Javam™ 2 Enterprise Edition

J2EE™ Connector Architecture Specification

JSRO016

SpecificationLead:

Rahul Sharma,
Senior Staff Engineer,
Sun Microsystems, Inc.

Technical comments:
j2ee-connectors-comments@eng.sun.com

Version1.0
Proposed Final Draft

»

Java Software,

Sun Microsystems, Inc.

901 San Antonio Road

Palo Alto, CA 94043 U.S.A.

650 960-1300 fax: 650 969-9131

Connector Architecture Sun Microsystems Inc.

10/7/00

Connector Architecture Sun Microsystems Inc.

J2EE (TM) Connectors Specification ("Specification™)
Version: 1.0

Status: Pre-FCS

Release: Oct 16, 2000

Copyright 2000 Sun Microsystems, Inc.
901 San Antonio Road, Palo Alto, California 94303, U.S.A.
All rights reserved.

NOTICE

The Specification is protected by copyright and the information described therein may be protected by
one or more U.S. patents, foreign patents, or pending applications. Except as provided under the follow-
ing license, no part of the Specification may be reproduced in any form by any means without the prior
written authorization of Sun Microsystems, Inc. ("Sun") and its licensors, if any. Any use of the Speci-
fication and the information described therein will be governed by the terms and conditions of this license
and the Export Control and General Terms as set forth in Sun’s website Legal Terms. By viewing, down-
loading or otherwise copying the Specification, you agree that you have read, understood, and will com-
ply with all of the terms and conditions set forth herein.

Subject to the terms and conditions of this license, Sun hereby grants you a fully-paid, non-exclusive,
non-transferable, worldwide, limited license (without the right to sublicense) under Sun’s intellectual
property rights to review the Specification internally for the purposes of evaluation only. Other than this
limited license, you acquire no right, title or interest in or to the Specification or any other Sun intellectual
property. The Specification contains the proprietary and confidential information of Sun and may only
be used in accordance with the license terms set forth herein. This license will expire one hudred and
fifty (150) days from the date of Release listed above and will terminate immediately without notice from
Sun if you fail to comply with any provision of this license. Upon termination, you must cease use of or
destroy the Specification.

TRADEMARKS

No right, title, or interest in or to any trademarks, service marks, or trade names of Sun or Sun’s licensors
is granted hereunder. Sun, Sun Microsystems, the Sun logo, Java, J2EE, Enterprise JavaBeans, JDBC,
Java Naming and Directory Interface, “Write Once Run Anywhere”, Java ServerPages, JDK, JavaBeans
are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

DISCLAIMER OF WARRANTIES

THE SPECIFICATION IS PROVIDED "AS 1S" AND IS EXPERIMENTAL AND MAY CONTAIN
DEFECTS OR DEFICIENCIES WHICH CANNOT OR WILL NOT BE CORRECTED BY SUN. SUN
MAKES NO REPRESENTATIONS OR WARRANTIES, EITHER EXPRESS OR IMPLIED, IN-
CLUDING BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT THAT THE CONTENTS OF THE SPECIFI-
CATION ARE SUITABLE FOR ANY PURPOSE OR THAT ANY PRACTICE OR IMPLEMENTA-
TION OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS,
COPYRIGHTS, TRADE SECRETS OR OTHER RIGHTS. This document does not represent any com-
mitment to release or implement any portion of the Specification in any product.

10/7/00

Connector Architecture Sun Microsystems Inc.

THE SPECIFICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL
ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION THEREIN;
THESE CHANGES WILL BE INCORPORATED INTO NEW VERSIONS OF THE SPECIFICA-
TION, IF ANY. SUN MAY MAKE IMPROVEMENTS AND/OR CHANGES TO THE PRODUCT(S)
AND/OR THE PROGRAM(S) DESCRIBED IN THE SPECIFICATION AT ANY TIME. Any use of

such changes in the Specification will be governed by the then-current license for the applicable version
of the Specification.

LIMITATION OF LIABILITY

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL SUN OR ITS LICENSORS
BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUE,
PROFITS OR DATA, OR FOR SPECIAL, INDIRECT, CONSEQUENTIAL, INCIDENTAL OR PU-
NITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILI-
TY, ARISING OUT OF OR RELATED TO ANY FURNISHING, PRACTICING, MODIFYING OR
ANY USE OF THE SPECIFICATION, EVEN IF SUN AND/OR ITS LICENSORS HAVE BEEN AD-
VISED OF THE POSSIBILITY OF SUCH DAMAGES.

You will indemnify, hold harmless, and defend Sun and its licensors from any claims based on your use
of the Specification for any purposes other than those of internal evaluation, and from any claims that
later versions or releases of any Specification furnished to you are incompatible with the Specification
provided to you under this license.

RESTRICTED RIGHTS LEGEND

If this Software is being acquired by or on behalf of the U.S. Government or by a U.S. Government prime
contractor or subcontractor (at any tier), then the Government’s rights in the Software and accompanying
documentation shall be only as set forth in this license; this is in accordance with 48 C.F.R. 227.7201
through 227.7202-4 (for Department of Defense (DoD) acquisitions) and with 48 C.F.R. 2.101 and
12.212 (for non-DoD acquisitions).

REPORT

You may wish to report any ambiguities, inconsistencies or inaccuracies you may find in connection with
your evaluation of the Specification ("Feedback"). To the extent that you provide Sun with any Feed-
back, you hereby: (i) agree that such Feedback is provided on a non-proprietary and non-confidential ba-
sis, and (ii) grant Sun a perpetual, non-exclusive, worldwide, fully paid-up, irrevocable license, with the
right to sublicense through multiple levels of sublicensees, to incorporate, disclose, and use without lim-
itation the Feedback for any purpose related to the Specification and future versions, implementations,
and test suites thereof.

10/7/00

Connector Architecture
Table of Contents

L INtrodUCTION . . e 1
OV IV W . ot e 1....
Y 60 01 1...
Target AUdIENCE 2
JDBC and Connector Architecture e 2
Organization 2.....
Document CONVENLION e e et e 3
Connector Architecture EXpert Groupo 3
AcKnowledgements 3

P @ V=T 1 5
DefiNitioNS 5....
Rationale 6 ...
G0alS . . o 8.

3 Connector ArChiteCture 9
System CONtractS 9
Client AP . . 10. ..
ReqUIrEmMENtS 1..... 1
Non-managed EnVironment 11

4 ROIES anNd SCENAIIOSot e e e 12
ROIES . o o e 12 .
Scenario: Integrated Purchase Order system 15
Scenario: Business-to-Business (B2B) 16

5 Connection Management ittt 18
OV IV W . . e 18...
G0alS . . o 18 .
Architecture: Connection Management i 19
Application Programming Model 21
Interface/Class specification 22
Error Logging and TracCing oot 34
Object Diagram e 35
[llustrative SCEeNANIOS e e 37
Architecture: Non-managed Environment 44
ReqQUIrEMENTES 8..... 4

6 Transaction Management e 50
OV IV BW . oo 50...
Transaction Management SCEeNArioSo ittt e e 51
Transaction Management Contract, 53
Relationshipto JTA and JTS e 56
ObjeCt Diagramt 57
XAResource-based Transaction Contract 59
Local Transaction Management Contract 68
Scenarios: Local Transaction Management 69
Connection Sharing e 71
Local Transaction Optimization e e 72
Scenarios: Connection Sharing 72
Connection ASSOCIAtION ot 77
Requirements 0..... 8

October 7, 2000

Connector Architecture
Table of Contents

7 SecuUrity ArChiteCtUre o 81
OVBIVIBW . oo 81...
G0aAlS . . o 81 .
Terminology 2....8
Application Security Model 82
EIS Sign-0n e 84
Roles and Responsibilities 86

8 SECUNIY CONraCt ... ot e e e e 89
Security CoNtracCt 89
Interfaces/Classes 89
Requirements 7..... 9

9 Common Client INterface e e e e 98
OV IV BW . ot e 98...
G0alS . . o 98
SCENANOS . .ottt 99....
Common ClientInterface e 101
Connection Interfaces 103
Interaction INterfaces e 106
Basic Metadata Interfaces e 109
Exception Interfaces 111
RECOrd .. 111 .

ReSU St ... LA17. ..
Code Samples e 2....12

10 Packaging and Deployment 125
OVBIVIBW . o 125..
Packaging127. ..
DeploymeNnt 27....1
Interfaces/Classes i 1....13
JNDI Configuration and LooKUp 132
Resource Adapter XML DTDt e 138

11 RUNtime ENVIrONMENt e e 145
Programming APIS 145
SeCUNtY PermIiSSIONSttt e 145
Responsibilities 48 .. .1
Privileged Code 8...14

12 Projected IemMIS ... 150

13 EXCEPLIONS .ot 151
RESOUICEEXCEPLION 151
System EXCEPLIONS 151
Additional EXCEPLIONS 153

Appendix: Caching Managerttt e 154

Appendix: SECUFILY SCENAITOS . . . o .ottt et e e e e e e e e e e e 157

Appendix: JAAS based Security ArchiteCturettt e e 164

Appendix: Related DOCUMENTSottt et e e e e e e e e e 173

Appendix: Change Historyo e 174

October 7, 2000

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

©Coo~NOUA~wWDNER

Connector Architecture

List of Figures

System Level Pluggability between Application Servers and EISS..........ccccceeiiiiiiiinnnnnns 7
Overview of the ConNECtOr ArChItECIUIEouviiiiiiiiiiiiiiee e 9
lllustration of an scenario based on the connector architecture..............cooooeiiieiiiiiiiciiienes 15
Connector Architecture in B2B SCENAIOcooiiiiiiiieiiii e 17
Architecture Diagram: Managed AppliCation SCENANIOcooriiiiririiieeeeiiiiiieeeeee e 20
Class Diagram: Connection Management ArChiteCture...........cccooviviiiiiiie e 23
ConnectionManager and Application Server Specific SEIVICES.......cccvvvvvveviiiiiiiiiiiiiennenn, 28
Object Diagram: Connection Management arChiteCture............cccccceevveiiiiiiiiiiie 36
OID: Connection Pool Management with new Connection Creation............cccccoeeeeeeennenns 39
OID: Connection Pool Management with Connection Matching...........cccccceeviiiiiieennenn. 41
OID: Connection Event NOtfiCatioNn ..., 43
Architecture Diagram: Non-Managed application SCENANIOccuvveeeieeeeiiiiiiiiieeeeeeeens 45
OID: Connection Creation in a Non-managed Application Scenario.............ccvvvvvvevennnnee. a7
Transaction Management CONtracCt............coovviiiiiiiii . 50
Scenario: Transactions across multiple Resource Managersc.cveeevieieeeeeeeviiniinneneeeen 51
Scenario: Local Transaction on a single Resource Managerccccvvveeeeeeeiiiiininneeeeenn. 53
Architecture Diagram: Transaction Management.............uueviiieeiiiiiiriiiiee e e 54
ManagedConnection Interface for Transaction Management...........ccccceeeevviviiiieeeeeennnnnns 55
Object Diagram: Transaction Management ..o 58
OID: Transactional setup for newly created ManagedConnection instances 64
OID: Connection Close and Transactional cleanup...........ccccoceeeieieiiiieeeiiiin e, 66
OID: Transaction COMPIELION.........oiiiiiiiiiiii e 61........
Scenario to illustrate Local Transaction Management..............eeeeeeeriniiiiieeeeeenissiiieeeeeenn 72
OID: Connection Sharing across Component iNSTANCESccceeiiiiiiiiiieeeeeeeiiiiieeee e e 74
OID: Connection Sharing across Component iNStanCesccccevveeeieeiieeeeeeeeeeeeeeeeee, 76
Connection Sharing SCENATIO..........ccoooeiiii i 8.
State diagram of application-level Connection Handlec.cccccooeii i, 78
SECUNLY CONTIACT. ... ettt e e e e 92

Security Contract: Subject Interface and its Containment Hierarchy................................ 94
Common Client INterfaCe..........coooei i as8......
Scenario: EAI FIamMEWOTKuuuiiiiiiiiiiiiiiiiiee et Qa........
Scenario: Enterprise Application Development Tool ..., 100
Class Diagram: Common Client INterfacecccoovveiiiiieiiiiiii e 102
Record at Development-time and RUN-TIME ... 112
COomMPONENT-VIEW CONTTACTeevieeeiiiiiiiiiie e et e e e e e e e e e e e aaees 114......
Streamable INterface ... e—— 117.
RESUILSEL INTEITACE ... 118
Packaging and Deployment lifecycle of a resource adaptercccvvvvvvvvvvviveeeeeneeeeneenne. 125
Deployment of Resource Adapter Module..........coooovriiiiiiiiii e 126
OID: Lookup of Connection Factory instance from JNDIccccceveeiiiiiiiiiiiieeeeee 137
Synchronization Contract between Caching Manager and Application Server................. 155
lllustrative Architecture of an Estore APPliCAtioNcoooviiiiiiiiiiiieeiiecee e 157
Resource Principal for Estore Application SCENAriO.............uvvviviiiiiiiiiiiiiiieiiirreeeeeerreeeeeee. 159
lllustrative Architecture of an Employee Self-service Application.................................. 160
T o] o F= VLY, =] o 1 T 160
lllustrative Architecture of an Integrated Purchasing Applicationccccccceeeeinniinnnen. 162
PrinCipal MapPingocuuiiiiiiiee e e e e e e 163
SECUILY ArCNITECTUIE. .. .eiiiiiiie i nnrees 165
Resource Adapter-managed AUthentiCationcccccccuuuuiiiiiiriiiiiieereererer e 168
Kerberos Authentication with Principal Delegationuuvvevieevieeiveeieeeiieeeeeeeeeeeeeeee, 169

October 7, 2000

Fig. 51
Fig. 52
Fig. 53

Connector Architecture

GSS-API use by ResSoUrce Adapterooovvviiiiiiiieeee e, 170
Kerberos Authentication after Principal Mappingceveeeveeeieiieeeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeens 171
Authentication though EIS specific JAAS ModUIecceevii i 172

October 7, 2000

Introduction Connector Architecture 1.0

1 Introduction

The Java 2 Platform, Enterprise Edition (J2EE) provides containers for client applications, web
components (based on servlets, Java Server Pages) and Enterprise JavaBeans [1] components.
These containers provide deployment and runtime support for application components. They
provide a federated view of the services provided by underlying application server for the ap-
plication components.

Containers can run on existing systems; for example, web servers for the web containers; ap-
plication servers, TP monitors, and database systems for EJB containers. This enables enterpris-
es to leverage both the advantages of their existing systems and those of J2EE. Enterprises can
write (or rewrite) new applications using J2EE capabilities and can also encapsulate parts of ex-
isting applications in enterprise beans (EJB) or Java Server Pages (JSP).

Enterprise applications access functions and data associated with applications running on En-
terprise Information Systems (EIS). Application servers extend their containers and support
connectivity to heterogeneous EISs. Enterprise tools and Enterprise Application Integration
(EAI) vendors add value by providing tools and frameworks to simplify the EIS integration
task.

1.1 Overview

The connector architecture defines a standard architecture for connecting the Java 2 Platform,
Enterprise Edition (J2EE) platform to heterogeneous EISs. Examples of EISs include ERP, main-
frame transaction processing (TP), and database systems.

The connector architecture defines a set of scalable, secure, and transactional mechanisms that
enable the integration of EISs with application servers® and enterprise applications.

The connector architecture also defines a Common Client Interface (CCI) for EIS access. The
CCI defines a client API for interacting with heterogeneous EISs.

The connector architecture enables an EIS vendor to provide a standard resource adapter for
its EIS. A resource adapter is a system-level software driver that is used by a Java application
to connect to an EIS. The resource adapter plugs into an application server and provides con-
nectivity between the EIS, the application server, and the enterprise application.

An application server vendor extends its system once to support the connector architecture and
is then assured of a seamless connectivity to multiple EISs. Likewise, an EIS vendor provides
one standard resource adapter and it has the capability to plug in to any application server that
supports the connector architecture.

1.2 Scope

The version 1.0 of the connector architecture defines:

1.Application server is a generic term used in this document to refer to a middle-tier component server that
is compliant to Java 2 platform, Enterprise Edition.

1 October 7, 2000

Introduction

Connector Architecture 1.0

= A standard set of system-level contracts between an application server and EIS. These
contracts focus on the important system-level aspects of integration: connection
management, transaction management, and security.

= A Common Client Interface (CCI) that defines a client API for interacting with multiple
ElSs.

= A standard deployment and packaging protocol for resource adapters.

Refer to section 2.2.2 for the rationale behind the Common Client Interface.

The target audience for this specification includes:
= EIS vendors and resource adapter providers
= Application server vendors and container providers
= Enterprise application developers and system integrators
= Enterprise tool and EAI vendors

The system-level contracts between an application server and EIS are targeted towards EIS
vendors (or resource adapter providers, if the two roles are different) and application server

The CCl is targeted primarily towards enterprise tools and EAI vendors.

JDBC and Connector Architecture

The JDBC API defines a standard Java API for accessing relational databases. JDBC provides
an API for sending SQL statements to a database and processing the tabular data returned by

The connector architecture is a standard architecture for integrating J2EE applications with
EISs that are not relational databases. Each of these EISs provides a native function call API for
identifying a function to call, specifying its input data, and processing its output data. The goal
of the Common Client Interface (CCI) is to provide an EIS independent API for coding these

The CCl is targeted at EIS development tools and other sophisticated users of EISs. The CCI
provides a way to minimize the EIS specific code required by such tools. Most J2EE developers
will access EISs using these tools rather than using CCI directly.

It is expected that many J2EE applications will combine relational database access using JDBC
with EIS access using EIS access tools based on CCI.

The connector architecture defines a standard SPI (Service Provider Interface) for integrating
the transaction, security and connection management facilities of an application server with
those of a transactional resource manager. The JDBC 3.0 specification [3] specifies the relation-
ship of JDBC to the SPI specified in the connector architecture.

1.3 Target Audience
vendors.

1.4
the database.
EIS function calls.

1.5 Organization

The document starts by describing the rationale and goals for a standard architecture to inte-
grate an application server with multiple heterogeneous EISs. It then describes the key con-
cepts relevant to the connector architecture. This introduction facilitates an understanding of
the overall architecture.

2 October 7, 2000

Introduction

Connector Architecture 1.0

The document then describes typical scenarios for the connector architecture. This chapter in-
troduces the various roles and responsibilities involved in the development and deployment
of enterprise applications that integrate with multiple EISs.

After forming a descriptive framework for the connector architecture, the document focuses on
the prescriptive aspects of the architecture. It introduces the overall connector architecture fo-
cussing on the Common Client Interface and system-level contracts.

1.6 Document Convention
A regular Palatino font is used for describing the connector architecture.
A italic font is used for paragraphs that contain descriptive notes providing clarifications.
Itis important to note that the scenarios described in the document are illustrative in scope. The
intent of the scenarios is not to specify a prescriptive way of implementing a particular con-
tract.
The document uses the EJB component model to describe certain scenarios. The EJB specifica-
tion [1] provides the latest and most accurate details from the perspective of the EJB component
model.
1.7 Connector Architecture Expert Group
The following are part of the expert group and have made invaluable contributions to the Con-
nector architecture specification:
= BEA Pete Homan
« Fujitsu Yoshi Otagiri, lvar Alexander
< IBM Tom Freund, Michael Beisiegel
= Inline Jack Greenfield
e Inprise Charlton Barreto
< IPlanet Tony Pan, Pavan Bhatnagar
= Motorola Guy Bieber
« Oracle Dan Coyle
= SAP Marek Barwicki
« Sun Rahul Sharma (Specification Lead)
Fred H. Carter
= Sybase Rajini Balay, K. Swaminathan
= Tibco Jon Dart
= Unisys Lester Lee
1.8 Acknowledgements

Shel Finkelstein, Mark Hapner, Vlada Matena, Tony Ng, Bill Shannon and Sekhar Vajjhala (all
from Sun Microsystems) have provided invaluable technical input and guidance to the Con-
nector architecture specification. Jean Zheng and Pong Ching also provided useful input to the
specification.

Rick Cattell, Shel Finkelstein, Bonnie Kellett and Jeff Jackson have provided huge support to
the specification lead in the management of the Connectors expert group.

3 October 7, 2000

Introduction Connector Architecture 1.0

Tony Ng is leading the effort of providing a reference implementation for the Connector archi-
tecture as part of J2EE 1.3 platform. Liz Blair has worked on providing the Compatibility Test
Suite (CTS) plan for the Connector architecture.

Beth Stearns provided a great help in doing an editorial review of this document.

4 October 7, 2000

Overview

Connector Architecture 1.0

2

Overview

This chapter introduces key concepts that are required for an understanding of the connector
architecture. It lays down a reference framework to facilitate a formal specification of the con-
nector architecture in the subsequent chapters of this document.

2.1

Definitions

Enterprise Information System (EIS)

An EIS provides the information infrastructure for an enterprise. An EIS offers a set of services
to its clients. These services are exposed to clients as local and/or remote interfaces. Examples
of an EIS include:

= ERP system

= Mainframe transaction processing system

« Legacy database system

There are two aspects of an EIS:
= System level services - for example, JDBC, SAP RFC, CICS ECI

=« An application specific interface—for example, the table schema and specific stored
procedures, the specific CICS TP program

Connector Architecture

An architecture for integration of J2EE servers with EISs. There are two parts to this architec-
ture: an EIS vendor-provided resource adapter and an application server that allows this re-
source adapter to plug in. This architecture defines a set of contracts, such as transactions,
security, connection management, that a resource adapter has to support to plug in to an ap-
plication server.

EIS Resource
An EIS resource provides EIS-specific functionality to its clients. Examples are:

= Arecord or set of records in a database system
= A business object in an ERP system
= A transaction program in a transaction processing system

Resource Manager(RM)

A resource manager manages a set of shared EIS resources. A client requests access to a re-
source manager to use its managed resources. A transactional resource manager can partici-
pate in transactions that are externally controlled and coordinated by a transaction manager.

In the context of the connector architecture, a client of a resource manager can either be a mid-
dle-tier application server or a client-tier application. A resource manager is typically in a dif-
ferent address space or on a different machine from the client that accesses it.

This document refers to an EIS as a resource manager when it is mentioned in the context of
transaction management. Examples of resource managers are a database system, a mainframe
TP system and an ERP system.

5 October 7, 2000

Overview Connector Architecture 1.0

Managed Environment
A managed environment defines an operational environment for a J2EE-based, multi-tier, web-
enabled application that accesses EISs. The application consists of one or more application
components—EJBs, JSPs, servlets—which are deployed on containers. These containers can be
one of the following:

= Web containers that host JSP, servlets, and static HTML pages

= EJB containers that host EJB components

= Application client containers that host standalone application clients
Non-managed Environment
A non-managed environment defines an operational environment for a two-tier application.
An application client directly uses a resource adapter to access the EIS, which defines the sec-
ond tier for a two-tier application.
Connection
A connection provides connectivity to a resource manager. It enables an application client to
connect to a resource manager, perform transactions, and access services provided by that re-
source manager. A connection can be either transactional or non-transactional. Examples in-
clude a database connection and a SAP R/3 connection.
Application Component
An application component can be a server-side component, such as an EJB, JSP, or servlet, that
is deployed, managed, and executed on an application server. It can also be a component exe-
cuted on the web-client tier but made available to the web-client by an application server. Ex-
amples of the latter type of application component include a Java applet, DHTML page.
Container
A container is a part of an application server that provides deployment and runtime support
for application components. It provides a federated view of the services provided by the un-
derlying application server for the application components. For more details on different types
of standard containers, refer to Enterprise JavaBeans (EJB) [1], Java Server Pages (JSP), and
Servlets specifications.

2.2 Rationale
The following section describes the rationale behind the connector architecture.
2.2.1 System Contracts

Currently, none of the existing Java platform specifications address the problem of providing
a standard architecture for integration between an application server and EISs. Most EIS ven-
dors and application server vendors use vendor-specific architectures to provide EIS integra-
tion.

The connector architecture provides a Java solution to the problem of connectivity between the
multitude of application servers and EISs. By using the connector architecture, it is no longer
necessary for EIS vendors to customize their product for each application server. An applica-
tion server vendor who conforms to the connector architecture also does not need to add cus-
tom code whenever it wants to extend its application server to support connectivity to a new
EIS.

The connector architecture enables an EIS vendor to provide a standard resource adapter for
its EIS; the resource adapter plugs into an application server and provides the underlying in-
frastructure for the integration between an EIS and the application server.

6 October 7, 2000

Overview

Connector Architecture 1.0

2.2.2

An application server vendor extends its system only once to support the connector architec-
ture and is then assured of connectivity to multiple EISs. Likewise, an EIS vendor provides one
standard resource adapter and it has the capability to plug in to any application server that sup-
ports the connector architecture.

The following figure shows that a standard EIS resource adapter can plug into multiple appli-
cation servers. Similarly, multiple resource adapters for different EISs can plug into an appli-
cation server. This system-level pluggability is made possible through the connector
architecture.

If there are m application servers and n EISs, the connector architecture reduces the scope of the
integration problem from an m x n problem to an m + n problem.

