

Deployment descriptor Enterprise JavaBeans 2.0, Proposed Final Draft Deployment descriptor DTD

Sun Microsystems, Inc.
for the entity bean or dependent object class for which the query is
specified.

The ejb-ql element must be specified for all queries that are express-
ible in EJB QL.

Used in: query

Example:
<query>

<query-method>
<method-name>ejbSelectPendingLineitems</method-name>
<method-params/>

</query-method>
<ejb-ql>SELECT l FROM LineItems l WHERE l.shipped is FALSE
</ejb-ql>

</query>

-->
<!ELEMENT ejb-ql (#PCDATA)>

<!--
The ejb-ref element is used for the declaration of a reference to
another enterprise bean’s home. The declaration consists of an
optional description; the EJB reference name used in the code of the
referencing enterprise bean; the expected type of the referenced
enterprise bean; the expected home and remote interfaces of the ref-
erenced enterprise bean; and an optional ejb-link information.

The optional ejb-link element is used to specify the referenced enter-
prise bean.

Used in: entity, message-driven, and session
-->
<!ELEMENT ejb-ref (description?, ejb-ref-name, ejb-ref-type, home,

remote, ejb-link?)>

<!--
The ejb-ref-name element contains the name of an EJB reference. The
EJB reference is an entry in the enterprise bean’s environment.

It is recommended that name is prefixed with "ejb/".

Used in: ejb-ref

Example:
<ejb-ref-name>ejb/Payroll</ejb-ref-name>

-->
<!ELEMENT ejb-ref-name (#PCDATA)>

<!--
The ejb-ref-type element contains the expected type of the referenced
enterprise bean.

The ejb-ref-type element must be one of the following:
<ejb-ref-type>Entity</ejb-ref-type>
<ejb-ref-type>Session</ejb-ref-type>

Used in: ejb-ref
 10/23/00 466

Deployment descriptor DTD Enterprise JavaBeans 2.0, Proposed Final Draft Deployment descriptor

Sun Microsystems, Inc.
-->
<!ELEMENT ejb-ref-type (#PCDATA)>

<!--
The ejb-relation element describes a relationship between two
entity-beans, between an entity bean and a dependent object class, or
between two dependent object classes. An ejb-relation element con-
tains a description; an optional ejb-relation-name element; and
exactly two relationship role declarations, defined by the ejb-rela-
tionship-role elements. The name of the relationship, if specified,
is unique within the ejb-jar file.

Used in: relationships
-->
<!ELEMENT ejb-relation (description?, ejb-relation-name?,

ejb-relationship-role, ejb-relationship-role)>

<!--
The ejb-relation-name element provides a unique name for a relation-
ship.

Used in: ejb-relation
-->
<!ELEMENT ejb-relation-name (#PCDATA)>

<!--
The ejb-relationship-role element describes a role within a relation-
ship. There are two roles in each relationship.

The ejb-relationship-role element contains an optional description;
an optional name for the relationship role; a specification of the
multiplicity of the role; an optional specification of cascade-delete
functionality for the role; the role source; and a declaration of the
cmr-field, if any, by means of which the other side of the relation-
ship is accessed from the perspective of the role source.

The multiplicity and role-source element are mandatory.

The role-source element designates an entity-bean or dependent object
class by means of an ejb-name, remote-ejb-name or dependent-name ele-
ment. For bidirectional relationships, both roles of a relationship
must declare a role-source element that specifies a cmr-field in terms
of which the relationship is accessed. The lack of a cmr-field element
in an ejb-relationship-role specifies that the relationship is unidi-
rectional in navigability and that entity bean or the dependent class
that participates in the relationship is "not aware" of the relation-
ship.

Used in: ejb-relation

Example:
<ejb-relation>

<ejb-relation-name>Product-LineItem</ejb-relation-name>
<ejb-relationship-role>

<ejb-relationship-role-name>
product-has-lineitems
</ejb-relationship-role-name>
<multiplicity>One</multiplicity>
<role-source>
467 10/23/00

Deployment descriptor Enterprise JavaBeans 2.0, Proposed Final Draft Deployment descriptor DTD

Sun Microsystems, Inc.
<ejb-name>ProductEJB</ejb-name>
</role-source>

</ejb-relationship-role>

-->
<!ELEMENT ejb-relationship-role (description?,

ejb-relationship-role-name?, multiplicity, cascade-delete?,
role-source, cmr-field?)>

<!--
The ejb-relationship-role-name element defines a name for a role that
is unique within an ejb-relation. Different relationships can use the
same name for a role.

Used in: ejb-relationship-role
-->
<!ELEMENT ejb-relationship-role-name (#PCDATA)>

<!--
The enterprise-beans element contains the declarations of one or more
enterprise beans.
-->
<!ELEMENT enterprise-beans (session | entity | message-driven)+>

<!--
The entity element declares an entity bean. The declaration consists
of: an optional description; optional display name; optional small
icon file name; optional large icon file name; a unique name assigned
to the enterprise bean in the deployment descriptor; the names of the
entity bean’s home and remote interfaces; the entity bean’s implemen-
tation class; the entity bean’s persistence management type; the
entity bean’s primary key class name; an indication of the entity
bean’s reentrancy; an optional specification of the entity bean’s
cmp-version; an optional specification of the entity bean’s abstract
schema name; an optional list of container-managed fields; an
optional specification of the primary key field; an optional declara-
tion of the bean’s environment entries; an optional declaration of the
bean’s EJB references; an optional declaration of the security role
references; an optional declaration of the security identity to be
used for the execution of the bean’s methods; an optional declaration
of the bean’s resource manager connection factory references; an
optional declaration of the bean’s resource environment references;
an optional set of query declarations for finder and select methods
for an entity bean with cmp-version 2.x.

The optional abstract-schema-name element must be specified for an
entity bean with container managed persistence and cmp-version 2.x.

The optional primkey-field may be present in the descriptor if the
entity’s persistence-type is Container.

The optional cmp-version element may be present in the descriptor if
the entity’s persistence-type is Container. If the persistence-type
is Container and the cmp-version element is not specified, its value
defaults to 2.x.

The optional query elements must be present if the persistence-type is
Container and the cmp-version is 2.x and query methods other than
findByPrimaryKey have been defined for the entity bean.
 10/23/00 468

Deployment descriptor DTD Enterprise JavaBeans 2.0, Proposed Final Draft Deployment descriptor

Sun Microsystems, Inc.
The other elements that are optional are “optional” in the sense that
they are omitted if the lists represented by them are empty.

At least one cmp-field element must be present in the descriptor if
the entity’s persistence-type is Container and the cmp-version is
1.x, and none must not be present if the entity’s persistence-type is
Bean.

Used in: enterprise-beans
-->
<!ELEMENT entity (description?, display-name?, small-icon?,

large-icon?, ejb-name, home, remote, ejb-class,
persistence-type, prim-key-class, reentrant, cmp-version?,
abstract-schema-name?, cmp-field*, primkey-field?,
env-entry*, ejb-ref*, security-role-ref*,
security-identity?, resource-ref*, resource-env-ref*,
query*)>

<!--
The env-entry element contains the declaration of an enterprise
bean’s environment entry. The declaration consists of an optional
description, the name of the environment entry, and an optional value.

Used in: entity, message-driven, and session
-->
<!ELEMENT env-entry (description?, env-entry-name, env-entry-type,

env-entry-value?)>

<!--
The env-entry-name element contains the name of an enterprise bean’s
environment entry.

Used in: env-entry

Example:
<env-entry-name>minAmount</env-entry-name>

-->
<!ELEMENT env-entry-name (#PCDATA)>

<!--
The env-entry-type element contains the fully-qualified Java type of
the environment entry value that is expected by the enterprise bean’s
code.

The following are the legal values of env-entry-type: java.lang.Bool-
ean, java.lang.String, java.lang.Integer, java.lang.Double,
java.lang.Byte, java.lang.Short, java.lang.Long, and java.lang.Float.

Used in: env-entry

Example:
<env-entry-type>java.lang.Boolean</env-entry-type>

-->
<!ELEMENT env-entry-type (#PCDATA)>

<!--
The env-entry-value element contains the value of an enterprise
bean’s environment entry. The value must be a String that is valid for
469 10/23/00

Deployment descriptor Enterprise JavaBeans 2.0, Proposed Final Draft Deployment descriptor DTD

Sun Microsystems, Inc.
the constructor of the specified type that takes a single String
parameter.

Used in: env-entry

Example:
<env-entry-value>100.00</env-entry-value>

-->
<!ELEMENT env-entry-value (#PCDATA)>

<!--
The field-name element specifies the name of a container managed
field. The name must be a public field of the enterprise bean class or
one of its superclasses.

The name of the cmp-field of an entity bean with cmp-version 2.x must
begin with a lowercase letter. This field is accessed by methods whose
names consists of the name of the field specified by field-name in
which the first letter is uppercased, prefixed by “get” or “set”.

Used in: cmp-field

Example:
<field-name>firstName</field-Name>

-->
<!ELEMENT field-name (#PCDATA)>

<!--
The home element contains the fully-qualified name of the enterprise
bean’s home interface.

Used in: ejb-ref, ejb-entity-ref, entity, and session

Example:
<home>com.aardvark.payroll.PayrollHome</home>

-->
<!ELEMENT home (#PCDATA)>

<!--
The large-icon element contains the name of a file containing a large
(32 x 32) icon image. The file name is relative path within the
ejb-jar file.

The image must be either in the JPEG or GIF format, and the file name
must end with the suffix ".jpg" or ".gif" respectively.
The icon can be used by tools.

Example:
<large-icon>employee-service-icon32x32.jpg</large-icon>

-->
<!ELEMENT large-icon (#PCDATA)>

<!--
The message-driven element declares a message-driven bean. The decla-
ration consists of: an optional description; optional display name;
optional small icon file name; optional large icon file name; a name
assigned to the enterprise bean in the deployment descriptor; the mes-
sage-driven bean’s implementation class; the message-driven bean’s
transaction management type; an optional declaration of the mes-
 10/23/00 470

Deployment descriptor DTD Enterprise JavaBeans 2.0, Proposed Final Draft Deployment descriptor

Sun Microsystems, Inc.
sage-driven bean’s message selector; an optional declaration of the
acknowledgment mode for the message-driven bean if bean-managed
transaction demarcation is used; an optional declaration of the
intended destination type of the message-driven bean; an optional
declaration of the bean’s environment entries; an optional declara-
tion of the bean’s EJB references; an optional declaration of the
security identity to be used for the execution of the bean’s methods;
an optional declaration of the bean’s resource manager connection
factory references; and an optional declaration of the bean’s
resource environment references.

Used in: enterprise-beans
-->
<!ELEMENT message-driven (description?, display-name?, small-icon?,

large-icon?, ejb-name?, ejb-class, transaction-type,
message-selector?, acknowledge-mode? ,
message-driven-destination?, env-entry*, ejb-ref*,
security-identity?, resource-ref*, resource-env-ref*)>

<!--
The message-driven-destination element provides advice to the
Deployer as to whether a message-driven bean is intended for a Queue
or a Topic. The declaration consists of: the type of the mes-
sage-driven bean’s intended destination and an optional declaration
of whether a durable or non-durable subscription should be used if the
destination-type is javax.jms.Topic.

Used in: message-driven
-->
<!ELEMENT message-driven-destination (destination-type,

subscription-durability?)>

<!--
The message-selector element is used to specify the JMS message selec-
tor to be used in determining which messages a message-driven bean is
to receive.

Example:
<message-selector>JMSType = ‘car’ AND color = ‘blue’ AND weight >
2500</message-selector>

Used in: message-driven
-->
<!ELEMENT message-selector (#PCDATA)>

<!--
The method element is used to denote a method of an enterprise bean’s
home or remote interface, or, in the case of message-driven beans, the
bean’s onMessage method, or a set of methods. The ejb-name element
must be the name of one of the enterprise beans declared in the
deployment descriptor; the optional method-intf element allows to
distinguish between a method with the same signature that is defined
in both the home and remote interface; the method-name element speci-
fies the method name; and the optional method-params elements iden-
tify a single method among multiple methods with an overloaded method
name.

There are three possible styles of the method element syntax:
471 10/23/00

Deployment descriptor Enterprise JavaBeans 2.0, Proposed Final Draft Deployment descriptor DTD

Sun Microsystems, Inc.
1. <method>
<ejb-name>EJBNAME</ejb-name>
<method-name>*</method-name>

</method>

 This style is used to refer to all the methods of the specified
 enterprise bean’s home and remote interfaces.

2. <method>
<ejb-name>EJBNAME</ejb-name>
<method-name>METHOD</method-name>

</method>>

 This style is used to refer to the specified method of the
 specified enterprise bean. If there are multiple methods with
 the same overloaded name, the element of this style refers to
 all the methods with the overloaded name.

3. <method>
<ejb-name>EJBNAME</ejb-name>
<method-name>METHOD</method-name>
<method-params>

<method-param>PARAM-1</method-param>
<method-param>PARAM-2</method-param>
...
<method-param>PARAM-n</method-param>

</method-params>
<method>

 This style is used to refer to a single method within a set of
 methods with an overloaded name. PARAM-1 through PARAM-n are the
 fully-qualified Java types of the method’s input parameters (if
 the method has no input arguments, the method-params element
 contains no method-param elements). Arrays are specified by the
 array element’s type, followed by one or more pair of square
 brackets (e.g. int[][]).

Used in: method-permission, container-transaction and entity.

Examples:

Style 1: The following method element refers to all the methods of
the EmployeeService bean’s home and remote interfaces:

<method>
<ejb-name>EmployeeService</ejb-name>
<method-name>*</method-name>

</method>

Style 2: The following method element refers to all the create
methods of the EmployeeService bean’s home interface:

<method>
<ejb-name>EmployeeService</ejb-name>
<method-name>create</method-name>

</method>
 10/23/00 472

Deployment descriptor DTD Enterprise JavaBeans 2.0, Proposed Final Draft Deployment descriptor

Sun Microsystems, Inc.
Style 3: The following method element refers to the
create(String firstName, String LastName) method of the
EmployeeService bean’s home interface.

<method>
<ejb-name>EmployeeService</ejb-name>
<method-name>create</method-name>
<method-params>

<method-param>java.lang.String</method-param>
<method-param>java.lang.String</method-param>

</method-params>
</method>

The following example illustrates a Style 3 element with
more complex parameter types. The method

foobar(char s, int i, int[] iar, mypackage.MyClass mycl,
mypackage.MyClass[][] myclaar)

 would be specified as:

<method>
<ejb-name>EmployeeService</ejb-name>
<method-name>foobar</method-name>
<method-params>

<method-param>char</method-param>
<method-param>int</method-param>
<method-param>int[]</method-param>
<method-param>mypackage.MyClass</method-param>
<method-param>mypackage.MyClass[][]</method-param>

</method-params>
</method>

The optional method-intf element can be used when it becomes
 necessary to differentiate between a method defined in the home
 interface and a method with the same name and signature that is
 defined in the remote interface.

For example, the method element

<method>
<ejb-name>EmployeeService</ejb-name>
<method-intf>Remote</method-intf>
<method-name>create</method-name>
<method-params>

<method-param>java.lang.String</method-param>
<method-param>java.lang.String</method-param>

</method-params>
</method>

can be used to differentiate the create(String, String) method
 defined in the remote interface from the create(String, String)
 method defined in the home interface, which would be defined as

<method>
<ejb-name>EmployeeService</ejb-name>
<method-intf>Home</method-intf>
<method-name>create</method-name>
<method-params>

<method-param>java.lang.String</method-param>
473 10/23/00

Deployment descriptor Enterprise JavaBeans 2.0, Proposed Final Draft Deployment descriptor DTD

Sun Microsystems, Inc.
<method-param>java.lang.String</method-param>
</method-params>

</method>

The method-intf element can be used with all three Styles of the
method element usage. For example, the following method element exam-
ple could be used to refer to all the methods of the EmployeeService
bean’s home interface.

<method>
<ejb-name>EmployeeService</ejb-name>
<method-intf>Home</method-intf>
<method-name>*</method-name>

</method>

-->
<!ELEMENT method (description?, ejb-name, method-intf?, method-name,

method-params?)>

<!--
The method-intf element allows a method element to differentiate
between the methods with the same name and signature that are defined
in both the remote and home interfaces.

The method-intf element must be one of the following:
<method-intf>Home</method-intf>
<method-intf>Remote</method-intf>

Used in: method
-->
<!ELEMENT method-intf (#PCDATA)>

<!--
The method-name element contains a name of an enterprise bean method,
or the asterisk (*) character. The asterisk is used when the element
denotes all the methods of an enterprise bean’s remote and home inter-
faces.

Used in: method, query-method
-->
<!ELEMENT method-name (#PCDATA)>

<!--
The method-param element contains the fully-qualified Java type name
of a method parameter.

Used in: method-params
-->
<!ELEMENT method-param (#PCDATA)>

<!--
The method-params element contains a list of the fully-qualified Java
type names of the method parameters.

Used in: method, query-method
-->
<!ELEMENT method-params (method-param*)>

<!--
 10/23/00 474

Deployment descriptor DTD Enterprise JavaBeans 2.0, Proposed Final Draft Deployment descriptor

Sun Microsystems, Inc.
The method-permission element specifies that one or more security
roles are allowed to invoke one or more enterprise bean methods. The
method-permission element consists of an optional description, a list
of security role names, and a list of method elements.

The security roles used in the method-permission element must be
defined in the security-role element of the deployment descriptor,
and the methods must be methods defined in the enterprise bean’s
remote and/or home interfaces.

Used in: assembly-descriptor
-->
<!ELEMENT method-permission (description?, role-name+, method+)>

<!--
The multiplicity element describes the multiplicity of the role that
participates in a relation.

The multiplicity element must be one of the two following:
<multiplicity>One</multiplicity>
<multiplicity>Many</multiplicity>

Used in: ejb-relationship-role
-->
<!ELEMENT multiplicity (#PCDATA)>

<!--
The persistence-type element specifies an entity bean’s persistence
management type.

The persistence-type element must be one of the two following:
<persistence-type>Bean</persistence-type>
<persistence-type>Container</persistence-type>

Used in: entity
-->
<!ELEMENT persistence-type (#PCDATA)>

<!--
The pk-field element is used to specify the name of a primary key
field for a dependent object class.

The value of the pk-field must be the name of one of the fields
declared in the cmp-field elements for the dependent object class.

Used in: dependent

Example:
<pk-field>creditCardNumber</pk-field>

-->
<!ELEMENT pk-field (#PCDATA)>

<!--
The prim-key-class element contains the fully-qualified name of an
entity bean’s primary key class.

If the definition of the primary key class is deferred to deployment
time, the prim-key-class element should specify java.lang.Object.
475 10/23/00

Deployment descriptor Enterprise JavaBeans 2.0, Proposed Final Draft Deployment descriptor DTD

Sun Microsystems, Inc.
Used in: entity

Examples:
<prim-key-class>java.lang.String</prim-key-class>
<prim-key-class>com.wombat.empl.EmployeeID</prim-key-class>
<prim-key-class>java.lang.Object</prim-key-class>

-->
<!ELEMENT prim-key-class (#PCDATA)>

<!--
The primkey-field element is used to specify the name of the primary
key field for an entity with container-managed persistence.

The primkey-field must be one of the fields declared in the cmp-field
element, and the type of the field must be the same as the primary key
type.

The primkey-field element is not used if the primary key maps to mul-
tiple container-managed fields (i.e. the key is a compound key). In
this case, the fields of the primary key class must be public, and
their names must correspond to the field names of the entity bean
class that comprise the key.

Used in: entity

Example:
<primkey-field>EmployeeId</primkey-field>

-->
<!ELEMENT primkey-field (#PCDATA)>

<!--
The query element is used to specify a finder or select query. It con-
tains an optional description of the query, the specification of the
finder or select method it is used by, and the EJB QL query string
that defines the query. Queries that are expressible in EJB QL must
use the ejb-ql element to specify the query. If a query is not
expressible in EJB QL, the description element should be used to
describe the semantics of the query and the ejb-ql element should be
empty.

Used in: entity, dependent
-->
<!ELEMENT query (description?, query-method, ejb-ql)>

<!--
The query-method element is used to specify the method for a finder or
select query.

The method-name element specifies the name of a finder or select
method in the entity bean’s implementation class or a select method in
the dependent object class.

Each method-param must be defined for a query-method using the
method-params element.

Used in: query

Example:
 10/23/00 476

Deployment descriptor DTD Enterprise JavaBeans 2.0, Proposed Final Draft Deployment descriptor

Sun Microsystems, Inc.
<query>
<description>Method finds large orders</description>
<query-method>

<method-name>findLargeOrders</method-name>
<method-params></method-params>

</query-method>
<ejb-ql>FROM OrderBean o WHERE o.amount > 1000</ejb-ql>

</query>

-->
<!ELEMENT query-method (method-name, method-params)>

<!--
The reentrant element specifies whether an entity bean is reentrant or
not.

The reentrant element must be one of the two following:
<reentrant>True</reentrant>
<reentrant>False</reentrant>

Used in: entity
-->
<!ELEMENT reentrant (#PCDATA)>

<!--
The relationships element describes the relationships in which con-
tainer managed persistence entity beans and dependent objects partic-
ipate. The relationships element contains an optional description; a
list of ejb-entity-ref elements (references to entity beans that par-
ticipate in container managed relationships but whose abstract per-
sistence schemas are not included in the ejb-jar file); and a list of
ejb-relation elements, which specify the container managed relation-
ships.

Used in: ejb-jar
-->
<!ELEMENT relationships (description?, ejb-entity-ref*,

ejb-relation+)>

<!--
The remote element contains the fully-qualified name of the enter-
prise bean’s remote interface.

Used in: ejb-ref, entity, and session

Example:
<remote>com.wombat.empl.EmployeeService</remote>

-->
<!ELEMENT remote (#PCDATA)>

<!--
The remote-ejb-name element specifies the name of an entity bean that
participates in relationships, but whose abstract persistence schema
is not provided in the ejb-jar file. Remote entity beans may include
entity beans with bean managed persistence, EJB 1.1 entity beans with
container managed persistence, and entity beans that are defined in
another ejb-jar file. The name is declared in the ejb-entity-ref ele-
ment and used to designate a role in a relationship.
477 10/23/00

Deployment descriptor Enterprise JavaBeans 2.0, Proposed Final Draft Deployment descriptor DTD

Sun Microsystems, Inc.
Used in: ejb-entity-ref, role-source
-->
<!ELEMENT remote-ejb-name (#PCDATA)>

<!--
The res-auth element specifies whether the enterprise bean code signs
on programmatically to the resource manager, or whether the Container
will sign on to the resource manager on behalf of the bean. In the
latter case, the Container uses information that is supplied by the
Deployer.

The value of this element must be one of the two following:
<res-auth>Application</res-auth>
<res-auth>Container</res-auth>

-->
<!ELEMENT res-auth (#PCDATA)>

<!--
The res-ref-name element specifies the name of a resource manager con-
nection factory reference.

Used in: resource-ref
-->
<!ELEMENT res-ref-name (#PCDATA)>

<!--
The res-sharing-scope element specifies whether connections obtained
through the given resource manager connection factory reference can
be shared. The value of this element, if specified, must be one of the
two following:

<res-sharing-scope>Shareable</res-sharing-scope>
<res-sharing-scope>Unshareable</res-sharing-scope>

The default value is Shareable.

Used in: resource-ref
-->
<!ELEMENT res-sharing-scope (#PCDATA)>

<!--
The res-type element specifies the type of the data source. The type
is specified by the Java interface (or class) expected to be imple-
mented by the data source.

