
JavaTM 2EnterpriseEdition

J2EETM ConnectorArchitecture Specification
JSR016

SpecificationLead:

RahulSharma,
SeniorStaffEngineer,

SunMicrosystems,Inc.

Technicalcomments:
j2ee-connectors-comments@eng.sun.com
Version1.0
ProposedFinalDraft

901 San Antonio Road
Palo Alto, CA 94043 U.S.A.
650 960-1300 fax: 650 969-9131

Java Software,
Sun Microsystems, Inc.

Connector Architecture Sun Microsystems Inc.
10/7/00

Connector Architecture Sun Microsystems Inc.

ed by
follow-
prior
eci-
ense
own-

l com-

usive,
ctual

this
ctual
only
d and

from
of or

nsors
, JDBC,
Beans
es.

-

I-

com-
J2EE (TM) Connectors Specification ("Specification")

Version: 1.0

Status: Pre-FCS

Release: Oct 16, 2000

Copyright 2000 Sun Microsystems, Inc.

901 San Antonio Road, Palo Alto, California 94303, U.S.A.

All rights reserved.

NOTICE

The Specification is protected by copyright and the information described therein may be protect
one or more U.S. patents, foreign patents, or pending applications. Except as provided under the
ing license, no part of the Specification may be reproduced in any form by any means without the
written authorization of Sun Microsystems, Inc. ("Sun") and its licensors, if any. Any use of the Sp
fication and the information described therein will be governed by the terms and conditions of this lic
and the Export Control and General Terms as set forth in Sun’s website Legal Terms. By viewing, d
loading or otherwise copying the Specification, you agree that you have read, understood, and wil
ply with all of the terms and conditions set forth herein.

Subject to the terms and conditions of this license, Sun hereby grants you a fully-paid, non-excl
non-transferable, worldwide, limited license (without the right to sublicense) under Sun’s intelle
property rights to review the Specification internally for the purposes of evaluation only. Other than
limited license, you acquire no right, title or interest in or to the Specification or any other Sun intelle
property. The Specification contains the proprietary and confidential information of Sun and may
be used in accordance with the license terms set forth herein. This license will expire one hudre
fifty (150) days from the date of Release listed above and will terminate immediately without notice
Sun if you fail to comply with any provision of this license. Upon termination, you must cease use
destroy the Specification.

TRADEMARKS

No right, title, or interest in or to any trademarks, service marks, or trade names of Sun or Sun’s lice
is granted hereunder. Sun, Sun Microsystems, the Sun logo, Java, J2EE, Enterprise JavaBeans
Java Naming and Directory Interface, “Write Once Run Anywhere”, Java ServerPages, JDK, Java
are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countri

DISCLAIMER OF WARRANTIES

THE SPECIFICATION IS PROVIDED "AS IS" AND IS EXPERIMENTAL AND MAY CONTAIN
DEFECTS OR DEFICIENCIES WHICH CANNOT OR WILL NOT BE CORRECTED BY SUN. SUN
MAKES NO REPRESENTATIONS OR WARRANTIES, EITHER EXPRESS OR IMPLIED, IN
CLUDING BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT THAT THE CONTENTS OF THE SPECIF
CATION ARE SUITABLE FOR ANY PURPOSE OR THAT ANY PRACTICE OR IMPLEMENTA-
TION OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS,
COPYRIGHTS, TRADE SECRETS OR OTHER RIGHTS. This document does not represent any
mitment to release or implement any portion of the Specification in any product.
10/7/00

Connector Architecture Sun Microsystems Inc.

-

ersion

-

r use
s that
ation

rime
nying

.7201
and

with
eed-
tial ba-
h the
ut lim-
ations,
THE SPECIFICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL
ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION THEREIN;
THESE CHANGES WILL BE INCORPORATED INTO NEW VERSIONS OF THE SPECIFICA
TION, IF ANY. SUN MAY MAKE IMPROVEMENTS AND/OR CHANGES TO THE PRODUCT(S)
AND/OR THE PROGRAM(S) DESCRIBED IN THE SPECIFICATION AT ANY TIME. Any use of
such changes in the Specification will be governed by the then-current license for the applicable v
of the Specification.

LIMITATION OF LIABILITY

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL SUN OR ITS LICENSORS
BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUE,
PROFITS OR DATA, OR FOR SPECIAL, INDIRECT, CONSEQUENTIAL, INCIDENTAL OR PU
NITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILI-
TY, ARISING OUT OF OR RELATED TO ANY FURNISHING, PRACTICING, MODIFYING OR
ANY USE OF THE SPECIFICATION, EVEN IF SUN AND/OR ITS LICENSORS HAVE BEEN AD-
VISED OF THE POSSIBILITY OF SUCH DAMAGES.

You will indemnify, hold harmless, and defend Sun and its licensors from any claims based on you
of the Specification for any purposes other than those of internal evaluation, and from any claim
later versions or releases of any Specification furnished to you are incompatible with the Specific
provided to you under this license.

RESTRICTED RIGHTS LEGEND

If this Software is being acquired by or on behalf of the U.S. Government or by a U.S. Government p
contractor or subcontractor (at any tier), then the Government’s rights in the Software and accompa
documentation shall be only as set forth in this license; this is in accordance with 48 C.F.R. 227
through 227.7202-4 (for Department of Defense (DoD) acquisitions) and with 48 C.F.R. 2.101
12.212 (for non-DoD acquisitions).

REPORT

You may wish to report any ambiguities, inconsistencies or inaccuracies you may find in connection
your evaluation of the Specification ("Feedback"). To the extent that you provide Sun with any F
back, you hereby: (i) agree that such Feedback is provided on a non-proprietary and non-confiden
sis, and (ii) grant Sun a perpetual, non-exclusive, worldwide, fully paid-up, irrevocable license, wit
right to sublicense through multiple levels of sublicensees, to incorporate, disclose, and use witho
itation the Feedback for any purpose related to the Specification and future versions, implement
and test suites thereof.
10/7/00

Connector Architecture

Table of Contents

.
.
 . . 2
. . 2
 . .
. . 3
. . 3
 . . 3

.

 . . 9
.
 . . 1
 . . 11

. . . 15
 . . 16

.

. . 19
 . 21
. . 22
. . 34
. . 35
. . 37
. . 44
 . . 4

.
. . . 51
 . . 53
 . . 56
. . 57
 . . 59
. . 68
 . . 69
 . . 71
 . 72
 . . 72
. . 77
 . . 8
1 Introduction .1
Overview . 1
Scope . . . 1
Target Audience .
JDBC and Connector Architecture .
Organization .2
Document Convention .
Connector Architecture Expert Group .
Acknowledgements .

2 Overview .5
Definitions . . 5
Rationale .. . 6
Goals . 8

3 Connector Architecture .9
System Contracts .
Client API . . 10
Requirements .1
Non-managed Environment .

4 Roles and Scenarios .12
Roles . 12
Scenario: Integrated Purchase Order system .
Scenario: Business-to-Business (B2B) .

5 Connection Management .18
Overview . 18
Goals . 18
Architecture: Connection Management .
Application Programming Model .
Interface/Class specification .
Error Logging and Tracing .
Object Diagram .
Illustrative Scenarios .
Architecture: Non-managed Environment .
Requirements .8

6 Transaction Management .50
Overview . 50
Transaction Management Scenarios .
Transaction Management Contract .
Relationship to JTA and JTS .
Object Diagram .
XAResource-based Transaction Contract .
Local Transaction Management Contract .
Scenarios: Local Transaction Management .
Connection Sharing .
Local Transaction Optimization .
Scenarios: Connection Sharing .
Connection Association .
Requirements .0
October 7, 2000

Connector Architecture

Table of Contents

.

. . 8
 . 82
 . .
 . . 86

 . . 89
. . . 89
 . . 9

.

. .
. . 101
 . . 103
 . . 106
 . . 109
 . . 111

 .
. . . 12

.
 .
 . . 1
. . . 13
 . 132
 . 138

. . 145
 . . 145
 . . 1
 . . 14

 . . 151
 . . 151
. . 153
7 Security Architecture .81
Overview . 81
Goals . 81
Terminology . 2
Application Security Model .
EIS Sign-on .84
Roles and Responsibilities .

8 Security Contract .89
Security Contract .
Interfaces/Classes .
Requirements .7

9 Common Client Interface .98
Overview . 98
Goals . 98
Scenarios . . 99
Common Client Interface .
Connection Interfaces .
Interaction Interfaces .
Basic Metadata Interfaces .
Exception Interfaces .
Record .. . 111
ResultSet . 117
Code Samples . 2

10 Packaging and Deployment .125
Overview . 125
Packaging .. 127
Deployment .27
Interfaces/Classes . 1
JNDI Configuration and Lookup .
Resource Adapter XML DTD .

11 Runtime Environment .145
Programming APIs .
Security Permissions .
Responsibilities .48
Privileged Code .8

12 Projected Items .150
13 Exceptions .151

ResourceException .
System Exceptions .
Additional Exceptions .

Appendix: Caching Manager .154
Appendix: Security Scenarios .157
Appendix: JAAS based Security Architecture .164
Appendix: Related Documents .173
Appendix: Change History .174
October 7, 2000

Connector Architecture

 7
 9
.. 15
 17
 20
. 23
. 28
. 36
 39
 41
 43
 45
 47
.. 50
... 51
.. 53
. 54
. 55
. 58
. 64
. 66

. 72
.. 74
.. 76
..
. 78

 94

.
 100
. 102
. 112
.

.. 125
. 126
137
. 155
157
. 159
160

162

.. 168
 169

List of Figures
Fig. 1 System Level Pluggability between Application Servers and EISs...................................
Fig. 2 Overview of the Connector Architecture ...
Fig. 3 Illustration of an scenario based on the connector architecture
Fig. 4 Connector Architecture in B2B scenario ...
Fig. 5 Architecture Diagram: Managed Application scenario ...
Fig. 6 Class Diagram: Connection Management Architecture..
Fig. 7 ConnectionManager and Application Server specific services...
Fig. 8 Object Diagram: Connection Management architecture...
Fig. 9 OID: Connection Pool Management with new Connection Creation................................
Fig. 10 OID: Connection Pool Management with Connection Matching......................................
Fig. 11 OID: Connection Event Notification ...
Fig. 12 Architecture Diagram: Non-Managed application scenario ..
Fig. 13 OID: Connection Creation in a Non-managed Application Scenario................................
Fig. 14 Transaction Management Contract ..
Fig. 15 Scenario: Transactions across multiple Resource Managers ..
Fig. 16 Scenario: Local Transaction on a single Resource Manager ...
Fig. 17 Architecture Diagram: Transaction Management...
Fig. 18 ManagedConnection Interface for Transaction Management...
Fig. 19 Object Diagram: Transaction Management ..
Fig. 20 OID: Transactional setup for newly created ManagedConnection instances
Fig. 21 OID: Connection Close and Transactional cleanup..
Fig. 22 OID: Transaction Completion..67
Fig. 23 Scenario to illustrate Local Transaction Management..
Fig. 24 OID: Connection Sharing across Component instances ..
Fig. 25 OID: Connection Sharing across Component instances ..
Fig. 26 Connection Sharing Scenario... 78
Fig. 27 State diagram of application-level Connection Handle ..
Fig. 28 Security Contract.. 92
Fig. 29 Security Contract: Subject Interface and its Containment Hierarchy
Fig. 30 Common Client Interface... 98
Fig. 31 Scenario: EAI Framework .. 99
Fig. 32 Scenario: Enterprise Application Development Tool ..
Fig. 33 Class Diagram: Common Client Interface ..
Fig. 34 Record at Development-time and Run-time ...
Fig. 35 Component-view Contract .. 114
Fig. 36 Streamable Interface .. 117
Fig. 37 ResultSet interface ... 118
Fig. 38 Packaging and Deployment lifecycle of a resource adapter ..
Fig. 39 Deployment of Resource Adapter module..
Fig. 40 OID: Lookup of Connection Factory instance from JNDI ..
Fig. 41 Synchronization Contract between Caching Manager and Application Server................
Fig. 42 Illustrative Architecture of an Estore Application ...
Fig. 43 Resource Principal for Estore Application Scenario...
Fig. 44 Illustrative Architecture of an Employee Self-service Application
Fig. 45 Principal Mapping.. 160
Fig. 46 Illustrative Architecture of an Integrated Purchasing Application
Fig. 47 Principal Mapping.. 163
Fig. 48 Security Architecture. .. 165
Fig. 49 Resource Adapter-managed Authentication ..
Fig. 50 Kerberos Authentication with Principal Delegation ..
October 7, 2000

Connector Architecture

.. 170
 171
172
Fig. 51 GSS-API use by Resource Adapter ...
Fig. 52 Kerberos Authentication after Principal Mapping ...
Fig. 53 Authentication though EIS specific JAAS Module ..
October 7, 2000

Introduction Connector Architecture 1.0

at
1 Introduction

The Java 2 Platform, Enterprise Edition (J2EE) provides containers for client applications, web

components (based on servlets, Java Server Pages) and Enterprise JavaBeans [1] components.

These containers provide deployment and runtime support for application components. They

provide a federated view of the services provided by underlying application server for the ap-

plication components.

Containers can run on existing systems; for example, web servers for the web containers; ap-

plication servers, TP monitors, and database systems for EJB containers. This enables enterpris-

es to leverage both the advantages of their existing systems and those of J2EE. Enterprises can

write (or rewrite) new applications using J2EE capabilities and can also encapsulate parts of ex-

isting applications in enterprise beans (EJB) or Java Server Pages (JSP).

Enterprise applications access functions and data associated with applications running on En-

terprise Information Systems (EIS). Application servers extend their containers and support

connectivity to heterogeneous EISs. Enterprise tools and Enterprise Application Integration

(EAI) vendors add value by providing tools and frameworks to simplify the EIS integration

task.

1.1 Overview
The connector architecture defines a standard architecture for connecting the Java 2 Platform,

Enterprise Edition (J2EE) platform to heterogeneous EISs. Examples of EISs include ERP, main-

frame transaction processing (TP), and database systems.

The connector architecture defines a set of scalable, secure, and transactional mechanisms that

enable the integration of EISs with application servers1 and enterprise applications.

The connector architecture also defines a Common Client Interface (CCI) for EIS access. The

CCI defines a client API for interacting with heterogeneous EISs.

The connector architecture enables an EIS vendor to provide a standard resource adapter for

its EIS. A resource adapter is a system-level software driver that is used by a Java application

to connect to an EIS. The resource adapter plugs into an application server and provides con-

nectivity between the EIS, the application server, and the enterprise application.

An application server vendor extends its system once to support the connector architecture and

is then assured of a seamless connectivity to multiple EISs. Likewise, an EIS vendor provides

one standard resource adapter and it has the capability to plug in to any application server that

supports the connector architecture.

1.2 Scope
The version 1.0 of the connector architecture defines:

1.Application server is a generic term used in this document to refer to a middle-tier component server th
is compliant to Java 2 platform, Enterprise Edition.
1 October 7, 2000

Introduction Connector Architecture 1.0
• A standard set of system-level contracts between an application server and EIS. These

contracts focus on the important system-level aspects of integration: connection

management, transaction management, and security.

• A Common Client Interface (CCI) that defines a client API for interacting with multiple

EISs.

• A standard deployment and packaging protocol for resource adapters.

Refer to section 2.2.2 for the rationale behind the Common Client Interface.

1.3 Target Audience
The target audience for this specification includes:

• EIS vendors and resource adapter providers

• Application server vendors and container providers

• Enterprise application developers and system integrators

• Enterprise tool and EAI vendors

The system-level contracts between an application server and EIS are targeted towards EIS

vendors (or resource adapter providers, if the two roles are different) and application server

vendors.

The CCI is targeted primarily towards enterprise tools and EAI vendors.

1.4 JDBC and Connector Architecture
The JDBC API defines a standard Java API for accessing relational databases. JDBC provides

an API for sending SQL statements to a database and processing the tabular data returned by

the database.

The connector architecture is a standard architecture for integrating J2EE applications with

EISs that are not relational databases. Each of these EISs provides a native function call API for

identifying a function to call, specifying its input data, and processing its output data. The goal

of the Common Client Interface (CCI) is to provide an EIS independent API for coding these

EIS function calls.

The CCI is targeted at EIS development tools and other sophisticated users of EISs. The CCI

provides a way to minimize the EIS specific code required by such tools. Most J2EE developers

will access EISs using these tools rather than using CCI directly.

It is expected that many J2EE applications will combine relational database access using JDBC

with EIS access using EIS access tools based on CCI.

The connector architecture defines a standard SPI (Service Provider Interface) for integrating

the transaction, security and connection management facilities of an application server with

those of a transactional resource manager. The JDBC 3.0 specification [3] specifies the relation-

ship of JDBC to the SPI specified in the connector architecture.

1.5 Organization
The document starts by describing the rationale and goals for a standard architecture to inte-

grate an application server with multiple heterogeneous EISs. It then describes the key con-

cepts relevant to the connector architecture. This introduction facilitates an understanding of

the overall architecture.
2 October 7, 2000

Introduction Connector Architecture 1.0
The document then describes typical scenarios for the connector architecture. This chapter in-

troduces the various roles and responsibilities involved in the development and deployment

of enterprise applications that integrate with multiple EISs.

After forming a descriptive framework for the connector architecture, the document focuses on

the prescriptive aspects of the architecture. It introduces the overall connector architecture fo-

cussing on the Common Client Interface and system-level contracts.

1.6 Document Convention
A regular Palatino font is used for describing the connector architecture.

A italic font is used for paragraphs that contain descriptive notes providing clarifications.

It is important to note that the scenarios described in the document are illustrative in scope. The

intent of the scenarios is not to specify a prescriptive way of implementing a particular con-

tract.

The document uses the EJB component model to describe certain scenarios. The EJB specifica-

tion [1] provides the latest and most accurate details from the perspective of the EJB component

model.

1.7 Connector Architecture Expert Group
The following are part of the expert group and have made invaluable contributions to the Con-

nector architecture specification:

• BEA Pete Homan

• Fujitsu Yoshi Otagiri, Ivar Alexander

• IBM Tom Freund, Michael Beisiegel

• Inline Jack Greenfield

• Inprise Charlton Barreto

• IPlanet Tony Pan, Pavan Bhatnagar

• Motorola Guy Bieber

• Oracle Dan Coyle

• SAP Marek Barwicki

• Sun Rahul Sharma (Specification Lead)

Fred H. Carter

• Sybase Rajini Balay, K. Swaminathan

• Tibco Jon Dart

• Unisys Lester Lee

1.8 Acknowledgements
Shel Finkelstein, Mark Hapner, Vlada Matena, Tony Ng, Bill Shannon and Sekhar Vajjhala (all

from Sun Microsystems) have provided invaluable technical input and guidance to the Con-

nector architecture specification. Jean Zheng and Pong Ching also provided useful input to the

specification.

Rick Cattell, Shel Finkelstein, Bonnie Kellett and Jeff Jackson have provided huge support to

the specification lead in the management of the Connectors expert group.
3 October 7, 2000

Introduction Connector Architecture 1.0
Tony Ng is leading the effort of providing a reference implementation for the Connector archi-

tecture as part of J2EE 1.3 platform. Liz Blair has worked on providing the Compatibility Test

Suite (CTS) plan for the Connector architecture.

Beth Stearns provided a great help in doing an editorial review of this document.
4 October 7, 2000

Overview Connector Architecture 1.0
2 Overview

This chapter introduces key concepts that are required for an understanding of the connector

architecture. It lays down a reference framework to facilitate a formal specification of the con-

nector architecture in the subsequent chapters of this document.

2.1 Definitions
Enterprise Information System (EIS)
An EIS provides the information infrastructure for an enterprise. An EIS offers a set of services

to its clients. These services are exposed to clients as local and/or remote interfaces. Examples

of an EIS include:

• ERP system

• Mainframe transaction processing system

• Legacy database system

There are two aspects of an EIS:

• System level services - for example, JDBC, SAP RFC, CICS ECI

• An application specific interface—for example, the table schema and specific stored

procedures, the specific CICS TP program

Connector Architecture
An architecture for integration of J2EE servers with EISs. There are two parts to this architec-

ture: an EIS vendor-provided resource adapter and an application server that allows this re-

source adapter to plug in. This architecture defines a set of contracts, such as transactions,

security, connection management, that a resource adapter has to support to plug in to an ap-

plication server.

EIS Resource
An EIS resource provides EIS-specific functionality to its clients. Examples are:

• A record or set of records in a database system

• A business object in an ERP system

• A transaction program in a transaction processing system

Resource Manager(RM)
A resource manager manages a set of shared EIS resources. A client requests access to a re-

source manager to use its managed resources. A transactional resource manager can partici-

pate in transactions that are externally controlled and coordinated by a transaction manager.

In the context of the connector architecture, a client of a resource manager can either be a mid-

dle-tier application server or a client-tier application. A resource manager is typically in a dif-

ferent address space or on a different machine from the client that accesses it.

This document refers to an EIS as a resource manager when it is mentioned in the context of

transaction management. Examples of resource managers are a database system, a mainframe

TP system and an ERP system.
5 October 7, 2000

Overview Connector Architecture 1.0
Managed Environment
A managed environment defines an operational environment for a J2EE-based, multi-tier, web-

enabled application that accesses EISs. The application consists of one or more application

components—EJBs, JSPs, servlets—which are deployed on containers. These containers can be

one of the following:

• Web containers that host JSP, servlets, and static HTML pages

• EJB containers that host EJB components

• Application client containers that host standalone application clients

Non-managed Environment
A non-managed environment defines an operational environment for a two-tier application.

An application client directly uses a resource adapter to access the EIS, which defines the sec-

ond tier for a two-tier application.

Connection
A connection provides connectivity to a resource manager. It enables an application client to

connect to a resource manager, perform transactions, and access services provided by that re-

source manager. A connection can be either transactional or non-transactional. Examples in-

clude a database connection and a SAP R/3 connection.

Application Component
An application component can be a server-side component, such as an EJB, JSP, or servlet, that

is deployed, managed, and executed on an application server. It can also be a component exe-

cuted on the web-client tier but made available to the web-client by an application server. Ex-

amples of the latter type of application component include a Java applet, DHTML page.

Container
A container is a part of an application server that provides deployment and runtime support

for application components. It provides a federated view of the services provided by the un-

derlying application server for the application components. For more details on different types

of standard containers, refer to Enterprise JavaBeans (EJB) [1], Java Server Pages (JSP), and

Servlets specifications.

2.2 Rationale
The following section describes the rationale behind the connector architecture.

2.2.1 System Contracts

Currently, none of the existing Java platform specifications address the problem of providing

a standard architecture for integration between an application server and EISs. Most EIS ven-

dors and application server vendors use vendor-specific architectures to provide EIS integra-

tion.

The connector architecture provides a Java solution to the problem of connectivity between the

multitude of application servers and EISs. By using the connector architecture, it is no longer

necessary for EIS vendors to customize their product for each application server. An applica-

tion server vendor who conforms to the connector architecture also does not need to add cus-

tom code whenever it wants to extend its application server to support connectivity to a new

EIS.

The connector architecture enables an EIS vendor to provide a standard resource adapter for

its EIS; the resource adapter plugs into an application server and provides the underlying in-

frastructure for the integration between an EIS and the application server.
6 October 7, 2000

Overview Connector Architecture 1.0
An application server vendor extends its system only once to support the connector architec-

ture and is then assured of connectivity to multiple EISs. Likewise, an EIS vendor provides one

standard resource adapter and it has the capability to plug in to any application server that sup-

ports the connector architecture.

The following figure shows that a standard EIS resource adapter can plug into multiple appli-

cation servers. Similarly, multiple resource adapters for different EISs can plug into an appli-

cation server. This system-level pluggability is made possible through the connector

architecture.

If there are m application servers and n EISs, the connector architecture reduces the scope of the

integration problem from an m x n problem to an m + n problem.

FIGURE 1.0 System Level Pluggability between Application Servers and EISs

2.2.2 Common Client Interface

An enterprise tools vendor provides tools that lead to a simple application programming mod-

el for EIS access, thereby reducing the effort required in EIS integration. An EAI vendor pro-

vides a framework that supports integration across multiple EISs. Both types of vendors need

to integrate across heterogeneous EISs.

Each EIS typically has a client API that is specific to the EIS. Examples of EIS client APIs are:

RFC for SAP R/3 and ECI for CICS.

An enterprise tools vendor adapts different client APIs for target EISs to a common client API.

The adapted API is typically specific to a tools vendor and supports an application program-

ming model common across all EISs. Adapting the API requires significant effort on part of a

tools vendor. In this case, the m x n integration problem applies to tools vendors.

The connector architecture provides a solution for the m x n integration problem for tools and

EAI vendors. The architecture specifies a standard Common Client Interface (CCI) that sup-

ports a common client API across heterogeneous EISs.

Enterprise Information
Systems

Enterprise InformationApplication Servers
System

Application Server
Resource Adapters

Resource Adapter

Application server extension for resource adapter

Standard resource adapter

pluggability
7 October 7, 2000

Overview Connector Architecture 1.0
All EIS resource adapters that support CCI are capable of being plugged into enterprise tools

and EAI frameworks in a standard way. A tools vendor need not do any API adaption; the ven-

dor can focus on providing its added value of simplifying EIS integration.

The CCI drastically reduces the effort and learning requirements for tools vendor by narrowing

the scope of a m x n problem to m + n problem if there are m tools and n EISs.

2.3 Goals
The connector architecture has been designed with the following goals:

• It simplifies the development of scalable, secure, and transactional resource adapters for a

wide range of EISs — ERP systems, database systems, mainframe-based transaction

processing systems.

• It is sufficiently general to cover a wide range of heterogeneous EISs. The sufficient

generality of the architecture ensures that there are various implementation choices for

different resource adapters; each choice is based on the characteristics and mechanisms of

an underlying EIS.

• It is not tied to a specific application server implementation but is applicable to all J2EE

platform compliant application servers from multiple vendors.

• It provides a standard client API for enterprise tools and EAI vendors. The standard API

will be common across heterogeneous EISs.

• It is expressed in a manner that allows an unambiguous determination of whether or not

an implementation is compatible.

• It is simple to understand and easy to follow, regardless of whether one is designing a

resource adapter for a particular EIS or developing/deploying application components

that need to access multiple EISs. This simplicity means the architecture introduces only a

few new concepts and places minimal requirements so that it can be leveraged across

different integration scenarios and environments.

• It defines contracts and responsibilities for various roles that provide pieces for standard

connectivity to an EIS. This enables a standard resource adapter from a EIS vendor to be

pluggable across multiple application servers.

• It enables an enterprise application programmer in a non-managed application

environment to directly use the resource adapter to access the underlying EIS. This is in

addition to a managed access to an EIS with the resource adapter deployed in the middle-

tier application server.
8 October 7, 2000

Connector Architecture Connector Architecture 1.0
3 Connector Architecture

The following chapter specifies an overview of the connector architecture.

Multiple resource adapters—that is, one resource adapter per type of EIS—are pluggable into

an application server. This capability enables application components deployed on the appli-

cation server to access the underlying EISs.

An application server and an EIS collaborate to keep all system-level mechanisms—transac-

tions, security, and connection management—transparent from the application components.

As a result, an application component provider focuses on the development of business and

presentation logic for its application components and need not get involved in the system-level

issues related to EIS integration. This leads to an easier and faster cycle for the development of

scalable, secure, and transactional enterprise applications that require connectivity with multi-

ple EISs.

FIGURE 2.0 Overview of the Connector Architecture

3.1 System Contracts
To achieve a standard system-level pluggability between application servers and EISs, the con-

nector architecture defines a standard set of system-level contracts between an application

server and EIS. The EIS side of these system-level contracts are implemented in a resource

adapter.

Enterprise Information
System

Resource Adapter

Application Component

Application Server

Container-Component
Contract

System Contracts

Client API

EIS specific interface
9 October 7, 2000

Connector Architecture Connector Architecture 1.0
A resource adapter is specific to an underlying EIS. It is a system-level software driver that is

used by an application server or an application client to connect to an EIS.

A resource adapter plugs into an application server. The resource adapter and application serv-

er collaborate to provide the underlying mechanisms—transactions, security, and connection

pooling.

A resource adapter is used within the address space of the application server. Examples of re-

source adapters are:

• A JDBC driver to connect to a relational database (as specified in the JDBC [3] specification)

• A resource adapter to connect to an ERP system

• A resource adapter to connect to a TP system

The connector architecture defines the following set of standard contracts between an applica-

tion server and EIS:

• A connection management contract that enables an application server to pool connections

to an underlying EIS, and enables application components to connect to an EIS. This leads

to a scalable application environment that can support a large number of clients requiring

access to EISs.

• A transaction management contract between the transaction manager and an EIS that

supports transactional access to EIS resource managers. This contract enables an

application server to use a transaction manager to manage transactions across multiple

resource managers. This contract also supports transactions that are managed internal to

an EIS resource manager without the necessity of involving an external transaction

manager.

• A security contract that enables a secure access to an EIS. This contract provides support

for a secure application environment that reduces security threats to the EIS and protects

valuable information resources managed by the EIS.

The Figure 2.0 does not illustrate any contracts that are internal to an application server imple-

mentation. The specific mechanisms and contracts within an application server are outside the

scope of the connector architecture specification. This specification focuses on the system-level

contracts between the application server and EIS.

In the Figure 2.0, the application server and resource adapter are shown as separate entities.

This is done to illustrate that there is a logical separation of the respective roles and responsi-

bilities defined for the support of the system level contracts. However, this separation does not

imply a physical separation, in terms of an application server and a resource adapter running

in separate processes.

3.2 Client API
The client API used by application component for EIS access may be defined in terms of:

• The standard Common Client Interface (CCI) as specified in the chapter 9.

• A client API specific to the type of a resource adapter and its underlying EIS. Example

of such EIS specific client APIs is JDBC for relational databases.

The Common Client Interface (CCI) defines a common client API for accessing EISs. The CCI

is targeted towards Enterprise Application Integration (EAI) and enterprise tools vendors.
10 October 7, 2000

Connector Architecture Connector Architecture 1.0
3.3 Requirements
The connector architecture requires that the connector architecture-compliant resource adapter

and the application server support the system contracts. Detailed requirements for each system

contract are specified in the later chapters.

The connector architecture recommends (though it does not mandate) that a resource adapter

support CCI as the client API. The recommendation enables the connector architecture to pro-

vide a solution for the m x n integration problem for application development tools and EAI

vendors.

The connector architecture allows a resource adapter with an EIS-specific client API to support

system contracts and to be capable of standard connector architecture-based pluggability into

an application server.

3.4 Non-managed Environment
The connector architecture supports access to EISs from non-managed application clients; for

example, Java applications and applets.

In a non-managed two-tier application environment, an application client directly uses a re-

source adapter library. A resource adapter, in this case, exposes its low-level transactions and

security APIs to its clients. An application client has to take responsibility for managing secu-

rity and transactions (and rely on connection pooling if done by the resource adapter internal-

ly) by using the low-level APIs exposed by the resource adapter. This model is similar to the

way a two-tier JDBC application client accesses a database system in a non-managed environ-

ment.
11 October 7, 2000

Roles and Scenarios Connector Architecture 1.0
4 Roles and Scenarios

This chapter describes a set of roles specific to the connector architecture. The goal of this chap-

ter is to specify contracts that ensure that the end product of each role is compatible with the

input product of the other role. Later chapters specify a detailed set of responsibilities for each

role relative to the system-level contracts.

4.1 Roles
The following section describes roles and responsibilities specific to the connector architecture.

4.1.1 Resource Adapter Provider

The resource adapter provider is an expert in the technology related to an EIS and is responsi-

ble for providing a resource adapter for an EIS. Since this role is highly EIS specific, an EIS ven-

dor typically provides the resource adapter for its system.

A third party vendor (who is not an EIS vendor) may also provide an EIS resource adapter and

its associated set of application development tools. Such a provider typically specializes in

writing resource adapters and related tools for a large number of EISs.

4.1.2 Application Server Vendor

The application server vendor provides an implementation of a J2EE-compliant application

server that provides support for component based enterprise applications. A typical applica-

tion server vendor is an OS vendor, middleware vendor, or database vendor. The role of an ap-

plication server vendor is typically the same as that of a container provider.

The J2EE platform specification [8] specifies requirements for a J2EE platform provider.

4.1.3 Container Provider

The container provider is responsible for providing a container implementation for a specific

type of application component. For example, the container provider may provide a container

for EJB components. Each type of application component—EJB, servlet, JSP, applet—has its

own set of responsibilities for its container provider. The respective specifications specify these

responsibilities.

A container implementation typically provides the following functionality:

• It provides deployed application components with transaction and security management,

distribution of clients, scalable management of resources, and other services that are

generally required as part of a managed server platform.

• It provides application components with connectivity to an EIS by transparently managing

security, resources, and transactions using the system-level contracts with the EIS-specific

resource adapter.

• It insulates application components from the specifics of the underlying system-level

mechanisms by supporting a simple, standard contract with the application component.

Refer to Enterprise JavaBeans specification [1] for more details on the EJB component

contract.
12 October 7, 2000

Roles and Scenarios Connector Architecture 1.0
The expertise of the container provider is system-level programming, with its focus on the de-

velopment of a scalable, secure, and transaction-enabled container.

The container provider is also responsible for providing deployment tools necessary for the de-

ployment of application components and resource adapters. It is also required to provide runt-

ime support for the deployed application components.

The container provider typically provides tools that allow the system administrator to monitor

and manage a container and application components during runtime.

4.1.4 Application Component Provider

In the context of the connector architecture, the application component provider produces an

application component that accesses one or more EISs to provide its application functionality.

The application component provider is an application domain expert. In the case of application

components targeted towards integration with multiple EISs, various business tasks and enti-

ties are implemented based on access to EIS data and functions.

The application component provider typically programs against easy-to-use Java abstractions

produced by application development tools. These Java abstractions are based on the Common

Client interface (CCI).

The application component provider is not required to be an expert at system level program-

ming. The application component provider does not program transactions, security, concur-

rency, distribution, but relies on a container to provide these services transparently.

The application component provider is responsible for specifying structural information for an

application component and its external dependencies. This information includes, for example,

the name and type of the connection factories and security information.

The output of an application component provider is a JAR file that contains the application

components and any additional Java classes required for connectivity to EISs.

4.1.5 Enterprise Tools Vendors

The application component provider relies on tools to simplify application development and

EIS integration. Since programming client access to EIS data and functions is a complex appli-

cation development task, an application development tool reduces the effort and complexity

involved in this task.

Enterprise tools serve different steps in the application development process, as follows:

• Data and function mining tool—enables application component providers to look at the

scope and structure of data and functions existing in an EIS.

• Analysis and design tool—enables application component providers to design an

application in terms of EIS data and functions.

• Code generation tool—generates Java classes for accessing EIS data and functions. A

mapping tool that bridges across two different programming models (object to relational

or vice-versa) falls into this category of tools.

• Application composition tool—enables application component providers to compose

application components from Java classes generated by a code generation tool. This type

of tool typically uses the JavaBeans component model to enhance the ease of programming

and composition.

• Deployment tool—used by application component providers and deployers to set

transaction, security, and other deployment time requirements.

A number of these tools may be integrated together to form an end-to-end application devel-

opment environment.

In addition, various tools and middleware vendors offer EAI frameworks that simplify integra-

tion across heterogeneous EISs.
13 October 7, 2000

Roles and Scenarios Connector Architecture 1.0
4.1.6 Application Assembler

The application assembler combines various application components into a larger set of de-

ployable units. The input of the application assembler is one or more JAR files produced by an

application component provider and the output is one or more JAR files with a deployment de-

scriptor.

The application assembler is typically a domain expert who assembles application components

to produce an enterprise application. To achieve this goal, the application assembler takes ap-

plication components, possibly from multiple application component providers, and assem-

bles these components.

4.1.7 Deployer

The deployer takes one or more deployable units of application components, produced by the

application assembler or component provider, and deploys the application components in a

target operational environment. An operational environment is comprised of an application

server and multiple connected EISs.

The deployer is responsible for resolving all external dependencies declared by the application

component provider. For example, the deployer ensures that all connection factories used by

the application components are present in an operational environment. To perform its role, the

deployer typically uses the application server-provided deployment tools.

The deployer is also responsible for the deployment of resource adapters. Since an operational

environment may include multiple EISs, the role of the deployer is more intensive and complex

than that in a non-EIS scenario. The deployer has to understand security, transaction, and con-

nection management- related aspects of multiple EISs that are configured in an operational en-

vironment.

4.1.8 System Administrator

The system administrator is responsible for the configuration and administration of a complete

enterprise infrastructure that includes multiple containers and EISs.

In an operational environment that has multiple EISs, the deployer should manage the opera-

tional environment by working closely with the system administrators of respective EISs. This

enables the deployer to resolve deployment issues while deploying application components

and resource adapters in a target operational environment.

This chapter served as an introduction to the roles involved in the connector architecture. The

later chapters specify responsibilities for each role in more detail.
14 October 7, 2000

Roles and Scenarios Connector Architecture 1.0
4.2 Scenario: Integrated Purchase Order system
This section describes a scenario that illustrates the use of the connector architecture. The fol-

lowing description is kept at a high level. Specific scenarios related to transaction management,

security, and connection management are described in subsequent chapters.

The following diagram shows the different pieces that comprise this illustrative scenario:

FIGURE 3.0 Illustration of an scenario based on the connector architecture

ERP Software Inc. is an enterprise system vendor that provides an enterprise resource planning

(ERP) system. ERP Software wants to integrate its ERP system with various application servers.

It achieves this goal by providing a standard resource adapter for its ERP system. The resource

adapter for ERP system supports the standard transaction, connection management and secu-

rity contracts. The resource adapter also supports the Common Client Interface (CCI) as its cli-

ent API.

TPSoft Inc. is another enterprise system vendor that provides a transaction processing (TP) sys-

tem. TPSoft has also developed a standard resource adapter for its TP system. The resource

adapter library supports CCI as part of its implementation.

AppServer Inc. is a system vendor that has an application server product which supports the

development and deployment of component-based enterprise applications. This application

Resource Adapter

PurchaseOrder EJB

Client Component

Application Server

Container-Component
Contract

System Contracts

Common Client Interface

EIS specific interface

ERP System

Resource Adapter

TP System

System Contracts
15 October 7, 2000

Roles and Scenarios Connector Architecture 1.0
server product has an EJB container that provides deployment and runtime support for EJB

components. The application server supports the system-level contracts that enable a resource

adapter, which also supports these contracts, to plug into the application server and provide

connectivity to the underlying EIS. The EJB container insulates EJB components from the trans-

action, security, and connection management mechanisms required for connecting to the EIS.

Manufacturer Corp. is a big manufacturing firm that uses a purchase order processing system

based on the ERP system for its business processes. Recently, Manufacturer has acquired a firm

that uses TPSoft’s TP system for its purchase order processing. Manufacturer aims to integrate

these two systems together into a single integrated purchase order system. It wants a scalable,

multi-user secure, transaction-enabled integrated purchase order system that is not tied to a

specific computing platform. Manufacturer plans to deploy the middle-tier of this system on

the application server from AppServer Inc.

The MIS department of Manufacturer develops a PurchaseOrder EJB that provides an integrat-

ed view of the two underlying purchase order systems. While developing PurchaseOrder EJB,

the bean provider does not program the transactions, security, or connection management

mechanisms required for connectivity to the ERP and TP systems; it relies on the EJB container

and application server to provide these services.

The bean provider uses an application programming model based on the CCI to access the

business objects and function modules for purchase order processing in the ERP system. The

bean provider uses a similar application programming model based on the CCI to access the

purchase order processing programs in the TP system.

The MIS department of Manufacturer assembles an integrated web-based purchase order ap-

plication using PurchaseOrder EJB with other types of application components, such as JSPs

and servlets.