FIGURE 1.0 System Level Pluggability between Application Servers and EISs

L. Resource Adapters
Application Server Enterprise Information
Systems

[

L

— Resource Adapter

Application Servers Enterprise Information
System

Application server extension for resource adapter
pluggability
ﬂ Standard resource adapter

Common Client Interface

An enterprise tools vendor provides tools that lead to a simple application programming mod-
el for EIS access, thereby reducing the effort required in EIS integration. An EAI vendor pro-
vides a framework that supports integration across multiple EISs. Both types of vendors need
to integrate across heterogeneous EISs.

Each EIS typically has a client API that is specific to the EIS. Examples of EIS client APls are:
RFC for SAP R/3 and ECI for CICS.

An enterprise tools vendor adapts different client APIs for target EISs to a common client API.
The adapted API is typically specific to a tools vendor and supports an application program-
ming model common across all EISs. Adapting the API requires significant effort on part of a
tools vendor. In this case, the m x n integration problem applies to tools vendors.

The connector architecture provides a solution for the m x n integration problem for tools and
EAI vendors. The architecture specifies a standard Common Client Interface (CCI) that sup-
ports a common client API across heterogeneous EISs.

7 October 7, 2000

Overview Connector Architecture 1.0

All EIS resource adapters that support CCI are capable of being plugged into enterprise tools
and EAI frameworks in a standard way. A tools vendor need not do any APl adaption; the ven-
dor can focus on providing its added value of simplifying EIS integration.

The CCl drastically reduces the effort and learning requirements for tools vendor by narrowing
the scope of a m x n problem to m + n problem if there are m tools and n EISs.

2.3 Goals

The connector architecture has been designed with the following goals:

= It simplifies the development of scalable, secure, and transactional resource adapters for a
wide range of EISs — ERP systems, database systems, mainframe-based transaction
processing systems.

= It is sufficiently general to cover a wide range of heterogeneous EISs. The sufficient
generality of the architecture ensures that there are various implementation choices for
different resource adapters; each choice is based on the characteristics and mechanisms of
an underlying EIS.

= It is not tied to a specific application server implementation but is applicable to all J2EE
platform compliant application servers from multiple vendors.

= It provides a standard client API for enterprise tools and EAI vendors. The standard API
will be common across heterogeneous EISs.

= It is expressed in a manner that allows an unambiguous determination of whether or not
an implementation is compatible.

= It is simple to understand and easy to follow, regardless of whether one is designing a
resource adapter for a particular EIS or developing/deploying application components
that need to access multiple EISs. This simplicity means the architecture introduces only a
few new concepts and places minimal requirements so that it can be leveraged across
different integration scenarios and environments.

= It defines contracts and responsibilities for various roles that provide pieces for standard
connectivity to an EIS. This enables a standard resource adapter from a EIS vendor to be
pluggable across multiple application servers.

= It enables an enterprise application programmer in a non-managed application
environment to directly use the resource adapter to access the underlying EIS. This is in
addition to a managed access to an EIS with the resource adapter deployed in the middle-
tier application server.

8 October 7, 2000

Connector Architecture Connector Architecture 1.0

3 Connector Architecture

The following chapter specifies an overview of the connector architecture.

Multiple resource adapters—that is, one resource adapter per type of EIS—are pluggable into
an application server. This capability enables application components deployed on the appli-
cation server to access the underlying EISs.

An application server and an EIS collaborate to keep all system-level mechanisms—transac-
tions, security, and connection management—transparent from the application components.
As a result, an application component provider focuses on the development of business and
presentation logic for its application components and need not get involved in the system-level
issues related to EIS integration. This leads to an easier and faster cycle for the development of
scalable, secure, and transactional enterprise applications that require connectivity with multi-
ple EISs.

FIGURE 2.0 Overview of the Connector Architecture

Container-Component
Contract

Application Component

Client API

System Contracts

Resource Adapter
Application Server

EIS specific interface

Enterprise Information
System

3.1 System Contracts

To achieve a standard system-level pluggability between application servers and EISs, the con-
nector architecture defines a standard set of system-level contracts between an application
server and EIS. The EIS side of these system-level contracts are implemented in a resource
adapter.

9 October 7, 2000

Connector Architecture Connector Architecture 1.0

A resource adapter is specific to an underlying EIS. It is a system-level software driver that is
used by an application server or an application client to connect to an EIS.

A resource adapter plugs into an application server. The resource adapter and application serv-
er collaborate to provide the underlying mechanisms—transactions, security, and connection
pooling.

A resource adapter is used within the address space of the application server. Examples of re-
source adapters are:

= A JDBC driver to connect to a relational database (as specified in the JDBC [3] specification)
= A resource adapter to connect to an ERP system
= A resource adapter to connect to a TP system

The connector architecture defines the following set of standard contracts between an applica-
tion server and EIS:

= A connection management contract that enables an application server to pool connections
to an underlying EIS, and enables application components to connect to an EIS. This leads
to a scalable application environment that can support a large number of clients requiring
access to EISs.

= A transaction management contract between the transaction manager and an EIS that
supports transactional access to EIS resource managers. This contract enables an
application server to use a transaction manager to manage transactions across multiple
resource managers. This contract also supports transactions that are managed internal to
an EIS resource manager without the necessity of involving an external transaction
manager.

= A security contract that enables a secure access to an EIS. This contract provides support
for a secure application environment that reduces security threats to the EIS and protects
valuable information resources managed by the EIS.

The Figure 2.0 does not illustrate any contracts that are internal to an application server imple-
mentation. The specific mechanisms and contracts within an application server are outside the
scope of the connector architecture specification. This specification focuses on the system-level
contracts between the application server and EIS.

In the Figure 2.0, the application server and resource adapter are shown as separate entities.
This is done to illustrate that there is a logical separation of the respective roles and responsi-
bilities defined for the support of the system level contracts. However, this separation does not
imply a physical separation, in terms of an application server and a resource adapter running
in separate processes.

3.2

Client API

The client API used by application component for EIS access may be defined in terms of:

= The standard Common Client Interface (CCI) as specified in the chapter 9.

= A client API specific to the type of a resource adapter and its underlying EIS. Example
of such EIS specific client APIs is JDBC for relational databases.

The Common Client Interface (CCI) defines a common client API for accessing EISs. The CCI
is targeted towards Enterprise Application Integration (EAI) and enterprise tools vendors.

10 October 7, 2000

Connector Architecture Connector Architecture 1.0

3.3

Requirements

The connector architecture requires that the connector architecture-compliant resource adapter
and the application server support the system contracts. Detailed requirements for each system
contract are specified in the later chapters.

The connector architecture recommends (though it does not mandate) that a resource adapter
support CCI as the client API. The recommendation enables the connector architecture to pro-
vide a solution for the m x n integration problem for application development tools and EAI
vendors.

The connector architecture allows a resource adapter with an EIS-specific client API to support
system contracts and to be capable of standard connector architecture-based pluggability into
an application server.

3.4

Non-managed Environment

The connector architecture supports access to EISs from non-managed application clients; for
example, Java applications and applets.

In a non-managed two-tier application environment, an application client directly uses a re-
source adapter library. A resource adapter, in this case, exposes its low-level transactions and
security APIs to its clients. An application client has to take responsibility for managing secu-
rity and transactions (and rely on connection pooling if done by the resource adapter internal-
ly) by using the low-level APIs exposed by the resource adapter. This model is similar to the
way a two-tier JDBC application client accesses a database system in a non-managed environ-
ment.

11 October 7, 2000

Roles and Scenarios Connector Architecture 1.0

4

Roles and Scenarios

This chapter describes a set of roles specific to the connector architecture. The goal of this chap-
ter is to specify contracts that ensure that the end product of each role is compatible with the
input product of the other role. Later chapters specify a detailed set of responsibilities for each
role relative to the system-level contracts.

4.1

41.1

4.1.2

4.1.3

Roles

The following section describes roles and responsibilities specific to the connector architecture.

Resource Adapter Provider

The resource adapter provider is an expert in the technology related to an EIS and is responsi-
ble for providing a resource adapter for an EIS. Since this role is highly EIS specific, an EIS ven-
dor typically provides the resource adapter for its system.

A third party vendor (who is not an EIS vendor) may also provide an EIS resource adapter and
its associated set of application development tools. Such a provider typically specializes in
writing resource adapters and related tools for a large number of EISs.

Application Server Vendor

The application server vendor provides an implementation of a J2EE-compliant application
server that provides support for component based enterprise applications. A typical applica-
tion server vendor is an OS vendor, middleware vendor, or database vendor. The role of an ap-
plication server vendor is typically the same as that of a container provider.

The J2EE platform specification [8] specifies requirements for a J2EE platform provider.

Container Provider

The container provider is responsible for providing a container implementation for a specific
type of application component. For example, the container provider may provide a container
for EJB components. Each type of application component—EJB, servlet, JSP, applet—has its
own set of responsibilities for its container provider. The respective specifications specify these
responsibilities.

A container implementation typically provides the following functionality:

= It provides deployed application components with transaction and security management,
distribution of clients, scalable management of resources, and other services that are
generally required as part of a managed server platform.

= It provides application components with connectivity to an EIS by transparently managing
security, resources, and transactions using the system-level contracts with the EIS-specific
resource adapter.

« It insulates application components from the specifics of the underlying system-level
mechanisms by supporting a simple, standard contract with the application component.
Refer to Enterprise JavaBeans specification [1] for more details on the EJB component
contract.

12 October 7, 2000

Roles and Scenarios Connector Architecture 1.0

41.4

4.1.5

The expertise of the container provider is system-level programming, with its focus on the de-
velopment of a scalable, secure, and transaction-enabled container.

The container provider is also responsible for providing deployment tools necessary for the de-
ployment of application components and resource adapters. It is also required to provide runt-
ime support for the deployed application components.

The container provider typically provides tools that allow the system administrator to monitor
and manage a container and application components during runtime.

Application Component Provider

In the context of the connector architecture, the application component provider produces an
application component that accesses one or more EISs to provide its application functionality.

The application component provider is an application domain expert. In the case of application
components targeted towards integration with multiple EISs, various business tasks and enti-
ties are implemented based on access to EIS data and functions.

The application component provider typically programs against easy-to-use Java abstractions
produced by application development tools. These Java abstractions are based on the Common
Client interface (CClI).

The application component provider is not required to be an expert at system level program-
ming. The application component provider does not program transactions, security, concur-
rency, distribution, but relies on a container to provide these services transparently.

The application component provider is responsible for specifying structural information for an
application component and its external dependencies. This information includes, for example,
the name and type of the connection factories and security information.

The output of an application component provider is a JAR file that contains the application
components and any additional Java classes required for connectivity to EISs.

Enterprise Tools Vendors

The application component provider relies on tools to simplify application development and
EIS integration. Since programming client access to EIS data and functions is a complex appli-
cation development task, an application development tool reduces the effort and complexity
involved in this task.

Enterprise tools serve different steps in the application development process, as follows:

= Data and function mining tool—enables application component providers to look at the
scope and structure of data and functions existing in an EIS.

= Analysis and design tool—enables application component providers to design an
application in terms of EIS data and functions.

= Code generation tool—generates Java classes for accessing EIS data and functions. A
mapping tool that bridges across two different programming models (object to relational
or vice-versa) falls into this category of tools.

= Application composition tool—enables application component providers to compose
application components from Java classes generated by a code generation tool. This type
of tool typically uses the JavaBeans component model to enhance the ease of programming
and composition.

= Deployment tool—used by application component providers and deployers to set
transaction, security, and other deployment time requirements.

A number of these tools may be integrated together to form an end-to-end application devel-
opment environment.

In addition, various tools and middleware vendors offer EAl frameworks that simplify integra-
tion across heterogeneous EISs.

13 October 7, 2000

Roles and Scenarios Connector Architecture 1.0

4.1.6

4.1.7

4.1.8

Application Assembler

The application assembler combines various application components into a larger set of de-
ployable units. The input of the application assembler is one or more JAR files produced by an
application component provider and the output is one or more JAR files with a deployment de-
scriptor.

The application assembler is typically a domain expert who assembles application components
to produce an enterprise application. To achieve this goal, the application assembler takes ap-
plication components, possibly from multiple application component providers, and assem-
bles these components.

Deployer

The deployer takes one or more deployable units of application components, produced by the
application assembler or component provider, and deploys the application components in a
target operational environment. An operational environment is comprised of an application
server and multiple connected EISs.

The deployer is responsible for resolving all external dependencies declared by the application
component provider. For example, the deployer ensures that all connection factories used by
the application components are present in an operational environment. To perform its role, the
deployer typically uses the application server-provided deployment tools.

The deployer is also responsible for the deployment of resource adapters. Since an operational
environment may include multiple EISs, the role of the deployer is more intensive and complex
than that in a non-EIS scenario. The deployer has to understand security, transaction, and con-
nection management- related aspects of multiple EISs that are configured in an operational en-
vironment.

System Administrator

The system administrator is responsible for the configuration and administration of a complete
enterprise infrastructure that includes multiple containers and EISs.

In an operational environment that has multiple EISs, the deployer should manage the opera-
tional environment by working closely with the system administrators of respective EISs. This
enables the deployer to resolve deployment issues while deploying application components
and resource adapters in a target operational environment.

This chapter served as an introduction to the roles involved in the connector architecture. The
later chapters specify responsibilities for each role in more detail.

14 October 7, 2000

Roles and Scenarios Connector Architecture 1.0

4.2 Scenario: Integrated Purchase Order system

This section describes a scenario that illustrates the use of the connector architecture. The fol-
lowing description is kept at a high level. Specific scenarios related to transaction management,
security, and connection management are described in subsequent chapters.

The following diagram shows the different pieces that comprise this illustrative scenario:

FIGURE 3.0 Illustration of an scenario based on the connector architecture

Client Component

Container-Component
Contract

PurchaseOrder EJB

Common Client Interface

System Contracts| Resource Adapter

Application Server
System Contracts Resource Adapter

EIS specific interface

ERP System
TP System

ERP Software Inc. is an enterprise system vendor that provides an enterprise resource planning
(ERP) system. ERP Software wants to integrate its ERP system with various application servers.
It achieves this goal by providing a standard resource adapter for its ERP system. The resource
adapter for ERP system supports the standard transaction, connection management and secu-
rity contracts. The resource adapter also supports the Common Client Interface (CCl) as its cli-
ent API.

TPSoft Inc. is another enterprise system vendor that provides a transaction processing (TP) sys-
tem. TPSoft has also developed a standard resource adapter for its TP system. The resource
adapter library supports CCl as part of its implementation.

AppServer Inc. is a system vendor that has an application server product which supports the
development and deployment of component-based enterprise applications. This application

15 October 7, 2000

Roles and Scenarios Connector Architecture 1.0

server product has an EJB container that provides deployment and runtime support for EJB
components. The application server supports the system-level contracts that enable a resource
adapter, which also supports these contracts, to plug into the application server and provide
connectivity to the underlying EIS. The EJB container insulates EJB components from the trans-
action, security, and connection management mechanisms required for connecting to the EIS.

Manufacturer Corp. is a big manufacturing firm that uses a purchase order processing system
based on the ERP system for its business processes. Recently, Manufacturer has acquired a firm
that uses TPSoft’s TP system for its purchase order processing. Manufacturer aims to integrate
these two systems together into a single integrated purchase order system. It wants a scalable,
multi-user secure, transaction-enabled integrated purchase order system that is not tied to a
specific computing platform. Manufacturer plans to deploy the middle-tier of this system on
the application server from AppServer Inc.

The MIS department of Manufacturer develops a PurchaseOrder EJB that provides an integrat-
ed view of the two underlying purchase order systems. While developing PurchaseOrder EJB,
the bean provider does not program the transactions, security, or connection management
mechanisms required for connectivity to the ERP and TP systems; it relies on the EJB container
and application server to provide these services.

The bean provider uses an application programming model based on the CCI to access the
business objects and function modules for purchase order processing in the ERP system. The
bean provider uses a similar application programming model based on the CCI to access the
purchase order processing programs in the TP system.

The MIS department of Manufacturer assembles an integrated web-based purchase order ap-
plication using PurchaseOrder EJB with other types of application components, such as JSPs
and servlets.

The MIS department installs and configures the application server, ERP, and TP system as part
of its operational environment. It then deploys the integrated purchase order application on
this operational environment. As part of the deployment, the MIS department configures the
operational environment based on the deployment requirements for the various application
components that have been assembled into the integrated enterprise application.

After deploying and successfully testing the integrated purchase order system, the MIS depart-
ment makes the system available to other departments for use.

4.3

Scenario: Business-to-Business (B2B)

This scenario illustrates the use of the connector architecture in a B2B e-commerce scenario.

Wombat Corp. is a manufacturing firm that aims to adopt an e-business strategy. Wombat has
huge existing investments in its EIS systems. The EISs includes ERP system and mainframe
transaction processing systems.

Wombat needs to drive business-to-business interactions with its multiple supplier vendors. It
wants to leverage its existing EIS investment while adopting the new e-business architecture.

Wombat buys a J2EE based server (called B2B server) from B2B, Inc. The B2B server supports
ability to drive B2B interactions with multiple buyers/suppliers. The B2B interactions are driv-
en using XML over HTTP/s.

The connector architecture enables Wombat to integrate its existing EISs with the B2B server.
Wombat buys off-the-shelf resource adapters for its existing set of EISs. It then integrates its
B2B server and applications (deployed on the B2B server) with its EISs using these resource
adapters.

16 October 7, 2000

Roles and Scenarios Connector Architecture 1.0

FIGURE 4.0 Connector Architecture in B2B scenario
l Supplier C
[Supplier B
Supplier A

Firm: Wombat Corp

Web clients

m:w/s

—

Connector Architecture based EIS integration

B2B Server

Java-based based on
Application J2EE
clients

EISs
and legacy
Applications

The applications deployed on the B2B server extract data from the underlying EISs. The extract-
ed data may be directly in an XML format or can be converted by the applications to the XML
format. The loosely-coupled B2B interactions with suppliers are then driven by exchanging
XML data over HTTP/s protocol.

17 October 7, 2000

Connection Management Connector Architecture 1.0

5

Connection Management

This chapter specifies the connection management contract between an application server and
aresource adapter. It introduces the concepts and mechanisms relevant to this contract, and de-
lineates the responsibilities of the roles of the resource adapter provider and application server
vendor, in terms of their system-level support for the connection management contract. To
complete the description of the connection management contract, this chapter also refers to the
responsibilities of the application component provider and deployer. The chapter includes sce-
narios to illustrate the connection management contract.

5.1

Overview

An application component uses a connection factory to access a connection instance, which the
component then uses to connect to the underlying EIS. A resource adapter acts as a factory of
connections. Examples of connections include database connections, JMS (Java Message Ser-
vice) connections, and SAP R/3 connections. Note that the support for pluggability of JMS pro-
viders into an application server will be added in the future versions of the specification.

Connection pooling manages connections that are expensive to create and destroy. Connection
pooling of expensive connections leads to better scalability and performance in an operational
environment. The connection management contract provides support for connection pooling.

5.2

Goals
The connection management contract has been designed with the following goals:

= To provide a consistent application programming model for connection acquisition for
both managed and non-managed (two-tier) applications.

= To enable a resource adapter to provide a connection factory and connection interfaces
based on the CCI specific to the type of resource adapter and EIS. This enables JDBC
drivers to be aligned with the connector architecture with minimum impact on the existing
JDBC APIs.

= To provide a generic mechanism by which an application server can provide different
quality of services (QoS)—transactions, security, advanced pooling, error tracing/
logging—for its configured set of resource adapters.

= To provide support for connection pooling.

The goal of the connector architecture is to enable efficient, scalable, and extensible connection
pooling mechanisms, not to specify a mechanism or implementation for connection pooling.
The goal is accomplished by defining a standard architected contract for connection manage-
ment with the providers of connections—that is, resource adapters. An application server
should use the connection management contract to implement a connection pooling mecha-
nism in its own implementation-specific way.

18 October 7, 2000

Connection Management Connector Architecture 1.0

5.3

Architecture: Connection Management

The connection management contract specifies an architected contract between an application
server and a resource adapter. This connection management contract is shown with bold flow
lines in the diagram Figure 5.0 on page 20. It includes the set of interfaces shown in the archi-
tecture diagram.

Overview: Managed Application Scenario

The application server uses the deployment descriptor mechanism (specified in the section
10.6) to configure the resource adapter in the operational environment.

The resource adapter provides connection and connection factory interfaces. A connection fac-

tory acts as a factory for EIS connections. For example, javax.sgl.DataSource and ja-
va.sgl.Connection interfaces are JDBC-based interfaces for connectivity to a relational
database.

The CCI (specified in chapter 9) defines javax.resource.cci.ConnectionFactory and
javax.resource.cci.Connection as interfaces for a connection factory and a connection re-
spectively.

The application component does a lookup of a connection factory in the JNDI hame space. It
uses the connection factory to get a connection to the underlying EIS. The connection factory
instance delegates the connection creation request to the ConnectionManager instance.

The ConnectionManager enables the application server to provide different quality of servic-
es in the managed application scenario. These quality of services include transaction manage-
ment, security, error logging and tracing, and connection pool management. The application
server provides these services in its own implementation-specific way. The connector architec-
ture does not specify how the application server implements these services.

The ConnectionManager instance, on receiving a connection creation request from the con-
nection factory, does a lookup in the connection pool provided by the application server. If
there is no connection in the pool that can satisfy the connection request, the application server
uses the ManagedConnectionFactory interface (implemented by the resource adapter) to cre-
ate a new physical connection to the underlying EIS. If the application server finds a matching
connection in the pool, then it uses the matching ManagedConnection instance to satisfy the
connection request.

If a new ManagedConnection instance is created, the application server adds the new Man-
agedConnection instance to the connection pool.

The application server registers a ConnectionEventListener with the ManagedConnection
instance. This listener enables application server to get event notifications related to the state
of the ManagedConnection instance. The application server uses these notifications to manage
connection pooling, manage transactions, cleanup connections, and handle any error condi-
tions.

The application server uses the ManagedConnection instance to get a connection instance that
acts as an application-level handle to the underlying physical connection. An instance of type
javax.resource.cci.Connection is an example of such a connection handle. An application
component uses the connection handle to access EIS resources.

The resource adapter implements the XAResource interface to provide support for transaction
management. The resource adapter also implements the LocalTransaction interface so that
the application server can manage transactions internal to a resource manager. The chapter on
transaction management describes this transaction management contract between the applica-
tion server (and its transaction manager) and the resource adapter (and its underlying resource
manager).

19 October 7, 2000

Connection Management Connector Architecture 1.0

FIGURE 5.0 Architecture Diagram: Managed Application scenario

— Architected contract

—— Implementation specific Application Component

v v

Application Server Resource Adapter

ConnectionManager ConnectionFactory Connection

SecurityService

Manager
Pool —>» | | ManagedConnectionFactoryj
Manager ManagedConnection
—>
LocalTransaction
Transaction
Manager
> XAResource
ConnectionEventListener

Enterprise Information System (EIS)

20 October 7, 2000

Connection Management Connector Architecture 1.0

5.4

5.4.1

Application Programming Model

The application programming model for getting an EIS connection is similar across both man-
aged (application server based) and non-managed scenarios. The following sections explain a
typical application programming model scenario.

Managed Application scenario

The following steps are involved in a managed scenario:

= The application assembler or component provider specifies connection factory
requirements for an application component using a deployment descriptor mechanism.
For example, a bean provider specifies the following elements in the deployment
descriptor for a connection factory reference. Note that the connection factory reference is
part of the deployment descriptor for EJB components and not the resource adapter. Refer
EJB specification [1] for details on the deployment mechanism for EJB components:

= res-ref-name :java:comp/env/eis/MyEIS
= res-type :javax.resource.cci.ConnectionFactory

e res-auth : Application or Container

= The deployer, using a resource adapter deployment tool, sets the configuration
information (example: server name, port number) for the resource adapter. The
application server uses a configured resource adapter to create physical connections to the
underlying EIS. Refer chapter 10 for details on packaging and deployment of a resource
adapter.

= The application component looks up a connection factory instance in the component’s
environment using the JNDI interface.

// obtain the initial INDI Naming context
Context initctx = new InitialContext();

/I perform JNDI lookup to obtain the connection factory
javax.resource.cci.ConnectionFactory cxf =
(javax.resource.cci.ConnectionFactory)
initctx.lookup(“java:comp/env/eis/MyEIS”);

The JNDI name passed in the method NamingContext.lookup is the same as that specified
in res-ref-name element of the deployment descriptor. The JNDI lookup results in a
connection factory instance of type java.resource.cci.ConnectionFactory as
specified in the res-type element.

= The application component invokes the getConnection method on the connection factory
to get an EIS connection. The returned connection instance represents an application-level
handle to an underlying physical connection.
An application component obtains multiple connections by calling the method
getConnection on the connection factory multiple times.

javax.resource.cci.Connection cx = cxf.getConnection();

= The application component uses the returned connection to access the underlying EIS. The
chapter on CCI specifies in detail the application programming model for EIS access.