Used in: resource-ref
-->
<!ELEMENT res-type (#PCDATA)>

<!--
The resource-env-ref element contains a declaration of an enterprise
bean’s reference to an administered object associated with a resource
in the enterprise bean’s environment. It consists of an optional
description, the resource environment reference name, and an indica-
tion of the resource environment reference type expected by the enter-
prise bean code.

Used in: entity, message-driven and session

Examples:
 10/23/00 478

Deployment descriptor DTD Enterprise JavaBeans 2.0, Proposed Final Draft Deployment descriptor

Sun Microsystems, Inc.
<resource-env-ref>
<resource-env-ref-name>jms/StockQueue

</resource-env-ref-name>
<resource-env-ref-type>javax.jms.Queue

</resource-env-ref-type>
</resource-env-ref>

-->
<!ELEMENT resource-env-ref (description?, resource-env-ref-name,
resource-env-ref-type)>

<!--
The resource-env-ref-name element specifies the name of a resource
environment reference; its value is the environment entry name used in
the enterprise bean code.

Used in: resource-env-ref
-->
<!ELEMENT resource-env-ref-name (#PCDATA)>

<!--
The resource-env-ref-type element specifies the type of a resource
environment reference.

Used in: resource-env-ref
-->
<!ELEMENT resource-env-ref-type (#PCDATA)>

<!--
The resource-ref element contains a declaration of enterprise bean’s
reference to an external resource. It consists of an optional descrip-
tion, the resource manager connection factory reference name, the
indication of the resource manager connection factory type expected
by the enterprise bean code, the type of authentication (Application
or Container), and an optional specification of the shareability of
connections obtained from the resource (Shareable or Unshareable).

Used in: entity, message-driven, and session

Example:
<resource-ref>

<res-ref-name>jdbc/EmployeeAppDB</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Container</res-auth>
<res-sharing-scope>Shareable</res-sharing-scope>

</resource-ref>
-->
<!ELEMENT resource-ref (description?, res-ref-name, res-type,

res-auth, res-sharing-scope?)>

<!--
The role-link element is used to link a security role reference to a
defined security role. The role-link element must contain the name of
one of the security roles defined in the security-role elements.

Used in: security-role-ref
-->
<!ELEMENT role-link (#PCDATA)>

<!--
479 10/23/00

Deployment descriptor Enterprise JavaBeans 2.0, Proposed Final Draft Deployment descriptor DTD

Sun Microsystems, Inc.
The role-name element contains the name of a security role.

The name must conform to the lexical rules for an NMTOKEN.

Used in: method-permission, security-role, and security-role-ref
-->
<!ELEMENT role-name (#PCDATA)>

<!--
The role-source element designates the source of a role that partici-
pates in a relationship. A role-source element contains a reference
which uniquely identifies an entity bean or dependent object class.
The Bean Provider must ensure that the content of each role-source
element refers to an existing entity bean, entity bean reference, or
dependent object class.

Used in: ejb-relationship-role
-->
<!ELEMENT role-source (description?, (ejb-name|remote-ejb-name|depen-
dent-name))>

<!--
The run-as-specified-identity element specifies the run-as identity
to be used for the execution of the methods of an enterprise bean. It
contains an optional description, and the name of a security role.

Used in: security-identity
-->
<!ELEMENT run-as-specified-identity (description?, role-name)>

<!--
The security-identity element specifies whether the caller’s security
identity is to be used for the execution of the methods of the enter-
prise bean or whether a specific run-as identity is to be used. It
contains an optional description and a specification of the security
identity to be used.

Used in: session, entity, message-driven
-->
<!ELEMENT security-identity (description?, (use-caller-iden-
tity|run-as-specified-identity))>

<!--
The security-role element contains the definition of a security role.
The definition consists of an optional description of the security
role, and the security role name.

Used in: assembly-descriptor

Example:
<security-role>

<description>
This role includes all employees who are authorized
to access the employee service application.

</description>
<role-name>employee</role-name>

</security-role>
-->
<!ELEMENT security-role (description?, role-name)>
 10/23/00 480

Deployment descriptor DTD Enterprise JavaBeans 2.0, Proposed Final Draft Deployment descriptor

Sun Microsystems, Inc.
<!--
The security-role-ref element contains the declaration of a security
role reference in the enterprise bean’s code. The declaration con-
sists of an optional description, the security role name used in the
code, and an optional link to a defined security role.

The value of the role-name element must be the String used as the
parameter to the EJBContext.isCallerInRole(String roleName) method.

The value of the role-link element must be the name of one of the
security roles defined in the security-role elements.

Used in: entity and session

-->
<!ELEMENT security-role-ref (description?, role-name, role-link?)>

<!--
The session-type element describes whether the session bean is a
stateful session, or stateless session.

The session-type element must be one of the two following:
<session-type>Stateful</session-type>
<session-type>Stateless</session-type>

-->
<!ELEMENT session-type (#PCDATA)>

<!--
The session element declares an session bean. The declaration con-
sists of: an optional description; optional display name; optional
small icon file name; optional large icon file name; a name assigned
to the enterprise bean in the deployment description; the names of the
session bean’s home and remote interfaces; the session bean’s imple-
mentation class; the session bean’s state management type; the ses-
sion bean’s transaction management type; an optional declaration of
the bean’s environment entries; an optional declaration of the bean’s
EJB references; an optional declaration of the security role refer-
ences; an optional declaration of the security identity to be used for
the execution of the bean’s methods; an optional declaration of the
bean’s resource manager connection factory references; and an
optional declaration of the bean’s resource environment references.

The elements that are optional are “optional” in the sense that they
are omitted when if lists represented by them are empty.

Used in: enterprise-beans
-->
<!ELEMENT session (description?, display-name?, small-icon?,

large-icon?, ejb-name, home, remote, ejb-class,
session-type, transaction-type, env-entry*, ejb-ref*,
security-role-ref*, security-identity?, resource-ref*,
resource-env-ref*)>

<!--
The small-icon element contains the name of a file containing a small
(16 x 16) icon image. The file name is relative path within the
ejb-jar file.
481 10/23/00

Deployment descriptor Enterprise JavaBeans 2.0, Proposed Final Draft Deployment descriptor DTD

Sun Microsystems, Inc.
The image must be either in the JPEG or GIF format, and the file name
must end with the suffix ".jpg" or ".gif" respectively.

The icon can be used by tools.

Example:
<small-icon>employee-service-icon16x16.jpg</small-icon>

-->
<!ELEMENT small-icon (#PCDATA)>

<!--
The subscription-durability element specifies whether a JMS topic
subscription is intended to be durable or nondurable.

The subscription-durability element must be one of the two following:
<subscription-durability>Durable</subscription-durability>
<subscription-durability>NonDurable</subscription-durability>

Used in: message-driven-destination
-->
<!ELEMENT subscription-durability (#PCDATA)>

<!--
The transaction-type element specifies an enterprise bean’s transac-
tion management type.

The transaction-type element must be one of the two following:
<transaction-type>Bean</transaction-type>
<transaction-type>Container</transaction-type>

Used in: session and message-driven
-->
<!ELEMENT transaction-type (#PCDATA)>

<!--
The trans-attribute element specifies how the container must manage
the transaction boundaries when delegating a method invocation to an
enterprise bean’s business method.

The value of trans-attribute must be one of the following:
<trans-attribute>NotSupported</trans-attribute>
<trans-attribute>Supports</trans-attribute>
<trans-attribute>Required</trans-attribute>
<trans-attribute>RequiresNew</trans-attribute>
<trans-attribute>Mandatory</trans-attribute>
<trans-attribute>Never</trans-attribute>

Used in: container-transaction
-->
<!ELEMENT trans-attribute (#PCDATA)>

<!--
The use-caller-identity element specifies that the caller’s security
identity be used as the security identity for the execution of the
enterprise bean’s methods.

Used in: security-identity
-->
<!ELEMENT use-caller-identity EMPTY>
 10/23/00 482

Deployment descriptor DTD Enterprise JavaBeans 2.0, Proposed Final Draft Deployment descriptor

Sun Microsystems, Inc.
<!--
The ID mechanism is to allow tools that produce additional deployment
information (i.e., information beyond the standard EJB deployment
descriptor information) to store the non-standard information in a
separate file, and easily refer from these tools-specific files to the
information in the standard deployment descriptor.

The EJB architecture does not allow the tools to add the non-standard
information into the EJB deployment descriptor.
-->
<!ATTLIST abstract-schema-name id ID #IMPLIED>
<!ATTLIST acknowledge-mode id ID #IMPLIED>
<!ATTLIST assembly-descriptor id ID #IMPLIED>
<!ATTLIST cascade-delete id ID #IMPLIED>
<!ATTLIST cmp-field id ID #IMPLIED>
<!ATTLIST cmp-version id ID #IMPLIED>
<!ATTLIST cmr-field id ID #IMPLIED>
<!ATTLIST cmr-field-name id ID #IMPLIED>
<!ATTLIST cmr-field-type id ID #IMPLIED>
<!ATTLIST container-transaction id ID #IMPLIED>
<!ATTLIST dependent id ID #IMPLIED>
<!ATTLIST dependents id ID #IMPLIED>
<!ATTLIST dependent-class id ID #IMPLIED>
<!ATTLIST dependent-name id ID #IMPLIED>
<!ATTLIST description id ID #IMPLIED>
<!ATTLIST destination-type id ID #IMPLIED>
<!ATTLIST display-name id ID #IMPLIED>
<!ATTLIST ejb-class id ID #IMPLIED>
<!ATTLIST ejb-client-jar id ID #IMPLIED>
<!ATTLIST ejb-entity-ref id ID #IMPLIED>
<!ATTLIST ejb-jar id ID #IMPLIED>
<!ATTLIST ejb-link id ID #IMPLIED>
<!ATTLIST ejb-name id ID #IMPLIED>
<!ATTLIST ejb-ql id ID #IMPLIED>
<!ATTLIST ejb-ref id ID #IMPLIED>
<!ATTLIST ejb-ref-name id ID #IMPLIED>
<!ATTLIST ejb-ref-type id ID #IMPLIED>
<!ATTLIST ejb-relation id ID #IMPLIED>
<!ATTLIST ejb-relation-name id ID #IMPLIED>
<!ATTLIST ejb-relationship-role id ID #IMPLIED>
<!ATTLIST ejb-relationship-role-name id ID #IMPLIED>
<!ATTLIST enterprise-beans id ID #IMPLIED>
<!ATTLIST entity id ID #IMPLIED>
<!ATTLIST env-entry id ID #IMPLIED>
<!ATTLIST env-entry-name id ID #IMPLIED>
<!ATTLIST env-entry-type id ID #IMPLIED>
<!ATTLIST env-entry-value id ID #IMPLIED>
<!ATTLIST field-name id ID #IMPLIED>
<!ATTLIST home id ID #IMPLIED>
<!ATTLIST large-icon id ID #IMPLIED>
<!ATTLIST message-driven id ID #IMPLIED>
<!ATTLIST message-driven-destination id ID #IMPLIED>
<!ATTLIST message-selector id ID #IMPLIED>
<!ATTLIST method id ID #IMPLIED>
<!ATTLIST method-intf id ID #IMPLIED>
<!ATTLIST method-name id ID #IMPLIED>
<!ATTLIST method-param id ID #IMPLIED>
<!ATTLIST method-params id ID #IMPLIED>
483 10/23/00

Deployment descriptor Enterprise JavaBeans 2.0, Proposed Final Draft Deployment descriptor DTD

Sun Microsystems, Inc.
<!ATTLIST method-permission id ID #IMPLIED>
<!ATTLIST multiplicity id ID #IMPLIED>
<!ATTLIST persistence-type id ID #IMPLIED>
<!ATTLIST pk-field id ID #IMPLIED>
<!ATTLIST prim-key-class id ID #IMPLIED>
<!ATTLIST primkey-field id ID #IMPLIED>
<!ATTLIST query id ID #IMPLIED>
<!ATTLIST query-method id ID #IMPLIED>
<!ATTLIST reentrant id ID #IMPLIED>
<!ATTLIST relationships id ID #IMPLIED>
<!ATTLIST remote id ID #IMPLIED>
<!ATTLIST remote-ejb-name id ID #IMPLIED>
<!ATTLIST res-auth id ID #IMPLIED>
<!ATTLIST res-ref-name id ID #IMPLIED>
<!ATTLIST res-sharing-scope id ID #IMPLIED>
<!ATTLIST res-type id ID #IMPLIED>
<!ATTLIST resource-env-ref id ID #IMPLIED>
<!ATTLIST resource-env-ref-name id ID #IMPLIED>
<!ATTLIST resource-env-ref-type id ID #IMPLIED>
<!ATTLIST resource-ref id ID #IMPLIED>
<!ATTLIST role-link id ID #IMPLIED>
<!ATTLIST role-name id ID #IMPLIED>
<!ATTLIST role-source id ID #IMPLIED>
<!ATTLIST run-as-specified-identity id ID #IMPLIED>
<!ATTLIST security-identity id ID #IMPLIED>
<!ATTLIST security-role id ID #IMPLIED>
<!ATTLIST security-role-ref id ID #IMPLIED>
<!ATTLIST session-type id ID #IMPLIED>
<!ATTLIST session id ID #IMPLIED>
<!ATTLIST small-icon id ID #IMPLIED>
<!ATTLIST subscription-durability id ID #IMPLIED>
<!ATTLIST transaction-type id ID #IMPLIED>
<!ATTLIST trans-attribute id ID #IMPLIED>
<!ATTLIST use-caller-identity id ID #IMPLIED>
 10/23/00 484

Overview Enterprise JavaBeans 2.0, Proposed Final Draft Ejb-jar file

Sun Microsystems, Inc.

at is
sembled

r, and

lly do
bler

terprise
into a
Chapter 22 Ejb-jar file

The ejb-jar file is the standard format for the packaging of enterprise Beans. The ejb-jar file form
used to package un-assembled enterprise beans (the Bean Provider’s output), and to package as
applications (the Application Assembler’s output).

22.1 Overview

The ejb-jar file format is the contract between the Bean Provider and the Application Assemble
between the Application Assembler and the Deployer.

An ejb-jar file produced by the Bean Provider contains one or more enterprise beans that typica
not contain application assembly instructions. An ejb-jar file produced by an Application Assem
(which can be the same person or organization as the Bean Provider) contains one or more en
beans, plus application assembly information describing how the enterprise beans are combined
single application deployment unit.
485 10/23/00

Ejb-jar file Enterprise JavaBeans 2.0, Proposed Final Draft Deployment descriptor

Sun Microsystems, Inc.

ploy-

bean

bean.

asses
, except
s, and the

erprise
nt view
aces of
ir super-

nd excep-
rs of a

at are
ppli-

alue
value
f method

value
tainer
imple-
22.2 Deployment descriptor

The ejb-jar file must contain the deployment descriptor in the format defined in Chapter 21. The de
ment descriptor must be stored with the nameMETA-INF/ejb-jar.xml in the ejb-jar file.

22.3 Class files

The ejb-jar file must contain, either by inclusion or by reference, the class files of each enterprise
as follows:

• The enterprise bean class.

• The enterprise bean home and remote interfaces, unless the bean is a message-driven

• The primary key class if the bean is an entity bean.

The ejb-jar file must also contain, either by inclusion or by reference, the class files for all the cl
and interfaces that each enterprise bean class and the remote and home interfaces depend on
J2EE and J2SE classes. This includes their superclasses and superinterfaces, dependent classe
classes and interfaces used as method parameters, results, and exceptions.

The ejb-jar file also contains the client view of the enterprise beans that are referenced by the ent
beans whose implementations (enterprise bean classes) are provided in the ejb-jar file. The clie
of an enterprise bean is defined in Section 4.2.1, and is comprised of the home and remote interf
the referenced enterprise bean and other classes that these interfaces depend on, such as the
classes and superinterfaces, the classes and interfaces used as method parameters, results, a
tions. The serializable value classes, including the classes which may be used as membe
collection in a remote method call to an enterprise bean, are part of the client view.

It is the responsibility of the Application Assembler to package all the application value classes th
needed for the client view in the ejb-jar file, either by inclusion or by reference. An example of an a
cation value class might be an Address class used as a parameter in a method call.

It is the responsibility of the Container Provider’s deployment tools to generate the additional v
classes and make them available at deployment time as part of the client view. The additional
classes are the subclasses of the application value classes that may be needed as return values o
calls generated by the Container, as well as the system value classes. An example of a system
class might be an implementation class generated for the java.util.Collection interface by the Con
which is returned as a result of a finder method. System value classes include the classes that
ment the handle and metadata interfaces of an enterprise bean.
 10/23/00 486

ejb-client JAR file Enterprise JavaBeans 2.0, Proposed Final Draft Ejb-jar file

Sun Microsystems, Inc.

ces in
ided in
y of the
h class
at runt-

er jar
the

con-
hat are
2.3. If
eces-
bility
n 22.3.

onal
-
ear)
ed in
n as the
ccessi-

er.

ntains
sses
deploy-
in an

rence
imply
ch is
r file,
ds on
Java
The Application Assembler must not package the stubs of the EJBHome and EJBObject interfa
the ejb-jar file. This includes the stubs for the enterprise beans whose implementations are prov
the ejb-jar file as well as the referenced enterprise beans. Generating the stubs is the responsibilit
Container. The stubs are typically generated by the Container Provider’s deployment tools for eac
that extends the EJBHome or EJBObject interfaces, or they may be generated by the Container
ime.

An ejb-jar file does not have to physically include the class files if the classes are defined in anoth
file that is named in the Class-Path attribute in the Manifest file of the referencing ejb-jar file or in
transitive closure of such Class-Path references.

22.4 ejb-client JAR file

The ejb-jar file producer can create an ejb-client JAR file for the ejb-jar file. The ejb-client JAR file
tains all the class files that a client program needs to use the client view of the enterprise beans t
contained in the ejb-jar file. The classes that comprise the client view are described in Section 2
this option is used, it is the responsibility of the Application Assembler to include all the classes n
sary to comprise the client view of an enterprise bean in the ejb-client JAR file. It is the responsi
of the container to provide the necessary stubs and system value classes as described in Sectio

The ejb-client JAR file is specified in the deployment descriptor of the ejb-jar file using the opti
ejb-client-jar element. The value of theejb-client-jar element is the path name specify
ing the location of the ejb-client JAR file in the containing J2EE Enterprise Application Archive (.
file. The path name is relative to the location of the referencing ejb-jar file. When a client is contain
the same (.ear) file as the referenced enterprise beans (i.e. when a client is in the same applicatio
referenced enterprise beans), the Deployer should ensure that the specified ejb-client JAR file is a
ble to the client program’s class loader. If theejb-client-jar element is not specified, the
deployer of the component should make the entire ejb-jar file accessible to the client’s class load

When clients refer to enterprise beans that are not part of the same (.ear) file, the jar file which co
the client, e.g. an ejb-jar file, must contain, either by inclusion or by reference, all the client view cla
of the referenced beans, including the system and additional value classes that are generated at
ment time by the Container Provider’s tools. The client view classes may have been packaged
ejb-client JAR.

The EJB specification does not specify whether the ejb-jar file should include by copy or by refe
the classes that are in the ejb-client JAR file. If the by-copy approach is used, the producer s
includes all the class files in the ejb-client JAR file also in the ejb-jar file. If the by-reference approa
used, the ejb-jar file producer does not duplicate the content of the ejb-client JAR file in the ejb-ja
but instead uses a Manifest Class-Path entry in the ejb-jar file to specify that the ejb-jar file depen
the ejb-client JAR at runtime. The use of the Class-Path entries in the JAR files is explained in the
2 Platform, Enterprise Edition specification [9].
487 10/23/00

Ejb-jar file Enterprise JavaBeans 2.0, Proposed Final Draft Deprecated in EJB 1.1

Sun Microsystems, Inc.

ated in

con-

the
infor-

replaced
22.5 Deprecated in EJB 1.1

This section describes the deployment information that was defined in EJB 1.0, and was deprec
EJB 1.1.

22.5.1 ejb-jar Manifest
The JAR Manifest file is no longer used by the EJB architecture to identify the enterprise beans
tained in an ejb-jar file.

EJB 1.0 used the Manifest file to identify the individual enterprise beans that were included in
ejb-jar file. As of EJB 1.1, the enterprise beans are identified in the deployment descriptor, so the
mation in the Manifest is no longer needed.

22.5.2 Serialized deployment descriptor JavaBeans™ components
The mechanism of using serialized JavaBeans components as deployment descriptors has been
by the XML-based deployment descriptor.
 10/23/00 488

Bean Provider’s responsibilities Enterprise JavaBeans 2.0, Proposed Final Draft Runtime environment

Sun Microsystems, Inc.

tainer
ortable

nction-
and to
Chapter 23 Runtime environment

This chapter defines the application programming interfaces (APIs) that a compliant EJB 2.0 Con
must make available to the enterprise bean instances at runtime. These APIs can be used by p
enterprise beans because the APIs are guaranteed to be available in all EJB 2.0 Containers.

The chapter also defines the restrictions that the EJB 2.0 Container Provider can impose on the fu
ality that it provides to the enterprise beans. These restrictions are necessary to enforce security
allow the Container to properly manage the runtime environment.

23.1 Bean Provider’s responsibilities

This section describes the view and responsibilities of the Bean Provider.

23.1.1 APIs provided by Container
The EJB Provider can rely on the EJB 2.0 Container Provider to provide the following APIs:

• Java 2 Platform, Standard Edition, v1.3 (J2SE) APIs

• EJB 2.0 Standard Extension
489 10/23/00

Runtime environment Enterprise JavaBeans 2.0, Proposed Final Draft Bean Provider’s responsibilities

Sun Microsystems, Inc.

at the
ions
endent
, which
ll EJB

s is
ss be

rs may
across

ion of

rprise

to a

play

to-

ponents

ket, or
• JDBC 2.0 Standard Extension (support for row sets only)

• JNDI 1.2 Standard Extension

• JTA 1.0.1 Standard Extension (theUserTransaction interface only)

• JMS 1.0.2 Standard Extension

• JavaMail 1.1 Standard Extension (for sending mail only)

• JAXP 1.0

23.1.2 Programming restrictions

This section describes the programming restrictions that a Bean Provider must follow to ensure th
enterprise bean isportableand can be deployed in any compliant EJB 2.0 Container. The restrict
apply to the implementation of the business methods. These restrictions also extend to the dep
classes that are used by an entity bean with container managed persistence. Section 23.2
describes the Container’s view of these restrictions, defines the programming environment that a
Containers must provide.

• An enterprise Bean must not use read/write static fields. Using read-only static field
allowed. Therefore, it is recommended that all static fields in the enterprise bean cla
declared asfinal .

This rule is required to ensure consistent runtime semantics because while some EJB Containe
use a single JVM to execute all enterprise bean’s instances, others may distribute the instances
multiple JVMs.

• An enterprise Bean must not use thread synchronization primitives to synchronize execut
multiple instances.

Same reason as above. Synchronization would not work if the EJB Container distributed ente
bean’s instances across multiple JVMs.

• An enterprise Bean must not use the AWT functionality to attempt to output information
display, or to input information from a keyboard.

Most servers do not allow direct interaction between an application program and a keyboard/dis
attached to the server system.

• An enterprise bean must not use thejava.io package to attempt to access files and direc
ries in the file system.

The file system APIs are not well-suited for business components to access data. Business com
should use a resource manager API, such as JDBC, to store data.

• An enterprise bean must not attempt to listen on a socket, accept connections on a soc
use a socket for multicast.
 10/23/00 490

Bean Provider’s responsibilities Enterprise JavaBeans 2.0, Proposed Final Draft Runtime environment

Sun Microsystems, Inc.

es not
with

clared
ity rules
access

es in a
ty.

loader;
top the

ctions
envi-

cket, or

o use
ge the

attempt
enter-

reads

.

cular

le.

ould

ual rules
The EJB architecture allows an enterprise bean instance to be a network socket client, but it do
allow it to be a network server. Allowing the instance to become a network server would conflict
the basic function of the enterprise bean-- to serve the EJB clients.