The MIS department installs and configures the application server, ERP, and TP system as part

of its operational environment. It then deploys the integrated purchase order application on

this operational environment. As part of the deployment, the MIS department configures the

operational environment based on the deployment requirements for the various application

components that have been assembled into the integrated enterprise application.

After deploying and successfully testing the integrated purchase order system, the MIS depart-

ment makes the system available to other departments for use.

4.3 Scenario: Business-to-Business (B2B)
This scenario illustrates the use of the connector architecture in a B2B e-commerce scenario.

Wombat Corp. is a manufacturing firm that aims to adopt an e-business strategy. Wombat has

huge existing investments in its EIS systems. The EISs includes ERP system and mainframe

transaction processing systems.

Wombat needs to drive business-to-business interactions with its multiple supplier vendors. It

wants to leverage its existing EIS investment while adopting the new e-business architecture.

Wombat buys a J2EE based server (called B2B server) from B2B, Inc. The B2B server supports

ability to drive B2B interactions with multiple buyers/suppliers. The B2B interactions are driv-

en using XML over HTTP/s.

The connector architecture enables Wombat to integrate its existing EISs with the B2B server.

Wombat buys off-the-shelf resource adapters for its existing set of EISs. It then integrates its

B2B server and applications (deployed on the B2B server) with its EISs using these resource

adapters.
16 October 7, 2000

Roles and Scenarios Connector Architecture 1.0
FIGURE 4.0 Connector Architecture in B2B scenario

The applications deployed on the B2B server extract data from the underlying EISs. The extract-

ed data may be directly in an XML format or can be converted by the applications to the XML

format. The loosely-coupled B2B interactions with suppliers are then driven by exchanging

XML data over HTTP/s protocol.

B2B Server

Web clients

Java-based
Application
clients

EISs
and legacy
Applications

Firm: Wombat Corp

Supplier A

XML over HTTP/s

Connector Architecture based EIS integration

Supplier B
Supplier C

based on
J2EE
17 October 7, 2000

Connection Management Connector Architecture 1.0
5 Connection Management

This chapter specifies the connection management contract between an application server and

a resource adapter. It introduces the concepts and mechanisms relevant to this contract, and de-

lineates the responsibilities of the roles of the resource adapter provider and application server

vendor, in terms of their system-level support for the connection management contract. To

complete the description of the connection management contract, this chapter also refers to the

responsibilities of the application component provider and deployer. The chapter includes sce-

narios to illustrate the connection management contract.

5.1 Overview
An application component uses a connection factory to access a connection instance, which the

component then uses to connect to the underlying EIS. A resource adapter acts as a factory of

connections. Examples of connections include database connections, JMS (Java Message Ser-

vice) connections, and SAP R/3 connections. Note that the support for pluggability of JMS pro-

viders into an application server will be added in the future versions of the specification.

Connection pooling manages connections that are expensive to create and destroy. Connection

pooling of expensive connections leads to better scalability and performance in an operational

environment. The connection management contract provides support for connection pooling.

5.2 Goals
The connection management contract has been designed with the following goals:

• To provide a consistent application programming model for connection acquisition for

both managed and non-managed (two-tier) applications.

• To enable a resource adapter to provide a connection factory and connection interfaces

based on the CCI specific to the type of resource adapter and EIS. This enables JDBC

drivers to be aligned with the connector architecture with minimum impact on the existing

JDBC APIs.

• To provide a generic mechanism by which an application server can provide different

quality of services (QoS)—transactions, security, advanced pooling, error tracing/

logging—for its configured set of resource adapters.

• To provide support for connection pooling.

The goal of the connector architecture is to enable efficient, scalable, and extensible connection

pooling mechanisms, not to specify a mechanism or implementation for connection pooling.

The goal is accomplished by defining a standard architected contract for connection manage-

ment with the providers of connections—that is, resource adapters. An application server

should use the connection management contract to implement a connection pooling mecha-

nism in its own implementation-specific way.
18 October 7, 2000

Connection Management Connector Architecture 1.0
5.3 Architecture: Connection Management
The connection management contract specifies an architected contract between an application

server and a resource adapter. This connection management contract is shown with bold flow

lines in the diagram Figure 5.0 on page 20. It includes the set of interfaces shown in the archi-

tecture diagram.

Overview: Managed Application Scenario
The application server uses the deployment descriptor mechanism (specified in the section

10.6) to configure the resource adapter in the operational environment.

The resource adapter provides connection and connection factory interfaces. A connection fac-

tory acts as a factory for EIS connections. For example, javax.sql.DataSource and ja-
va.sql.Connection interfaces are JDBC-based interfaces for connectivity to a relational

database.

The CCI (specified in chapter 9) defines javax.resource.cci.ConnectionFactory and

javax.resource.cci.Connection as interfaces for a connection factory and a connection re-

spectively.

The application component does a lookup of a connection factory in the JNDI name space. It

uses the connection factory to get a connection to the underlying EIS. The connection factory

instance delegates the connection creation request to the ConnectionManager instance.

The ConnectionManager enables the application server to provide different quality of servic-

es in the managed application scenario. These quality of services include transaction manage-

ment, security, error logging and tracing, and connection pool management. The application

server provides these services in its own implementation-specific way. The connector architec-

ture does not specify how the application server implements these services.

The ConnectionManager instance, on receiving a connection creation request from the con-

nection factory, does a lookup in the connection pool provided by the application server. If

there is no connection in the pool that can satisfy the connection request, the application server

uses the ManagedConnectionFactory interface (implemented by the resource adapter) to cre-

ate a new physical connection to the underlying EIS. If the application server finds a matching

connection in the pool, then it uses the matching ManagedConnection instance to satisfy the

connection request.

If a new ManagedConnection instance is created, the application server adds the new Man-
agedConnection instance to the connection pool.

The application server registers a ConnectionEventListener with the ManagedConnection
instance. This listener enables application server to get event notifications related to the state

of the ManagedConnection instance. The application server uses these notifications to manage

connection pooling, manage transactions, cleanup connections, and handle any error condi-

tions.

The application server uses the ManagedConnection instance to get a connection instance that

acts as an application-level handle to the underlying physical connection. An instance of type

javax.resource.cci.Connection is an example of such a connection handle. An application

component uses the connection handle to access EIS resources.

The resource adapter implements the XAResource interface to provide support for transaction

management. The resource adapter also implements the LocalTransaction interface so that

the application server can manage transactions internal to a resource manager. The chapter on

transaction management describes this transaction management contract between the applica-

tion server (and its transaction manager) and the resource adapter (and its underlying resource

manager).
19 October 7, 2000

Connection Management Connector Architecture 1.0
FIGURE 5.0 Architecture Diagram: Managed Application scenario

ConnectionManager ConnectionFactory Connection

Transaction
Manager

ManagedConnectionFactory

ManagedConnection

ConnectionEventListener

XAResource

Pool
Manager

SecurityService
Manager

LocalTransaction

Resource AdapterApplication Server

Application Component

Enterprise Information System (EIS)

Architected contract

Implementation specific
20 October 7, 2000

Connection Management Connector Architecture 1.0
5.4 Application Programming Model
The application programming model for getting an EIS connection is similar across both man-

aged (application server based) and non-managed scenarios. The following sections explain a

typical application programming model scenario.

5.4.1 Managed Application scenario

The following steps are involved in a managed scenario:

• The application assembler or component provider specifies connection factory

requirements for an application component using a deployment descriptor mechanism.

For example, a bean provider specifies the following elements in the deployment

descriptor for a connection factory reference. Note that the connection factory reference is

part of the deployment descriptor for EJB components and not the resource adapter. Refer

EJB specification [1] for details on the deployment mechanism for EJB components:

• res-ref-name : java:comp/env/eis/MyEIS

• res-type : javax.resource.cci.ConnectionFactory

• res-auth : Application or Container

• The deployer, using a resource adapter deployment tool, sets the configuration

information (example: server name, port number) for the resource adapter. The

application server uses a configured resource adapter to create physical connections to the

underlying EIS. Refer chapter 10 for details on packaging and deployment of a resource

adapter.

• The application component looks up a connection factory instance in the component’s

environment using the JNDI interface.

// obtain the initial JNDI Naming context
Context initctx = new InitialContext();

// perform JNDI lookup to obtain the connection factory
javax.resource.cci.ConnectionFactory cxf =

(javax.resource.cci.ConnectionFactory)
initctx.lookup(“java:comp/env/eis/MyEIS”);

The JNDI name passed in the method NamingContext.lookup is the same as that specified

in res-ref-name element of the deployment descriptor. The JNDI lookup results in a

connection factory instance of type java.resource.cci.ConnectionFactory as

specified in the res-type element.

• The application component invokes the getConnection method on the connection factory

to get an EIS connection. The returned connection instance represents an application-level

handle to an underlying physical connection.

An application component obtains multiple connections by calling the method

getConnection on the connection factory multiple times.

javax.resource.cci.Connection cx = cxf.getConnection();

• The application component uses the returned connection to access the underlying EIS. The

chapter on CCI specifies in detail the application programming model for EIS access.

• After the component finishes with the connection, it closes the connection using the close
method on the Connection interface.
21 October 7, 2000

Connection Management Connector Architecture 1.0
cx.close();

• If an application component fails to close an allocated connection after its use, that

connection is considered an unused connection. The application server manages the

cleanup of unused connections. When a container terminates a component instance, the

container cleans up all connections used by that component instance. Refer section 5.5.4

and scenario 5.8.3 for details on the cleanup of connections.

5.4.2 Non-managed Application scenario

In a non-managed application scenario, the application developer follows a similar program-

ming model to the managed application scenario. The non-managed case involves looking up

of a connection factory instance, getting an EIS connection, using the connection for EIS access,

and finally closing the connection.

5.5 Interface/Class specification
This section specifies the Java classes/interfaces defined as part of the connection management

contract. For a complete specification of these classes/interfaces, refer to the Javadocs distrib-

uted with this document.

Figure 6.0 shows the class hierarchy for the connection management contract. The diagram also

illustrates the responsibilities for the definition of an interface and its implementation:
22 October 7, 2000

Connection Management Connector Architecture 1.0
FIGURE 6.0 Class Diagram: Connection Management Architecture

<interface>
ConnectionManager

ConnectionFactory
<interface>

ManagedConnectionMetaData
<interface>

ManagedConnectionFactory
<interface>

ManagedConnectionImpl

ManagedConnectionFactoryImpl

XAResource
<interface>

XAResourceImpl

ConnectionManagerImpl

ConnectionEventListener
<interface>

<interface>

package: Resource Adapter Specific

package: javax.resource.spi

DefaultConnectionManager

ConnectionEventListenerImpl

package:Application Server

package: javax.transaction.xa

specific

Connection

ConnectionImpl

ConnectionFactoryImpl

LocalTransactionImpl

LocalTransaction
<interface>

0-1

0-1

0-1

ManagedConnection
<interface>

package: javax.resource.cci

0-1

implements

inherits

association or use
relationship

contains

0-1

ManagedConnection-
MetaDataImpl
23 October 7, 2000

Connection Management Connector Architecture 1.0
5.5.1 ConnectionFactory and Connection1

A connection factory provides an interface to get a connection to an EIS instance. A con-

nection provides connectivity to an underlying EIS.

One goal of the connector architecture is to support a consistent application programming

model across both CCI and EIS specific client APIs. To achieve this goal, the connector ar-

chitecture recommends a design pattern (specified as an interface template) for both con-

nection factory and connection interfaces.

The CCI connection factory and connection interfaces (defined in the package javax.re-

source.cci) are based on the above design pattern. Refer 9.5 for details on the CCI con-

nection factory and connection interfaces. The following code extract shows the CCI

interfaces:

public interface javax.resource.cci.ConnectionFactory
extends java.io.Serializable, javax.resource.Referenceable {

public javax.resource.cci.Connection getConnection()
throws javax.resource.ResourceException;

...
}

public interface javax.resource.cci.Connection {
public void close() throws javax.resource.ResourceException;
...

}

An example of a non-CCI interface is a resource adapter that uses the package com.myeis for

its EIS specific interfaces, as follows:

public interface com.myeis.ConnectionFactory
extends java.io.Serializable, javax.resource.Referenceable {

public com.myeis.Connection getConnection()
throws com.myeis.ResourceException;

...
}

public interface com.myeis.Connection {
public void close() throws com.myeis.ResourceException;
...

}

The JDBC interfaces—javax.sql.DataSource , java.sql.Connection —are examples of

non-CCI connection factory and connection interfaces.

Note that the methods defined on a non-CCI interface are not required to throw a Re-

sourceException . The exception can be specific to a resource adapter, for example: ja-

va.sql.SQLException for JDBC [3] interfaces.

1.In this document, the termPhysical Connection refers to aManagedConnection instance, while the
term Connection Handle refers to an application-level connection handle. When the distinction be-
tweenPhysical Connection andConnection Handle is not important, the termConnection is
used to refer to an EIS connection.
24 October 7, 2000

Connection Management Connector Architecture 1.0
The following are additional guidelines for the recommended interface template:

• A resource adapter is allowed to add additional getConnection methods to its definition

of a connection factory interface. These additional methods are specific to a resource

adapter and its EIS. For example, CCI defines a variant of getConnection method that

takes java.resource.cci.ConnectionSpec as a parameter.

• A resource adapter should only introduce additional getConnection methods if it

requires additional flexibility (beyond that offered by the default getConnection method)

in the connection request invocations.

• A connection interface is required to provide a method to close the connection. The

behavior of such an application-level connection close is described in the OID Figure 11.0

on page 43.

The above design pattern leads to a consistent application programming model for con-

nection creation and connection closing.

Implementation
A resource adapter is required to provide implementations for both connection factory and

connection interfaces.

Note: In the connector architecture, a resource adapter provides an implementation of the

connection factory interface in both managed and non-managed scenarios. This differs

from the JDBC 2.0 [3] architecture.

In the JDBC 2.0 architecture, an application server provides the implementation of jav-
ax.sql.DataSource interface. Using a similar design approach for the connector architec-

ture will have required an application server to provide implementations of various

connection factory interfaces defined by different resource adapters. Since connection fac-

tory interface may be defined as specific to an EIS, the application server may find difficult

to provide implementations of connection factory interfaces without any code generation.

The connection factory implementation class delegates the getConnection method invocation

from an application component to the associated ConnectionManager instance. The Connec-
tionManager instance is associated with a connection factory instance at its instantiation time

[refer to the OID shown in Figure 40.0 on page 137].

Note that the connection factory implementation class is required to call the ConnectionMan-
ager.allocateConnection method in the same thread context in which the application com-

ponent had called the getConnection method.

The connection factory implementation class is responsible for taking connection request infor-

mation and passing it in a form required by the ConnectionManager .allocateConnection
method.

public interface javax.resource.spi.ConnectionManager
extends java.io.Serializable {

public Object allocateConnection(
ManagedConnectionFactory mcf,
ConnectionRequestInfo cxRequestInfo)

throws ResourceException;
}

public interface javax.resource.spi.ConnectionRequestInfo {
public boolean equals(Object other);
public int hashCode();

}

25 October 7, 2000

Connection Management Connector Architecture 1.0
ConnectionRequestInfo
The ConnectionRequestInfo parameter to the ConnectionManager.allocateConnection
method enables a resource adapter to pass its own request-specific data structure across the

connection request flow.

A resource adapter extends the ConnectionRequestInfo interface to support its own data

structure for the connection request.

A typical use allows a resource adapter to handle application component-specified per-connec-

tion request properties (for example, client ID and language). The application server passes

these properties to match/createManagedConnection calls on the resource adapter. These

properties remain opaque to the application server during the connection request flow.

It is important to note that the properties passed through the ConnectionRequestInfo in-

stance should be client-specific (example: user name, password, language) and not related to

the configuration of a target EIS instance (example: port number, server name).

The ManagedConnectionFactory instance is configured with properties required for the cre-

ation of a connection to a specific EIS instance. Note that a configured ManagedConnection-
Factory instance should have the complete set of properties that are needed for the creation

of the physical connections. This enables the container to manage connection request without

requiring an application component to pass any explicit connection parameters. A few config-

uration properties on ManagedConnectionFactory may have default values; the default

properties can be overidden through ConnectionRequestInfo in cases when component pro-

vides client-specific properties in the getConnection method invocation. Refer section 10.4.1

for details on the configuration of a ManagedConnectionFactory .

When the ConnectionRequestInfo reaches the match/createManagedConnection meth-

ods on the ManagedConnectionFactory instance, the resource adapter uses this additional

per-request information to do connection creation and matching.

A resource adapter is required to implement the equals and hashCode methods defined on

the ConnectionRequestInfo interface. The equality should be defined on the complete set of

properties for the ConnectionRequestInfo instance. An application server can use these

methods to structure its connection pool in an implementation specific way. Since Connec-
tionRequestInfo represents a resource adapter specific data structure, the conditions for

equality are defined and implemented by a resource adapter.

Additional Requirements
A resource adapter implementation is not required to support the mechanism for passing re-

source adapter-specific connection request information. It can choose to pass null for Connec-
tionRequestInfo in the allocateConnection invocation.

An implementation class for a connection factory interface is required to implement ja-
va.io.Serializable . This enables a connection factory instance to be stored in the JNDI nam-

ing environment. A connection factory implementation class is required to implement the

interface javax.resource.Referenceable . Note that the javax.resource.Referenceable
interface extends the javax.naming.Referenceable interface. Refer to section 10.5.3 for de-

tails on the JNDI reference mechanism.

A connection implementation class implements its methods in a resource adapter implemen-

tation-specific way. It should use javax.resource.spi.ManagedConnection instance as its

underlying physical connection.

5.5.2 ConnectionManager

The javax.resource.spi.ConnectionManager provides a hook for a resource adapter to

pass a connection request to an application server. An application server provides different

quality of services as part of its handling of the connection request.
26 October 7, 2000

Connection Management Connector Architecture 1.0
Interface
The connection management contract defines a standard interface for the ConnectionManager
as follows:

public interface javax.resource.spi.ConnectionManager
extends java.io.Serializable {

public Object allocateConnection(
ManagedConnectionFactory mcf,
ConnectionRequestInfo cxRequestInfo)

throws ResourceException;
}

The method allocateConnection is called by a resource adapter’s connection factory in-

stance so that the instance can delegate a connection request to the ConnectionManager in-

stance.

The ConnectionRequestInfo parameter represents information specific to a resource adapter

to handle the connection request.

Implementation
An application server provides the implementation of the ConnectionManager interface. This

implementation is not specific to any particular resource adapter or connection factory inter-

face.

The ConnectionManager implementation delegates to the application server so that the server

can provide quality of services (QoS)—security, connection pool management, transaction

management, and error logging/tracing.

An application server implements these services in a generic manner, independent of any re-

source adapter and EIS-specific mechanisms. The connector architecture does not specify how

an application server implements these services; the implementation is specific to each appli-

cation server.

After an application server hooks-inits services, the connection request is delegated to a Man-
agedConnectionFactory instance either for the creation of a new physical connection or for

the matching of an already existing physical connection.

An implementation class for ConnectionManager interface is required to implement the ja-
va.io.Serializable interface.
27 October 7, 2000

Connection Management Connector Architecture 1.0
FIGURE 7.0 ConnectionManager and Application Server specific services

5.5.3 ManagedConnectionFactory

A javax.resource.spi.ManagedConnectionFactory instance is a factory of both Man-
agedConnection and connection factory instances. This interface supports connection pooling

by defining methods for matching and creating connections.

Interface
The following code extract shows the interface specification for the ManagedConnectionFac-
tory .

public interface javax.resource.spi.ManagedConnectionFactory
extends java.io.Serializable {

public Object createConnectionFactory(
ConnectionManager connectionManager)

throws ResourceException;

public Object createConnectionFactory()
throws ResourceException;

public ManagedConnection createManagedConnection(
javax.security.auth.Subject subject,
ConnectionRequestInfo cxRequestInfo)

throws ResourceException;

public ManagedConnection matchManagedConnections(
java.util.Set connectionSet,

ConnectionManager ConnectionFactory

Transaction
Manager

ManagedConnectionFactoryPool
Manager

SecurityService
Manager
28 October 7, 2000

Connection Management Connector Architecture 1.0
javax.security.auth.Subject subject,
ConnectionRequestInfo cxRequestInfo)

throws ResourceException;

public boolean equals(Object other);
public int hashCode();

}

The method createConnectionFactory creates a connection factory instance. For CCI, the

connection factory instance is of the type javax.resource.cci.ConnectionFactory . The

connection factory instance is initialized with the ConnectionManager instance provided by

the application server.

When the createConnectionFactory method takes no arguments, ManagedConnection-
Factory provides a default ConnectionManager instance. This case is used in a non-managed

application scenario.

The method createManagedConnection creates a new physical connection to the underlying

EIS instance. The ManagedConnectionFactory uses the security information (passed as a

Subject instance) and an optional ConnectionRequestInfo to create this new physical con-

nection [refer to security contract in chapter 8 for more details].

A created ManagedConnection instance typically maintains internal information about the se-

curity context (under which the connection has been created) and any connection-specific pa-

rameters (for example, socket connection).

The method matchManagedConnections matches a candidate set of connections using criteria

known internally to the resource adapter. The criteria used for matching is specific to a re-

source adapter and is not specified by the connector architecture.

A ManagedConnection instance has specific internal state, in terms of its security context and

physical connection-specific state. The ManagedConnectionFactory implementation com-

pares this information for each ManagedConnection instance in the candidate set against the

information passed in through the matchManagedConnections method and the configuration

of this ManagedConnectionFactory instance. The ManagedConnectionFactory uses the re-

sults of this comparison to choose the ManagedConnection instance that can best satisfy the

current connection request.

If the resource adapter cannot find an acceptable ManagedConnection instance, it returns a

null . In this case, the application server requests the resource adapter to create a new connec-

tion instance.

Implementation
A resource adapter provides an implementation of the ManagedConnectionFactory interface.

It is required that the ManagedConnectionFactory implementation class extend the imple-

mentation of the hashCode and equals methods defined in the java.lang.Object class.

These two methods are used by an application server to structure its connection pool in an im-

plementation-specific way. The equals and hashCode method implementation should be

based on a complete set of configuration properties that makes a ManagedConnectionFactory
instance unique and specific to an EIS instance.

An implementation class for ManagedConnectionFactory interface is required to implement

the java.io.Serializable interface.

Connection Pool Implementation
The connector architecture does not specify how an application server implements connection

pooling. However, it recommends that an application server should structure its connection
29 October 7, 2000

Connection Management Connector Architecture 1.0
pool such that it uses the connection creation/matching facility in an efficient manner and does

not cause resource starvation.

The following paragraphs provide non-prescriptive guidelines for connection pool implemen-

tation by an application server.

An application server may partition its pool on a per ManagedConnectionFactory instance

(and thereby on a per EIS instance) basis. An application server may choose to guarantee (in an

implementation specific way) that it will always partition connection pools with at least per

ManagedConnectionFactory instance granularity.

The per-ManagedConnectionFactory instance pool may be further partitioned based on the

transaction or security context or any client-specific parameters (as associated with the Con-
nectionRequestInfo). When an application server calls the matching facility, it is recom-

mended that the application server narrows down the candidate set of ManagedConnection
instances to a reasonable limit and achieve matching efficiently. For example, an application

server may pass only those ManagedConnection instances to the matchManagedConnection
method that are associated with the target ManagedConnectionFactory instance (and thereby

a specific target EIS instance).

An application server may use additional parameters for its search and matching criteria used

in its connection pool management. These parameters may be EIS or application server specific.

The equals and hashCode methods defined on both ManagedConnectionFactory and Con-
nectionRequestInfo facilitate the connection pool management and structuring by an appli-

cation server.

Requirement for XA Recovery
The ManagedConnectionFactory implementation for a XA-capable resource adapter (refer

chapter 6 for more details on transactions) should support createManagedConnection meth-

od that takes a Subject and a null for the parameter ConnectionRequestInfo . This enables

the application server to get a XAResource instance using ManagedConnection.getXARe-
source and then call XAResource.recover method. Note that the application server uses this

special case only to get to the XAResource instance for the underlying resource manager.

The reason for this requirement is that application server may not have a valid Connection-
RequestInfo when it needs to get the ManagedConnection instance to initiate recovery. Refer

section 8.2.6 for additional details on the ManagedConnectionFactory.createManagedCon-
nection method.

5.5.4 ManagedConnection

A javax.resource.spi.ManagedConnection instance represents a physical connection to

an underlying EIS.

Note: The connector architecture allows one or more ManagedConnection instances to be

multiplexed over a single physical pipe to an EIS. However, for simplicity, this specification

describes a ManagedConnection instance as being mapped 1-1 to a physical connection.

The creation of a ManagedConnection instance typically results in the allocation of EIS and re-

source adapter resources (for example: memory, network socket) for each physical connection.

Since these resources can be costly and scarce, an application server pools ManagedConnec-
tion instances in a managed environment.

Connection pooling improves the scalability of an application environment. An application

server uses the ManagedConnectionFactory and ManagedConnection interfaces to imple-

ment connection pool management.

An application server also uses the transaction management-related methods (getXAResource
and getLocalTransaction) on the ManagedConnection interface to manage transactions.

These methods are discussed in more detail in the Transaction Management chapter.
30 October 7, 2000

Connection Management Connector Architecture 1.0
The ManagedConnection interface also provides methods to support error logging and tracing

in a managed environment.

Interface
The connection management contract defines the following interface for a ManagedConnec-
tion . The following code extract shows only the methods that are used for connection pool

management. The remaining methods are introduced in other parts of the specification.

public interface javax.resource.spi.ManagedConnection {
public Object getConnection(

javax.security.auth.Subject subject,
ConnectionRequestInfo cxRequestInfo)

throws ResourceException;
public void destroy() throws ResourceException;
public void cleanup() throws ResourceException;

// Methods for Connection and transaction event notifications
public void addConnectionEventListener(

ConnectionEventListener listener);
public void removeConnectionEventListener(

ConnectionEventListener listener);

public ManagedConnectionMetaData getMetaData()
throws ResourceException;

// Additional methods - specified in the other sections
...

}

The getConnection method creates a new application-level connection handle. A connection

handle is tied to an underlying physical connection represented by a ManagedConnection in-

stance. For CCI, the connection handle created by a ManagedConnection instance is of the type

javax.resource.cci.Connection . A connection handle is tied to its ManagedConnection
instance in a resource adapter implementation-specific way.

A ManagedConnection instance may use the getConnection method to change the state of

the physical connection based on the Subject and ConnectionRequestInfo arguments. For

example, a resource adapter can re-authenticate a physical connection to the underlying EIS

when the application server calls the getConnection method. Section 8.2.7 specifies re-au-

thentication requirements in more detail.

The method addConnectionEventListener allows a connection event listener to register

with a ManagedConnection instance. The ManagedConnection instance notifies connection

close/error and local transaction-related events to its registered set of listeners.

The removeConnectionEventListener method removes a registered Connection-
EventListener instance from a ManagedConnection instance.

The method getMetaData returns the metadata information (represented by the ManagedCon-
nectionMetaData interface) for a ManagedConnection and the connected EIS instance.

Multiple Connection Handles
An application server can call getConnection multiple times on a ManagedConnection in-

stance. A call to the method ManagedConnection.getConnection does not invalidate any

previously created connection handles. Multiple connection handles can exist concurrently for

a single ManagedConnection instance. This design supports a connection sharing mechanism.

Refer to 6.9 for more details.
31 October 7, 2000

Connection Management Connector Architecture 1.0
Because multiple connection handles to a single ManagedConnection can exist concurrently, a

resource adapter implementation can either:

• Ensure that there is at most one connection handle associated actively with a

ManagedConnection instance. The active connection handle is the only connection using

the ManagedConnection instance until an application-level close is called on this

connection handle. For example, a ManagedConnection.getConnection method

implementation associates a newly created connection handle as the active connection

handle. Any operations on the ManagedConnection from any previously created

connection handles should result in an application level exception. An example

application level exception extends the javax.resource.ResourceException interface

and is specific to a resource adapter. A scenario illustrating this implementation is shown

in the Scenarios: Connection Sharing on page 72.

• Provide thread-safe semantics for a ManagedConnection implementation to support

concurrent access to a ManagedConnection instance from multiple connection handles.

Cleanup of ManagedConnection
A resource adapter typically allocates system resources (outside a JVM) for a ManagedConnec-
tion instance. Additionally, a ManagedConnection instance can have state specific to a client,

such as security context and data/function access structures (query result set is an example).

The method ManagedConnection.cleanup initiates a cleanup of any client-specific state

maintained by a ManagedConnection instance. The cleanup should invalidate all connection

handles created using this ManagedConnection instance. Any attempt by an application com-

ponent to use associated connection handle after cleanup of the underlying ManagedConnec-
tion should result in an exception.

The container always drives the cleanup of a ManagedConnection instance. The container

keeps track of created connection handles in an implementation specific mechanism. It invokes

ManagedConnection.cleanup when it has to invalidate all connection handles (associated

with this ManagedConnection instance) and put the ManagedConnection instance back in to

the pool. This may be called after the end of a connection sharing scope (refer section 6.11) or

when the last associated connection handle is closed for a ManagedConnection instance.

The invocation of the ManagedConnection.cleanup method on an already cleaned-up con-

nection should not throw an exception.

The cleanup of a ManagedConnection instance resets its client-specific state and prepares the

connection to be put back into a connection pool. The cleanup method should not cause the

resource adapter to close the physical pipe and reclaim system resources associated with the

physical connection.

An application server should explicitly call ManagedConnection.destroy to destroy a phys-

ical connection. An application server should destroy a physical connection to manage the size

of its connection pool and to reclaim system resources.

A resource adapter should destroy all allocated system resources for this ManagedConnection
instance when the method destroy is called.

Implementation
A resource adapter is required to provide an implementation of the ManagedConnection in-

terface.

5.5.5 ManagedConnectionMetaData

The method ManagedConnection.getMetaData returns a javax.resource.spi.Managed-
ConnectionMetaData instance. The ManagedConnectionMetaData provides information

about a ManagedConnection and the connected EIS instance. This information is only avail-

able to the caller of this method if a valid physical connection exists for an EIS instance.
32 October 7, 2000

Connection Management Connector Architecture 1.0
Interface
The ManagedConnectionMetaData interface provides the following information about an EIS

instance:

• Product name of the EIS instance

• Product version of the EIS instance

• Maximum number of concurrent connections from different processes that an EIS instance

can support

• User name for this connection, as know to the EIS instance

The method getUserName returns the user name known to the underlying EIS instance for an

active connection. The name corresponds to the resource principal under whose security con-

text the connection to the EIS instance has been established.

Implementation
A resource adapter provides an implementation of the ManagedConnectionMetaData inter-

face. An instance of this implementation class should be returned from the ManagedConnec-
tion.getMetaData method.

5.5.6 ConnectionEventListener

The connector architecture provides an event callback mechanism that enables an applica-

tion server to receive notifications from a ManagedConnection instance. An application

server uses these event notifications to manage its connection pool, to clean up invalid or

terminated connections, and to manage local transactions. The transaction management

chapter discusses local transaction-related event notifications in more detail.

An application server implements the javax.resource.spi.ConnectionEventListener

interface. It uses the ManagedConnection.addConnectionEventListener method to reg-

ister a connection listener with a ManagedConnection instance.

Interface
The following code extract specifies the ConnectionEventListener interface:

public interface javax.resource.spi.ConnectionEventListener {
public void connectionClosed(ConnectionEvent event);
public void connectionErrorOccurred(ConnectionEvent event);

// Local Transaction Management related events
public void localTransactionStarted(ConnectionEvent event);
public void localTransactionCommitted(ConnectionEvent event);
public void localTransactionRolledback(ConnectionEvent event);

}

A ManagedConnection instance calls the ConnectionEventListener.connectionClosed

method to notify its registered set of listeners when an application component closes a con-

nection handle. The application server uses this connection close event to make a decision on

whether or not to put the ManagedConnection instance back into the connection pool.

The ManagedConnection instance calls the ConnectionEventListener.connectionErro-
rOccurred method to notify its registered listeners of the occurrence of a physical connection-

related error. The event notification happens just before a resource adapter throws an excep-

tion to the application component using the connection handle.

The connectionErrorOccurred method indicates that the associated ManagedConnection
instance is now invalid and unusable. The application server handles the connection error

event notification by initiating application server-specific cleanup (for example, removing
33 October 7, 2000

Connection Management Connector Architecture 1.0
ManagedConnection instance from the connection pool) and then calling ManagedConnec-
tion.destroy method to destroy the physical connection.

A ManagedConnection instance also notifies its registered listeners for transaction-related

events by calling the following methods—localTransactionStarted , localTransac-
tionCommitted , and localTransactionRolledback. An application server uses these no-

tifications to manage local transactions. See section 6.7 for details on the local transaction

management.

5.5.7 ConnectionEvent

A javax.resource.spi.ConnectionEvent class provides information about the source of a

connection-related event. A ConnectionEvent instance contains the following information:

• Type of the connection event

• ManagedConnection instance that has generated the connection event. A

ManagedConnection instance is returned from the ConnectionEvent.getSource
method.

• Connection handle associated with the ManagedConnection instance; required for the

CONNECTION_CLOSED event and optional for the other event types.

• Optionally, an exception indicating a connection related error. Refer 13.2 for details on the

system exception. Note that exception is used for CONNECTION_ERROR_OCCURRED.

This class defines the following types of event notifications:

• CONNECTION_CLOSED

• LOCAL_TRANSACTION_STARTED

• LOCAL_TRANSACTION_COMMITTED

• LOCAL_TRANSACTION_ROLLEDBACK

• CONNECTION_ERROR_OCCURRED

5.6 Error Logging and Tracing
The connector architecture provides basic support for error logging and tracing in both man-

aged and non-managed environments. This support enables an application server to detect er-

rors related to a resource adapter and its EIS and to use error information for debugging.

ManagedConnectionFactory
The javax.resource.spi.ManagedConnectionFactory interface defines the following

methods for error logging and tracing:

public interface javax.resource.spi.ManagedConnectionFactory
extends java.io.Serializable {

public void setLogWriter(java.io.PrintWriter out)
throws ResourceException;

public java.io.PrintWriter getLogWriter()
throws ResourceException;

...
}

The log writer is a character output stream to which all logging and tracing messages for a Man-
agedConnectionFactory instance are printed.

A character output stream can be registered with a ManagedConnectionFactory instance us-

ing the setLogWriter method. A ManagedConnectionFactory implementation uses this

character output stream to output error log and trace information.
34 October 7, 2000

Connection Management Connector Architecture 1.0
An application server manages the association of a log writer with a ManagedConnectionFac-
tory . When a ManagedConnectionFactory instance is created, the log writer is initially null
and logging is disabled. Associating a log writer with a ManagedConnectionFactory instance

enables logging and tracing for the ManagedConnectionFactory instance.

An application server administrator primarily uses the error and trace information printed on

a log writer by a ManagedConnectionFactory instance. This information is typically system-

level in nature (example: information related to connection pooling and transactions) rather

than of direct interest to application developers.

ManagedConnection
The javax.resource.spi.ManagedConnection interface defines the following methods to

support error logging and tracing specific to a physical connection.

public interface javax.resource.spi.ManagedConnection {
public void setLogWriter(java.io.PrintWriter out)

throws ResourceException;
public java.io.PrintWriter getLogWriter()

throws ResourceException;
...

}

A newly created ManagedConnection instance gets the default log writer from the Managed-
ConnectionFactory instance that creates the ManagedConnection instance. The default log

writer can be overridden by an application server using the ManagedConnection.setLog-
Writer method. The setting of the log writer on a ManagedConnection enables an application

server to manage error logging and tracing specific to the physical connection represented by

a ManagedConnection instance.

An application server can optionally choose to disassociate the log writer from a ManagedCon-
nection instance (by using setLogWriter passing null) when this connection instance is put

back into the connection pool.

5.7 Object Diagram
Figure 8.0 shows the object diagram for the connection management architecture. It shows in-

vocations across the various object instances that correspond to the architected interfaces in the

connection management contract, as opposed to those instances specific to implementations of

the application server and the resource adapter.

To keep the diagram simple, it does not show the transaction management contract-related in-

terfaces (XAResource and LocalTransaction) and invocations.
35 October 7, 2000

Connection Management Connector Architecture 1.0
FIGURE 8.0 Object Diagram: Connection Management architecture

ConnectionManager ConnectionFactory Connection

Transaction
Manager

ManagedConnectionFactory

ManagedConnection

ConnectionEventListener

Pool
Manager

SecurityService
Manager

Application

Enterprise Information System (EIS)

 Component

allocateConnection

create new instance

create new instance

Connection Event notifications

application server
specific

createManagedConnection-
matchManagedConnections

add/removeConnectionEventListener

getConnection

ResourceAdapter
specific

EIS specific

Application Server Resource Adapter

createConnectionFactory

create new instance

Architected interface

Instantiation

Implementation specific

application server
specific

create
new instance
36 October 7, 2000

Connection Management Connector Architecture 1.0
5.8 Illustrative Scenarios
The following section uses sequence diagrams to illustrate various interactions between the ob-

ject instances involved in the connection management contract.

Some sequence diagrams include a box labeled “Application Server”. This box refers to various

modules and classes internal to an application server. These modules and classes communicate

through contracts that are application server implementation specific.

In this section, the CCI interfaces—javax.resource.cci.ConnectionFactory and jav-
ax.resource.cci.Connection —represent connection factory and connection interfaces re-

spectively.

The description of these sequence diagrams does not include transaction-related details. These

are covered in the Transaction Management chapter.

5.8.1 Scenario: Connection Pool Management

The following object interactions are involved in the scenario shown in Figure 9.0 on page 39:

• The application component calls the getConnection method on the javax.resource.-
cci.ConnectionFactory instance (returned from the JNDI lookup) to get a connection to

the underlying EIS instance. Refer to section 10.5 for details on the JNDI configuration and

lookup.

• The ConnectionFactory instance initially handles the connection request from the

application component in a resource adapter-specific way. It then delegates the connection

request to the associated ConnectionManager instance. The ConnectionManager
instance has been associated with the ConnectionFactory instance when the

ConnectionFactory was instantiated.

The ConnectionFactory instance receives all connection request information passed

through the getConnection method and, in turn, passes it in a form required by the

method ConnectionManager .allocateConnection . The ConnectionRequestInfo
parameter to the allocateConnection method enables a ConnectionFactory
implementation class to pass client-specific connection request information. This

information is opaque to an application server and is used subsequently by a resource

adapter to do connection matching and creation.

• The ConnectionManager instance (provided by the application server) handles the

allocateConnection request by interacting with the application server-specific

connection pool manager. The interaction between a ConnectionManager instance and

pool manager is internal and specific to an application server.

• The application server finds a candidate set of ManagedConnection instances from its

connection pool. The candidate set includes all ManagedConnection instances that the

application server considers suitable for handling the current connection allocation

request. The application server finds the candidate set using its own implementation-

specific structuring and lookup criteria for the connection pool. Refer section 5.5.3 for

guidelines of connection pool implementation by an application.

• If the application server finds no matching ManagedConnection instance that can best

handle this connection allocation request, or if the candidate set is empty, the application

server calls the ManagedConnectionFactory.createManagedConnection method to

create a new physical connection to the underlying EIS instance. The application server

passes necessary security information (as JAAS Subject) as part of this method invocation.

For details on the security contract, refer to the Security Management chapter. It can also

pass the ConnectionRequestInfo information to the resource adapter. The connection

request information has been associated with the connection allocation request by the

resource adapter and is used during connection creation.
37 October 7, 2000

Connection Management Connector Architecture 1.0
• The ManagedConnectionFactory instance creates a new physical connection to the

underlying EIS to handle the createManagedConnection method. This new physical

connection is represented by a ManagedConnection instance. The

ManagedConnectionFactory uses the security information (passed as a Subject
instance), ConnectionRequestInfo , and its default set of configured properties (port

number, server name) to create a new ManagedConnection instance. Refer to the security

contract for more details on the createManagedConnection method.