= After the component finishes with the connection, it closes the connection using the close
method on the Connection interface.

21 October 7, 2000

Connection Management Connector Architecture 1.0

cx.close();

« If an application component fails to close an allocated connection after its use, that
connection is considered an unused connection. The application server manages the
cleanup of unused connections. When a container terminates a component instance, the
container cleans up all connections used by that component instance. Refer section 5.5.4
and scenario 5.8.3 for details on the cleanup of connections.

5.4.2 Non-managed Application scenario

In a non-managed application scenario, the application developer follows a similar program-
ming model to the managed application scenario. The non-managed case involves looking up
of a connection factory instance, getting an EIS connection, using the connection for EIS access,
and finally closing the connection.

5.5 Interface/Class specification

This section specifies the Java classes/interfaces defined as part of the connection management
contract. For a complete specification of these classes/interfaces, refer to the Javadocs distrib-
uted with this document.

Figure 6.0 shows the class hierarchy for the connection management contract. The diagram also
illustrates the responsibilities for the definition of an interface and its implementation:

22 October 7, 2000

Connection Management

Connector Architecture 1.0

FIGURE 6.0

Class Diagram: Connection Management Architecture

package: javax.resource.spi

<interface>
ConnectionManager

7'y

<interface>

ManagedConnectionFactory

<interface>

ManagedConnection

<interface>

ManagedConnectionMetaData

¢

<interface>

ConnectionEventListener

<interface>
LocalTransaction

package: javax.resource.cci

<interface>
ConnectionFactory

<interface>
Connection

|
|
|
packe'}ge: Resource Adapter Spedific :
|
DefaultConnectionManager :

ManagedConnectionFactorylmpl|

1 0-1 v

ManagedConnectionimpl

-—-==n

01 4

ManagedConnection-
MetaDatalmpl

package:Application Server specliflc

ConnectionManagerImpl

ConnectionEventListenerimpl

0-1

LocaITransactionImvr;‘

package: javax.transaction.xa

<interface>
XAResource

A 4

XAResourcelmpl

-1

|
di
|
|
|
|
|
|
|
|
t
|
|
|
|
|
|
|
|
|

Connectionimpl

ConnectionFactorylmpl

23

implements

association or use
relationship

inherits
contains

October 7, 2000

Connection Management Connector Architecture 1.0

5.5.1 ConnectionFactory and Connectioh

A connection factory provides an interface to get a connection to an EIS instance. A con-
nection provides connectivity to an underlying EIS.

One goal of the connector architecture is to support a consistent application programming
model across both CCIl and EIS specific client APIs. To achieve this goal, the connector ar-
chitecture recommends a design pattern (specified as an interface template) for both con-
nection factory and connection interfaces.

The CCI connection factory and connection interfaces (defined in the package javax.re-
source.cci) are based on the above design pattern. Refer 9.5 for details on the CCI con-
nection factory and connection interfaces. The following code extract shows the CCI

interfaces:

public interface javax.resource.cci.ConnectionFactory
extends java.io.Serializable, javax.resource.Referenceable {
public javax.resource.cci.Connection getConnection()

throws javax.resource.ResourceException;

}

public interface javax.resource.cci.Connection {
public void close() throws javax.resource.ResourceException;

}

An example of a non-CCl interface is a resource adapter that uses the package com.myeis for
its EIS specific interfaces, as follows:

public interface com.myeis.ConnectionFactory
extends java.io.Serializable, javax.resource.Referenceable {

public com.myeis.Connection getConnection()
throws com.myeis.ResourceException;

}
public interface com.myeis.Connection {
public void close() throws com.myeis.ResourceException;
}
The JDBC interfaces—javax.sgl.DataSource , java.sgl.Connection —are examples of

non-CClI connection factory and connection interfaces.

Note that the methods defined on a non-CCl interface are not required to throw a Re-
sourceException . The exception can be specific to a resource adapter, for example: ja-
va.sql.SQLException for JDBC [3] interfaces.

1.In this document, the terPhysical Connection refers to aManagedConnection instance, while the
term Connection Handle refers to an application-level connection handle. When the distinction be-
tweenPhysical Connection andConnection Handle is not important, the terr@onnection is
used to refer to an EIS connection.

24 October 7, 2000

Connection Management Connector Architecture 1.0

The following are additional guidelines for the recommended interface template:

= Aresource adapter is allowed to add additional getConnection = methods to its definition
of a connection factory interface. These additional methods are specific to a resource
adapter and its EIS. For example, CClI defines a variant of getConnection = method that
takes java.resource.cci.ConnectionSpec as a parameter.

= A resource adapter should only introduce additional getConnection methods if it
requires additional flexibility (beyond that offered by the default getConnection ~ method)
in the connection request invocations.

= A connection interface is required to provide a method to close the connection. The
behavior of such an application-level connection close is described in the OID Figure 11.0
on page 43.
The above design pattern leads to a consistent application programming model for con-
nection creation and connection closing.

Implementation

A resource adapter is required to provide implementations for both connection factory and
connection interfaces.

Note: In the connector architecture, a resource adapter provides an implementation of the
connection factory interface in both managed and non-managed scenarios. This differs
from the JDBC 2.0 [3] architecture.

In the JDBC 2.0 architecture, an application server provides the implementation of jav-

ax.sql.DataSource interface. Using a similar design approach for the connector architec-
ture will have required an application server to provide implementations of various
connection factory interfaces defined by different resource adapters. Since connection fac-
tory interface may be defined as specific to an EIS, the application server may find difficult
to provide implementations of connection factory interfaces without any code generation.

The connection factory implementation class delegates the getConnection ~ method invocation
from an application component to the associated ConnectionManager instance. The Connec-
tionManager instance is associated with a connection factory instance at its instantiation time
[refer to the OID shown in Figure 40.0 on page 137].

Note that the connection factory implementation class is required to call the ConnectionMan-
ager.allocateConnection method in the same thread context in which the application com-
ponent had called the getConnection = method.

The connection factory implementation class is responsible for taking connection request infor-
mation and passing it in a form required by the ConnectionManager .allocateConnection

method.
public interface javax.resource.spi.ConnectionManager
extends java.io.Serializable {
public Object allocateConnection(
ManagedConnectionFactory mcf,
ConnectionRequestinfo cxRequestinfo)
throws ResourceException;
}
public interface javax.resource.spi.ConnectionRequestinfo {
public boolean equals(Object other);
public int hashCode();
}

25 October 7, 2000

Connection Management Connector Architecture 1.0

5.5.2

ConnectionRequestinfo

The ConnectionRequestinfo parameter to the ConnectionManager.allocateConnection
method enables a resource adapter to pass its own request-specific data structure across the
connection request flow.

A resource adapter extends the ConnectionRequestinfo interface to support its own data
structure for the connection request.

A typical use allows a resource adapter to handle application component-specified per-connec-
tion request properties (for example, client ID and language). The application server passes

these properties to match/createManagedConnection calls on the resource adapter. These
properties remain opaque to the application server during the connection request flow.
It is important to note that the properties passed through the ConnectionRequestinfo in-

stance should be client-specific (example: user name, password, language) and not related to
the configuration of a target EIS instance (example: port number, server name).

The ManagedConnectionFactory instance is configured with properties required for the cre-
ation of a connection to a specific EIS instance. Note that a configured ManagedConnection-
Factory instance should have the complete set of properties that are needed for the creation
of the physical connections. This enables the container to manage connection request without
requiring an application component to pass any explicit connection parameters. A few config-
uration properties on ManagedConnectionFactory may have default values; the default
properties can be overidden through ConnectionRequestinfo in cases when component pro-
vides client-specific properties in the getConnection method invocation. Refer section 10.4.1
for details on the configuration of a ManagedConnectionFactory

When the ConnectionRequestinfo reaches the match/createManagedConnection meth-
ods on the ManagedConnectionFactory instance, the resource adapter uses this additional
per-request information to do connection creation and matching.

A resource adapter is required to implement the equals and hashCode methods defined on
the ConnectionRequestinfo interface. The equality should be defined on the complete set of
properties for the ConnectionRequestinfo instance. An application server can use these
methods to structure its connection pool in an implementation specific way. Since Connec-
tionRequestinfo represents a resource adapter specific data structure, the conditions for
equality are defined and implemented by a resource adapter.

Additional Requirements

A resource adapter implementation is not required to support the mechanism for passing re-
source adapter-specific connection request information. It can choose to pass null for Connec-
tionRequestinfo in the allocateConnection invocation.

An implementation class for a connection factory interface is required to implement ja-
va.io.Serializable . This enables a connection factory instance to be stored in the JNDI nam-
ing environment. A connection factory implementation class is required to implement the
interface javax.resource.Referenceable . Note that the javax.resource.Referenceable
interface extends the javax.naming.Referenceable interface. Refer to section 10.5.3 for de-
tails on the JNDI reference mechanism.

A connection implementation class implements its methods in a resource adapter implemen-
tation-specific way. It should use javax.resource.spi.ManagedConnection instance as its
underlying physical connection.

ConnectionManager

The javax.resource.spi.ConnectionManager provides a hook for a resource adapter to
pass a connection request to an application server. An application server provides different
guality of services as part of its handling of the connection request.

26 October 7, 2000

Connection Management Connector Architecture 1.0

Interface

The connection management contract defines a standard interface for the ConnectionManager
as follows:

public interface javax.resource.spi.ConnectionManager
extends java.io.Serializable {

public Object allocateConnection(
ManagedConnectionFactory mcf,
ConnectionRequestinfo cxRequestinfo)
throws ResourceException;

The method allocateConnection is called by a resource adapter’s connection factory in-
stance so that the instance can delegate a connection request to the ConnectionManager in-
stance.

The ConnectionRequestinfo parameter represents information specific to a resource adapter
to handle the connection request.

Implementation

An application server provides the implementation of the ConnectionManager interface. This
implementation is not specific to any particular resource adapter or connection factory inter-
face.

The ConnectionManager implementation delegates to the application server so that the server
can provide quality of services (QoS)—security, connection pool management, transaction
management, and error logging/tracing.

An application server implements these services in a generic manner, independent of any re-
source adapter and EIS-specific mechanisms. The connector architecture does not specify how
an application server implements these services; the implementation is specific to each appli-
cation server.

After an application server hooks-inits services, the connection request is delegated to a Man-
agedConnectionFactory instance either for the creation of a new physical connection or for
the matching of an already existing physical connection.

An implementation class for ConnectionManager interface is required to implement the ja-
va.io.Serializable interface.

27 October 7, 2000

Connection Management Connector Architecture 1.0

5.5.3

FIGURE 7.0

ConnectionManager and Application Server specific services

ConnectionManager < ConnectionFactory

SecurityService
Manager

Pool —>» | ManagedConnectionFactory

Manager

Transaction
Manager

ManagedConnectionFactory

A javax.resource.spi.ManagedConnectionFactory
agedConnection

by defining methods for matching and creating connections.

Interface

instance is a factory of both Man-
and connection factory instances. This interface supports connection pooling

The following code extract shows the interface specification for the ManagedConnectionFac-

tory .

public interface javax.resource.spi.ManagedConnectionFactory

extends java.io.Serializable {

public Object createConnectionFactory(
ConnectionManager connectionManager)
throws ResourceException;

public Object createConnectionFactory()
throws ResourceException;

public ManagedConnection createManagedConnection(
javax.security.auth.Subject subject,
ConnectionRequestinfo cxRequestinfo)
throws ResourceException;

public ManagedConnection matchManagedConnections(
java.util.Set connectionSet,

28

October 7, 2000

Connection Management Connector Architecture 1.0

javax.security.auth.Subject subject,
ConnectionRequestinfo cxRequestinfo)
throws ResourceException;

public boolean equals(Object other);
public int hashCode();

}
The method createConnectionFactory creates a connection factory instance. For CClI, the
connection factory instance is of the type javax.resource.cci.ConnectionFactory . The

connection factory instance is initialized with the ConnectionManager instance provided by
the application server.

When the createConnectionFactory method takes no arguments, ManagedConnection-
Factory provides a default ConnectionManager instance. This case is used in a non-managed
application scenario.

The method createManagedConnection creates a new physical connection to the underlying
EIS instance. The ManagedConnectionFactory uses the security information (passed as a
Subject instance) and an optional ConnectionRequestinfo to create this new physical con-
nection [refer to security contract in chapter 8 for more details].

A created ManagedConnection instance typically maintains internal information about the se-
curity context (under which the connection has been created) and any connection-specific pa-
rameters (for example, socket connection).

The method matchManagedConnections ~ matches a candidate set of connections using criteria
known internally to the resource adapter. The criteria used for matching is specific to a re-
source adapter and is not specified by the connector architecture.

A ManagedConnection instance has specific internal state, in terms of its security context and
physical connection-specific state. The ManagedConnectionFactory implementation com-
pares this information for each ManagedConnection instance in the candidate set against the
information passed in through the matchManagedConnections method and the configuration
of this ManagedConnectionFactory instance. The ManagedConnectionFactory uses the re-
sults of this comparison to choose the ManagedConnection instance that can best satisfy the
current connection request.

If the resource adapter cannot find an acceptable ManagedConnection instance, it returns a
null . In this case, the application server requests the resource adapter to create a new connec-
tion instance.

Implementation

A resource adapter provides an implementation of the ManagedConnectionFactory interface.

It is required that the ManagedConnectionFactory implementation class extend the imple-
mentation of the hashCode and equals methods defined in the java.lang.Object class.
These two methods are used by an application server to structure its connection pool in an im-
plementation-specific way. The equals and hashCode method implementation should be
based on a complete set of configuration properties that makes a ManagedConnectionFactory
instance unique and specific to an EIS instance.

An implementation class for ManagedConnectionFactory interface is required to implement
the java.io.Serializable interface.
Connection Pool Implementation

The connector architecture does not specify how an application server implements connection
pooling. However, it recommends that an application server should structure its connection

29 October 7, 2000

Connection Management Connector Architecture 1.0

554

pool such that it uses the connection creation/matching facility in an efficient manner and does
not cause resource starvation.

The following paragraphs provide non-prescriptive guidelines for connection pool implemen-
tation by an application server.

An application server may partition its pool on a per ManagedConnectionFactory instance
(and thereby on a per EIS instance) basis. An application server may choose to guarantee (in an
implementation specific way) that it will always partition connection pools with at least per
ManagedConnectionFactory instance granularity.

The per-ManagedConnectionFactory instance pool may be further partitioned based on the
transaction or security context or any client-specific parameters (as associated with the Con-
nectionRequestinfo). When an application server calls the matching facility, it is recom-
mended that the application server narrows down the candidate set of ManagedConnection
instances to a reasonable limit and achieve matching efficiently. For example, an application
server may pass only those ManagedConnection instances to the matchManagedConnection
method that are associated with the target ManagedConnectionFactory instance (and thereby
a specific target EIS instance).

An application server may use additional parameters for its search and matching criteria used
in its connection pool management. These parameters may be EIS or application server specific.
The equals and hashCode methods defined on both ManagedConnectionFactory and Con-
nectionRequestinfo facilitate the connection pool management and structuring by an appli-
cation server.

Requirement for XA Recovery

The ManagedConnectionFactory implementation for a XA-capable resource adapter (refer
chapter 6 for more details on transactions) should support createManagedConnection meth-
od that takes a Subject and a null for the parameter ConnectionRequestinfo . This enables

the application server to get a XAResource instance using ManagedConnection.getXARe-
source and then call XAResource.recover method. Note that the application server uses this
special case only to get to the XAResource instance for the underlying resource manager.

The reason for this requirement is that application server may not have a valid Connection-
Requestinfo when it needs to get the ManagedConnection instance to initiate recovery. Refer
section 8.2.6 for additional details on the ManagedConnectionFactory.createManagedCon-
nection method.

ManagedConnection

A javax.resource.spi.ManagedConnection instance represents a physical connection to
an underlying EIS.

Note: The connector architecture allows one or more ManagedConnection instances to be
multiplexed over a single physical pipe to an EIS. However, for simplicity, this specification
describes a ManagedConnection instance as being mapped 1-1 to a physical connection.

The creation of a ManagedConnection instance typically results in the allocation of EIS and re-
source adapter resources (for example: memory, network socket) for each physical connection.
Since these resources can be costly and scarce, an application server pools ManagedConnec-
tion instances in a managed environment.

Connection pooling improves the scalability of an application environment. An application
server uses the ManagedConnectionFactory and ManagedConnection interfaces to imple-
ment connection pool management.

An application server also uses the transaction management-related methods (getXAResource
and getLocalTransaction) on the ManagedConnection interface to manage transactions.
These methods are discussed in more detail in the Transaction Management chapter.

30 October 7, 2000

Connection Management Connector Architecture 1.0

The ManagedConnection interface also provides methods to support error logging and tracing
in a managed environment.

Interface

The connection management contract defines the following interface for a ManagedConnec-
tion . The following code extract shows only the methods that are used for connection pool
management. The remaining methods are introduced in other parts of the specification.

public interface javax.resource.spi.ManagedConnection {
public Object getConnection(
javax.security.auth.Subject subject,
ConnectionRequestinfo cxRequestinfo)
throws ResourceException;
public void destroy() throws ResourceException;
public void cleanup() throws ResourceException;

/I Methods for Connection and transaction event notifications

public void addConnectionEventListener(
ConnectionEventListener listener);

public void removeConnectionEventListener(
ConnectionEventListener listener);

public ManagedConnectionMetaData getMetaData()
throws ResourceException;

// Additional methods - specified in the other sections

The getConnection method creates a new application-level connection handle. A connection
handle is tied to an underlying physical connection represented by a ManagedConnection in-
stance. For CClI, the connection handle created by a ManagedConnection instance is of the type
javax.resource.cci.Connection . A connection handle is tied to its ManagedConnection
instance in a resource adapter implementation-specific way.

A ManagedConnection instance may use the getConnection = method to change the state of
the physical connection based on the Subject and ConnectionRequestinfo arguments. For
example, a resource adapter can re-authenticate a physical connection to the underlying EIS
when the application server calls the getConnection = method. Section 8.2.7 specifies re-au-
thentication requirements in more detail.

The method addConnectionEventListener allows a connection event listener to register
with a ManagedConnection instance. The ManagedConnection instance notifies connection
close/error and local transaction-related events to its registered set of listeners.

The removeConnectionEventListener method removes a registered Connection-
EventListener instance from a ManagedConnection instance.

The method getMetaData returns the metadata information (represented by the ManagedCon-
nectionMetaData interface) for a ManagedConnection and the connected EIS instance.

Multiple Connection Handles

An application server can call getConnection multiple times on a ManagedConnection in-
stance. A call to the method ManagedConnection.getConnection does not invalidate any
previously created connection handles. Multiple connection handles can exist concurrently for
a single ManagedConnection instance. This design supports a connection sharing mechanism.
Refer to 6.9 for more details.

31 October 7, 2000

Connection Management Connector Architecture 1.0

5.5.5

Because multiple connection handles to a single ManagedConnection can exist concurrently, a
resource adapter implementation can either:

e Ensure that there is at most one connection handle associated actively with a
ManagedConnection instance. The active connection handle is the only connection using
the ManagedConnection instance until an application-level close is called on this
connection handle. For example, a ManagedConnection.getConnection method
implementation associates a newly created connection handle as the active connection
handle. Any operations on the ManagedConnection from any previously created
connection handles should result in an application level exception. An example
application level exception extends the javax.resource.ResourceException interface
and is specific to a resource adapter. A scenario illustrating this implementation is shown
in the Scenarios: Connection Sharing on page 72.

= Provide thread-safe semantics for a ManagedConnection implementation to support
concurrent access to a ManagedConnection instance from multiple connection handles.

Cleanup of ManagedConnection

A resource adapter typically allocates system resources (outside a JVM) for a ManagedConnec-
tion instance. Additionally, a ManagedConnection instance can have state specific to a client,
such as security context and data/function access structures (query result set is an example).

The method ManagedConnection.cleanup initiates a cleanup of any client-specific state
maintained by a ManagedConnection instance. The cleanup should invalidate all connection
handles created using this ManagedConnection instance. Any attempt by an application com-
ponent to use associated connection handle after cleanup of the underlying ManagedConnec-
tion should result in an exception.

The container always drives the cleanup of a ManagedConnection instance. The container
keeps track of created connection handles in an implementation specific mechanism. It invokes
ManagedConnection.cleanup when it has to invalidate all connection handles (associated
with this ManagedConnection instance) and put the ManagedConnection instance back in to
the pool. This may be called after the end of a connection sharing scope (refer section 6.11) or
when the last associated connection handle is closed for a ManagedConnection instance.

The invocation of the ManagedConnection.cleanup method on an already cleaned-up con-
nection should not throw an exception.

The cleanup of a ManagedConnection instance resets its client-specific state and prepares the
connection to be put back into a connection pool. The cleanup method should not cause the
resource adapter to close the physical pipe and reclaim system resources associated with the
physical connection.

An application server should explicitly call ManagedConnection.destroy to destroy a phys-
ical connection. An application server should destroy a physical connection to manage the size
of its connection pool and to reclaim system resources.

A resource adapter should destroy all allocated system resources for this ManagedConnection
instance when the method destroy s called.
Implementation

A resource adapter is required to provide an implementation of the ManagedConnection in-
terface.

ManagedConnectionMetaData

The method ManagedConnection.getMetaData returns a javax.resource.spi.Managed-
ConnectionMetaData instance. The ManagedConnectionMetaData provides information
about a ManagedConnection and the connected EIS instance. This information is only avail-
able to the caller of this method if a valid physical connection exists for an EIS instance.

32 October 7, 2000

Connection Management Connector Architecture 1.0

5.5.6

Interface

The ManagedConnectionMetaData interface provides the following information about an EIS
instance:

« Product name of the EIS instance

< Product version of the EIS instance

= Maximum number of concurrent connections from different processes that an EIS instance
can support

= User name for this connection, as know to the EIS instance

The method getUserName returns the user name known to the underlying EIS instance for an
active connection. The name corresponds to the resource principal under whose security con-
text the connection to the EIS instance has been established.

Implementation

A resource adapter provides an implementation of the ManagedConnectionMetaData inter-
face. An instance of this implementation class should be returned from the ManagedConnec-
tion.getMetaData method.

ConnectionEventListener

The connector architecture provides an event callback mechanism that enables an applica-
tion server to receive notifications from a ManagedConnection instance. An application
server uses these event notifications to manage its connection pool, to clean up invalid or
terminated connections, and to manage local transactions. The transaction management
chapter discusses local transaction-related event notifications in more detail.

An application server implements the javax.resource.spi.ConnectionEventListener
interface. It uses the ManagedConnection.addConnectionEventListener method to reg-
ister a connection listener with a ManagedConnection instance.

Interface
The following code extract specifies the ConnectionEventListener interface:
public interface javax.resource.spi.ConnectionEventListener {
public void connectionClosed(ConnectionEvent event);
public void connectionErrorOccurred(ConnectionEvent event);
/I Local Transaction Management related events
public void localTransactionStarted(ConnectionEvent event);
public void localTransactionCommitted(ConnectionEvent event);
public void localTransactionRolledback(ConnectionEvent event);
}

A ManagedConnection instance calls the ConnectionEventListener.connectionClosed

method to notify its registered set of listeners when an application component closes a con-
nection handle. The application server uses this connection close event to make a decision on
whether or not to put the ManagedConnection instance back into the connection pool.

The ManagedConnection instance calls the ConnectionEventListener.connectionErro-

rOccurred method to notify its registered listeners of the occurrence of a physical connection-
related error. The event notification happens just before a resource adapter throws an excep-
tion to the application component using the connection handle.

The connectionErrorOccurred method indicates that the associated ManagedConnection
instance is now invalid and unusable. The application server handles the connection error
event notification by initiating application server-specific cleanup (for example, removing

33 October 7, 2000

Connection Management Connector Architecture 1.0

ManagedConnection instance from the connection pool) and then calling ManagedConnec-
tion.destroy method to destroy the physical connection.

A ManagedConnection instance also notifies its registered listeners for transaction-related
events by calling the following methods—IocalTransactionStarted , localTransac-
tionCommitted , and localTransactionRolledback. An application server uses these no-
tifications to manage local transactions. See section 6.7 for details on the local transaction
management.

5.5.7 ConnectionEvent

A javax.resource.spi.ConnectionEvent class provides information about the source of a
connection-related event. A ConnectionEvent instance contains the following information:

= Type of the connection event

= ManagedConnection instance that has generated the connection event. A
ManagedConnection instance is returned from the ConnectionEvent.getSource
method.

= Connection handle associated with the ManagedConnection instance; required for the
CONNECTION_CLOSHEwent and optional for the other event types.

= Optionally, an exception indicating a connection related error. Refer 13.2 for details on the
system exception. Note that exception is used for CONNECTION_ERROR_OCCURRED.

This class defines the following types of event notifications:

= CONNECTION_CLOSED
LOCAL_TRANSACTION_STARTED
LOCAL_TRANSACTION_COMMITTED
LOCAL_TRANSACTION_ROLLEDBACK
CONNECTION_ERROR_OCCURRED

5.6 Error Logging and Tracing

The connector architecture provides basic support for error logging and tracing in both man-
aged and non-managed environments. This support enables an application server to detect er-
rors related to a resource adapter and its EIS and to use error information for debugging.