• The enterprise bean must not attempt to query a class to obtain information about the de
members that are not otherwise accessible to the enterprise bean because of the secur
of the Java language. The enterprise bean must not attempt to use the Reflection API to
information that the security rules of the Java programming language make unavailable.

Allowing the enterprise bean to access information about other classes and to access the class
manner that is normally disallowed by the Java programming language could compromise securi

• The enterprise bean must not attempt to create a class loader; obtain the current class
set the context class loader; set security manager; create a new security manager; s
JVM; or change the input, output, and error streams.

These functions are reserved for the EJB Container. Allowing the enterprise bean to use these fun
could compromise security and decrease the Container’s ability to properly manage the runtime
ronment.

• The enterprise bean must not attempt to set the socket factory used by ServerSocket, So
the stream handler factory used by URL.

These networking functions are reserved for the EJB Container. Allowing the enterprise bean t
these functions could compromise security and decrease the Container’s ability to properly mana
runtime environment.

• The enterprise bean must not attempt to manage threads. The enterprise bean must not
to start, stop, suspend, or resume a thread; or to change a thread’s priority or name. The
prise bean must not attempt to manage thread groups.

These functions are reserved for the EJB Container. Allowing the enterprise bean to manage th
would decrease the Container’s ability to properly manage the runtime environment.

• The enterprise bean must not attempt to directly read or write a file descriptor.

Allowing the enterprise bean to read and write file descriptors directly could compromise security

• The enterprise bean must not attempt to obtain the security policy information for a parti
code source.

Allowing the enterprise bean to access the security policy information would create a security ho

• The enterprise bean must not attempt to load a native library.

This function is reserved for the EJB Container. Allowing the enterprise bean to load native code w
create a security hole.

• The enterprise bean must not attempt to gain access to packages and classes that the us
of the Java programming language make unavailable to the enterprise bean.
491 10/23/00

Runtime environment Enterprise JavaBeans 2.0, Proposed Final Draft Container Provider’s responsibility

Sun Microsystems, Inc.

ction

ction

bjects

ctions

s of the

e

ntain-
ettings
must

nter-
ments; a
tion.

t runt-
This function is reserved for the EJB Container. Allowing the enterprise bean to perform this fun
would create a security hole.

• The enterprise bean must not attempt to define a class in a package.

This function is reserved for the EJB Container. Allowing the enterprise bean to perform this fun
would create a security hole.

• The enterprise bean must not attempt to access or modify the security configuration o
(Policy, Security, Provider, Signer, and Identity).

These functions are reserved for the EJB Container. Allowing the enterprise bean to use these fun
could compromise security.

• The enterprise bean must not attempt to use the subclass and object substitution feature
Java Serialization Protocol.

Allowing the enterprise bean to use these functions could compromise security.

• The enterprise bean must not attempt to passthis as an argument or method result. Th
enterprise bean must pass the result ofSessionContext.getEJBObject() or Enti-
tyContext.getEJBObject() instead.

To guarantee portability of the enterprise bean’s implementation across all compliant EJB 2.0 Co
ers, the Bean Provider should test the enterprise bean using a Container with the security s
defined in Table 21. The tables define the minimal functionality that a compliant EJB Container
provide to the enterprise bean instances at runtime.

23.2 Container Provider’s responsibility

This section defines the Container’s responsibilities for providing the runtime environment to the e
prise bean instances. The requirements described here are considered to be the minimal require
Container may choose to provide additional functionality that is not required by the EJB specifica

An EJB 2.0 Container must make the following APIs available to the enterprise bean instances a
ime:

• Java 2 Platform, Standard Edition v1.3 (J2SE) APIs

• EJB 2.0 APIs

• JNDI 1.2

• JTA 1.0.1, theUserTransaction interface only

• JDBC™ 2.0 extension
 10/23/00 492

Container Provider’s responsibility Enterprise JavaBeans 2.0, Proposed Final Draft Runtime environment

Sun Microsystems, Inc.

. The

rprise
e Con-
ity and
terfer-
• JMS 1.0.2

• JavaMail 1.1, sending mail only

• JAXP 1.0

The following subsections describes the requirements in more detail.

23.2.1 Java 2 APIs requirements

The Container must provide the full set of Java 2 Platform, Standard Edition, v1.3 (J2SE) APIs
Container is not allowed to subset the Java 2 platform APIs.

The EJB Container is allowed to make certain Java 2 platform functionality unavailable to the ente
bean instances by using the Java 2 platform security policy mechanism. The primary reason for th
tainer to make certain functions unavailable to enterprise bean instances is to protect the secur
integrity of the EJB Container environment, and to prevent the enterprise bean instances from in
ing with the Container’s functions.
493 10/23/00

Runtime environment Enterprise JavaBeans 2.0, Proposed Final Draft Container Provider’s responsibility

Sun Microsystems, Inc.

st be
ntainer
ermis-

bean
rprise

bean
nstance

f the
The following table defines the Java 2 platform security permissions that the EJB Container mu
able to grant to the enterprise bean instances at runtime. The term “grant” means that the Co
must be able to grant the permission, the term “deny” means that the Container should deny the p
sion.

Some Containers may allow the Deployer to grant more, or fewer, permissions to the enterprise
instances than specified in Table 21. Support for this is not required by the EJB specification. Ente
beans that rely on more or fewer permissions will not be portable across all EJB Containers.

23.2.2 EJB 2.0 requirements

The container must implement the EJB 2.0 interfaces as defined in this documentation.

23.2.3 JNDI 1.2 requirements

At the minimum, the EJB Container must provide a JNDI API name space to the enterprise
instances. The EJB Container must make the name space available to an instance when the i
invokes thejavax.naming.InitialContext default (no-arg) constructor.

The EJB Container must make available at least the following objects in the name space:

Table 21 Java 2 Platform Security policy for a standard EJB Container

Permission name EJB Container policy

java.security.AllPermission deny

java.awt.AWTPermission deny

java.io.FilePermission deny

java.net.NetPermission deny

java.util.PropertyPermission grant “read”, “*”
deny all other

java.lang.reflect.ReflectPermission deny

java.lang.RuntimePermission grant “queuePrintJob”,
deny all other

java.lang.SecurityPermission deny

java.io.SerializablePermission deny

java.net.SocketPermission grant “connect”, “*” [Note A],
deny all other

Notes:

[A] This permission is necessary, for example, to allow enterprise beans to use the client functionality o
Java IDL and RMI-IIOP packages that are part of the Java 2 platform.
 10/23/00 494

Container Provider’s responsibility Enterprise JavaBeans 2.0, Proposed Final Draft Runtime environment

Sun Microsystems, Inc.

esented
ust be

ation
e

rfaces,

rprise
hese
t for

rprise
JMS

clude:

t call

e con-
• The home interfaces of other enterprise beans.

• The resource factories used by the enterprise beans.

The EJB specification does not require that all the enterprise beans deployed in a Container be pr
with the same JNDI API name space. However, all the instances of the same enterprise bean m
presented with the same JNDI API name space.

23.2.4 JTA 1.0.1 requirements

The EJB Container must include the JTA 1.0.1 extension, and it must provide thejavax.transac-
tion.UserTransaction interface to enterprise beans with bean-managed transaction demarc
through the javax.ejb.EJBContext interface, and also in JNDI under the nam
java:comp/UserTransaction , in the cases required by the EJB specification.

The other JTA interfaces are low-level transaction manager and resource manager integration inte
and are not intended for direct use by enterprise beans.

23.2.5 JDBC™ 2.0 extension requirements

The EJB Container must include the JDBC 2.0 extension and provide its functionality to the ente
bean instances, with the exception of the low-level XA and connection pooling interfaces. T
low-level interfaces are intended for integration of a JDBC driver with an application server, no
direct use by enterprise beans.

23.2.6 JMS 1.0.2 requirements

The EJB Container must include the JMS 1.0.2 extension and provide its functionality to the ente
bean instances, with the exception of the low-level interfaces that are intended for integration of a
provider with an application server, not for direct use by enterprise beans. These interfaces in
javax.jms.ServerSession , javax.jms.ServerSessionPool , javax.jms.Connec-
tionConsumer , and all thejavax.jms XA interfaces.

In addition, the following methods are for use by the Container only. Enterprise beans must no
these methods: javax.jms.Session.setMessageListener , javax.jms.Ses-
sion.getMessageListener , javax.jms.Session.run , javax.jms.QueueConnec-
tion.createConnectionConsumer ,
javax.jms.TopicConnection.createConnectionConsumer , javax.jms.TopicCo-
nnection.createDurableConnectionConsumer .

The following methods must not be called by enterprise beans because they may interfere with th
nection management by the Container:javax.jms.Connection.setExceptionListener,
javax.jms.Connection.stop , javax.jms.Connection.setClientID .

Enterprise beans must not call thejavax.jms.MessageConsumer.setMessageListener or
javax.jms.MessageConsumer.getMessageListener method.
495 10/23/00

Runtime environment Enterprise JavaBeans 2.0, Proposed Final Draft Container Provider’s responsibility

Sun Microsystems, Inc.

the

ust be

r-EJB
ing so
rprise
This specification recommends, but does not require, that the Container throw
javax.jms.JMSException if enterprise beans call any of the methods listed in this section.

23.2.7 Ar gument passing semantics

The enterprise bean’s home and remote interfaces areremote interfacesfor Java RMI. The Container
must ensure the semantics for passing arguments conform to Java RMI. Non-remote objects m
passed by value.

Specifically, the EJB Container is not allowed to pass non-remote objects by reference on inte
invocations when the calling and called enterprise beans are collocated in the same JVM. Do
could result in the multiple beans sharing the state of a Java object, which would break the ente
bean’s semantics.
 10/23/00 496

Bean Provider’s responsibilities Enterprise JavaBeans 2.0, Proposed Final Draft Responsibilities of EJB Roles

Sun Microsystems, Inc.

essary
nt EJB

docu-

ormat
Chapter 24 Responsibilities of EJB Roles

This chapter provides the summary of the responsibilities of each EJB Role.

24.1 Bean Provider’s responsibilities

This section highlights the requirements for the Bean Provider. Meeting these requirements is nec
to ensure that the enterprise beans developed by the Bean Provider can be deployed in all complia
Containers.

24.1.1 API r equirements

The enterprise beans must meet all the API requirements defined in the individual chapters of this
ment.

24.1.2 Packaging requirements

The Bean Provider is responsible for packaging the enterprise beans in an ejb-jar file in the f
described in Chapter 22.
497 10/23/00

Responsibilities of EJB Roles Enterprise JavaBeans 2.0, Proposed Final Draft Application Assembler’s responsibilities

Sun Microsystems, Inc.

yer to
ls are

r pro-

r files

tail.

secu-
ing of

tor in

remote
The deployment descriptor must include thestructural information described in Section 21.2.

The deployment descriptor may optionally include any of theapplication assemblyinformation as
described in Section 21.3.

24.2 Application Assembler’s responsibilities

The requirements for the Application Assembler are in defined in Section 21.3.

24.3 EJB Container Provider’s responsibilities

The EJB Container Provider is responsible for providing the deployment tools used by the Deplo
deploy enterprise beans packaged in the ejb-jar file. The requirements for the deployment too
defined in the individual chapters of this document.

The EJB Container Provider is responsible for implementing its part of the EJB contracts, and fo
viding all the runtime services described in the individual chapters of this document.

24.4 Deployer’s responsibilities

The Deployer uses the deployment tools provided by the EJB Container provider to deploy ejb-ja
produced by the Bean Providers and Application Assemblers.

The individual chapters of this document describe the responsibilities of the Deployer in more de

24.5 System Administrator’s responsibilities

The System Administrator is responsible for configuring the EJB Container and server, setting up
rity management, integrating resource managers with the EJB Container, and runtime monitor
deployed enterprise beans applications.

The individual chapters of this document describe the responsibilities of the System Administra
more detail.

24.6 Client Programmer’s responsibilities

The EJB client programmer writes applications that access enterprise beans via their home and
interfaces or via JMS messages.
 10/23/00 498

package javax.ejb Enterprise JavaBeans 2.0, Proposed Final Draft Enterprise JavaBeans™ API Reference

Sun Microsystems, Inc.
Chapter 25 Enterprise JavaBeans™ API Reference

The following interfaces and classes comprise the Enterprise JavaBeans API:

packagejavax.ejb

Interfaces:

public interface EJBContext
public interface EJBHome
public interface EJBMetaData
public interface EJBObject
public interface EnterpriseBean
public interface EntityBean
public interface EntityContext
public interface Handle
public interface HomeHandle
public interface MessageDrivenBean
public interface MessageDrivenContext
public interface SessionBean
public interface SessionContext
public interface SessionSynchronization
499 10/23/00

Enterprise JavaBeans™ API Reference Enterprise JavaBeans 2.0, Proposed Final Draft package javax.ejb.deployment

Sun Microsystems, Inc.

ated
r, and

with
Classes:

public class CreateException
public class DuplicateKeyException
public class EJBException
public class FinderException
public class ObjectNotFoundException
public class RemoveException

packagejavax.ejb.deployment

Thejavax.ejb.deployment package that was defined in the EJB 1.0 specification was deprec
in EJB 1.1. The EJB 1.0 deployment descriptor format should not be used by ejb-jar file produce
the support for it is not required by EJB 1.1 and later compliant Containers.

The Javadoc specification of the EJB interface is included in a ZIP file distributed
this document.
 10/23/00 500

package javax.ejb.deployment Enterprise JavaBeans 2.0, Proposed Final Draft Related documents

Sun Microsystems, Inc.
Chapter 26 Related documents

[1] JavaBeans.http://java.sun.com/beans.

[2] Java Naming and Directory Interface (JNDI).http://java.sun.com/products/jndi.

[3] Java Remote Method Invocation (RMI).http://java.sun.com/products/rmi.

[4] Java Security.http://java.sun.com/security.

[5] Java Transaction API (JTA).http://java.sun.com/products/jta.

[6] Java Transaction Service (JTS).http://java.sun.com/products/jts.

[7] Java Language to IDL Mapping Specification.http://www.omg.org/cgi-bin/doc?ptc/00-01-06.

[8] CORBA Object Transaction Service v1.2.http://www.omg.org/cgi-bin/doc?ptc/00-09-04.

[9] Java 2 Platform, Enterprise Edition, v1.3 (J2EE).

[10] Java Message Service (JMS).http://java.sun.com/products/jms.

[11] JDBC 2.0 Standard Extension API.http://java.sun.com/products/jdbc.

[12] Java 2 Enterprise Edition Connector Architecture.

[13] Enterprise JavaBeans to CORBA Mapping v1.1.http://java.sun.com/products/ejb/docs.html.

[14] CORBA 2.3.1 Specification.http://www.omg.org/cgi-bin/doc?formal/99-10-07.

[15] CORBA COSNaming Service.http://www.omg.org/cgi-bin/doc?formal/00-06-19.
501 10/23/00

Related documents Enterprise JavaBeans 2.0, Proposed Final Draft package javax.ejb.deployment

Sun Microsystems, Inc.
[16] Interoperable Name Service FTF document.http://www.omg.org/cgi-bin/doc?ptc/00-08-07.

[17] RFC 2246: The TLS Protocol.ftp://ftp.isi.edu/in-notes/rfc2246.txt.

[18] RFC 2712: Addition of Kerberos Cipher Suites to Transport Layer Security.
ftp://ftp.isi.edu/in-notes/rfc2712.txt.

[19] The SSL Protocol Version 3.0.http://home.netscape.com/eng/ssl3/draft302.txt.

[20] Common Secure Interoperability Version 2 Final Submission.
http://www.omg.org/cgi-bin/doc?orbos/00-08-04.

[21] Database Language SQL. ANSI X3.135-1992 or ISO/IEC 9075:1992.
 10/23/00 502

package javax.ejb.deployment Enterprise JavaBeans 2.0, Proposed Final Draft Features deferred to future releases

Sun Microsystems, Inc.

rt of a
Appendix A Features deferred to future releases

We plan to provide the following in future releases of the Enterprise JavaBeans specification:

• support for method interceptors

• support for component-level inheritance

• read-only Entity Beans with container managed persistence

• aggregate operations for EJB QL finder methods

• support for other types of messaging in addition to JMS

• specification for the pluggability of Persistence Managers

We plan to provide an SPI-level interface for attaching a JMS provider to the EJB Container as pa
future release of the Connector API.
503 10/23/00

Features deferred to future releases Enterprise JavaBeans 2.0, Proposed Final Draft package javax.ejb.deployment

Sun Microsystems, Inc.
 10/23/00 504

Overview Enterprise JavaBeans 2.0, Proposed Final Draft EJB 1.1 Deployment descriptor

Sun Microsystems, Inc.

must
of the
riptor
s the
crip-

r. This
mbler,

y does
bler
enter-

ined in
Appendix B EJB 1.1 Deployment descriptor

This appendix defines the EJB 1.1 deployment descriptor. All EJB 2.0 compliant implementations
support EJB 1.1 as well as EJB 2.0 deployment descriptors. Section B.1 provides an overview
deployment descriptor. Sections B.2 through B.4 describe the information in the deployment desc
from the perspective of the EJB roles responsible for providing the information. Section B.5 define
deployment descriptor’s XML DTD. Section B.6 provides a complete example of a deployment des
tor of an assembled application.

B.1 Overview

The deployment descriptor is part of the contract between the ejb-jar file producer and consume
contract covers both the passing of enterprise beans from the Bean Provider to Application Asse
and from the Application Assembler to the Deployer.

An ejb-jar file produced by the Bean Provider contains one or more enterprise beans and typicall
not contain application assembly instructions. An ejb-jar file produced by an Application Assem
contains one or more enterprise beans, plus application assembly information describing how the
prise beans are combined into a single application deployment unit.

The J2EE specification defines how enterprise beans and other application components conta
multiple ejb-jar files can be assembled into an application.
505 10/23/00

EJB 1.1 Deployment descriptor Enterprise JavaBeans 2.0, Proposed Final Draft Bean Provider’s responsibilities

Sun Microsystems, Inc.

at is
r file.

an
ructural
ruc-
rprise

er-
unit.
file
ean’s

in the

e

rise
JNDI

es the

va
fies the

e

d

vider
c-

rant
The role of the deployment descriptor is to capture the declarative information (i.e information th
not included directly in the enterprise beans’ code) that is intended for the consumer of the ejb-ja

There are two basic kinds of information in the deployment descriptor:

• Enterprise beans’ structuralinformation. Structural information describes the structure of
enterprise bean and declares an enterprise bean’s external dependencies. Providing st
information in the deployment descriptor is mandatory for the ejb-jar file producer. The st
tural information cannot, in general, be changed because doing so could break the ente
bean’s function.

• Application assemblyinformation. Application assembly information describes how the ent
prise bean (or beans) in the ejb-jar file is composed into a larger application deployment
Providing assembly information in the deployment descriptor is optional for the ejb-jar
producer. Assembly level information can be changed without breaking the enterprise b
function, although doing so may alter the behavior of an assembled application.

B.2 Bean Provider’s responsibilities

The Bean Provider is responsible for providing the structural information for each enterprise bean
deployment descriptor.

The Bean Provider must use theenterprise-beans element to list all the enterprise beans in th
ejb-jar file.

The Bean Provider must provide the following information for each enterprise bean:

• Enterprise bean’s name. The Bean Provider must assign a logical name to each enterp
bean in the ejb-jar file. There is no architected relationship between this name, and the
API name that the Deployer will assign to the enterprise bean. The Bean Provider specifi
enterprise bean’s name in theejb-name element.

• Enterprise bean’s class. The Bean Provider must specify the fully-qualified name of the Ja
class that implements the enterprise bean’s business methods. The Bean Provider speci
enterprise bean’s class name in theejb-class element.

• Enterprise bean’s home interfaces. The Bean Provider must specify the fully-qualified nam
of the enterprise bean’s home interface in thehome element.

• Enterprise bean’s remote interfaces. The Bean Provider must specify the fully-qualifie
name of the enterprise bean’s remote interface in theremote element.

• Enterprise bean’s type. The enterprise beans types are session and entity. The Bean Pro
must use the appropriatesession or entity element to declare the enterprise bean’s stru
tural information.

• Re-entrancy indication. The Bean Provider must specify whether an entity bean is re-ent
or not. Session beans are never re-entrant.
 10/23/00 506

Bean Provider’s responsibilities Enterprise JavaBeans 2.0, Proposed Final Draft EJB 1.1 Deployment descriptor

Sun Microsystems, Inc.

an
eful

he
n

an
ge-

er
the

ed
the

ent

e
section

o the

ces

, and
rm to
yment
• Session bean’s state management type. If the enterprise bean is a Session bean, the Be
Provider must use thesession-type element to declare whether the session bean is stat
or stateless.

• Session bean’s transaction demarcation type. If the enterprise bean is a Session bean, t
Bean Provider must use thetransaction-type element to declare whether transactio
demarcation is performed by the enterprise bean or by the Container.

• Entity bean’s persistence management. If the enterprise bean is an Entity bean, the Be
Provider must use thepersistence-type element to declare whether persistence mana
ment is performed by the enterprise bean or by the Container.

• Entity bean’s primary key class. If the enterprise bean is an Entity bean, the Bean Provid
specifies the fully-qualified name of the Entity bean’s primary key class in
prim-key-class element. The Bean Providermustspecify the primary key class for an
Entity with bean-managed persistence, andmay(but is not required to) specify the primary key
class for an Entity with container-managed persistence.

• Container-managed fields. If the enterprise bean is an Entity bean with container-manag
persistence, the Bean Provider must specify the container-managed fields using
cmp-field elements.

• Environment entries. The Bean Provider must declare all the enterprise bean’s environm
entries as specified in Subsection 19.2.1.

• Resource manager connection factory references.The Bean Provider must declare all th
enterprise bean’s resource manager connection factory references as specified in Sub
19.4.1.

• EJB references. The Bean Provider must declare all the enterprise bean’s references t
homes of other enterprise beans as specified in Subsection 19.3.1.

• Security role references. The Bean Provider must declare all the enterprise bean’s referen
to security roles as specified in Subsection 20.2.5.3.

The deployment descriptor produced by the Bean Provider must be well formed in the XML sense
valid with respect to the DTD in Section B.5. The content of the deployment descriptor must confo
the semantics rules specified in the DTD comments and elsewhere in this specification. The deplo
descriptor must refer to the DTD using the following statement:

<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise
JavaBeans 1.1//EN" "http://java.sun.com/j2ee/dtds/ejb-jar_1_1.dtd">
507 10/23/00

EJB 1.1 Deployment descriptor Enterprise JavaBeans 2.0, Proposed Final Draft Application Assembler’s responsibility

Sun Microsystems, Inc.

cation
tput is
to a

put
ation

case,
sec-

Pro-

me

or

ew

that

e
reates

cu-
he

od
e and
rmis-

e
ces

these
B.3 Application Assembler’s responsibility

The Application Assembler assembles enterprise beans into a single deployment unit. The Appli
Assembler’s input is one or more ejb-jar files provided by one or more Bean Providers, and the ou
also one or more ejb-jar files. The Application Assembler can combine multiple input ejb-jar files in
single output ejb-jar file, or split an input ejb-jar file into multiple output ejb-jar files. Each out
ejb-jar file is either a deployment unit intended for the Deployer, or a partially assembled applic
that is intended for another Application Assembler.

The Bean Provider and Application Assembler may be the same person or organization. In such a
the person or organization performs the responsibilities described both in this and the previous
tions.