• The ManagedConnectionFactory instance initializes the created ManagedConnection
instance and returns it to the application server.

• The application server registers a ConnectionEventListener instance with the

ManagedConnection instance, enabling it to receive notifications for events on this

connection. The application server uses these event notifications to manage connection

pooling and transactions.

• The ManagedConnection instance obtains its log writer (for error logging and tracing

support) from the ManagedConnectionFactory instance that created this connection.

However, an application server can set a new log writer with a ManagedConnection
instance to do additional error logging and tracing at the level of a ManagedConnection .

• The application server does the necessary transactional setup for the ManagedConnection
instance. The chapter on Transaction Management explains this step in more detail.

• Next, the application server calls ManagedConnection.getConnection method to get an

application level connection handle of type javax.resource.cci.Connection . A

ManagedConnection instance uses the Subject and ConnectionRequestInfo
parameters to the getConnection method to change the state of the ManagedConnection .

Calling the getConnection method does not necessarily create a new physical connection

to the EIS instance. Calling getConnection produces a temporary connection handle that

is used by an application component to access the underlying physical connection. The

actual underlying physical connection is represented by a ManagedConnection instance.

• The application server returns the connection handle to the resource adapter. The resource

adapter then passes the connection handle to the application component that initiated the

connection request.
38 October 7, 2000

Connection Management Connector Architecture 1.0
FIGURE 9.0 OID: Connection Pool Management with new Connection Creation

XAResource.start(XID)

Transaction.enlistResource(XAResource)

Application
ManagedConnection

Factory Managed

Resource Adapter

Component

Resource Adapter

getConnection

Application server looks up a candidate
connection set from the connection pool

javax.resource.cci.

ConnectionManager.allocateConnection

Application

Note: Following steps happen if
no matching connection is found
or if candidate set is empty

createManagedConnection

create a new instance

Optional: setLogWriter(PrintWriter)

getXAResource

Transaction
Manager

XAResource

getConnection(Subject, ConnectionRequestInfo)

return javax.resource.cci.Connection

Connection
 ServerConnectionFactory

Application server performs transactional setup for the
ManagedConnection instance. For example, application
server performs following setup for JTA transactions.

return javax.resource.cci.Connection

addConnectionEventListener(ConnectionEventListener)
39 October 7, 2000

Connection Management Connector Architecture 1.0
5.8.2 Scenario: Connection Matching

The OID on the page 41 shows the object interactions for a connection matching scenario—that

is, a scenario in which the application server finds a non-empty candidate connection set and

calls the resource adapter to do matching on the candidate set. The following steps are involved

in this scenario:

• The application server handles the connection allocation request by creating a candidate

set of ManagedConnection instances from the connection pool. The candidate set includes

the ManagedConnection instances that the application server considers suitable for

handling the current connection allocation request. The application server finds this

candidate set using its own implementation-specific structuring and lookup criteria for the

connection pool. Refer section 5.5.3 for guidelines of connection pool implementation by

an application.

• The application server calls the ManagedConnectionFactory.matchManaged-
Connections method to enable the resource adapter to do the connection matching. It

passes the candidate connection set, security information (as a Subject instance

associated with the current connection request), and any ConnectionRequestInfo .

• The ManagedConnectionFactory instance matches the candidate set of connections using

the criteria known internally to the resource adapter. The matchManagedConnections
method returns a ManagedConnection instance that the resource adapter considers to be

an acceptable match for the current connection allocation request.

• The application server can set a new log writer with the ManagedConnection instance to

do error logging and tracing at the level of the ManagedConnection.

• The application server does the necessary transactional setup for the ManagedConnection
instance. The chapter on Transaction Management explains this step in more detail.

• The application server calls the ManagedConnection.getConnection method to get a

new application level connection handle.

• The ManagedConnection.getConnection method implementation uses the Subject
parameter and any ConnectionRequestInfo to set the state of the ManagedConnection
instance based on the current connection allocation request. Refer to section 8.2.7 for

details if a resource adapter implements support for re-authentication of a

ManagedConnection instance.

• The application server returns the connection handle to the resource adapter. The resource

adapter then passes the connection handle to the application component that initiated the

connection request.
40 October 7, 2000

Connection Management Connector Architecture 1.0
FIGURE 10.0 OID: Connection Pool Management with Connection Matching

XAResource.start(XID)

Transaction.enlistResource(XAResource)

Application Application
Server

ManagedConnection-
Factory Managed-

Resource Adapter

Component

Resource Adapter

getConnection

Application server looks up a candidate
connection set from the connection pool

javax.resource.cci.

ConnectionManager.allocateConnection

matchManagedConnections

Transaction
Manager XAResource

getConnection(Subject, ConnectionRequestInfo)

Case: ManagedConnection
found that satisfies allocation
request

Connection

addConnectionEventListener(ConnectionEventListener)

Optional: setLogWriter(PrintWriter)

ConnectionFactory

Application server performs transactional setup for the
ManagedConnection instance. For example, application
server performs following setup for JTA transactions.

return javax.resource.cci.Connection

return javax.resource.cci.Connection
41 October 7, 2000

Connection Management Connector Architecture 1.0
5.8.3 Scenario: Connection Event Notifications and Connection Close

For each ManagedConnection instance in the pool, the application server registers a Connec-
tionEventListener instance to receive close and error events on the connection. This scenar-

io explains how the connection event callback mechanism enables an application server to

manage connection pooling.

The scenario involves the following steps (see Figure 11.0 on page 43) when an application

component initiates a connection close:

• The application component releases an allocated connection handle using the close
method on the javax.resource.cci.Connection instance. The Connection instance

delegates the close method to the associated ManagedConnection instance. The delegation

happens through an association between ManagedConnection instance and the

corresponding connection handle Connection instance. The mechanism by which this

association is achieved is specific to the implementation of a resource adapter.

• The connection management contract places a requirement that a ManagedConnection
instance must not alter the state of a physical connection while handling the connection

close.

• The ManagedConnection instance notifies all its registered listeners of the application’s

connection close request using the ConnectionEventListener .connectionClosed
method. It passes a ConnectionEvent instance with the event type set to

CONNECTION_CLOSED.

• On receiving the connection close event notification, the application server performs the

transaction management-related cleanup of the ManagedConnection instance. Refer to

Figure 11.0 on page 43 for details on the cleanup of a ManagedConnection instance

participating in a JTA transaction.

• The application server also uses the connection close event notification to manage its

connection pool. On receiving the connection close notification, the application server calls

the ManagedConnection.cleanup method to perform cleanup on the

ManagedConnection instance that raised the connection close event. The application

server-initiated cleanup of a ManagedConnection instance prepares this

ManagedConnection instance to be reused for subsequent connection requests.

• After initiating the necessary cleanup for the ManagedConnection instance, the

application server puts the ManagedConnection instance back into the connection pool.

The application server should be able to use this available ManagedConnection instance

to handle future connection allocation requests from application components.

Connection Cleanup
The application server can also initiate cleanup of a ManagedConnection instance when the

container terminates the application component instance that has the corresponding connec-

tion handle. The application server should call ManagedConnection.cleanup to initiate the

connection cleanup. After the cleanup, the application server puts the ManagedConnection in-

stance into the pool to serve future allocation requests.

Connection Destroy
To manage the size of the connection pool, the application server can call ManagedConnec-
tion.destroy method to destroy a ManagedConnection . A ManagedConnection instance

handles this method call by closing the physical connection to the EIS instance and releasing

all system resources held by this instance.

The application server also calls ManagedConnection.destroy when it receives a connection

error event notification that signals a fatal error on the physical connection.
42 October 7, 2000

Connection Management Connector Architecture 1.0
FIGURE 11.0 OID: Connection Event Notification

Application
ManagedConnection

Factory Managed

Resource Adapter

Component

Resource Adapter

javax.resource.cci.

close()

Application Transaction
Manager

XAResource

Connection

Internal: Resource Adapter implementation specific

ManagedConnection
notifies all registered
ConnectionEventListsners

connectionClosed(ConnectionEvent: CONNECTION_CLOSED)

Case: JTA Transaction

Transaction.delistResource(XAResource)

XAResource.end(XID)

Application Server returns
ManagedConnection instance
to the connection pool

ManagedConnection.cleanup

 Server
Connection
43 October 7, 2000

Connection Management Connector Architecture 1.0
5.9 Architecture: Non-managed Environment
The connection management contract enables a resource adapter to be used in a two-tier appli-

cation directly from an application client.

In a non-managed application scenario, the ConnectionManager implementation class may be

provided either by a resource adapter (as a default ConnectionManager implementation) or

by application developers. In both cases, third party vendors may provide QoS as components.

Note that a default implementation of the ConnectionManager should be defined for a re-

source adapter (in terms of the functionality provided and third-party components added)

only at development time.

The default ConnectionManager instance interposes on the connection request and delegates

the request to the ManagedConnectionFactory instance. The ManagedConnectionFactory
creates a physical connection (represented by a ManagedConnection instance) to the underly-

ing EIS. The ConnectionManager gets a connection handle (of type javax.re-
source.cci.Connection for CCI) from the ManagedConnection and returns it to the

connection factory. The connection factory returns the connection handle to the application.

A resource adapter supports interactions (shown as light shaded lines in Figure 12.0) between

its internal objects in an implementation-specific way. For example, a resource adapter can use

the connection event listening mechanism as part of its ManagedConnection implementation

for connection management. However, the resource adapter is not required to use the connec-

tion event mechanism to drive its internal interactions.
44 October 7, 2000

Connection Management Connector Architecture 1.0
FIGURE 12.0 Architecture Diagram: Non-Managed application scenario

5.9.1 Scenario: Programmatic Access to ConnectionFactory

To maintain the consistency of the application programming model across both managed and

non-managed environments, application code should use the JNDI namespace to look-up a

connection factory instance.

The following code extract shows how an application client accesses a connection factory in-

stance in a non-managed environment. The code extract does not show the use of JNDI . It is

used as an example to illustrate the use of ManagedConnectionFactory and ConnectionFac-
tory interfaces in the application code. Refer to section 10.5 for details on JNDI configuration

and lookup.

// Application Client Code
// Create an instance of ManagedConnectionFactory implementation class
// passing in initialization parameters (if any) for this instance
com.myeis.ManagedConnectionFactoryImpl mcf =

new com.myeis.ManagedConnectionFactoryImpl(...);

// Set properties on the ManagedConnectionFactory instance
// Note: Properties are defined on the implementation class and not on the
// javax.resource.spi.ManagedConnectionFactory interface
mcf.setServerName(...);

ConnectionFactory Connection

ConnectionManager

Application Component

Enterprise Information System (EIS)

Resource Adapter

ManagedConnectionFactory

ManagedConnection

Architected contract

Implementation specific
45 October 7, 2000

Connection Management Connector Architecture 1.0
mcf.setPortNumber(...);

// ... set remaining properties

// Get access to connection factory. The ConnectionFactory instance
// gets initialized with the default ConnectionManager provided
// by the resource adapter
javax.resource.cci.ConnectionFactory cxf =

(javax.resource.cci.ConnectionFactory)
mcf.createConnectionFactory();

// Get a connection using the ConnectionFactory instance
javax.resource.cci.Connection cx = cxf.getConnection(...);

// ... use connection to access the underlying EIS instance

// Close the connection
cx.close();

5.9.2 Scenario: Connection Creation in Non-managed Application Scenario

The following object interactions are involved in the scenario shown in Figure 13.0 on page 47:

• The application client calls a method on the javax.resource.cci.ConnectionFactory
instance (returned from the JNDI lookup) to get a connection to the underlying EIS

instance.

• The ConnectionFactory instance delegates the connection request from the application

to the default ConnectionManager instance. The resource adapter provides the default

ConnectionManager implementation.

• The ConnectionManager instance creates a new physical connection to the underlying EIS

instance by calling the ManagedConnectionFactory .createManagedConnection
method.

• The ManagedConnectionFactory instance handles the createManagedConnection
method by creating a new physical connection to the underlying EIS, represented by a

ManagedConnection instance. The ManagedConnectionFactory uses the security

information (passed as a Subject instance), any ConnectionRequestInfo , and its

configured set of properties (such as port number, server name) to create a new

ManagedConnection instance.

• The ManagedConnectionFactory initializes the state of the created Managed-
Connection instance and returns it to the default ConnectionManager instance.

• The ConnectionManager instance calls the ManagedConnection.getConnection
method to get an application-level connection handle. Calling the getConnection method

does not necessarily create a new physical connection to the EIS instance. Calling

getConnection produces a temporary handle that is used by an application to access the

underlying physical connection. The actual underlying physical connection is represented

by a ManagedConnection instance.

• The ConnectionManager instance returns the connection handle to the Connection-
Factory instance, which then returns the connection to the application that initiated the

connection request.
46 October 7, 2000

Connection Management Connector Architecture 1.0
FIGURE 13.0 OID: Connection Creation in a Non-managed Application Scenario

Application Connection
Manager

ManagedConnection-

ManagedConnection

Resource Adapter

Client

getConnection

javax.resource.cci.

allocateConnection

createManagedConnection

create a new instance

getConnection(Subject, ConnectionRequestInfo)

return javax.resource.cci.Connection

ConnectionFactory Factory

return javax.resource.cci.Connection
47 October 7, 2000

Connection Management Connector Architecture 1.0
5.10 Requirements
The following section outlines requirements for the connection management contract.

5.10.1 Resource Adapter

The requirements for a resource adapter are as follows:

• A resource adapter must provide implementations of the following interfaces:

• javax.resource.spi.ManagedConnectionFactory

• javax.resource.spi.ManagedConnection

• javax.resource.spi.ManagedConnectionMetaData

• The ManagedConnection implementation provided by a resource adapter must use the

following interface and classes to provide support to an application server for connection

management (and transaction management, as explained later):

• javax.resource.spi.ConnectionEvent

• javax.resource.spi.ConnectionEventListener

To support non-managed environments, a resource adapter is not required to use the

above two interfaces to drive its internal object interactions.

• A resource adapter is required to provide support for basic error logging and tracing by

implementing the following methods:

• ManagedConnectionFactory.set/getLogWriter

• ManagedConnection.set/getLogWriter

• A resource adapter is required to provide a default implementation of the

javax.resource.spi.ConnectionManager interface. The implementation class comes

into play when a resource adapter is used in a non-managed two-tier application scenario.

In an application server-managed environment, the resource adapter should not use the

default ConnectionManager implementation class.

A default implementation of ConnectionManager enables the resource adapter to provide

services specific to itself. These services can include connection pooling, error logging and

tracing, and security management. The default ConnectionManager delegates to the

ManagedConnectionFactory the creation of physical connections to the underlying EIS.

• In a managed environment, a resource adapter is not allowed to support its own internal

connection pooling. In this case, the application server is responsible for connection

pooling. However, a resource adapter may multiplex connections (one or more

ManagedConnection instances per physical connection) over a single physical pipe
transparent to the application server and components.

In a non-managed two tier application scenario, a resource adapter is allowed to support

connection pooling internal to the resource adapter.

5.10.2 Application Server

The requirements for an application server are as follows:

• An application server must use the interfaces defined in the connection management

contract to use services provided by a resource adapter. These interfaces are as follows:

• javax.resource.spi.ManagedConnectionFactory

• javax.resource.spi.ManagedConnection

• javax.resource.spi.ManagedConnectionMetaData
48 October 7, 2000

Connection Management Connector Architecture 1.0
• An application server is required to provide an implementation of the

javax.resource.spi.ConnectionManager interface. This implementation should not

be specific to any particular type of resource adapter, EIS, or connection factory interface.

• An application server is required to implement the javax.resource.spi.-
ConnectionEventListener interface to get connection-related event notifications. An

application server uses these event notifications to do its pool management, transaction

management, and connection cleanup.

• An application server is required to use the following interfaces (supported by the resource

adapter) to provide basic error logging and tracing for its configured set of resource

adapters:

• ManagedConnectionFactory.set/getLogWriter

• ManagedConnection.set/getLogWriter

• An application server is required to use the javax.resource.spi.ConnectionManager
hook-in mechanism to provide its specific quality of services. The connector architecture

does not specify the set of services the application server provides, nor does it specify how

the application server implements these services.
49 October 7, 2000

Transaction Management Connector Architecture 1.0
6 Transaction Management

This chapter specifies the transaction management contract between an application server (and

supported transaction manager) and an EIS resource manager.

This chapter focuses only on the system-level aspects of transaction management. The J2EE

component model specifications describe the application level transaction model. For example,

the EJB specification [1] specifies the transaction model for EJB components.

6.1 Overview
Figure 14.0 shows an application component deployed in a container provided by an applica-

tion server. The application component performs transactional access to multiple resource

managers. The application server uses a transaction manager that takes the responsibility of

managing transactions across multiple resource managers.

FIGURE 14.0 Transaction Management Contract

A resource manager can support two types of transactions:

• A transaction that is controlled and coordinated by a transaction manager external to the

resource manager. This document refers to such a transaction as JTA or XA transaction.

Enterprise Information
System

Resource AdapterApplication Server

System Contract

Transaction Manager

Transaction
Management

Application Component

Container-Component
Contract

EIS specific interface
50 October 7, 2000

Transaction Management Connector Architecture 1.0
• A transaction that is managed internal to a resource manager. The coordination of such

transactions involves no external transaction managers. This document refers to such

transactions as RM local transactions (or local transactions).

A transaction manager coordinates transactions across multiple resource managers. It also pro-

vides additional low-level services that enable transactional context to be propagated across

systems. The services provided by a transaction manager are not visible directly to the appli-

cation components.

The connector architecture defines a transaction management contract between an application

server and a resource adapter (and its underlying resource manager). The transaction manage-

ment contract has two parts, depending on the type of transaction:

• a JTA javax.transaction.xa.XAResource based contract between a transaction

manager and a resource manager

• a local transaction management contract

These contracts enable an application server to provide the infrastructure and runtime environ-

ment for transaction management. Application components rely on this transaction infrastruc-

ture to support their component-level transaction model.

6.2 Transaction Management Scenarios
The following section uses a set of scenarios to present an overview of the transaction manage-

ment architecture.

6.2.1 Transactions across multiple Resource Managers

In Figure 15.0, an application client invokes EJB component X. EJB X accesses transaction pro-

grams managed by a TP system and calls EJB Y to access an ERP system.

FIGURE 15.0 Scenario: Transactions across multiple Resource Managers

The application server uses a transaction manager to support a transaction management infra-

structure that enables an application component to perform transactional access across multi-

ple EIS resource managers. The transaction manager manages transactions across multiple

resource managers and supports propagation of the transaction context across distributed sys-

tems.

X

client
Application Server

Y

TP System ERP System

Transaction Manager

XAResource based
contract
51 October 7, 2000

Transaction Management Connector Architecture 1.0
The transaction manager supports a JTA XAResource -based transaction management contract

with a resource adapter and its underlying resource manager. The ERP system supports JTA

transactions by implementing a XAResource interface through its resource adapter. The TP

system also implements a XAResource interface. This interface enables the two resource man-

agers to participate in transactions that are coordinated by an external transaction manager.

The transaction manager uses the XAResource interface to manage transactions across the two

underlying resource managers.

The EJBs X and Y access the ERP and TP system using the respective client access API for the

two systems. Behind the scenes, the application server enlists the connections to both systems

(obtained from their respective resource adapters) as part of the transaction. When the transac-

tion commits, the transaction manager perform a two-phase commit protocol across the two re-

source managers, ensuring that all read/write access to resources managed by both TP system

and ERP system is either entirely committed or entirely rolled back.

6.2.2 Local Transaction Management

The transactions are demarcated either by the container (called container-managed demarca-

tion) or by a component (called component-managed demarcation). In component-managed

demarcation, an application component can use the JTA UserTransaction interface or a trans-

action demarcation API specific to an EIS (for example, JDBC transaction demarcation using

java.sql.Connection).

The EJB specification requires an EJB container to support both container-managed and com-

ponent-managed transaction demarcation models. The JSP and servlet specifications require a

web container to support component-managed transaction demarcation.

If multiple resource managers participate in a transaction, the EJB container uses a transaction

manager to coordinate the transaction. The contract between the transaction manager and re-

source manager is defined using the XAResource interface.

If a single resource manager instance participates in a transaction (either component-managed

or container-managed), the container has two choices:

• It uses the transaction manager to manage this transaction. The transaction manager uses

one-phase commit-optimization [this is described later] to coordinate the transaction for

this single resource manager instance.

• The container lets the resource manager coordinate this transaction internally without

involving an external transaction manager.

If an application accesses a single resource manager using a XA transaction, it has a perfor-

mance overhead comparable to using local transactions. The overhead is due to the involve-

ment of an external transaction manager in the coordination of the XA transaction.

To avoid the overhead of using a XA transaction in a single resource manager scenario, the ap-

plication server may optimize this scenario by using a local transaction instead of a XA trans-

action. This scenario is shown in Figure 16.0.
52 October 7, 2000

Transaction Management Connector Architecture 1.0
FIGURE 16.0 Scenario: Local Transaction on a single Resource Manager

6.3 Transaction Management Contract
This section specifies the transaction management contract. The transaction management con-

tract builds on the connection management contract specified in Chapter 5.

Figure 17.0 shows the interfaces and flows in the transaction management contract. It does not

show the interfaces, classes, and flows that are the same in the connection management con-

tract.

X

client
Application Server

TP System

Local
Transaction

contract

Application
Contract
53 October 7, 2000

Transaction Management Connector Architecture 1.0
FIGURE 17.0 Architecture Diagram: Transaction Management

6.3.1 Interface: ManagedConnection

The javax.resource.spi.Managed Connection instance represents a physical connection

to an EIS and acts as a factory of connection handles.

The following code extract shows the methods on the ManagedConnection interface that are

defined specifically for the transaction management contract:

public interface javax.resource.spi.ManagedConnection {
public XAResource getXAResource() throws ResourceException;

ConnectionManager ConnectionFactory Connection

Transaction
Manager

ManagedConnection

ConnectionEventListener

XAResource

LocalTransaction

Resource AdapterApplication Server

Application Component

Enterprise Information System (EIS)

Architected contract

Implementation specific
54 October 7, 2000

Transaction Management Connector Architecture 1.0
public LocalTransaction getLocalTransaction()
throws ResourceException;

...
}

A ManagedConnection instance provides access to a pair of interfaces: javax.transac-
tion.xa.XAResource and javax.resource.spi.LocalTransaction .

Depending on the transaction support level of a resource adapter, these methods should raise

appropriate exceptions. For example, if the transaction support level for a resource adapter is

NO_TRANSACTION, an invocation of getXAResource method should throw a ResourceEx-
ception . Refer to chapter 13 for details on the exception hierarchy.

Figure 18.0 illustrates this concept:

FIGURE 18.0 ManagedConnection Interface for Transaction Management

The transaction manager uses the XAResource interface to associate and dissociate a transac-

tion with the underlying EIS resource manager instance and to perform a two-phase commit

protocol. The transaction manager does not directly use the ManagedConnection interface.

The next section describes the XAResource interface in more detail.

The application server uses the LocalTransaction interface to manage local transactions.

6.3.2 Interface: XAResource

The javax.transaction.xa.XAResource interface is a Java mapping of the industry stan-

dard XA interface based on X/Open CAE specification [4].

Transaction
Manager

ManagedConnection

Enterprise Information System (EIS)

LocalTransaction

Application Server Resource Adapter

XAResource

create new instance

create new instance

EIS specific

getXAResource
getLocalTransaction
55 October 7, 2000

Transaction Management Connector Architecture 1.0
The following code extract shows the interface specification for the XAResource interface. For

more details and the javadocs, refer to the JTA and XA specifications:

public interface javax.transaction.xa.XAResource {
public void commit(Xid xid, boolean onePhase) throws XAException;
public void end(Xid xid, int flags) throws XAException;
public void forget(Xid xid) throws XAException;
public int prepare(Xid xid) throws XAException;
public Xid[] recover(int flag) throws XAException;
public void rollback(Xid xid) throws XAException;
public void start(Xid xid, int flags) throws XAException;

}

Implementation
A resource adapter for an EIS resource manager implements the XAResource interface. This in-

terface enables the resource manager to participate in transactions that are controlled and co-

ordinated by an external transaction manager. The transaction manager uses the XAResource
interface to communicate transaction association, completion, and recovery to the resource

manager.

A resource adapter typically implements the XAResource interface using a low-level library

available for the underlying EIS resource manager. This low-level library either supports a na-

tive implementation of the XA interface or provides a proprietary vendor-specific interface for

transaction management.

A resource adapter is responsible for maintaining a 1-1 relationship between the ManagedCon-
nection and XAResource instances. Each time a ManagedConnection.getXAResource meth-

od is called, the same XAResource instance has to be returned.

A transaction manager can use any XAResource instance (if it refers to the proper resource

manager instance) to initiate transaction completion. The XAResource instance used during

the transaction completion process need not be the one initially enlisted with the transaction

manager for this transaction.

6.3.3 Interface: LocalTransaction

The following code extract shows the javax.resource.spi.LocalTransaction interface:

public interface javax.resource.spi.LocalTransaction {
public void begin() throws ResourceException;
public void commit() throws ResourceException;
public void rollback() throws ResourceException;

}

A resource adapter implements the LocalTransaction interface to provide support for local

transactions that are performed on the underlying resource manager. An application server

uses the LocalTransaction interface to manage local transactions for a resource manager.

A later section specifies more details on the local transaction management contract.

6.4 Relationship to JTA and JTS
The Java™ Transaction API (JTA) [2] is a specification of interfaces between a transaction

manager and the other parties involved in a distributed transaction processing system: appli-

cation programs, resource managers, and an application server.
56 October 7, 2000

Transaction Management Connector Architecture 1.0
The Java Transaction Service (JTS) API is a Java binding of the CORBA Object Transaction

Service (OTS) 1.1 specification. JTS provides transaction interoperability using the standard

IIOP protocol for transaction propagation between servers. The JTS API is intended for vendors

who implement transaction processing infrastructure for the enterprise middleware. For exam-

ple, an application server vendor can use a JTS implementation as the underlying transaction

manager.

JTA Interfaces
The application server uses the javax.transaction.TransactionManager and jav-
ax.transaction.Transaction interfaces (specified in the JTA specification) for its contract

with the transaction manager.

The application server uses the javax.transaction.TransactionManager interface to con-

trol the transaction boundaries on behalf of the application components that are being man-

aged by the application server. For example, an EJB container manages the transaction states

for transactional EJB components. The EJB container uses the TransactionManager interface

to demarcate transaction boundaries based on the calling thread’s transaction context.

The application server also uses the javax.transaction.Transaction interface to enlist

and delist transactional connections with the transaction manager. This enables the transaction

manager to coordinate transactional work performed by all enlisted resource managers within

a transaction.

6.5 Object Diagram
Figure 19.0 shows the object instances and their interactions related to transaction manage-

ment.

Since the transaction management contract builds upon the connection management contract,

the following diagram does not show object interactions that have been already discussed as

part of Chapter 5.
57 October 7, 2000

Transaction Management Connector Architecture 1.0
FIGURE 19.0 Object Diagram: Transaction Management

ConnectionManager Connection

Transaction
Manager

ManagedConnection

ConnectionEventListener

Pool
Manager

Application

Enterprise Information System (EIS)

 Component

LocalTransaction

Connection Event notifications

getLocalTransaction

EIS specific

Application Server Resource Adapter

getXAResource

Architected interface

Instantiation

Implementation specific

XAResource

create new instance

create new instance

EIS specific

create
new instance

Resource
Adapter specific
58 October 7, 2000

Transaction Management Connector Architecture 1.0
6.6 XAResource-based Transaction Contract
The following section specifies detailed requirements for a resource manager and a transaction

manager for the XAResource -based transaction management contract. In this section, the fol-

lowing abbreviations are used: RM (Resource Manager), TM (Transaction Manager), 1PC (one

phase commit protocol), and 2PC (two phase commit protocol).

6.6.1 Scenarios Supported

The following table specifies various transaction management scenarios and mentions whether

these scenarios are within the scope of the connector architecture.

Table 1: Transaction Management Scenarios

Description Supported / NotSupported

TM does two-phase commit (2PC) on RMs

that support two phase commit (as defined

in RM’s requirements for XAResource
implementation in the subsection below)

Examples of RM: Oracle and DB2 that

support 2PC in their XAResource imple-

mentations.

Supported based on TM’s requirement to

be JTA/JTS and X/Open compliant and

RM’s support for 2PC in XAResource
interface.

TM does one-phase commit (1PC) optimi-

zation on the only RM involved in a trans-

action. RM supports 2PC in its

XAResource implementation (as defined

in RM’s requirements for XAResource
implementation in the subsection below).

Example of RM: DB2 that supports 2PC in

its XAResource implementation.

Supported based on TM’s requirement to

be JTA/JTS and X/Open compliant and

RM’s support for XAResource interface.

Note: This scenario will also work if TM

does 2PC on RM.

TM does one-phase commit optimization

on the only RM involved in a transaction.

RM does not support 2PC but supports

1PC in its XAResource implementation.

Example of RM: ERP system or mainframe

TP system that does not support 2PC, but

implements 1PC in its XAResource imple-

mentation as defined in the RM’s require-

ments for 1PC.

Supported by requiring that TM must sup-

port 1PC optimization. A successful trans-

action coordination of 1PC only RM comes

as a result of required 1PC optimization for

a TM.

The rationale behind this requirement is

that this scenario will be an important sce-

nario to support for the connector architec-

ture.

TM does last-resource commit optimiza-

tion across multiple RMs involved in a

transaction—RMs that support 2PC (for

example: Oracle and DB2) and single RM

that supports only 1PC (for example: ERP

system).

Out of scope of the connector architecture

specification
59 October 7, 2000

Transaction Management Connector Architecture 1.0
6.6.2 Resource Adapter Requirements

The connector architecture does not require that all resource adapters must support JTA

XAResource based transaction contract.

If a resource adapter decides to support a XAResource based contract, then the connector ar-

chitecture places certain requirements (shown below) on a resource adapter and its underlying

resource manager (RM).

The following requirements refer to a resource adapter and its resource manager together as a

resource manager (RM). The division of responsibility between a resource adapter and its un-

derlying resource manager for supporting the transaction contract is implementation specific

and is out of the scope of the connector architecture.

These requirements assume that a transaction manager (TM) supports JTA/XA and JTS re-

quirements.

The following set of requirements are based on the JTA and XA specifications and should

be read in conjunction with these specifications. These detailed requirements are included

in this document to clearly specify the requirements from the connector architecture per-

spective.

General
• If RM supports a XAResource contract, then it is required to support the one-phase commit

protocol by implementing XAResource.commit when the boolean flag onePhase is set to

True . The RM is not required to implement the two-phase commit protocol support in its

XAResource implementation.

• However, if RM supports the two-phase commit protocol, then RM is required to use the

XAResource interface for supporting the two-phase commit protocol. Refer to the

following subsection on two-phase commit for detailed requirements.

• RM is allowed to combine the implementation of 2PC protocol with 1PC optimization by

implementing XAResource.commit (onePhase =True) in addition to the implementation

requirements for 2PC.

One-phase Commit
• RM should allow XAResource.commit (onePhase =True) even if it has not received

XAResource.prepare for the transaction branch.

• If the RM fails to commit transaction during 1PC commit, then RM should throw one of

XA_RB* exceptions. In the exception case, RM should roll back the transaction branch’s

work and release all held RM resources.

• RM is responsible for deciding the outcome of a transaction branch on a XAResource.-
commit method. RM can discard knowledge of the transaction branch once it returns from

the commit call.

• RM is not required to maintain knowledge of transaction branches to support failure

recovery for the TM.

• If a XAResource.prepare method is called on a RM that supports only one-phase commit,

then the RM should throw an XAException with XAER_PROTO or XA_RB* flag .

More than one RM that support only 1PC

involved in a transaction with none or

multiple 2PC enabled RMs

Out of scope of the connector architecture

specification

Table 1: Transaction Management Scenarios

Description Supported / NotSupported
60 October 7, 2000

Transaction Management Connector Architecture 1.0
• RM should return an empty list of XIDs for XAResource.recover , because the RM is not

required to maintain stable knowledge about transaction branches.

Two-phase Commit
• If RM supports 2PC, then its implementation of 2PC is required to be compliant with 2PC

protocol definition with presumed rollback as specified in the OSI DTP specification.

• RM must implement XAResource.prepare method and must be able to report whether it

can guarantee its ability to commit the transaction branch. If RM reports that it can, RM is

required to hold and record (in a stable way) all the resources necessary to commit the

branch. It must hold all these resources until the TM directs it to commit or roll back the

branch.

• An RM that reports a heuristic completion to the TM must not discard its knowledge of the

transaction branch. The RM should discard its knowledge of the branch only when the TM

calls XAResource.forget . RM is required to notify the TM of all heuristic decisions.

• On TM’s XAResource.commit and XAResource.rollback calls, RM is allowed to report

through XAException that it has heuristically completed the transaction branch. This

feature is optional.

A TM supporting the OSI DTP specification uses the one-phase commit optimization by de-

fault to manage an RM that is the only resource involved in the transaction. The mechanism to

identify to the TM a particular RM that only supports 1PC is beyond the scope of this specifi-

cation.

Transaction Association and Calling Protocol
• The RM XAResource implementation is required to support XAResource.start and

XAResource.end for association and disassociation of a transaction (as represented by

unique XID) with recoverable units of work being done on the RM.

• RM must ensure that TM invokes XAResource calls in the legal sequence, and must return

XAER_PROTOor other suitable error if the caller TM violates the state tables (as defined in

Chapter 6 of the XA specification (refer [4]).

Unilateral Roll-back
• RM need not wait for global transaction completion to report an error. RM can return

rollback-only flag as a result of any XAResource.start or XAResource.end call. This can

happen anytime except after a successful prepare .

• RM is allowed to unilaterally rollback and forget a transaction branch any time before it

prepares it.

Read-Only Optimization
• Support for Read-only optimization is optional for RM implementation. An RM can

respond to TM’s request to prepare by asserting that the RM was not asked to update

shared resources in this transaction branch. This response concludes RM’s involvement in

the transaction and RM can release all resources and discard its knowledge of the

transaction.

XID Support
• RM must accept XIDs from TMs. RM is responsible for using XID to maintain an

association between a transaction branch and recoverable units of work done by the

application programs.

• RM must not alter in any way the bits associated in the data portion of an XID. For

example, if an RM remotely communicates an XID, it must ensure that the data bits of the

XID are not altered by the communication process.
61 October 7, 2000

Transaction Management Connector Architecture 1.0
Support for Failure Recovery
• A full JTA compliant XAResource implementation that supports 2PC is required to

maintain the status of all transaction branches in which it is involved. After responding

affirmatively to TM prepare call, an RM should not erase its knowledge of the branch or

of the work done in support of the branch until it receives successfully a TM’s invocation

to commit or roll back the branch.

• If an RM that supports 2PC heuristically completes a branch, it should not forget a branch

until TM explicitly tells it to by calling XAResource.forget .

• On TM’s XAResource.recover call, an RM that supports 2PC is required to return a list

of all transaction branches that it has prepared or has heuristically completed.

• When a RM recovers from its own failure, it is required to recover prepared and

heuristically completed branches. It should discard its knowledge of all other branches.

6.6.3 Transaction Manager Requirements

The following section specifies requirements of a TM. This section assumes that TM is compli-

ant to JTA/JTS and X/Open (refer [4]) specifications.

Interfaces
• TM must use the XAResource interface supported by an RM for transaction coordination

and recovery. TM must be written to handle consistently any information or status that an

RM can legally return. TM must assume that it can support RMs that have different

capabilities as allowed by the RM requirements specification section—RMs that make

heuristic decisions and RMs that use the read-only optimization. [Requirement derived

from Section 7.3, XA specification]

XID requirements
• TM must generate XIDs conforming to the structure defined in section 4.2 on page 19 of

the XA specification (Refer [4]). The XIDs generated must be globally unique and must

adequately describe a transaction branch.

One-phase commit Optimization
• TM’s support of one-phase commit protocol optimization is required. TM uses the 1PC

optimization when the TM knows that there is only one RM registered in a transaction that

is making changes to shared resources. In this optimization, the TM makes its phase 2

commit request to that RM without having made a phase 1 prepare request.

• TM is not required to record (in a stable manner) such transactions, and in some failure

cases, the TM may not know the outcome of the transaction completion.

Implementation Options
• The support of last-resource optimization is an implementation-specific option for

a TM. A detailed specification of TM and RM’s requirements for this optimization is

outside the scope of the connector architecture.

6.6.4 Scenario: Transactional setup for a ManagedConnection

The following object interactions are involved in the scenario shown in Figure 20.0 on page 64.

• The runtime scenario begins with a client method invocation on an EJB instance. This

invocation has a transaction context (represented by a unique transaction Xid) associated

with it if the invocation came from a client that was already participating in the transaction.

Alternatively, the EJB container starts a transaction before dispatching the client request to

the EJB method.
62 October 7, 2000

Transaction Management Connector Architecture 1.0
• The EJB instance calls the getConnection method on the ConnectionFactory instance.

The resource adapter delegates the connection request to the application server using the

connection management contract. The sequence diagram [Figure 9.0 on page 39] explains

this step.

• The application server gains control and handles the connection allocation request.

• To handle the connection allocation request, the application server gets a Managed-
Connection instance either from the connection pool or creates a new Managed-
Connection instance. The sequence diagram [Figure 9.0 on page 39] describes this step.

• The application server registers itself as a ConnectionEventListener with the

ManagedConnection instance. This enables the application server to receive notifications

for various events on this connection instance. The application server uses these event

notifications to manage connection pooling and transactions.

• Based on the current transaction context (associated with the connection-requesting thread

and the EJB instance), the application server decides whether or not the transaction

manager will participate in the coordination of the currently active transaction.

• If the application server decides that the transaction manager will manage the current

transaction (the current transaction is a JTA transaction), it conducts the following

transactional setup on the ManagedConnection instance:

• The application server invokes the ManagedConnection.getXAResource method

to get the XAResource instance associated with the ManagedConnection instance.

• The application server enlists the XAResource instance with the transaction

manager for the current transaction context. The application server uses the

Transaction .enlistResource (specified in the JTA specification) method to enlist

the XAResource instance with the transaction manager. This enlistment informs the

transaction manager about the resource manager instance participating in the

transaction.

• The transaction manager invokes XAresource.start to associate the current

transaction with the underlying resource manager instance. This enables the

transaction manager to inform the participating resource manager that all units of

work performed by the application on the underlying ManagedConnection instance

should now be associated with this transaction.

• The application server calls the ManagedConnection.getConnection method to get a

new application-level connection handle. The underlying physical connection is

represented by a ManagedConnection instance.

• The application server returns the connection handle to the resource adapter. The resource

adapter then passes the connection handle to the application component that had initiated

the connection request.
63 October 7, 2000

Transaction Management Connector Architecture 1.0
FIGURE 20.0 OID: Transactional setup for newly created ManagedConnection instances

6.6.5 Scenario: Connection Close and JTA Transactional Cleanup

For each ManagedConnection instance in the pool, the application server registers a Connec-
tionEventListener instance to receive specific events on the connection. The connection

XAResource.start(XID, flag)

Transaction.enlistResource(XAResource)

Application
ManagedConnection-

Factory Managed-

Resource Adapter

Component

Resource Adapter

getConnection

javax.resource.cci.