ManagedConnectionFactory

The javax.resource.spi.ManagedConnectionFactory interface defines the following
methods for error logging and tracing:

public interface javax.resource.spi.ManagedConnectionFactory
extends java.io.Serializable {

public void setLogWriter(java.io.PrintWriter out)

throws ResourceException;
public java.io.PrintWriter getLogWriter()

throws ResourceException;

The log writer is a character output stream to which all logging and tracing messages for a Man-
agedConnectionFactory instance are printed.

A character output stream can be registered with a ManagedConnectionFactory instance us-
ing the setLogWriter method. A ManagedConnectionFactory implementation uses this
character output stream to output error log and trace information.

34 October 7, 2000

Connection Management Connector Architecture 1.0

An application server manages the association of a log writer with a ManagedConnectionFac-
tory . When a ManagedConnectionFactory instance is created, the log writer is initially null
and logging is disabled. Associating a log writer with a ManagedConnectionFactory instance
enables logging and tracing for the ManagedConnectionFactory instance.

An application server administrator primarily uses the error and trace information printed on
a log writer by a ManagedConnectionFactory instance. This information is typically system-
level in nature (example: information related to connection pooling and transactions) rather
than of direct interest to application developers.

ManagedConnection

The javax.resource.spi.ManagedConnection interface defines the following methods to
support error logging and tracing specific to a physical connection.

public interface javax.resource.spi.ManagedConnection {
public void setLogWriter(java.io.PrintWriter out)
throws ResourceException;
public java.io.PrintWriter getLogWriter()
throws ResourceException;

A newly created ManagedConnection instance gets the default log writer from the Managed-
ConnectionFactory instance that creates the ManagedConnection instance. The default log
writer can be overridden by an application server using the ManagedConnection.setLog-
Writer method. The setting of the log writer on a ManagedConnection enables an application
server to manage error logging and tracing specific to the physical connection represented by
a ManagedConnection instance.

An application server can optionally choose to disassociate the log writer from a ManagedCon-

nection instance (by using setLogWriter passing null) when this connection instance is put
back into the connection pool.

5.7

Object Diagram

Figure 8.0 shows the object diagram for the connection management architecture. It shows in-
vocations across the various object instances that correspond to the architected interfaces in the
connection management contract, as opposed to those instances specific to implementations of
the application server and the resource adapter.

To keep the diagram simple, it does not show the transaction management contract-related in-
terfaces (XAResource and LocalTransaction) and invocations.

35 October 7, 2000

Connection Management

Connector Architecture 1.0

FIGURE 8.0

Object Diagram: Connection Management architecture

Application
Component

Application Server Resource Adapter
ConnectionManager ConnectionFivéry Connection
allocateConnection
\ \
\ \
create new in\stance '
\ ResourceAdapter,
\ specific \

SecurityService
Manager

Pool
Manager

specific

ConnectionEventLis

Transaction
Manager

application server

_cre

\

\
ManagedComnnectionFactory
ate new instance

C

reateManagedConnectiol

\

\
\
\
)
create /

new iyfstance

Conne

matchManagedConnections N /
createConnectionFactory AR /’
create new instanse /
ManagedCgnnection
add/ removeConnectionEventListengr
getConnection
) o EIS specific
tion Event notifications

—p Architected interface
- > Instantiation
—» Implementation specific

3

6

Enterprise Information System (EIS)

October 7, 2000

Connection Management Connector Architecture 1.0

5.8

5.8.1

lllustrative Scenarios

The following section uses sequence diagrams to illustrate various interactions between the ob-
ject instances involved in the connection management contract.

Some sequence diagrams include a box labeled “Application Server”. This box refers to various
modules and classes internal to an application server. These modules and classes communicate
through contracts that are application server implementation specific.

In this section, the CCI interfaces—javax.resource.cci.ConnectionFactory and jav-
ax.resource.cci.Connection —represent connection factory and connection interfaces re-
spectively.

The description of these sequence diagrams does not include transaction-related details. These
are covered in the Transaction Management chapter.

Scenario: Connection Pool Management

The following object interactions are involved in the scenario shown in Figure 9.0 on page 39:
= The application component calls the getConnection = method on the javax.resource.-

cci.ConnectionFactory instance (returned from the JNDI lookup) to get a connection to
the underlying EIS instance. Refer to section 10.5 for details on the JNDI configuration and
lookup.

e The ConnectionFactory instance initially handles the connection request from the

application component in a resource adapter-specific way. It then delegates the connection
request to the associated ConnectionManager instance. The ConnectionManager
instance has been associated with the ConnectionFactory instance when the
ConnectionFactory was instantiated.

The ConnectionFactory instance receives all connection request information passed
through the getConnection = method and, in turn, passes it in a form required by the
method ConnectionManager .allocateConnection . The ConnectionRequestinfo
parameter to the allocateConnection method enables a ConnectionFactory
implementation class to pass client-specific connection request information. This
information is opaque to an application server and is used subsequently by a resource
adapter to do connection matching and creation.

« The ConnectionManager instance (provided by the application server) handles the
allocateConnection request by interacting with the application server-specific
connection pool manager. The interaction between a ConnectionManager instance and
pool manager is internal and specific to an application server.

= The application server finds a candidate set of ManagedConnection instances from its
connection pool. The candidate set includes all ManagedConnection instances that the
application server considers suitable for handling the current connection allocation
request. The application server finds the candidate set using its own implementation-
specific structuring and lookup criteria for the connection pool. Refer section 5.5.3 for
guidelines of connection pool implementation by an application.

= If the application server finds no matching ManagedConnection instance that can best
handle this connection allocation request, or if the candidate set is empty, the application
server calls the ManagedConnectionFactory.createManagedConnection method to
create a new physical connection to the underlying EIS instance. The application server
passes necessary security information (as JAAS Subject) as part of this method invocation.
For details on the security contract, refer to the Security Management chapter. It can also
pass the ConnectionRequestinfo information to the resource adapter. The connection
request information has been associated with the connection allocation request by the
resource adapter and is used during connection creation.

37 October 7, 2000

Connection Management Connector Architecture 1.0

< The ManagedConnectionFactory instance creates a new physical connection to the
underlying EIS to handle the createManagedConnection method. This new physical
connection is represented by a ManagedConnection instance. The
ManagedConnectionFactory uses the security information (passed as a Subject
instance), ConnectionRequestinfo , and its default set of configured properties (port
number, server name) to create a new ManagedConnection instance. Refer to the security
contract for more details on the createManagedConnection method.

= The ManagedConnectionFactory instance initializes the created ManagedConnection
instance and returns it to the application server.
= The application server registers a ConnectionEventListener instance with the

ManagedConnection instance, enabling it to receive notifications for events on this
connection. The application server uses these event notifications to manage connection
pooling and transactions.

< The ManagedConnection instance obtains its log writer (for error logging and tracing
support) from the ManagedConnectionFactory instance that created this connection.
However, an application server can set a new log writer with a ManagedConnection
instance to do additional error logging and tracing at the level of a ManagedConnection

= The application server does the necessary transactional setup for the ManagedConnection
instance. The chapter on Transaction Management explains this step in more detail.

= Next, the application server calls ManagedConnection.getConnection method to get an
application level connection handle of type javax.resource.cci.Connection A
ManagedConnection instance uses the Subject and ConnectionRequestinfo

parameters to the getConnection method to change the state of the ManagedConnection

Calling the getConnection ~ method does not necessarily create a new physical connection
to the EIS instance. Calling getConnection produces a temporary connection handle that
is used by an application component to access the underlying physical connection. The
actual underlying physical connection is represented by a ManagedConnection instance.

= The application server returns the connection handle to the resource adapter. The resource
adapter then passes the connection handle to the application component that initiated the
connection request.

38 October 7, 2000

Connection Management

Connector Architecture 1.0

FIGURE 9.0

Application
Component

l

Resource Adapter

OID: Connection Pool Management with new Connection Creation

Resource Adapter

javax.resource.cci.
ConnectionFactory

getConnection

return javax.resq

ConnectionManage

Application | [Transaction Map:gti?)cllonnection XAResourcg
Manager Managed
server 9 Connection
r.allocateConnection
Application server looks up a candidate
connection set from the connection pool
Note: Following steps happen if
no matching connection is found
or if candidate set is empty
createManagedConnection
create a new instance
addConngctionEventListener(ConnectionkventListener)
Optional;|setLogWriter(PrintWriter)

Application server performs transactional setup for the
ManagedConnection instance. For example, application
server performs following setup for JTA transactions.

getXAResource

»

Transaction.enlistResource(XAResource)

XAResource.start(XID)

»

return javax.resourge

getConnection(Subject,|ConnectionRequ

estinfo

burce.cci.Connection

.cci.Connection

39

»

October 7, 2000

Connection Management Connector Architecture 1.0

5.8.2

Scenario: Connection Matching

The OID on the page 41 shows the object interactions for a connection matching scenario—that
is, a scenario in which the application server finds a non-empty candidate connection set and
calls the resource adapter to do matching on the candidate set. The following steps are involved
in this scenario:

= The application server handles the connection allocation request by creating a candidate
set of ManagedConnection instances from the connection pool. The candidate set includes
the ManagedConnection instances that the application server considers suitable for
handling the current connection allocation request. The application server finds this
candidate set using its own implementation-specific structuring and lookup criteria for the
connection pool. Refer section 5.5.3 for guidelines of connection pool implementation by
an application.

= The application server calls the ManagedConnectionFactory.matchManaged-
Connections method to enable the resource adapter to do the connection matching. It
passes the candidate connection set, security information (as a Subject instance
associated with the current connection request), and any ConnectionRequestinfo

« The ManagedConnectionFactory instance matches the candidate set of connections using
the criteria known internally to the resource adapter. The matchManagedConnections
method returns a ManagedConnection instance that the resource adapter considers to be
an acceptable match for the current connection allocation request.

= The application server can set a new log writer with the ManagedConnection instance to
do error logging and tracing at the level of the ManagedConnection.

= The application server does the necessary transactional setup for the ManagedConnection
instance. The chapter on Transaction Management explains this step in more detail.

= The application server calls the ManagedConnection.getConnection method to get a
new application level connection handle.

= The ManagedConnection.getConnection method implementation uses the Subject
parameter and any ConnectionRequestinfo to set the state of the ManagedConnection

instance based on the current connection allocation request. Refer to section 8.2.7 for
details if a resource adapter implements support for re-authentication of a
ManagedConnection instance.

= The application server returns the connection handle to the resource adapter. The resource
adapter then passes the connection handle to the application component that initiated the
connection request.

40 October 7, 2000

Connection Management Connector Architecture 1.0

FIGURE 10.0 OID: Connection Pool Management with Connection Matching

Resource Adapter

Resource Adapter
I) . o . ManagedConnection-
Application |javax.resource.cci. Application || Transaction Factory M d
Component | ConnectionFactory Server Manager C(‘;"Rﬁé’&ian XAResource

getConnection

ConnectionManager.allocateConnection

Application server looks up a candidate
connection set from the connection pool

matchManaged Connectionsk

»

Case: ManagedConnection
found that satisfies allocation
request

add(:onnectlionEventListemer(ConnectionFi entList
Optional: sgtLogWriter(PrintWriter)

ener)

»

Application server performs transactional setup for the
ManagedConnection instance. For example, application
server performs following setup for JTA transactions.

Transaction.enlistResource(XAResource)
—_—>

W XAResource.start(XID)

|

getConnegction(Subject,|ConnectionRequpstinfo

| return javax.resourice.cci.Connection
al

return javax.rgspurce.cci.Connection
——

41 October 7, 2000

Connection Management Connector Architecture 1.0

5.8.3

Scenario: Connection Event Notifications and Connection Close

For each ManagedConnection instance in the pool, the application server registers a Connec-
tionEventListener instance to receive close and error events on the connection. This scenar-
io explains how the connection event callback mechanism enables an application server to
manage connection pooling.

The scenario involves the following steps (see Figure 11.0 on page 43) when an application
component initiates a connection close:

= The application component releases an allocated connection handle using the close
method on the javax.resource.cci.Connection instance. The Connection instance
delegates the close method to the associated ManagedConnection instance. The delegation
happens through an association between ManagedConnection instance and the
corresponding connection handle Connection instance. The mechanism by which this
association is achieved is specific to the implementation of a resource adapter.

= The connection management contract places a requirement that a ManagedConnection
instance must not alter the state of a physical connection while handling the connection
close.

= The ManagedConnection instance notifies all its registered listeners of the application’s
connection close request using the ConnectionEventListener .connectionClosed
method. It passes a ConnectionEvent instance with the event type set to
CONNECTION_CLOSED.

= On receiving the connection close event notification, the application server performs the
transaction management-related cleanup of the ManagedConnection instance. Refer to
Figure 11.0 on page 43 for details on the cleanup of a ManagedConnection instance
participating in a JTA transaction.

= The application server also uses the connection close event notification to manage its
connection pool. On receiving the connection close notification, the application server calls

the ManagedConnection.cleanup method to perform cleanup on the
ManagedConnection instance that raised the connection close event. The application
server-initiated cleanup of a ManagedConnection instance prepares this

ManagedConnection instance to be reused for subsequent connection requests.

= After initiating the necessary cleanup for the ManagedConnection instance, the
application server puts the ManagedConnection instance back into the connection pool.
The application server should be able to use this available ManagedConnection instance
to handle future connection allocation requests from application components.

Connection Cleanup

The application server can also initiate cleanup of a ManagedConnection instance when the
container terminates the application component instance that has the corresponding connec-
tion handle. The application server should call ManagedConnection.cleanup to initiate the
connection cleanup. After the cleanup, the application server puts the ManagedConnection in-
stance into the pool to serve future allocation requests.

Connection Destroy

To manage the size of the connection pool, the application server can call ManagedConnec-
tion.destroy method to destroy a ManagedConnection . A ManagedConnection instance
handles this method call by closing the physical connection to the EIS instance and releasing
all system resources held by this instance.

The application server also calls ManagedConnection.destroy when it receives a connection
error event notification that signals a fatal error on the physical connection.

42 October 7, 2000

Connection Management

Connector Architecture 1.0

FIGURE 11.0

Resource Adapter

Application | javax.resource.cci.
Component| Connection

OID: Connection Event Notification

close()

Application
Server

Internal: ResoJ

Resource Adapter

Transaction
Manager

ManagedConnection yaResourcd
Factory Managed
Connection

rce Adapter imp

lementation spgcific

connectionClosed(ConnectionEvent: CONNEQ

ManagedConnection
notifies all registered
ConnectionEventListsners

ION_CGLOSED)

Case: JTA Transaction

Transaction.gelistResource(XAResource)

XAResourge.end(XID)

ManagedConnectionicleanup

Application Server returns
ManagedConnection instance
to the connection pool

43

October 7, 2000

Connection Management Connector Architecture 1.0

5.9 Architecture: Non-managed Environment

The connection management contract enables a resource adapter to be used in a two-tier appli-
cation directly from an application client.

In a non-managed application scenario, the ConnectionManager implementation class may be
provided either by a resource adapter (as a default ConnectionManager implementation) or
by application developers. In both cases, third party vendors may provide QoS as components.
Note that a default implementation of the ConnectionManager should be defined for a re-
source adapter (in terms of the functionality provided and third-party components added)
only at development time.

The default ConnectionManager instance interposes on the connection request and delegates
the request to the ManagedConnectionFactory instance. The ManagedConnectionFactory
creates a physical connection (represented by a ManagedConnection instance) to the underly-
ing EIS. The ConnectionManager gets a connection handle (of type javax.re-
source.cci.Connection for CCI) from the ManagedConnection and returns it to the
connection factory. The connection factory returns the connection handle to the application.

A resource adapter supports interactions (shown as light shaded lines in Figure 12.0) between
its internal objects in an implementation-specific way. For example, a resource adapter can use
the connection event listening mechanism as part of its ManagedConnection implementation
for connection management. However, the resource adapter is not required to use the connec-
tion event mechanism to drive its internal interactions.

44 October 7, 2000

Connection Management Connector Architecture 1.0

FIGURE 12.0 Architecture Diagram: Non-Managed application scenario

— Architected contract
Implementation specific

Application Component

v v

Resource Adapter

| ConnectionFactory| | Connection |

v
ConnectionManager |
L. v

ManagedConnectionFactory

ManagedConnection

v

Enterprise Information System (EIS)

5.9.1 Scenario: Programmatic Access to ConnectionFactory

To maintain the consistency of the application programming model across both managed and
non-managed environments, application code should use the JNDI namespace to look-up a
connection factory instance.

The following code extract shows how an application client accesses a connection factory in-
stance in a non-managed environment. The code extract does not show the use of JNDI. It is
used as an example to illustrate the use of ManagedConnectionFactory and ConnectionFac-
tory interfaces in the application code. Refer to section 10.5 for details on JNDI configuration
and lookup.

/I Application Client Code
/I Create an instance of ManagedConnectionFactory implementation class
/I passing in initialization parameters (if any) for this instance
com.myeis.ManagedConnectionFactorylmpl mcf =

new com.myeis.ManagedConnectionFactorylmpl(...);

I/l Set properties on the ManagedConnectionFactory instance

/I Note: Properties are defined on the implementation class and not on the
Il javax.resource.spi.ManagedConnectionFactory interface
mcf.setServerName(...);

45 October 7, 2000

Connection Management Connector Architecture 1.0

mcf.setPortNumber(...);
/I ... set remaining properties

/I Get access to connection factory. The ConnectionFactory instance
/I gets initialized with the default ConnectionManager provided
I/ by the resource adapter
javax.resource.cci.ConnectionFactory cxf =
(javax.resource.cci.ConnectionFactory)
mcf.createConnectionFactory();

/I Get a connection using the ConnectionFactory instance
javax.resource.cci.Connection cx = cxf.getConnection(...);

/I ... use connection to access the underlying EIS instance

/I Close the connection
cx.close();

5.9.2 Scenario: Connection Creation in Non-managed Application Scenario

The following object interactions are involved in the scenario shown in Figure 13.0 on page 47:

= The application client calls a method on the javax.resource.cci.ConnectionFactory
instance (returned from the JNDI lookup) to get a connection to the underlying EIS
instance.

= The ConnectionFactory instance delegates the connection request from the application
to the default ConnectionManager instance. The resource adapter provides the default
ConnectionManager implementation.

= The ConnectionManager instance creates a new physical connection to the underlying EIS
instance by calling the ManagedConnectionFactory .createManagedConnection
method.

= The ManagedConnectionFactory instance handles the createManagedConnection
method by creating a new physical connection to the underlying EIS, represented by a
ManagedConnection instance. The ManagedConnectionFactory uses the security
information (passed as a Subject instance), any ConnectionRequestinfo , and its
configured set of properties (such as port number, server name) to create a new
ManagedConnection instance.

= The ManagedConnectionFactory initializes the state of the created Managed-
Connection instance and returns it to the default ConnectionManager instance.

< The ConnectionManager instance calls the ManagedConnection.getConnection
method to get an application-level connection handle. Calling the getConnection method
does not necessarily create a new physical connection to the EIS instance. Calling
getConnection produces a temporary handle that is used by an application to access the
underlying physical connection. The actual underlying physical connection is represented
by a ManagedConnection instance.

« The ConnectionManager instance returns the connection handle to the Connection-
Factory instance, which then returns the connection to the application that initiated the
connection request.

46 October 7, 2000

Connection Management Connector Architecture 1.0

FIGURE 13.0 OID: Connection Creation in a Non-managed Application Scenario

Resource Adapter

Application |javax.resource.cci. Connection ManagedConnection-
Client onnectionFactory Manager Factory \janagedConnection

getConnection

allocateConnection
Pt

createManagedConnectign

P

create a new instance

getConnection(Subject, CpnnectionRequedtinfo)

|

return javax.resourgg.cci.Connection

l

return javax.gesource.cci.Connectior

47 October 7, 2000

Connection Management Connector Architecture 1.0

5.10 Requirements

The following section outlines requirements for the connection management contract.

5.10.1 Resource Adapter

The requirements for a resource adapter are as follows:
= Aresource adapter must provide implementations of the following interfaces:
* javax.resource.spi.ManagedConnectionFactory
* javax.resource.spi.ManagedConnection
* javax.resource.spi.ManagedConnectionMetaData

= The ManagedConnection implementation provided by a resource adapter must use the
following interface and classes to provide support to an application server for connection
management (and transaction management, as explained later):

* javax.resource.spi.ConnectionEvent
* javax.resource.spi.ConnectionEventListener

To support non-managed environments, a resource adapter is not required to use the
above two interfaces to drive its internal object interactions.

= A resource adapter is required to provide support for basic error logging and tracing by
implementing the following methods:
» ManagedConnectionFactory.set/getLogWriter
» ManagedConnection.set/getLogWriter

= A resource adapter is required to provide a default implementation of the
javax.resource.spi.ConnectionManager interface. The implementation class comes
into play when a resource adapter is used in a non-managed two-tier application scenario.
In an application server-managed environment, the resource adapter should not use the
default ConnectionManager implementation class.

A defaultimplementation of ConnectionManager enables the resource adapter to provide
services specific to itself. These services can include connection pooling, error logging and
tracing, and security management. The default ConnectionManager delegates to the
ManagedConnectionFactory the creation of physical connections to the underlying EIS.

= In a managed environment, a resource adapter is not allowed to support its own internal
connection pooling. In this case, the application server is responsible for connection
pooling. However, a resource adapter may multiplex connections (one or more
ManagedConnection instances per physical connection) over a single physical pipe
transparent to the application server and components.

In a non-managed two tier application scenario, a resource adapter is allowed to support
connection pooling internal to the resource adapter.

5.10.2 Application Server

The requirements for an application server are as follows:

= An application server must use the interfaces defined in the connection management
contract to use services provided by a resource adapter. These interfaces are as follows:

* javax.resource.spi.ManagedConnectionFactory
* javax.resource.spi.ManagedConnection
* javax.resource.spi.ManagedConnectionMetaData

48 October 7, 2000

Connection Management Connector Architecture 1.0

< An application server is required to provide an implementation of the
javax.resource.spi.ConnectionManager interface. This implementation should not
be specific to any particular type of resource adapter, EIS, or connection factory interface.

< An application server is required to implement the javax.resource.spi.-
ConnectionEventListener interface to get connection-related event notifications. An
application server uses these event notifications to do its pool management, transaction
management, and connection cleanup.

= An application server is required to use the following interfaces (supported by the resource
adapter) to provide basic error logging and tracing for its configured set of resource
adapters:

» ManagedConnectionFactory.set/getLogWriter
« ManagedConnection.set/getLogWriter
= An application server is required to use the javax.resource.spi.ConnectionManager
hook-in mechanism to provide its specific quality of services. The connector architecture

does not specify the set of services the application server provides, nor does it specify how
the application server implements these services.

49 October 7, 2000

Transaction Management Connector Architecture 1.0

6 Transaction Management

This chapter specifies the transaction management contract between an application server (and
supported transaction manager) and an EIS resource manager.

This chapter focuses only on the system-level aspects of transaction management. The J2EE
component model specifications describe the application level transaction model. For example,
the EJB specification [1] specifies the transaction model for EJB components.

6.1 Overview

Figure 14.0 shows an application component deployed in a container provided by an applica-
tion server. The application component performs transactional access to multiple resource
managers. The application server uses a transaction manager that takes the responsibility of
managing transactions across multiple resource managers.

FIGURE 14.0 Transaction Management Contract

Container-Component

Contract
Application Component
Application Server Transaction Resource Adapter
Management
System Contract
Transaction Manager

EIS specific interface

Enterprise Information
System

A resource manager can support two types of transactions:

= A transaction that is controlled and coordinated by a transaction manager external to the
resource manager. This document refers to such a transaction as JTA or XA transaction.

50 October 7, 2000

Transaction Management Connector Architecture 1.0

= A transaction that is managed internal to a resource manager. The coordination of such
transactions involves no external transaction managers. This document refers to such
transactions as RM local transactions (or local transactions).

A transaction manager coordinates transactions across multiple resource managers. It also pro-
vides additional low-level services that enable transactional context to be propagated across
systems. The services provided by a transaction manager are not visible directly to the appli-
cation components.

The connector architecture defines a transaction management contract between an application
server and a resource adapter (and its underlying resource manager). The transaction manage-
ment contract has two parts, depending on the type of transaction:
e a JTA javax.transaction.xa.XAResource based contract between a transaction
manager and a resource manager
= a local transaction management contract

These contracts enable an application server to provide the infrastructure and runtime environ-

ment for transaction management. Application components rely on this transaction infrastruc-
ture to support their component-level transaction model.

6.2

6.2.1

Transaction Management Scenarios

The following section uses a set of scenarios to present an overview of the transaction manage-
ment architecture.

Transactions across multiple Resource Managers

In Figure 15.0, an application client invokes EJB component X. EJB X accesses transaction pro-
grams managed by a TP system and calls EJB Y to access an ERP system.