The Application Assembler may modify the following information that was specified by the Bean
vider:

• Enterprise bean’s name. The Application Assembler may change the enterprise bean’s na
defined in theejb-name element.

• Values of environment entries. The Application Assembler may change existing and/
define new values of environment properties.

• Description fields. The Application Assembler may change existing or create n
description elements.

The Application Assembler must not, in general, modify any other information listed in Section B.2
was provided in the input ejb-jar file.

In addition, the Application Assembler may, but is not required to, specify any of the followingapplica-
tion assembly information:

• Binding of enterprise bean references. The Application Assembler may link an enterpris
bean reference to another enterprise bean in the ejb-jar file. The Application Assembler c
the link by adding theejb-link element to the referencing bean.

• Security roles. The Application Assembler may define one or more security roles. The se
rity roles define therecommendedsecurity roles for the clients of the enterprise beans. T
Application Assembler defines the security roles using thesecurity-role elements.

• Method permissions. The Application Assembler may define method permissions. Meth
permission is a binary relation between the security roles and the methods of the remot
home interfaces of the enterprise beans. The Application Assembler defines method pe
sions using themethod-permission elements.

• Linking of security role references. If the Application Assembler defines security roles in th
deployment descriptor, the Application Assembler must link the security role referen
declared by the Bean Provider to the security roles. The Application Assembler defines
links using therole-link element.
 10/23/00 508

Container Provider’s responsibilities Enterprise JavaBeans 2.0, Proposed Final Draft EJB 1.1 Deployment descriptor

Sun Microsystems, Inc.

ion
s that
beans

wed
ppen

, and
rm to
yment

ML

DTD
by the
• Transaction attributes. The Application Assembler may define the value of the transact
attributes for the methods of the remote and home interfaces of the enterprise bean
require container-managed transaction demarcation. All Entity beans and the Session
declared by the Bean Provider as transaction-typeContainer require container-managed
transaction demarcation. The Application Assembler uses thecontainer-transaction
elements to declare the transaction attributes.

If an input ejb-jar file contains application assembly information, the Application Assembler is allo
to change the application assembly information supplied in the input ejb-jar file. (This could ha
when the input ejb-jar file was produced by another Application Assembler.)

The deployment descriptor produced by the Bean Provider must be well formed in the XML sense
valid with respect to the DTD in Section B.5. The content of the deployment descriptor must confo
the semantic rules specified in the DTD comments and elsewhere in this specification. The deplo
descriptor must refer to the DTD using the following statement:

<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise
JavaBeans 1.1//EN" "http://java.sun.com/j2ee/dtds/ejb-jar_1_1.dtd">

B.4 Container Provider’s responsibilities

The Container provider provides tools that read and import the information contained in the X
deployment descriptor.

B.5 Deployment descriptor DTD

This section defines the XML DTD for the EJB 1.1 deployment descriptor. The comments in the
specify additional requirements for the syntax and semantics that cannot be easily expressed
DTD mechanism.

The content of the XML elements is in general case sensitive. This means, for example, that

<reentrant>True</reentrant>

must be used, rather than:

<reentrant>true</reentrant>.

All valid ejb-jar deployment descriptors must contain the following DOCTYPE declaration:

<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise
JavaBeans 1.1//EN" "http://java.sun.com/j2ee/dtds/ejb-jar_1_1.dtd">
509 10/23/00

EJB 1.1 Deployment descriptor Enterprise JavaBeans 2.0, Proposed Final Draft Deployment descriptor DTD

Sun Microsystems, Inc.

tion
r the
We provide an EJB 1.1 ejb-jar file verifier that can be used by the Bean Provider and Applica
Assembler Roles to ensure that an ejb-jar is valid. The verifier checks all the requirements fo
ejb-jar file and the deployment descriptor stated in this chapter.

<!--
This is the XML DTD for the EJB 1.1 deployment descriptor.
-->

<!--
The assembly-descriptor element contains application-assembly infor-
mation.

The application-assembly information consists of the following parts:
the definition of security roles, the definition of method permis-
sions, and the definition of transaction attributes for enterprise
beans with container-managed transaction demarcation.

All the parts are optional in the sense that they are omitted if the
lists represented by them are empty.

Providing an assembly-descriptor in the deployment descriptor is
optional for the ejb-jar file producer.

Used in: ejb-jar
-->
<!ELEMENT assembly-descriptor (security-role*, method-permission*,

container-transaction*)>

<!--
The cmp-field element describes a container-managed field. The field
element includes an optional description of the field, and the name of
the field.

Used in: entity
-->
<!ELEMENT cmp-field (description?, field-name)>

<!--
The container-transaction element specifies how the container must
manage transaction scopes for the enterprise bean’s method invoca-
tions. The element consists of an optional description, a list of
method elements, and a transaction attribute.The transaction
attribute is to be applied to all the specified methods.

Used in: assembly-descriptor
-->
<!ELEMENT container-transaction (description?, method+,

trans-attribute)>

<!--
The description element is used by the ejb-jar file producer to pro-
vide text describing the parent element.

The description element should include any information that the
ejb-jar file producer wants to provide to the consumer of the ejb-jar
file (i.e. to the Deployer). Typically, the tools used by the ejb-jar
file consumer will display the description when processing the parent
 10/23/00 510

Deployment descriptor DTD Enterprise JavaBeans 2.0, Proposed Final Draft EJB 1.1 Deployment descriptor

Sun Microsystems, Inc.
element.

Used in: cmp-field, container-transaction, ejb-jar, entity,
env-entry, ejb-ref, method, method-permission, resource-ref, secu-
rity-role, security-role-ref, and session.
-->
<!ELEMENT description (#PCDATA)>

<!--
The display-name element contains a short name that is intended to be
display by tools.

Used in: ejb-jar, session, and entity

Example:
<display-name>Employee Self Service</display-name>

-->
<!ELEMENT display-name (#PCDATA)>

<!--
The ejb-class element contains the fully-qualified name of the enter-
prise bean’s class.

Used in: entity and session

Example:
<ejb-class>com.wombat.empl.EmployeeServiceBean</ejb-class>

-->
<!ELEMENT ejb-class (#PCDATA)>

<!--
The optional ejb-client-jar element specifies a JAR file that con-
tains the class files necessary for a client program to access the
enterprise beans in the ejb-jar file. The Deployer should make the
ejb-client JAR file accessible to the client’s class-loader.

Used in: ejb-jar

Example:
<ejb-client-jar>employee_service_client.jar</ejb-client-jar>

-->
<!ELEMENT ejb-client-jar (#PCDATA)>

<!--
The ejb-jar element is the root element of the EJB deployment descrip-
tor. It contains an optional description of the ejb-jar file, optional
display name, optional small icon file name, optional large icon file
name, mandatory structural information about all included enterprise
beans, optional application-assembly descriptor, and an optional name
of an ejb-client-jar file for the ejb-jar.
-->
<!ELEMENT ejb-jar (description?, display-name?, small-icon?,

large-icon?, enterprise-beans, assembly-descriptor?,
ejb-client-jar?)>

<!--
The ejb-link element is used in the ejb-ref element to specify that an
EJB reference is linked to another enterprise bean in the ejb-jar
file.
511 10/23/00

EJB 1.1 Deployment descriptor Enterprise JavaBeans 2.0, Proposed Final Draft Deployment descriptor DTD

Sun Microsystems, Inc.
The value of the ejb-link element must be the ejb-name of an enter-
prise bean in the same ejb-jar file, or in another ejb-jar file in the
same J2EE application unit.

Used in: ejb-ref

Example:
<ejb-link>EmployeeRecord</ejb-link>

-->
<!ELEMENT ejb-link (#PCDATA)>

<!--
The ejb-name element specifies an enterprise bean’s name. This name is
assigned by the ejb-jar file producer to name the enterprise bean in
the ejb-jar file’s deployment descriptor. The name must be unique
among the names of the enterprise beans in the same ejb-jar file.

The enterprise bean code does not depend on the name; therefore the
name can be changed during the application-assembly process without
breaking the enterprise bean’s function.

There is no architected relationship between the ejb-name in the
deployment descriptor and the JNDI name that the Deployer will assign
to the enterprise bean’s home.

The name must conform to the lexical rules for an NMTOKEN.

Used in: entity, method, and session

Example:
<ejb-name>EmployeeService</ejb-name>

-->
<!ELEMENT ejb-name (#PCDATA)>

<!--
The ejb-ref element is used for the declaration of a reference to
another enterprise bean’s home. The declaration consists of an
optional description; the EJB reference name used in the code of the
referencing enterprise bean; the expected type of the referenced
enterprise bean; the expected home and remote interfaces of the ref-
erenced enterprise bean; and an optional ejb-link information.

The optional ejb-link element is used to specify the referenced enter-
prise bean. It is used typically in ejb-jar files that contain an
assembled application.

Used in: entity and session
-->
<!ELEMENT ejb-ref (description?, ejb-ref-name, ejb-ref-type, home,

remote, ejb-link?)>

<!--
The ejb-ref-name element contains the name of an EJB reference. The
EJB reference is an entry in the enterprise bean’s environment.

It is recommended that name is prefixed with "ejb/".

Used in: ejb-ref
 10/23/00 512

Deployment descriptor DTD Enterprise JavaBeans 2.0, Proposed Final Draft EJB 1.1 Deployment descriptor

Sun Microsystems, Inc.
Example:
<ejb-ref-name>ejb/Payroll</ejb-ref-name>

-->
<!ELEMENT ejb-ref-name (#PCDATA)>

<!--
The ejb-ref-type element contains the expected type of the referenced
enterprise bean.

The ejb-ref-type element must be one of the following:
<ejb-ref-type>Entity</ejb-ref-type>
<ejb-ref-type>Session</ejb-ref-type>

Used in: ejb-ref
-->
<!ELEMENT ejb-ref-type (#PCDATA)>

<!--
The enterprise-beans element contains the declarations of one or more
enterprise beans.
-->
<!ELEMENT enterprise-beans (session | entity)+>

<!--
The entity element declares an entity bean. The declaration consists
of: an optional description; optional display name; optional small
icon file name; optional large icon file name; a name assigned to the
enterprise bean in the deployment descriptor; the names of the entity
bean’s home and remote interfaces; the entity bean’s implementation
class; the entity bean’s persistence management type; the entity
bean’s primary key class name; an indication of the entity bean’s
reentrancy; an optional list of container-managed fields; an optional
specification of the primary key field; an optional declaration of the
bean’s environment entries; an optional declaration of the bean’s EJB
references; an optional declaration of the security role references;
and an optional declaration of the bean’s resource manager connection
factory references.

The optional primkey-field may be present in the descriptor if the
entity’s persistency-type is Container.

The other elements that are optional are “optional” in the sense that
they are omitted if the lists represented by them are empty.

At least one cmp-field element must be present in the descriptor if
the entity’s persistency-type is Container, and none must not be
present if the entity’s persistence-type is Bean.

Used in: enterprise-beans
-->
<!ELEMENT entity (description?, display-name?, small-icon?,

large-icon?, ejb-name, home, remote, ejb-class,
persistence-type, prim-key-class, reentrant,
cmp-field*, primkey-field?, env-entry*,
ejb-ref*, security-role-ref*, resource-ref*)>

<!--
The env-entry element contains the declaration of an enterprise
513 10/23/00

EJB 1.1 Deployment descriptor Enterprise JavaBeans 2.0, Proposed Final Draft Deployment descriptor DTD

Sun Microsystems, Inc.
bean’s environment entries. The declaration consists of an optional
description, the name of the environment entry, and an optional value.

Used in: entity and session
-->
<!ELEMENT env-entry (description?, env-entry-name, env-entry-type,

env-entry-value?)>

<!--
The env-entry-name element contains the name of an enterprise bean’s
environment entry.

Used in: env-entry

Example:
<env-entry-name>minAmount</env-entry-name>

-->
<!ELEMENT env-entry-name (#PCDATA)>

<!--
The env-entry-type element contains the fully-qualified Java type of
the environment entry value that is expected by the enterprise bean’s
code.

The following are the legal values of env-entry-type: java.lang.Bool-
ean, java.lang.String, java.lang.Integer, java.lang.Double,
java.lang.Byte, java.lang.Short, java.lang.Long, and java.lang.Float.

Used in: env-entry

Example:
<env-entry-type>java.lang.Boolean</env-entry-type>

-->
<!ELEMENT env-entry-type (#PCDATA)>

<!--
The env-entry-value element contains the value of an enterprise
bean’s environment entry.

Used in: env-entry

Example:
<env-entry-value>100.00</env-entry-value>

-->
<!ELEMENT env-entry-value (#PCDATA)>

<!--
The field-name element specifies the name of a container managed
field. The name must be a public field of the enterprise bean class or
one of its superclasses.

Used in: cmp-field

Example:
<field-name>firstName</field-Name>

-->
<!ELEMENT field-name (#PCDATA)>

<!--
 10/23/00 514

Deployment descriptor DTD Enterprise JavaBeans 2.0, Proposed Final Draft EJB 1.1 Deployment descriptor

Sun Microsystems, Inc.
The home element contains the fully-qualified name of the enterprise
bean’s home interface.

Used in: ejb-ref, entity, and session

Example:
<home>com.aardvark.payroll.PayrollHome</home>

-->
<!ELEMENT home (#PCDATA)>

<!--
The large-icon element contains the name of a file containing a large
(32 x 32) icon image. The file name is relative path within the
ejb-jar file.

The image must be either in the JPEG or GIF format, and the file name
must end with the suffix ".jpg" or ".gif" respectively.
The icon can be used by tools.

Example:
<large-icon>employee-service-icon32x32.jpg</large-icon>

-->
<!ELEMENT large-icon (#PCDATA)>

<!--
The method element is used to denote a method of an enterprise bean’s
home or remote interface, or a set of methods. The ejb-name element
must be the name of one of the enterprise beans in declared in the
deployment descriptor; the optional method-intf element allows to
distinguish between a method with the same signature that is defined
in both the home and remote interface; the method-name element speci-
fies the method name; and the optional method-params elements iden-
tify a single method among multiple methods with an overloaded method
name.

There are three possible styles of the method element syntax:

1. <method>
<ejb-name>EJBNAME</ejb-name>
<method-name>*</method-name>

</method>

 This style is used to refer to all the methods of the specified
 enterprise bean’s home and remote interfaces.

2. <method>
<ejb-name>EJBNAME</ejb-name>
<method-name>METHOD</method-name>

</method>>

 This style is used to refer to the specified method of the
 specified enterprise bean. If there are multiple methods with
 the same overloaded name, the element of this style refers to
 all the methods with the overloaded name.
515 10/23/00

EJB 1.1 Deployment descriptor Enterprise JavaBeans 2.0, Proposed Final Draft Deployment descriptor DTD

Sun Microsystems, Inc.
3. <method>
<ejb-name>EJBNAME</ejb-name>
<method-name>METHOD</method-name>
<method-params>

<method-param>PARAM-1</method-param>
<method-param>PARAM-2</method-param>
...
<method-param>PARAM-n</method-param>

</method-params>
<method>

 This style is used to refer to a single method within a set of
 methods with an overloaded name. PARAM-1 through PARAM-n are the
 fully-qualified Java types of the method’s input parameters (if
 the method has no input arguments, the method-params element
 contains no method-param elements). Arrays are specified by the
 array element’s type, followed by one or more pair of square
 brackets (e.g. int[][]).

Used in: method-permission and container-transaction

Examples:

Style 1: The following method element refers to all the methods of
the EmployeeService bean’s home and remote interfaces:

<method>
<ejb-name>EmployeeService</ejb-name>
<method-name>*</method-name>

</method>

Style 2: The following method element refers to all the create
methods of the EmployeeService bean’s home interface:

<method>
<ejb-name>EmployeeService</ejb-name>
<method-name>create</method-name>

</method>

Style 3: The following method element refers to the
create(String firstName, String LastName) method of the
EmployeeService bean’s home interface.

<method>
<ejb-name>EmployeeService</ejb-name>
<method-name>create</method-name>
<method-params>

<method-param>java.lang.String</method-param>
<method-param>java.lang.String</method-param>

</method-params>
</method>

The following example illustrates a Style 3 element with
more complex parameter types. The method

foobar(char s, int i, int[] iar, mypackage.MyClass mycl,
mypackage.MyClass[][] myclaar)

 would be specified as:
 10/23/00 516

Deployment descriptor DTD Enterprise JavaBeans 2.0, Proposed Final Draft EJB 1.1 Deployment descriptor

Sun Microsystems, Inc.
<method>
<ejb-name>EmployeeService</ejb-name>
<method-name>foobar</method-name>
<method-params>

<method-param>char</method-param>
<method-param>int</method-param>
<method-param>int[]</method-param>
<method-param>mypackage.MyClass</method-param>
<method-param>mypackage.MyClass[][]</method-param>

</method-params>
</method>

The optional method-intf element can be used when it becomes
 necessary to differentiate between a method defined in the home
 interface and a method with the same name and signature that is
 defined in the remote interface.

For example, the method element

<method>
<ejb-name>EmployeeService</ejb-name>
<method-intf>Remote</method-intf>
<method-name>create</method-name>
<method-params>

<method-param>java.lang.String</method-param>
<method-param>java.lang.String</method-param>

</method-params>
</method>

can be used to differentiate the create(String, String) method
 defined in the remote interface from the create(String, String)
 method defined in the home interface, which would be defined as

<method>
<ejb-name>EmployeeService</ejb-name>
<method-intf>Home</method-intf>
<method-name>create</method-name>
<method-params>

<method-param>java.lang.String</method-param>
<method-param>java.lang.String</method-param>

</method-params>
</method>

The method-intf element can be used with all three Styles of the
method element usage. For example, the following method element exam-
ple could be used to refer to all the methods of the EmployeeService
bean’s home interface.

<method>
<ejb-name>EmployeeService</ejb-name>
<method-intf>Home</method-intf>
<method-name>*</method-name>

</method>

-->
<!ELEMENT method (description?, ejb-name, method-intf?, method-name,

method-params?)>
517 10/23/00

EJB 1.1 Deployment descriptor Enterprise JavaBeans 2.0, Proposed Final Draft Deployment descriptor DTD

Sun Microsystems, Inc.
<!--
The method-intf element allows a method element to differentiate
between the methods with the same name and signature that are defined
in both the remote and home interfaces.

The method-intf element must be one of the following:
<method-intf>Home</method-intf>
<method-intf>Remote</method-intf>

Used in: method
-->
<!ELEMENT method-intf (#PCDATA)>

<!--
The method-name element contains a name of an enterprise bean method,
or the asterisk (*) character. The asterisk is used when the element
denotes all the methods of an enterprise bean’s remote and home inter-
faces.

Used in: method
-->
<!ELEMENT method-name (#PCDATA)>

<!--
The method-param element contains the fully-qualified Java type name
of a method parameter.

Used in: method-params
-->
<!ELEMENT method-param (#PCDATA)>

<!--
The method-params element contains a list of the fully-qualified Java
type names of the method parameters.

Used in: method
-->
<!ELEMENT method-params (method-param*)>

<!--
The method-permission element specifies that one or more security
roles are allowed to invoke one or more enterprise bean methods. The
method-permission element consists of an optional description, a list
of security role names, and a list of method elements.

The security roles used in the method-permission element must be
defined in the security-role element of the deployment descriptor,
and the methods must be methods defined in the enterprise bean’s
remote and/or home interfaces.

Used in: assembly-descriptor
-->
<!ELEMENT method-permission (description?, role-name+, method+)>

<!--
The persistence-type element specifies an entity bean’s persistence
management type.
 10/23/00 518

Deployment descriptor DTD Enterprise JavaBeans 2.0, Proposed Final Draft EJB 1.1 Deployment descriptor

Sun Microsystems, Inc.
The persistence-type element must be one of the two following:
<persistence-type>Bean</persistence-type>
<persistence-type>Container</persistence-type>

Used in: entity
-->
<!ELEMENT persistence-type (#PCDATA)>

<!--
The prim-key-class element contains the fully-qualified name of an
entity bean’s primary key class.

If the definition of the primary key class is deferred to deployment
time, the prim-key-class element should specify java.lang.Object.

Used in: entity

Examples:
<prim-key-class>java.lang.String</prim-key-class>
<prim-key-class>com.wombat.empl.EmployeeID</prim-key-class>
<prim-key-class>java.lang.Object</prim-key-class>

-->
<!ELEMENT prim-key-class (#PCDATA)>

<!--
The primkey-field element is used to specify the name of the primary
key field for an entity with container-managed persistence.

The primkey-field must be one of the fields declared in the cmp-field
element, and the type of the field must be the same as the primary key
type.

The primkey-field element is not used if the primary key maps to mul-
tiple container-managed fields (i.e., the key is a compound key). In
this case, the fields of the primary key class must be public, and
their names must correspond to the field names of the entity bean
class that comprise the key.

Used in: entity

Example:
<primkey-field>EmployeeId</primkey-field>

-->
<!ELEMENT primkey-field (#PCDATA)>

<!--
The reentrant element specifies whether an entity bean is reentrant or
not.

The reentrant element must be one of the two following:
<reentrant>True</reentrant>
<reentrant>False</reentrant>

Used in: entity
-->
<!ELEMENT reentrant (#PCDATA)>

<!--
519 10/23/00

EJB 1.1 Deployment descriptor Enterprise JavaBeans 2.0, Proposed Final Draft Deployment descriptor DTD

Sun Microsystems, Inc.
The remote element contains the fully-qualified name of the enter-
prise bean’s remote interface.

Used in: ejb-ref, entity, and session

Example:
<remote>com.wombat.empl.EmployeeService</remote>

-->
<!ELEMENT remote (#PCDATA)>

<!--
The res-auth element specifies whether the enterprise bean code signs
on programmatically to the resource manager, or whether the Container
will sign on to the resource manager on behalf of the bean. In the
latter case, the Container uses information that is supplied by the
Deployer.

The value of this element must be one of the two following:
<res-auth>Application</res-auth>
<res-auth>Container</res-auth>

-->
<!ELEMENT res-auth (#PCDATA)>

<!--
The res-ref-name element specifies the name of a resource manager con-
nection factory reference.

Used in: resource-ref
-->
<!ELEMENT res-ref-name (#PCDATA)>

<!--
The res-type element specifies the type of the data source. The type
is specified by the Java interface (or class) expected to be imple-
mented by the data source.

Used in: resource-ref
-->
<!ELEMENT res-type (#PCDATA)>

<!--
The resource-ref element contains a declaration of enterprise bean’s
reference to an external resource. It consists of an optional descrip-
tion, the resource manager connection factory reference name, the
indication of the resource manager connection factory type expected
by the enterprise bean code, and the type of authentication (bean or
container).

Used in: entity and session

Example:
<resource-ref>

<res-ref-name>jdbc/EmployeeAppDB</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Container</res-auth>

</resource-ref>
-->
<!ELEMENT resource-ref (description?, res-ref-name, res-type,

res-auth)>
 10/23/00 520

Deployment descriptor DTD Enterprise JavaBeans 2.0, Proposed Final Draft EJB 1.1 Deployment descriptor

Sun Microsystems, Inc.
<!--
The role-link element is used to link a security role reference to a
defined security role. The role-link element must contain the name of
one of the security roles defined in the security-role elements.

Used in: security-role-ref
-->
<!ELEMENT role-link (#PCDATA)>

<!--
The role-name element contains the name of a security role.

The name must conform to the lexical rules for an NMTOKEN.

Used in: method-permission, security-role, and security-role-ref
-->
<!ELEMENT role-name (#PCDATA)>

<!--
The security-role element contains the definition of a security role.
The definition consists of an optional description of the security
role, and the security role name.