ConnectionManager.allocateConnection

Application

getXAResource

Transaction
Manager

XAResource

getConnection(Subject, ConnectionRequestInfo)

return javax.resource.cci.Connection

Connection

Case:TM coordinated Transaction

Application server gets a ManagedConnection
instance wither from the connection pool or
creates a new instance.

 ServerConnectionFactory

return javax.resource.cci.Connection
64 October 7, 2000

Transaction Management Connector Architecture 1.0
event callback mechanism enables the application server to manage connection pooling and

transactions.

The scenario (shown in Figure 11.0 on page 43) involves the following steps when an applica-

tion component initiates a connection close:

• The application component releases a Connection instance by calling the close method.

The Connection instance delegates the connection close to its associated Managed-
Connection instance. A ManagedConnection must not alter any state on the physical

connection while handling a delegated connection close request.

• The ManagedConnection instance notifies all its registered listeners of the application’s

connection close request using the ConnectionEventListener .connectionClosed
method. It passes a ConnectionEvent instance with the event type set to CONNECTION-

_CLOSED.

• On receiving the connection close notification, the application server performs

transactional cleanup for the ManagedConnection instance. If the ManagedConnection
instance was participating in a transaction manager-enlisted JTA transaction, the

application server takes the following steps:

• The application server dissociates the XAResource instance (corresponding to the

ManagedConnection instance) from the transaction manager using the method

Transaction.delistResource .

• The transaction manager calls XAResource.end(Xid, flag) to inform the resource

manager that any further operations on the ManagedConnection instance are no

longer associated with the transaction (represented by the Xid passed in

XAResource.end call). This method invocation dissociates the transaction from the

resource manager instance.

• After the JTA transaction completes, the application server initiates a cleanup of the

physical connection instance by calling ManagedConnection.cleanup method. After

calling the method cleanup on the ManagedConnection instance, the application server

returns the ManagedConnection instance to the connection pool.

• The application server can now use the ManagedConnection instance to handle future

connection allocation requests from either the same or another component instance.
65 October 7, 2000

Transaction Management Connector Architecture 1.0
FIGURE 21.0 OID: Connection Close and Transactional cleanup

6.6.6 OID: Transaction Completion

The scenario in Figure 22.0 illustrates the steps taken by the transaction manager to commit a

transaction across multiple resource manager instances. These steps are executed after the

transaction manager calls the XAResource.end method for each enlisted resource manager in-

stance.

The following steps happen in this scenario:

Application Application ManagedConnection
Factory Managed

Resource Adapter

Component

Resource Adapter

close()

javax.resource.cci.
Transaction
Manager

XAResource

Connection

Internal: Resource Adapter implementation specific

ManagedConnection
notifies all registered
ConnectionEvent-
Listeners

connectionClosed(ConnectionEvent: CONNECTION_CLOSED)

Case: TM coordinated Transaction

Transaction.delistResource(XAResource, flag)

XAResource.end(XID, flag)

Application Server returns
ManagedConnection instance
to the connection pool

ManagedConnection.cleanup

Server
Connection
66 October 7, 2000

Transaction Management Connector Architecture 1.0
• The transaction manager calls XAResource.prepare to begin the first phase of the

transaction completion protocol. The transaction manager can call any XAResource
instance that is associated with the proper underlying resource manager instance, and is

not restricted to the XAResource instance directly involved with the transaction initially.

The application server can assume that all XAResource instances produced by a

ManagedConnectionFactory instance refer to the same underlying resource manager

instance.

• Assuming that all resource manager instances involved in the transaction agree to commit,

the transaction manager calls XAResource.commi t to commit the transaction. Otherwise,

it calls XAResource.rollback .

FIGURE 22.0 OID: Transaction Completion

Transaction
Manager

XAResource XAResource

Transaction manager initiates transaction
completion process on XAResource instances -
one for each participating resource manager
instance

Resource Manager
instance

Resource Manager
instance

Pre-condition: XAresource.end method called by TM on each
participating resource manager instance

XAResource.prepare

XAResource.prepare

Case: All resource manager instances
vote to commit

XAResource.commit

XAResource.commit
67 October 7, 2000

Transaction Management Connector Architecture 1.0
6.7 Local Transaction Management Contract
The main motivation for defining a local transaction contract between an application server

and a resource manager is to enable an application server to manage resource manager local

transactions (hereafter called local transactions).

The local transaction management contract has two parts:

• The application server uses javax.resource.spi.LocalTransaction interface to

manage local transactions transparently to an application component. The scenarios in

sections 6.11 and illustrate this part of the local transaction management contract.

• The other part of the contract relates to notifications for local transaction-related events. If

resource adapter supports a local transaction demarcation API (example: javax.
resource.cci.LocalTransaction for Common Client Interface), the resource adapter

needs to notify the application server of the events (transaction begin, commit, and

rollback) related to the local transaction. An application server uses this part of the

contract, and this is explained in section 6.8.

6.7.1 Interface: Local Transaction

The javax.resource.spi.LocalTransaction interface defines the contract between an ap-

plication server and resource adapter for local transaction management. This interface is de-

fined in section 6.3.3.

6.7.2 Interface: ConnectionEventListener

An application server implements the javax.resource.spi.ConnectionEventListener

interface. It registers this listener instance with the ManagedConnection instance by using

ManagedConnection.addConnectionEventListener method.

The following code extract specifies the ConnectionEventListener interface related to the lo-

cal transaction management contract:

public interface javax.resource.spi.ConnectionEventListener {
// Local Transaction Management related events
public void localTransactionStarted(ConnectionEvent event);
public void localTransactionCommitted(ConnectionEvent event);
public void localTransactionRolledback(ConnectionEvent event);

//...
}

The ManagedConnection instance notifies its registered listeners for transaction related events

by calling the methods localTransactionStarted , localTransactionCommitted , lo-
calTransactionRolledback.

The ConnectionEvent class defines the following types of event notifications related to the lo-

cal transaction management contract:

• LOCAL_TRANSACTION_STARTED—Notifies that a local transaction was started using the

ManagedConnection instance.

• LOCAL_TRANSACTION_COMMITTED—Notifies that a local transaction was committed

using the ManagedConnection instance.

• LOCAL_TRANSACTION_ROLLEDBACK—Notifies that a local transaction was rolled back

using the ManagedConnection instance.
68 October 7, 2000

Transaction Management Connector Architecture 1.0
Requirement
The connector specification requires an application server to implement Connection-
EventListener interface and handle local transaction related events. This enables application

server to achieve local transaction cleanup and transaction serial interleaving (as illustrated in

the section 6.8). So the connector specification provides the necessary mechanisms for transac-

tion management—whether these mechanisms are used in an application server depends on

the application server’s implementation of the transaction requirements of the J2EE component

specifications.

6.8 Scenarios: Local Transaction Management
This section illustrates how an application server uses the event notifications from the resource

adapter to manage local transactions and to restrict illegal transaction demarcations by an ap-

plication component.

In these scenarios, an application component starts a local transaction using an application-lev-

el transaction demarcation interface (example: javax.resource.cci.LocalTransaction as

defined in the CCI) supported by the resource adapter. The resource adapter, in its implemen-

tation of the transaction demarcation interface, sends event notifications related to the local

transaction—namely, local transaction begin, commit, and rollback. The application server is

notified of these local transaction-related events through the ConnectionEventListener
mechanism.

6.8.1 Local Transaction Cleanup

A stateless session bean with bean-managed transaction demarcation starts a local transaction

in a method invocation. It returns from the business method without completing the local

transaction.

The application server implements the ConnectionEventListener interface. The resource

adapter notifies the application server with LOCAL_TRANSACTION_STARTEDevent when the lo-

cal transaction is started by the session bean instance.

When the session bean instance returns from the method invocation without completing the

local transaction, the application server detects this as an incomplete local transaction because

it has not received any matching LOCAL_TRANSACTION_COMMITTED or

LOCAL_TRANSACTION_ROLLEDBACK event from the resource adapter.

On detecting an incomplete local transaction, the application server terminates the stateless

session bean instance and throws an exception to the client.

6.8.2 Component Termination

The application server terminates a component instance—for example, because of some system

exception in a method invocation.

On termination of a component instance, the application server cleans up all ManagedConnec-
tion instances being used by this component instance. The cleanup of a connection involves

resetting all local transaction and client-specific state. This state is maintained internal to the

ManagedConnection instance.

The application server initiates a cleanup of a ManagedConnection instance by calling Man-
agedConnection.cleanup . After the cleanup, the application server returns this connection

to the pool to serve future allocation requests.

6.8.3 Transaction Interleaving

The application server uses the connection event listener mechanism (specified through the in-

terfaces ConnectionEventListener and ConnectionEvent) to flag illegal cases of transac-
69 October 7, 2000

Transaction Management Connector Architecture 1.0
tion demarcation. The application server implements the ConnectionEventListener
interface to support this scenario.

The following subsection illustrates a scenario for component-managed transaction demarca-

tion.

Scenario
An EJB component (with bean managed transaction demarcation) starts a local transaction us-

ing the application-level transaction demarcation interface (example: javax.re-
source.cci.LocalTransaction as defined in the CCI) supported by the resource adapter. It

then calls the UserTransaction.begin method to start a JTA transaction before it has com-

pleted the local transaction.

In this scenario, the EJB component has started but not completed the local transaction. When

the application component attempts to start a JTA transaction by invoking the UserTransac-
tion.begin method, the application server detects it as a transaction demarcation error and

throws an exception from the UserTransaction.begin method.

When the application component starts the local transaction, the resource adapter notifies the

application server of the LOCAL_TRANSACTION_STARTED connection event. When the com-

ponent invokes the UserTransaction.begin method, the application server detects an error

condition, because it has not received the matching LOCAL_TRANSACTION-_COMMITTED or

LOCAL_TRANSACTION_ROLLEDBACK event from the resource adapter for the currently active

local transaction.
70 October 7, 2000

Transaction Management Connector Architecture 1.0
6.9 Connection Sharing
A connection typically maintains state specific to a client—security context, data/function ac-

cess related data structures (for example: query results). Connection sharing is very typical in

non-component based applications that use just a single connection under the same client con-

text to access an EIS.

When an application is developed using the J2EE component model, there is the issue of how

a connection is acquired and shared to achieve functionality similar to that of an equivalent

non-component-based application. In the J2EE environment, transactions initiated through

container-managed or component-managed mechanisms can span across a single or multiple

components instances. Multiple connections to EISs may be acquired as part of the same trans-

action. If some or all the connections acquired as part of transaction connect to the same EIS

instance, these connections can be potentially shared.

The connector architecture enables an application server to allow a physical connection to be

shared across multiple methods on a single component instance or across component instanc-

es. Sharing of connections is more efficient as it reduces the overhead of creating or acquiring

new connections.

Deployment Descriptor
In the default case, the application component provider makes an assumption that connections

are potentially shared. The application server handles the connection sharing transparent to

the application components.

However in certain scenarios, an application component may perform operations on a connec-

tion that makes the connection unshareable. Example of such operations are change in the iso-

lation level or change in the character setting of a connection. An application component that

uses a connection in an unshareable way must indicate its intention through the deployment

descriptor. When a connection is marked unshareable in the deployment descriptor, the appli-

cation server must not share the connection.

The J2EE specifications specify an element res-sharing-scope in the deployment descriptor.

The res-sharing-scope provides a way for an application component to specify that a con-

nection should not be shared by the container. Refer J2EE platform [8], Servlet [10] and EJB 2.0

[1] specifications for more details on the element res-sharing-scope .

Local Transaction
The connection sharing mechanism enables a local transaction to span multiple component in-

stances within a single container. A local transaction is associated with a single physical con-

nection. This means that component instances (involved in a local transaction) have to share

the same physical connection within the scope of the local transaction. The work performed by

these component instances (on the underlying EIS connected through the shared physical con-

nection) happens under the scope of the local transaction. The section 6.11 illustrates two sce-

narios for connection sharing and local transaction management.

Requirements
The container is required to support the connection sharing mechanism.

Since the connection sharing mechanism enables a local transaction to span across multiple

component instances, the container should use connection sharing mechanism to manage local

transactions. Note that the XA support takes care of this in the case of JTA transactions for a re-

source adapter at the xa_transaction support level. So the use of connection sharing for man-

aging JTA transactions is optional for a container.
71 October 7, 2000

Transaction Management Connector Architecture 1.0
6.10 Local Transaction Optimization
If all the work done as a part of a transaction uses a single resource manager, the application

server can use local transaction in place of an externally coordinated JTA transaction. The use

of local transaction avoids the overhead of initiating a global transaction (and involving TM for

transaction coordination) and leads to a performance optimization.

Since a typical application accesses a single resource manager, the local transaction optimiza-

tion is a useful performance optimization for transaction management.

The application server manages local transaction optimization transparent to the J2EE applica-

tion. Whenever a container-managed or bean-managed transaction is started, the container

may attempt local transaction optimization.

At transaction begin, a container can not determine apriori whether or not the unit of work

done as part of this transaction will use a single resource manager. The container uses an im-

plementation-specific mechanism to achieve local transaction optimization. For example, the

container can choose to start a local transaction (when the first resource manager is accessed)

and lazily start a JTA transaction only when more than one resource managers are accessed in

an existing transaction. The mechanism through which the application server (and its transac-

tion manager) coordinates the initial local transaction and lazily started JTA transactions is out-

side the scope of the connector specification. An illustrative way is to manage this case as a last-

agent optimization. Refer J2EE platform specification [8] for more details on the local transac-

tion optimization.

Requirements
The container is not required to support the local transaction optimization.

6.11 Scenarios: Connection Sharing
The following scenarios illustrate the connection sharing mechanism.

6.11.1 Container-Managed Transaction Demarcation

In Figure 23.0, the stateful session beans A and B have container-managed transaction demar-

cation with the transaction attribute set to Required . Both EJBs A and B access a single EIS re-

source manager as part of their business logic.

The container has decided to share physical connection and use local transaction for method

invocations on both EJBs.

FIGURE 23.0 Scenario to illustrate Local Transaction Management

EJB A EJB Bclient
invocation

Local Transaction Contract

Container
72 October 7, 2000

Transaction Management Connector Architecture 1.0
The following steps happen in this scenario:

• The client invokes a method on EJB A with no transaction context. In its method

implementation, the EJB A acquires a connection to the EIS instance.

• When acquiring the connection, the container starts a local transaction by invoking begin
method on the javax.resource.spi.LocalTransaction instance. The local transaction

is tied to the ManagedConnection instance that is associated with the connection handle

(acquired by the component in the previous step).

• After the local transaction starts, any recoverable unit of work performed by the EJB A

instance on the EIS resource manager (using the acquired connection) is automatically

included under the local transaction context.

• EJB A now invokes a method on the EJB B instance. In this scenario, EJB A does not close

the connection handle before invoking the method on EJB B instance.

Note: A container should ensure that the connection sharing mechanism is equally

applicable if EJB A were to close the connection handle before calling the EJB B instance.

• In the invoked method, the EJB B instance makes a request to acquire a connection to the

same EIS resource manager.

• The container returns a connection handle using the same ManagedConnection instance

that was used for handling the connection request from the EJB A instance.

• The container retains the association of the ManagedConnection instance with the local

transaction context across the method invocation from EJB A to EJB B. This means that any

unit of work that the EJB B instance will perform on the EIS resource manager (using its

acquired connection handle) will be automatically included as part of the current local

transaction. The connection state (for example, any open cursors) can also be retained

across method invocations when the physical connection is shared.

• Before the method invocation on the EJB B instance completes, EJB B calls close on the

connection handle. The container should not initiate any cleanup of the physical

connection at this time since there is still an uncompleted local transaction associated with

the shared physical connection. In this scenario, the cleanup of a physical connection refers

to dissociation of the local transaction context from the ManagedConnection instance.

• When EJB A regains control, EJB A can use the same connection handle (provided EJB A

had not called close on the connection handle) to access EIS resources; all recoverable units

of work on the EIS resource manager will be included in the existing local transaction

context.

Note: If EJB A closes the connection handle before calling EJB B, and then reacquires the

connection handle (when regaining control), the container should ensure that the local

transaction context stays associated with the shared connection.

• EJB A eventually calls close on its connection handle. The container gets a connection close

event notification based on the scenario described in section 5.8.3.

• Since there is an uncompleted local transaction associated with the underlying physical

connection, the container does not initiate a cleanup of the ManagedConnection on

receiving the connection close event notification. The container must still go through the

completion process for the local transaction.

• When the business method invocation on the EJB A instance completes successfully

without any application error, the container starts the completion protocol for the local

transaction. The container calls the LocalTransaction.commit method to commit the

transaction.

• After the local transaction completes, the container initiates a cleanup (now there is no

active local transaction) of the physical connection instance by calling

ManagedConnection.cleanup method.
73 October 7, 2000

Transaction Management Connector Architecture 1.0
FIGURE 24.0 OID: Connection Sharing across Component instances

Application Server

Container
LocalTransaction

Pre-condition: Container decides to perform connection sharing and local

EJB A

Component Group that allows
Local Transaction Management

EJB B

LocalTransaction.begin

Container dispatches client-initiated
business method to EJB A instance

Business method ends without any application error

LocalTransaction.commit

Local Transaction Completed

ManagedConnection

close

ManagedConnection.getConnection

ManagedConnection.cleanup

ManagedConnection.getConnection

EJB A gets a connection handle and performs unit of work
on EIS resource manager

Method Invocation

EJB B gets an EIS connection and performs its
unit of work on EIS resource manager under the
local transaction context

Connection Request

Connection Request

Connection cleanup done and
default state is restored

close

javax.resource.cci.
Connection

transaction management.
74 October 7, 2000

Transaction Management Connector Architecture 1.0
Note: The container should initiate cleanup of the ManagedConnection instance in the

case where EJB A does not call close on the connection handle before returning. The

container identifies this need for cleanup of ManagedConnection based on the scope of

connection sharing.

• On the cleanup method invocation, the ManagedConnection instance does a cleanup of

its local transaction related state and resets itself to a default state.

• The container returns the physical connection to the pool for handling subsequent

connection requests.

6.11.2 Component-Managed Transaction Demarcation

In this scenario, both stateful session beans A and B do bean-managed transaction demarcation

using the JTA UserTransaction interface. Both EJBs A and B access a single EIS resource man-

ager as part of their business logic. The container has decided to share physical connection and

use local transaction for the method invocations across EJBs A and B. (See Figure 25.0.)

The following steps happen in this scenario:

• The client invokes a method on EJB A with no transaction context. Since EJB A will manage

transactions itself, the container dispatches the method invocation to the EJB A instance

without any associated transaction context.

• In its method implementation, the EJB A instance acquires a connection to the EIS and then

begins a transaction by invoking UserTransaction.begin method. A container is should

also support the case where a component invokes UserTransaction.begin method

before acquiring a connection.
• When EJB instance invokes UserTransaction.begin method, the container starts a local

transaction on the physical connection (ManagedConnection instance) by calling

LocalTransaction.begin method.

To support this, the container provides an implementation of the UserTransactionn
interface. The UserTransaction implementation delegates transaction demarcation calls

to the LocalTransaction instance if local transaction is being used; in other cases, the

UserTransaction implementation delegates to the transaction manager.

The container also starts managing the association of the local transaction context with the

ManagedConnection instance. Any recoverable unit of work performed by the EJB A

instance on the EIS resource manager is now automatically included under the local

transaction context.

• The EJB A now invokes a method on the EJB B instance. In this scenario, the EJB A does not

call close on the connection handle before invoking a method on EJB B.

• The container retains the association of the connection with the local transaction context

across this method invocation from EJB A to EJB B. This means that any unit of work that

EJB B instance will perform on the EIS resource manager (in the invoked method) will be

automatically included as part of the current local transaction.

• In the invoked method, the EJB B instance makes a request to acquire a connection to the

same EIS resource manager. The container returns a connection handle using the same

ManagedConnection instance (which represents the physical connection) that was used

for handling the connection request from the EJB A instance. The container retains the local

transaction association with this ManagedConnection instance.

• Before the method on the EJB B instance completes, EJB B calls close on the connection

handle. The container does not initiate any cleanup on the physical connection at this time

since there is an incomplete local transaction associated with the physical connection.
75 October 7, 2000

Transaction Management Connector Architecture 1.0
FIGURE 25.0 OID: Connection Sharing across Component instances

• On getting the control back, EJB A can use the previously acquired connection handle

(provided EJB A had not previously called close on the connection handle) to access EIS

resources; any recoverable unit of work on the EIS resource manager will be included in

the existing local transaction context.

LocalTransaction.begin

Application Server

Container LocalTransaction

Pre-condition: Container decides to perform connection sharing and

EJB A

Component Group that allows
Local Transaction Management

EJB B

Container dispatches client-initiated
business method to EJB A instance

local transaction management

LocalTransaction.commit

Local Transaction Completed

ManagedConnection

Connection

close

ManagedConnection.getConnection

ManagedConnection.cleanup

ManagedConnection.getConnection

EJB A performs unit of work of EIS resource manager

Method Invocation

Connection Request

Connection Request

Connection cleanup done and
default state is restored

JTA

UserTransaction.begin

EJB B performs unit of work of EIS resource manager
under same local transaction context

UserTransaction.commit

close

 UserTransaction

Resource Adapter

javax.resource.cci.
76 October 7, 2000

Transaction Management Connector Architecture 1.0
• The EJB A instance calls UserTransaction.commit method to initiate commit of the

transaction. The container handles this commit request successfully by calling the method

LocalTransaction.commit to commit the local transaction.

• The EJB A calls close on the connection handle. The container gets a connection close event

notification based on the scenario described in section 5.8.3. Since there is no local

transaction associated with the ManagedConnection instance, the container initiates a

clean-up of the ManagedConnection instance by calling Managed-Connection.cleanup
method.

• If the EJB A instance had called close on the connection handle before invoking

UserTransaction.commi t in the same method, then the container would not initiate any

cleanup of the ManagedConnection instance on this connection close. The container

initiates cleanup of the ManagedConnection only when the associated local transaction is

completed on the UserTransaction.commi t invocation.

• The container identifies the need for initiating cleanup of the ManagedConnection
instance based on the scope of the connection sharing. If cleanup of ManagedConnection
is needed, the container should initiate cleanup even in the case where EJB A has not called

close on the connection handle before returning.

• On the cleanup method invocation, the ManagedConnection instance does a cleanup of

its local transaction related state and resets itself to a default state.

• The container returns the physical connection to the pool for handling subsequent

connection requests.

6.12 Connection Association
The connection sharing mechanism enables an application server to allow a physical connec-

tion and its state to be shared across multiple methods on a single component instance or across

component instances.

According to the connection management contract, a connection handle is created from a Man-
agedConnection instance using the method ManagedConnection .getConnection . A connec-

tion handle maintains an association with the underlying ManagedConnection instance.

If a component instance obtains and holds a connection handle across multiple invocations, the

container needs a mechanism to change the association of a connection handle to different Man-
agedConnection instances depending on the connection sharing scope.

Scenario
In the scenario shown in Figure 26.0, session bean A acts as a client of entity bean C and makes

invocations on the methods of entity bean C. The session bean B also acts as a client of entity

bean C. The EJB C is an entity bean that may be shared across multiple clients.

The EJBs A and C define a connection sharing scope. Both EJBs A and C share the same physical

connection across a local transaction that spans across the methods on EJBs A and C. Similarly,

EJB B and C define another different connection sharing scope. EJBs B and C also share the

same physical connection across a local transaction that spans the two instances.
77 October 7, 2000

Transaction Management Connector Architecture 1.0
FIGURE 26.0 Connection Sharing Scenario

In this scenario, the EJB C instance obtains an application-level connection handle (using the

method getConnection on the ConnectionFactory) during its creation. The EJB C instance

holds the connection handle during its lifetime.

The EJB A instance gets a connection handle using the connection factory and invokes a meth-

od on EJB C instance under the current local transaction context. In this case, the container has

decided to use local transaction management.

At a different instant, the EJB B instance gets a connection handle using the connection factory

and invokes a method on EJB C under a different local transaction context. The container is

again managing the current transaction as a local transaction.

In both cases, depending on the connection sharing scope (defined in terms of the shared phys-

ical connection—ManagedConnection instance) in which the EJB C instance is called, the con-

tainer needs a mechanism to associate the connection handle (held by the EJB C instance as part

of its state) with the current ManagedConnection instance.

FIGURE 27.0 State diagram of application-level Connection Handle

EJB A

EJB C

client
invocation

Container

EJB B

<Session Bean>

<Session Bean>

<Entity Bean>

client
invocation

Active

Closed

ManagedConnection .
getConnection

Connection .close

ManagedConnection .
associateConnection

associated with a
ManagedConnection

no longer associated with a
ManagedConnection
78 October 7, 2000

Transaction Management Connector Architecture 1.0
Connection Association
The interface ManagedConnection defines a method associateConnection as follows:

public interface javax.resource.spi.ManagedConnection {
public void associateConnection(Object connection)

throws ResourceException;
//...

}

The associateConnection method should be used by the container to change the association

of an application-level connection handle with a ManagedConnection instance. The container

should find the right ManagedConnection instance (depending on the connection sharing

scope) and call the associateConnection method. To achieve this, container needs to keep

track of connection handles (acquired by component instances) and ManagedConnection in-

stances in an implementation specific mechanism.

The container uses the connection association mechanism when it supports connection sharing.

Depending on the connection sharing scenario (an illustrative scenario is shown in this sec-

tion), the container invokes the associateConnection method. The local transaction manage-

ment leads to a special application of connection sharing when a local transaction spans

multiple component instances. In this case, the physical connection is shared among compo-

nent instances within the local transaction scope. The container invokes associateConnec-
tion based on the connection sharing scope and local transaction context.

If the container uses the XAResource -based transaction management contract, then the con-

tainer does not need to use the connection association mechanism.

Implementation
The resource adapter is required to implement the associateConnection method to support

connection sharing. The support for this method is required independent (note that the con-

tainer makes the decision to invoke associateConnection method) of the transaction sup-

port level of the resource adapter.

The method implementation for a ManagedConnection should dissociate the connection han-

dle (passed as a parameter) from its currently associated ManagedConnection and associate

the new connection handle with itself.

Note that the switching of connection association must happen only for connection handles

and ManagedConnection instances that correspond to the same ManagedConnectionFactory
instance. The container should enforce this restriction in an implementation-specific manner.

If a container cannot enforce the restriction, then the container should not use the connection

sharing mechanism.
79 October 7, 2000

Transaction Management Connector Architecture 1.0
6.13 Requirements
The following section outlines requirements for the transaction management contract.

6.13.1 Resource Adapter

A resource adapter can be classified based on the level of transaction support, as follows:

• Level NO_TRANSACTION—The resource adapter supports neither resource manager local

nor JTA transactions. It implements neither XAResource nor LocalTransaction
interfaces.

• Level LOCAL_TRANSACTION—The resource adapter supports resource manager local

transactions by implementing the LocalTransaction interface. The local transaction

management contract is specified in the section 6.7.

• Level XA_TRANSACTION—The resource adapter supports both resource manager local and

JTA transactions by implementing LocalTransaction and XAResource interfaces

respectively. The requirements for supporting XAResource -based contract are specified in

section 6.6.

Note: Other levels of support (includes any transaction optimizations supported by an un-

derlying resource manager) are outside the scope of the connector architecture.

The above levels reflect the major steps of transaction support that a resource adapter needs to

make to allow external transaction coordination. Depending on its transactional capabilities

and requirements of its underlying EIS, a resource adapter can choose to support any one of

the above transaction support levels.

6.13.2 Application Server

An application server is required to support resource adapters with all three levels of transac-

tion support—NO_TRANSACTION, LOCAL_TRANSACTION, and XA_TRANSACTION.

The following are the requirements for an application server for the transaction management

contract:

• The application server is required to support a transaction manager that manages

transactions using the JTA XAResource -based contract. The requirements for a transaction

manager to support an XAResource -based contract are specified in section 6.6.3 on page

62.

• The application server is required to use the LocalTransaction interface-based contract

to manage local transactions for a resource manager.

• The application server is required to use the deployment descriptor mechanism to

ascertain the transactional capabilities of a resource adapter. Refer to section 10.3 for

details on the deployment descriptor specification.

• The application server is required to implement the javax.resource.spi.-
ConnectionEventListener interface to get transaction-related event notifications.

• The application server is required to support the connection sharing mechanism. Refer to

the section 6.9 for more details.
80 October 7, 2000

Security Architecture Connector Architecture 1.0
7 Security Architecture

The following chapter specifies a security architecture for the integration of EISs with the J2EE

platform. It adds EIS integration-specific security details to the security requirements specified

in other J2EE specifications.

7.1 Overview
It is critical that an enterprise be able to depend on the information in its EIS for its business

activities. Any loss or inaccuracy of information or any unauthorized access to the EIS can be

extremely costly to an enterprise. There are mechanisms that can be used to protect an EIS

against such security threats, including:

• Identification and authentication of principals (human users) to verify they are who they

claim to be.

• Authorization and access control to determine whether a principal is allowed to access an

application server and/or an EIS.

• Security of communication between an application server and an EIS. Communication

over insecure links can be protected using a protocol (for example, Kerberos) that provides

authentication, integrity, and confidentiality services. Communication can also be

protected by using a secure links protocol (for example, SSL).

7.2 Goals
The security architecture is designed to meet the following goals:

• Extend the end-to-end security model for J2EE-based applications to include integration

with EISs based on the connector architecture.

• Support authentication and authorization of users who are accessing EISs.

• Keep the security architecture technology neutral and enable the specified security

contract to be supported by various security technologies.

• Enable the security architecture to support a range of EISs with different levels of security

support and existing security environments.

• Support security configuration of a resource adapter in an operational environment.

• Keep the security model for connector architecture-based EIS integration transparent to an

application component provider. This includes providing support for single sign-on across

multiple EISs.

The non-goals of the security model for EIS integration are as follows:

• Mandate a specific technology and describe how it can be used to implement the security

architecture for connector architecture-based EIS integration.

• Specify and mandate a specific security policy. The security architecture enables an

application server and EIS to support implementation and administration of security

policies based on their respective requirements.
81 October 7, 2000

Security Architecture Connector Architecture 1.0
7.3 Terminology
The following terms have been used in this chapter:

• Principal : A principal is an entity that can be authenticated by an authentication

mechanism deployed in an enterprise. A principal is identified using a principal name
and authenticated using authentication data . The content and format of the principal

name and the authentication data depend upon the authentication mechanism.

• Security Attributes : A principal has a set of security attributes associated with it.

These security attributes are related to the authentication and authorization mechanisms.

Examples are: security permissions, credentials for a principal.

• Credential : A credential contains or references security information that can authenticate

a principal to additional services. A principal acquires a credential upon authentication or

from another principal that allows its credential to be used (the latter is termed principal
delegation).

• End user: An end user is an entity (human or service) that acts as a source of a request

to an application. An end user is represented as a security principal within a Subject as

specified in the JAAS framework [7].

• Initiating Principal : The security principal representing the end-user that interacts

directly with the application. An end-user can authenticate using either a web client or an

application client.

• Caller Principal : A principal that is associated with an application component instance

during a method invocation. For example, an EJB instance can call getCallerPrincipal
method to get the principal associated with the current security context.

• Resource Principal : A security principal under whose security context a connection to

an EIS instance is established.

• Security domain : A scope within which certain common security mechanisms and

policies are established. This specification does not specify the scope of a security domain.

An enterprise can contain more than one security domain. Thus an application server and

an EIS could either be in the same or different security domains. The Security Scenarios on

page 157 provide illustrative examples of how security domains can be setup and

managed.

In a managed environment, application components are deployed in web or EJB containers.

When a method gets invoked on a component, the principal associated with the component in-

stance is termed a caller principal.

The relationship between an initiating principal and a caller principal depends on the principal

delegation option for inter-container and inter-component calls. This form of principal delega-

tion is out of the scope of the connector architecture.

The relationship of a resource principal and its security attributes (example: credentials, access

privileges) to an initiating/caller principal depends on how the resource principal has been set-

up by the system administrator or deployer.

Refer to section 8.2 for details on interfaces and classes that are used to represent a resource

principal and its credentials.

7.4 Application Security Model

Note: The following section is a brief summary of the security model from the perspective

of an application component provider. The reader should refer to the relevant specifica-

tions for more details.
82 October 7, 2000

Security Architecture Connector Architecture 1.0
The application component requests a connection to be established under the security context

of a resource principal. The security context includes security attributes—access privileges, au-

thorization level—for a resource principal. Once a connection is established successfully, all ap-

plication-level invocations to the EIS instance using the connection happen under the security

context of the resource principal.

The application component provider has the following two choices related to EIS sign-on:

• Allow the deployer to set up the resource principal and EIS sign-on information. For

example, the deployer sets user name and password for establishing a connection to an EIS

instance.

• Perform sign-on to an EIS from the component code by providing explicit security

information for a resource principal.

The application component provider uses a deployment descriptor element (example: res-
auth for EJB components) to indicate the requirements for one of the above two approaches.

If the res-auth element is set to Application , the component code performs a programmatic

sign-on to the EIS; if the res-auth element is Container , the application server takes the re-

sponsibility of setting up and managing EIS sign-on.

7.4.1 Scenario: Container-managed Sign-on

The application component provider sets the res-auth deployment descriptor element to be

Container letting the application server take the responsibility of managing EIS sign-on.

The deployer sets up the principal mapping such that the user account for connecting to the EIS

instance is always eStoreUser . The deployer also configures the authentication data (example,

password) needed to authenticate eStoreUser to the EIS.

The component code invokes the getConnection method on the ConnectionFactory in-

stance with no security-related parameters. The component relies on the application server to

manage sign-on to the EIS instance based on the security information configured by the de-

ployer.

// Method in an application component
Context initctx = new InitialContext();

// perform JNDI lookup to obtain connection factory
javax.resource.cci.ConnectionFactory cxf =

(javax.resource.cci.ConnectionFactory)initctx.lookup(
“java:comp/env/eis/MyEIS”);

// Invoke factory to obtain a connection. The security
// information is not passed in the getConnection method
javax.resource.cci.Connection cx = cxf.getConnection();
...

7.4.2 Scenario: Component-Managed Sign-on

The application component provider sets the res-auth element to be Application.

The component code performs a programmatic sign-on to the EIS. The application component

passes explicit security information (username, password) to the getConnection method of

the ConnectionFactory instance.

// Method in an application component
Context initctx = new InitialContext();

// perform JNDI lookup to obtain connection factory
83 October 7, 2000

Security Architecture Connector Architecture 1.0
javax.resource.cci.ConnectionFactory cxf =
(javax.resource.cci.ConnectionFactory)initctx.lookup(

“java:comp/env/eis/MyEIS”);

// Invoke factory to obtain a connection
com.myeis.ConnectionSpecImpl properties = //.. get a new ConnectionSpec
properties.setUserName(“...”);
properties.setPassword(“...”);
javax.resource.cci.Connection cx = cxf.getConnection(properties);
...

7.5 EIS Sign-on
Creating a new physical connection requires a sign-on to an EIS instance. Changing the security

context on an existing physical connection can also require EIS sign-on; the latter is termed re-

authentication.

An EIS sign-on typically involves one or more of the following steps. (This section explains all

these mechanisms.):

• Determining a resource principal under whose security context a physical connection to an

EIS will be established.

• Authentication of a resource principal if it is not already authenticated.

• Establishing a secure association between the application server and the EIS. This enables

additional security mechanisms (example, data confidentiality and integrity) to be applied

to communication between the two entities.

• Access control to EIS resources.

7.5.1 Authentication Mechanism

An application server and an EIS collaborate to ensure the proper authentication of a resource

principal which establishes a connection to an underlying EIS. The connector architecture iden-

tifies the following as the commonly-supported authentication mechanisms:

• basic-password: Basic user-password- based authentication mechanism specific to an

EIS

• kerbv5: Kerberos version 5-based authentication mechanism

The auth-mech-type element is used in the deployment descriptor to specify whether or not

a resource adapter supports a specific authentication mechanism. [Refer to section 10.6 for

more details on the specification of the deployment descriptor for a resource adapter.]

The connector architecture does not require that a specific authentication mechanism be sup-

ported by an application server and an EIS. An application server may support any other au-

thentication mechanisms for EIS sign-on. The connector security architecture is independent of

security mechanisms.

7.5.2 Resource Principal

When an application component requests a connection from a resource adapter, the connection

request is made under the security context of a resource principal. The deployer can set a re-

source principal based on the following options:

• Configured Identity: In this case, a resource principal has its own configured identity and

security attributes independent of the identity of the initiating/caller principal. The

identity of resource principal can be configured either through a configuration of the

principal at deployment time or specified dynamically by a component at the connection

creation. The scenario EStore Application on page 157 illustrates an example where
84 October 7, 2000

Security Architecture Connector Architecture 1.0
connections to an EIS are always established under the security context of a valid EIS user

account. This happens independent of the initiating or caller principal. For example: if a

caller principal is A, then the configured resource principals can be B and Con two different

EIS instances; where A, B, and C are independent identities.

• Principal Mapping: A resource principal is determined by mapping from the identity

and/or security attributes of the initiating/caller principal. In this case, a resource

principal does not inherit identity or security attributes of a principal that it has been

mapped from; the resource principal gets its identity and security attributes based on the

mapping. For example: if caller principal has identity A, then the mapped resource

principal is mapping(A,EIS1) and mapping(A, EIS2) on two different EIS instances.

• Caller Impersonation: A resource principal acts on behalf of an initiating/caller principal.

Acting on behalf of a caller principal requires that the caller’s identity and credentials be

delegated to the EIS. The mechanism by which this is accomplished is specific to a security

mechanism and an application server implementation. An example of the impersonation

is shown in the scenario Employee Self Service Application on page 159.

In some scenarios, a caller principal can be a delegate of an initiating principal. In this case,

a resource principal transitively impersonates an initiating principal.

The support for principal delegation is typically specific to a security mechanism. For

example, Kerberos supports a mechanism for the delegation of authentication. [Refer to

Kerberos v5 specification for more details]. The security technology specific details are out

of scope of the connector architecture.

• Credentials Mapping: This mechanism may be used when an application server and EIS

support different authentication domains. For example, the initiating principal has been

authenticated and has public key certificate-based credentials. The security environment

for the EIS is configured with the Kerberos authentication service. The application server

is configured to map the public key certificate-based credentials associated with the

initiating principal to the Kerberos credentials. In this case, the resource principal is the

same as the caller principal with the mapped credentials.

In the case of credential mapping, the mapped resource principal has the same identity as

the initiating/caller principal. For example, a principal with identity A has initial

credentials cred(A,mech1) and has credentials cred(A,mech2) after mapping. The

mech1 and mech2 represents different mechanism types.

7.5.3 Authorization Model

The authorization checking to ensure that a principal has access to an EIS resource can be ap-

plied at either (or both) of the following:

• At the EIS.

• At the application server.

Authorization checking at the target EIS can be done in an EIS-specific way and is not specified

here. For example, an EIS can define its access control policy (in a security technology depen-

dent) in terms of its specific security roles and permissions.

Authorization checking can also be done at the application server level. For example, an appli-

cation server can allow a principal to create a connection to an EIS only if the principal is au-

thorized to do so. J2EE containers (such as EJB and Servlet containers) support both

programmatic and declarative security that can be used to define authorization policies. Pro-

grammatic and declarative security are defined in the individual specifications (refer to the EJB

and Servlet specifications for more details). An application component developer developing

components for EIS access must follow the requirements defined in these specifications.
85 October 7, 2000

Security Architecture Connector Architecture 1.0
7.5.4 Secure Association

The communication between an application server and an EIS can be subject to security threats

(for example, data modification, loss of data). Establishing a secure association counters such

threats. A secure association is a shared security information that allows a component on the

application server to communicate securely with an EIS.