FIGURE 15.0 Scenario: Transactions across multiple Resource Managers

Application Server

Transaction Manager

client

XAResource base
contract

N~ —

TP System ERP System

The application server uses a transaction manager to support a transaction management infra-
structure that enables an application component to perform transactional access across multi-
ple EIS resource managers. The transaction manager manages transactions across multiple
resource managers and supports propagation of the transaction context across distributed sys-
tems.

51 October 7, 2000

Transaction Management Connector Architecture 1.0

6.2.2

The transaction manager supports a JTA XAResource -based transaction management contract
with a resource adapter and its underlying resource manager. The ERP system supports JTA
transactions by implementing a XAResource interface through its resource adapter. The TP
system also implements a XAResource interface. This interface enables the two resource man-
agers to participate in transactions that are coordinated by an external transaction manager.
The transaction manager uses the XAResource interface to manage transactions across the two
underlying resource managers.

The EJBs X and Y access the ERP and TP system using the respective client access API for the
two systems. Behind the scenes, the application server enlists the connections to both systems
(obtained from their respective resource adapters) as part of the transaction. When the transac-
tion commits, the transaction manager perform a two-phase commit protocol across the two re-
source managers, ensuring that all read/write access to resources managed by both TP system
and ERP system is either entirely committed or entirely rolled back.

Local Transaction Management

The transactions are demarcated either by the container (called container-managed demarca-
tion) or by a component (called component-managed demarcation). In component-managed
demarcation, an application component can use the JTA UserTransaction interface or atrans-
action demarcation API specific to an EIS (for example, JDBC transaction demarcation using
java.sgl.Connection).

The EJB specification requires an EJB container to support both container-managed and com-
ponent-managed transaction demarcation models. The JSP and servlet specifications require a
web container to support component-managed transaction demarcation.

If multiple resource managers participate in a transaction, the EJB container uses a transaction
manager to coordinate the transaction. The contract between the transaction manager and re-
source manager is defined using the XAResource interface.

If a single resource manager instance participates in a transaction (either component-managed
or container-managed), the container has two choices:

= It uses the transaction manager to manage this transaction. The transaction manager uses
one-phase commit-optimization [this is described later] to coordinate the transaction for
this single resource manager instance.

= The container lets the resource manager coordinate this transaction internally without
involving an external transaction manager.

If an application accesses a single resource manager using a XA transaction, it has a perfor-
mance overhead comparable to using local transactions. The overhead is due to the involve-
ment of an external transaction manager in the coordination of the XA transaction.

To avoid the overhead of using a XA transaction in a single resource manager scenario, the ap-
plication server may optimize this scenario by using a local transaction instead of a XA trans-
action. This scenario is shown in Figure 16.0.

52 October 7, 2000

Transaction Management Connector Architecture 1.0

FIGURE 16.0 Scenario: Local Transaction on a single Resource Manager

Application Server

» X)

client

L Local
Applicatio ransaction
Contract contract

TP System

6.3 Transaction Management Contract
This section specifies the transaction management contract. The transaction management con-
tract builds on the connection management contract specified in Chapter 5.

Figure 17.0 shows the interfaces and flows in the transaction management contract. It does not
show the interfaces, classes, and flows that are the same in the connection management con-

tract.

53 October 7, 2000

Transaction Management Connector Architecture 1.0

FIGURE 17.0 Architecture Diagram: Transaction Management

— Architected contract

—— Implementation specific Application Component

Application Server Resource Adapter

ConnectionManager ConnectionFactory Connection

’ ManagedConnection
LocalTransaction
Transaction
Manager
> XAResource
ConnectionEventListener

Enterprise Information System (EIS)

6.3.1 Interface: ManagedConnection
The javax.resource.spi.Managed Connection instance represents a physical connection
to an EIS and acts as a factory of connection handles.

The following code extract shows the methods on the ManagedConnection interface that are
defined specifically for the transaction management contract:

public interface javax.resource.spi.ManagedConnection {
public XAResource getXAResource() throws ResourceException;

54 October 7, 2000

Transaction Management Connector Architecture 1.0

public LocalTransaction getLocalTransaction()
throws ResourceException;

A ManagedConnection instance provides access to a pair of interfaces: javax.transac-
tion.xa.XAResource and javax.resource.spi.LocalTransaction

Depending on the transaction support level of a resource adapter, these methods should raise
appropriate exceptions. For example, if the transaction support level for a resource adapter is
NO_TRANSACTION, an invocation of getXAResource method should throw a ResourceEx-
ception . Refer to chapter 13 for details on the exception hierarchy.

Figure 18.0 illustrates this concept:

FIGURE 18.0 ManagedConnection Interface for Transaction Management

Application Server Resource Adapter

6.3.2

LocalTransaction

>

N
N
N

N
create mgw instance
AN

N

getLocalTransaction N .
getXAResource ManagédConnection
>

7z

7
creatg fiew instance
7

7z
7
s
Ve

XAResource .~
e

Transaction e
Manager [T

EIS specific

Enterprise Information System (EIS)

The transaction manager uses the XAResource interface to associate and dissociate a transac-
tion with the underlying EIS resource manager instance and to perform a two-phase commit
protocol. The transaction manager does not directly use the ManagedConnection interface.
The next section describes the XAResource interface in more detail.

The application server uses the LocalTransaction interface to manage local transactions.
Interface: XAResource

The javax.transaction.xa.XAResource interface is a Java mapping of the industry stan-
dard XA interface based on X/Open CAE specification [4].

55 October 7, 2000

Transaction Management Connector Architecture 1.0

6.3.3

The following code extract shows the interface specification for the XAResource interface. For
more details and the javadocs, refer to the JTA and XA specifications:

public interface javax.transaction.xa.XAResource {
public void commit(Xid xid, boolean onePhase) throws XAException;
public void end(Xid xid, int flags) throws XAException;
public void forget(Xid xid) throws XAException;
public int prepare(Xid xid) throws XAException;
public Xid[] recover(int flag) throws XAException;
public void rollback(Xid xid) throws XAException;
public void start(Xid xid, int flags) throws XAException;

Implementation

A resource adapter for an EIS resource manager implements the XAResource interface. Thisin-
terface enables the resource manager to participate in transactions that are controlled and co-
ordinated by an external transaction manager. The transaction manager uses the XAResource
interface to communicate transaction association, completion, and recovery to the resource
manager.

A resource adapter typically implements the XAResource interface using a low-level library
available for the underlying EIS resource manager. This low-level library either supports a na-
tive implementation of the XA interface or provides a proprietary vendor-specific interface for
transaction management.

A resource adapter is responsible for maintaining a 1-1 relationship between the ManagedCon-
nection and XAResource instances. Each time a ManagedConnection.getXAResource meth-
od is called, the same XAResource instance has to be returned.

A transaction manager can use any XAResource instance (if it refers to the proper resource
manager instance) to initiate transaction completion. The XAResource instance used during
the transaction completion process need not be the one initially enlisted with the transaction
manager for this transaction.

Interface: LocalTransaction

The following code extract shows the javax.resource.spi.LocalTransaction interface:

public interface javax.resource.spi.LocalTransaction {
public void begin() throws ResourceException;
public void commit() throws ResourceException;
public void rollback() throws ResourceException;

A resource adapter implements the LocalTransaction interface to provide support for local
transactions that are performed on the underlying resource manager. An application server
uses the LocalTransaction interface to manage local transactions for a resource manager.

A later section specifies more details on the local transaction management contract.

6.4

Relationship to JTA and JTS

The Java™ Transaction APl (JTA) [2] is a specification of interfaces between a transaction
manager and the other parties involved in a distributed transaction processing system: appli-
cation programs, resource managers, and an application server.

56 October 7, 2000

Transaction Management Connector Architecture 1.0

The Java Transaction Service (JTS) APl is aJava binding of the CORBA Object Transaction
Service (OTS) 1.1 specification. JTS provides transaction interoperability using the standard
I1OP protocol for transaction propagation between servers. The JTS APl is intended for vendors
who implement transaction processing infrastructure for the enterprise middleware. For exam-
ple, an application server vendor can use a JTS implementation as the underlying transaction
manager.

JTA Interfaces

The application server uses the javax.transaction.TransactionManager and jav-
ax.transaction.Transaction interfaces (specified in the JTA specification) for its contract
with the transaction manager.

The application server uses the javax.transaction. TransactionManager interface to con-

trol the transaction boundaries on behalf of the application components that are being man-
aged by the application server. For example, an EJB container manages the transaction states
for transactional EJB components. The EJB container uses the TransactionManager interface
to demarcate transaction boundaries based on the calling thread’s transaction context.

The application server also uses the javax.transaction.Transaction interface to enlist
and delist transactional connections with the transaction manager. This enables the transaction
manager to coordinate transactional work performed by all enlisted resource managers within
a transaction.

6.5

Object Diagram
Figure 19.0 shows the object instances and their interactions related to transaction manage-
ment.

Since the transaction management contract builds upon the connection management contract,
the following diagram does not show object interactions that have been already discussed as
part of Chapter 5.

57 October 7, 2000

Transaction Management

Connector Architecture 1.0

FIGURE 19.0 Object Diagram: Transaction Management
Application
Component
Application Server Resource Adapter
ConnectionManager Connection
\
\
Resource '
Adapter spec\fic
creaie
new instanc

Pool
Manager

Transaction
Manager

ConnectionEventLis

LocalTransaction

»QR

getLocalTransaction

N
create new instance !
N

N
N / .
Manggeq;.fpnnectlon

V4

EIS

tion Event

getXAResour

XAResource .7
e

specific

notifications

@D

7
create ngw instance
7

7

EIS specific

—p Architected interface
- % Instantiation
—» Implementation specific

58

Enterprise Information System (EIS)

October 7, 2000

Transaction Management

Connector Architecture 1.0

6.6

6.6.1

XAResource-based Transaction Contract

The following section specifies detailed requirements for a resource manager and a transaction
manager for the XAResource -based transaction management contract. In this section, the fol-
lowing abbreviations are used: RM (Resource Manager), TM (Transaction Manager), 1PC (one

phase commit protocol), and 2PC (two phase commit protocol).

Scenarios Supported

The following table specifies various transaction management scenarios and mentions whether

these scenarios are within the scope of the connector architecture.

Table 1: Transaction Management Scenarios

Description

Supported / NotSupported

TM does two-phase commit (2PC) on RMs
that support two phase commit (as defined
in RM’s requirements for XAResource
implementation in the subsection below)

Examples of RM: Oracle and DB2 that
support 2PC in their XAResource imple-
mentations.

Supported based on TM’s requirement to
be JTAZJTS and X/Open compliant and
RM’s support for 2PC in XAResource
interface.

TM does one-phase commit (1PC) optimi-
zation on the only RM involved in a trans-
action. RM supports 2PC in its
XAResource implementation (as defined
in RM’s requirements for XAResource
implementation in the subsection below).

Example of RM: DB2 that supports 2PC in
its XAResource implementation.

Supported based on TM’s requirement to
be JTA/JTS and X/Open compliant and
RM'’s support for XAResource interface.

Note: This scenario will also work if TM
does 2PC on RM.

TM does one-phase commit optimization
on the only RM involved in a transaction.
RM does not support 2PC but supports
1PC in its XAResource implementation.

Example of RM: ERP system or mainframe
TP system that does not support 2PC, but

implements 1PC in its XAResource imple-
mentation as defined in the RM’s require-

ments for 1PC.

Supported by requiring that TM must sup-
port 1PC optimization. A successful trans-
action coordination of 1PC only RM comes
as a result of required 1PC optimization for
aTM.

The rationale behind this requirement is
that this scenario will be an important sce-
nario to support for the connector architec-
ture.

TM does last-resource commit optimiza-
tion across multiple RMs involved in a
transaction—RMs that support 2PC (for
example: Oracle and DB2) and single RM
that supports only 1PC (for example: ERP
system).

Out of scope of the connector architecture
specification

59

October 7, 2000

Transaction Management

Connector Architecture 1.0

6.6.2

Table 1: Transaction Management Scenarios

Description

Supported / NotSupported

multiple 2PC enabled RMs

More than one RM that support only 1PC
involved in a transaction with none or

Out of scope of the connector architecture
specification

Resource Adapter Requirements

The connector architecture does not require that all resource adapters must support JTA

XAResource based transaction contract.

If a resource adapter decides to support a XAResource based contract, then the connector ar-
chitecture places certain requirements (shown below) on a resource adapter and its underlying

resource manager (RM).

The following requirements refer to a resource adapter and its resource manager together as a
resource manager (RM). The division of responsibility between a resource adapter and its un-
derlying resource manager for supporting the transaction contract is implementation specific
and is out of the scope of the connector architecture.

These requirements assume that a transaction manager (TM) supports JTA/XA and JTS re-

guirements.

The following set of requirements are based on the JTA and XA specifications and should
be read in conjunction with these specifications. These detailed requirements are included
in this document to clearly specify the requirements from the connector architecture per-

spective.

General

= If RM supports a XAResource contract, then itis required to support the one-phase commit
protocol by implementing XAResource.commit when the boolean flag onePhase is set to
True . The RM is not required to implement the two-phase commit protocol support in its
XAResource implementation.

= However, if RM supports the two-phase commit protocol, then RM is required to use the
XAResource interface for supporting the two-phase commit protocol. Refer to the
following subsection on two-phase commit for detailed requirements.

= RM is allowed to combine the implementation of 2PC protocol with 1PC optimization by

implementing XAResource.commit

requirements for 2PC.

One-phase Commit

* RM should allow XAResource.commit

(onePhase =True) in addition to the implementation

(onePhase =True) even if it has not received

XAResource.prepare for the transaction branch.

= If the RM fails to commit transaction during 1PC commit, then RM should throw one of
XA_RB* exceptions. In the exception case, RM should roll back the transaction branch’s

work and release all held RM resources.

< RM is responsible for deciding the outcome of a transaction branch on a XAResource.-
commit method. RM can discard knowledge of the transaction branch once it returns from

the commit call.

< RM is not required to maintain knowledge of transaction branches to support failure

recovery for the TM.
= |f a XAResource.prepare

then the RM should throw an XAException

method is called on a RM that supports only one-phase commit,

60

with XAER_PROTO or XA_RB* flag

October 7, 2000

Transaction Management Connector Architecture 1.0

<= RM should return an empty list of XIDs for XAResource.recover , because the RM is not
required to maintain stable knowledge about transaction branches.

Two-phase Commit

= If RM supports 2PC, then its implementation of 2PC is required to be compliant with 2PC
protocol definition with presumed rollback as specified in the OSI DTP specification.

< RM must implement XAResource.prepare method and must be able to report whether it
can guarantee its ability to commit the transaction branch. If RM reports that it can, RM is
required to hold and record (in a stable way) all the resources necessary to commit the
branch. It must hold all these resources until the TM directs it to commit or roll back the
branch.

= An RM that reports a heuristic completion to the TM must not discard its knowledge of the
transaction branch. The RM should discard its knowledge of the branch only when the TM
calls XAResource.forget . RM is required to notify the TM of all heuristic decisions.

e On TM’s XAResource.commit and XAResource.rollback calls, RM is allowed to report
through XAException that it has heuristically completed the transaction branch. This
feature is optional.

A TM supporting the OSI DTP specification uses the one-phase commit optimization by de-
fault to manage an RM that is the only resource involved in the transaction. The mechanism to
identify to the TM a particular RM that only supports 1PC is beyond the scope of this specifi-
cation.

Transaction Association and Calling Protocol

= The RM XAResource implementation is required to support XAResource.start and
XAResource.end for association and disassociation of a transaction (as represented by
unique XID) with recoverable units of work being done on the RM.

< RM must ensure that TM invokes XAResource calls in the legal sequence, and must return
XAER_PROT®Or other suitable error if the caller TM violates the state tables (as defined in
Chapter 6 of the XA specification (refer [4]).

Unilateral Roll-back

= RM need not wait for global transaction completion to report an error. RM can return
rollback-only flag as a result of any XAResource.start or XAResource.end call. This can
happen anytime except after a successful prepare .

< RM is allowed to unilaterally rollback and forget a transaction branch any time before it
prepares it.

Read-Only Optimization
= Support for Read-only optimization is optional for RM implementation. An RM can
respond to TM’s request to prepare by asserting that the RM was not asked to update
shared resources in this transaction branch. This response concludes RM’s involvement in
the transaction and RM can release all resources and discard its knowledge of the
transaction.

XID Support
* RM must accept XIDs from TMs. RM is responsible for using XID to maintain an
association between a transaction branch and recoverable units of work done by the
application programs.
< RM must not alter in any way the bits associated in the data portion of an XID. For
example, if an RM remotely communicates an XID, it must ensure that the data bits of the
XID are not altered by the communication process.

61 October 7, 2000

Transaction Management Connector Architecture 1.0

Support for Failure Recovery

= A full JTA compliant XAResource implementation that supports 2PC is required to
maintain the status of all transaction branches in which it is involved. After responding
affirmatively to TM prepare call, an RM should not erase its knowledge of the branch or
of the work done in support of the branch until it receives successfully a TM’s invocation
to commit or roll back the branch.

= If an RM that supports 2PC heuristically completes a branch, it should not forget a branch
until TM explicitly tells it to by calling XAResource.forget

= On TM’s XAResource.recover call, an RM that supports 2PC is required to return a list
of all transaction branches that it has prepared or has heuristically completed.

< When a RM recovers from its own failure, it is required to recover prepared and
heuristically completed branches. It should discard its knowledge of all other branches.

6.6.3 Transaction Manager Requirements

The following section specifies requirements of a TM. This section assumes that TM is compli-
ant to JTA/ZJTS and X/Open (refer [4]) specifications.

Interfaces

= TM must use the XAResource interface supported by an RM for transaction coordination
and recovery. TM must be written to handle consistently any information or status that an
RM can legally return. TM must assume that it can support RMs that have different
capabilities as allowed by the RM requirements specification section—RMs that make
heuristic decisions and RMs that use the read-only optimization. [Requirement derived
from Section 7.3, XA specification]

XID requirements

= TM must generate XIDs conforming to the structure defined in section 4.2 on page 19 of
the XA specification (Refer [4]). The XIDs generated must be globally unique and must
adequately describe a transaction branch.

One-phase commit Optimization

= TM’s support of one-phase commit protocol optimization is required. TM uses the 1PC
optimization when the TM knows that there is only one RM registered in a transaction that
is making changes to shared resources. In this optimization, the TM makes its phase 2
commit request to that RM without having made a phase 1 prepare request.

= TM is not required to record (in a stable manner) such transactions, and in some failure
cases, the TM may not know the outcome of the transaction completion.

Implementation Options

= The support of last-resource optimization is an implementation-specific option for
a TM. A detailed specification of TM and RM’s requirements for this optimization is
outside the scope of the connector architecture.

6.6.4 Scenario: Transactional setup for a ManagedConnection

The following object interactions are involved in the scenario shown in Figure 20.0 on page 64.

= The runtime scenario begins with a client method invocation on an EJB instance. This
invocation has a transaction context (represented by a unique transaction Xid) associated
with it if the invocation came from a client that was already participating in the transaction.
Alternatively, the EJB container starts a transaction before dispatching the client request to
the EJB method.

62 October 7, 2000

Transaction Management Connector Architecture 1.0

< The EJB instance calls the getConnection = method on the ConnectionFactory instance.
The resource adapter delegates the connection request to the application server using the
connection management contract. The sequence diagram [Figure 9.0 on page 39] explains
this step.

= The application server gains control and handles the connection allocation request.

= To handle the connection allocation request, the application server gets a Managed-
Connection instance either from the connection pool or creates a nhew Managed-
Connection instance. The sequence diagram [Figure 9.0 on page 39] describes this step.

= The application server registers itself as a ConnectionEventListener with the
ManagedConnection instance. This enables the application server to receive notifications
for various events on this connection instance. The application server uses these event
notifications to manage connection pooling and transactions.

= Based on the current transaction context (associated with the connection-requesting thread
and the EJB instance), the application server decides whether or not the transaction
manager will participate in the coordination of the currently active transaction.

= If the application server decides that the transaction manager will manage the current
transaction (the current transaction is a JTA transaction), it conducts the following
transactional setup on the ManagedConnection instance:

= The application server invokes the ManagedConnection.getXAResource method
to get the XAResource instance associated with the ManagedConnection instance.

= The application server enlists the XAResource instance with the transaction
manager for the current transaction context. The application server uses the
Transaction .enlistResource (specified in the JTA specification) method to enlist
the XAResource instance with the transaction manager. This enlistment informs the
transaction manager about the resource manager instance participating in the
transaction.

= The transaction manager invokes XAresource.start to associate the current
transaction with the underlying resource manager instance. This enables the
transaction manager to inform the participating resource manager that all units of
work performed by the application on the underlying ManagedConnection instance
should now be associated with this transaction.
= The application server calls the ManagedConnection.getConnection method to get a
new application-level connection handle. The underlying physical connection is
represented by a ManagedConnection instance.
= The application server returns the connection handle to the resource adapter. The resource
adapter then passes the connection handle to the application component that had initiated
the connection request.

63 October 7, 2000

Transaction Management

Connector Architecture 1.0

Application
Component

6.6.5

FIGURE 20.0

Resource Adapter

OID: Transactional setup for newly created ManagedConnection instances

Resource Adapter

javax.resource.cci.
ConnectionFactory

Application
Server

getConnection

ConnectionManage

Transaction
Manager

Fa

ManagedConnection- x AResourcd
ctory Managed-
Connection

r.allocateConnection

Application server gets a ManagedConnection
instance wither from the connection pool or
creates a new instance.

Case:TM coordinated Transaction

getXARe

ource

Transaction.enlistResou

getConnectio

XARespurce.start(XID, qlag)

rce(XAResource)

n(Subject, Con

ectionRequestinfo)

_return javax.resourageicci.Connection
al

return javax.respurce.cci.Connection
«—

Scenario: Connection Close and JTA Transactional Cleanup

For each ManagedConnection
tionEventListener

instance in the pool, the application server registers a Connec-

64

instance to receive specific events on the connection. The connection

October 7, 2000

Transaction Management Connector Architecture 1.0

event callback mechanism enables the application server to manage connection pooling and
transactions.

The scenario (shown in Figure 11.0 on page 43) involves the following steps when an applica-
tion component initiates a connection close:
= The application component releases a Connection instance by calling the close method.
The Connection instance delegates the connection close to its associated Managed-
Connection instance. A ManagedConnection —must not alter any state on the physical
connection while handling a delegated connection close request.
= The ManagedConnection instance notifies all its registered listeners of the application’s

connection close request using the ConnectionEventListener .connectionClosed
method. It passes a ConnectionEvent instance with the event type set to CONNECTION-
_CLOSED.

« On receiving the connection close notification, the application server performs
transactional cleanup for the ManagedConnection instance. If the ManagedConnection
instance was participating in a transaction manager-enlisted JTA transaction, the
application server takes the following steps:

= The application server dissociates the XAResource instance (corresponding to the
ManagedConnection instance) from the transaction manager using the method
Transaction.delistResource

= The transaction manager calls XAResource.end(Xid, flag) to inform the resource
manager that any further operations on the ManagedConnection instance are no
longer associated with the transaction (represented by the Xid passed in
XAResource.end call). This method invocation dissociates the transaction from the
resource manager instance.

= After the JTA transaction completes, the application server initiates a cleanup of the
physical connection instance by calling ManagedConnection.cleanup method. After
calling the method cleanup on the ManagedConnection instance, the application server
returns the ManagedConnection instance to the connection pool.

= The application server can now use the ManagedConnection instance to handle future
connection allocation requests from either the same or another component instance.

65 October 7, 2000

Transaction Management

Connector Architecture 1.0

FIGURE 21.0

i . . Application
Application | javax.resource.cci. ggrver
Component| Connection

close()
Internal: Resoy

Resource Adapter

OID: Connection Close and Transactional cleanup

Resource Adapter

T
6.6.6

Transaction
Manager

ManagedConnection
Factory

Managed
Connection

XAResourcq

rce Adapter imp

lementation sp|

ecific

|_connectionClos
al

ed(Connection

Listeners

ManagedConnection
notifies all registered
ConnectionEvent-

Event: CONNEC(

ION_GLOSED)

Case: TM coordinated Tran

sactiorll

Transaction.

Manage

HelistResource(|

XAResour(

e.end(XID, flag)

XAResource, flag)

dConnection.q

leanup

Application

Server returns

ManagedConnection instance
to the connection pool

OID: Transaction Completion

The scenario in Figure 22.0 illustrates the steps taken by the transaction manager to commit a
transaction across multiple resource manager instances. These steps are executed after the
transaction manager calls the XAResource.end method for each enlisted resource manager in-
stance.

The following steps happen in this scenario:

66

October 7, 2000

Transaction Management Connector Architecture 1.0

< The transaction manager calls XAResource.prepare

The application server can assume that all XAResource

to begin the first phase of the
transaction completion protocol. The transaction manager can call any XAResource
instance that is associated with the proper underlying resource manager instance, and is
not restricted to the XAResource instance directly involved with the transaction initially.

instances produced by a

ManagedConnectionFactory instance refer to the same underlying resource manager

instance.