Used in: assembly-descriptor

Example:
<security-role>

<description>
This role includes all employees who are authorized
to access the employee service application.

</description>
<role-name>employee</role-name>

</security-role>
-->
<!ELEMENT security-role (description?, role-name)>

<!--
The security-role-ref element contains the declaration of a security
role reference in the enterprise bean’s code. The declaration con-
sists of an optional description, the security role name used in the
code, and an optional link to a defined security role.

The value of the role-name element must be the String used as the
parameter to the EJBContext.isCallerInRole(String roleName) method.

The value of the role-link element must be the name of one of the
security roles defined in the security-role elements.

Used in: entity and session

-->
<!ELEMENT security-role-ref (description?, role-name, role-link?)>

<!--
The session-type element describes whether the session bean is a
stateful session, or stateless session.

The session-type element must be one of the two following:
521 10/23/00

EJB 1.1 Deployment descriptor Enterprise JavaBeans 2.0, Proposed Final Draft Deployment descriptor DTD

Sun Microsystems, Inc.
<session-type>Stateful</session-type>
<session-type>Stateless</session-type>

-->
<!ELEMENT session-type (#PCDATA)>

<!--
The session element declares an session bean. The declaration con-
sists of: an optional description; optional display name; optional
small icon file name; optional large icon file name; a name assigned
to the enterprise bean in the deployment description; the names of the
session bean’s home and remote interfaces; the session bean’s imple-
mentation class; the session bean’s state management type; the ses-
sion bean’s transaction management type; an optional declaration of
the bean’s environment entries; an optional declaration of the bean’s
EJB references; an optional declaration of the security role refer-
ences; and an optional declaration of the bean’s resource manager con-
nection factory references.

The elements that are optional are “optional” in the sense that they
are omitted when if lists represented by them are empty.

Used in: enterprise-beans
-->
<!ELEMENT session (description?, display-name?, small-icon?,

large-icon?, ejb-name, home, remote, ejb-class,
session-type, transaction-type, env-entry*,
ejb-ref*, security-role-ref*, resource-ref*)>

<!--
The small-icon element contains the name of a file containing a small
(16 x 16) icon image. The file name is relative path within the
ejb-jar file.

The image must be either in the JPEG or GIF format, and the file name
must end with the suffix ".jpg" or ".gif" respectively.

The icon can be used by tools.

Example:
<small-icon>employee-service-icon16x16.jpg</small-icon>

-->
<!ELEMENT small-icon (#PCDATA)>

<!--
The transaction-type element specifies an enterprise bean’s transac-
tion management type.

The transaction-type element must be one of the two following:
<transaction-type>Bean</transaction-type>
<transaction-type>Container</transaction-type>

Used in: session
-->
<!ELEMENT transaction-type (#PCDATA)>

<!--
The trans-attribute element specifies how the container must manage
the transaction boundaries when delegating a method invocation to an
enterprise bean’s business method.
 10/23/00 522

Deployment descriptor DTD Enterprise JavaBeans 2.0, Proposed Final Draft EJB 1.1 Deployment descriptor

Sun Microsystems, Inc.
The value of trans-attribute must be one of the following:
<trans-attribute>NotSupported</trans-attribute>
<trans-attribute>Supports</trans-attribute>
<trans-attribute>Required</trans-attribute>
<trans-attribute>RequiresNew</trans-attribute>
<trans-attribute>Mandatory</trans-attribute>
<trans-attribute>Never</trans-attribute>

Used in: container-transaction
-->
<!ELEMENT trans-attribute (#PCDATA)>

<!--
The ID mechanism is to allow tools that produce additional deployment
information (i.e information beyond the standard EJB deployment
descriptor information) to store the non-standard information in a
separate file, and easily refer from these tools-specific files to the
information in the standard deployment descriptor.

The EJB architecture does not allow the tools to add the non-standard
information into the EJB deployment descriptor.
-->
<!ATTLIST assembly-descriptor id ID #IMPLIED>
<!ATTLIST cmp-field id ID #IMPLIED>
<!ATTLIST container-transaction id ID #IMPLIED>
<!ATTLIST description id ID #IMPLIED>
<!ATTLIST display-name id ID #IMPLIED>
<!ATTLIST ejb-class id ID #IMPLIED>
<!ATTLIST ejb-client-jar id ID #IMPLIED>
<!ATTLIST ejb-jar id ID #IMPLIED>
<!ATTLIST ejb-link id ID #IMPLIED>
<!ATTLIST ejb-name id ID #IMPLIED>
<!ATTLIST ejb-ref id ID #IMPLIED>
<!ATTLIST ejb-ref-name id ID #IMPLIED>
<!ATTLIST ejb-ref-type id ID #IMPLIED>
<!ATTLIST enterprise-beans id ID #IMPLIED>
<!ATTLIST entity id ID #IMPLIED>
<!ATTLIST env-entry id ID #IMPLIED>
<!ATTLIST env-entry-name id ID #IMPLIED>
<!ATTLIST env-entry-type id ID #IMPLIED>
<!ATTLIST env-entry-value id ID #IMPLIED>
<!ATTLIST field-name id ID #IMPLIED>
<!ATTLIST home id ID #IMPLIED>
<!ATTLIST large-icon id ID #IMPLIED>
<!ATTLIST method id ID #IMPLIED>
<!ATTLIST method-intf id ID #IMPLIED>
<!ATTLIST method-name id ID #IMPLIED>
<!ATTLIST method-param id ID #IMPLIED>
<!ATTLIST method-params id ID #IMPLIED>
<!ATTLIST method-permission id ID #IMPLIED>
<!ATTLIST persistence-type id ID #IMPLIED>
<!ATTLIST prim-key-class id ID #IMPLIED>
<!ATTLIST primkey-field id ID #IMPLIED>
<!ATTLIST reentrant id ID #IMPLIED>
<!ATTLIST remote id ID #IMPLIED>
<!ATTLIST res-auth id ID #IMPLIED>
<!ATTLIST res-ref-name id ID #IMPLIED>
<!ATTLIST res-type id ID #IMPLIED>
523 10/23/00

EJB 1.1 Deployment descriptor Enterprise JavaBeans 2.0, Proposed Final Draft Deployment descriptor example

Sun Microsystems, Inc.

the
<!ATTLIST resource-ref id ID #IMPLIED>
<!ATTLIST role-link id ID #IMPLIED>
<!ATTLIST role-name id ID #IMPLIED>
<!ATTLIST security-role id ID #IMPLIED>
<!ATTLIST security-role-ref id ID #IMPLIED>
<!ATTLIST session-type id ID #IMPLIED>
<!ATTLIST session id ID #IMPLIED>
<!ATTLIST small-icon id ID #IMPLIED>
<!ATTLIST transaction-type id ID #IMPLIED>
<!ATTLIST trans-attribute id ID #IMPLIED>

B.6 Deployment descriptor example

The following example illustrates a sample deployment descriptor for the ejb-jar containing
Wombat’s assembled application described in Section 3.2.
 10/23/00 524

Deployment descriptor example Enterprise JavaBeans 2.0, Proposed Final Draft EJB 1.1 Deployment descriptor

Sun Microsystems, Inc.

prop-
ents
Note: The text in the <description> elements has been formatted by adding whitespace to appear
erly indented in this document. In a real deployment descriptor document, the <description> elem
would likely contain no extra whitespace characters.

<!DOCTYPE ejb-jar PUBLIC “-//Sun Microsystems, Inc.//DTD Enterprise
JavaBeans 1.1//EN” “http://java.sun.com/j2ee/dtds/ejb-jar_1_1.dtd”>
<ejb-jar>

<description>
This ejb-jar file contains assembled enterprise beans that are
part of employee self-service application.

</description>

<enterprise-beans>
<session>

<description>
The EmployeeService session bean implements a session
between an employee and the employee self-service
application.

</description>
<ejb-name>EmployeeService</ejb-name>
<home>com.wombat.empl.EmployeeServiceHome</home>
<remote>com.wombat.empl.EmployeeService</remote>
<ejb-class>com.wombat.empl.EmployeeServiceBean</ejb-class>
<session-type>Stateful</session-type>
<transaction-type>Bean</transaction-type>

<env-entry>
<env-entry-name>envvar1</env-entry-name>
<env-entry-type>String</env-entry-type>
<env-entry-value>some value</env-entry-value>

</env-entry>

<ejb-ref>
<ejb-ref-name>ejb/EmplRecords</ejb-ref-name>
<ejb-ref-type>Entity</ejb-ref-type>
<home>com.wombat.empl.EmployeeRecordHome</home>
<remote>com.wombat.empl.EmployeeRecord</remote>
<ejb-link>EmployeeRecord</ejb-link>

</ejb-ref>

<ejb-ref>
<ejb-ref-name>ejb/Payroll</ejb-ref-name>
<ejb-ref-type>Entity</ejb-ref-type>
<home>com.aardvark.payroll.PayrollHome</home>
<remote>com.aardvark.payroll.Payroll</remote>
<ejb-link>AardvarkPayroll</ejb-link>

</ejb-ref>

<ejb-ref>
<ejb-ref-name>ejb/PensionPlan</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<home>com.wombat.empl.PensionPlanHome</home>
<remote>com.wombat.empl.PensionPlan</remote>

</ejb-ref>

<resource-ref>
<description>

This is a reference to a JDBC database.
525 10/23/00

EJB 1.1 Deployment descriptor Enterprise JavaBeans 2.0, Proposed Final Draft Deployment descriptor example

Sun Microsystems, Inc.
EmployeeService keeps a log of all
transactions performed through the
EmployeeService bean for auditing
purposes.

</description>
<res-ref-name>jdbc/EmployeeAppDB</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Container</res-auth>

</resource-ref>
</session>

<session>
<description>

The EmployeeServiceAdmin session bean implements
the session used by the application’s administrator.

</description>

<ejb-name>EmployeeServiceAdmin</ejb-name>
<home>com.wombat.empl.EmployeeServiceAdminHome</home>
<remote>com.wombat.empl.EmployeeServiceAdmin</remote>
<ejb-class>com.wombat.empl.EmployeeServiceAdmin-

Bean</ejb-class>
<session-type>Stateful</session-type>
<transaction-type>Bean</transaction-type>

<resource-ref>
<description>

This is a reference to a JDBC database.
EmployeeService keeps a log of all
transactions performed through the
EmployeeService bean for auditing
purposes.

</description>
<res-ref-name>jdbc/EmployeeAppDB</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Container</res-auth>

</resource-ref>
</session>

<entity>
<description>

The EmployeeRecord entity bean encapsulates access
to the employee records.The deployer will use
container-managed persistence to integrate the
entity bean with the back-end system managing
the employee records.

</description>

<ejb-name>EmployeeRecord</ejb-name>
<home>com.wombat.empl.EmployeeRecordHome</home>
<remote>com.wombat.empl.EmployeeRecord</remote>
<ejb-class>com.wombat.empl.EmployeeRecordBean</ejb-class>
<persistence-type>Container</persistence-type>
<prim-key-class>com.wombat.empl.EmployeeID</prim-key-class>
<reentrant>True</reentrant>

<cmp-field><field-name>employeeID</field-name></cmp-field>
<cmp-field><field-name>firstName</field-name></cmp-field>
<cmp-field><field-name>lastName</field-name></cmp-field>
 10/23/00 526

Deployment descriptor example Enterprise JavaBeans 2.0, Proposed Final Draft EJB 1.1 Deployment descriptor

Sun Microsystems, Inc.
<cmp-field><field-name>address1</field-name></cmp-field>
<cmp-field><field-name>address2</field-name></cmp-field>
<cmp-field><field-name>city</field-name></cmp-field>
<cmp-field><field-name>state</field-name></cmp-field>
<cmp-field><field-name>zip</field-name></cmp-field>
<cmp-field><field-name>homePhone</field-name></cmp-field>
<cmp-field><field-name>jobTitle</field-name></cmp-field>
<cmp-field><field-name>managerID</field-name></cmp-field>
<cmp-field><field-name>jobTitleHis-

tory</field-name></cmp-field>
</entity>

<entity>
<description>

The Payroll entity bean encapsulates access
to the payroll system.The deployer will use
container-managed persistence to integrate the
entity bean with the back-end system managing
payroll information.

</description>

<ejb-name>AardvarkPayroll</ejb-name>
<home>com.aardvark.payroll.PayrollHome</home>
<remote>com.aardvark.payroll.Payroll</remote>
<ejb-class>com.aardvark.payroll.PayrollBean</ejb-class>
<persistence-type>Bean</persistence-type>
<prim-key-class>com.aardvark.payroll.Accoun-

tID</prim-key-class>
<reentrant>False</reentrant>

<security-role-ref>
<role-name>payroll-org</role-name>
<role-link>payroll-department</role-link>

</security-role-ref>
</entity>

</enterprise-beans>

<assembly-descriptor>
<security-role>

<description>
This role includes the employees of the
enterprise who are allowed to access the
employee self-service application. This role
is allowed only to access his/her own
information.

</description>
<role-name>employee</role-name>

</security-role>

<security-role>
<description>

This role includes the employees of the human
resources department. The role is allowed to
view and update all employee records.

</description>
<role-name>hr-department</role-name>

</security-role>

<security-role>
527 10/23/00

EJB 1.1 Deployment descriptor Enterprise JavaBeans 2.0, Proposed Final Draft Deployment descriptor example

Sun Microsystems, Inc.
<description>
This role includes the employees of the payroll
department. The role is allowed to view and
update the payroll entry for any employee.

</description>
<role-name>payroll-department</role-name>

</security-role>

<security-role>
<description>

This role should be assigned to the personnel
authorized to perform administrative functions
for the employee self-service application.
This role does not have direct access to
sensitive employee and payroll information.

</description>
<role-name>admin</role-name>

</security-role>

<method-permission>
<role-name>employee</role-name>
<method>

<ejb-name>EmployeeService</ejb-name>
<method-name>*</method-name>

</method>
</method-permission>

<method-permission>
<role-name>employee</role-name>
<method>

<ejb-name>EmployeeRecord</ejb-name>
<method-name>findByPrimaryKey</method-name>

</method>
<method>

<ejb-name>EmployeeRecord</ejb-name>
<method-name>getDetail</method-name>

</method>
<method>

<ejb-name>EmployeeRecord</ejb-name>
<method-name>updateDetail</method-name>

</method>
</method-permission>

<method-permission>
<role-name>employee</role-name>
<method>

<ejb-name>AardvarkPayroll</ejb-name>
<method-name>findByPrimaryKey</method-name>

</method>
<method>

<ejb-name>AardvarkPayroll</ejb-name>
<method-name>getEmployeeInfo</method-name>

</method>
<method>

<ejb-name>AardvarkPayroll</ejb-name>
<method-name>updateEmployeeInfo</method-name>

</method>
</method-permission>
 10/23/00 528

Deployment descriptor example Enterprise JavaBeans 2.0, Proposed Final Draft EJB 1.1 Deployment descriptor

Sun Microsystems, Inc.
<method-permission>
<role-name>admin</role-name>
<method>

<ejb-name>EmployeeServiceAdmin</ejb-name>
<method-name>*</method-name>

</method>
</method-permission>

<method-permission>
<role-name>hr-department</role-name>
<method>

<ejb-name>EmployeeRecord</ejb-name>
<method-name>create</method-name>

</method>
<method>

<ejb-name>EmployeeRecord</ejb-name>
<method-name>remove</method-name>

</method>
<method>

<ejb-name>EmployeeRecord</ejb-name>
<method-name>changeManager</method-name>

</method>
<method>

<ejb-name>EmployeeRecord</ejb-name>
<method-name>changeJobTitle</method-name>

</method>
<method>

<ejb-name>EmployeeRecord</ejb-name>
<method-name>findByPrimaryKey</method-name>

</method>
<method>

<ejb-name>EmployeeRecord</ejb-name>
<method-name>getDetail</method-name>

</method>
<method>

<ejb-name>EmployeeRecord</ejb-name>
<method-name>updateDetail</method-name>

</method>
</method-permission>

<method-permission>
<role-name>payroll-department</role-name>
<method>

<ejb-name>AardvarkPayroll</ejb-name>
<method-name>findByPrimaryKey</method-name>

</method>
<method>

<ejb-name>AardvarkPayroll</ejb-name>
<method-name>getEmployeeInfo</method-name>

</method>
<method>

<ejb-name>AardvarkPayroll</ejb-name>
<method-name>updateEmployeeInfo</method-name>

</method>
<method>

<ejb-name>AardvarkPayroll</ejb-name>
<method-name>updateSalary</method-name>

</method>
</method-permission>
529 10/23/00

EJB 1.1 Deployment descriptor Enterprise JavaBeans 2.0, Proposed Final Draft Deployment descriptor example

Sun Microsystems, Inc.
<container-transaction>
<method>

<ejb-name>EmployeeRecord</ejb-name>
<method-name>*</method-name>

</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>

<container-transaction>
<method>

<ejb-name>AardvarkPayroll</ejb-name>
<method-name>*</method-name>

</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>
</assembly-descriptor>

</ejb-jar>
 10/23/00 530

EJB 1.1 Bean Provider’s responsibilities Enterprise JavaBeans 2.0, Proposed Final Draft EJB 1.1 Runtime environment

Sun Microsystems, Inc.

Con-
be used
tainers.

e func-
rity and
Appendix C EJB 1.1 Runtime environment

This appendix defines the application programming interfaces (APIs) that a compliant EJB 1.1
tainer must make available to the EJB 1.1 enterprise bean instances at runtime. These APIs can
by portable enterprise beans because the APIs are guaranteed to be available in all EJB 1.1 Con

This appendix also defines the restrictions that the EJB 1.1 Container Provider can impose on th
tionality that it provides to the enterprise beans. These restrictions are necessary to enforce secu
to allow the Container to properly manage the runtime environment.

C.1 EJB 1.1 Bean Provider’s responsibilities

This section describes the view and responsibilities of the EJB 1.1 Bean Provider.

C.1.1 APIs provided by EJB 1.1 Container
The EJB 1.1 Provider can rely on the EJB 1.1 Container Provider to provide the following APIs:

• Java 2 Platform, Standard Edition, v1.2 (J2SE)

• EJB 1.1 Standard Extension

• JDBC 2.0 Standard Extension (support for row sets only)
531 10/23/00

EJB 1.1 Runtime environment Enterprise JavaBeans 2.0, Proposed Final Draft EJB 1.1 Bean Provider’s responsibilities

Sun Microsystems, Inc.

ow to
he
e Con-
iners

s is
ss be

rs may
across

ion of

rprise

to a

play

to-

ponents

ket, or

es not
with

clared
ity rules
• JNDI 1.2 Standard Extension

• JTA 1.0.1 Standard Extension (theUserTransaction interface only)

• JavaMail 1.1 Standard Extension (for sending mail only)

C.1.2 Programming restrictions

This section describes the programming restrictions that an EJB 1.1 Bean Provider must foll
ensure that the enterprise bean isportableand can be deployed in any compliant EJB 1.1 Container. T
restrictions apply to the implementation of the business methods. Section C.2, which describes th
tainer’s view of these restrictions, defines the programming environment that all EJB 1.1 Conta
must provide.

• An enterprise Bean must not use read/write static fields. Using read-only static field
allowed. Therefore, it is recommended that all static fields in the enterprise bean cla
declared asfinal .

This rule is required to ensure consistent runtime semantics because while some EJB Containe
use a single JVM to execute all enterprise bean’s instances, others may distribute the instances
multiple JVMs.

• An enterprise Bean must not use thread synchronization primitives to synchronize execut
multiple instances.

Same reason as above. Synchronization would not work if the EJB Container distributed ente
bean’s instances across multiple JVMs.

• An enterprise Bean must not use the AWT functionality to attempt to output information
display, or to input information from a keyboard.

Most servers do not allow direct interaction between an application program and a keyboard/dis
attached to the server system.

• An enterprise bean must not use thejava.io package to attempt to access files and direc
ries in the file system.

The file system APIs are not well-suited for business components to access data. Business com
should use a resource manager API, such as JDBC API, to store data.

• An enterprise bean must not attempt to listen on a socket, accept connections on a soc
use a socket for multicast.

The EJB architecture allows an enterprise bean instance to be a network socket client, but it do
allow it to be a network server. Allowing the instance to become a network server would conflict
the basic function of the enterprise bean-- to serve the EJB clients.

• The enterprise bean must not attempt to query a class to obtain information about the de
members that are not otherwise accessible to the enterprise bean because of the secur
 10/23/00 532

EJB 1.1 Bean Provider’s responsibilities Enterprise JavaBeans 2.0, Proposed Final Draft EJB 1.1 Runtime environment

Sun Microsystems, Inc.

access

es in a
ty.

loader;
top the

ctions
envi-

cket, or

o use
ge the

attempt
enter-

reads

.

cular

le.

ould

ual rules

ction
of the Java language. The enterprise bean must not attempt to use the Reflection API to
information that the security rules of the Java programming language make unavailable.

Allowing the enterprise bean to access information about other classes and to access the class
manner that is normally disallowed by the Java programming language could compromise securi

• The enterprise bean must not attempt to create a class loader; obtain the current class
set the context class loader; set security manager; create a new security manager; s
JVM; or change the input, output, and error streams.

These functions are reserved for the EJB Container. Allowing the enterprise bean to use these fun
could compromise security and decrease the Container’s ability to properly manage the runtime
ronment.

• The enterprise bean must not attempt to set the socket factory used by ServerSocket, So
the stream handler factory used by URL.

These networking functions are reserved for the EJB Container. Allowing the enterprise bean t
these functions could compromise security and decrease the Container’s ability to properly mana
runtime environment.

• The enterprise bean must not attempt to manage threads. The enterprise bean must not
to start, stop, suspend, or resume a thread; or to change a thread’s priority or name. The
prise bean must not attempt to manage thread groups.

These functions are reserved for the EJB Container. Allowing the enterprise bean to manage th
would decrease the Container’s ability to properly manage the runtime environment.

• The enterprise bean must not attempt to directly read or write a file descriptor.

Allowing the enterprise bean to read and write file descriptors directly could compromise security

• The enterprise bean must not attempt to obtain the security policy information for a parti
code source.

Allowing the enterprise bean to access the security policy information would create a security ho

• The enterprise bean must not attempt to load a native library.

This function is reserved for the EJB Container. Allowing the enterprise bean to load native code w
create a security hole.

• The enterprise bean must not attempt to gain access to packages and classes that the us
of the Java programming language make unavailable to the enterprise bean.

This function is reserved for the EJB Container. Allowing the enterprise bean to perform this fun
would create a security hole.

• The enterprise bean must not attempt to define a class in a package.
533 10/23/00

EJB 1.1 Runtime environment Enterprise JavaBeans 2.0, Proposed Final DraftEJB 1.1 Container Provider’s responsibility

Sun Microsystems, Inc.

ction

bjects

ctions

s of the

e

B 1.1
ity set-
Con-

nt to
minimal
e EJB

t runt-
This function is reserved for the EJB Container. Allowing the enterprise bean to perform this fun
would create a security hole.

• The enterprise bean must not attempt to access or modify the security configuration o
(Policy, Security, Provider, Signer, and Identity).

These functions are reserved for the EJB Container. Allowing the enterprise bean to use these fun
could compromise security.

• The enterprise bean must not attempt to use the subclass and object substitution feature
Java Serialization Protocol.

Allowing the enterprise bean to use these functions could compromise security.

• The enterprise bean must not attempt to passthis as an argument or method result. Th
enterprise bean must pass the result ofSessionContext.getEJBObject() or Enti-
tyContext.getEJBObject() instead.

To guarantee portability of the EJB 1.1 enterprise bean’s implementation across all compliant EJ
Containers, the Bean Provider should test the enterprise bean using a Container with the secur
tings defined in Table 22. The table defines the minimal functionality that a compliant EJB 1.1
tainer must provide to the enterprise bean instances at runtime.