The establishment of a secure association can include several steps:

• The resource principal is authenticated to the EIS; this may require that the target principal

in the EIS domain authenticate itself back to the application server. A target principal can

be setup by the system administrator as a security principal associated with a running EIS

instance or specific EIS resource.

• Negotiating a quality of protection, such as confidentiality or integrity.

• A pair of communicating entities—an application server and an EIS instance—establish a

shared security context using the credentials of the resource principal. The security context

encapsulates shared state information, required so that communication between the

application server and the EIS can be protected through integrity and confidentiality

mechanisms. Examples of shared state information that is part of a security context are

cryptographic keys and message sequence numbers.

A secure association between an application server and an EIS is always established by the re-

source adapter implementation. Note that a resource adapter library runs within the address

space of the application server.

A resource adapter can use any security mechanism to establish the secure association. GSS-

API (refer to IETF draft on GSS-API v2[5]) is an example of such a mechanism. Note that the

connector architecture does not require use of the GSS-API by a resource adapter or application

server.

The configuration of a mechanism for establishing secure association is outside the scope of the

connector architecture. This includes setting up the desired quality of protection during secure

communication.

Once a secure association is established successfully, the connection is associated with the se-

curity context of the resource principal. Subsequently, all application-level invocations to the

EIS instance using the connection happen under the security context of the resource principal.

7.6 Roles and Responsibilities
This section describes various roles involved in the security architecture. It also describes re-

sponsibilities of each role from the security perspective.

The roles and responsibilities of the application component provider and deployer are speci-

fied in detail in the respective J2EE component model specifications.

7.6.1 Application Component Provider

The following features are common across different J2EE component models from the perspec-

tive of an application component provider:

• An application component provider invariably avoids the burden of securing its

application and focuses on developing the business functionality of its application.

• A security-aware application component provider can use a simple programmatic

interface to manage security at an application level. The programmatic interface enables an

application component provider to program access control decisions based on the security

context—principal, role—associated with the caller of a method and to manage

programmatic sign-on to an EIS.
86 October 7, 2000

Security Architecture Connector Architecture 1.0
• An application component provider specifies security requirements for its application

declaratively in a deployment descriptor. The security requirements include security roles,

method permissions, and an authentication approach for EIS sign-on.

• More qualified roles—application server vendor, deployer, system administrator—have

the responsibility of satisfying overall security requirements (through the deployment

mechanism for resource adapters and components) and managing the security

environment.

7.6.2 Deployer

The deployer specifies security policies that ensure secure access to the underlying EISs from

application components. The deployer adapts the intended security view of an application for

EIS access, specified through a deployment descriptor, to the actual security mechanisms and

policies used by the application server and EISs in the target operational environment. The de-

ployer uses tools to accomplish the above task.

The output of the deployer’s work is a security policy descriptor specific to the operational en-

vironment. The format of the security policy descriptor is specific to an application server.

The deployer performs the following deployment tasks for each connection factory reference

declared in the deployment descriptor of an application component:

• Provides a connection factory specific security configuration that is needed for opening

and managing connections to an EIS instance.

• Binds the connection factory reference in the deployment descriptor of an application

component to the JNDI registered reference for the connection factory. Refer to section 10.5

for the JNDI configuration of a connection factory during deployment of a resource

adapter. The deployer can use the JNDI LinkRef mechanism to create a symbolic link to

the actual JNDI name of the connection factory.

• If the value of the res-auth deployment descriptor element is Container , the deployer is

responsible for configuring the security information for EIS sign-on. For example, the

deployer sets up the principal mapping for EIS sign-on.

7.6.3 Application Server

The application server provides a security environment with specific security policies and

mechanisms that support the security requirements of the deployed application components

and resource adapters, thereby ensuring a secure access to the connected EISs.

The typical responsibilities of an application server are as follows:

• Provide tools to set up security information for a resource principal and EIS sign-on when

res-auth element is set to Container . This includes support for principal delegation and

mapping for configuring a resource principal.

• Provide tools to support management and administration of its security domain. For

example, security domain administration can include setting up and maintaining both

underlying authentication services and trusts between domains, plus managing principals

(including identities, keys, attributes). Such administration is typically security technology

specific and is outside the scope of the connector architecture.

• Support a single sign-on mechanism that spans the application server and multiple EISs.

The security mechanisms and policies through which single sign-on is achieved are

outside the scope of the connector architecture.

The Appendix C specifies how JAAS can be used by an application server to support the re-

quirements of the connector security architecture.

7.6.4 EIS Vendor

The EIS provides a security infrastructure and environment that supports the security require-

ments of the client applications. An EIS can have its own security domain with a specific set of
87 October 7, 2000

Security Architecture Connector Architecture 1.0
security policies and mechanisms or it can be set up as part of an enterprise-wide security do-

main.

7.6.5 Resource Adapter Provider

The resource adapter provider provides a resource adapter that supports the security require-

ments of the underlying EIS.

The resource adapter implements the security contract specified as part of the connector archi-

tecture. Chapter 8 specifies the security contract and related requirements for a resource adapt-

er.

The resource adapter specifies its security capabilities and requirements through its deploy-

ment descriptor. Section 10.6 specifies a standard deployment descriptor for a resource adapt-

er.

7.6.6 System Administrator

The system administrator typically works in close association with administrators of multiple

EISs that have been deployed in an operational environment. The system administration tasks

can also be performed by the deployer.

The following tasks are illustrative examples of the responsibilities of the system administrator:

• Setup an operational environment based on the technology and requirements of the

authentication service, and if an enterprise directory is supported.

• Configure the user account information for both the application server and the EIS in the

enterprise dierectory.The user account information from the enterprise directory can then

be used for authentication of users requesting connectivity to the EIS.

• Establish a password synchronization mechanism between the application server and the

EIS. This ensures that the user’s security information is identical on the application server

and the EIS. When an EIS requires authentication, the application server passes the user’s

password to the EIS.
88 October 7, 2000

Security Contract Connector Architecture 1.0
8 Security Contract

This chapter specifies the security contract between the application server and the EIS. It also

specifies the responsibilities of the resource adapter provider and the application server vendor

for supporting the security contract.

This chapter references the following chapters and documents:

• The security model specified in the J2EE platform specification [8].

• Security architecture specified in Chapter 7.

• Security scenarios based on the connector architecture [refer to Appendix: Security

Scenarios on page 157].

8.1 Security Contract
The security contract between the application server and the resource adapter extends the con-

nection management contract (described in Chapter 5) by adding security specific details.

This security contract supports EIS sign-on by:

• Passing the connection request from the resource adapter to the application server,

enabling the latter to hook-in security services.

• Propagation of the security context —JAAS Subject with principal and credentials—from

the application server to the resource adapter.

8.2 Interfaces/Classes
The security contract includes the following classes and interfaces:

8.2.1 Subject

The following text has been used from the JAAS specification. For a detailed specification, refer

to JAAS documents:

A Subject represents a grouping of related information for a single entity, such as a person.

Such information includes the Subject’s identities and its security-related attributes (for exam-

ple, passwords and cryptographic keys). A Subject can have multiple identities. Each identity

is represented as a Principal within the Subject . A Principal simply binds a name to a

Subject .

A Subject can also own security-related attributes, which are referred to as Credentials .

Sensitive credentials that require special protection, such as private cryptographic keys, are

stored within a private credential set.

The Credentials intended to be shared, such as public key certificates or Kerberos server tick-

ets, are stored within a public credential set. Different permissions are required to access and

modify different credential sets.

The getPrincipals method retrieves all the principals associated with a Subject . The meth-

ods getPublicCredentials and getPrivateCredentials respectively retrieve all the pub-

lic or private credentials belonging to a Subject . The methods defined in the Set class modify

the returned set of principals and credentials.
89 October 7, 2000

Security Contract Connector Architecture 1.0
8.2.2 ResourcePrincipal

The interface java.security.Principal represents a resource principal. The following code

extract shows the Principal interface:

public interface java.security.Principal {
public boolean equals(Object another);
public String getName();
public String toString();
public int hashCode();

}

The method getName returns the name of a resource principal.

An application server should use the Principal interface (or any derived interface) to pass a

resource principal as part of a Subject to a resource adapter.

8.2.3 GenericCredential

The interface javax.resource.spi.security.GenericCredential defines a security

mechanism independent interface for accessing the security credential of a resource principal.

The GenericCredential interface provides a Java wrapper over an underlying mechanism

specific representation of a security credential. For example, the GenericCredential interface

can be used to wrap Kerberos credentials.

The connector architecture does not define any standard format and requirements for security

mechanism specific credentials. For example, a security credential wrapped by a Generic Cre-
dential interface can have a native representation specific to an operating system.

Note: A contract for the representation of mechanism-specific credentials must be estab-

lished between an application server and a resource adapter outside the scope of the con-

nector architecture. This includes requirements for the exchange of mechanism-specific

credentials between a JAAS module and GSS provider. Refer to Appendix C: JAAS based

Security Architecture for details on JAAS-based security architecture.

The GenericCredential interface enables a resource adapter to extract information about a

security credential. The resource adapter can then manage an EIS sign-on for a resource prin-

cipal by either:

• Using the credentials in an EIS specific manner if the underlying EIS supports the security

mechanism type represented by the GenericCredential instance, or,

• Using GSS-AP I [5] if the resource adapter and underlying EIS instance support GSS-API.

Interface
The following code extract shows the GenericCredential interface:

public interface javax.resource.spi.security.GenericCredential {
public String getName();
public String getMechType();
public byte[] getCredentialData()

throws javax.resource.spi.SecurityException;

public boolean equals(Object another);
public int hashCode();

}

90 October 7, 2000

Security Contract Connector Architecture 1.0
The GenericCredential interface supports a set of getter methods to obtain information

about a security credential.

The method getName returns the name of the resource principal associated with a Generic-
Credential instance.

The method getMechType returns the mechanism type for the GenericCredential instance.

The mechanism type definition for GenericCredential must be consistent with the Object

Identifier (OID) based representation specified in the GSS [5] specification. In the GenericCre-
dential interface, the mechanism type is returned as a stringified representation of the OID

specification.

The GenericCredential interface can be used to get security data for a specific security mech-

anism. An example is authentication data required for establishing a secure association with an

EIS instance on behalf of the associated resource principal. The getCredentialData method

returns the credential representation as an array of bytes. Note that the connector architecture

does not define a standard format for the returned credential data.

Implementation
If an application server supports deployment of a resource adapter which supports Generic-
Credential as part of the security contract, then the application server is required to provide

an implementation of the GenericCredential interface. Refer to the deployment descriptor

specification in Section 10.6 for details on how a resource adapter specifies its support for Ge-
nericCredential .

8.2.4 PasswordCredential

The class javax.resource.spi.security.PasswordCredential acts as a holder of user-

name and password. This class enables an application server to pass username and password

to the resource adapter through the security contract.

The method getUserName on PasswordCredential class gets the name of the resource prin-

cipal. The interface java.security.Principal represents a resource principal.

The PasswordCredential class is required to implement equals and hashCode method.

public final class javax.resource.spi.security.PasswordCredential
implements java.io.Serializable {

public PasswordCredential(String userName, char[] password) { ... }
public String getUserName() { ... }
public char[] getPassword() { ... }

public ManagedConnectionFactory getManagedConnectionFactory()
{ ... }

public void setManagedConnectionFactory(
ManagedConnectionFactory mcf) { ... }

public boolean equals(Object other) { ... }
public int hashCode() { ... }

}

The method getManagedConnectionFactory returns the ManagedConnectionFactory in-

stance for which the user name and password has been set by the application server. Refer to

the contract for ManagedConnectionFactory to see how a resource adapter uses this method.

8.2.5 ConnectionManager

The method ConnectionManager.allocateConnection is called by the resource adapter’s

connection factory instance. This method lets the resource adapter pass a connection request to

the application server, so that the latter can hook-in security and other services.
91 October 7, 2000

Security Contract Connector Architecture 1.0
public interface javax.resource.spi.ConnectionManager
extends java.io.Serializable {

public Object allocateConnection(
ManagedConnectionFactory mcf,
ConnectionRequestInfo cxRequestInfo)

throws ResourceException;
}

FIGURE 28.0 Security Contract

Depending on whether application server or application component is configured to be re-

sponsible for managing EIS sign-on (refer to Section 7.6.1), the resource adapter calls the Con-
nectionManager .allocateConnection method in one of the following ways:

• Option—Container Managed Sign-on: The application component passes no security

information in the getConnection method and the application server is configured to

manage EIS sign-on.

Security Service
Manager

ManagedConnectionFactory

Resource AdapterApplication Server

Application Component

Enterprise Information System (EIS)

Architected contract

Implementation specific

ConnectionManager ConnectionFactory
92 October 7, 2000

Security Contract Connector Architecture 1.0
The application server provides the required security information for the resource

principal through its configured security policies and mechanisms (for example, principal

mapping). The application server requests the authentication of the resource principal to

the EIS either itself or passes authentication responsibility to the resource adapter. This

aspect is explained later in the specification of the ManagedConnectionFactory interface.

• Option—Component Managed Sign-on: In this case, the application component provides

explicit security information in the getConnection method. The resource adapter invokes

the allocateConnection method by passing security information in the

ConnectionRequestInfo parameter. Since the security information in the

ConnectionRequestInfo is opaque to the application server, the application server

should rely on the resource adapter to manage EIS sign-on (explained in the

ManagedConnectionFactory interface specification under option C).

8.2.6 ManagedConnectionFactory

The following code extract shows the methods on the ManagedConnectionFactory interface

that are relevant to the security contract:

public interface javax.resource.spi.ManagedConnectionFactory
extends java.io.Serializable {

public ManagedConnection createManagedConnection(
javax.security.auth.Subject subject,
ConnectionRequestInfo cxRequestInfo)

throws ResourceException;
...

}

During the JNDI lookup, the ManagedConnectionFactory instance is configured by the appli-

cation server with a set of configuration properties. These properties include default security

information and EIS instance specific information (hostname, port number) required for initi-

ating a sign-on to the underlying EIS during the creation of a new physical connection.

The method createManagedConnection is used by the application server when it requests re-

source adapter to create a new physical connection to the underlying EIS.

Contract for Application Server
The application server may provide specific security services (principal mapping and delega-

tion, single sign-on) before using the security contract with the resource adapter. For example,

the application server can map the caller principal to a resource principal before calling the

method createManagedConnection to create a new connection (under the security context of

the resource principal).

In the container-managed sign-on, the application server should create a new instance of Sub-
ject based on the security information configured in the application server. The creation

should happen before the application server calls the method createManagedConnection on

the ManagedConnectionFactory .

If the application server maintains a cache of the security credentials (example, Kerberos TGT),

then the application server should reuse the credentials as part of the newly created Subject
instance. For example, the application server uses the method Subject.getPrivateCreden-
tials().add(credential) to add a credential to the private credential set.
93 October 7, 2000

Security Contract Connector Architecture 1.0
FIGURE 29.0 Security Contract: Subject Interface and its Containment Hierarchy

The above diagram shows the relationship between Subject , Principal , PasswordCreden-
tial and GenericCredential interfaces. Note that in the following options A and B defined

for createManagedConnection method invocation, the Subject instance contains a single re-

source principal (represented as java.security.Principal).

The application server has the following options for invoking the method createManaged-
Connection :

• Option A: The application server invokes the method createManagedConnection by

passing in a non-null Subject instance that carries a single resource principal and its

corresponding password-based credentials (represented by the class Password-
Credential that provides the user name and password). The PasswordCredential
should be set in the Subject instance as a part of the private credential set. Note that the

passed Subject can contain multiple PasswordCredential instances.

The resource adapter extracts the user name and password from this Subject instance (by

looking for PasswordCredential instance in the Subject) and uses this security

information to sign-on to the EIS instance during the connection creation.

• Option B: The application server invokes the method createManagedConnection
method by passing in a non-null Subject instance that carries a single resource principal

and its security credentials. In this option, credentials are represented through the

GenericCredential interface. A typical example is a Subject instance with Kerberos

credentials.

For example, an application server may use this option for createManagedConnection
method invocation when the resource principal is impersonating the caller/initiating

principal and has valid credentials acquired through impersonation. An application server

may also use this option for principal mapping scenarios with credentials of a resource

principal represented through the GenericCredential interface.

Note that sensitive credentials requiring special protection, such as private cryptographic

keys, are stored within a private credential set, while credentials intended to be shared,

such as public key certificates or Kerberos server tickets, are stored within a public

credential set. The two methods getPrivateCredentials and getPublicCredentials
should be used accordingly.

In case of Kerberos mechanism type, the application server must pass the principal’s TGT

(ticket granting ticket) to a resource adapter in a private credential set.

<class>

javax.security.auth.Subject

<class>

PasswordCredential

<interface>

GenericCredential

<interface>

java.security.Principal

contains

contains

contains

0-n

0-n 0-n
94 October 7, 2000

Security Contract Connector Architecture 1.0
The resource adapter uses the resource principal and its credentials from the Subject
instance to go through the EIS sign-on process before creating a new connection to the EIS.

• Option C: The application server requests resource adapter to manage the EIS sign-on by

passing a null Subject instance. The application server uses this option for the

component-managed sign-on case where security information is carried in the

ConnectionRequestInfo instance. The application server does not provide any security

information that can be used by the resource adapter for managing EIS sign-on.

During the deployment of a resource adapter, the application server should be configured to

use one of the above specified invocation options. Refer the deployment chapter 10 for more

details.

Contract for Resource Adapter
A resource adapter can do EIS sign-on and connection creation in an implementation-specific

way or it can use the GSS-API. The latter option is specified in the appendix on page 164. A re-

source adapter has the following options (corresponding to the options for an application serv-

er) for handling the invocation of the method createManagedConnection :

• Option A: The resource adapter explicitly checks whether the passed Subject instance

carries a PasswordCredential instance using the Subject.getPrivateCredentials
method.

Note that the security contract assumes that a resource adapter has the necessary security

permissions to extract a private credential Set from a Subject instance. The specific

mechanism through which such permission is set up is outside the scope of the connector

architecture.

If the Subject instance contains a PasswordCredential instance, the resource adapter

extracts the user name and password from the PasswordCredential . It uses the security

information to authenticate the resource principal (corresponding to the user name) to the

EIS during the creation of a connection. In this case, the resource adapter uses an

authentication mechanism that is EIS specific.

Since a Subject instance can carry multiple PasswordCredential instances, a Managed-
ConnectionFactory should only use a PasswordCredential instance that has been

specifically passed to it through the security contract. The method

getManagedConnectionFactory enables a ManagedConnectionFactory instance to

determine whether or not a PasswordCredential instance is to be used for sign-on to the

target EIS instance. The ManagedConnectionFactory implementation uses the equals
method to compare itself with the passed instance.

• Option B: The resource adapter explicitly checks whether passed Subject instance carries

a GenericCredential instance using the methods getPrivateCredentials and

getPublicCredentials defined on the Subject interface.

In case of Kerberos mechanism type, the resource adapter must extract Kerberos

credentials using the method getPrivateCredentials on the Subject interface.

The resource adapter uses the resource principal and its credentials (represented by the

GenericCredential interface) in the Subject instance to go through the EIS sign-on

process. For example, this option is used for Kerberos-based credentials that have been

acquired by the resource principal through impersonation.

A resource adapter uses the getter methods defined on the GenericCredential interface

to extract information about the credential and its principal. If a resource adapter is using

GSS mechanism, the resource adapter uses a reference to the GenericCredential instance

in an opaque manner and is not required to understand any mechanism-specific credential

representation. However, a resource adapter may need to interpret credential

representation if the resource adapter initiates authentication in an implementation-

specific manner.
95 October 7, 2000

Security Contract Connector Architecture 1.0
• Option C: If the application server invokes ManagedConnectionFactory .create-
ManagedConnection with a null Subject instance, then a resource adapter has the

following options:

• The resource adapter should extract security information passed through the

ConnectionRequestInfo instance. The resource adapter should authenticate

resource principal by combining the configured security information on the

ManagedConnectionFactory instance with the security information passed

through the ConnectionRequestInfo instance. The default for resource adapter is

to allow the security information in the ConnectionRequestInfo parameter to

override the configured security information in the ManagedConnectionFactory
instance.

• If the resource adapter does not find any security configuration in the Connection-
RequestInfo , resource adapter uses the default security configuration on the

ManagedConnectionFactory instance.

8.2.7 ManagedConnection

A resource adapter can re-authenticate a physical connection (one that already exists in the con-

nection pool under a different security context) to the underlying EIS. A resource adapter does

re-authentication when an application server calls getConnection method with a security

context (passed as a Subject instance) different from the context previously associated with

the physical connection.

Support for re-authentication depends on whether an underlying EIS supports re-authentica-

tion mechanism for existing physical connections. If a resource adapter does not support re-au-

thentication, then the resource adapter should ignore security information passed through the

getConnection method.

public interface javax.resource.spi.ManagedConnection {
public Object getConnection(

javax.security.auth.Subject subject,
ConnectionRequestInfo cxRequestInfo)

throws ResourceException;
...

}

The getConnection method returns a new connection handle. If re-authentication is success-

ful, the resource adapter has changed the security context of the underlying ManagedConnec-
tion instance to that associated with the passed Subject instance.

A resource adapter has the following options for handling ManagedConnection.getConnec-
tion invocation if it supports re-authentication:

• Option A: The resource adapter extracts PasswordCredential instance from the Subject
and performs an EIS-specific authentication. This option is similar to option A defined in

the specification of the method createManagedConnection on the interface

ManagedConnectionFactory .

• Option B: The resource adapter extracts GenericCredential instance from the Subject
and manages authentication either through the GSS mechanism or an implementation-

specific mechanism. This option is similar to option B defined in the specification of the

method createManagedConnection on the interface ManagedConnectionFactory .

• Option C: In this case, the Subject parameter is null . The resource adapter extracts

security information from the ConnectionRequestInfo (if there is any) and performs

authentication in an implementation-specific manner. This option is similar to option C

defined in the specification of the method createManagedConnection on the interface

ManagedConnectionFactory .
96 October 7, 2000

Security Contract Connector Architecture 1.0
8.3 Requirements
The following are the requirements defined by the security contract:

Resource Adapter
The following are the requirements defined for a resource adapter:

• Resource adapter is required to support the security contract by implementing the method

ManagedConnectionFactory.createManagedConnection .

• Resource adapter is not required to support re-authentication as part of its Managed-
Connection.getConnection method implementation.

• Resource adapter is required to specify its support for the security contract as part of its

deployment descriptor. The relevant deployment descriptor elements are [refer section

10.6 for a detailed specification]: auth-mechanism , auth-mech-type , reauthen-
tication-support and credential-interface .

Application Server
The following are the requirements defined for an application server:

• Application server is required to use the method ManagedConnectionFactory .-

createManagedConnection to pass the security context to the resource adapter during

EIS sign-on.

• Application server is required to be capable of using options - A and C - as specified in the

section 8.2.6 for the security contract.

• Application server provides an implementation of GenericCredential interface if the

following conditions are both true:

• Application server supports authentication mechanisms (specified as auth-mech-
type in the deployment descriptor) other than basic-password mechanism. For

example, application server should implement GenericCredential interface to

support kerbv5 authentication mechanism type.

• Application server supports deployment of resource adapters that are capable of

handling GenericCredential (and thereby option B as specified in section 8.2.6) as

part of the security contract.

• Application server is required to implement the method allocateConnection in its

ConnectionManager implementation.

• Application server is required to configure its use of the security contract based on the

security requirements specified by the resource adapter in its deployment descriptor. For

example, if a resource adapter specifies that it supports only basic-password
authentication, application server should use the security contract to pass

PasswordCredential instance to the resource adapter.
97 October 7, 2000

Common Client Interface Connector Architecture 1.0
9 Common Client Interface

The following chapter specifies the Common Client Interface (CCI).

9.1 Overview
The CCI defines a standard client API for application components. The CCI enables application

components and Enterprise Application Integration (EAI) frameworks to drive interactions

across heterogeneous EISs using a common client API. Figure 30.0 shows a high-level view of

the CCI and its relationship to other application components.

FIGURE 30.0 Common Client Interface

9.2 Goals
The CCI is designed with the following goals:

• It defines a remote function-call interface that focuses on executing functions on an EIS and

retrieving the results. The CCI can form a base level API for EIS access on which higher

level functionality can be built.

• It is targeted primarily towards application development tools and EAI frameworks.

• Although it is simple, it has sufficient functionality and an extensible application

programming model.

Enterprise Information
System

Resource Adapter

Application Component

Application Server

System Contracts

Common Client

EIS specific interface

Interface
98 October 7, 2000

Common Client Interface Connector Architecture 1.0
• It provides an API that both leverages and is consistent with various facilities defined by

the Java J2SE and J2EE platforms.

• It is independent of a specific EIS; for example: data types specific to an EIS. However, the

CCI can be capable of being driven by EIS-specific metadata from a repository.

An important goal for the CCI is to complement existing standard JDBC API and not to replace

this API. The CCI defines a common client API that is parallel to the JDBC for EISs that are not

relational databases.

Since the CCI is targeted primarily towards application development tools and EAI vendors, it

is not intended to discourage the use of JDBC APIs by these vendors. For example, an EAI ven-

dor will typically combine JDBC with CCI by using the JDBC API to access relational databases

and using CCI to access other EISs.

9.3 Scenarios
The following scenarios illustrate the use of CCI by enterprise tools and Enterprise Application

Integration (EAI) vendors:

9.3.1 Enterprise Application Integration Framework

The EAI vendor uses the Common Client Interface as a standard way to plug-in resource

adapters for heterogeneous EISs. The vendor provides an application integration framework

on top of the functionality provided by the resource adapters. The framework uses the stan-

dard CCI interfaces to drive interactions with the connected EISs.

Figure 31.0 also shows the use of JDBC by the EAI framework for connecting to and accessing

relational databases.

FIGURE 31.0 Scenario: EAI Framework

9.3.2 Metadata Repository and API

An EAI or application development tool uses a metadata repository to drive CCI-based inter-

actions with heterogeneous EISs. See Figure 31.0 and Figure 32.0 for illustrative examples. A

repository may maintain meta information about functions (with type mapping information

and data structures for the invocation parameters) existing on an EIS system.

Enterprise Application Integration
Framework

Resource Adapter

Common Client
Interface

JDBC Driver

JDBC API

Metadata
Repository
99 October 7, 2000

Common Client Interface Connector Architecture 1.0
Note: The specification of a standard repository API and metadata format is outside the

scope of the current version 1.0 of the connector architecture.

9.3.3 Enterprise Application Development Tool

The CCI functions as a plug-in contract for an application development tool that develops ad-

ditional functionality around a resource adapter.

The application development tool generates Java classes based on the meta information access-

ed from a metadata repository. These Java classes encapsulate CCI-based interactions and ex-

pose a simple application programming model (typically based on the JavaBeans framework)

to the application developers. An application component uses the generated Java classes for

EIS access.

An application development tool can also compose or generate an application component that

uses the generated Java classes for EIS access. See Figure 32.0.

FIGURE 32.0 Scenario: Enterprise Application Development Tool

Enterprise Application Development
Tool

Resource Adapter

Common Client
Interface

JDBC Driver

JDBC API

Application Components or
generates and/or composes

Java Classes

 Metadata
Repository
100 October 7, 2000

Common Client Interface Connector Architecture 1.0
9.4 Common Client Interface
The CCI is divided in to the following parts:

• Connection-related interfaces that represent a connection factory and an application level

connection:

• javax.resource.cci.ConnectionFactory

• javax.resource.cci.Connection

• javax.resource.cci.ConnectionSpec

• javax.resource.cci.LocalTransaction

• Interaction-related interfaces that enable a component to drive an interaction (specified

through an InteractionSpec) with an EIS instance:

• javax.resource.cci.Interaction

• javax.resource.cci.InteractionSpec

• Data representation-related interfaces that are used to represent data structures involved

in an interaction with an EIS instance:

• javax.resource.cci.Record , javax.resource.cci.MappedRecord and
javax.resource.cci.IndexedRecord

• javax.resource.cci.RecordFactory

• javax.resource.cci.Streamable

• javax.resource.cci.ResultSet

• java.sql.ResultSetMetaData

• Metadata related-interfaces that provide basic meta information about a resource adapter

implementation and an EIS connection:

• javax.resource.cci.ConnectionMetaData

• javax.resource.cci.ResourceAdapterMetaData

• javax.resource.cci.ResultSetInfo

• Additional classes: javax.resource.ResourceException and javax.resource.-
cci.ResourceWarning

See Figure 33.0 on page 102.

9.4.1 Requirements

A resource adapter provider provides an implementation of the CCI interfaces as part of its re-

source adapter implementation. The connector architecture does not mandate that a resource

adapter support the CCI interfaces as its client API.

Important: A resource adapter is allowed to support a client API specific to its underlying

EIS. An example of an EIS-specific client APIs is JDBC API for relational databases.

The connector architecture also allows a third party vendor to provide an implementation

of CCI interfaces above a resource adapter. For example, a base resource adapter supports

the system contracts and provides an EIS specific client API. A third party tools vendor

may provide the CCI implementation above this base resource adapter.

The connector architecture also allows a resource adapter implementation to support all

interfaces except the data representation-related interfaces. In this case, a third party ven-

dor provides both the development-time and run-time aspects of data structures required

to drive interactions with an EIS instance. The section on the Record interface specification

describes this case in more detail.
101 October 7, 2000

Common Client Interface Connector Architecture 1.0
FIGURE 33.0 Class Diagram: Common Client Interface

implements

inherits

association or use

<interface>
ConnectionFactory

<interface>
Connection

<interface>
Interaction

relationship

<interface>
InteractionSpec

<interface>
LocalTransaction

<interface>

RecordFactory
<interface>

Record

<interface>
MappedRecord

<interface>
IndexedRecord

<interface>
java.sql.ResultSet

contains

<interface>
java.util.Map

<interface>
java.util.List

0-n

0-1

creates

0-1

uses uses

uses

inherits inherits<interface>
Streamable

package: javax.resource.cci

0-n

0-1

0-n

<interface>

inherits

ResultSet

inherits inherits inherits

contains

0-n

contains

0-n
102 October 7, 2000

Common Client Interface Connector Architecture 1.0
9.5 Connection Interfaces
The following section specifies interfaces for the connection factory and application level con-

nection.

9.5.1 ConnectionFactory

The javax.resource.cci.ConnectionFactory provides an interface for getting connection

to an EIS instance. A component looks up a ConnectionFactory instance from the JNDI

namespace and then uses it to get a connection to the EIS instance.

The following code extract shows the ConnectionFactory interface:

public interface javax.resource.cci.ConnectionFactory
extends java.io.Serializable, javax.resource.Referenceable {

public RecordFactory getRecordFactory()
throws ResourceException;

public Connection getConnection()
throws ResourceException;

public Connection getConnection(
javax.resource.cci.ConnectionSpec properties)

throws ResourceException;

public ResourceAdapterMetaData getMetaData()
throws ResourceException;

public void setLogWriter(PrintWriter out) throws ResourceException;
public PrintWriter getLogWriter() throws ResourceException;

public void setTimeout(int milliseconds)
throws ResourceException;

public int getTimeout() throws ResourceException;
}

The getConnection method gets a connection to an EIS instance. The getConnection variant

with no parameters is used when a component requires the container to manage EIS sign-on.

In this case of the container-managed sign-on, the component does not pass any security infor-

mation.

A component may also use the getConnection variant with javax.resource.cci.Connec-
tionSpec parameter, if it needs to pass any resource adapter specific security information and

connection parameters. In the component-managed sign-on case, an application component

passes security information (example: username, password) through the ConnectionSpec in-

stance.

It is important to note that the properties passed through the getConnection method should

be client-specific (example: user name, password, language) and not related to the configura-

tion of a target EIS instance (example: port number, server name). The ManagedConnection-
Factory instance is configured with complete set of properties required for the creation of a

connection to an EIS instance. The properties passed by an application component through the

getConnection method should override the default properties configured on the Managed-
ConnectionFactory instance. Refer section 10.4.1 for configuration of a ManagedConnec-
tionFactory .
103 October 7, 2000

Common Client Interface Connector Architecture 1.0
Note that in a managed environment, the getConnection method with no parameters is the

recommended model for getting a connection. The container manages the EIS sign-on in this

case.

The setLogWriter method allows a component to associate a character output stream with a

ConnectionFactory instance. All application level error and tracing messages for the Con-
nectionFactory instance are printed to the associated output stream. Note that the output

stream for ConnectionFactory is primarily set for application-level messages; an output

stream associated with ManagedConnection or ManagedConnectionFactory instance gets

system-level messages. The separation between the scope of application-level and system-level

messages is specific to a resource adapter implementation.

The method setTimeout sets a maximum time in milliseconds that a ConnectionFactory in-

stance will wait while attempting to connect to an EIS.

The ConnectionFactory interface also provides a method to get a RecordFactory instance.

The ConnectionFactory implementation class may throw a javax.resource.NotSupport-
edException from the method getRecordFactory .

Implementation
An implementation class for ConnectionFactory is required to implement the java.io.Se-
rializable interface to support JNDI registration. A ConnectionFactory implementation

class is also required to implement javax.resource.Referenceable . Note that the jav-
ax.resource.Referenceable interface extends the javax.naming.Referenceable inter-

face. Refer section 10.5 for more details on JNDI based requirements for the

ConnectionFactory implementation.

9.5.2 ConnectionSpec

The interface javax.resource.cci.ConnectionSpec is used by an application component to

pass connection request-specific properties to the getConnection method.

The ConnectionSpec interface has been introduced to increase the toolability of the CCI. It is

recommended that the ConnectionSpec interface be implemented as a JavaBean to support

tools. The properties on the ConnectionSpec implementation class must be defined through

the getter and setter methods pattern.

The following code extract shows the ConnectionSpec interface.

public interface javax.resource.cci.ConnectionSpec {
}

The CCI specification defines a set of standard properties for an ConnectionSpec . The prop-

erties are defined either on a derived interface or an implementation class of an empty Connec-
tionSpec interface. In addition, a resource adapter may define additional properties specific

to its underlying EIS.

The following standard properties are defined by the CCI specification for ConnectionSpec :

• UserName name of the user establishing a connection to an EIS instance

• Password password for the user establishing a connection

An important point to note is about the relationship between ConnectionSpec and Connec-
tionRequestInfo . The ConnectionSpec is used at application level and is defined under the

scope of CCI; while ConnectionRequestInfo is defined as part of the system contracts. Sepa-

rate interfaces have been defined for these two to ensure the separation between CCI interfaces

and system contracts; ConnectionRequestInfo has no explicit dependency on CCI. Note that

in the 1.0 scope, a resource adapter may not implement CCI while it is required to implement
104 October 7, 2000

Common Client Interface Connector Architecture 1.0
system contracts. The mapping between CCI’s ConnectionSpec and ConnectionRequestIn-
fo is achieved in an implementation specific manner by a resource adapter.

9.5.3 Connection

A javax.resource.cci.Connection represents an application level connection handle that

is used by a component to access an EIS instance. The actual physical connection associated

with a Connection instance is represented by a ManagedConnection .

A component gets a Connection instance by using the getConnection method on a Connec-
tionFactory instance. A Connection instance may be associated with zero or more Inter-
action instances.

The following code extract shows the Connection interface:

public interface javax.resource.cci.Connection {
public Interaction createInteraction() throws ResourceException;

public ConnectionMetaData getMetaData() throws ResourceException;
public ResultSetInfo getResultSetInfo() throws ResourceException;

public LocalTransaction getLocalTransaction()
throws ResourceException;

public void setAutoCommit(boolean autoCommit)
throws ResourceException;

public boolean getAutoCommit()
throws ResourceException;

public void close() throws ResourceException;
}

The method createInteraction creates an Interaction instance associated with the Con-
nection instance. An Interaction enables a component to access EIS data and functions.

The method getMetaData returns information about the EIS instance associated with a Con-
nection instance. The EIS instance-specific information is represented by the Connection-
MetaData interface.

The method getResultSetInfo returns information on the result set functionality supported

by the connected EIS instance. If the CCI implementation does not support result set function-

ality, then the method getResultSetInfo should throw a NotSupportedException .

The method close initiates a close of the connection. The OID in Figure 11.0 on page 43 de-

scribes the resulting behavior of such an application level connection close.

The method getLocalTransaction returns a LocalTransaction instance that enables a

component to demarcate resource manager local transactions. If a resource adapter does not

allow a component to demarcate local transactions using LocalTransaction interface, then

the method getLocalTransaction should throw a NotSupportedException .

Auto Commit
The method setAutoCommit (true) sets a connection in the auto-commit mode. When a Con-
nection is in the auto-commit mode, an Interaction (associated with the Connection) au-

tomatically commits after it has been executed.

The auto-commit mode has to be turned off if multiple interactions have to be grouped in to a

single transaction and committed or rolled back as a unit. The method setAutoCommit (false)

sets the auto-commit off.

By default, the auto-commit mode is set to off for a Connection instance.
105 October 7, 2000

Common Client Interface Connector Architecture 1.0
The setAutoCommit (true) method should not be called on a Connection instance while the

connection is participating in an on-going transaction. Such an invocation should throw a Re-
sourceException with an appropriate transaction related error.

When a connection is in auto-commit mode, any method calls on the LocalTransaction in-

stance (associated with the Connection) should throw a ResourceException with an appro-

priate transaction related error.

The invocation of setAutoCommit method on a non-transactional resource adapter should

throw a javax.resource.NotSupportedException .

9.6 Interaction Interfaces
The following section specifies interfaces that enable a component to drive an interaction (as

specified in a specification) with an EIS instance and to demarcate resource manager local

transactions.

9.6.1 Interaction

The javax.resource.cci.Interaction enables a component to execute EIS functions. An

Interaction instance supports the following interactions with an EIS instance:

• An execute method that takes an input Record , output Record and an Interaction-
Spec . This method executes the EIS function represented by the InteractionSpec and

updates the output Record .

• An execute method that takes an input Record and an InteractionSpec . This method

implementation executes the EIS function represented by the InteractionSpec and

produces the output Record as a return value.

If an Interaction implementation does not support a variant of execute method, the method

should throw a javax.resource.NotSupportedException .

Refer to section 9.9.2 for details on how input and output records are created and used in the

above variants of the execute method.

An Interaction instance is created from a Connection and is required to maintain its asso-

ciation with the Connection instance. The close method releases all resources maintained by

the resource adapter for the Interaction . The close of an Interaction instance should not

close the associated Connection instance.

The following code extract shows the Interaction interface:

public interface javax.resource.cci.Interaction {

public Connection getConnection();

public void close() throws ResourceException;

public boolean execute(InteractionSpec ispec,
Record input,
Record output) throws ResourceException;

public Record execute(InteractionSpec ispec,
Record input) throws ResourceException;

// ...
}

106 October 7, 2000

Common Client Interface Connector Architecture 1.0
9.6.2 InteractionSpec

A javax.resource.cci.InteractionSpec holds properties for driving an Interaction
with an EIS instance. An InteractionSpec uses an Interaction to execute the specified

function on an underlying EIS.

The CCI specification defines a set of standard properties for an InteractionSpec . The prop-

erties are defined either on a derived interface or an implementation class of an empty Inter-
actionSpec interface. The following code extract shows the InteractionSpec interface.

public interface javax.resource.cci.InteractionSpec
 extends java.io.Serializable {

// Standard Interaction Verbs
public static final int SYNC_SEND = 0;
public static final int SYNC_SEND_RECEIVE = 1;
public static final int SYNC_RECEIVE = 2;

}

An InteractionSpec implementation is not required to support a standard property if that

property does not apply to its underlying EIS. The InteractionSpec implementation class is

required to provide getter and setter methods for each of its supported properties. The getter

and setter methods convention should be based on the Java Beans design pattern.

Standard Properties
The standard properties are as follows:

• FunctionName : A string representing the name of an EIS function. Examples are: name of

a transaction program in a CICS system or name of a business object/function module in

an ERP system. The format of the name is specific to an EIS and is outside the scope of the

CCI specification.