= Assuming that all resource manager instances involved in the transaction agree to commit,
the transaction manager calls XAResource.commi t to commit the transaction. Otherwise,

it calls XAResource.rollback

FIGURE 22.0 OID: Transaction Completion

Resource Manager
instance

Transaction XAResource
Manager

Resource Manager
instance

XAResource

Pre-condition: XAresource.end method called by TM on each
participating resource manager instance

I
Transaction manager initiates transaction
completion process on XAResource instances -
one for each participating resource manager
instance

XAResource.prepare
XAResourice.prepare

A 4

Case: All resource manager instances
vote to commit

XAResource.commit

»

XAResource.commit

v

67

October 7, 2000

Transaction Management Connector Architecture 1.0

6.7

6.7.1

6.7.2

Local Transaction Management Contract

The main motivation for defining a local transaction contract between an application server
and a resource manager is to enable an application server to manage resource manager local
transactions (hereafter called local transactions).

The local transaction management contract has two parts:

= The application server uses javax.resource.spi.LocalTransaction interface to
manage local transactions transparently to an application component. The scenarios in
sections 6.11 and illustrate this part of the local transaction management contract.

= The other part of the contract relates to notifications for local transaction-related events. If
resource adapter supports a local transaction demarcation APl (example: javax.
resource.cci.LocalTransaction for Common Client Interface), the resource adapter
needs to notify the application server of the events (transaction begin, commit, and
rollback) related to the local transaction. An application server uses this part of the
contract, and this is explained in section 6.8.

Interface: Local Transaction

The javax.resource.spi.LocalTransaction interface defines the contract between an ap-
plication server and resource adapter for local transaction management. This interface is de-
fined in section 6.3.3.

Interface: ConnectionEventListener

An application server implements the javax.resource.spi.ConnectionEventListener
interface. It registers this listener instance with the ManagedConnection instance by using
ManagedConnection.addConnectionEventListener method.

The following code extract specifies the ConnectionEventListener interface related to the lo-
cal transaction management contract:

public interface javax.resource.spi.ConnectionEventListener {
/I Local Transaction Management related events
public void localTransactionStarted(ConnectionEvent event);
public void localTransactionCommitted(ConnectionEvent event);
public void localTransactionRolledback(ConnectionEvent event);

...

The ManagedConnection instance notifies its registered listeners for transaction related events
by calling the methods localTransactionStarted , localTransactionCommitted , lo-
calTransactionRolledback.
The ConnectionEvent class defines the following types of event notifications related to the lo-
cal transaction management contract:
< LOCAL_TRANSACTION_STARTED—NOotifies that a local transaction was started using the
ManagedConnection instance.
< LOCAL_TRANSACTION_COMMITTED—NOotifies that a local transaction was committed
using the ManagedConnection instance.
= LOCAL_TRANSACTION_ROLLEDBACK—NOotifies that a local transaction was rolled back
using the ManagedConnection instance.

68 October 7, 2000

Transaction Management Connector Architecture 1.0

Requirement

The connector specification requires an application server to implement Connection-
EventListener interface and handle local transaction related events. This enables application
server to achieve local transaction cleanup and transaction serial interleaving (as illustrated in
the section 6.8). So the connector specification provides the necessary mechanisms for transac-
tion management—whether these mechanisms are used in an application server depends on
the application server’s implementation of the transaction requirements of the J2EE component
specifications.

6.8

6.8.1

6.8.2

6.8.3

Scenarios: Local Transaction Management

This section illustrates how an application server uses the event notifications from the resource
adapter to manage local transactions and to restrict illegal transaction demarcations by an ap-
plication component.

In these scenarios, an application component starts a local transaction using an application-lev-
el transaction demarcation interface (example: javax.resource.cci.LocalTransaction as
defined in the CCI) supported by the resource adapter. The resource adapter, in its implemen-
tation of the transaction demarcation interface, sends event notifications related to the local
transaction—namely, local transaction begin, commit, and rollback. The application server is
notified of these local transaction-related events through the ConnectionEventListener
mechanism.

Local Transaction Cleanup

A stateless session bean with bean-managed transaction demarcation starts a local transaction
in a method invocation. It returns from the business method without completing the local
transaction.

The application server implements the ConnectionEventListener interface. The resource
adapter notifies the application server with LOCAL_TRANSACTION_STARTEWent when the lo-
cal transaction is started by the session bean instance.

When the session bean instance returns from the method invocation without completing the
local transaction, the application server detects this as an incomplete local transaction because
it has not received any matching LOCAL_TRANSACTION_COMMITTED or
LOCAL_TRANSACTION_ROLLEDBAE#ent from the resource adapter.

On detecting an incomplete local transaction, the application server terminates the stateless
session bean instance and throws an exception to the client.

Component Termination

The application server terminates a component instance—for example, because of some system
exception in a method invocation.

On termination of a component instance, the application server cleans up all ManagedConnec-

tion instances being used by this component instance. The cleanup of a connection involves
resetting all local transaction and client-specific state. This state is maintained internal to the
ManagedConnection instance.

The application server initiates a cleanup of a ManagedConnection instance by calling Man-
agedConnection.cleanup . After the cleanup, the application server returns this connection
to the pool to serve future allocation requests.

Transaction Interleaving

The application server uses the connection event listener mechanism (specified through the in-
terfaces ConnectionEventListener and ConnectionEvent) to flag illegal cases of transac-

69 October 7, 2000

Transaction Management Connector Architecture 1.0

tion demarcation. The application server implements the ConnectionEventListener
interface to support this scenario.

The following subsection illustrates a scenario for component-managed transaction demarca-
tion.

Scenario

An EJB component (with bean managed transaction demarcation) starts a local transaction us-
ing the application-level transaction demarcation interface (example: javax.re-
source.cci.LocalTransaction as defined in the CCI) supported by the resource adapter. It
then calls the UserTransaction.begin method to start a JTA transaction before it has com-
pleted the local transaction.

In this scenario, the EJB component has started but not completed the local transaction. When
the application component attempts to start a JTA transaction by invoking the UserTransac-
tion.begin method, the application server detects it as a transaction demarcation error and
throws an exception from the UserTransaction.begin method.

When the application component starts the local transaction, the resource adapter notifies the
application server of the LOCAL_TRANSACTION_STARTED connection event. When the com-
ponent invokes the UserTransaction.begin method, the application server detects an error
condition, because it has not received the matching LOCAL_TRANSACTION-_COMMITTED or
LOCAL_TRANSACTION_ROLLEDBACK event from the resource adapter for the currently active
local transaction.

70 October 7, 2000

Transaction Management Connector Architecture 1.0

6.9

Connection Sharing

A connection typically maintains state specific to a client—security context, data/function ac-
cess related data structures (for example: query results). Connection sharing is very typical in
non-component based applications that use just a single connection under the same client con-
text to access an EIS.

When an application is developed using the J2EE component model, there is the issue of how
a connection is acquired and shared to achieve functionality similar to that of an equivalent
non-component-based application. In the J2EE environment, transactions initiated through
container-managed or component-managed mechanisms can span across a single or multiple
components instances. Multiple connections to EISs may be acquired as part of the same trans-
action. If some or all the connections acquired as part of transaction connect to the same EIS
instance, these connections can be potentially shared.

The connector architecture enables an application server to allow a physical connection to be
shared across multiple methods on a single component instance or across component instanc-
es. Sharing of connections is more efficient as it reduces the overhead of creating or acquiring
new connections.

Deployment Descriptor

In the default case, the application component provider makes an assumption that connections
are potentially shared. The application server handles the connection sharing transparent to
the application components.

However in certain scenarios, an application component may perform operations on a connec-
tion that makes the connection unshareable. Example of such operations are change in the iso-
lation level or change in the character setting of a connection. An application component that
uses a connection in an unshareable way must indicate its intention through the deployment
descriptor. When a connection is marked unshareable in the deployment descriptor, the appli-
cation server must not share the connection.

The J2EE specifications specify an element res-sharing-scope in the deployment descriptor.
The res-sharing-scope provides a way for an application component to specify that a con-
nection should not be shared by the container. Refer J2EE platform [8], Servlet [10] and EJB 2.0
[1] specifications for more details on the element res-sharing-scope

Local Transaction

The connection sharing mechanism enables a local transaction to span multiple component in-
stances within a single container. A local transaction is associated with a single physical con-
nection. This means that component instances (involved in a local transaction) have to share
the same physical connection within the scope of the local transaction. The work performed by
these component instances (on the underlying EIS connected through the shared physical con-
nection) happens under the scope of the local transaction. The section 6.11 illustrates two sce-
narios for connection sharing and local transaction management.

Requirements

The container is required to support the connection sharing mechanism.

Since the connection sharing mechanism enables a local transaction to span across multiple
component instances, the container should use connection sharing mechanism to manage local
transactions. Note that the XA support takes care of this in the case of JTA transactions for a re-
source adapter at the xa_transaction support level. So the use of connection sharing for man-
aging JTA transactions is optional for a container.

71 October 7, 2000

Transaction Management Connector Architecture 1.0

6.10

Local Transaction Optimization

If all the work done as a part of a transaction uses a single resource manager, the application
server can use local transaction in place of an externally coordinated JTA transaction. The use
of local transaction avoids the overhead of initiating a global transaction (and involving TM for
transaction coordination) and leads to a performance optimization.

Since a typical application accesses a single resource manager, the local transaction optimiza-
tion is a useful performance optimization for transaction management.

The application server manages local transaction optimization transparent to the J2EE applica-
tion. Whenever a container-managed or bean-managed transaction is started, the container
may attempt local transaction optimization.

At transaction begin, a container can not determine apriori whether or not the unit of work
done as part of this transaction will use a single resource manager. The container uses an im-
plementation-specific mechanism to achieve local transaction optimization. For example, the
container can choose to start a local transaction (when the first resource manager is accessed)
and lazily start a JTA transaction only when more than one resource managers are accessed in
an existing transaction. The mechanism through which the application server (and its transac-
tion manager) coordinates the initial local transaction and lazily started JTA transactions is out-
side the scope of the connector specification. An illustrative way is to manage this case as a last-
agent optimization. Refer J2EE platform specification [8] for more details on the local transac-
tion optimization.

Requirements
The container is not required to support the local transaction optimization.

6.11

6.11.1

Scenarios: Connection Sharing

The following scenarios illustrate the connection sharing mechanism.

Container-Managed Transaction Demarcation

In Figure 23.0, the stateful session beans A and B have container-managed transaction demar-
cation with the transaction attribute set to Required . Both EJBs A and B access a single EIS re-
source manager as part of their business logic.

The container has decided to share physical connection and use local transaction for method
invocations on both EJBs.

FIGURE 23.0 Scenario to illustrate Local Transaction Management

Contai ner

_ client E(EIBA —» EJBBD
invocation

Local Transaction Contract

72 October 7, 2000

Transaction Management Connector Architecture 1.0

The following steps happen in this scenario:

= The client invokes a method on EJB A with no transaction context. In its method
implementation, the EJB A acquires a connection to the EIS instance.

= When acquiring the connection, the container starts a local transaction by invoking begin
method on the javax.resource.spi.LocalTransaction instance. The local transaction
is tied to the ManagedConnection instance that is associated with the connection handle
(acquired by the component in the previous step).

= After the local transaction starts, any recoverable unit of work performed by the EJB A
instance on the EIS resource manager (using the acquired connection) is automatically
included under the local transaction context.

= EJB A now invokes a method on the EJB B instance. In this scenario, EJB A does not close
the connection handle before invoking the method on EJB B instance.

Note: A container should ensure that the connection sharing mechanism is equally
applicable if EJB A were to close the connection handle before calling the EJB B instance.

= In the invoked method, the EJB B instance makes a request to acquire a connection to the
same EIS resource manager.

= The container returns a connection handle using the same ManagedConnection instance
that was used for handling the connection request from the EJB A instance.

« The container retains the association of the ManagedConnection instance with the local
transaction context across the method invocation from EJB A to EJB B. This means that any
unit of work that the EJB B instance will perform on the EIS resource manager (using its
acquired connection handle) will be automatically included as part of the current local
transaction. The connection state (for example, any open cursors) can also be retained
across method invocations when the physical connection is shared.

= Before the method invocation on the EJB B instance completes, EJB B calls close on the
connection handle. The container should not initiate any cleanup of the physical
connection at this time since there is still an uncompleted local transaction associated with
the shared physical connection. In this scenario, the cleanup of a physical connection refers
to dissociation of the local transaction context from the ManagedConnection instance.

= When EJB A regains control, EJB A can use the same connection handle (provided EJB A
had not called close on the connection handle) to access EIS resources; all recoverable units
of work on the EIS resource manager will be included in the existing local transaction
context.

Note: If EJB A closes the connection handle before calling EJB B, and then reacquires the
connection handle (when regaining control), the container should ensure that the local
transaction context stays associated with the shared connection.

= EJB A eventually calls close on its connection handle. The container gets a connection close
event notification based on the scenario described in section 5.8.3.

= Since there is an uncompleted local transaction associated with the underlying physical
connection, the container does not initiate a cleanup of the ManagedConnection on
receiving the connection close event notification. The container must still go through the
completion process for the local transaction.

= When the business method invocation on the EJB A instance completes successfully
without any application error, the container starts the completion protocol for the local
transaction. The container calls the LocalTransaction.commit method to commit the
transaction.

= After the local transaction completes, the container initiates a cleanup (now there is no
active local transaction) of the physical connection instance by calling
ManagedConnection.cleanup method.

73 October 7, 2000

Transaction Management

Connector Architecture 1.0

FIGURE 24.0

Application Server

Component Group that allows

Local Transaction Management

OID: Connection Sharing across Component instances

Container

EJB A EJB B

LocalTransaction

Pre-condition: Container decides to perform connection sharing and local
transaction management.

ManagedConnection

javax.resource.cci.

i

Container dispatches client-initiated
business method to EJB A instance

] Connection Request

ManagedConnection.getConnection

LocalTransactipn.begin

»
L

EJB A gets a connection handle and performs unit of work
on ElISresource manager

Method Invogation

Connection Request

ManagedConnection.getConnection

v

close

|

close

I

Business method ends without any application error

LocalTransaction.commit

v

Local Transaction Completed

ManagedConnectior).cleanup

EJB B gets an EIS connection and performs its
unit of work on EIS resource manager under the
local transaction context

74

Connection cleanup done and
default state is restored

October 7, 2000

Transaction Management Connector Architecture 1.0

6.11.2

Note: The container should initiate cleanup of the ManagedConnection instance in the
case where EJB A does not call close on the connection handle before returning. The
container identifies this need for cleanup of ManagedConnection based on the scope of
connection sharing.

= On the cleanup method invocation, the ManagedConnection instance does a cleanup of
its local transaction related state and resets itself to a default state.

= The container returns the physical connection to the pool for handling subsequent
connection requests.

Component-Managed Transaction Demarcation

In this scenario, both stateful session beans A and B do bean-managed transaction demarcation
using the JTA UserTransaction interface. Both EJBs A and B access a single EIS resource man-
ager as part of their business logic. The container has decided to share physical connection and
use local transaction for the method invocations across EJBs A and B. (See Figure 25.0.)

The following steps happen in this scenario:

= The client invokes a method on EJB A with no transaction context. Since EJB A will manage
transactions itself, the container dispatches the method invocation to the EJB A instance
without any associated transaction context.

= Inits method implementation, the EJB A instance acquires a connection to the EIS and then

begins a transaction by invoking UserTransaction.begin method. A container is should
also support the case where a component invokes UserTransaction.begin method
before acquiring a connection.

= \When EJB instance invokes UserTransaction.begin method, the container starts a local
transaction on the physical connection (ManagedConnection instance) by calling
LocalTransaction.begin method.

To support this, the container provides an implementation of the UserTransactionn
interface. The UserTransaction implementation delegates transaction demarcation calls
to the LocalTransaction instance if local transaction is being used; in other cases, the
UserTransaction implementation delegates to the transaction manager.

The container also starts managing the association of the local transaction context with the
ManagedConnection instance. Any recoverable unit of work performed by the EJB A
instance on the EIS resource manager is now automatically included under the local
transaction context.

= The EJB A now invokes a method on the EJB B instance. In this scenario, the EJB A does not
call close on the connection handle before invoking a method on EJB B.

= The container retains the association of the connection with the local transaction context
across this method invocation from EJB A to EJB B. This means that any unit of work that
EJB B instance will perform on the EIS resource manager (in the invoked method) will be
automatically included as part of the current local transaction.

= In the invoked method, the EJB B instance makes a request to acquire a connection to the
same EIS resource manager. The container returns a connection handle using the same
ManagedConnection instance (which represents the physical connection) that was used
for handling the connection request from the EJB A instance. The container retains the local
transaction association with this ManagedConnection instance.

= Before the method on the EJB B instance completes, EJB B calls close on the connection
handle. The container does not initiate any cleanup on the physical connection at this time
since there is an incomplete local transaction associated with the physical connection.

75 October 7, 2000

Transaction Management Connector Architecture 1.0

FIGURE 25.0 OID: Connection Sharing across Component instances

Component Group that allows

Application Server Local Transaction Management Resource Adapter
UserTr;Isgction ManagedConnection
i EIB A EJB B LocalTransaction || Javax.resource.cci.
Container ocalTransactio onnection

Pre-condition: Container decides to perform connection sharing and
local transaction management
[[[

Container dispatches client-initiated
business method to EJB A instance

Connection Request
MahagedConnectipn.getConnection

UserTransaction.begin

LocglTransaction.begi

n

»
»

EJB A performs unit of work of EIS resource manager

Method Invog¢ation

Connection Request

ManagedConnection.getConnection

EJB B performs unit of work of EIS resource manager
under same local transaction context

close

UserTransaction.commit

P
<

LocalTransaction.commit

Local Transaction Completed

close

v

ManagedConnection.clganup

Connection cleanup done and
default state is restored

= On getting the control back, EJB A can use the previously acquired connection handle
(provided EJB A had not previously called close on the connection handle) to access EIS

resources; any recoverable unit of work on the EIS resource manager will be included in
the existing local transaction context.

76 October 7, 2000

Transaction Management Connector Architecture 1.0

< The EJB A instance calls UserTransaction.commit method to initiate commit of the
transaction. The container handles this commit request successfully by calling the method
LocalTransaction.commit to commit the local transaction.

= The EJB A calls close on the connection handle. The container gets a connection close event
notification based on the scenario described in section 5.8.3. Since there is no local
transaction associated with the ManagedConnection instance, the container initiates a
clean-up of the ManagedConnection instance by calling Managed-Connection.cleanup
method.

= If the EJB A instance had called close on the connection handle before invoking
UserTransaction.commi t in the same method, then the container would not initiate any
cleanup of the ManagedConnection instance on this connection close. The container
initiates cleanup of the ManagedConnection only when the associated local transaction is
completed on the UserTransaction.commi t invocation.

= The container identifies the need for initiating cleanup of the ManagedConnection
instance based on the scope of the connection sharing. If cleanup of ManagedConnection
is needed, the container should initiate cleanup even in the case where EJB A has not called
close on the connection handle before returning.

= On the cleanup method invocation, the ManagedConnection instance does a cleanup of
its local transaction related state and resets itself to a default state.

= The container returns the physical connection to the pool for handling subsequent
connection requests.

6.12 Connection Association

The connection sharing mechanism enables an application server to allow a physical connec-
tion and its state to be shared across multiple methods on a single component instance or across
component instances.

According to the connection management contract, a connection handle is created from a Man-
agedConnection instance using the method ManagedConnection .getConnection . A connec-
tion handle maintains an association with the underlying ManagedConnection instance.

If a component instance obtains and holds a connection handle across multiple invocations, the
container needs a mechanism to change the association of a connection handle to different Man-
agedConnection instances depending on the connection sharing scope.

Scenario

In the scenario shown in Figure 26.0, session bean A acts as a client of entity bean C and makes
invocations on the methods of entity bean C. The session bean B also acts as a client of entity
bean C. The EJB C is an entity bean that may be shared across multiple clients.

The EJBs A and C define a connection sharing scope. Both EJBs A and C share the same physical
connection across a local transaction that spans across the methods on EJBs A and C. Similarly,
EJB B and C define another different connection sharing scope. EJBs B and C also share the
same physical connection across a local transaction that spans the two instances.

77 October 7, 2000

Transaction Management Connector Architecture 1.0

FIGURE 26.0 Connection Sharing Scenario

<Session Bean>
_ client
invocation <Entity Bean>
_ client
invocation
<Session Bean>

Container

In this scenario, the EJB C instance obtains an application-level connection handle (using the
method getConnection on the ConnectionFactory) during its creation. The EJB C instance
holds the connection handle during its lifetime.

The EJB A instance gets a connection handle using the connection factory and invokes a meth-
od on EJB C instance under the current local transaction context. In this case, the container has
decided to use local transaction management.

At a different instant, the EJB B instance gets a connection handle using the connection factory
and invokes a method on EJB C under a different local transaction context. The container is
again managing the current transaction as a local transaction.

In both cases, depending on the connection sharing scope (defined in terms of the shared phys-
ical connection—ManagedConnection instance) in which the EJB C instance is called, the con-
tainer needs a mechanism to associate the connection handle (held by the EJB C instance as part
of its state) with the current ManagedConnection instance.

FIGURE 27.0 State diagram of application-level Connection Handle

-—— ManagedConnection

- ~

7 *, associateConnection

L |

ManagedConnection . . /
g (Active «--7

getConnection ’ ’
> associated with a
kManagedConnection

Connection .close

v
Closed

no longer associated with a
ManagedConnection

78 October 7, 2000

Transaction Management Connector Architecture 1.0

Connection Association
The interface ManagedConnection defines a method associateConnection as follows:

public interface javax.resource.spi.ManagedConnection {
public void associateConnection(Object connection)
throws ResourceException;
/...

The associateConnection method should be used by the container to change the association
of an application-level connection handle with a ManagedConnection instance. The container
should find the right ManagedConnection instance (depending on the connection sharing
scope) and call the associateConnection method. To achieve this, container needs to keep
track of connection handles (acquired by component instances) and ManagedConnection in-
stances in an implementation specific mechanism.

The container uses the connection association mechanism when it supports connection sharing.
Depending on the connection sharing scenario (an illustrative scenario is shown in this sec-
tion), the container invokes the associateConnection method. The local transaction manage-
ment leads to a special application of connection sharing when a local transaction spans
multiple component instances. In this case, the physical connection is shared among compo-
nent instances within the local transaction scope. The container invokes associateConnec-
tion based on the connection sharing scope and local transaction context.

If the container uses the XAResource -based transaction management contract, then the con-
tainer does not need to use the connection association mechanism.

Implementation

The resource adapter is required to implement the associateConnection method to support
connection sharing. The support for this method is required independent (note that the con-
tainer makes the decision to invoke associateConnection method) of the transaction sup-
port level of the resource adapter.

The method implementation for a ManagedConnection should dissociate the connection han-
dle (passed as a parameter) from its currently associated ManagedConnection and associate
the new connection handle with itself.

Note that the switching of connection association must happen only for connection handles
and ManagedConnection instances that correspond to the same ManagedConnectionFactory
instance. The container should enforce this restriction in an implementation-specific manner.
If a container cannot enforce the restriction, then the container should not use the connection
sharing mechanism.

79 October 7, 2000

Transaction Management Connector Architecture 1.0

6.13 Requirements

The following section outlines requirements for the transaction management contract.

6.13.1 Resource Adapter

A resource adapter can be classified based on the level of transaction support, as follows:

= Level NO_TRANSACTION-The resource adapter supports neither resource manager local
nor JTA transactions. It implements neither XAResource nor LocalTransaction

interfaces.
e Level LOCAL_TRANSACTION-The resource adapter supports resource manager local
transactions by implementing the LocalTransaction interface. The local transaction

management contract is specified in the section 6.7.
= Level XA_TRANSACTION-The resource adapter supports both resource manager local and

JTA transactions by implementing LocalTransaction and XAResource interfaces
respectively. The requirements for supporting XAResource -based contract are specified in
section 6.6.

Note: Other levels of support (includes any transaction optimizations supported by an un-
derlying resource manager) are outside the scope of the connector architecture.

The above levels reflect the major steps of transaction support that a resource adapter needs to
make to allow external transaction coordination. Depending on its transactional capabilities
and requirements of its underlying EIS, a resource adapter can choose to support any one of
the above transaction support levels.

6.13.2 Application Server

An application server is required to support resource adapters with all three levels of transac-
tion support—NO_TRANSACTION.OCAL_TRANSACTIOMind XA_TRANSACTION

The following are the requirements for an application server for the transaction management
contract:

= The application server is required to support a transaction manager that manages
transactions using the JTA XAResource -based contract. The requirements for a transaction
manager to support an XAResource -based contract are specified in section 6.6.3 on page
62.

= The application server is required to use the LocalTransaction interface-based contract
to manage local transactions for a resource manager.

= The application server is required to use the deployment descriptor mechanism to
ascertain the transactional capabilities of a resource adapter. Refer to section 10.3 for
details on the deployment descriptor specification.