C.2 EJB 1.1 Container Provider’s responsibility

This section defines the EJB 1.1 Container’s responsibilities for providing the runtime environme
the enterprise bean instances. The requirements described here are considered to be the
requirements; a Container may choose to provide additional functionality that is not required by th
specification.

An EJB 1.1 Container must make the following APIs available to the enterprise bean instances a
ime:

• Java 2 Platform, Standard Edition, v 1.2 (J2SE) APIs

• EJB 1.1 APIs

• JNDI 1.2

• JTA 1.0.1, theUserTransaction interface only

• JDBC™ 2.0 extension

• JavaMail 1.1, sending mail only

The following subsections describes the requirements in more detail.
 10/23/00 534

EJB 1.1 Container Provider’s responsibilityEnterprise JavaBeans 2.0, Proposed Final Draft EJB 1.1 Runtime environment

Sun Microsystems, Inc.

. The

rprise
e Con-
ity and
terfer-

st be
ntainer
ermis-

bean
rprise

f the
C.2.1 Java 2 Platform, Standard Edition, v 1.2 (J2SE) APIs requirements

The Container must provide the full set of Java 2 Platform, Standard Edition, v 1.2 (J2SE) APIs
Container is not allowed to subset the Java 2 platform APIs.

The EJB Container is allowed to make certain Java 2 platform functionality unavailable to the ente
bean instances by using the Java 2 platform security policy mechanism. The primary reason for th
tainer to make certain functions unavailable to enterprise bean instances is to protect the secur
integrity of the EJB Container environment, and to prevent the enterprise bean instances from in
ing with the Container’s functions.

The following table defines the Java 2 platform security permissions that the EJB Container mu
able to grant to the enterprise bean instances at runtime. The term “grant” means that the Co
must be able to grant the permission, the term “deny” means that the Container should deny the p
sion.

Some Containers may allow the Deployer to grant more, or fewer, permissions to the enterprise
instances than specified in Table 22. Support for this is not required by the EJB specification. Ente
beans that rely on more or fewer permissions will not be portable across all EJB Containers.

Table 22 Java 2 Platform Security policy for a standard EJB Container

Permission name EJB Container policy

java.security.AllPermission deny

java.awt.AWTPermission deny

java.io.FilePermission deny

java.net.NetPermission deny

java.util.PropertyPermission grant “read”, “*”
deny all other

java.lang.reflect.ReflectPermission deny

java.lang.RuntimePermission grant “queuePrintJob”,
deny all other

java.lang.SecurityPermission deny

java.io.SerializablePermission deny

java.net.SocketPermission grant “connect”, “*” [Note A],
deny all other

Notes:

[A] This permission is necessary, for example, to allow enterprise beans to use the client functionality o
Java IDL API and RMI-IIOP packages that are part of Java 2 platform.
535 10/23/00

EJB 1.1 Runtime environment Enterprise JavaBeans 2.0, Proposed Final DraftEJB 1.1 Container Provider’s responsibility

Sun Microsystems, Inc.

bean
nstance

esented
ust be

ation
e

ation.
rfaces,

rprise
hese
t for

ust be

r-EJB
ing so
rprise
C.2.2 EJB 1.1 requirements
The container must implement the EJB 1.1 interfaces.

C.2.3 JNDI 1.2 requirements

At the minimum, the EJB Container must provide a JNDI API name space to the enterprise
instances. The EJB Container must make the name space available to an instance when the i
invokes thejavax.naming.InitialContext default (no-arg) constructor.

The EJB Container must make available at least the following objects in the name space:

• The home interfaces of other enterprise beans.

• The resource factories used by the enterprise beans.

The EJB specification does not require that all the enterprise beans deployed in a Container be pr
with the same JNDI API name space. However, all the instances of the same enterprise bean m
presented with the same JNDI API name space.

C.2.4 JTA 1.0.1 requirements

The EJB Container must include the JTA 1.0.1 extension, and it must provide thejavax.transac-
tion.UserTransaction interface to enterprise beans with bean-managed transaction demarc
through the javax.ejb.EJBContext interface, and also in JNDI under the nam
java:comp/UserTransaction , in the cases required by the EJB specification.

The EJB Container is not required to implement the other interfaces defined in the JTA specific
The other JTA interfaces are low-level transaction manager and resource manager integration inte
and are not intended for direct use by enterprise beans.

C.2.5 JDBC™ 2.0 extension requirements

The EJB Container must include the JDBC 2.0 extension and provide its functionality to the ente
bean instances, with the exception of the low-level XA and connection pooling interfaces. T
low-level interfaces are intended for integration of a JDBC driver with an application server, no
direct use by enterprise beans.

C.2.6 Argument passing semantics

The enterprise bean’s home and remote interfaces areremote interfacesfor Java RMI. The Container
must ensure the semantics for passing arguments conform to Java RMI. Non-remote objects m
passed by value.

Specifically, the EJB Container is not allowed to pass non-remote objects by reference on inte
invocations when the calling and called enterprise beans are collocated in the same JVM. Do
could result in the multiple beans sharing the state of a Java object, which would break the ente
bean’s semantics.
 10/23/00 536

Client-demarcated transactions Enterprise JavaBeans 2.0, Proposed Final Draft Frequently asked questions

Sun Microsystems, Inc.
Appendix D Frequently asked questions

This Appendix provides the answers to a number of frequently asked questions.

D.1 Client-demarcated transactions

The Java 2, Enterprise Edition specification [9] defines how a client can obtain thejavax.transac-
tion.UserTransaction interface using JNDI.

The following is an example of how a Java application can obtain thejavax.transaction.User-
Transaction interface.

...
Context ctx = new InitialContext();
UserTransaction utx =

(UserTransaction)ctx.lookup(“java:comp/UserTransaction”);

//
// Perform calls to enterprise beans in a transaction.
//
utx.begin();
... call one or more enterprise beans
utx.commit();
...
537 10/23/00

Frequently asked questions Enterprise JavaBeans 2.0, Proposed Final Draft Container managed persistence

Sun Microsystems, Inc.

.0 spec-
d func-
e the
r needs.

e entity
.1 con-
escrip-

JB 1.1
anaged

le, the
d how

ollows:

nism
and

an be
va lan-

en-

s JDBC
rences
D.2 Container managed persistence

EJB 2.0 supports both field-based and method-based container managed persistence. The EJB 2
ification recommends that the new EJB 2.0 mechanism be used for new work because of the adde
tionality that it provides. Before making a decision, however, the Bean Provider should evaluat
advantages and limitations of both mechanisms and choose the one that best supports his or he

The use of both EJB 2.0 method-based and EJB1.1 field-based container managed persistenc
beans can be combined in the same EJB 2.0 application. The beans that are written to the EJB1
tainer managed persistence API, however, must be indicated as such in the EJB 2.0 deployment d
tor.

EJB 2.0 containers must support the EJB 1.1 mechanism for container managed persistence. E
entity beans and deployment descriptors are supported by EJB 2.0. The EJB 1.1 container m
persistence mechanism has not been deprecated.

D.3 Inheritance

The current EJB specification does not specify the concept ofcomponent inheritance. There are com-
plex issues that would have to be addressed in order to define component inheritance (for examp
issue of how the primary key of the derived class relates to the primary key of the parent class, an
component inheritance affects the parent component’s persistence).

However, the Bean Provider can take advantage of the Java language support for inheritance as f

• Interface inheritance. It is possible to use the Java language interface inheritance mecha
for inheritance of the home and remote interfaces. A component may derive its home
remote interfaces from some “parent” home and remote interfaces; the component then c
used anywhere where a component with the parent interfaces is expected. This is a Ja
guage feature, and its use is transparent to the EJB Container.

• Implementation class inheritance. It is possible to take advantage of the Java class implem
tation inheritance mechanism for the enterprise bean class. For example, the classCheckin-
gAccountBean class can extend theAccountBean class to inherit the implementation of
the business methods.

D.4 How to obtain database connections

Section 19.4 specifies how an enterprise bean should obtain connections to resources such a
connections. The connection acquisition protocol uses resource manager connection factory refe
that are part of the enterprise bean’s environment.
 10/23/00 538

Session beans and primary key Enterprise JavaBeans 2.0, Proposed Final Draft Frequently asked questions

Sun Microsystems, Inc.

pts to
n a cli-

-
ssed by

e bean
ing so
rprise
The following is an example of how an enterprise bean obtains a JDBC connection:

public class EmployeeServiceBean implements SessionBean {
EJBContext ejbContext;

public void changePhoneNumber(...) {
...

// obtain the initial JNDI context
Context initCtx = new InitialContext();

// perform JNDI lookup to obtain resource manager
// connection factory
javax.sql.DataSource ds = (javax.sql.DataSource)

initCtx.lookup("java:comp/env/jdbc/EmployeeAppDB");

// Invoke factory to obtain a connection. The security
// principal is not given, and therefore
// it will be configured by the Deployer.
java.sql.Connection con = ds.getConnection();
...

}
}

D.5 Session beans and primary key

The EJB 1.1 specification specifies the Container’s behavior for the cases when a client attem
access the primary key of a session object. In summary, the Container must throw an exception o
ent’s attempt to access the primary key of a session object.

D.6 Copying of parameters required for EJB calls within the same JVM

The enterprise bean’s home and remote interfaces areremote interfacein the Java RMI sense. The Con
tainer must ensure the Java RMI argument passing semantics. Non-remote objects must be pa
value.

Specifically, the EJB Container is not allowed to pass local objects by reference on inter-enterpris
invocations when the calling and called enterprise beans are collocated in the same JVM. Do
could result in the multiple beans sharing the state of a Java object, which would break the ente
bean’s semantics.
539 10/23/00

Frequently asked questions Enterprise JavaBeans 2.0, Proposed Final Draft Copying of parameters required for EJB

Sun Microsystems, Inc.
 10/23/00 540

Version 0.1 Enterprise JavaBeans 2.0, Proposed Final Draft Revision History

Sun Microsystems, Inc.

JB 2.0
Appendix E Revision History

This appendix lists the significant changes that have been made during the development of the E
specification.

E.1 Version 0.1

Created document from EJB 1.1 Public Draft 3.

Revised introductory chapters to reflect goals of EJB 2.0.
541 10/23/00

Revision History Enterprise JavaBeans 2.0, Proposed Final Draft Version 0.2

Sun Microsystems, Inc.

beans
rcation.

ation

ust be
of the

limita-
n. The

s and

dirty
Added message-driven beans to the EJB architecture:

• New chapter: “Message-driven Bean Component Contract”.

• Additions to “Overview” chapter to reflect new message-driven bean component type.

• Additions to Transactions chapter: scenarios; examples; contracts for message-driven
using container-managed transaction demarcation and bean-managed transaction dema

• Additions to “Exception Handling” chapter for exceptions from message-driven beans.

• Introduction of JMS destination references in “Enterprise Bean Environment” chapter.

• Additions to deployment descriptor for message-driven bean component type, jms destin
references, message-driven bean message-selector and concurrency-mode.

E.2 Version 0.2

Minor modifications to message-driven bean contracts:

• Removed serialized option for message-concurrency-mode. Message-driven beans m
prepared to handle out-of-order messages in any case, and the option inhibited ability
container to provide concurrency.

• MessageDrivenBean modified to extend MessageListener.

• Minor clarifications to Transactions and Exceptions chapters for message-driven beans.

E.3 Version 0.3

Specified of new contracts for entity beans with container-managed persistence to address the
tions of the field-based approach to container-managed persistence in the EJB 1.1 specificatio
new mechanisms are added:

• To support the requirement for container managed relationships among entity bean
between an entity bean and its dependent object classes.

• To provided the basis for a portable finder query syntax.

• To support more efficient vendor implementations leveraging lazy loading mechanisms,
detection, reduce memory footprints, avoid data aliasing problems, etc.

• To provide the foundation for pluggable persistence managers.
 10/23/00 542

Version 0.4 Enterprise JavaBeans 2.0, Proposed Final Draft Revision History

Sun Microsystems, Inc.

ce”.

“Entity

e.

con-

ture to
ersis-

ersis-

Java-

view.

ifica-
nt.
Changes in version 0.3:

• Added new chapter: “Entity Bean Component Contract for Container Managed Persisten

• Separated out component contract for bean-managed persistence into separate chapter,
Bean Component Contract for Bean Managed Persistence.”

• Removed text related to EJB 1.1 component contracts for container-managed persistenc

• Added architected support for container-managed relationships for entity beans with
tainer-managed persistence.

• Additions to component contract in Overview chapter.

• Added deployment descriptor elements for new container-managed persistence architec
support relationships and dependent objects for entity beans with container managed p
tence, and to support versioning of entity beans with regard to cmp-version.

E.4 Version 0.4

Changes to the EJB 2.0 container-managed persistence architecture:

• Shifted responsibility for management of persistent state and relationships entirely to p
tence manager.

• Simplified Bean Provider’s view of entity beans with container managed persistence to
Beans-like API.

• Specified contract for persistent state management and lifecycle contract.

• Clarified distinction among client view, bean provider’s view, and persistence manager’s

• Clarified distinctions between dependent object classes and dependent value classes.

E.5 Version 0.5

Added home business methods for entity beans.

Generalized the naming of create methods for Session beans and Entity beans.

Introduced local transaction optimization in “Support for Transactions” chapter.

Added chapter to retain specification of EJB 1.1 contract for container-managed persistence.

Brought the EJB 2.0 specification into sync with the EJB 1.1 Final Release, by incorporating mod
tions that were made to the EJB 1.1 specification after the initial creation of the EJB 2.0 docume
543 10/23/00

Revision History Enterprise JavaBeans 2.0, Proposed Final Draft Version 0.6

Sun Microsystems, Inc.

ainer

sistence

persis-

bean

ment,
ses and

es and

es.
E.6 Version 0.6

Added specification of EJB QL, a declarative syntax for finder methods for entity beans with cont
managed persistence.

Added connection and transaction management contracts between the container and the per
manager for entity beans with container-managed persistence.

Added object interaction diagrams for entity beans with container-managed persistence.

Simplified the deployment descriptor elements for dependent objects and relationships.

Updated Appendixes: added list of items for future releases, added FAQ for container-managed
tence.

Incorporated changes specified in the EJB 1.1 Errata document.

E.7 Version 0.7

Introduced select methods and extended EJB QL to provide an internal query capability for entity
classes.

Added clarifications to container-managed persistence runtime model for relationship manage
assignment semantics, collection semantics, and differences between dependent object clas
dependent value classes.

Relaxed restrictions to allow sharing of dependent object classes among beans.

Added run-as security identity functionality.

Provided generalization of JMS destination references in terms of resource environment referenc
removed JMS destination references proper.

Revised chapters related to interoperability to reflect EJB Interoperability Architecture document.

Revision of the Runtime Environment chapter to reflect J2EE 1.3.

Added Appendix chapters for EJB 1.1 Runtime and EJB 1.1 Deployment descriptor.

E.8 Participant Draft

Minor clarification to description of Application Assembler’s responsibilities in linking EJB referenc
 10/23/00 544

Public Draft Enterprise JavaBeans 2.0, Proposed Final Draft Revision History

Sun Microsystems, Inc.

ne and

ce and

hods for

ver-

thods.
E.9 Public Draft

Removed restrictions on sharing of instances of dependent object classes.

Merged EJB Interoperability document into Chapter 18.

Renamed EJB-QL to EJB QL.

Corrected minor inconsistencies in treatment of finder methods.

E.10 Public Draft 2

Relaxed ownership restrictions on dependent object classes.

Added delete() method on dependent object classes.

Added cascade-delete deployment descriptor element for dependent object involved in one-to-o
one-to-many relationships.

Introduced primary keys for instances of dependent object classes.

Clarified semantics of detached instances of dependent object classes.

Removed the requirement for the deepCopy() method.

Clarified naming rules for accessor methods for entity beans with container managed persisten
cmp-fields and cmr-fields.

Revised creation protocol for dependent object classes; added ejbCreate and ejbPostCreate met
dependent object classes.

Removed the requirement that dependent object classes not be serializable.

Added clarification that findByPrimaryKey(primaryKey) method for entity beans must not be o
loaded.

Removed ejbSelectInEntity methods.

Added ejbSelect methods to dependent object classes.

Removed the query-spec element.

Clarified the semantics of mutation operations on relationships.

Removed requirement for persistence manager to raise DuplicateKeyException in ejbCreate me
545 10/23/00

Revision History Enterprise JavaBeans 2.0, Proposed Final Draft Proposed Final Draft

Sun Microsystems, Inc.

in ejb-

rching

ons to

refer-

added
ce.

umer of

.

being

datory
JB 2.0

to the

dicate

oncur-
Added restriction that dependent object instances not be created and cmr-fields not be modified
Create methods (but rather in ejbPostCreate methods).

Extended and aligned EJB QL to reflect above changes in container managed persistence.

Added full BNF for EJB QL

Added range variables for dependent object classes to EJB QL to provide for queries for sea
detached dependent objects.

Clarified EJB QL equality semantics to utilize dependent object identity based on primary keys.

Further clarified EJB QL type system, naming, and path expression semantics.

Clarified allowable arguments for EJB QL finder expressions and introduced constructor expressi
convert primitive types to equivalent Java object types.

Extended EJB QL Select clause to allow casting to ejbObject types and to handle single valued
ences.

Removed requirement that MessageDrivenBean interface extend javax.jms.MessageListener;
requirement that message driven bean class must implement javax.jms.MessageListener interfa

Added requirement that container must support deployment of a message driven bean as a cons
a JMS queue or a JMS durable subscription.

Removed the jms- prefix from deployment descriptor elements specific to message driven beans

Modified discussion of use of local transaction optimization by the container to reflect changes
made to the J2EE platform specification [9].

Added requirement that the Bean Provider must use only the Required, RequiresNew, or Man
transaction attributes for methods defined in the home or remote interface of an entity bean with E
container managed persistence.

Modified discussion of use of connection sharing by the container to reflect changes being made
J2EE platform specification [9].

Added res-sharing-scope deployment descriptor element to allow Bean Provider to be able to in
whether connections were shareable or unshareable.

Renamed runAs-specified-identity deployment descriptor element to run-as-specified-identity.

E.11 Proposed Final Draft

Loosened the container’s requirement for raising the java.rmi.RemoteException in the case of c
rent calls to a stateful session object.
 10/23/00 546

Proposed Final Draft Enterprise JavaBeans 2.0, Proposed Final Draft Revision History

Sun Microsystems, Inc.

rima-

ce man-

opback

obtain

nly of
les of

nce and

s of

nsac-

ener or

lass to

rprise
itted to

ainer
Corrected inconsistency in specification of error behavior for javax.ejb.Home.remove(Object p
ryKey) when called on session bean: javax.ejb.RemoveException should be thrown.

Clarified that the Bean Provider does not need to release a session bean’s reference to a resour
ager connection factory in ejbPassivate.

Renamed the delete() method for dependent object classes to remove().

Clarified that the Bean Provider should program a dependent object class to be able to handle lo
calls if it is possible that such loopback calls will occur.

Added requirement that Container should provide to the Persistence Manager the functionality to
an EJBObject from a primary key for the given transaction context.

Removed the restriction that the FROM clause of a finder method query specify a range variable o
the abstract schema type of the entity bean for which the finder method is defined: range variab
other abstract schema types are now allowed.

Clarified that the get and set accessor methods of entity beans with container managed persiste
dependent object classes must be defined as public (and not as public or protected).

Clarified the semantics for assignment for multi-valued cmr-fields and semantics of method
java.util.Collection API applied to these fields.

Clarification of literal syntax for EJB QL.

Added clarification that the container must not attempt the local transaction optimization on tra
tions imported from a different container.

Clarified that enterprise beans must not call the javax.jms.MessageConsumer.setMessageList
javax.jms.MessageConsumer.getMessageListener method.

Changed dependent deployment descriptor element to make it optional for a dependent object c
have cmp-fields.

Clarified that if the Application Assembler has assigned some methods (but not all) of an ente
bean to security roles, the Deployer should configure the bean’s security so that no access is perm
the other methods.

Changed entity deployment descriptor element to make it optional for an entity bean with cont
managed persistence and cmp-version 2.x to have cmp-fields.

Corrected use-caller-identity deployment descriptor element to be EMPTY rather than PCDATA.

Changed EJB 2.0 DTD URL to http://java.sun.com/dtd/ejb-jar_2_0.dtd.

Removed ejb-ref-name from ejb-entity-ref element: Bean Provider does not specify this.
547 10/23/00

Revision History Enterprise JavaBeans 2.0, Proposed Final Draft Proposed Final Draft

Sun Microsystems, Inc.

uni-
bil-

to pro-
rovide

rs; cli-
er.

rvice

ming
erver’s

mon

ty con-

(i.e.
nsport
Changed capitalization of the values of the following deployment descriptor elements to maintain
form deployment descriptor capitalization convention: multiplicity (One, Many), subscription-dura
ity (Durable, NonDurable), Acknowledge-mode (Auto-acknowledge, Dups-ok-acknowledge).

Clarified that containers must implement the CORBA 2.3.1 requirements for code set support.

Added requirements for obtaining stub classes and client-view classes: containers are required
vide stubs for all beans that are referenced from a J2EE application; containers are required to p
portable system value classes that may be instantiated by clients in other vendor’s containe
ent-view classes are packaged in the referencing J2EE application by the assembler and deploy

Updated the transaction interoperability requirements to follow the CORBA Object Transaction Se
v1.2; updated the requirements on transaction policies in EJB references accordingly.

Updated the requirements for lookup of EJBHome objects using the CORBA Interoperable Na
Service: the root NamingContext is accessed at the host, port, and object key advertised by the s
COSNaming service.

Updated the list of required SSL/TLS ciphersuites for transport-layer security interoperability.

Updated the requirements for security information in EJB references based on the CORBA Com
Secure Interoperability version 2 (CSIv2) specification.

Updated the requirements for carrying principals and authentication data in IIOP message securi
texts, based on the CSIv2 specification.

Clarified that the String returned from EJBContext.getCallerPrincipal().getName() is derived from
may not be exactly the same as) the caller information obtained from the IIOP message and tra
layers.