• InteractionVerb : An integer representing the mode of interaction with an EIS instance

as specified by the InteractionSpec . The values of interaction verb may be one of the

following:

• SYNC_SEND: The execution of an Interaction does only a send to the target EIS

instance. The input record is sent to the EIS instance without any synchronous

response in terms of an output Record or ResultSet .

• SYNC_SEND_RECEIVE: The execution of an Interaction sends a request to the EIS

instance and receives response synchronously. The input record is sent to the EIS

instance with the output received either as Record or a ResultSet .

• SYNC_RECEIVE: The execution of an Interaction results in a synchronous receive

of an output Record . An example is: a session bean gets a method invocation and it

uses this SYNC_RECEIVE form of interaction to retrieve messages that have been

delivered to a message queue.

The default for the InteractionVerb property is SYNC_SEND_RECEIVE.

If the InteractionVerb property is not defined for an InteractionSpec , then the

default mode for an interaction is SYNC_SEND_RECEIVE.

Other forms of interaction verbs are outside the scope of the CCI specification.

The CCI does not support asynchronous delivery of messages to the component instances.

The EJB 2.0 specification addresses this facility as part of its JMS integration.

• ExecutionTimeout : An integer representing the number of milliseconds an Interaction
waits for an EIS to execute the specified function.
107 October 7, 2000

Common Client Interface Connector Architecture 1.0
ResultSet Properties
The following standard properties give hints to an Interaction instance about the ResultSet
requirements:

• FetchSize : An integer representing the number of rows that should be fetched from an

EIS when more rows are needed for a result set. If the value is zero, then the hint is ignored.

The default value is zero.

• FetchDirection : An integer representing the direction in which the rows in a result set

are processed. The valid integer values are defined in the java.sql.ResultSet interface.

The default value is ResultSet .FETCH_FORWARD.

• MaxFieldSize : An integer representing the maximum number of bytes allowed for any

value in a column of a result set or a value in a Record .

• ResultSetType : An integer representing the type of the result set produced by an

execution of the InteractionSpec . The java.sql.ResultSet interface defines the

result set types.

• ResultSetConcurrency : An integer representing the concurrency type of the result set

produced by the execution of the InteractionSpec . The java.sql.ResultSet interface

defines the concurrency types for a result set.

Note that if a CCI implementation cannot support specified requirements for a result set, then

it should choose an appropriate alternative and raise a SQLWarning (from the ResultSet
methods) to indicate this condition. Refer the CCI ResultSet interface for more details.

A component can determine the actual scrolling ability and concurrency type of a result set by

invoking the methods getType and getConcurrencyType on the ResultSet interface.

Additional Properties
An InteractionSpec implementation may define additional properties besides the standard

properties. Note that the format and type of the additional properties is specific to an EIS and

is outside the scope of the CCI specification.

Implementation
It is required that the InteractionSpec interface be implemented as a JavaBean to support

tools. The properties on the InteractionSpec implementation class must be defined through

the getter and setter methods pattern.

The CCI implementation may (though is not required to) provide a BeanInfo class for the In-
teractionSpec implementation. This class provides explicit information about the properties

supported by the InteractionSpec .

An implementation class for InteractionSpec interface is required to implement the ja-
va.io.Serializable interface.

The specified properties must be implemented as either bound or constrained properties. Refer

to the Java Beans specification for details on bound and constrained properties.

Administered Object
An InteractionSpec instance may be (though it is not required) registered as an adminis-

tered object in the JNDI namespace. This enables a component provider to access Interac-
tionSpec instances using “logical” names called resource environment references. Resource

environment references are special entries in the component’s environment. The deployer

binds a resource environment reference to an InteractionSpec administered object in the op-

erational environment.

The EJB 2.0 specification [1] specifies resource environment references in more detail.
108 October 7, 2000

Common Client Interface Connector Architecture 1.0
Illustrative Scenario
The development tool introspects the InteractionSpec implementation class and shows a

property sheet with all the configurable properties. The developer then configures the proper-

ties for an InteractionSpec instance.

At run-time, the configured InteractionSpec instance is used to specify properties for the ex-

ecution of an Interaction . The run-time environment may lookup an InteractionSpec in-

stance using a logical name from the JNDI namespace.

9.6.3 LocalTransaction

The javax.resource.cci.LocalTransaction defines a transaction demarcation interface

for resource manager local transactions. An application component uses LocalTransaction
interface to demarcate local transactions. Refer chapter 6 for more details on local transactions.

Note that this interface is used for local transaction demarcation at the application level; while

the interface javax.resource.spi.LocalTransaction is defined as part of the system con-

tracts and is used by a container for local transaction management.

The following code extract shows the LocalTransaction interface:

public interface javax.resource.cci.LocalTransaction {
public void begin() throws ResourceException;
public void commit() throws ResourceException;
public void rollback() throws ResourceException;

}

Requirements
A CCI implementation may (though is not required to) implement the LocalTransaction in-

terface.

If the LocalTransaction interface is supported by a CCI implementation, then the method

Connection.getLocalTransaction should return an LocalTransaction instance. A com-

ponent may then use the returned LocalTransaction to demarcate a resource manager local

transaction on the underlying EIS instance.

A resource adapter is allowed to implement javax.resource.spi.LocalTransaction inter-

face without implementing the application-level javax.resource.cci.LocalTransaction .

In this case, a container uses the system contract level LocalTransaction interface for man-

aging local transactions. Refer 6.7 for more details on local transaction management.

9.7 Basic Metadata Interfaces
The following section specifies the interfaces that provide basic meta information about a re-

source adapter implementation and an EIS connection.

9.7.1 ConnectionMetaData

The interface javax.resource.cci.ConnectionMetaData provides information about an

EIS instance connected through a Connection instance. A component calls the method Con-
nection.getMetaData to get a ConnectionMetaData instance.

The following code extract shows the ConnectionMetaData interface:

public interface javax.resource.cci. ConnectionMetaData {
public String getEISProductName() throws ResourceException;
public String getEISProductVersion() throws ResourceException;
public String getUserName() throws ResourceException;
109 October 7, 2000

Common Client Interface Connector Architecture 1.0
}

The method getEISProductName and getEISProductVersion return information about the

EIS instance.

The method getUserName returns the user name for an active connection as known to the un-

derlying EIS instance. The name corresponds the resource principal under whose security con-

text a connection to the EIS instance has been established.

Implementation
A CCI implementation is required to provide an implementation class for the Connection-
MetaData interface.

A resource adapter provider or third party vendor may extend the ConnectionMetaData in-

terface to provide additional information. Note that the format and type of the additional in-

formation is specific to an EIS and is outside the scope of the CCI specification.

9.7.2 ResourceAdapterMetaData

The interface javax.resource.cci.ResourceAdapterMetaData provides information

about the capabilities of a resource adapter implementation. Note that this interface does not

provide information about an EIS instance that is connected through a resource adapter.

A component uses the ConnectionFactory .getMetaData method to get metadata informa-

tion about a resource adapter. The getMetaData method does not require that an active con-

nection to an EIS instance should have been established.

The following code extract shows the ResourceAdapterMetaData interface:

public interface javax.resource.cci.ResourceAdapterMetaData {
public String getAdapterVersion();
public String getAdapterVendorName();
public String getAdapterName();
public String getAdapterShortDescription();

public String getSpecVersion();

public String[] getInteractionSpecsSupported();
public boolean supportsExecuteWithInputAndOutputRecord();
public boolean supportsExecuteWithInputRecordOnly();

public boolean supportsLocalTransactionDemarcation();
}

The method getSpecVersion returns a string representation of the version of the connector

architecture specification that is supported by the resource adapter.

The method getInteractionSpecsSupported returns an array of fully-qualified names of

InteractionSpec types supported by the CCI implementation for this resource adapter. Note

that the fully-qualified class name is for the implementation class of an InteractionSpec .

This method may be used by tools vendor to find information on the supported Interaction-
Spec types. The method should return an array of length 0 if the CCI implementation does not

define specific InteractionSpec types.

The methods supportsExecuteWithInputAndOutputRecord and supportsExecuteWith-
InputRecordOnly are used by tools vendor to find information about the Interaction im-

plementation. It is important to note that Interaction implementation must support atleast

one variant of execute methods.
110 October 7, 2000

Common Client Interface Connector Architecture 1.0
The method supportsExecuteWithInputAndOutputRecord returns true if the implementa-

tion class for the Interaction interface implements public boolean execute(Interac-
tionSpec ispec, Record input, Record output) method; otherwise the method returns

false .

The method supportsExecuteWithInputRecordOnly returns true if the implementation

class for the Interaction interface implements public Record execute(InteractionSpec
ispec, Record input) method; otherwise the method returns false .

The method supportsLocalTransactionDemarcation returns true if the resource adapter

implements the LocalTransaction interface and supports local transaction demarcation on

the underlying EIS instance through the LocalTransaction interface.

The ResourceAdapterMetaData may be extended to provide more information specific to a

resource adapter implementation.

9.8 Exception Interfaces
The following section specifies ResourceException class defined by the CCI,

9.8.1 ResourceException

The javax.resource.ResourceException class is used as the root of the exception hierarchy

for CCI. A ResourceException provides the following information:

• A resource adapter-specific string describing the error. This string is a standard Java

exception message and is available through the getMessage method.

• A resource adapter-specific error code

• A reference to another exception. A ResourceException is often the result of a lower level

problem. If appropriate, this lower level exception (a java.lang.Exception or its

derived exception type) can be linked to a ResourceException instance.

A CCI implementation can extend the ResourceException interface to throw more specific

exceptions. It may also chain instances of java.lang.Exception or its subtypes to a Re-
sourceException .

9.8.2 ResourceWarning

The javax.resource.cci.ResourceWarning class provides information on the warnings re-

lated to interactions with EIS. A ResourceWarning is silently chained to an Interaction in-

stance that has caused the warning to be reported.

The methods Interaction.getWarnings enable a component to access the first Re-
sourceWarning in a chain of warnings. Other ResourceWarning instances are chained to the

first returned ResourceWarning instance.

9.9 Record
A Record is the Java representation of a data structure used as input or output to an EIS func-

tion.

A Record has both development-time and run-time aspects. See Figure 34.0. An implementa-

tion of a Record is either:

• A custom Record implementation that gets generated at the development time by a tool.

The generation of a custom implementation is based on the meta information accessed by

the tool from a metadata repository. The type mapping and data representation is

generated as part of the custom Record implementation. So the custom Record
implementation typically does not need to access the metadata repository at run-time.
111 October 7, 2000

Common Client Interface Connector Architecture 1.0
• A generic Record implementation that uses a metadata repository at run-time for meta

information. For example, a generic type of Record may access the type mapping

information from the repository at run-time.

Note: The specification of a standard repository APIs and metadata format is outside the scope

of the current version 1.0 of the connector architecture.

FIGURE 34.0 Record at Development-time and Run-time

The meta information used in a Record representation and type mapping may be available in

a metadata repository as:

• Meta information expressed in an EIS specific format. For example, an ERP system has its

own descriptive format for its meta information.

• Formatted based on the programming language that has been used for writing the target

EIS function. For example, COBOL structures used by CICS transaction programs.

• Standard representation of data structures as required for EIS functions. The standard

representation is typically aggregated in a metadata repository based on the meta

information extracted from multiple EISs.

A resource adapter may provide an implementation of all CCI interfaces except the data rep-

resentation-related interfaces—namely, Record and RecordFactory . In this case, a third party

vendor provides both development-time and run-time support for Record and RecordFacto-
ry interfaces. This requires that a Record implementation must support both component-view

and resource adapter-view contracts, as specified in the following subsections.

9.9.1 Component-view Contract

The component-view contract provides a standard contract in terms of using a Record for com-

ponents and component building tools. A Record implementation is required to support the

component-view contract.

Component Builder Tool

Metadata
Repository

Component

RecordGenerator

Resource Adapter

Resource Adapter-view
Contract

generates custom

generic Record

Record

Component-view

DEVELOPMENT TIME RUN TIME

driven by metadata

Contract
112 October 7, 2000

Common Client Interface Connector Architecture 1.0
The application programming model for a Record is as follows:

• A component creates an instance of a generated implementation class for a custom record.

The implementation class represents an EIS specific data structure.

• A component uses the RecordFactory interface (refer the component-view contract) to

create an instance of the generic Record implementation class. The implementation class

of a generic Record is independent of any EIS-specific data structure.

Note: A CCI related issue is the level of support in the CCI data representation interfaces

(namely, Record , MappedRecord and IndexedRecord) for the type mapping facility. The issue

has to be addressed based on the following parameters:

• There is no standardized mapping across various type systems. For example, the existing

type systems range from Java, CORBA, COM, COBOLand many more. It is difficult to

standardize the type specification and mappings across such a diverse set of type systems

within the connector architecture 1.0 scope.

• Building a limited type mapping facility into the CCI data representation interfaces will

constrain the use of CCI data representation interfaces across different types of EISs. For

example, it may be difficult to support EISs that have complex structured types with a

limited type mapping support.

• Building an extensive type mapping facility into the present version 1.0 CCI data

representation interfaces will limit the future extensibility of these interfaces. This applies

specifically to the support for standards that are emerging for XML-based data

representation. An important goal for CCI data representation interfaces is to support

XML-based facilities. This goal is difficult to achieve in 1.0 scope of the connector

architecture.

The specification proposes that the type mapping support for the CCI be kept open for future

versions. The connectors.next (or a separate JSR) may also focus on standardizing type map-

pings.

Type Mapping
Type mapping for EIS-specific types to Java types is not directly exposed to an application com-

ponent. For example in case of a custom Record implementation, the getter and setter methods

(defined on a Record and exposed to an application component) return the correct Java types

for the values extracted from the Record . The custom Record implementation internally han-

dles all the type mapping.

In case of a generic Record implementation, the type mapping is done in the generic Record
by means of the type mapping information obtained from the metadata repository. Since the

component uses generic methods on the Record interface, the component code does the re-

quired type casting.

The compatibility of Java types and EIS types should be based on a type mapping that is de-

fined specific to a class of EISs. For example, an ERP system from vendor X specifies a type map-

ping specific to its own EIS. Another example is type mapping between Java and COBOLtypes.

Note that the JDBC specification specifies a standard mapping of SQL data types to Java types

specific to relational databases.

In cases of both custom and generic Records , the type mapping information is provided by a

metadata repository either at development-time or run-time.

Record Interface
The javax.resource.cci.Record interface is the base interface for the representation of a

record. A Record instance is used as an input or output to the execute methods defined on an

Interaction . See Figure 35.0.
113 October 7, 2000

Common Client Interface Connector Architecture 1.0
FIGURE 35.0 Component-view Contract

The Record interface may be extended to form one of the following representations:

• javax.resource.cci.MappedRecord : A key-value pair based collection represents a

record. This interface is based on the java.util.Map.

• javax.resource.cci.IndexedRecord : An ordered and indexed collection represents a

record. This interface is based on the java.util.List.

• javax.resource.cci.ResultSet : This interface extends both java.sql.ResultSet
and javax.resource.cci.Record . A result set represents tabular data. The section 9.10

specifies the requirements for the ResultSet interface in detail.

• JavaBean based representation of an EIS data structure: An example is a custom record

generated to represent a purchase order in an ERP system or an invoice in a mainframe TP

system.

Refer to Section 9.11 for code samples that illustrate the use of record.

A MappedRecord or IndexedRecord may contain another Record . This means that Mappe-
dRecord and IndexedRecord can be used to create a hierarchical structure of any arbitrary

depth.

A basic Java type is used as the leaf element of a hierarchical structure represented by a Mappe-
dRecord or IndexedRecord .

A generated custom Record may also contain other records to form a hierarchical structure.

The following code extract shows the Record interface:

public interface javax.resource.cci.Record
extends java.lang.Cloneable, java.io.Serializable {

public String getRecordName();
public void setRecordName(String name);

<interface>

Record

<interface>
MappedRecord

<interface>
IndexedRecord

<interface>
java.util.Map

<interface>
java.util.List

inherits inherits

<interface>
ResultSet

inherits

<interface>
java.sql.ResultSet

package: javax.resource.cci

0-n

contains contains

0-n
114 October 7, 2000

Common Client Interface Connector Architecture 1.0
public void setRecordShortDescription(String description);
public String getRecordShortDescription();

public boolean equals(Object other);
public int hashCode();

public Object clone() throws CloneNotSupportedException;
}

The Record interface defines the following set of standard properties:

• Name of a Record : Note that the CCI does not define a standard format for naming a

Record. The name format is specific to an EIS type.

• Description of a Record : This property is used primarily by tools to show a description

of a Record instance.

MappedRecord and IndexedRecord Interfaces
The javax.resource.cci.MappedRecord interface is used for representing a key-value map

based collection of record elements. The MappedRecord interface extends both Record and ja-
va.util.Map interface.

public interface javax.resource.cci.MappedRecord
extends Record, java.util.Map, java.io.Serializable {

}

The javax.resource.cci.IndexedRecord interface represents an ordered collection of

record elements based on the java.util.List interface. This interface allows a component to

access record elements by their integer index (position in the list) and search for elements in the

list.

public interface javax.resource.cci.IndexedRecord
extends Record, java.util.List, java.io.Serializable {

}

RecordFactory
The javax.resource.cci.RecordFactory interface is used for creating MappedRecord and

IndexedRecord instances. Note that the RecordFactory is only used for creation of generic

record instances. A CCI implementation provides an implementation class for the RecordFac-
tory interface.

The following code extract shows the RecordFactory interface:

public interface javax.resource.cci.RecordFactory {
public MappedRecord createMappedRecord(String recordName)

throws ResourceException;

public IndexedRecord createIndexedRecord(String recordName)
throws ResourceException;

}

The methods createMappedRecord and createIndexedRecord take the name of the record

that is to be created by the RecordFactory . The name of the record acts as a pointer to the meta
115 October 7, 2000

Common Client Interface Connector Architecture 1.0
information (stored in the metadata repository) for a specific record type. The format of the

name is outside the scope of the CCI specification and specific to a CCI implementation and/

or metadata repository.

A RecordFactory implementation should be capable of using the name of the desired Record
and accessing meta information for the creation of the Record .

9.9.2 Interaction and Record

Records should be used as follows for the two variants of the execute method on the Inter-
action interface:

• boolean execute(InteractionSpec, Record input, Record output) method:

• A custom record instance is used as an input or output to the execute method. A

custom record implementation class is generated by an application development

tool or EAI framework based on the meta information.

• RecordFactory is used to create a generic MappedRecord or IndexedRecord
instance. The generic record is used as input or output to the execute method.

• Record execute(InteractionSpec, Record input) :

• The input record can be either a custom or generic record.

• The returned record is a generic record instance created by the implementation of

the execute method. The generic record instance may represent ResultSet or an

hierarchical structure (as represented through the MappedRecord and

IndexedRecord interfaces).

When Interaction .execute method is called, a generic record instance may use the connec-

tion (associated with the Interaction instance) to access the metadata from the underlying

EIS. If there is a separate metadata repository, then generic record gets the metadata from the

repository. The generic record implementation may use the above illustrative mechanism to

achieve the necessary type mapping.

The generic record implementation encapsulates the above behavior and interacts with Inter-
action implementation in the execute method to get the active connection; if so needed. The

contract between generic record and Interaction implementation classes is specific to a CCI

implementation.

9.9.3 Resource Adapter-view Contract

A resource adapter views the data represented by a Record either as:

• A stream of bytes through the Streamable interface, or,

• A format specific to a resource adapter. For example, a resource adapter may extract (or

set) the data for a Record using an interface defined specific to the resource adapter.

A resource adapter-specific interface for viewing Record representation is outside the scope of

the CCI specification. A resource adapter is required to describe the resource adapter-specific

interface to the users (tools vendors) of the resource adapter-view contract.

Streamable Interface
The javax.resource.cci.Streamable interface enables a resource adapter to extract data

from an input Record or set data into an output Record as a stream of bytes. See Figure 36.0.
116 October 7, 2000

Common Client Interface Connector Architecture 1.0
FIGURE 36.0 Streamable Interface

The Streamable interface provides a resource adapter’s view of the data set in a Record in-

stance by a component. A component uses Record or any derived interfaces to manage

records.

A component does not directly use the Streamable interface. The interface is used by a re-

source adapter implementation.

The following code extract shows the Streamable interface:

public interface javax.resource.cci.Streamable {
public void read(InputStream istream) throws IOException;
public void write(OutputStream ostream) throws IOException;

}

The method read extracts data from an InputStream and initializes fields of a Streamable ob-

ject. The method write writes fields of a Streamable object to an OutputStream . The imple-

mentations of both read and write methods for a Streamable object must call the read and

write methods respectively on the super class if there is one.

An implementation class of Record may choose to implement the Streamable interface or

support a resource adapter specific interface to manage record data.

9.10 ResultSet
A result set represents tabular data that is retrieved from an EIS instance by the execution of an

interaction. The method execute on the Interaction interface can return a ResultSet in-

stance.

The CCI ResultSet interface is based on the JDBC ResultSet interface. The javax.re-
source.cci.ResultSet extends the java.sql.ResultSet and javax.resource.cci.-
Record interfaces.

The following code extract shows the ResultSet interface:

Resource Adapter View

Component View

Streamable
<interface>

MappedRecord
<interface>
IndexedRecord

<interface> <interface>
Record

Record
<Impl Class>

implements

Resource Adapter specific
<interface>
117 October 7, 2000

Common Client Interface Connector Architecture 1.0
public interface javax.resource.cci.ResultSet
extends Record, java.sql.ResultSet {

}

FIGURE 37.0 ResultSet interface

The following section specifies requirements for a CCI ResultSet implementation.

Refer to the JDBC [3] specification and Java docs for more details on the java.sql.ResultSet
interface. The following section specifies only a brief outline of the ResultSet interface. It fo-

cuses on the differences between the implementation requirements set by the CCI and JDBC.

Note that the JDBC semantics for a ResultSet hold for the cases that are not explicitly men-

tioned in the following section.

The decision to use the JDBC ResultSet for the CCI has been taken because of the following

reasons:

• JDBC ResultSet is a standard, established, and well-documented interface for accessing

and updating tabular data.

• JDBC ResultSet interface is defined in the core java.sql package . An introduction of

an independent CCI-specific ResultSet interface (that is different from the JDBC

ResultSet interface) may create confusion in terms of differences in the programming

model and functionality.

• The use of the JDBC ResultSet interface enables a tool or EAI vendor to leverage existing

facilities that have been built over the JDBC ResultSet .

Important: A CCI implementation is not required to support javax.resource.cci.Result-
Set interface. If a CCI implementation does not support result set functionality, then it should

not support interfaces and methods that are associated with the result set functionality. An ex-

ample is the java.sql.ResultSetMetaData interface.

9.10.1 ResultSet Interface

The ResultSet interface provides a set of getXXX methods for retrieving column values from

the current row. A column value can be retrieved using either the index number of the column

<interface>

Record

<interface>
ResultSet

inherits

<interface>
java.sql.ResultSet

package: javax.resource.cci

inherits
118 October 7, 2000

Common Client Interface Connector Architecture 1.0
or the name of the column. The columns are numbered starting from one. For maximum port-

ability, result set columns within each row should be read in a left-to-right order, and each col-

umn should be read only once.

The ResultSet interface also defines a set of updateXXX methods for updating the column val-

ues of the current row.

Type Mapping
A ResultSet implementation should attempt to convert the underlying EIS specific data type

to the Java type (as specified in the XXXpart) of the getXXX method and return a suitable Java

value.

A ResultSet implementation is required to establish a type mapping between the EIS specific

data types and Java types. The type mapping is specific to an EIS.

The CCI specification does not specify standard type mappings specific to each type of EIS.

ResultSet Types
The CCI ResultSet (similar to the JDBC ResultSet) supports the following types of result set:

forward-only , scroll-insensitive and scroll-sensitive .

A forward-only result set is non-scrollable; its cursor moves only forward, from top to bottom.

The view of data in the result set depends on whether the EIS instance materializes results in-

crementally.

A scroll-insensitive result set is scrollable; its cursor can move forward or backward and can be

moved to a particular row or to a row whose position is relative to the current row. This type

of result set is not sensitive to any changes (made by another transaction or result sets in the

same transaction) that are made while the result set is open. This type of result set provides a

static view of the underlying data with respect to changes made by other result sets. The order

and values of rows are set at the time of the creation of a scroll-insensitive result set.

A scroll-sensitive result set is scrollable. It is sensitive to changes that are made while the result

set is open. This type of a result set provides more dynamic view of the underlying data.

A component can use methods ownUpdatesAreVisible , ownDeletesAreVisible and own-
InsertsAreVisible on the ResultSetInfo interface to determine whether a result set can

see its own changes while the result set is open. For example, a result set own changes are vis-

ible if the updated column values can be retrieved by calling the getXXX method after the cor-

responding updateXXX method. Refer to the JDBC [3] specification for more details on this

aspect.

Scrolling
The CCI ResultSet supports the same scrolling ability as the JDBC ResultSet .

If a resource adapter implements the cursor movement methods, then its result sets are scrol-

lable. A scrollable result set created by executing an Interaction can move through its con-

tents in both forward (first-to-last) or backward (last-to-first) direction. A scrollable result set

also supports relative and absolute positioning.

The CCI ResultSet (similar to the JDBC ResultSet) maintains a cursor that indicates the row

in the result set that is currently being accessed. The cursor maintained on a forward-only re-

sult set can only move forward through the contents of the result set. The rows are accessed in

a first-to-last order. A scrollable result set can also be moved in a backward direction (first-to-

last) and to a particular row.

Note that a CCI ResultSet implementation should only provide support for scrollable result

sets if the underlying EIS supports such a facility.
119 October 7, 2000

Common Client Interface Connector Architecture 1.0
Concurrency Types
A component can set the concurrency type of a CCI ResultSet to be either read-only or up-

datable. These types are consistent with the concurrency types defined by the JDBC Result-
Set .

A result set that uses read-only concurrency does not allow updates of its content, while an up-

datable result set allows updates to its contents. An updatable result set may hold a write lock

on the underlying data item and thus reduce concurrency.

Refer to the JDBC [3] for detailed specification and examples.

Updatability
A result set of concurrency type CONCUR_UPDATABLEsupports update, insert and delete of its

rows. The CCI support for this type of result set is similar to the JDBC ResultSet .

The methods updateXXX on the ResultSet interface are used to modify the values of an indi-

vidual column in the current row. These methods do not update the underlying EIS. The meth-

od updateRow must be called to update data on the underlying EIS. A resource adapter may

discard changes made by a component if the component moves the cursor from the current row

before calling the method updateRow .

Refer to the JDBC [3] specification for detailed specification and examples.

Persistence of Java Objects
The ResultSet interface provides the getObject method to enable a component to retrieve

column values as Java objects. The type of the Java object returned from the getObject method

is compatible to the type mapping supported by a resource adapter specific to its underlying

EIS. The updateObject method enables a component to update a column value using a Java

object.

Support for SQL Types
It is optional for a CCI ResultSet to support the SQLtype JAVA_OBJECT(as defined in the ja-
va.sql.Types).The JDBC [3] specification specifies the JDBC support for persistence of Java

objects.

The support for the following SQLtypes (as defined in the java.sql.Types) is optional for a

CCI ResultSet implementation:

• Binary large object (BLOB)

• Character large object (CLOB)

• SQL ARRAY type

• SQL REF type

• SQL DISTINCT type

• SQL STRUCT type

If an implementation of the CCI ResultSet interface does not support these types, it should

throw a java.sql.SQLException (indicating that the method is not supported) or ja-
va.lang.UnsupportedOperationException from the following methods:

• getBlob , getClob , getArray , getRef

Support for Customized SQL Type Mapping
The CCI is not required to support customized mapping of SQL structured and distinct types

to Java classes. The JDBC API defines support for such customization mechanisms.

The CCI ResultSet should throw a java.sql.SQLException (indicating that the method is

not supported) or java.lang.UnsupportedOperationException from the getObject
method that takes a java.util.Map parameter.
120 October 7, 2000

Common Client Interface Connector Architecture 1.0
9.10.2 ResultSetMetaData

The interface java.sql.ResultSetMetaData provides information about the columns in a

ResultSet instance. A component uses ResultSet .getMetaData method to get information

about a ResultSet .

Refer JDBC Javadocs for a detailed specification of the ResultSetMetaData interface.

9.10.3 ResultSetInfo

The interface javax.resource.cci.ResultSetInfo provides information on the support

provided for ResultSet functionality by a connected EIS instance. A component calls the

method Connection.getResultInfo to get the ResultSetInfo instance.

A CCI implementation is not required to support javax.resource.cci.ResultSetInfo in-

terface. The implementation of this interface is provided only if the CCI supports the Result-
Set facility.

The following code extract shows the ResultSetInfo interface:

public interface javax.resource.cci.ResultSetInfo {
public boolean updatesAreDetected(int type)

throws ResourceException;
public boolean insertsAreDetected(int type)

throws ResourceException;
public boolean deletesAreDetected(int type)

throws ResourceException;

public boolean supportsResultSetType(int type)
throws ResourceException;

public boolean supportsResultTypeConcurrency(int type,
int concurrency)
throws ResourceException;

public boolean ownUpdatesAreVisible(int type)
throws ResourceException;

public boolean ownInsertsAreVisible(int type)
throws ResourceException;

public boolean ownDeletesAreVisible(int type)
throws ResourceException;

public boolean othersUpdatesAreVisible(int type)
throws ResourceException;

public boolean othersInsertsAreVisible(int type)
throws ResourceException;

public boolean othersDeletesAreVisible(int type)
throws ResourceException;

}

The type parameter to the above methods represents the type of the ResultSet —defined as

TYPE_XXX in the ResultSet interface.

Note that these methods should throw a ResourceException in the following cases:

• A resource adapter and the connected EIS instance cannot provide any meaningful values

for these properties.

• The CCI implementation does not support the ResultSet functionality. In this case,

NotSupportedException should be thrown from invocations on the above methods.
121 October 7, 2000

Common Client Interface Connector Architecture 1.0
A component uses the methods rowUpdated , rowInserted , and rowDeleted on the Result-
Set interface to determine whether a row has been affected by a visible update, insert, or delete

is the result set is open. The methods updatesAreDetected , insertsAreDetected and de-
letesAreDetected enable a component to find whether or not changes to a ResultSet are de-

tected.

A component uses the methods ownUpdatesAreVisible , ownDeletesAreVisible and own-
InsertsAreVisible interface to determine whether a ResultSet can see its own changes

when the result set is open.

A component uses the method supportsResultSetType to check the types of ResultSet
types supported by a resource adapter and its underlying EIS instance.

The method supportsResultSetTypeConcurency provides information on the ResultSet
concurrency types supported by a resource adapter and its underlying EIS instance.

9.11 Code Samples
The following code extracts illustrate the application programming model based on the CCI.

An application development tool or EAI framework normally hides all the CCI-based pro-

gramming details from an application developer. For example, an application development

tool generates a set of Java classes that abstract the CCI-based application programming model

and offers a simple programming model to an application developer.

9.11.1 Connection

• Get a Connection to an EIS instance after lookup of a ConnectionFactory instance from

the JNDI namespace. In this case, the component allows container to manage the EIS sign-

on.

javax.naming.Context nc = new InitialContext();
javax.resource.cci.ConnectionFactory cf = (ConnectionFactory)nc.lookup(

"java:comp/env/eis/ConnectionFactory");
javax.resource.cci.Connection cx = cf.getConnection();

• Create an Interaction instance:

javax.resource.cci.Interaction ix = cx.createInteraction();

9.11.2 InteractionSpec

• Create a new instance of the respective InteractionSpec class or lookup a pre-

configured InteractionSpec in the run-time environment using the JNDI.

com.wombat.cci.InteractionSpecImpl ixSpec = // ...

ixSpec.setFunctionName("<EIS_SPECIFIC_FUNCTION_NAME>");
ixSpec.setInteractionVerb(InteractionSpec.SYNC_SEND_RECEIVE);
...

9.11.3 Generic Record

• Get a RecordFactory instance:

javax.resource.cci.RecordFactory rf = // ... get a RecordFactory

• Create a generic MappedRecord using the RecordFactory instance. This record instance

acts as an input to the execution of an interaction. The name of the Record acts as a pointer

to the meta information (stored in the metadata repository) for a specific record type.

javax.resource.cci.MappedRecord input =
rf.createMappedRecord(“<NAME_OF_RECORD”);
122 October 7, 2000

Common Client Interface Connector Architecture 1.0
• Populate the generic MappedRecord instance with input values. The component code adds

values based on the meta information it has accessed from the metadata repository.

input.put(“<key: element1>", new String(“<VALUE>”));
input.put(“<key: element2>", ...);
...

• Create a generic IndexedRecord to hold output values that are set by the execution of the

interaction.

javax.resource.cci.IndexedRecord output =
rf.createIndexedRecord(“<NAME_OF_RECORD”);

• Execute the Interaction :

boolean ret = ix.execute(ixSpec, input, output);

• Extract data from the output IndexedRecord. Note that the type mapping is done in the

generic IndexedRecord by means of the type mapping information in the metadata

repository. Since the component uses generic methods on the IndexedRecord , the

component code does the required type casting.

java.util.Iterator iterator = output.iterator();
while (iterator.hasNext()) {

// Get a record element and extract value
}

9.11.4 ResultSet

• Set the requirements for the ResultSet returned by the execution of an Interaction .

This step is optional; default values are used if requirements are not explicitly set:

com.wombat.cci.InteractionSpecImpl ixSpec = // .. get an InteractionSpec;

ixSpec.setFetchSize(20);
ixSpec.setResultSetType(ResultSet.TYPE_SCROLL_INSENSITIVE);

• Execute an Interaction that returns a ResultSet :

javax.resource.cci.ResultSet rs = (javax.resource.cci.ResultSet)
ix.execute(ixSpec, input);

• Iterate over the ResultSet . The example here positions the cursor on the first row and

then iterates forward through the contents of the ResultSet . The getXXX methods are

used to retrieve column values:

rs.beforeFirst();
while (rs.next()) {

// get the column values for the current row using getXXX method
}

• The following example shows a backward iteration through the ResultSet :

rs.afterLast();
while (rs.previous()) {

// get the column values for the current row using getXXX method
}

9.11.5 Custom Record

• Extend the Record interface to represent an EIS-specific custom Record. The interface

CustomerRecord supports a simple getter-setter design pattern for its field values. A

development tool generates the implementation class of the CustomerRecord .

public interface CustomerRecord extends javax.resource.cci.Record,
123 October 7, 2000

Common Client Interface Connector Architecture 1.0
javax.resource.cci.Streamable {

public void setName(String name);
public void setId(String custId);
public void setAddress(String address);

public String getName();
public String getId();
public String getAddress();

}

• Create an empty CustomerRecord instance to hold output from the execution of an

Interaction .

CustomerRecord customer = // ... create an instance

• Create a PurchaseOrderRecord instance as an input to the Interaction and set

properties on this instance. The PurchaseOrderRecord is another example of a custom

Record .

PurchaseOrderRecord purchaseOrder = // ... create an instance
purchaseOrder.setProductName(“...”);
purchaseOrder.setQuantity(“...”);
// ...

• Execute an Interaction that populates the output CustomerRecord instance.

// Execute the Interaction
boolean ret = ix.execute(ixSpec, purchaseOrder, customer);

// Check the CustomerRecord
System.out.println(customer.getName() + ":" +

customer.getId() + ":" +
customer.getAddress());
124 October 7, 2000

Packaging and Deployment Connector Architecture 1.0
10 Packaging and Deployment

This chapter specifies requirements for packaging and deploying a resource adapter. These re-

quirements support a modular, portable deployment of a resource adapter into a J2EE compli-

ant application server.

10.1 Overview
A resource adapter provider develops a set of Java interfaces/classes as part of its implemen-

tation of a resource adapter. These Java classes implement connector architecture-specified

contracts and EIS-specific functionality provided by the resource adapter. The development of

a resource adapter can also require use of native libraries specific to the underlying EIS.

The Java interfaces/classes are packaged together (with required native libraries, help files,

documentation, and other resources) with a deployment descriptor to create a Resource
Adapter Module . A deployment descriptor defines the contract between a resource adapter

provider and a deployer for the deployment of a resource adapter.

FIGURE 38.0 Packaging and Deployment lifecycle of a resource adapter

A resource adapter module corresponds to a J2EE module in terms of the J2EE composition hi-

erarchy [refer to the J2EE Platform specification [8] for more details on the deployment of J2EE

modules and applications]. A J2EE module represents the basic unit of composition of a J2EE

application. Examples of J2EE modules include: EJB module, application client module, and

web client module.

A resource adapter module should be deployed either:

• Directly into an application server as a stand-alone unit, or,

• Deployed with a J2EE application that consists of one or more J2EE modules in addition to

a resource adapter module. The J2EE specification specifies requirements for the assembly

and packaging of J2EE applications.

Figure 39.0 shows the composition model of a resource adapter module with other J2EE mod-

ules.

Resource Adapter
created by
Resource Adapter

Resource Adapter
Module Processed by

Deployer

DeploymentDevelopment

deploy
Application

Server

Resource
Adapter

Provider
125 October 7, 2000

Packaging and Deployment Connector Architecture 1.0
FIGURE 39.0 Deployment of Resource Adapter module

The stand-alone deployment of a resource adapter module into an application server is typical-

ly done to support scenarios in which multiple J2EE applications share a single resource adapt-

er module. However, in certain scenarios, a resource adapter module is required only by

components within a single J2EE application. The deployment option of a resource adapter

module bundled with a J2EE application supports the latter scenario.

During deployment, the deployer installs a resource adapter module on an application server

and then configures it into the target operational environment.

EJB

EJB

EJB

Web client
module

DD

2

WEB

WEB

DD

3

EJB
module

DD

EJB

EJB

EJB

4

3

DD

2

DD

APP
DD

1

DD

DD
1

DD
2

DD
3

Deployment
Tool

add/delete modules

Components J2EE ApplicationJ2EE Modules

EJB
module

DD

1

application
client

module

Resource

module

DD

Adapter

Resource

module

DD

Adapter
5

DD

5

DD
5

126 October 7, 2000

Packaging and Deployment Connector Architecture 1.0
10.2 Packaging
The file format for a packaged resource adapter module defines the contract between a re-

source adapter provider and deployer.

A packaged resource adapter includes the following elements:

• Java classes and interfaces that are required for the implementation of both the connector

architecture contracts and the functionality of the resource adapter.

• Utility Java classes for the resource adapter.

• Platform-dependent native libraries required by the resource adapter.

• Help files and documentation.

• Descriptive meta information that ties the above elements together.

Resource Adapter Archive (RAR)
A resource adapter must be packaged using the Java ARchive (JAR) format in to an RAR (Re-

sourceAdapter ARchive). For example, a resource adapter for EIS A can be packaged as an ar-

chive with a filename eisA.rar .

The RARfile must contain a deployment descriptor based on the format specified in Section

10.6. The deployment descriptor must be stored with the name META-INF/ra.xm l in the RAR

file.

The Java interfaces, implementation and utility classes (required by the resource adapter)

should be packaged as one or more JAR files as part of the resource adapter module.

The platform-dependent libraries required by the resource adapter should also be packaged

with the resource adapter module.

Sample Directory Structure
The following illustrates a listing of files in a sample resource adapter module:

/META-INF/ra.xml

/howto.html

/images/icon.jpg

/ra.jar

/client.jar

/win.dll

/solaris.so

In the above example, ra.xml is the deployment descriptor. The ra.jar and client.jar con-

tain Java interfaces and implementation classes for the resource adapter. The win.dll and so-
laris.so are examples of native libraries.