= The application server is required to implement the javax.resource.spi.-
ConnectionEventListener interface to get transaction-related event notifications.

= The application server is required to support the connection sharing mechanism. Refer to
the section 6.9 for more details.

80 October 7, 2000

Security Architecture Connector Architecture 1.0

7 Security Architecture

The following chapter specifies a security architecture for the integration of EISs with the J2EE
platform. It adds EIS integration-specific security details to the security requirements specified
in other J2EE specifications.

7.1 Overview

It is critical that an enterprise be able to depend on the information in its EIS for its business
activities. Any loss or inaccuracy of information or any unauthorized access to the EIS can be
extremely costly to an enterprise. There are mechanisms that can be used to protect an EIS
against such security threats, including:

= Identification and authentication of principals (human users) to verify they are who they
claim to be.

= Authorization and access control to determine whether a principal is allowed to access an
application server and/or an EIS.

= Security of communication between an application server and an EIS. Communication
over insecure links can be protected using a protocol (for example, Kerberos) that provides
authentication, integrity, and confidentiality services. Communication can also be
protected by using a secure links protocol (for example, SSL).

7.2 Goals

The security architecture is designed to meet the following goals:

= Extend the end-to-end security model for J2EE-based applications to include integration
with EISs based on the connector architecture.

= Support authentication and authorization of users who are accessing EISs.

= Keep the security architecture technology neutral and enable the specified security
contract to be supported by various security technologies.

= Enable the security architecture to support a range of EISs with different levels of security
support and existing security environments.

= Support security configuration of a resource adapter in an operational environment.

= Keep the security model for connector architecture-based EIS integration transparent to an
application component provider. This includes providing support for single sign-on across
multiple EISs.

The non-goals of the security model for EIS integration are as follows:

= Mandate a specific technology and describe how it can be used to implement the security
architecture for connector architecture-based EIS integration.

= Specify and mandate a specific security policy. The security architecture enables an
application server and EIS to support implementation and administration of security
policies based on their respective requirements.

81 October 7, 2000

Security Architecture Connector Architecture 1.0

7.3 Terminology

The following terms have been used in this chapter:

= Principal : A principal is an entity that can be authenticated by an authentication
mechanism deployed in an enterprise. A principal is identified using a principal name
and authenticated using authentication data . The content and format of the principal
name and the authentication data depend upon the authentication mechanism.

= Security Attributes . A principal has a set of security attributes associated with it.
These security attributes are related to the authentication and authorization mechanisms.
Examples are: security permissions, credentials for a principal.

= Credential : A credential contains or references security information that can authenticate
a principal to additional services. A principal acquires a credential upon authentication or
from another principal that allows its credential to be used (the latter is termed principal
delegation).

< End user: An end user is an entity (human or service) that acts as a source of a request
to an application. An end user is represented as a security principal within a Subject as
specified in the JAAS framework [7].

= Initiating Principal . The security principal representing the end-user that interacts
directly with the application. An end-user can authenticate using either a web client or an
application client.

« Caller Principal : A principal that is associated with an application component instance
during a method invocation. For example, an EJB instance can call getCallerPrincipal
method to get the principal associated with the current security context.

« Resource Principal : A security principal under whose security context a connection to
an EIS instance is established.

« Security domain : A scope within which certain common security mechanisms and
policies are established. This specification does not specify the scope of a security domain.
An enterprise can contain more than one security domain. Thus an application server and
an EIS could either be in the same or different security domains. The Security Scenarios on
page 157 provide illustrative examples of how security domains can be setup and
managed.

In a managed environment, application components are deployed in web or EJB containers.
When a method gets invoked on a component, the principal associated with the component in-
stance is termed a caller principal.

The relationship between an initiating principal and a caller principal depends on the principal
delegation option for inter-container and inter-component calls. This form of principal delega-
tion is out of the scope of the connector architecture.

The relationship of a resource principal and its security attributes (example: credentials, access
privileges) to an initiating/caller principal depends on how the resource principal has been set-
up by the system administrator or deployer.

Refer to section 8.2 for details on interfaces and classes that are used to represent a resource
principal and its credentials.

7.4

Application Security Model

Note: The following section is a brief summary of the security model from the perspective
of an application component provider. The reader should refer to the relevant specifica-
tions for more details.

82 October 7, 2000

Security Architecture Connector Architecture 1.0

7.4.1

71.4.2

The application component requests a connection to be established under the security context
of a resource principal. The security context includes security attributes—access privileges, au-
thorization level—for a resource principal. Once a connection is established successfully, all ap-
plication-level invocations to the EIS instance using the connection happen under the security
context of the resource principal.

The application component provider has the following two choices related to EIS sign-on:

= Allow the deployer to set up the resource principal and EIS sign-on information. For
example, the deployer sets user name and password for establishing a connection to an EIS
instance.

= Perform sign-on to an EIS from the component code by providing explicit security
information for a resource principal.

The application component provider uses a deployment descriptor element (example: res-
auth for EJB components) to indicate the requirements for one of the above two approaches.
If the res-auth element is set to Application , the component code performs a programmatic
sign-on to the EIS; if the res-auth element is Container , the application server takes the re-
sponsibility of setting up and managing EIS sign-on.

Scenario: Container-managed Sign-on

The application component provider sets the res-auth deployment descriptor element to be
Container letting the application server take the responsibility of managing EIS sign-on.

The deployer sets up the principal mapping such that the user account for connecting to the EIS
instance is always eStoreUser . The deployer also configures the authentication data (example,
password) needed to authenticate eStoreUser to the EIS.

The component code invokes the getConnection method on the ConnectionFactory in-
stance with no security-related parameters. The component relies on the application server to
manage sign-on to the EIS instance based on the security information configured by the de-
ployer.

/I Method in an application component
Context initctx = new InitialContext();

I/ perform JNDI lookup to obtain connection factory
javax.resource.cci.ConnectionFactory cxf =
(javax.resource.cci.ConnectionFactory)initctx.lookup(
“java:comp/env/eis/MyEIS");

/I Invoke factory to obtain a connection. The security
Il information is not passed in the getConnection method
javax.resource.cci.Connection cx = cxf.getConnection();

Scenario: Component-Managed Sign-on

The application component provider sets the res-auth element to be Application.

The component code performs a programmatic sign-on to the EIS. The application component
passes explicit security information (username, password) to the getConnection method of
the ConnectionFactory instance.

// Method in an application component
Context initctx = new InitialContext();

/I perform JNDI lookup to obtain connection factory

83 October 7, 2000

Security Architecture Connector Architecture 1.0

javax.resource.cci.ConnectionFactory cxf =
(javax.resource.cci.ConnectionFactory)initctx.lookup(
“java:comp/env/eis/MyEIS");

I/ Invoke factory to obtain a connection

com.myeis.ConnectionSpeclmpl properties = //.. get a new ConnectionSpec
properties.setUserName(“...");

properties.setPassword(“...”);

javax.resource.cci.Connection cx = cxf.getConnection(properties);

7.5 EIS Sign-on

Creating a new physical connection requires a sign-on to an EIS instance. Changing the security
context on an existing physical connection can also require EIS sign-on; the latter is termed re-
authentication.

An EIS sign-on typically involves one or more of the following steps. (This section explains all
these mechanisms.):

= Determining a resource principal under whose security context a physical connection to an
EIS will be established.

= Authentication of a resource principal if it is not already authenticated.

= Establishing a secure association between the application server and the EIS. This enables
additional security mechanisms (example, data confidentiality and integrity) to be applied
to communication between the two entities.

= Access control to EIS resources.

7.5.1 Authentication Mechanism

An application server and an EIS collaborate to ensure the proper authentication of a resource
principal which establishes a connection to an underlying EIS. The connector architecture iden-
tifies the following as the commonly-supported authentication mechanisms:

= basic-password: Basic user-password- based authentication mechanism specific to an
EIS

e kerbv5: Kerberos version 5-based authentication mechanism

The auth-mech-type element is used in the deployment descriptor to specify whether or not
a resource adapter supports a specific authentication mechanism. [Refer to section 10.6 for
more details on the specification of the deployment descriptor for a resource adapter.]

The connector architecture does not require that a specific authentication mechanism be sup-
ported by an application server and an EIS. An application server may support any other au-
thentication mechanisms for EIS sign-on. The connector security architecture is independent of
security mechanisms.

7.5.2 Resource Principal

When an application component requests a connection from a resource adapter, the connection
request is made under the security context of a resource principal. The deployer can set a re-
source principal based on the following options:

= Configured Identity: In this case, a resource principal has its own configured identity and
security attributes independent of the identity of the initiating/caller principal. The
identity of resource principal can be configured either through a configuration of the
principal at deployment time or specified dynamically by a component at the connection
creation. The scenario EStore Application on page 157 illustrates an example where

84 October 7, 2000

Security Architecture Connector Architecture 1.0

7.5.3

connections to an EIS are always established under the security context of a valid EIS user
account. This happens independent of the initiating or caller principal. For example: if a
caller principal is A, then the configured resource principals can be Band Con two different
EIS instances; where A, B, and Care independent identities.

= Principal Mapping: A resource principal is determined by mapping from the identity
and/or security attributes of the initiating/caller principal. In this case, a resource
principal does not inherit identity or security attributes of a principal that it has been
mapped from; the resource principal gets its identity and security attributes based on the
mapping. For example: if caller principal has identity A, then the mapped resource
principal is mapping(A,EIS1) and mapping(A, EIS2) on two different EIS instances.

= Caller Impersonation: A resource principal acts on behalf of an initiating/caller principal.
Acting on behalf of a caller principal requires that the caller’s identity and credentials be
delegated to the EIS. The mechanism by which this is accomplished is specific to a security
mechanism and an application server implementation. An example of the impersonation
is shown in the scenario Employee Self Service Application on page 159.

In some scenarios, a caller principal can be a delegate of an initiating principal. In this case,
a resource principal transitively impersonates an initiating principal.

The support for principal delegation is typically specific to a security mechanism. For
example, Kerberos supports a mechanism for the delegation of authentication. [Refer to
Kerberos v5 specification for more details]. The security technology specific details are out
of scope of the connector architecture.

= Credentials Mapping: This mechanism may be used when an application server and EIS
support different authentication domains. For example, the initiating principal has been
authenticated and has public key certificate-based credentials. The security environment
for the EIS is configured with the Kerberos authentication service. The application server
is configured to map the public key certificate-based credentials associated with the
initiating principal to the Kerberos credentials. In this case, the resource principal is the
same as the caller principal with the mapped credentials.

In the case of credential mapping, the mapped resource principal has the same identity as
the initiating/caller principal. For example, a principal with identity A has initial
credentials cred(A,mechl) and has credentials cred(A,mech2) after mapping. The
mechl and mech2 represents different mechanism types.

Authorization Model

The authorization checking to ensure that a principal has access to an EIS resource can be ap-
plied at either (or both) of the following:

« At the EIS.
= At the application server.

Authorization checking at the target EIS can be done in an EIS-specific way and is not specified
here. For example, an EIS can define its access control policy (in a security technology depen-
dent) in terms of its specific security roles and permissions.

Authorization checking can also be done at the application server level. For example, an appli-
cation server can allow a principal to create a connection to an EIS only if the principal is au-
thorized to do so. J2EE containers (such as EJB and Servlet containers) support both
programmatic and declarative security that can be used to define authorization policies. Pro-
grammatic and declarative security are defined in the individual specifications (refer to the EJB
and Servlet specifications for more details). An application component developer developing
components for EIS access must follow the requirements defined in these specifications.

85 October 7, 2000

Security Architecture Connector Architecture 1.0

754

Secure Association

The communication between an application server and an EIS can be subject to security threats
(for example, data modification, loss of data). Establishing a secure association counters such
threats. A secure association is a shared security information that allows a component on the
application server to communicate securely with an EIS.

The establishment of a secure association can include several steps:

= The resource principal is authenticated to the EIS; this may require that the target principal
in the EIS domain authenticate itself back to the application server. A target principal can
be setup by the system administrator as a security principal associated with a running EIS
instance or specific EIS resource.

= Negotiating a quality of protection, such as confidentiality or integrity.

= A pair of communicating entities—an application server and an EIS instance—establish a
shared security context using the credentials of the resource principal. The security context
encapsulates shared state information, required so that communication between the
application server and the EIS can be protected through integrity and confidentiality
mechanisms. Examples of shared state information that is part of a security context are
cryptographic keys and message sequence numbers.

A secure association between an application server and an EIS is always established by the re-
source adapter implementation. Note that a resource adapter library runs within the address
space of the application server.

A resource adapter can use any security mechanism to establish the secure association. GSS-
API (refer to IETF draft on GSS-API v2[5]) is an example of such a mechanism. Note that the
connector architecture does not require use of the GSS-API by a resource adapter or application
server.

The configuration of a mechanism for establishing secure association is outside the scope of the
connector architecture. This includes setting up the desired quality of protection during secure
communication.

Once a secure association is established successfully, the connection is associated with the se-
curity context of the resource principal. Subsequently, all application-level invocations to the
EIS instance using the connection happen under the security context of the resource principal.

7.6

7.6.1

Roles and Responsibilities

This section describes various roles involved in the security architecture. It also describes re-
sponsibilities of each role from the security perspective.

The roles and responsibilities of the application component provider and deployer are speci-
fied in detail in the respective J2EE component model specifications.

Application Component Provider

The following features are common across different J2EE component models from the perspec-
tive of an application component provider:

= An application component provider invariably avoids the burden of securing its
application and focuses on developing the business functionality of its application.

= A security-aware application component provider can use a simple programmatic
interface to manage security at an application level. The programmatic interface enables an
application component provider to program access control decisions based on the security
context—principal, role—associated with the caller of a method and to manage
programmatic sign-on to an EIS.

86 October 7, 2000

Security Architecture Connector Architecture 1.0

7.6.2

7.6.3

7.6.4

= An application component provider specifies security requirements for its application
declaratively in a deployment descriptor. The security requirements include security roles,
method permissions, and an authentication approach for EIS sign-on.

= More qualified roles—application server vendor, deployer, system administrator—have
the responsibility of satisfying overall security requirements (through the deployment
mechanism for resource adapters and components) and managing the security
environment.

Deployer

The deployer specifies security policies that ensure secure access to the underlying EISs from
application components. The deployer adapts the intended security view of an application for
EIS access, specified through a deployment descriptor, to the actual security mechanisms and
policies used by the application server and EISs in the target operational environment. The de-
ployer uses tools to accomplish the above task.

The output of the deployer’s work is a security policy descriptor specific to the operational en-
vironment. The format of the security policy descriptor is specific to an application server.

The deployer performs the following deployment tasks for each connection factory reference
declared in the deployment descriptor of an application component;

= Provides a connection factory specific security configuration that is needed for opening
and managing connections to an EIS instance.

= Binds the connection factory reference in the deployment descriptor of an application
component to the INDI registered reference for the connection factory. Refer to section 10.5
for the JNDI configuration of a connection factory during deployment of a resource
adapter. The deployer can use the JNDI LinkRef mechanism to create a symbolic link to
the actual INDI name of the connection factory.

« If the value of the res-auth deployment descriptor element is Container , the deployer is
responsible for configuring the security information for EIS sign-on. For example, the
deployer sets up the principal mapping for EIS sign-on.

Application Server

The application server provides a security environment with specific security policies and
mechanisms that support the security requirements of the deployed application components
and resource adapters, thereby ensuring a secure access to the connected EISs.

The typical responsibilities of an application server are as follows:

= Provide tools to set up security information for a resource principal and EIS sign-on when
res-auth element is set to Container . This includes support for principal delegation and
mapping for configuring a resource principal.

= Provide tools to support management and administration of its security domain. For
example, security domain administration can include setting up and maintaining both
underlying authentication services and trusts between domains, plus managing principals
(including identities, keys, attributes). Such administration is typically security technology
specific and is outside the scope of the connector architecture.

= Support a single sign-on mechanism that spans the application server and multiple EISs.
The security mechanisms and policies through which single sign-on is achieved are
outside the scope of the connector architecture.

The Appendix C specifies how JAAS can be used by an application server to support the re-
guirements of the connector security architecture.

EIS Vendor

The EIS provides a security infrastructure and environment that supports the security require-
ments of the client applications. An EIS can have its own security domain with a specific set of

87 October 7, 2000

Security Architecture Connector Architecture 1.0

7.6.5

7.6.6

security policies and mechanisms or it can be set up as part of an enterprise-wide security do-
main.

Resource Adapter Provider

The resource adapter provider provides a resource adapter that supports the security require-
ments of the underlying EIS.

The resource adapter implements the security contract specified as part of the connector archi-
tecture. Chapter 8 specifies the security contract and related requirements for a resource adapt-
er.

The resource adapter specifies its security capabilities and requirements through its deploy-
ment descriptor. Section 10.6 specifies a standard deployment descriptor for a resource adapt-
er.

System Administrator

The system administrator typically works in close association with administrators of multiple
EISs that have been deployed in an operational environment. The system administration tasks
can also be performed by the deployer.

The following tasks are illustrative examples of the responsibilities of the system administrator:
= Setup an operational environment based on the technology and requirements of the
authentication service, and if an enterprise directory is supported.
= Configure the user account information for both the application server and the EIS in the
enterprise dierectory.The user account information from the enterprise directory can then
be used for authentication of users requesting connectivity to the EIS.
= Establish a password synchronization mechanism between the application server and the
EIS. This ensures that the user’s security information is identical on the application server

and the EIS. When an EIS requires authentication, the application server passes the user’s
password to the EIS.

88 October 7, 2000

Security Contract Connector Architecture 1.0

8

Security Contract

This chapter specifies the security contract between the application server and the EIS. It also
specifies the responsibilities of the resource adapter provider and the application server vendor
for supporting the security contract.

This chapter references the following chapters and documents:
= The security model specified in the J2EE platform specification [8].
= Security architecture specified in Chapter 7.

= Security scenarios based on the connector architecture [refer to Appendix: Security
Scenarios on page 157].

The security contract between the application server and the resource adapter extends the con-
nection management contract (described in Chapter 5) by adding security specific details.

This security contract supports EIS sign-on by:

= Passing the connection request from the resource adapter to the application server,
enabling the latter to hook-in security services.

= Propagation of the security context —JAAS Subject with principal and credentials—from
the application server to the resource adapter.

The security contract includes the following classes and interfaces:

8.1 Security Contract
8.2 Interfaces/Classes
8.2.1 Subject

The following text has been used from the JAAS specification. For a detailed specification, refer
to JAAS documents:

A Subject represents a grouping of related information for a single entity, such as a person.
Such information includes the Subject’s identities and its security-related attributes (for exam-
ple, passwords and cryptographic keys). A Subject can have multiple identities. Each identity
is represented as a Principal ~ within the Subject . A Principal simply binds a name to a
Subject

A Subject can also own security-related attributes, which are referred to as Credentials
Sensitive credentials that require special protection, such as private cryptographic keys, are
stored within a private credential set.

The Credentials intended to be shared, such as public key certificates or Kerberos server tick-
ets, are stored within a public credential set. Different permissions are required to access and
modify different credential sets.

The getPrincipals method retrieves all the principals associated with a Subject . The meth-
ods getPublicCredentials and getPrivateCredentials respectively retrieve all the pub-
lic or private credentials belonging to a Subject . The methods defined in the Set class modify
the returned set of principals and credentials.

89 October 7, 2000

Security Contract Connector Architecture 1.0

8.2.2 ResourcePrincipal

The interface java.security.Principal represents a resource principal. The following code
extract shows the Principal interface:
public interface java.security.Principal {

public boolean equals(Object another);
public String getName();

public String toString();

public int hashCode();

The method getName returns the name of a resource principal.

An application server should use the Principal interface (or any derived interface) to pass a
resource principal as part of a Subject to a resource adapter.

8.2.3 GenericCredential

The interface javax.resource.spi.security.GenericCredential defines a security
mechanism independent interface for accessing the security credential of a resource principal.

The GenericCredential interface provides a Java wrapper over an underlying mechanism
specific representation of a security credential. For example, the GenericCredential interface
can be used to wrap Kerberos credentials.

The connector architecture does not define any standard format and requirements for security
mechanism specific credentials. For example, a security credential wrapped by a Generic Cre-
dential interface can have a native representation specific to an operating system.

Note: A contract for the representation of mechanism-specific credentials must be estab-
lished between an application server and a resource adapter outside the scope of the con-
nector architecture. This includes requirements for the exchange of mechanism-specific
credentials between a JAAS module and GSS provider. Refer to Appendix C: JAAS based
Security Architecture for details on JAAS-based security architecture.

The GenericCredential interface enables a resource adapter to extract information about a
security credential. The resource adapter can then manage an EIS sign-on for a resource prin-
cipal by either:
= Using the credentials in an EIS specific manner if the underlying EIS supports the security
mechanism type represented by the GenericCredential instance, or,

= Using GSS-AP | [5] if the resource adapter and underlying EIS instance support GSS-API.

Interface
The following code extract shows the GenericCredential interface:
public interface javax.resource.spi.security.GenericCredential {
public String getName();
public String getMechType();
public byte[] getCredentialData()
throws javax.resource.spi.SecurityException;
public boolean equals(Object another);
public int hashCode();
}

90 October 7, 2000

Security Contract Connector Architecture 1.0

8.2.4

8.2.5

The GenericCredential interface supports a set of getter methods to obtain information
about a security credential.

The method getName returns the name of the resource principal associated with a Generic-
Credential instance.

The method getMechType returns the mechanism type for the GenericCredential instance.
The mechanism type definition for GenericCredential must be consistent with the Object
Identifier (OID) based representation specified in the GSS [5] specification. In the GenericCre-
dential interface, the mechanism type is returned as a stringified representation of the OID
specification.

The GenericCredential interface can be used to get security data for a specific security mech-
anism. An example is authentication data required for establishing a secure association with an
EIS instance on behalf of the associated resource principal. The getCredentialData method
returns the credential representation as an array of bytes. Note that the connector architecture
does not define a standard format for the returned credential data.

Implementation

If an application server supports deployment of a resource adapter which supports Generic-
Credential as part of the security contract, then the application server is required to provide
an implementation of the GenericCredential interface. Refer to the deployment descriptor
specification in Section 10.6 for details on how a resource adapter specifies its support for Ge-
nericCredential

PasswordCredential

The class javax.resource.spi.security.PasswordCredential acts as a holder of user-
name and password. This class enables an application server to pass username and password
to the resource adapter through the security contract.

The method getUserName on PasswordCredential class gets the name of the resource prin-
cipal. The interface java.security.Principal represents a resource principal.

The PasswordCredential class is required to implement equals and hashCode method.

public final class javax.resource.spi.security.PasswordCredential
implements java.io.Serializable {
public PasswordCredential(String userName, char[] password) { ... }
public String getUserName() { ... }
public char[] getPassword() { ... }

public ManagedConnectionFactory getManagedConnectionFactory()
{..}

public void setManagedConnectionFactory(
ManagedConnectionFactory mcf) { ... }

public boolean equals(Object other) { ... }
public int hashCode() { ... }

The method getManagedConnectionFactory returns the ManagedConnectionFactory in-
stance for which the user name and password has been set by the application server. Refer to
the contract for ManagedConnectionFactory to see how a resource adapter uses this method.

ConnectionManager

The method ConnectionManager.allocateConnection is called by the resource adapter’s
connection factory instance. This method lets the resource adapter pass a connection request to
the application server, so that the latter can hook-in security and other services.

91 October 7, 2000

Security Contract Connector Architecture 1.0

public interface javax.resource.spi.ConnectionManager
extends java.io.Serializable {

public Object allocateConnection(
ManagedConnectionFactory mcf,
ConnectionRequestinfo cxRequestinfo)
throws ResourceException;

FIGURE 28.0 Security Contract

— Architected contract

—— Implementation specific Application Component

Application Server Resource Adapter

ConnectionManager I IConnectionFactory

I

ManagedConnectionFactory,

Security Service
Manager

v

Enterprise Information System (EIS)

Depending on whether application server or application component is configured to be re-
sponsible for managing EIS sign-on (refer to Section 7.6.1), the resource adapter calls the Con-
nectionManager .allocateConnection method in one of the following ways:

= Option—Container Managed Sign-on: The application component passes no security
information in the getConnection = method and the application server is configured to
manage EIS sign-on.

92 October 7, 2000

Security Contract Connector Architecture 1.0

The application server provides the required security information for the resource
principal through its configured security policies and mechanisms (for example, principal
mapping). The application server requests the authentication of the resource principal to
the EIS either itself or passes authentication responsibility to the resource adapter. This
aspect is explained later in the specification of the ManagedConnectionFactory interface.

= Option—Component Managed Sign-on: In this case, the application component provides
explicit security information in the getConnection ~ method. The resource adapter invokes

the allocateConnection method by passing security information in the
ConnectionRequestinfo parameter. Since the security information in the
ConnectionRequestinfo is opaque to the application server, the application server

should rely on the resource adapter to manage EIS sign-on (explained in the
ManagedConnectionFactory interface specification under option C).