Aligned ejb-jar file packaging with interoperability requirements; clarified responsibilities of roles.
 10/23/00 548

549

Index
A
abstract persistence schema, 110, 111

design of, 144
map to physical schema, 111

abstract schema type
SELECT clause, 236

abstract schema types, 219
accessor methods

container-managed persistence, 114
exposure, 115

activation, 60, 75
All , 57
APIs

runtime, 489, 492, 531, 534
Application Assembler, 34

responsibilities, 498
transaction attributes, 350
transaction role, 349

application assembly, 457–458, 508–509
application exception, 369
application exception See exception
arithmetic expression, 230

fixed decimal comparison, 238
assignment

relationship, 125
assignment rules

for relationship, 125–142
authentication

application client, 401
propagation, 403

authentication identity, 400

B
Bean Provider, 34

entity bean
class files, 185
dependent object class, 186
dependent value class, 187
deployment descriptor, 191

entity bean abstract class, 157
entity bean contract

container-managed persistence, 114
entity bean view, 113
responsibilities, 497
responsibility, 84–87

BeanReference
Interface in package java.beans.enter-

prise, 501
Interface in package java.ejb, 501

between expression, 231
BNF notation

EJB QL, 243
business objects

modeling of, 113

C
cache management, 184
cascade-delete, 119, 120
cmp-field, 114

allowed Java types, 115
dependent value class, 143

cmp-fields element, 455, 507
cmr-field, 114
collection

INDEX550
representation of many-sided relationship,
143

collection manipulation, 125
collection member declaration, 225
comments, 239
commit, 182, 265
comparison expression, 232
concurrency control

optimistic, 202
pessimistic, 203

concurrent message processing, 314
conditional expression, 230
connection management, 202–203, 204
Container

Interface in package java.ejb, 501
Container Provider, 35

deployment tools, 196–199
object reference implementation, 198
transaction demarcation

bean managed, 353
container managed, 355–358

container-managed persistence, 111
accessor methods, 114

exposure, 115
advantages of, 112
fields, 114

accessor methods for, 114
Persistence Manager, 159

primary key, 115
relationship, 115

Persistence Manager role, 159
container-managed persistence contract, 111,

114
container-transaction element, 350
conversational state, 61

passivation, 61
rollback, 63

CORBA mapping, 48
CosNaming service, 398
create method, 160
CreateException, 180, 264

D
data transfer, 159
date value, 238
delete method

to delete dependent object, 119
dependent class

types of, 116
dependent object

deleting, 119
implementation of, 113

dependent object class, 116, 194
creation API, 118–119
exposure of, 144
Persistence Manager, 160
persistent identity, 121
primary key, 122, 200

unspecified, 201
programming contract, 117
requirements, 186

dependent value class, 116, 143
requirements, 187

Deployer, 34
mapping persistence schema, 111
responsibilities, 498

deployment
entity bean, 192–??
tools, 196–199

deployment descriptor
abstract persistence schema, 110
application assembly, 454, 506
bean structure, 454, 454–456, 506, 506–

507
cascade-delete, 119, 120
cmp-field, 114
cmr-field, 114
dependent object class, 191
DTD, 459–484, 509–524
EJB reference, 414
ejb-link element, 416
ejb-ref element, 414
ejb-relationship-role element, 121
enterprise-beans element, 454, 506
env-entry element, 410
environment entry, 410
logical relationships, 112
primary key, 199
primary key class, 191
query element, 177
res-auth element, 420
resource-ref element, 421

INDEX 551
role, 454, 506
transaction attributes, 350
XML DTD, 459–484, 509–524

distributed objects, 383
location transparency, 383
stubs, 384

DuplicateKeyException, 180, 264

E
EBJ QL

equality, 238
EJB Container Provider, 35

requirements, 87–89
responsibilities, 498

EJB QL, 215–244
abstract schema types, 219
between expression, 231
BNF notation, 243
comments, 239
comparison expression, 232
conditional expression, 230
date value, 238
finder expression, 233
finder methods

using abstract schema types, 216
FROM clause, 223

identification variable, 224
identifier, 224

functions
built-in, 234

identification variable, 229
in expression, 231
inheritance, 239
input parameters, 230
IS EMPTY, 233
like expression, 232
literal, 228
navigation, 222
navigation operators, 226
null, 237
operator precedence, 230
path expression, 229

remote type, 228
query

definition of, 217
domain, 219

navigability, 219
examples of, 239–241
FROM clause, 217
SELECT clause, 217

query strings
forming, 220

query syntax
by type of finder method, 218

SELECT clause, 235
abstract schema type, 236

select methods, 218
SQL, 242
time value, 238
type, 217
WHERE clause, 228

EJB Query Language, 215–244
See EJB QL

EJB reference, 413
Deployer role, 418
ejb-link element, 416
in deployment descriptor, 414
locate home interface, 414

EJB Role
Application Assembler, 34
Bean Provider, 34
Container Provider, 35
Deployer, 34
EJB Server Provider, 35
System Administrator, 36

EJB Server Provider, 35
ejb-class element, 454, 506
ejb-client JAR file, 487
EJBContext

Interface in package javax.ejb, 500, 501
ejbCreate method, 314
EJBHome, 51, 197, 275

Interface in package javax.ejb, 501
remove method, 52

ejb-jar file, 45, 456, 485, 508
class files, 486
deployment descriptor, 486
ejb-client JAR file, 487
JAR Manifest, 488

ejb-link element, 416
EJBMetaData, 198, 277
ejb-name element, 454, 506

INDEX552
EJBObject, 49, 53, 197, 276
remove method, 52

ejb-ref element, 414
ejb-relationship-role element

with cascade-delete, 121
ejbRemove, 71
ejbRemove method

message-driven bean, 316
enterprise bean component

characteristics of, 41
enterprise bean component model, 42
enterprise bean contract

client view, 43
CORBA mapping, 48
home interface, 43
metadata interface, 44
object identity, 44
remote interface, 43

component contract
requirements, 44

ejb-jar file, 45
enterprise bean environment

JNDI interface, 408
InitialContext, 409

Enterprise Bean Provider, 34
entity bean

allowable method operations, 175
allowed method operations, 175, 259
Bean Provider

class files, 185
bean provider-implemented methods,

163, 252–255
business methods, 189, 272
class requirements, 193, 269
client view of, 95–96, 110
commit, 182, 265
constructor, 163, 168, 252
container-managed persistence

runtime model, 155
unspecified primary key, 200

container-managed persistence contract,
111, 114

create method, 99, 187, 194, 270
create methods, 172
CreateException, 180, 264

defining container-managed persistent
fields, 114

dependent class types, 116
dependent object class, 194

programming contract, 117
requirements, 187

dependent value class
requirements, 187

deployment descriptor, 191
DuplicateKeyException, 180, 264
EJB container, 96
ejbActivate, 165, 169, 254
ejbActivate method, 172
ejbCreate, 164, 169, 187, 194, 253, 270
ejbFind methods, 195, 271
ejbHome method, 167, 174, 188
ejbLoad, 166, 170, 254, 260
ejbLoad method, 173, 184
ejbPassivate, 165, 170, 254
ejbPassivate method, 173
ejbPostCreate, 165, 169, 188, 195, 253,

271
ejbRemove, 166, 170, 254
ejbRemove method, 173
ejbSelect methods, 167, 188, 195
ejbStore, 166, 171, 255, 260
ejbStore method, 173
exceptions, 180–181, 264–265
find methods, 100, 167, 171, 174, 177,

255, 271
multi-object return types, 177
return type, 177–178, 262–263

findByPrimaryKey, 100
FinderException, 181, 265
generated classes, 196, 275
getHandle method, 105
getPrimaryKey method, 103
handle, 105, 197, 276
home interface

function of, 98
requirements, 190, 273

home interface handle, 106, 198, 276
implementation class requirements, 186
isIdentical method, 104
life cycle, 101–103, 160, 161–163, 250–

252

INDEX 553
locate home interface, 97
methods

container view of, 172–175, 256–258,
??–258

modeling business objects, 113, 246
naming of, 220
ObjectNotFoundException, 181, 265
persistence, 111, 245, 247

bean provider view, 113
container managed, 292–297

Persistence Manager
responsibilities, 192–??

Persistence Manager implementation of,
168

Persistence Manager-implemented meth-
ods, 168

persistence relationship, 115
persistent state, 110
primary key, 103, 191, 199, 274
reentrancy, 184, 268
remote interface, 104, 189, 273
remove method, 100
RemoveException, 181, 265
select methods, 171, 178

return type, 179
setEntityContext, 163, 168, 252
setEntityContext method, 172
state, 161, 250
state caching, 260
transaction context, 201

loopback, 185
transaction demarcation, 337

container managed, 346
transaction synchronization, 183, 266
unsetEntityContext, 164, 168, 253
unsetEntityContext method, 172

entity bean class
as abstract class, 114

entity element, 454, 506
entity object

state, 113
env-entry element, 410
environment entry, 410

Application Assembler role, 413
Deployer role, 413

environment naming context, 409

equality semantics
in EJB QL, 238

exception
application, 369

client handling of, 379
data integrity, 370
defined, 370
subclass of, 371

client view, 378
container handling of, 373

container-invoked callbacks, 376
containter-managed transaction, 377
NoSuchObjectException, 381
RemoteException, 378, 379

client handling, 380
system

handling of, 371–372
System Administrator, 381
transaction commit, 377
transaction start, 377
TransactionRequiredException, 380
TransactionRolledbackException, 380

exceptions
message-driven bean, 315

F
find methods, 181, 195

deployment descriptor
query, 192

query element, 177
select methods, 178

findByPrimaryKey, 100
finder expression, 233
FinderException, 181, 265
fixed decimal comparison, 238
FROM clause, 223

identification variable, 224
identifier, 224

functions
built-in, 234

G
getCallerIdentity, 434
getCallerPrincipal, 435, 449
getCallerPrincipal method, 313
getEJBHome method, 313

INDEX554

-

getEnvironment method, 428
getHandle method, 105
getPrimaryKey method, 57, 103
getRollbackOnly method, 313
getUserTransaction method, 313

H
helper class

in container-managed persistence, 111
home element, 454, 506
home interface, 43, 50, 77

client functionality, 98
create method, 99
EJB reference to, 413
entity bean, 190, 273
find methods, 100
findByPrimaryKey, 100
handle, 106
locating, 97
remove method, 100

I
identification variable, 224, 229

collection member declaration, 225
collection member variable, 224
declaring, 224
path expression, 226
range variable, 224, 225

identifier, 224
IIOP 1.2 protocol, 390
in expression, 231
inheritance, 239
input parameters, 230
Interfaces

java.beans.enterprise.BeanReference, 501
java.ejb.BeanReference, 501
java.ejb.Container, 501
javax.ejb.EJBContext, 500, 501
javax.ejb.EJBHome, 501
javax.ejb.SessionSynchronization, 347

interoperability, 396
CosNaming service, 398
exception handling, 396
mapping

remote interface to IDL, 390
system exceptions, 391

value objects to IDL, 391
naming, 398
portability, 392
remote method, 390
scenarios, 386–389
security, 399–406

container configuration, 405
IOR, 402
of EJB invocations, 401
run time behavior, 405

stub class, 392
transaction, 392

client container requirements, 396
EJB container requirements, 397
two-phase commit, 393
wire format, 393

transaction policy, 395
value class, 392

interoperability protocol, 384
goals, 385

IS EMPTY comparison operator, 233
isCallerInRole, 434
isCallerinRole, 436
isCallerInRole method, 313
isIdentical method, 56, 57, 104
isolation level

managing in transaction, 338

J
JAR Manifest file, 488
Java Authentication and Authorization Ser-

vice, 401
Java RMI, 496, 536
Java types

in cmp-field, 115
java.util.Collection, 114, 179
java.util.Set, 114, 179
javax.ejb.EJBHome interface, 190
javax.ejb.EJBObject interface, 189
javax.ejb.EntityBean interface, 186
javax.jms.MessageListener interface, 313
javax.transaction.Synchronization object,

205
javax.transaction.TransactionManager inter

face, 204
JDBC, 495, 536

INDEX 555
JMS Destination, 310
locating, 311
mesage-driven bean, 315

JMS message, 309
JMS Queue

message-driven bean, 315
JMS Topic, 310, 315
JNDI, 494, 536

locating JMS Destination, 311
JNDI interface, 408

InitialContext, 409
JTA, 495, 536

L
life cycle

entity bean, 160
like expression, 232
literal, 228

M
Mandatory, 350, 357
mapping

abstract schema to persistent store, 145
message acknowledgement, 315
message-driven bean

client view of, 310
concurrent message processing, 314
container support, 323–324
definition of, 309
deployment, 321–323
ejbCreate method, 314
ejbRemove method, 316
exceptions, 315
JMS Destination, 315
lifecycle, 316
message acknowledgement, 315
message consumer, 310
method operations, 318
method serialization, 314
object interaction diagrams, 319–321
protocol, 312
topic subscription, 312, 315
transaction context, 314

MessageDrivenBean interface, 312
MessageDrivenContext interface, 313
MessageListener interface, 313

metadata interface, 44
method-permission element, 441
modeling

using entity beans, 113

N
narrow method, 57
navigability

query domain, 219
navigation

among entity beans, 222
Never, 350, 357
NoSuchObjectException, 381
NotSupported, 350, 355
null, 237
null comparison expression, 232

O
object identity, 44
object interaction diagrams, 205–214
object reference implementation, 198
ObjectNotFoundException, 181, 265
onMessage method, 313
operator precedence, 230
operators

for navigation, 226
optimistic concurrency control, 202
OTSPolicy values, 395

P
passivation, 60, 75

conversational state, 61
SessionContext interface, 62
UserTransaction interface, 62

path expression, 226, 229
reference remote type, 228

persistence, 111, 245
abstract schema, 110, 111

design of, 144
in deployment descriptor, 110
mapping to persistent store, 145

bean managed, 247
entity state caching, 260

bean provider view, 113
container managed, 111, 292–297
helper class, 111

INDEX556
of dependent object class, 121
relationship, 115

Persistence Manager, 111
collection management, 143
container-managed fields, 159
dependent object class, 157, 160
deployment tools, 192
entity bean, 157
responsibilities, 192–??

persistence-type element, 455, 507
persistent state

entity bean view of, 110
pessimistic concurrency control, 203
portability

programming restrictions, 490–492, 532–
534

PortableRemoteObject.narrow method, 178,
179

primary key, 103, 115, 191, 274
dependent object, 200
dependent object class

multiple fields, 200
deployment descriptor, 199
map to multiple fields, 199
of dependent object class, 122
type, 199

prim-key-class element, 455, 507
principal, 432, 433

delegation, 447

Q
query

definition of, 217
forming, 220

query element, 177
Query language, 215–244

See EJB QL

R
range variable

declaration, 225
relationship

assignment rules, 125, 125–142
collection manipulation, 125
field assignment, 122–??

remote element, 454, 506

remote interface, 43, 49, 53
entity bean, 104, 189, 273

remote interface type
path expression, 228

remote method interoperability, 390
RemoteException, 378, 379

client handling, 380
RemoveException, 181, 265
Required, 350, 356
RequiresNew, 350, 356
res-auth element, 420
resource

obtaining connection to, 419
res-auth element, 420

resource factory, 419
resource factory reference, 419

resource-ref element, 421
resource-ref element, 421
RMI, 383
RMI-IIOP, 189
role-link element, 444
role-name element, 439
runtime

APIs, 489, 492, 531, 534

S
schema

design of, 144
for container-managed persistence, 110

Secure Sockets Layer, 402
security

audit, 451
bean provider

programming recommendations, 433
client responsibility, 447
current caller, 435
deployment descriptor processing, 447
deployment tools, 448
EJBContext, 434, 449
getCallerPrincipal, 434, 435, 449
isCallerInRole, 434, 436
mechanism, 449
principal, 432, 433

delegation, 447
passing, 449

principal realm, 446, 448

INDEX 557

-

role-link element, 444
runtime enforcement, 450
security-role-ref element, 437

security domain, 446, 448
security principal, 400

popagation, 403
security role, 432, 438, 439

assigning, 446
linking, 444
method permission, 432, 438, 441
role-name element, 439

security view, 438
security-role element, 439, 446
security-role-ref element, 437
SELECT clause, 235

abstract schema type, 236
select methods, 178, 181, 195, 218

deployment descriptor
query, 192

serialization
message-driven bean methods, 314

session bean
access to, 49
business method requirements, 86
class requirements, 84
client operations on, 54
client view of, 49
create, 52
ejbCreate requirements, 85
ejbRemove call, 71
exceptions, 71
getPrimaryKey method, 57
home interface, 50, 51
home interface requirements, 86
identity, 53
provider responsibility, 84–87
remote interface, 49, 53
remote interface requirements, 86
remove, 52, 76
requirements, 84–87
SessionBean interface, 63
SessionContext interface, 63
SessionSynchronization interface, 64
stateful

conversational state, 61
identity of, 56

isIdentical method, 56
lifecycle, 67
operations in, 69

stateless, 77–84
exceptions, 81
home interface, 77
identity of, 57
isIdentical method, 57
lifecycle, 78
operations, 80
transaction demarcation, 339
use of, 77

transaction context, 66
transaction demarcation, 337, 338

bean managed, 338
container managed, 346

transaction scope, 72
session bean instance

activation, 60, 75
characteristics, 59
creating, 65

diagram of, 73
passivation, 60, 75
serialization of calls, 65

session element, 454, 506
SessionBean interface, 63
SessionContext interface, 63

passivation, 62
SessionSynchronization interface, 64, 347

callbacks, 359
session-type element, 455, 507
setRollbackOnly method, 313
SQL, 242
SSL, 402
state

non-persistent, 143
storing of, 159
storing of entity object with dependent ob

jects, 113
stateful session bean

conversational state, 61
lifecycle, 67
operations in, 69

stateless session bean. See session bean
string literal, 228
Supports, 350, 356

INDEX558
synchronization, 203, 205
System Administrator, 36

responsibilities, 498

T
time value, 238
topic subscription, 315

durable, 312
non-durable, 312

transaction
attributes, 330

definition, 349
deployment descriptor, 350
Mandatory, 357
Never, 357
NotSupported, 355
Required, 356
RequiresNew, 356
Supports, 356
values, 349

bean managed, 330, 337–348
container responsibilities, 353

committing, 74
container managed, 330, 337–348

container responsibilities, 355–358
getRollbackOnly method, 348, 359
getUserTransaction method, 359
SessionSynchronization callbacks,

359
setRollbackOnly method, 347, 358

context, 201
failure modes, 396
interoperability, 392
isolation level, 338
JTA, 331
JTS, 331
multiple client access, 362–367
nested, 330
optimization, 204
reentrancy, 185
SessionSynchronization interface, 347
starting, 73
synchronizing, 183, 203, 205, 266
unspecified transaction context, 361
UserTransaction interface, 330

transaction context

messaging, 314
session bean, 66

transaction scope
session bean, 72

TransactionManager
transaction context, 202

TransactionRequiredException, 380
TransactionRolledbackException, 380
transaction-type element, 455, 507
trans-attribute element, 350
type conversion

PortableRemoteObject.narrow method,
178, 179

type narrowing, 57, 106
typed expression language, 217

U
UserTransaction interface, 330, 338, 429

passivation, 62

W
WHERE clause, 228

	Chapter 1 Introduction
	1.1 Target audience
	1.2 What is new in EJB 2.0
	1.3 Acknowledgments
	1.4 Organization
	1.5 Document conventions

	Chapter 2 Goals
	2.1 Overall goals
	2.2 EJB Releases 1.0 and 1.1
	2.3 Goals for Release 2.0

	Chapter 3 EJB Roles and Scenarios
	3.1 EJB Roles
	3.1.1 Enterprise Bean Provider
	3.1.2 Application Assembler
	3.1.3 Deployer
	3.1.4 EJB Server Provider
	3.1.5 EJB Container Provider
	3.1.6 Persistence Manager Provider
	3.1.7 System Administrator

	3.2 Scenario: Development, assembly, and deployment

	Chapter 4 Overview
	4.1 Enterprise Beans as components
	4.1.1 Component characteristics
	4.1.2 Flexible component model

	4.2 Enterprise JavaBeans contracts
	4.2.1 Client-view contract
	4.2.2 Component contract
	4.2.3 Ejb-jar file
	4.2.4 Contracts summary

	4.3 Session, entity, and message-driven objects
	4.3.1 Session objects
	4.3.2 Entity objects
	4.3.3 Message-driven objects

	4.4 Standard mapping to CORBA protocols

	Chapter 5 Client View of a Session Bean
	5.1 Overview
	5.2 EJB Container
	5.2.1 Locating a session bean’s home interface
	5.2.2 What a container provides

	5.3 Home interface
	5.3.1 Creating a session object
	5.3.2 Removing a session object

	5.4 EJBObject
	5.5 Session object identity
	5.6 Client view of session object’s life cycle
	5.7 Creating and using a session object
	5.8 Object identity
	5.8.1 Stateful session beans
	5.8.2 Stateless session beans
	5.8.3 getPrimaryKey()

	5.9 Type narrowing

	Chapter 6 Session Bean Component Contract
	6.1 Overview
	6.2 Goals
	6.3 A container’s management of its working set
	6.4 Conversational state
	6.4.1 Instance passivation and conversational state
	6.4.2 The effect of transaction rollback on conversational state

	6.5 Protocol between a session bean instance and its container
	6.5.1 The required SessionBean interface
	6.5.2 The SessionContext interface
	6.5.3 The optional SessionSynchronization interface
	6.5.4 Business method delegation
	6.5.5 Session bean’s ejbCreate<METHOD>(...) methods
	6.5.6 Serializing session bean methods
	6.5.7 Transaction context of session bean methods

	6.6 STATEFUL Session Bean State Diagram
	6.6.1 Operations allowed in the methods of a stateful session bean class
	6.6.2 Dealing with exceptions
	6.6.3 Missed ejbRemove() calls
	6.6.4 Restrictions for transactions

	6.7 Object interaction diagrams for a STATEFUL session bean
	6.7.1 Notes
	6.7.2 Creating a session object
	6.7.3 Starting a transaction
	6.7.4 Committing a transaction
	6.7.5 Passivating and activating an instance between transactions
	6.7.6 Removing a session object

	6.8 Stateless session beans
	6.8.1 Stateless session bean state diagram
	6.8.2 Operations allowed in the methods of a stateless session bean class
	6.8.3 Dealing with exceptions

	6.9 Object interaction diagrams for a STATELESS session bean
	6.9.1 Client-invoked create()
	6.9.2 Business method invocation
	6.9.3 Client-invoked remove()
	6.9.4 Adding instance to the pool

	6.10 The responsibilities of the bean provider
	6.10.1 Classes and interfaces
	6.10.2 Session bean class
	6.10.3 ejbCreate<METHOD> methods
	6.10.4 Business methods
	6.10.5 Session bean’s remote interface
	6.10.6 Session bean’s home interface

	6.11 The responsibilities of the container provider
	6.11.1 Generation of implementation classes
	6.11.2 Session EJBHome class
	6.11.3 Session EJBObject class
	6.11.4 Handle classes
	6.11.5 EJBMetaData class
	6.11.6 Non-reentrant instances
	6.11.7 Transaction scoping, security, exceptions
	6.11.8 SessionContext

	Chapter 7 Example Session Scenario
	7.1 Overview
	7.2 Inheritance relationship
	7.2.1 What the session Bean provider is responsible for
	7.2.2 Classes supplied by container provider
	7.2.3 What the container provider is responsible for

	Chapter 8 Client View of an Entity
	8.1 Overview
	8.2 EJB Container
	8.2.1 Locating an entity bean’s home interface
	8.2.2 What a container provides

	8.3 Entity bean’s home interface
	8.3.1 create methods
	8.3.2 finder methods
	8.3.3 remove methods
	8.3.4 home methods

	8.4 Entity object’s life cycle
	8.5 Primary key and object identity
	8.6 Entity Bean’s remote interface
	8.7 Entity bean’s handle
	8.8 Entity home handles
	8.9 Type narrowing of object references

	Chapter 9 Entity Bean Component Contract for Container Managed Persistence
	9.1 Overview
	9.2 Data independence between the Client View, the Entity Bean View, and the Persistence View
	9.3 Container-managed entity persistence
	9.3.1 Granularity of entity beans

	9.4 The entity bean provider’s view of persistence
	9.4.1 The entity bean provider’s programming contract
	9.4.2 The entity bean provider’s view of persistent relationships
	9.4.3 The view of dependent classes
	9.4.4 The entity bean provider’s programming contract for dependent object classes
	9.4.4.1 Creation protocol for dependent objects
	9.4.4.2 Removal of dependent objects

	9.4.5 Identity of dependent object class instances
	9.4.6 Semantics of assignment for relationships
	9.4.6.1 Use of the java.util.Collection API to update relationships
	9.4.6.2 Use of set accessor methods to update relationships

	9.4.7 Assignment rules for relationships
	9.4.7.1 One-to-one bidirectional relationships
	9.4.7.2 One-to-one unidirectional relationships
	9.4.7.3 One-to-many bidirectional relationships
	9.4.7.4 One-to-many unidirectional relationships
	9.4.7.5 Many-to-one unidirectional relationships
	9.4.7.6 Many-to-many bidirectional relationships
	9.4.7.7 Many-to-many unidirectional relationships