Note that a resource adapter module can be structured such that various elements are parti-

tioned using subdirectories.

Requirements
The deployer should ensure that all the JAR files (packaged within the resource adapter mod-

ule) are loaded in the operational environment.

10.3 Deployment
A deployment descriptor defines the contract between a resource adapter provider and a de-

ployer. It captures the declarative information that is intended for the deployer to enable de-

ployment of a resource adapter in a target operational environment.
127 October 7, 2000

Packaging and Deployment Connector Architecture 1.0
A resource adapter module must be deployed based on the deployment requirements specified

by the resource adapter provider in the deployment descriptor. Section 10.6 specifies the XML
DTD for the deployment descriptor for a resource adapter module.

10.3.1 Resource Adapter Provider

The resource adapter provider is responsible for specifying the deployment descriptor for a re-

source adapter.

The resource adapter provider must specify the following information in the deployment de-

scriptor:

• General information: The resource adapter provider should specify the following general

information about a resource adapter:

• Name of the resource adapter

• Description of the resource adapter

• URI of a UI icon for the resource adapter

• Name of the vendor who provides the resource adapter

• Licensing requirement and description. Note that the management of licensing is

outside the scope of the connector architecture.

• Type of the EIS system supported - example: name of a specific database, ERP

system, mainframe TP system without any versioning information

• Version of the connector architecture specification (represented as a string)

supported by the resource adapter

• Version of the resource adapter represented as a string

• ManagedConnectionFactory class: The resource adapter provider must specify the fully-

qualified name of the Java class that implements the javax.resource.spi.Managed-
ConnectionFactory interface.

• ConnectionFactory interface and implementation class: The resource adapter provider

must specify the fully-qualified name of the Java interface and implementation class for the

connection factory.

• Connection interface and implementation class: The resource adapter provider must

specify the fully-qualified name of the Java interface and implementation class for the

connection interface.

• Transactional Support: The resource adapter provider must specify the level of

transaction support provided by the resource adapter implementation. The level of

transaction support is required to be any one of the following: no_transaction ,

local_transaction or xa_transaction . Note that this support is specified for a

resource adapter and not for the underlying EIS instance.

• no_transaction : The resource adapter does not support either resource manager

local or JTA transactions. It does not implement either XAResource or

LocalTransaction interfaces.

• local_transaction : The resource adapter supports resource manager local

transactions by implementing the LocalTransaction interface. The local

transaction management contract is specified in the section 6.7.

• xa_transaction : The resource adapter supports both resource manager local and

JTA transactions by implementing the LocalTransaction and XAResource
interfaces respectively. The requirements for supporting XAResource based contract

are specified in the section 6.6.

• Configurable properties per ManagedConnectionFactory instance: The resource adapter

provider specifies name, type, description and an optional default value for the properties

that have to be configured on a per ManagedConnectionFactory instance.
128 October 7, 2000

Packaging and Deployment Connector Architecture 1.0
Each ManagedConnectionFactory instance creates connections to a specific EIS instance

based on the properties configured on the ManagedConnectionFactory instance. The

configurable properties are specified only once in the deployment descriptor, even though

a resource adapter can be used to configure multiple ManagedConnnectionFactory
instances (that create connections to different instances of the same underlying EIS type).

• Authentication Mechanism: The resource adapter provider must specify all

authentication mechanisms supported by the resource adapter. This includes the support

provided by the resource adapter implementation but not by the underlying EIS instance.

The standard values are: basic-password and kerbv5 . A resource adapter may support

one or more of these authentication mechanisms.

• basic-password: user-password based authentication mechanism that is specific

to an EIS.

• kerbv5: Kerberos version 5 based authentication mechanism.

If no authentication mechanism is specified as part of the deployment descriptor, the

resource adapter supports no standard security authentication mechanism as part of the

security contract.

• Reauthentication support: The resource adapter provider must specify whether a

resource adapter supports re-authentication of an existing physical connection.

• Extended Security Permissions: The security permissions listed in the deployment

descriptor are different from those required by the default permission set (refer to Section

11.2 for more details on security permissions).

The deployment descriptor specified by the resource adapter provider for its resource adapter

must be consistent with the XML DTD specified in Section 10.6.

Note: The connector architecture does not specify standard deployment properties for the con-

figuration of non-Java parts (example: native libraries) of a resource adapter. This applies only

to the properties of the non-Java part not exposed through the Java part of the resource adapter.

The non-Java part of a resource adapter should be configured using mechanisms specific to a

resource adapter.

10.3.2 Deployer

The deployer is responsible for using a deployment tool to configure a resource adapter in a

target operational environment. The configuration of a resource adapter is based on the prop-

erties defined in the deployment descriptor as part of the resource adapter module.

Stand-alone Resource Adapter Module
The deployment tool must first read the ra.xml deployment descriptor from the resource

adapter module .rar file.

The deployment tool must extract all pieces of the resource adapter module— native librar-

ies, Java classes— and install these pieces in the application server. The configuration of the

individual pieces is based on the deployment requirements specified in the deployment de-

scriptor.

Resource Adapter Module with J2EE Application
Refer J2EE platform specification [8] for the requirements specified for the deployment of a

J2EE application.

Configuration
The deployer must perform the following tasks to configure a resource adapter:
129 October 7, 2000

Packaging and Deployment Connector Architecture 1.0
• Configure one or more property sets (one property set per ManagedConnectionFactory
instance) for creating connections to various underlying EIS instances. The deployer

creates a property set by using a deployment tool to set valid values for various

configurable fields. The configuration of each field is based on the name, type and

description of the field specified in the deployment descriptor.

Each property set represents a specific configuration (to be set on a Managed-
ConnectionFactory instance) for creating connections to a specific EIS instance. Since a

resource adapter may be used to create connections to multiple instances of the same EIS,

there can be multiple property sets (one for each configured ManagedConnectionFactory
instance) for a single resource adapter. For example, a deployment tool may create

multiple copies of XML based deployment descriptor; each copy of the deployment

descriptor carries a specific configuration of properties for a ManagedConnection-
Factory .

• Configure application server mechanisms for the transaction management based on the

level of transaction support specified by the resource adapter.

• Configure security in the target operational environment based on the security

requirements specified by the resource adapter in its deployment descriptor.

Security Configuration
The security configuration is based on the following:

• whether or not the resource adapter supports a specific authentication mechanism and

credentials interface. The deployment descriptor includes an element auth-mechanism
that specifies a supported authentication mechanism and the corresponding credentials

interface.

• whether or not the application server is configured to support a specific mechanism type.

For example, if the application server is not configured for Kerberos mechanism, then it is

not capable of passing Kerberos credentials to the resource adapter as part of the security

contract.

During the deployment, the deployer may (though is not required to) check whether or not an

underlying EIS supports the same capabilities (example: transaction support, authentication

mechanisms) as the corresponding resource adapter.

For example, if a resource adapter provides implementation support for Kerberos based au-

thentication but the underlying EIS instance does not support Kerberos, then deployer may de-

cide not to configure Kerberos for authentication to this EIS instance. However if the deployer

does not perform such checks during deployment, any invalid configurations should lead to

runtime exceptions.

10.3.3 Application Server

An application server provides a deployment tool that supports deployment of multiple re-

source adapters. Third-party enterprise tools vendors can also provide deployment tools. The

connector architecture does not specify how third-party tools integrate with an application

server. This is beyond the scope of the connector architecture.

A deployment tool should be capable of reading the deployment descriptor from a resource

adapter module. It should enable the deployer to configure a resource adapter in the operation-

al environment and thereby reflect the values of all properties declared in the deployment de-

scriptor for the resource adapter.

A deployment tool should support management of multiple property sets (one per configured

ManagedConnectionFactory instance) for a resource adapter. This includes support for add-

ing or removing a property set from the configuration for a resource adapter.

A deployment tool should support the addition and removal of resource adapters from an op-

erational environment.
130 October 7, 2000

Packaging and Deployment Connector Architecture 1.0
An application server should use the deployment properties that describe the capabilities of a

resource adapter (for example, support level for transactions) to provide different QoS for a

configured resource adapter and its underlying EIS.

10.4 Interfaces/Classes
This section specifies Java classes/interfaces related to the configuration of a resource adapter

in an operational environment.

10.4.1 ManagedConnectionFactory

The class that implements ManagedConnectionFactory interface supports a set of properties.

These properties provide information required by the ManagedConnectionfactory for the

creation of physical connections to the underlying EIS.

A resource adapter can implement the ManagedConnectionFactory interface as a Java Bean.

As a Java Bean implementor, the resource adapter can also provide a BeanInfo class that im-

plements the java.beans.BeanInfo interface and provides explicit information about the

methods and properties supported by the ManagedConnectionFactory implementation class.

The implementation of ManagedConnectionFactory as a Java Bean improves the ability of

tools (for tools that are based on the JavaBeans framework) to manage the configuration of

ManagedConnectionFactory instances.

Note: The deployment tool should use an XML-based deployment descriptor (refer to Section

10.6) to determine the set of configurable properties for a ManagedConnectionFactory . A de-

ployment descriptor for a resource adapter specifies the name, type, description, and default

value of the configurable properties.

10.4.2 Properties Conventions

The ManagedConnectionFactory implementation class must provide getter and setter meth-

ods for each of its supported properties. The supported properties must be consistent with the

specification of configurable properties specified in the deployment descriptor.

The getter and setter methods convention must be based on the Java Beans design pattern.

These methods are defined on the implementation class and not on the ManagedConnection-
Factory interface. This requirement keeps the ManagedConnectionfactory interface inde-

pendent of any resource adapter or EIS-specific properties.

10.4.3 Standard Properties

The connector architecture identifies a standard set of properties common across various types

of resource adapters and EISs. A resource adapter is not required to support a standard prop-

erty if that property does not apply to its configuration.

These standard properties are defined as follows:

• ServerName name of the server for the EIS instance

• PortNumber port number for establishing a connection to an EIS instance

• UserName name of the user establishing a connection to an EIS instance

• Password password for the user establishing a connection

• ConnectionURL URL for the EIS instance to which to connect.

In addition to these standard properties, a ManagedConnectionFactory implementation class

should support properties specific to a resource adapter and its underlying EIS.

All properties are administered by the deployer and are not visible to an application compo-

nent provider.

The specified properties are required to be implemented as either bound or constrained prop-

erties. Refer Java Beans specification for details on bound and constrained properties.
131 October 7, 2000

Packaging and Deployment Connector Architecture 1.0
In the XML deployment descriptor, any bounds or well-defined values of properties should be

described in the description element.

10.5 JNDI Configuration and Lookup
This section specifies requirements for the configuration of the JNDI environment for a resource

adapter.

In both managed and non-managed application scenarios, an application component (or appli-

cation client) is required to look up a connection factory instance in the component’s environ-

ment using the JNDI interface. The application component then uses the connection factory

instance to get a connection to the underlying EIS. Section 5.4 specifies the application pro-

gramming model in more detail.

The following code extract shows the JNDI lookup of a javax.resource.cci.Connection-
Factory instance.

// Application Component/Client Code
obtain the initial JNDI context
Context initctx = new InitialContext();

// perform JNDI lookup to obtain connection factory
javax.resource.cci.ConnectionFactory cxf =

(javax.resource.cci.ConnectionFactory)initctx.lookup(“java:comp/
env/eis/MyEIS”);

javax.resource.cci.Connection cx = cxf.getConnection();

10.5.1 Responsibilities

In both managed and non-managed environments, registration of a connection factory instance

in the JNDI namespace should use either the JNDI Reference or Serializable mechanism.

The choice between the two JNDI mechanisms depends on:

• Whether or not the JNDI provider being used supports a specific mechanism.

• Whether or not the application server and resource adapter provide the necessary support

(specified in the respective requirements).

• Constraints on the size of serialized objects that can be stored in the JNDI namespace. The

reference mechanism allows for only a reference to the actual object to be stored in the JNDI

namespace. This is preferable to the serializable mechanism, which stores the whole

serialized object in the namespace.

The following section specifies responsibilities of the roles involved in the JNDI configuration

of a resource adapter.

Deployer
The deployer is responsible for configuring connection factory instances in the JNDI environ-

ment. The deployer should manage the JNDI namespace such that the same programming

model (as shown in section 10.5) for the JNDI-based connection factory lookup is supported in

both managed and non-managed environments.

Resource Adapter
The implementation class for a connection factory interface is required to implement both ja-
va.io.Serializable and javax.resource.Referenceable interfaces to support JNDI reg-

istration.

The following code extract shows the javax.resource.Referenceable interface:
132 October 7, 2000

Packaging and Deployment Connector Architecture 1.0
public interface javax.resource.Referenceable
extends javax.naming.Referenceable {

public void setReference(Reference ref);
}

The ManagedConnectionFactory implementation class is required to implement the ja-
va.io.Serializable interface.

To support Reference mechanism in a non-managed environment, a resource adapter or a

helper class is required to provide an implementation of the javax.naming.spi.ObjectFac-
tory interface.

Application Server
The implementation class for javax.resource.spi.ConnectionManager is required to im-

plement the java.io.Serializable interface.

An application server is required to provide an implementation class for the javax.nam-
ing.spi.ObjectFactory interface to support JNDI Reference mechanism-based connection

factory lookup. The implementation of this interface is application server specific.

Section 10.5.3 specifies more details on the Reference mechanism-based JNDI configuration in

a managed environment.

10.5.2 Scenario: Serializable

The implementation classes for both javax.resource.cci.ConnectionFactory and jav-
ax.resource.spi.ManagedConnectionFactory interfaces implement the java.io.Seri-
alizable interface.

The deployment code retrieves the configuration properties from the XML deployment de-

scriptor for the resource adapter. The deployment code then creates an instance of the Man-
agedConnectionFactory implementation class and configures properties on the instance.

// Deployment Code
// Create an instance of ManagedConnectionFactory implementation class
com.myeis.ManagedConnectionFactoryImpl mcf =

new com.myeis.ManagedConnectionFactoryImpl();

// Set properties on ManagedConnectionFactory instance
// Note: Properties are defined on the implementation class and not on the
// javax.resource.spi.ManagedConnectionFactory interface
mcf.setServerName(“...”);
mcf.setPortNumber(“...”);
...

Note that in a non-managed environment, an application developer writes the deployment

code. In a managed environment, the deployment tool typically hides the deployment code.

The deployment code uses the ManagedConnectionFactory instance to create a connection

factory instance. The code then registers the connection factory instance in the JNDI namespace.

// Deployment Code
// In managed environment, create a ConnectionManager specific to
// the application server. Note that in a non-managed environment,
// ConnectionManager will be specific to the resource adapter.
com.wombatserver.ConnectionManager cm =

new com.wombatserver.ConnectionManager(...);
133 October 7, 2000

Packaging and Deployment Connector Architecture 1.0
// Create an instance of connection factory
Object cxf = mcf.createConnectionFactory(cm);

// Get JNDI context
javax.naming.Context ctx = new javax.naming.InitialContext(env);

// Bind to the JNDI namespace specifying a factory name
ctx.bind("...", cxf);

When an application component does a JNDI lookup of a connection factory instance, the re-

turned connection factory instance should get associated with a configured ManagedConnec-
tionFactory instance and a ConnectionManager instance. The implementation class for

connection factory should achieve the association between these instances in an implementa-

tion-specific manner.

The following section illustrates JNDI configuration in a managed environment based on the

Reference mechanism. This section uses the CCI interfaces javax.resource.cci.Connec-
tionFactory and javax.resource.cci.Connection as connection factory and connection

interfaces respectively.

10.5.3 Scenario: Referenceable

The implementation class for the ConnectionFactory interface implements the javax.re-
source.Referenceable shown in the following code extract. Refer to the JNDI specification

for more details on the Referenceable interface.

public class com.myeis.ConnectionFactoryImpl implements
javax.resource.Referenceable,
java.io.Serializable,
javax.resource.cci.ConnectionFactory {

// Reference to this ConnectionFactory
javax.naming.Reference reference;

// setReference is called by deployment code
public void setReference(Reference ref) {

reference = ref;
}

// getReference is called by JNDI provider during Context.bind
public Reference getReference() throws NamingException {

return reference;
}
...

}

ObjectFactory Implementation
An application server provides a class (in an application server-specific implementation) that

implements the javax.naming.spi.ObjectFactory interface. Refer to the JNDI specification

for more details on the ObjectFactory interface.

In the ObjectFactory.getObjectInstance method, the information carried by the Refer-
ence parameter (set in the ConnectionFactoryImpl.setReference method) is used to look-

up the property set to be configured on the target ManagedConnectionFactory instance.

The mapping from a Reference instance to multiple configured property sets enables an ap-

plication server to configure multiple ManagedConnectionFactory instances with respective
134 October 7, 2000

Packaging and Deployment Connector Architecture 1.0
property sets. An application server maintains the property set configuration in an implemen-

tation-specific way based on the deployment descriptor specification.

The implementation and structure of Reference is specific to an application server. The fol-

lowing code extract is an illustrative example. It illustrates an implementation of the Object-
Factory.getObjectInstance method:

public class com.wombatserver.ApplicationServerJNDIHandler
implements javax.naming.spi.ObjectFactory {

// ...
public Object getObjectInstance(Object obj, Name name,

Context ctx, Hashtable env)
 throws Exception {

javax.naming.Reference ref = (javax.naming.Reference)obj;

// Using the information carried by the Reference instance,
// (<referenceName, logicalName> in this example) lookup
// a configured property set and then configure a
// ManagedConnectionFactory instance with specified
// properties.
// ... [implementation specific]
//
// For example: the instantiation of ManagedConnectionFactory
// implementation class and invocation of its setter method
// can be done using Java Reflection mechanism.

javax.resource.spi.ManagedConnectionFactory mcf = //...

// create a Connection Manager instance specific to the
// application server
com.wombatserver.ConnectionManager cxManager = // ...

// create a connection factory instance.
// The ConnectionManager instance provided by the application
// server gets associated with the created
// connection factory instance
return mcf.createConnectionFactory(cxManager);

}
...

}

Deployment
The following deployment code shows registration of a reference to a connection factory in-

stance in the JNDI namespace:

// Deployment Code
javax.naming.Context ctx = new javax.naming.InitialContext(env);

// Create an instance of connection factory
com.myeis.ConnectionFactoryImpl cf =

new com.myeis.ConnectionFactoryImpl();

// Create a reference for the ConnectionFactory instance
javax.naming.Reference ref = new javax.naming.Reference(

ConnectionFactoryImpl.class.getName(),
135 October 7, 2000

Packaging and Deployment Connector Architecture 1.0
new javax.naming.StringRefAddr(
“<referenceName>”, “<logicalName>”),

ApplicationServerJNDIHandler.class.getName(),
null);

cf.setReference(ref);

// bind to the JNDI namespace specifying a name for the connection factory
ctx.bind("...", cf);

Note that the deployment code should be designed as generic (though the above example does

not show it that way). The code should dynamically create an instance of a connection factory,

create a Reference instance, and then set the reference.

The Context.bind method registers a Reference to the connection factory instance in the

JNDI namespace.

Scenario: Connection Factory Lookup
The following steps occur when an application component calls the method JNDI Con-
text.lookup to lookup a connection factory instance:

• JNDI passes control to the application server; the method ObjectFactory-
.getObjectInstance implemented by the application server is called.

• The application server creates a new instance of the ManagedConnectionFactory
implementation class provided by the resource adapter.

• The application server calls setter methods on the ManagedConnectionFactory instance

to set various configuration properties on this instance. These properties provide

information required by the ManagedConnectionFactory instance to create physical

connections to the underlying EIS. The application server uses an existing property set

(configured during the deployment of a resource adapter) to set the required properties on

the ManagedConnectionFactory instance.

• After the newly created ManagedConnectionFactory instance has been configured with

its property set, the application server creates a new ConnectionManager instance.

• The application server calls the method createConnectionFactory on the

ManagedConnectionFactory instance (passing in the ConnectionManager instance from

the previous step) to get a ConnectionFactory instance.

• The application server returns the connection factory instance to the JNDI provider, so that

this instance can be returned as a result of the JNDI lookup. The application component

gets the ConnectionFactory instance as a result of the JNDI lookup.
136 October 7, 2000

Packaging and Deployment Connector Architecture 1.0
FIGURE 40.0 OID: Lookup of Connection Factory instance from JNDI

createConnectionFactory(ConnectionManager)

Application Application
Server ManagedConnectionFactory

Resource Adapter

Component
JNDI Naming
Context

Implementation
Class

lookup

JNDI passes control to the
application server

create a new instance

set properties by calling setter methods

Application server returns the
connection factory instance
This instance is the one
returned from JNDI lookup.

Connection
Manager

create a new instance

ManagedConnectionFactory-

creates a ConnectionFactory

return ConnectionFactory

Initial configuration of the resource adapter, followed by the
application deployment

instance and returns it to the
application server

Application server maintains the configuration properties
ManagedConnectionFactory instance in an implementation

specification
specific way based on the XML deployment descriptor
137 October 7, 2000

Packaging and Deployment Connector Architecture 1.0
10.6 Resource Adapter XML DTD
This section specifies the XML DTD for the deployment descriptor for a resource adapter. The

comments in the DTD specify additional requirements for syntax and semantics that cannot be

specified by the DTD mechanism.

All valid resource adapter deployment descriptors must contain the following DOCTYPE dec-

laration:

<!DOCTYPE connector PUBLIC “-//Sun Microsystems, Inc.//DTD Connector 1.0/
/EN” “http://java.sun.com/j2ee/dtds/connector_1_0.dtd”>

The root element of the deployment descriptor for a resource adapter is connector . In general,

he content of the XML elements is case sensitive.

A resource adapter (or an application server on behalf of a resource adapter) may specify ad-

ditional deployment information beyond the standard deployment descriptor. The additional

information should be stored in a separate file and should refer to the standard deployment de-

scriptor.

A resource adapter is not allowed to add any non-standard information into a standard de-

ployment descriptor.

<!--
XML DTD for Resource Adapter deployment Descriptor 1.0
-->

<!--
The connector element is the root element of the deployment descriptor for the
resource adapter. This element includes general information - vendor name, ver-
sion, specification version supported, icon - about the resource adapter mod-
ule. It also includes information specific to the implementation of the
resource adapter library as specified through the element resourceadapter.
-->
<!ELEMENT connector (display-name, description?, icon?, vendor-name, spec-ver-
sion, eis-type, version, license?, resourceadapter)>

<!--
The element resourceadapter specifies information about the resource adapter
provided by the resource adapter provider. The information includes fully-
qualified names of class/interfaces required as part of the connector archi-
tecture specified contracts, level of transaction support provided, config-
urable properties for ManagedConnectionFactory instance, one or more
authentication mechanisms supported and additional required security permis-
sions.

If there is no auth-mechanism specified as part of resource adapter element
the resource adapter does not support any standard authentication mechanisms
as part of security contract. The application server ignores the security part
of the system contracts in this case.
-->

<!ELEMENT resourceadapter (managedconnectionfactory-class, connectionfactory-
interface, connectionfactory-impl-class, connection-interface, connection-
impl-class, transaction-support, config-property*, auth-mechanism*, reauthen-
tication-support, security-permission*
)>

<!--
138 October 7, 2000

Packaging and Deployment Connector Architecture 1.0
The element auth-mechanism specifies an authentication mechanism supported by
the resource adapter. Note that this support is for the resource adapter and
not for the underlying EIS instance. The optional description specifies any
resource adapter specific requirement for the support of security contract and
authentication mechanism.

Note that basic-password mech-type should support the javax.resource.spi.se-
curity.PasswordCredential interface. The kerbv5 mech-type should support the
javax.resource.spi.security.GenericCredential interface.
-->
<!ELEMENT auth-mechanism (description?, auth-mech-type, credential-inter-
face)>

<!--
The element credential-interface specifies the interface that the resource
adapter implementation supports for the representation of the security creden-
tials. This element should be used by application server to find out the Cre-
dential interface it should use as part of the security contract.

The possible values are:
<credential-interface>javax.resource.spi.security.PasswordCredential</cre-
dential-interface>
<credential-interface>javax.resource.spi.security.GenericCredential</creden-
tial-interface>
-->
<!ELEMENT credential-interface (#PCDATA)>

<!--
The element auth-mech-type specifies type of an authentication mechanism.

The possible values are:
 <auth-mech-type>basic-password</auth-mech-type>
 <auth-mech-type>kerbv5</auth-mech-type>

Any additional security mechanisms are outside the scope of the Connector ar-
chitecture specification.
-->
<!ELEMENT auth-mech-type (#PCDATA)>

<!--
The element connectionfactory-interface specifies the fully-qualified name of
the ConnectionFactory interface supported by the resource adapter.

Example:
<connectionfactory-interface>javax.resource.cci.ConnectionFactory</connec-
tionfactory-interface>
-->
<!ELEMENT connectionfactory-interface (#PCDATA)>

<!--
The element connectionfactory-impl-class specifies the fully-qualified name of
the ConnectionFactory class that implements resource adapter specific Connec-
tionFactory interface.

Example:
<connectionfactory-impl-class>com.wombat.ConnectionFactoryImpl</connection-
factory-impl-class>
-->
139 October 7, 2000

Packaging and Deployment Connector Architecture 1.0
<!ELEMENT connectionfactory-impl-class (#PCDATA)>

<!--
The element connection-interface specifies the fully-qualified name of the
Connection interface supported by the resource adapter.

Example: <connection-interface>javax.resource.cci.Connection</connection-in-
terface>
-->
<!ELEMENT connection-interface (#PCDATA)>

<!--
The element connection-impl-class specifies the fully-qualified name of the
Connection class that implements resource adapter specific Connection inter-
face.

Example:
<connection-impl-class>com.wombat.ConnectionImpl</connection-impl-class>
-->
<!ELEMENT connection-impl-class (#PCDATA)>

<!--
The element config-entry contains a declaration of a single configuration prop-
erty for a ManagedConnectionFactory instance.

Each ManagedConnectionFactory instance creates connections to a specific EIS
instance based on the properties configured on the ManagedConnectionFactory
instance. The configurable properties are specified only once in the deployment
descriptor, even though a resource adapter can be used to configure multiple
ManagedConnectionFactory instances (that create connections to different in-
stances of the same EIS).

The declaration consists of an optional description, name, type and an optional
value of the configuration property. If the resource adapter provider does not
specify a value than the deployer is responsible for providing a valid value
for a configuration property.

Any bounds or well-defined values of properties should be described in the
description element.
-->
<!ELEMENT config-property (description?, config-property-name, config-proper-
ty-type, config-property-value?)>

<!--
The element config-property-name contains the name of a configuration proper-
ty.

Example: <config-property-name>ServerName</config-property-name>

The connector architecture defines a set of well-defined properties all of type
java.lang.String. These are as follows:
 <config-property-name>ServerName</config-property-name>
 <config-property-name>PortNumber</config-property-name>
 <config-property-name>UserName</config-property-name>
 <config-property-name>Password</config-property-name>
 <config-property-name>ConnectionURL</config-property-name>

The resource adapter provider can extend this property set to include proper-
ties specific to a resource adapter and its underlying EIS.
140 October 7, 2000

Packaging and Deployment Connector Architecture 1.0
-->
<!ELEMENT config-property-name (#PCDATA)>

<!--
The element config-property-type contains the fully qualified Java type of a
configuration property as required by ManagedConnectionFactory instance.
The following are the legal values of config-property-type:
 java.lang.Boolean, java.lang.String, java.lang.Integer,
 java.lang.Double, java.lang.Byte, java.lang.Short,
 java.lang.Long, java.lang.Float

Example: <config-property-type>java.lang.String</config-property-type>
-->
<!ELEMENT config-property-type (#PCDATA)>

<!--
The element config-property-value contains the value of a configuration entry.

Example: <config-property-value>WombatServer</config-property-value>
-->
<!ELEMENT config-property-value (#PCDATA)>

<!--
The element display-name contains a short name for the resource adapter that
is intended to be displayed by the tools
-->
<!ELEMENT display-name (#PCDATA)>

<!--
The element description is used by resource adapter provider to provide text
describing the parent element. The description element should include any in-
formation that the resource adapter provider wants to provide to the deployer.
Typically tools used by the consumer of resource adapter module will display
the description when processing the parent element
-->
<!ELEMENT description (#PCDATA)>

<!--
The element eis-type contains information about the type of the EIS. For ex-
ample, the type of an EIS can be product name of EIS independent of any version
info.

This helps in identifying EIS instances that can be used with this resource
adapter.
-->
<!ELEMENT eis-type (#PCDATA)>

<!--
The icon element contains a small icon and large icon element which specify
the URIs for a small and a large GIF or JPEG icon image to represent the ap-
plication in GUI.
-->
<!ELEMENT icon (small-icon?, large-icon?)>

<!--
The large-icon element contains the name of a file containing an icon for the
resource adapter module. The file name is relative path within the resource
adapter module. This file must be either in JPEG or GIF format. The icon is
used by tools to display information about the resource adapter module.
141 October 7, 2000

Packaging and Deployment Connector Architecture 1.0
Example:
<large-icon>lib/images/wombatadapter_large.jpg</large-icon>
-->
<!ELEMENT large-icon (#PCDATA)>

<!--
The small-icon element contains the name of a file containing an icon for the
resource adapter module. The file name is relative path within the resource
adapter module. This file must be either in JPEG or GIF format. The icon is
used by tools to display information about the resource adapter module.

Example:
<small-icon>lib/images/wombatadapter_small.jpg</small-icon>
-->
<!ELEMENT small-icon (#PCDATA)>

<!--
The element managedconnectionfactory-class specifies the fully qualified name
of the Java class that implements the javax.resource.spi.ManagedConnectionFac-
tory interface. This Java class is provided as part of resource adapter’s im-
plementation of connector architecture specified contracts.

Example:
<managedconnectionfactory-class>com.wombat.ManagedConnectionFactoryImpl</
managedconnectionfactory-class>
-->
<!ELEMENT managedconnectionfactory-class (#PCDATA)>

<!--
The element reauthentication-support specifies whether the resource adapter
implementation supports re-authentication of existing ManagedConnection in-
stance. Note that this information is for the resource adapter implementation
and not for the underlying EIS instance.

This element must be one of the following:
 <reauthentication-support>true</reauthentication-support>
 <reauthentication-support>false</reauthentication-support>
-->
<!ELEMENT reauthentication-support (#PCDATA)>

<!--
The element license specifies licensing requirements for the resource adapter
module. This element specifies whether a license is required to deploy and use
this resource adapter, and an optional description of the licensing terms (ex-
amples: duration of license, number of connection restrictions)
-->
<!ELEMENT license (description?, license-required)>

<!--
The element license-required specifies whether a license is required to deploy
and use the resource adapter.

This element must be one of the following:
<license-required>true</license-required>
<license-required>false</license-required>

-->
<!ELEMENT license-required (#PCDATA)>
142 October 7, 2000

Packaging and Deployment Connector Architecture 1.0
<!--
The element spec-version specifies the version of the connector architecture
specification that is supported by this resource adapter. This information en-
ables deployer to configure the resource adapter to support deployment and
runtime requirements of the corresponding connector architecture specifica-
tion.

Example:
 <spec-version>1.0</spec-version>
-->
<!ELEMENT spec-version (#PCDATA)>

<!--
The element security-permission specifies a security permission that is re-
quired by the resource adapter code.
The security permission listed in the deployment descriptor are ones that are
different from those required by the default permission set as specified in
the connector architecture specification. The optional description can mention
specific reason that resource adapter requires a given security permission.
-->
<!ELEMENT security-permission (description?, security-permission-spec)>

<!--
The element security-permission-spec specifies a security permission based on
the Security policy file syntax [reference: Java 2, Security architecture spec-
ification]

http://java.sun.com/products/jdk/1.3/docs/guide/security/PolicyFiles.ht-
ml#FileSyntax
-->
<!ELEMENT security-permission-spec (#PCDATA)>

<!--
The transaction-support element specifies the level of transaction support
provided by the resource adapter.

The value of transaction-support must be one of the following:
 <transaction-support>no_transaction</transaction-support>
 <transaction-support>local_transaction</transaction-support>
 <transaction-support>xa_transaction</transaction-support>
-->
<!ELEMENT transaction-support (#PCDATA)>

<!--
The element vendor-name specifies the name of resource adapter provider.
Example:
 <vendor-name>Wombat Corp.</vendor-name>
-->
<!ELEMENT vendor-name (#PCDATA)>

<!--
The element version specifies a string-based version of the resource adapter
from the resource adapter provider.

Example:
 <version>1.0</version>
-->
<!ELEMENT version (#PCDATA)>
143 October 7, 2000

Packaging and Deployment Connector Architecture 1.0
<!--
The ID mechanism is to allow tools that produce additional deployment infor-
mation (beyond the standard deployment descriptor) to store the non-standard
information in a separate file and to refer to standard deployment descriptor
from these non-standard tools specific file.

The connector architecture specification does not allow the tools to add the
non-standard information into the standard deployment descriptor.
-->

<!ATTLIST auth-mechanism id ID #IMPLIED>
<!ATTLIST auth-mech-type id ID #IMPLIED>
<!ATTLIST config-property id ID #IMPLIED>
<!ATTLIST config-property-name id ID #IMPLIED>
<!ATTLIST config-property-value id ID #IMPLIED>
<!ATTLIST config-property-type id ID #IMPLIED>
<!ATTLIST connector id ID #IMPLIED>
<!ATTLIST connectionfactory-interface id ID #IMPLIED>
<!ATTLIST connectionfactory-impl-class id ID #IMPLIED>
<!ATTLIST connection-interface id ID #IMPLIED>
<!ATTLIST connection-impl-class id ID #IMPLIED>
<!ATTLIST credential-interface id ID #IMPLIED>
<!ATTLIST description id ID #IMPLIED>
<!ATTLIST display-name id ID #IMPLIED>
<!ATTLIST eis-type id ID #IMPLIED>
<!ATTLIST icon id ID #IMPLIED>
<!ATTLIST large-icon id ID #IMPLIED>
<!ATTLIST license id ID #IMPLIED>
<!ATTLIST license-required id ID #IMPLIED>
<!ATTLIST managedconnectionfactory-class id ID #IMPLIED>
<!ATTLIST reauthentication-support id ID #IMPLIED>
<!ATTLIST resourceadapter id ID #IMPLIED>
<!ATTLIST small-icon id ID #IMPLIED>
<!ATTLIST security-permission id ID #IMPLIED>
<!ATTLIST security-permission-spec id ID #IMPLIED>
<!ATTLIST spec-version id ID #IMPLIED>
<!ATTLIST transaction-support id ID #IMPLIED>
<!ATTLIST vendor-name id ID #IMPLIED>
<!ATTLIST version id ID #IMPLIED>
144 October 7, 2000

Runtime Environment Connector Architecture 1.0
11 Runtime Environment

This chapter focuses on the Java portion of a resource adapter that executes within a Java com-

patible runtime environment. A Java runtime environment is provided by an application serv-

er (and its containers).

The chapter specifies the Java APIs that a J2EE-compliant application server (and its containers)

must make available to a resource adapter at runtime. A portable resource adapter can rely on

these APIs to be available on all J2EE-compliant application servers.

The chapter also specifies programming restrictions imposed on a resource adapter. These re-

strictions enable an application server to enforce security and manage a runtime environment

with multiple configured resource adapters.

11.1 Programming APIs
A resource adapter provider relies on a J2EE compliant application server to provide the fol-

lowing APIs:

• Java 2 SDK, Standard Edition, version 1.3 that includes the following as part of either the

core platform or standard extensions: JavaIDL, JNDI Standard Extension, RMI-IIOP.

• Required APIs for Java 2 SDK, Enterprise Edition, version 1.3 as specified in the J2EE

platform specification [8], version 1.3.

• JAAS 1.0 that requires Java 2 SDK, Standard Edition, version 1.3 or the Java 2 Runtime

Environment version 1.3.

11.2 Security Permissions
An application server must provide a set of security permissions for execution of a resource

adapter in a managed runtime environment. A resource adapter must be granted explicit per-

missions to access system resources.

Since the exact set of required security permissions for a resource adapter depends on the over-

all security policy for an operational environment and the implementation requirements of a

resource adapter, the connector architecture does not define a fixed set of permissions.

The following permission set represents the default set of security permissions that a resource

adapter should expect from an application server. These security permissions are described in

detail in the Java 2 platform documentation. Refer document http://java.sun.com/prod-

ucts/jdk/1.3/docs/guide/security/permissions.html .
145 October 7, 2000

Runtime Environment Connector Architecture 1.0
Table 2: Default Security Permission Set

Security Permission Default Policy Notes

java.security.AllPer-
mission

deny Extreme care should be taken be-

fore granting this permission to a

resource adapter. This permission

should only be granted if the re-

source adapter code is completely

trusted and when it is prohibitive-

ly cumbersome to add necessary

permissions to the security policy.

java.awt.AWTPermission deny * A resource adapter should not use

AWT code to interact with dis-

play or input devices.

java.io.FilePermission grant read and
write <pathname>

deny rest

A java.io.FilePermission
represents access to a file or direc-

tory. A FilePermission consists

of a pathname and a set of actions

valid for that pathname.

A resource adapter is granted per-

mission to read/write files as

specified by the pathname , which

is specific to a configured opera-

tional environment.

It is important to consider the im-

plications of granting Write per-

mission for <<ALL FILES>>
because this grants the resource

adapter permissions to write to

the entire file system. This can al-

low a malicious resource adapter

to mangle system binaries for the

JVM environment.

java.net.NetPermission deny *

java.util.PropertyPer-
mission

grant read

(allows Sys-
tem.getProperty
to be called)

deny rest

Granting code permission to ac-

cess certain system properties

(java.home) can potentially give

malevolent code sensitive infor-

mation about the system environ-

ment (the Java installation

directory).

java.lang.reflect.Re-
flectPermission

deny *
146 October 7, 2000

Runtime Environment Connector Architecture 1.0
java.lang.RuntimePer-
mission

deny * By default, all RuntimePermis-
sion are denied to the resource

adapter code.

A resource adapter should explic-

itly request LoadLibrary.{li-
braryName} to link a dynamic

library. The libraryName repre-

sents a specific library.

A resource adapter that manages

thread must explicitly request

permission to modifyThread
through its deployment descrip-

tor.

A resource adapter should never

be granted exitVM permission in

the managed application server

environment.

java.security.Securi-
tyPermission

deny *

java.net.SocketPermis-
sion

grant connect *

deny rest

A java.net.SocketPermission
represents access to a network via

sockets. A SocketPermission
consists of a host specification and

a set of actions specifying ways to

connect to that host.

A resource adapter is granted per-

mission to connect to any host as

indicated by the wildcard *;

java.security.Serializ-
ablePermission

deny * This ensures that a resource

adapter cannot subclass Ob-
jectOutputStream or Object-
InputStream to override the

default serialization or deserial-

ization of objects or to substitute

one object for another during seri-

alization or deserialization.

Table 2: Default Security Permission Set

Security Permission Default Policy Notes
147 October 7, 2000

Runtime Environment Connector Architecture 1.0
11.3 Responsibilities
A resource adapter provider must ensure that resource adapter code does not conflict with the

default security permission set. By ensuring this, a resource adapter can be deployed and run

in any application server without execution or manageability problems.

If a resource adapter needs security permissions other than those specified in the default set, it

should describe such requirements in the XML deployment descriptor using the security-
permission element.

A deployment descriptor-based specification of an extended permission set for a resource

adapter allows the deployer to analyze the security implications of the extended permission set

and make a deployment decision accordingly. An application server must be capable of de-

ploying a resource adapter with the default permission set.

Example
The resource adapter implementation creates a java.net.Socket and retrieves the hostname

using the method getHostName on java.net.InetAddress .

The default SocketPermission (as specified in Table 2) is grant connect and deny rest .