8.2.6 ManagedConnectionFactory

The following code extract shows the methods on the ManagedConnectionFactory interface
that are relevant to the security contract:

public interface javax.resource.spi.ManagedConnectionFactory
extends java.io.Serializable {

public ManagedConnection createManagedConnection(
javax.security.auth.Subject subject,
ConnectionRequestinfo cxRequestinfo)
throws ResourceException;

During the JNDI lookup, the ManagedConnectionFactory instance is configured by the appli-
cation server with a set of configuration properties. These properties include default security
information and EIS instance specific information (hostname, port number) required for initi-
ating a sign-on to the underlying EIS during the creation of a new physical connection.

The method createManagedConnection is used by the application server when it requests re-
source adapter to create a new physical connection to the underlying EIS.

Contract for Application Server

The application server may provide specific security services (principal mapping and delega-
tion, single sign-on) before using the security contract with the resource adapter. For example,
the application server can map the caller principal to a resource principal before calling the
method createManagedConnection to create a new connection (under the security context of
the resource principal).

In the container-managed sign-on, the application server should create a new instance of Sub-
ject based on the security information configured in the application server. The creation
should happen before the application server calls the method createManagedConnection on
the ManagedConnectionFactory

If the application server maintains a cache of the security credentials (example, Kerberos TGT),
then the application server should reuse the credentials as part of the newly created Subject
instance. For example, the application server uses the method Subject.getPrivateCreden-
tials().add(credential) to add a credential to the private credential set.

93 October 7, 2000

Security Contract Connector Architecture 1.0

FIGURE 29.0 Security Contract: Subject Interface and its Containment Hierarchy

<class>)]
javax.security.auth.Subject

contains ? contains

0 contains
-n 0-n

<class>] <interface>
PasswordCredential java.security.Principal

0-n

<interfacp> .
GenericCredential

The above diagram shows the relationship between Subject , Principal , PasswordCreden-
tial and GenericCredential interfaces. Note that in the following options A and B defined
for createManagedConnection method invocation, the Subject instance contains a single re-
source principal (represented as java.security.Principal).

The application server has the following options for invoking the method createManaged-
Connection

= Option A: The application server invokes the method createManagedConnection by
passing in a non-null Subject instance that carries a single resource principal and its
corresponding password-based credentials (represented by the class Password-
Credential that provides the user name and password). The PasswordCredential
should be set in the Subject instance as a part of the private credential set. Note that the

passed Subject can contain multiple PasswordCredential instances.
The resource adapter extracts the user name and password from this Subject instance (by
looking for PasswordCredential instance in the Subject) and uses this security

information to sign-on to the EIS instance during the connection creation.

= Option B: The application server invokes the method createManagedConnection
method by passing in a non-null Subject instance that carries a single resource principal
and its security credentials. In this option, credentials are represented through the
GenericCredential interface. A typical example is a Subject instance with Kerberos
credentials.

For example, an application server may use this option for createManagedConnection
method invocation when the resource principal is impersonating the caller/initiating
principal and has valid credentials acquired through impersonation. An application server
may also use this option for principal mapping scenarios with credentials of a resource
principal represented through the GenericCredential interface.

Note that sensitive credentials requiring special protection, such as private cryptographic
keys, are stored within a private credential set, while credentials intended to be shared,
such as public key certificates or Kerberos server tickets, are stored within a public
credential set. The two methods getPrivateCredentials and getPublicCredentials
should be used accordingly.

In case of Kerberos mechanism type, the application server must pass the principal’s TGT
(ticket granting ticket) to a resource adapter in a private credential set.

94 October 7, 2000

Security Contract Connector Architecture 1.0

The resource adapter uses the resource principal and its credentials from the Subject
instance to go through the EIS sign-on process before creating a new connection to the EIS.

= Option C: The application server requests resource adapter to manage the EIS sign-on by

passing a null Subject instance. The application server uses this option for the
component-managed sign-on case where security information is carried in the
ConnectionRequestinfo instance. The application server does not provide any security

information that can be used by the resource adapter for managing EIS sign-on.

During the deployment of a resource adapter, the application server should be configured to
use one of the above specified invocation options. Refer the deployment chapter 10 for more
details.

Contract for Resource Adapter

A resource adapter can do EIS sign-on and connection creation in an implementation-specific
way or it can use the GSS-API. The latter option is specified in the appendix on page 164. A re-
source adapter has the following options (corresponding to the options for an application serv-
er) for handling the invocation of the method createManagedConnection

= Option A: The resource adapter explicitly checks whether the passed Subject instance
carries a PasswordCredential instance using the Subject.getPrivateCredentials
method.
Note that the security contract assumes that a resource adapter has the necessary security
permissions to extract a private credential Set from a Subject instance. The specific
mechanism through which such permission is set up is outside the scope of the connector
architecture.

If the Subject instance contains a PasswordCredential instance, the resource adapter
extracts the user name and password from the PasswordCredential . It uses the security
information to authenticate the resource principal (corresponding to the user name) to the
EIS during the creation of a connection. In this case, the resource adapter uses an
authentication mechanism that is EIS specific.

Since a Subject instance can carry multiple PasswordCredential instances, a Managed-
ConnectionFactory should only use a PasswordCredential instance that has been
specifically passed to it through the security contract. The method
getManagedConnectionFactory enables a ManagedConnectionFactory instance to
determine whether or not a PasswordCredential instance is to be used for sign-on to the
target EIS instance. The ManagedConnectionFactory implementation uses the equals

method to compare itself with the passed instance.

= Option B: The resource adapter explicitly checks whether passed Subject instance carries

a GenericCredential instance using the methods getPrivateCredentials and
getPublicCredentials defined on the Subject interface.

In case of Kerberos mechanism type, the resource adapter must extract Kerberos
credentials using the method getPrivateCredentials on the Subject interface.

The resource adapter uses the resource principal and its credentials (represented by the
GenericCredential interface) in the Subject instance to go through the EIS sign-on
process. For example, this option is used for Kerberos-based credentials that have been
acquired by the resource principal through impersonation.

A resource adapter uses the getter methods defined on the GenericCredential interface
to extract information about the credential and its principal. If a resource adapter is using
GSS mechanism, the resource adapter uses a reference to the GenericCredential instance

in an opague manner and is not required to understand any mechanism-specific credential
representation. However, a resource adapter may need to interpret credential
representation if the resource adapter initiates authentication in an implementation-
specific manner.

95 October 7, 2000

Security Contract Connector Architecture 1.0

8.2.7

= Option C: If the application server invokes ManagedConnectionFactory .create-
ManagedConnection ~ with a null Subject instance, then a resource adapter has the
following options:

= The resource adapter should extract security information passed through the
ConnectionRequestinfo instance. The resource adapter should authenticate
resource principal by combining the configured security information on the
ManagedConnectionFactory instance with the security information passed
through the ConnectionRequestinfo instance. The default for resource adapter is
to allow the security information in the ConnectionRequestinfo parameter to
override the configured security information in the ManagedConnectionFactory
instance.

= |If the resource adapter does not find any security configuration in the Connection-
Requestinfo , resource adapter uses the default security configuration on the
ManagedConnectionFactory instance.

ManagedConnection

A resource adapter can re-authenticate a physical connection (one that already exists in the con-
nection pool under a different security context) to the underlying EIS. A resource adapter does
re-authentication when an application server calls getConnection = method with a security
context (passed as a Subject instance) different from the context previously associated with
the physical connection.

Support for re-authentication depends on whether an underlying EIS supports re-authentica-
tion mechanism for existing physical connections. If a resource adapter does not support re-au-
thentication, then the resource adapter should ignore security information passed through the
getConnection method.

public interface javax.resource.spi.ManagedConnection {
public Object getConnection(
javax.security.auth.Subject subject,
ConnectionRequestinfo cxRequestinfo)
throws ResourceException;

The getConnection method returns a new connection handle. If re-authentication is success-
ful, the resource adapter has changed the security context of the underlying ManagedConnec-
tion instance to that associated with the passed Subject instance.

A resource adapter has the following options for handling ManagedConnection.getConnec-
tion invocation if it supports re-authentication;

= Option A: The resource adapter extracts PasswordCredential instance from the Subject
and performs an EIS-specific authentication. This option is similar to option A defined in
the specification of the method createManagedConnection on the interface
ManagedConnectionFactory

= Option B: The resource adapter extracts GenericCredential instance from the Subject
and manages authentication either through the GSS mechanism or an implementation-
specific mechanism. This option is similar to option B defined in the specification of the
method createManagedConnection on the interface ManagedConnectionFactory

= Option C: In this case, the Subject parameter is null . The resource adapter extracts
security information from the ConnectionRequestinfo (if there is any) and performs
authentication in an implementation-specific manner. This option is similar to option C
defined in the specification of the method createManagedConnection on the interface
ManagedConnectionFactory

96 October 7, 2000

Security Contract Connector Architecture 1.0

8.3 Requirements
The following are the requirements defined by the security contract:

Resource Adapter
The following are the requirements defined for a resource adapter;
= Resource adapter is required to support the security contract by implementing the method
ManagedConnectionFactory.createManagedConnection
= Resource adapter is not required to support re-authentication as part of its Managed-
Connection.getConnection method implementation.
= Resource adapter is required to specify its support for the security contract as part of its
deployment descriptor. The relevant deployment descriptor elements are [refer section
10.6 for a detailed specification]: auth-mechanism , auth-mech-type , reauthen-
tication-support and credential-interface

Application Server
The following are the requirements defined for an application server:
= Application server is required to use the method ManagedConnectionFactory .-
createManagedConnection to pass the security context to the resource adapter during
EIS sign-on.
= Application server is required to be capable of using options - A and C - as specified in the
section 8.2.6 for the security contract.
« Application server provides an implementation of GenericCredential interface if the
following conditions are both true:
= Application server supports authentication mechanisms (specified as auth-mech-
type in the deployment descriptor) other than basic-password ~ mechanism. For
example, application server should implement GenericCredential interface to
support kerbvs authentication mechanism type.

= Application server supports deployment of resource adapters that are capable of

handling GenericCredential (and thereby option B as specified in section 8.2.6) as
part of the security contract.
= Application server is required to implement the method allocateConnection in its

ConnectionManager implementation.

= Application server is required to configure its use of the security contract based on the
security requirements specified by the resource adapter in its deployment descriptor. For
example, if a resource adapter specifies that it supports only basic-password
authentication, application server should use the security contract to pass
PasswordCredential instance to the resource adapter.

97 October 7, 2000

Common Client Interface Connector Architecture 1.0

9 Common Client Interface

The following chapter specifies the Common Client Interface (CClI).

9.1 Overview

The CCI defines a standard client API for application components. The CCI enables application
components and Enterprise Application Integration (EAI) frameworks to drive interactions
across heterogeneous EISs using a common client API. Figure 30.0 shows a high-level view of
the CClI and its relationship to other application components.

FIGURE 30.0 Common Client Interface

Application Component

Common Client
Interface

System Contracts

Resource Adapter
Application Server

EIS specific interface

Enterprise Information
System

9.2 Goals

The CCl is designed with the following goals:
= It defines a remote function-call interface that focuses on executing functions on an EIS and
retrieving the results. The CCI can form a base level API for EIS access on which higher
level functionality can be built.
= Itis targeted primarily towards application development tools and EAI frameworks.
= Although it is simple, it has sufficient functionality and an extensible application
programming model.

98 October 7, 2000

Common Client Interface Connector Architecture 1.0

= It provides an API that both leverages and is consistent with various facilities defined by
the Java J2SE and J2EE platforms.

= Itis independent of a specific EIS; for example: data types specific to an EIS. However, the
CCI can be capable of being driven by EIS-specific metadata from a repository.

An important goal for the CCl is to complement existing standard JDBC API and not to replace
this API. The CCI defines a common client API that is parallel to the JDBC for EISs that are not
relational databases.

Since the CCl is targeted primarily towards application development tools and EAI vendors, it
is not intended to discourage the use of JDBC APIs by these vendors. For example, an EAI ven-
dor will typically combine JDBC with CCI by using the JDBC API to access relational databases
and using CCI to access other EISs.

9.3

93.1

9.3.2

Scenarios

The following scenarios illustrate the use of CClI by enterprise tools and Enterprise Application
Integration (EAI) vendors:

Enterprise Application Integration Framework

The EAI vendor uses the Common Client Interface as a standard way to plug-in resource
adapters for heterogeneous EISs. The vendor provides an application integration framework
on top of the functionality provided by the resource adapters. The framework uses the stan-
dard CCl interfaces to drive interactions with the connected EISs.

Figure 31.0 also shows the use of JDBC by the EAI framework for connecting to and accessing
relational databases.

FIGURE 31.0 Scenario: EAIl Framework

Enterprise Application Integration &
Framework

Common Client

Interface JDBC API
~
Metadata
i Repository
Resource Adapter JDBC Driver
I

Metadata Repository and API

An EAI or application development tool uses a metadata repository to drive CCl-based inter-
actions with heterogeneous EISs. See Figure 31.0 and Figure 32.0 for illustrative examples. A
repository may maintain meta information about functions (with type mapping information
and data structures for the invocation parameters) existing on an EIS system.

99 October 7, 2000

Common Client Interface Connector Architecture 1.0

Note: The specification of a standard repository APl and metadata format is outside the
scope of the current version 1.0 of the connector architecture.

9.3.3 Enterprise Application Development Tool

The CCI functions as a plug-in contract for an application development tool that develops ad-
ditional functionality around a resource adapter.

The application development tool generates Java classes based on the meta information access-
ed from a metadata repository. These Java classes encapsulate CCl-based interactions and ex-
pose a simple application programming model (typically based on the JavaBeans framework)
to the application developers. An application component uses the generated Java classes for

EIS access.

An application development tool can also compose or generate an application component that
uses the generated Java classes for EIS access. See Figure 32.0.

FIGURE 32.0 Scenario: Enterprise Application Development Tool

generates and/or composes

Enterprise Application Development
Tool

S~

Metadata
Repository

Java Classes

Application Components or

Common Client
Interface

JDBC API

Resource Adapter

JDBC Driver

100

October 7, 2000

Common Client Interface Connector Architecture 1.0

9.4 Common Client Interface

The CCl is divided in to the following parts:

= Connection-related interfaces that represent a connection factory and an application level
connection:

= javax.resource.cci.ConnectionFactory
= javax.resource.cci.Connection

= javax.resource.cci.ConnectionSpec
= javax.resource.cci.LocalTransaction

= Interaction-related interfaces that enable a component to drive an interaction (specified
through an InteractionSpec) with an EIS instance:

= javax.resource.cci.Interaction
= javax.resource.cci.InteractionSpec

= Data representation-related interfaces that are used to represent data structures involved
in an interaction with an EIS instance:

= javax.resource.cci.Record , Javax.resource.cci.MappedRecord and
javax.resource.cci.lndexedRecord

= javax.resource.cci.RecordFactory
= javax.resource.cci.Streamable

= javax.resource.cci.ResultSet

= java.sql.ResultSetMetaData

= Metadata related-interfaces that provide basic meta information about a resource adapter
implementation and an EIS connection:

= javax.resource.cci.ConnectionMetaData
= javax.resource.cci.ResourceAdapterMetaData
= javax.resource.cci.ResultSetInfo
« Additional classes: javax.resource.ResourceException and javax.resource.-
cci.ResourceWarning
See Figure 33.0 on page 102.

9.4.1 Requirements

A resource adapter provider provides an implementation of the CCl interfaces as part of its re-
source adapter implementation. The connector architecture does not mandate that a resource
adapter support the CCl interfaces as its client API.

Important: A resource adapter is allowed to support a client API specific to its underlying
EIS. An example of an EIS-specific client APIs is JDBC API for relational databases.

The connector architecture also allows a third party vendor to provide an implementation
of CCl interfaces above a resource adapter. For example, a base resource adapter supports
the system contracts and provides an EIS specific client API. A third party tools vendor
may provide the CCl implementation above this base resource adapter.

The connector architecture also allows a resource adapter implementation to support all
interfaces except the data representation-related interfaces. In this case, a third party ven-
dor provides both the development-time and run-time aspects of data structures required
to drive interactions with an EIS instance. The section on the Record interface specification
describes this case in more detail.

101 October 7, 2000

Common Client Interface Connector Architecture 1.0

FIGURE 33.0 Class Diagram: Common Client Interface

<interface> package: javax.resource.cci
ConnectionFactory
<interface> uses | <interface> uses 0'1; <interface>
Connection on Interaction InteractionSpec
0-1
0-1
<interface> .
LocalTransaction
uses
0-n
v
<interface> _ _ Creates _ _ |<interface>
RecordFactory Record
AN 0-n AN 0-n aN
<interface> inherits | confains inherfts confains inherits
Streamable
0-n
<interface> <interface> <interface>
MappedRecord s IndexedRecord s ResultSet
inhegrits inherits inherits
2 v A\V4
<interface> <interface> _ <interface>
java.util. Map java.util.List java.sql.ResultSet

<« - implements

<— association or use
relationship

<|— inherits
<>— contains

102 October 7, 2000

Common Client Interface Connector Architecture 1.0

9.5 Connection Interfaces

The following section specifies interfaces for the connection factory and application level con-
nection.

9.5.1 ConnectionFactory

The javax.resource.cci.ConnectionFactory provides an interface for getting connection
to an EIS instance. A component looks up a ConnectionFactory instance from the JNDI
namespace and then uses it to get a connection to the EIS instance.

The following code extract shows the ConnectionFactory interface:

public interface javax.resource.cci.ConnectionFactory
extends java.io.Serializable, javax.resource.Referenceable {

public RecordFactory getRecordFactory()
throws ResourceException;

public Connection getConnection()
throws ResourceException;
public Connection getConnection(
javax.resource.cci.ConnectionSpec properties)
throws ResourceException;

public ResourceAdapterMetaData getMetaData()
throws ResourceException;

public void setLogWriter(PrintWriter out) throws ResourceException;
public PrintWriter getLogWriter() throws ResourceException;

public void setTimeout(int milliseconds)
throws ResourceException;
public int getTimeout() throws ResourceException;

The getConnection method gets a connection to an EIS instance. The getConnection variant
with no parameters is used when a component requires the container to manage EIS sign-on.
In this case of the container-managed sign-on, the component does not pass any security infor-
mation.

A component may also use the getConnection variant with javax.resource.cci.Connec-
tionSpec parameter, if it needs to pass any resource adapter specific security information and
connection parameters. In the component-managed sign-on case, an application component
passes security information (example: username, password) through the ConnectionSpec in-
stance.

It is important to note that the properties passed through the getConnection = method should
be client-specific (example: user name, password, language) and not related to the configura-
tion of a target EIS instance (example: port number, server name). The ManagedConnection-
Factory instance is configured with complete set of properties required for the creation of a
connection to an EIS instance. The properties passed by an application component through the
getConnection method should override the default properties configured on the Managed-
ConnectionFactory instance. Refer section 10.4.1 for configuration of a ManagedConnec-
tionFactory

103 October 7, 2000

Common Client Interface Connector Architecture 1.0

Note that in a managed environment, the getConnection = method with no parameters is the
recommended model for getting a connection. The container manages the EIS sign-on in this
case.

The setLogWriter ~ method allows a component to associate a character output stream with a
ConnectionFactory instance. All application level error and tracing messages for the Con-
nectionFactory instance are printed to the associated output stream. Note that the output
stream for ConnectionFactory is primarily set for application-level messages; an output
stream associated with ManagedConnection or ManagedConnectionFactory instance gets
system-level messages. The separation between the scope of application-level and system-level
messages is specific to a resource adapter implementation.

The method setTimeout sets a maximum time in milliseconds that a ConnectionFactory in-
stance will wait while attempting to connect to an EIS.

The ConnectionFactory interface also provides a method to get a RecordFactory instance.
The ConnectionFactory implementation class may throw a javax.resource.NotSupport-
edException from the method getRecordFactory

Implementation

An implementation class for ConnectionFactory is required to implement the java.io.Se-
rializable interface to support JNDI registration. A ConnectionFactory implementation
class is also required to implement javax.resource.Referenceable . Note that the jav-
ax.resource.Referenceable interface extends the javax.naming.Referenceable inter-
face. Refer section 10.5 for more details on JNDI based requirements for the
ConnectionFactory implementation.

9.5.2 ConnectionSpec

The interface javax.resource.cci.ConnectionSpec is used by an application component to
pass connection request-specific properties to the getConnection method.

The ConnectionSpec interface has been introduced to increase the toolability of the CCI. It is
recommended that the ConnectionSpec interface be implemented as a JavaBean to support
tools. The properties on the ConnectionSpec implementation class must be defined through
the getter and setter methods pattern.

The following code extract shows the ConnectionSpec interface.

public interface javax.resource.cci.ConnectionSpec {

}

The CCI specification defines a set of standard properties for an ConnectionSpec . The prop-
erties are defined either on a derived interface or an implementation class of an empty Connec-
tionSpec interface. In addition, a resource adapter may define additional properties specific
to its underlying EIS.

The following standard properties are defined by the CClI specification for ConnectionSpec
= UserName name of the user establishing a connection to an EIS instance
« Password password for the user establishing a connection

An important point to note is about the relationship between ConnectionSpec and Connec-

tionRequestinfo . The ConnectionSpec is used at application level and is defined under the
scope of CCI; while ConnectionRequestinfo is defined as part of the system contracts. Sepa-
rate interfaces have been defined for these two to ensure the separation between CCI interfaces
and system contracts; ConnectionRequestinfo has no explicit dependency on CCI. Note that
in the 1.0 scope, a resource adapter may not implement CCI while it is required to implement

104 October 7, 2000

Common Client Interface Connector Architecture 1.0

9.5.3

system contracts. The mapping between CCI’s ConnectionSpec and ConnectionRequestin-
fo is achieved in an implementation specific manner by a resource adapter.

Connection

A javax.resource.cci.Connection represents an application level connection handle that
is used by a component to access an EIS instance. The actual physical connection associated
with a Connection instance is represented by a ManagedConnection

A component gets a Connection instance by using the getConnection method on a Connec-
tionFactory instance. A Connection instance may be associated with zero or more Inter-
action instances.

The following code extract shows the Connection interface:

public interface javax.resource.cci.Connection {
public Interaction createlnteraction() throws ResourceException;

public ConnectionMetaData getMetaData() throws ResourceException;
public ResultSetInfo getResultSetInfo() throws ResourceException;

public LocalTransaction getLocalTransaction()
throws ResourceException;
public void setAutoCommit(boolean autoCommit)
throws ResourceException;
public boolean getAutoCommit()
throws ResourceException;

public void close() throws ResourceException;

The method createlnteraction creates an Interaction instance associated with the Con-
nection instance. An Interaction enables a component to access EIS data and functions.

The method getMetaData returns information about the EIS instance associated with a Con-
nection instance. The EIS instance-specific information is represented by the Connection-
MetaData interface.

The method getResultSetinfo returns information on the result set functionality supported
by the connected EIS instance. If the CCI implementation does not support result set function-
ality, then the method getResultSetInfo should throw a NotSupportedException

The method close initiates a close of the connection. The OID in Figure 11.0 on page 43 de-
scribes the resulting behavior of such an application level connection close.

The method getLocalTransaction returns a LocalTransaction instance that enables a
component to demarcate resource manager local transactions. If a resource adapter does not
allow a component to demarcate local transactions using LocalTransaction interface, then
the method getLocalTransaction should throw a NotSupportedException

Auto Commit

The method setAutoCommit (true) sets a connection in the auto-commit mode. When a Con-
nection is in the auto-commit mode, an Interaction (associated with the Connection) au-
tomatically commits after it has been executed.

The auto-commit mode has to be turned off if multiple interactions have to be grouped in to a
single transaction and committed or rolled back as a unit. The method setAutoCommit (false)
sets the auto-commit off.

By default, the auto-commit mode is set to off for a Connection instance.

105 October 7, 2000

Common Client Interface Connector Architecture 1.0

The setAutoCommit (true) method should not be called on a Connection instance while the
connection is participating in an on-going transaction. Such an invocation should throw a Re-
sourceException with an appropriate transaction related error.

When a connection is in auto-commit mode, any method calls on the LocalTransaction in-
stance (associated with the Connection) should throw a ResourceException ~ with an appro-
priate transaction related error.

The invocation of setAutoCommit method on a non-transactional resource adapter should
throw a javax.resource.NotSupportedException

9.6 Interaction Interfaces

The following section specifies interfaces that enable a component to drive an interaction (as
specified in a specification) with an EIS instance and to demarcate resource manager local
transactions.

9.6.1 Interaction

The javax.resource.cci.Interaction enables a component to execute EIS functions. An
Interaction instance supports the following interactions with an EIS instance:

= An execute method that takes an input Record , output Record and an Interaction-
Spec. This method executes the EIS function represented by the InteractionSpec and
updates the output Record .
= An execute method that takes an input Record and an InteractionSpec . This method
implementation executes the EIS function represented by the InteractionSpec and
produces the output Record as a return value.
If an Interaction implementation does not support a variant of execute method, the method
should throw a javax.resource.NotSupportedException
Refer to section 9.9.2 for details on how input and output records are created and used in the
above variants of the execut