	9.4.8 Collections managed by the Persistence Manager
	9.4.9 Dependent value classes
	9.4.10 Non-persistent state
	9.4.11 The relationship between the persistence view and the client view
	9.4.12 Mapping data to a persistent store
	9.4.13 Example
	9.4.14 The Bean Provider’s view of the deployment descriptor

	9.5 The entity bean component contract
	9.5.1 Runtime execution model of entity beans
	9.5.2 Relationships among the classes provided by the bean provider and persistence manager
	9.5.3 Persistence Manager responsibilities
	9.5.3.1 Container-managed fields
	9.5.3.2 Container-managed relationships
	9.5.3.3 Container-managed dependent object classes

	9.6 Instance life cycle contract between the bean, the container, and the persistence manager
	9.6.1 Instance life cycle
	9.6.2 Bean Provider’s entity bean instance’s view
	9.6.3 Persistence Manager’s view
	9.6.4 Container’s view
	9.6.5 Operations allowed in the methods of the entity bean class
	9.6.6 Finder methods
	9.6.6.1 Single-object finder
	9.6.6.2 Multi-object finders

	9.6.7 Select methods
	9.6.7.1 Single-object select methods
	9.6.7.2 Multi-object select methods

	9.6.8 Standard application exceptions for Entities
	9.6.8.1 CreateException
	9.6.8.2 DuplicateKeyException
	9.6.8.3 FinderException
	9.6.8.4 ObjectNotFoundException
	9.6.8.5 RemoveException

	9.6.9 Commit options
	9.6.10 Concurrent access from multiple transactions
	9.6.11 Non-reentrant and re-entrant instances

	9.7 Responsibilities of the Enterprise Bean Provider
	9.7.1 Classes and interfaces
	9.7.2 Enterprise bean class
	9.7.3 Dependent object classes
	9.7.4 Dependent value classes
	9.7.5 ejbCreate<METHOD> methods
	9.7.6 ejbPostCreate<METHOD> methods
	9.7.7 ejbHome<METHOD> methods
	9.7.8 ejbSelect<METHOD> methods
	9.7.9 Business methods
	9.7.10 Entity bean’s remote interface
	9.7.11 Entity bean’s home interface
	9.7.12 Entity bean’s primary key class
	9.7.13 Entity bean’s deployment descriptor

	9.8 The responsibilities of the Persistence Manager
	9.8.1 Generation of implementation classes
	9.8.2 Classes and interfaces
	9.8.3 Enterprise bean class
	9.8.4 Dependent object classes
	9.8.5 ejbCreate<METHOD> methods
	9.8.6 ejbPostCreate<METHOD> methods
	9.8.7 ejbFind<METHOD> methods
	9.8.8 ejbSelect<METHOD> methods

	9.9 The responsibilities of the Container Provider
	9.9.1 Generation of implementation classes
	9.9.2 Entity EJBHome class
	9.9.3 Entity EJBObject class
	9.9.4 Handle class
	9.9.5 Home Handle class
	9.9.6 Meta-data class
	9.9.7 Instance’s re-entrance
	9.9.8 Transaction scoping, security, exceptions
	9.9.9 Implementation of object references
	9.9.10 EntityContext

	9.10 Primary Keys
	9.10.1 Entity bean’s primary key type
	9.10.1.1 Primary key that maps to a single field in the entity bean class
	9.10.1.2 Primary key that maps to multiple fields in the entity bean class
	9.10.1.3 Special case: Unknown primary key class

	9.10.2 Dependent object’s primary key type
	9.10.2.1 Primary key that maps to one or more fields in the dependent object class
	9.10.2.2 Unspecified dependent object primary key

	9.11 Other contracts between the Persistence Manager and Container
	9.11.1 Transaction context
	9.11.2 Connection management
	9.11.3 Connection management scenarios
	9.11.3.1 Scenario: Pessimistic concurrency control
	9.11.3.2 Scenario: Optimistic concurrency control

	9.11.4 Synchronization notifications
	9.11.5 Container responsibilities
	9.11.6 Persistence manager responsibilities
	9.11.7 Additional contracts between the Container and the Persistence Manager

	9.12 Object interaction diagrams
	9.12.1 Notes
	9.12.2 Creating an entity object
	9.12.3 Passivating and activating an instance in a transaction
	9.12.4 Committing a transaction
	9.12.5 Starting the next transaction
	9.12.6 Removing an entity object
	9.12.7 Finding an entity object
	9.12.8 Adding and removing an instance from the pool

	Chapter 10 EJB QL: EJB Query Language for Container Managed Persistence Query Methods
	10.1 Overview
	10.2 EJB QL Definition
	10.2.1 Abstract schema types and query domains
	10.2.2 Naming
	10.2.3 Examples
	10.2.4 The FROM clause and navigational declarations
	10.2.4.1 Identifiers
	10.2.4.2 Identification variables
	10.2.4.3 Range variable declarations
	10.2.4.4 Collection member declarations
	10.2.4.5 Example
	10.2.4.6 Path expressions
	10.2.4.7 Path expressions that reference remote interface types

	10.2.5 WHERE clause and conditional cxpressions
	10.2.5.1 Literals
	10.2.5.2 Identification variables
	10.2.5.3 Path expressions
	10.2.5.4 Input parameters
	10.2.5.5 Conditional expression composition
	10.2.5.6 Operators and operator precedence
	10.2.5.7 Between expressions
	10.2.5.8 In expressions
	10.2.5.9 Like expressions
	10.2.5.10 Null comparison expressions
	10.2.5.11 Empty collection comparison expressions
	10.2.5.12 Finder expressions
	10.2.5.13 Functional expressions

	10.2.6 SELECT clause
	10.2.7 Null values
	10.2.8 Equality semantics
	10.2.9 Restrictions

	10.3 Examples
	10.3.1 Simple queries
	10.3.2 Queries with dependent object classes
	10.3.3 Queries that refer to other entity beans
	10.3.4 Queries using input parameters
	10.3.5 Queries for select methods
	10.3.6 EJB QL and SQL

	10.4 EJB QL BNF

	Chapter 11 Entity Bean Component Contract for Bean Managed Persistence
	11.1 Overview of Bean Managed Entity Persistence
	11.1.1 Granularity of entity beans
	11.1.2 Entity Bean Provider’s view of persistence and relationships
	11.1.3 Runtime execution model
	11.1.4 Instance life cycle
	11.1.5 The entity bean component contract
	11.1.5.1 Entity bean instance’s view
	11.1.5.2 Container’s view:

	11.1.6 Operations allowed in the methods of the entity bean class
	11.1.7 Caching of entity state and the ejbLoad and ejbStore methods
	11.1.7.1 ejbLoad and ejbStore with the NotSupported transaction attribute

	11.1.8 Finder method return type
	11.1.8.1 Single-object finder
	11.1.8.2 Multi-object finders

	11.1.9 Standard application exceptions for Entities
	11.1.9.1 CreateException
	11.1.9.2 DuplicateKeyException
	11.1.9.3 FinderException
	11.1.9.4 ObjectNotFoundException
	11.1.9.5 RemoveException

	11.1.10 Commit options
	11.1.11 Concurrent access from multiple transactions
	11.1.12 Non-reentrant and re-entrant instances

	11.2 Responsibilities of the Enterprise Bean Provider
	11.2.1 Classes and interfaces
	11.2.2 Enterprise bean class
	11.2.3 ejbCreate<METHOD> methods
	11.2.4 ejbPostCreate<METHOD> methods
	11.2.5 ejbFind methods
	11.2.6 ejbHome<METHOD> methods
	11.2.7 Business methods
	11.2.8 Entity bean’s remote interface
	11.2.9 Entity bean’s home interface
	11.2.10 Entity bean’s primary key class

	11.3 The responsibilities of the Container Provider
	11.3.1 Generation of implementation classes
	11.3.2 Entity EJBHome class
	11.3.3 Entity EJBObject class
	11.3.4 Handle class
	11.3.5 Home Handle class
	11.3.6 Meta-data class
	11.3.7 Instance’s re-entrance
	11.3.8 Transaction scoping, security, exceptions
	11.3.9 Implementation of object references
	11.3.10 EntityContext

	11.4 Object interaction diagrams
	11.4.1 Notes
	11.4.2 Creating an entity object
	11.4.3 Passivating and activating an instance in a transaction
	11.4.4 Committing a transaction
	11.4.5 Starting the next transaction
	11.4.6 Removing an entity object
	11.4.7 Finding an entity object
	11.4.8 Adding and removing an instance from the pool

	Chapter 12 Example bean managed persistence entity scenario
	12.1 Overview
	12.2 Inheritance relationship
	12.2.1 What the entity Bean Provider is responsible for
	12.2.2 Classes supplied by Container Provider
	12.2.3 What the container provider is responsible for

	Chapter 13 EJB 1.1 Entity Bean Component Contract for Container Managed Persistence
	13.1 EJB 1.1 Entity beans with container-managed persistence
	13.1.1 Container-managed fields
	13.1.2 ejbCreate, ejbPostCreate
	13.1.3 ejbRemove
	13.1.4 ejbLoad
	13.1.5 ejbStore
	13.1.6 finder methods
	13.1.7 home methods
	13.1.8 create methods
	13.1.9 primary key type
	13.1.9.1 Primary key that maps to a single field in the entity bean class
	13.1.9.2 Primary key that maps to multiple fields in the entity bean class
	13.1.9.3 Special case: Unknown primary key class

	13.2 Object interaction diagrams
	13.2.1 Notes
	13.2.2 Creating an entity object
	13.2.3 Passivating and activating an instance in a transaction
	13.2.4 Committing a transaction
	13.2.5 Starting the next transaction
	13.2.6 Removing an entity object
	13.2.7 Finding an entity object
	13.2.8 Adding and removing an instance from the pool

	Chapter 14 Message-driven Bean Component Contract
	14.1 Overview
	14.2 Goals
	14.3 Client view of a message-driven bean
	14.4 Protocol between a message-driven bean instance and its container
	14.4.1 The required MessageDrivenBean interface
	14.4.2 The required javax.jms.MessageListener interface
	14.4.3 The MessageDrivenContext interface
	14.4.4 Message-driven bean’s ejbCreate() method
	14.4.5 Serializing message-driven bean methods
	14.4.6 Concurrency of message processing
	14.4.7 Transaction context of message-driven bean methods
	14.4.8 Message acknowledgment
	14.4.9 Association of a message-driven bean with a destination
	14.4.10 Dealing with exceptions
	14.4.11 Missed ejbRemove() calls

	14.5 Message-driven bean state diagram
	14.5.1 Operations allowed in the methods of a message-driven bean class

	14.6 Object interaction diagrams for a MESSAGE-DRIVEN bean
	14.6.1 Message receipt: onMessage method invocation
	14.6.2 Adding instance to the pool
	14.6.3 Removing instance from the pool

	14.7 The responsibilities of the bean provider
	14.7.1 Classes and interfaces
	14.7.2 Message-driven bean class
	14.7.3 ejbCreate method
	14.7.4 onMessage method
	14.7.5 ejbRemove method

	14.8 The responsibilities of the container provider
	14.8.1 Generation of implementation classes
	14.8.2 Deployment of message-driven beans.
	14.8.3 Non-reentrant instances
	14.8.4 Transaction scoping, security, exceptions

	Chapter 15 Example Message-driven Bean Scenario
	15.1 Overview
	15.2 Inheritance relationship
	15.2.1 What the message-driven Bean provider is responsible for
	15.2.2 Classes supplied by container provider
	15.2.3 What the container provider is responsible for

	Chapter 16 Support for Transactions
	16.1 Overview
	16.1.1 Transactions
	16.1.2 Transaction model
	16.1.3 Relationship to JTA and JTS

	16.2 Sample scenarios
	16.2.1 Update of multiple databases
	16.2.2 Messages sent or received over JMS sessions and update of multiple databases
	16.2.3 Update of databases via multiple EJB Servers
	16.2.4 Client-managed demarcation
	16.2.5 Container-managed demarcation

	16.3 Bean Provider’s responsibilities
	16.3.1 Bean-managed versus container-managed transaction demarcation
	16.3.1.1 Non-transactional execution

	16.3.2 Isolation levels
	16.3.3 Enterprise beans using bean-managed transaction demarcation
	16.3.3.1 getRollbackOnly() and setRollbackOnly() method

	16.3.4 Enterprise beans using container-managed transaction demarcation
	16.3.4.1 javax.ejb.SessionSynchronization interface
	16.3.4.2 javax.ejb.EJBContext.setRollbackOnly() method
	16.3.4.3 javax.ejb.EJBContext.getRollbackOnly() method

	16.3.5 Use of JMS APIs in transactions
	16.3.6 Declaration in deployment descriptor

	16.4 Application Assembler’s responsibilities
	16.4.1 Transaction attributes

	16.5 Deployer’s responsibilities
	16.6 Container Provider responsibilities
	16.6.1 Bean-managed transaction demarcation
	16.6.2 Container-managed transaction demarcation for Session and Entity Beans
	16.6.2.1 NotSupported
	16.6.2.2 Required
	16.6.2.3 Supports
	16.6.2.4 RequiresNew
	16.6.2.5 Mandatory
	16.6.2.6 Never
	16.6.2.7 Transaction attribute summary
	16.6.2.8 Handling of setRollbackOnly() method
	16.6.2.9 Handling of getRollbackOnly() method
	16.6.2.10 Handling of getUserTransaction() method
	16.6.2.11 javax.ejb.SessionSynchronization callbacks

	16.6.3 Container-managed transaction demarcation for Message-driven Beans
	16.6.3.1 NotSupported
	16.6.3.2 Required
	16.6.3.3 Handling of setRollbackOnly() method
	16.6.3.4 Handling of getRollbackOnly() method
	16.6.3.5 Handling of getUserTransaction() method

	16.6.4 Local transaction optimization
	16.6.5 Handling of methods that run with “an unspecified transaction context”

	16.7 Access from multiple clients in the same transaction context
	16.7.1 Transaction “diamond” scenario with an entity object
	16.7.2 Container Provider’s responsibilities
	16.7.3 Bean Provider’s responsibilities
	16.7.4 Application Assembler and Deployer’s responsibilities
	16.7.5 Transaction diamonds involving session objects

	Chapter 17 Exception handling
	17.1 Overview and Concepts
	17.1.1 Application exceptions
	17.1.2 Goals for exception handling

	17.2 Bean Provider’s responsibilities
	17.2.1 Application exceptions
	17.2.2 System exceptions
	17.2.2.1 javax.ejb.NoSuchEntityException

	17.3 Container Provider responsibilities
	17.3.1 Exceptions from a session or entity bean’s business methods
	17.3.2 Exceptions from message-driven bean methods
	17.3.3 Exceptions from container-invoked callbacks
	17.3.4 javax.ejb.NoSuchEntityException
	17.3.5 Non-existing session object
	17.3.6 Exceptions from the management of container-managed transactions
	17.3.7 Release of resources
	17.3.8 Support for deprecated use of java.rmi.RemoteException

	17.4 Client’s view of exceptions
	17.4.1 Application exception
	17.4.2 java.rmi.RemoteException
	17.4.2.1 javax.transaction.TransactionRolledbackException
	17.4.2.2 javax.transaction.TransactionRequiredException
	17.4.2.3 java.rmi.NoSuchObjectException

	17.5 System Administrator’s responsibilities
	17.6 Differences from EJB 1.0

	Chapter 18 Support for Distribution and Interoperability
	18.1 Support for distribution
	18.1.1 Client-side objects in distributed environment

	18.2 Interoperability overview
	18.2.1 Interoperability goals

	18.3 Interoperability Scenarios
	18.3.1 Interactions between web containers and EJB containers for e-commerce applications
	18.3.2 Interactions between application client containers and EJB containers within an enterprise...
	18.3.3 Interactions between two EJB containers in an enterprise’s intranet
	18.3.4 Intranet application interactions between web containers and EJB containers
	18.3.5 Overview of interoperability requirements

	18.4 Remote Invocation Interoperability
	18.4.1 Mapping Java Remote Interfaces to IDL
	18.4.2 Mapping value objects to IDL
	18.4.3 Mapping of system exceptions
	18.4.4 Obtaining stub and client view classes

	18.5 Transaction interoperability
	18.5.1 Transaction interoperability requirements
	18.5.1.1 Transaction context wire format
	18.5.1.2 Two-phase commit protocol
	18.5.1.3 Transactional policies of enterprise bean references
	18.5.1.4 Exception handling behavior

	18.5.2 Interoperating with containers that do not implement transaction interoperability
	18.5.2.1 Client container requirements
	18.5.2.2 EJB container requirements
	18.5.2.2.1 Requirements for EJB containers supporting transaction interoperability
	18.5.2.2.2 Requirements for EJB containers not supporting transaction interoperability

	18.6 Naming Interoperability
	18.7 Security Interoperability
	18.7.1 Introduction
	18.7.1.1 Trust relationships between containers, principal propagation
	18.7.1.2 Application Client Authentication

	18.7.2 Securing EJB invocations
	18.7.2.1 Secure transport protocol
	18.7.2.2 Security information in IORs
	18.7.2.3 Propagating principals and authentication data in IIOP messages
	18.7.2.4 Security configuration for containers
	18.7.2.5 Runtime behavior

	Chapter 19 Enterprise bean environment
	19.1 Overview
	19.2 Enterprise bean’s environment as a JNDI naming context
	19.2.1 Bean Provider’s responsibilities
	19.2.1.1 Access to enterprise bean’s environment
	19.2.1.2 Declaration of environment entries

	19.2.2 Application Assembler’s responsibility
	19.2.3 Deployer’s responsibility
	19.2.4 Container Provider responsibility

	19.3 EJB references
	19.3.1 Bean Provider’s responsibilities
	19.3.1.1 EJB reference programming interfaces
	19.3.1.2 Declaration of EJB references in deployment descriptor

	19.3.2 Application Assembler’s responsibilities
	19.3.3 Deployer’s responsibility
	19.3.4 Container Provider’s responsibility

	19.4 Resource manager connection factory references
	19.4.1 Bean Provider’s responsibilities
	19.4.1.1 Programming interfaces for resource manager connection factory references
	19.4.1.2 Declaration of resource manager connection factory references in deployment descriptor
	19.4.1.3 Standard resource manager connection factory types

	19.4.2 Deployer’s responsibility
	19.4.3 Container provider responsibility
	19.4.4 System Administrator’s responsibility

	19.5 Resource environment references
	19.5.1 Bean Provider’s responsibilities
	19.5.1.1 Resource environment reference programming interfaces
	19.5.1.2 Declaration of resource environment references in deployment descriptor

	19.5.2 Deployer’s responsibility
	19.5.3 Container Provider’s responsibility

	19.6 Deprecated EJBContext.getEnvironment() method
	19.7 UserTransaction interface

	Chapter 20 Security management
	20.1 Overview
	20.2 Bean Provider’s responsibilities
	20.2.1 Invocation of other enterprise beans
	20.2.2 Resource access
	20.2.3 Access of underlying OS resources
	20.2.4 Programming style recommendations
	20.2.5 Programmatic access to caller’s security context
	20.2.5.1 Use of getCallerPrincipal()
	20.2.5.2 Use of isCallerInRole(String roleName)
	20.2.5.3 Declaration of security roles referenced from the bean’s code

	20.3 Application Assembler’s responsibilities
	20.3.1 Security roles
	20.3.2 Method permissions
	20.3.3 Linking security role references to security roles
	20.3.4 Specification of security identities in the deployment descriptor
	20.3.4.1 Run-as

	20.4 Deployer’s responsibilities
	20.4.1 Security domain and principal realm assignment
	20.4.2 Assignment of security roles
	20.4.3 Principal delegation
	20.4.4 Security management of resource access
	20.4.5 General notes on deployment descriptor processing

	20.5 EJB Client Responsibilities
	20.6 EJB Container Provider’s responsibilities
	20.6.1 Deployment tools
	20.6.2 Security domain(s)
	20.6.3 Security mechanisms
	20.6.4 Passing principals on EJB calls
	20.6.5 Security methods in javax.ejb.EJBContext
	20.6.6 Secure access to resource managers
	20.6.7 Principal mapping
	20.6.8 System principal
	20.6.9 Runtime security enforcement
	20.6.10 Audit trail

	20.7 System Administrator’s responsibilities
	20.7.1 Security domain administration
	20.7.2 Principal mapping
	20.7.3 Audit trail review

	Chapter 21 Deployment descriptor
	21.1 Overview
	21.2 Bean Provider’s responsibilities
	21.3 Application Assembler’s responsibility
	21.4 Container Provider’s responsibilities
	21.5 Deployment descriptor DTD

	Chapter 22 Ejb-jar file
	22.1 Overview
	22.2 Deployment descriptor
	22.3 Class files
	22.4 ejb-client JAR file
	22.5 Deprecated in EJB 1.1
	22.5.1 ejb-jar Manifest
	22.5.2 Serialized deployment descriptor JavaBeans™ components

	Chapter 23 Runtime environment
	23.1 Bean Provider’s responsibilities
	23.1.1 APIs provided by Container
	23.1.2 Programming restrictions

	23.2 Container Provider’s responsibility
	23.2.1 Java 2 APIs requirements
	23.2.2 EJB 2.0 requirements
	23.2.3 JNDI 1.2 requirements
	23.2.4 JTA 1.0.1 requirements
	23.2.5 JDBC™ 2.0 extension requirements
	23.2.6 JMS 1.0.2 requirements
	23.2.7 Argument passing semantics

	Chapter 24 Responsibilities of EJB Roles
	24.1 Bean Provider’s responsibilities
	24.1.1 API requirements
	24.1.2 Packaging requirements

	24.2 Application Assembler’s responsibilities
	24.3 EJB Container Provider’s responsibilities
	24.4 Deployer’s responsibilities
	24.5 System Administrator’s responsibilities
	24.6 Client Programmer’s responsibilities

	Chapter 25 Enterprise JavaBeans™ API Reference
	package javax.ejb
	package javax.ejb.deployment

	Chapter 26 Related documents
	Appendix A Features deferred to future releases
	Appendix B EJB 1.1 Deployment descriptor
	B.1 Overview
	B.2 Bean Provider’s responsibilities
	B.3 Application Assembler’s responsibility
	B.4 Container Provider’s responsibilities
	B.5 Deployment descriptor DTD
	B.6 Deployment descriptor example

	Appendix C EJB 1.1 Runtime environment
	C.1 EJB 1.1 Bean Provider’s responsibilities
	C.1.1 APIs provided by EJB 1.1 Container
	C.1.2 Programming restrictions

	C.2 EJB 1.1 Container Provider’s responsibility
	C.2.1 Java 2 Platform, Standard Edition, v 1.2 (J2SE) APIs requirements
	C.2.2 EJB 1.1 requirements
	C.2.3 JNDI 1.2 requirements
	C.2.4 JTA 1.0.1 requirements
	C.2.5 JDBC™ 2.0 extension requirements
	C.2.6 Argument passing semantics

	Appendix D Frequently asked questions
	D.1 Client-demarcated transactions
	D.2 Container managed persistence
	D.3 Inheritance
	D.4 How to obtain database connections
	D.5 Session beans and primary key
	D.6 Copying of parameters required for EJB calls within the same JVM

	Appendix E Revision History
	E.1 Version 0.1
	E.2 Version 0.2
	E.3 Version 0.3
	E.4 Version 0.4
	E.5 Version 0.5
	E.6 Version 0.6
	E.7 Version 0.7
	E.8 Participant Draft
	E.9 Public Draft
	E.10 Public Draft 2
	E.11 Proposed Final Draft