This means that if resource adapter uses the default permission set, the first method Sock-
et(...) will be allowed while the second method InetAddress .getHostName is disallowed.

The resource adapter needs to explicitly request security permission for InetAddress .getH-
ostName method in the security-permission-spec element of its XML deployment descrip-

tor. The following is an example of specification of additional security permission:

<security-permission-spec >
grant {

permission java.net.SocketPermission *, "resolve";
};

</security-permission-spec >

11.4 Privileged Code
The Java 2 security architecture requires that whenever a system resource access or any secured

action is attempted, all code traversed by the current execution thread up to that point must

have the necessary permissions for the system resource access, unless some code on the thread

has been marked as privileged. Refer to http://java.sun.com/products/jdk/1.3/docs/

guide/security/doprivileged.html.

Table 3: Methods and Security Permissions required

Method Security Manager Method
Called

Permission

java.net.Socket Sock-
et(...)

checkConnect({host}, {port}) java.net.SocketPermis-

sion "{host}:{port}", "con-

nect"

java.net.InetAddress

public String getHost-
Name()

checkConnect({host}, -1) java.net.SocketPermis-

sion "{host}", "resolve"

...
148 October 7, 2000

Runtime Environment Connector Architecture 1.0
A resource adapter runs in its own protection domain as identified by its code source and se-

curity permission set. For the resource adapter to be allowed to perform a secured action (ex-

ample, writing a file), it must have granted permission for that particular action.

Resource adapter code is considered system code which may require more security permis-

sions than the calling application component code. For example, when an application compo-

nent calls a resource adapter method to execute a function call on the underlying EIS instance,

the resource adapter code may need more security permissions (example: the ability to create

a thread) than allowed to the calling component.

To support such scenarios, the resource adapter code should use the privileged code feature

in the Java security architecture. This enables the resource adapter code to temporarily perform

more secured actions than are available directly to the application code calling the resource

adapter.
149 October 7, 2000

Projected Items Connector Architecture 1.0
12 Projected Items

[Targeted for .next release cycle]

The following set of features are strong candidates for inclusion in the future versions of the

connector architecture:

• Pluggable JMS providers: This will involve the specification of a standard architecture for

the pluggability of multiple JMS providers into an application server. This may require

enhancement of the present system contracts (transaction, security, connection

management) and addition of new system contracts specific to JMS pluggability.

A standard architecture for the pluggability of JMS providers will be an important factor

in driving the adoption of EJB-JMS integration (specified as part of the EJB 2.0 specification

[1]).

• Thread Management Contract: This will involve an extension of the system contracts to

support a thread management contract for asynchronous interactions with the underlying

EIS.

• Common Client Interface: The CCI may become required as part of a future version of the

connector architecture. The CCI may also be extended to include support for XML, type

mapping and metadata facility.
150 October 7, 2000

Exceptions Connector Architecture 1.0
13 Exceptions

This chapter specifies standard exceptions that identify error conditions which may occur as

part of the connector architecture.

The connector architecture defines two classes of exceptions:

• System Exceptions —Indicate an unexpected error condition that occurs as part of an

invocation of a method defined in the system contracts. For example, system exceptions

are used to indicate transaction management-related errors. A system exception is targeted

for handling by an application server or resource adapter (depending on who threw the

exception), and may not be reported in its original form directly to an application

component.

• Application Exceptions —Thrown when an application component accesses an EIS

resource. For example, an application exception might indicate an error in the execution of

a function on a target EIS. These exceptions are meant to be handled directly by an

application component.

The connector architecture defines the class javax.resource.ResourceException as the

root of the system exception hierarchy. The ResourceException class extends the ja-
va.lang.Exception class and is a checked exception.

The javax.resource.ResourceException is also the root of the application exception hier-

archy for CCI.

13.1 ResourceException
A ResourceException provides the following information:

• A resource adapter-specific string describing the error. This string is a standard Java

exception message and is available through the getMessage method.

• A resource adapter-specific error code that identifies the error condition represented by

the ResourceException .

• A reference to another exception. Often a ResourceException results from a lower-level

problem. If appropriate, a lower-level exception (a java.lang.Exception or any derived

exception type) may be linked to a ResourceException instance.

13.2 System Exceptions
The connector architecture requires that methods (as part of a system contract implementation)

should use checked ResourceException (and other standard exceptions derived from it) to

indicate system-level error conditions. Using checked exceptions leads to a strict enforcement

of the contract for throwing and catching of system exceptions and dealing with error condi-

tions.

In addition, a method implementation may use java.lang.RuntimeException or any de-

rived exception to indicate runtime error conditions of varying severity levels. Using un-

checked exceptions to indicate important system-level error conditions is not recommended

for an implementation of system contracts.
151 October 7, 2000

Exceptions Connector Architecture 1.0
If a method needs to indicate a serious error condition that it does not want the caller to catch,

the method should use java.lang.Error to indicate such conditions. A method is not re-

quired to declare in its throws clause any subclasses of Error that may be thrown but not

caught during the execution of the method, since these errors are abnormal conditions that

should never occur.

Exception Hierarchy
The ResourceException represents a generic form of exception. A derived exception repre-

sents a specific class of error conditions. This design enables the method invocation code to catch

a class of error conditions based on the exception type and to handle error conditions appropri-

ately.

The following exceptions are derived from ResourceException to indicate more specific class-
es of system error conditions:

• javax.resource.spi.SecurityException : A SecurityException indicates error

conditions related to the security contract between an application server and resource

adapter. The common error conditions represented by this exception are:

• Invalid security information (represented by a Subject instance) passed across the

security contract. For example, credentials may have an expired or an invalid format.

• Lack of support for a specific security mechanism in an EIS or resource adapter.

• Failure to create a connection to an EIS because of failed authentication or

authorization.

• Failure to authenticate a resource principal to an EIS or failure to establish a secure

association with an underlying EIS instance.

• Access control exception indicating that a requested access to an EIS resource or a

request to create a new connection has been denied.

• javax.resource.spi.LocalTransactionException : A LocalTransaction-
Exception represents various error conditions related to the local transaction

management contract. The JTA specification specifies the javax.transaction-
.xa.XAException class for exceptions related to a XAResource -based transaction

management contract. The LocalTransactionException is used for the local transaction

management contract to indicate the following types of error conditions:

• Invalid transaction context when a transaction operation is executed. For example,

calling LocalTransaction.commit method without an active local transaction is an

error condition.

• Transaction is rolled back instead of being committed in the LocalTransaction.-
commit method.

• Attempt to start a local transaction from the same thread on a ManagedConnection
instance that is already associated with an active local transaction.

• All resource adapter or resource manager-specific error conditions related to local

transaction management. Examples are violation of integrity constraints, deadlock

detection, communication failure during transaction completion, or any retry

requirement.

• javax.resource.spi.ResourceAdapterInternalException : This exception indicates

all system-level error conditions related to a resource adapter. The common error

conditions indicated by this exception type are:

• Invalid configuration of the ManagadConnectionFactory for creation of a new

physical connection. An example is an invalid server name for a target EIS instance.

• Failure to create a physical connection to a EIS instance due to a communication

protocol error or a resource adapter implementation-specific error.

• Error conditions internal to a resource adapter implementation.
152 October 7, 2000

Exceptions Connector Architecture 1.0
• javax.resource.spi.EISSystemException : An EISSystemException is used to

indicate any EIS specific system-level error condition. Examples of common error

conditions are: failure or inactivity of an EIS instance, communication failure, and a EIS-

specific error during the creation of a physical connection.

• javax.resource.spi.ApplicationServerInternalException : This exception is

thrown by an application server to indicate error conditions specific to an application

server. Example error conditions are: errors related to an application server configuration

or implementation of mechanisms internal to an application server (example: connection

pooling, thread management).

• javax.resource.spi.ResourceAllocationException : This exception is thrown by an

application server or resource adapter to indicate a failure to allocate system resources

(example: threads, physical connections). An example is an error condition that results

when an upper bound is reached for the maximum number of physical connections that

can be managed by an application server-specific connection pool.

• javax.resource.spi.IllegalStateException : This exception is thrown from a

method if the invoked code (either the resource adapter or the application server for

system contracts) is in an illegal or inappropriate state for the method invocation.

• javax.resource.NotSupportedException : This exception is thrown to indicate that an

invoked code (either the resource adapter or the application server for system contracts)

cannot execute an operation because the operation is not a supported feature. For example,

if the transaction support level for a resource adapter is NO_TRANSACTION, an invocation

of ManagedConnection.getXAResource method throws a NotSupportedException
exception.

• javax.resource.spi.CommException : This exception indicates errors related to failed

or interrupted communication with an EIS instance. Examples of common error conditions

represented by this exception type include: communication protocol error, invalidated

connection due to server failure.

13.3 Additional Exceptions
The JTA specification specifies the javax.transaction.xa.XAException class for exceptions

related to XAResource -based transaction management contract.
153 October 7, 2000

Exceptions Connector Architecture 1.0
Appendix A: Caching Manager
The following section describes how the connector architecture supports caching.

This section serves as a brief introduction to the caching support in the connector architecture.

A future version of the connector architecture will address this issue in detail. The caching

manager architecture will be aligned with the related work being done as part of the EJB 2.0

specification.

A.1 Overview
The connector architecture provides a standard way of extending an application manager for

plugging in caching managers. A caching manager may be provided by a third party vendor

or a resource adapter provider.

A caching manager manages cached state for application components while they access EISs

across transactions.

A caching manager is provided above a resource adapter. An application component may ac-

cess a resource manager either through a caching manager (thereby maintaining a cached state

across application requests) or directly through the resource adapter with no caching involved.

The XAResource based transaction management contract enables an external transaction man-

ager to control and coordinate transactions across multiple resource managers. A caching man-

ager (provided above the resource adapter) needs to be synchronized relative to the transaction

coordination flow (defined by the JTA XAResource interface) on the underlying resource man-

ager. This leads to a requirement for a synchronization contract between the application server

and caching manager.

The connector architecture defines a standard synchronization contract between the applica-

tion server and caching manager. The caching manager uses the synchronization notifications

to manage its cached state and to flush it to the resource adapter. The resource adapter then

takes the responsibility of managing its recoverable units of work and participates in the trans-

action coordination protocol from the transaction manager.
154 October 7, 2000

Exceptions Connector Architecture 1.0
FIGURE 41.0 Synchronization Contract between Caching Manager and Application Server

The above diagram shows a caching manager layered above a resource adapter. The contract

between caching manager and resource adapter is specific to a resource adapter.

A.2 Synchronization contract

Note: To support a caching manager as a standard extension to the application server, ad-

ditional contracts between the application server and the caching manager are required.

This version of the specification introduces only the synchronization contract.

This section specifies the synchronization contract between the application server and the cach-

ing manager.

Interface
Each caching manager implements the javax.transaction.Synchronization interface. A

caching manager registers its Synchronization instance with the application server when it

is configured with the application server.

The caching manager receives synchronization notifications only for transactions managed by

an external transaction manager. In the case of transactions managed internally by a resource

manager, the resource adapter and caching manager define their own implementation-specific

mechanisms for synchronizing caches.

The Synchronization.beforeCompletion method is called prior to the start of the two-

phase commit transaction completion process. This call executes in the same transaction con-

text of the caller who initiated the transaction completion. The caching manager uses this noti-

fication to flush its cached state to the resource adapter.

The Synchronization.afterCompletion method is called after the transaction has complet-

ed. The status of transaction completion is passed in as a parameter. The caching manager uses

this notification to do any cache cleanups if a rollback has occurred.

Caching
Manager

Enterprise Information
System

Resource Adapter

Application Server

System Contract
Transaction Management

Transaction Manager

Synchronization Contract

Application
Contract
155 October 7, 2000

Exceptions Connector Architecture 1.0
Implementation
The caching manager is required to support the javax.transaction.Synchronization in-

terface. If the caching manager implements the Synchronization interface and registers it

with the application server, then the application server must invoke the beforeCompletion
and afterCompletion notifications.

The application server is responsible for ensuring that synchronization notifications are deliv-

ered first to the application components (that have expressed interest in receiving synchroni-

zation notification through their respective application component and container-specific

mechanisms) and then to the caching managers that implement the Synchronization inter-

face.
156 October 7, 2000

Exceptions Connector Architecture 1.0
Appendix B: Security Scenarios
The following section describes various scenarios for EIS integration. These scenarios focus on

security aspects of the connector architecture.

Note that these scenarios establish the requirements to be addressed by the connector architec-

ture. The chapters 7 and 8 specify the requirements that are supported in the version 1.0 of the

specification.

A J2EE application is a multi-tier, web-enabled application that accesses EISs. It consists of one

or more application components—EJBs, JSPs, servlets—which are deployed on containers.

These containers can be one of the following:

• Web containers that host JSP, servlets, and static HTML pages

• EJB containers that host EJB components

• Application client containers that host standalone application clients

In the following scenarios, the description of the architecture and security environments are il-

lustrative in scope.

B.1 EStore Application
Company A has an eStore application based on the J2EE platform. The eStore application is

composed of EJBs and JSP/servlets; together they collaborate to provide the overall function-

ality of the application. The application also utilizes an eStore database to store data related to

product catalog;, shopping carts; customer registration and profiles; transaction status and

records; and order status.

The architecture of this application is illustrated in the following diagram:

FIGURE 42.0 Illustrative Architecture of an Estore Application

Scenario
A customer, using a web browser, initiates an e-commerce transaction with the eStore applica-

tion. The e-commerce transaction consists of a series of customer actions. The customer:

• Browses the catalog

• Makes a selection of products

• Puts the selected products into a shopping cart

• Enters her user name and password to initiate a secure transaction

Estore Application

eStore Database

Web Browser

JSP/Servlet EJB

Company A

HTTP/S

Application Security Domain EIS Security Domain

Internet
Application Server
157 October 7, 2000

Exceptions Connector Architecture 1.0
• Fills in order-related information

• And, finally, places an order

In this scenario, the eStore application stores all persistent information about customers and

their transactions in a database.

Security Environment
To support the above interaction scenario, the system administrator configures a unique secu-

rity domain (with specific security technology and security policies) for the eStore application.

A firewall protects this security domain from unauthorized Internet access.

The security domain configuration for the eStore application includes secure web access to the

eStore application. Secure web access is set up based on the requirements specified in the J2EE

specification. Note that the focus of this section is security related to EIS integration, not on web

access security. As a result, this description ignores web access security.

The system administrator sets up a database to manage persistent data for the eStore applica-

tion. In terms of security, the database system is configured with an independent security do-

main. This domain has its own set of user accounts, plus its own security policies and

mechanisms for authentication and authorization.

The system administrator (or database administrator DBA) creates a unique database account

(called EStoreUser) to handle database transactions; the database transactions correspond to

different customer-driven interactions with the eStore application. He also sets up an addition-

al database account (called EStoreAdministrator) to manage the database on behalf of the

eStore administrator. This administrative account has a higher level of access privileges.

To facilitate better scaling of the eStore application, the system administrator may choose to set

the load balancing of database operations across multiple databases. He may also partition per-

sistent data and transactions across multiple database accounts, based on various performance

optimization criteria. These areas are out of the scope for this document.

This scenario deals only with the simple case of a single database and a single user account to

handle all database transactions.

Deployment
Note: This document does not address how principal delegation happens between the web and

EJB containers. When an EJB instance acquires an EIS connection, a caller principal is associated

with the EJB instance. This document does not address determining which caller principal is

associated with the EJB instance.

During the deployment of the eStore application, the deployer sets up access control for all au-

thenticated customer accounts—the customer accounts that are driving e-commerce transac-

tions over the web—based on a single role eStoreUserRole .

The deployer configures the resource adapter with the security information that is required for

the creation of database connections. This security information is the database account ES-
toreUser and its password.

The deployer sets up the resource principal for accessing the database system as illustrated in

the Figure 43.0:
158 October 7, 2000

Exceptions Connector Architecture 1.0
FIGURE 43.0 Resource Principal for Estore Application Scenario

The deployment configuration ensures that all database access is always performed under the

security context of the database account EStoreUser .

All authenticated customers (referred to as Initiating Principal) map to a single ES-
toreUser database account. The eStore application uses an implementation-specific mecha-

nism to tie database transactions (performed under a single database account) to the unique

identity (social security number or eStore account ID) of the initiating principal. To ensure that

database access has been properly authorized, the eStore application also performs access con-

trol based on the role of the initiating principal. Because all initiating principals map to a single

role, this is in effect a simple case.

This scenario describes an n-to-1 mapping. However, depending on the requirements of an ap-

plication, the deployer can set the principal mapping to be different from an n-to-1 mapping.

For example, the deployer can map each role to a single resource principal, where a role corre-

sponds to an initiating principal. This results in a [m principals and n roles] to [p resource prin-

cipals] mapping. When doing such principal mapping, the deployer has to ensure not to

compromise the access rights of the mapped principals. An illustrative example is:

• User is in administrator role: Principal EISadmin

• User is in manager role: Principal EISmanager

• User is in employee role: Principal EISemployee

B.2 Employee Self Service Application
Company B has developed and deployed an employee self-service (ESS) application based on

the J2EE platform. This application supports a web interface to the existing Human Resources

(HR) applications, which are supported by the ERP system from Vendor X. The ESS application

also provides additional business processes customized to the needs of Company B.

The application tier is composed of EJBs and JSPs that provide the customization of the busi-

ness processes and support a company-standardized web interface. The ESS application en-

ables an employee (under the roles of Manager, HR manager, and Employee) to perform

various HR functions, including personal information management, payroll management,

compensation management, benefits administration, travel management, and HR cost plan-

ning.

Architecture
The IS department of Company B has deployed its HR ESS application and ERP system in a

secure environment on a single physical location. Any access to the HR application is permitted

Only legal employees of the organization are permitted access to the HR application. Access is

based on the employee’s roles and access privileges. In addition, access to the application can

only be from within the organization-wide intranet. See Figure 44.0.

Initiating Principal: Customer Resource Principal: Database Account
EStoreUser

EIS Security domainApplication Security domain

Maps To
159 October 7, 2000

Exceptions Connector Architecture 1.0
Security Environment
To support the various interaction scenarios related to the ESS application, the system admin-

istrator sets up an end-to-end Kerberos-based security domain for this application environ-

ment.

Note: The Security policies and mechanisms that are required to achieve this single security do-

main are technology dependent. Refer to Kerberos V5 specification for more details.

The system administrator configures the security environment to support single sign-on; the

user logs on only once and can then access all the services provided by the ESS application and

its underlying ERP system. Single sign-on is achieved through the security mechanism and pol-

icies specific to the underlying security technology, which in this case is Kerberos.

The ERP system administrator configures all legal employees as valid user accounts in the ERP

system. He also must set up various roles (Manager, HRManager, and Employee), default pass-

words, and access privileges. This security information is kept synchronized with the enter-

prise-wide directory service, which is used by Kerberos to perform the initial authentication of

end-users.

FIGURE 44.0 Illustrative Architecture of an Employee Self-service Application

Deployment
During deployment of the ESS application, the deployer sets a default delegation policy of cli-

ent impersonation for EIS sign-on. In this case, the application server and ERP system know

that it is the initiating principal accessing their respective services and they perform access con-

trol based on this knowledge. See Figure 45.0.

FIGURE 45.0 Principal Mapping

In this scenario, both the initiating principal and the resource principal refer to the same prin-

cipal. This common principal is authenticated using Kerberos and its Kerberos credentials are

valid in the security domains of both the application and the ERP system.

Web-enabled Application HR Applications

Web Browser

JSP/Servlet EJB

HTTP/S

ERP System X

Company B

Application Server

Kerberos based Integrated Security Domain

Initiating Principal = Resource Principal

ERP System Security domainApplication Security domain
160 October 7, 2000

Exceptions Connector Architecture 1.0
The deployer sets up access control for all authenticated employees (initiating principal) based

on the configured roles—Manager, HR Manager, and Employee.

If the ERP system does not support Kerberos, then an alternate scenario is utilized. The deploy-

er or application server administrator sets up an automatic mapping of Kerberos credentials

(for the initiating principal) to valid credentials (for the same principal) in the security domain

of the ERP system. Note that when the ERP system does support Kerberos, the application

server performs no credentials mapping.

Scenario
An employee initiates an initial login to his client desktop. He enters his username and pass-

word. As part of this initial login, the employee (called initiating principal C) gets authenticat-

ed with Kerberos KDC. [Refer to the details for Kerberos KDC authentication in the Kerberos

v5 specification.]

After a successful login, the employee starts using his desktop environment. He directs his web

browser to the URL for the ESS application deployed on the application server. At this point,

the initiating principal C authenticates itself to the application server and establishes a session

key with the application server.

The ESS application is set up to impersonate initiating principal C when accessing the ERP sys-

tem, which is running on another server. Though the application server directly connects to the

ERP system, access to the ERP system is requested on behalf of the initiating principal. For this

to work, principal C needs to delegate its identity and Kerberos credential to the application

server and allow the application server to make requests to the ERP system on C’s behalf.

B.3 Integrated Purchasing Application
Company C has an integrated purchasing application that enables an employee to use a web-

based interface to perform multiple purchasing transactions. An employee can manage the en-

tire procurement process, from creating a purchase requisition through invoice approval. The

purchasing application also integrates with the enterprise’s existing financial applications so

that the accounting and financial aspects of the procurement business processes can be tracked.

Architecture
Figure 46.0 illustrates an architecture for this purchasing application. The application has been

developed and deployed based on the J2EE platform and is composed of EJBs and JSPs. The

EJB components provide the integration across the different applications—the logistics appli-

cation from a separate vendor (this application provides integrated purchasing and inventory

management functions) and the financial accounting applications (the applications supported

by the legacy system from vendor Y).

Company B is a huge decentralized enterprise; its business units and departments are geo-

graphically distributed. In this scenario, different IS departments manage ERP system X and

legacy system Y. In addition, ERP system X and legacy system Y have been deployed at secured

data centers in different geographic locations. Lastly, the integrated purchasing application has

been deployed at a geographic location different from both ERP system X and legacy system Y.
161 October 7, 2000

Exceptions Connector Architecture 1.0
FIGURE 46.0 Illustrative Architecture of an Integrated Purchasing Application

Security Environment
ERP system X and legacy system Y are also in different security domains; they use different se-

curity technologies and have their own specific security policies and mechanisms. The integrat-

ed purchasing application is deployed in a security domain that is different from both that of

ERP system X and legacy system Y.

To support the various interaction scenarios for this integrated purchasing application, the ERP

system administrator creates a unique account LogisticsAppUser in the ERP system. He sets

up the password and specific access rights for this account. This user account is allowed access

only to the logistics business processes that are used by the integrated purchasing application.

Likewise, the system administrator for the legacy system creates a unique account Financial-
AppUser . He also sets up the password and specific access rights for this account.

The application server administrator, as part of the operational environment of the application

server, configures the access to an organization-wide directory. This directory contains security

information (name, password, role, and access rights) for all the employees in the organization.

It is used for authentication and authorization of employees accessing the purchasing applica-

tion.

Due to their physical separation in this scenario, EISs X and Y are accessed over either a secure

private network or over the Internet. This requires that a secure association be established be-

tween the application server and the EISs. A secure association allows a component on the ap-

plication server to communicate securely with an EIS.

Deployment
During the deployment of this application, the deployer configures the security information

(that is, the user account LogisticsAppUser and its password) required to create connections

to the ERP system. This configuration is done using the resource adapter for ERP system X. The

deployer also configures the security information (that is, user account FinancialAppUser
and its password) required to create connections to the legacy system Y.

The deployer configures security information in the application server to achieve the principal

mapping shown in Figure 47.0.

Purchase Requisition

Logistics Application

Web Browser

JSP/Servlet EJB

Company C

HTTP/S

Application Security Domain

ERP System X

Financial Application

Legacy System Y

Integrated Application

Application Server
162 October 7, 2000

Exceptions Connector Architecture 1.0
FIGURE 47.0 Principal Mapping

This principal mapping ensures that all connections to the ERP system are established under

the security context of LogisticsAppUser , the resource principal for the ERP system security

domain. Similarly, all connections to legacy system Y are established under the security context

of the FinancialAppUser .

The application server does this principal mapping for all authenticated initiating principals

(that is, employees accessing the integrated purchasing application) when the application con-

nects to either the ERP system or the legacy system.

Initiating Principal: Employee

Resource Principal: ERP System Account
LogisticsAppUser

ERP system Security domain

Application Security domain
Resource Principal: Legacy System Account

FinancialAppUser

Legacy System Security domain
163 October 7, 2000

Exceptions Connector Architecture 1.0
Appendix C: JAAS based Security
Architecture

This chapter extends the security architecture specified in Chapters 7 and 8 to include support

for JAAS-based pluggable authentication. The chapter refers to the following documents:

• White Paper on User Authentication and Authorization in Java platform: http://
java.sun.com/security/jaas/doc/jaas.html

• JAAS 1.0 documentation

C.1 Java Authentication and Authorization Service (JAAS)
JAAS provides a standard Java framework and programming interface that enables applica-

tions to authenticate and enforce access controls upon users. JAAS is divided into two parts

based on the security services that it provides:

• Pluggable Authentication: This part of the JAAS framework allows a system administrator

to plug in the appropriate authentication services to meet the security requirements of an

application environment. There is no need to modify or recompile an existing application

to support new or different authentication services.

• Authorization: Once authentication has successfully completed, JAAS provides the ability

to enforce access controls based upon the principals associated with an authenticated

subject. The JAAS principal-based access controls (access controls based on who runs code)

supplement the existing Java 2 code source-based access controls (access controls based on

where code came from and who signed it).

C.2 Requirements
The connector security architecture uses JAAS in two ways:

• Security Contract: The connector security architecture uses the JAAS Subject class as part

of the security contract between an application server and a resource adapter. Use of JAAS

interfaces enables the security contract to remain independent of specific security

technologies or mechanisms. The security contract has been specified in Section 8.2.

• JAAS Pluggable Authentication framework: This framework lets an application server

and its underlying authentication services remain independent from each other. When

additional EISs and new authentication services are required (or are upgraded), they can

be plugged in an application server without requiring modifications to the application

server.

The connector architecture requires that the application server and the resource adapter must

support the JAAS Subject class as part of the security contract. However, it recommends (but

does not mandate) that an application server use the JAAS pluggable authentication frame-

work.

The connector architecture does not require support for the authorization portion of the JAAS

framework.

C.3 Security Architecture
The following section specifies the JAAS based security architecture. The security architecture

addresses how JAAS should be used by an application server to support authentication require-

ments of heterogeneous EISs.
164 October 7, 2000

Exceptions Connector Architecture 1.0
FIGURE 48.0 Security Architecture.

C.3.1 JAAS Modules
The connector architecture recommends (but does not mandate) that an application server sup-

port platform-wide JAAS modules (also called authentication modules) for authentication mech-

anisms that are common across multiple EISs. The implementation of these JAAS modules is

Security Service
Manager

ManagedConnectionFactory

Resource Adapter

Application Server

Application Component

Enterprise Information System (EIS)

Architected contract

Implementation specific

Java Authentication And Authorization Service (JAAS)

JAAS Module JAAS Module EIS provided

ConnectionManager ConnectionFactory

JAAS Module

Security
Configuration
165 October 7, 2000

Exceptions Connector Architecture 1.0
typically specific to an application server. However, these modules may be developed to be re-

usable across application servers.

A resource adapter provider can provide a resource adapter-specific custom implementation of

a JAAS module. The connector architecture recommends that a resource adapter provider pro-

vide a custom JAAS module when the underlying EIS supports an authentication mechanism

that is EIS specific and is not supported by an application server.

A custom JAAS module should be packaged together with a resource adapter and should be

pluggable into an application server using the JAAS architecture.

The JAAS specification [7] specifies requirements for developing and configuring JAAS mod-

ules.

C.3.2 Illustrative Examples: JAAS Module
It is not a goal of the connector architecture to specify a standard architecture for JAAS modules.

The following are illustrative examples of JAAS modules used typically in the JAAS-based se-

curity architecture:

Principal Mapping Module
The application server invokes the principal mapping module passing in the Subject instance

corresponding to the caller/initiating principal. The JAAS specification specifies the interfaces/

classes and mechanisms involved in the invocation of a JAAS module.

The principal mapping module maps a caller/initiating principal to a valid resource principal

and returns the mapped resource principal as part of a Subject instance. The authentication

data (example, password) for the mapped resource principal is added to the Subject ’s creden-

tials. The authentication data is used later to authenticate the resource principal to the under-

lying EIS.

A special case of the principal mapping module takes a null Subject as an input parameter

and forms a Subject instance with a valid resource principal and authentication data. This is

the case of default principal mapping.

The principal mapping module achieves its mapping functionality by using security informa-

tion configured in the application server or an enterprise directory.

The principal mapping module does not authenticate a resource principal and is configured to

perform only principal mapping. The authentication of a mapped resource principal is per-

formed separately by an authentication mechanism-specific JAAS module.

Credential Mapping Module
The credential mapping module automatically maps credentials from one authentication do-

main to those in a different target authentication domain. For example, an application server

can provide a module that maps the public key certificate-based credential associated with a

principal to a Kerberos credential.

The credentials mapping module can use the JAAS callback mechanism (note that this involves

no user-interface based interaction) to get authentication data from the application server. The

authentication data is used to authenticate the principal to the target authentication domain

during the credentials mapping. This module can also use an enterprise directory to get secu-

rity information or pre-configured mapped credentials.

Kerberos Module
This type of JAAS module supports Kerberos-based authentication for a principal. A sample

Kerberos module supports:

• Getting a TGT (ticket granting ticket) to the Kerberos server in the local domain. The TGT

is created by the KDC. The TGT is placed on the credentials structure for a principal.
166 October 7, 2000

Exceptions Connector Architecture 1.0
• Delegation of authentication based on either a forwardable or proxy mechanism as

specified in the Kerberos specification.

C.4 Generic Security Service API: GSS-API
The GSS-API is a standard API that provides security services to caller applications in a generic

fashion. These security services include authentication, authorization, principal delegation, se-

cure association establishment, per-message confidentiality, and integrity. These services can

be supported by a wide range of security mechanisms and technologies. However, an applica-

tion using GSS-API accesses these services in a generic mechanism-independent fashion and

achieves source-level portability.

In the context of the connector architecture, a resource adapter uses GSS-API to establish a se-

cure association with the underlying EIS. The use of the GSS mechanism by a resource adapter

is typical in the following scenarios:

• The EIS supports Kerberos as a third-party authentication service and uses GSS-API as a

generic API for accessing security services.

• The resource adapter and EIS need data integrity and confidentiality services during their

communication over insecure links.

The GSS-API has been implemented over a range of security mechanisms, including Kerberos

V5. There is presently a work in progress to provide a Java binding of GSS-API [6].

Note: The connector architecture does not require a resource adapter to use GSS-API.

C.5 Security Configuration
During deployment of a resource adapter, the deployer is responsible for configuring JAAS

modules in the operational environment. The configuration of JAAS modules is based on the

security requirements specified by a resource adapter in its deployment descriptor. Refer to

Section 10.6.

The element auth-mechanism in the deployment descriptor specifies an authentication mech-

anism supported by a resource adapter. The standard types of authentication mechanisms are:

basic-password and kerbv5 . For example, if a resource adapter specifies support for kerbv5
authentication mechanism, the deployer configures a Kerberos JAAS module in the operational

environment.

JAAS Configuration
The deployer sets up the configuration of JAAS modules based on the JAAS-specified mecha-

nism. Refer to javax.security.auth.login.Configuration specification for more details.

The JAAS configuration includes the following information on a per resource adapter basis:

• One or more authentication modules used to authenticate a resource principal.

• The order in which authentication modules need to invoked during a stacked

authentication.

• The flag value controlling authentication semantics if stacked modules are invoked.

The format for the above configuration is specific to an application server implementation.

C.6 Scenarios
The following section illustrates security scenarios for JAAS based security architecture.
167 October 7, 2000

Exceptions Connector Architecture 1.0
C.6.1 Scenario: Resource Adapter Managed Authentication
This scenario enables the connector architecture to support EIS specific username and pas-

word-based authentication. It involves the following steps:

• The application component invokes connection request method on the resource adapter

without passing in any security arguments. The resource adapter passes the connection

request to the application server.

• During the deployment of the resource adapter, the application server is configured to use

a principal mapping module. This principal mapping module takes a Subject instance

with the caller principal and returns a Subject instance with a valid resource principal

and PasswordCredential instance. The PasswordCredential has the password for

authentication of the resource principal.

• The application server calls LoginContext.login method. On a successful return from

the principal mapping module, the application server gets a Subject instance that has the

mapped resource principal with a valid PasswordCredential .

FIGURE 49.0 Resource Adapter-managed Authentication

• The application server invokes the method ManagedConnectionFactory . create-
ManagedConnection passing in a non-null Subject instance. The Subject instance

carries the resource principal and its corresponding PasswordCredential, which holds

the user name and password.

• The resource adapter extracts the user name and password from the Password-
Credential instance. The resource adapter uses the getter methods

(getPrivateCredentials method) defined on the Subject interface to extract the

PasswordCredential instance.

• The resource adapter uses username and password information (extracted from the

PasswordCredential instance) to authenticate the resource principal to the EIS. The

authentication happens during the creation of the connection through an authentication

mechanism specific to the underlying EIS.

C.6.2 Scenario: Kerberos and Principal Delegation
The scenario in Figure 50.0 involves the following steps:

Application Server

Resource Adapter

Security
Contract

EIS

Security
Configuration

[resource

[caller
principal]

principal]

JAAS Framework

Principal Mapping

JAAS Module
168 October 7, 2000

Exceptions Connector Architecture 1.0
FIGURE 50.0 Kerberos Authentication with Principal Delegation

• The initiating principal has already authenticated itself to the application server using

Kerberos. The initiating principal has a service ticket for the application server and a TGT

(ticket granting ticket issued by the KDC) as part of its Kerberos based credentials.

• In this scenario, the application server is configured to impersonate the initiating principal

when connecting to the EIS instance. So even though application server is directly

connecting to the EIS, access to the EIS is being requested on behalf of the initiating

principal. The initiating principal needs to pass its identity to the application server and

allow the application server to make requests to the EIS on behalf of the initiating principal.

The above is achieved through delegation of authentication.

• The application server calls the method ManagedConnectionFactory .createManaged-
Connection by passing in a Subject instance with the initiating principal and its

Kerberos credentials. The credentials contain a Kerberos TGT and are represented through

the GenericCredential interface.

• The resource adapter extracts the resource principal and its Kerberos credentials from the

Subject instance.

• The resource adapter creates a new physical connection to the EIS.

• If the resource adapter and EIS support GSS-API for establishing a secure association, the

resource adapter uses the Kerberos credentials based on the GSS mechanism as follows. For

details, see GSS-API specification:

• resource adapter calls GSS_Acquire_cred method to acquire cred_handle in order

to reference the credentials for establishing the shared security context.

• resource adapter calls the GSS_Init_sec_context method. The method

GSS_Init_sec_context yields a service ticket to the requested EIS service with the

corresponding session key.

Note: The mechanism and representation through which Kerberos credentials are shared

across the underlying JAAS module and GSS provider is beyond the scope of the connector ar-

chitecture.

• After success, GSS_Init_sec_context builds a specific Kerberos-formatted

message and returns it as an output token. The resource adapter sends the output

token to the EIS instance.

Application Server

Resource Adapter

Security
Contract

GSS-Provider
<Kerberos>

GSS GSS

EIS B

Security
Configuration

GSS-API
169 October 7, 2000

Exceptions Connector Architecture 1.0
• EIS service passes the received token to the GSS_Accept_sec_context method.

• Resource adapter and EIS now hold the shared security context (so have established

a secure association) in the form of a session key associated with the service ticket.

They can now use the session key in the subsequent per-message methods: GSS-
GetMIC , GSS_VerifyMIC , GSS_Wrap, GSS_Unwrap.

• If the resource adapter and EIS fail to establish a secure association, the resource adapter

cannot use the physical connection as a valid connection to the EIS instance. The resource

adapter returns a security exception on the createManagedConnection method.

C.6.3 Scenario: GSS-API
If an EIS supports the GSS mechanism, a resource adapter may (but is not required to) use GSS-

API to set up a secure association with the EIS instance. (See Figure 51.0.) The section Generic

Security Service API: GSS-API on page 167 gives a brief overview of GSS-API.

FIGURE 51.0 GSS-API use by Resource Adapter

A formal specification of the use of GSS-API by a resource adapter is beyond the scope of the

connector architecture. However, GSS-API has been mentioned as a possible implementation

option for a resource adapter that has the GSS mechanism supported by its underlying EIS.

Resource Adapter

Security
Contract

GSS-Provider
<Kerberos>

GSS GSS

EIS B

GSS-API

[resource
principal]
170 October 7, 2000

Exceptions Connector Architecture 1.0
C.6.4 Scenario: Kerberos Authentication after Principal Mapping
The scenario depicted in Figure 52.0 involves the following steps:

FIGURE 52.0 Kerberos Authentication after Principal Mapping

• The application server is configured to use the principal mapping module and Kerberos

module. The two authentication modules are stacked together with the principal mapping

module first.

• The application server creates a LoginContext instance by passing in the Subject
instance for the caller principal and a CallbackHandler instance. Next, the application

server calls the login method on the LoginContext instance.

• The principal mapping module takes a Subject instance with caller principal and returns

a Subject instance with a valid resource principal and Kerberos- based authentication

data. The principal mapping module does not authenticate the resource principal; it does

only principal mapping to find the mapped resource principal and its authentication data.

• Next, the Kerberos module (called after the principal mapping module) uses the resource

principal and its authentication data to authenticate the resource principal. The Kerberos

module leads to a valid TGT for the Kerberos domain supported by the EIS. The TGT is

contained in the Kerberos credentials represented through the GenericCredential
interface.

• The application server calls the method ManagedConnectionFactory .create-
ManagedConnection passing in a Subject instance with the resource principal and its

Kerberos credentials.

• The remaining steps are the same as in the previous scenario, Section C.6.2, “Scenario:

Kerberos and Principal Delegation,” on page -168

Application Server

Resource Adapter

JAAS Framework

JAAS Module

Security
Contract

<Kerberos>

GSS-Provider
<Kerberos>

GSS GSS

EIS B

Security
Configuration

GSS-API

<Principal Mapping>

JAAS Module
171 October 7, 2000

Exceptions Connector Architecture 1.0
C.6.5 Scenario: EIS-specific Authentication

FIGURE 53.0 Authentication though EIS specific JAAS Module

The scenario in Figure 53.0 involves the following steps:

• During the configuration of a resource adapter, the application server is configured to use

an EIS-specific JAAS module for authentication to the underlying EIS.

The configured JAAS module supports an authentication mechanism specific to the EIS.

The application server is responsibility for managing the authentication data and JAAS

configuration.

• The application server gets a request from the application component to create a new

physical connection to the EIS. Creating a new physical connection requires the resource

principal to authenticate itself to the underlying EIS instance.

• The application server initiates the authentication of the resource principal. It creates a

LoginContext instance by passing in the Subject instance and a CallbackHandler
instance. Next, the application server calls the login method on the LoginContext
instance.

• The JAAS module authenticates the resource principal to the underlying EIS. It uses the

callback handler provided by the application server to get the authentication data.

• The application server invokes the method ManagedConnectionFactory . create-
ManagedConnection passing in the Subject instance with the authenticated resource

principal and its credential.

• The resource adapter extracts the credential (associated with the Subject instance) for the

resource principal using the getter methods defined on the Subject interface. The

resource adapter uses this credential to create a connection to the underlying EIS.

In this scenario, authenticating a resource principal (initiated by the application server and per-

formed by the JAAS module) is separate from creating a connection to the EIS. The resource

adapter uses the credential of the resource principal to create a connection to the EIS. This con-

nection creation can involve further authentication.

After successfully creating a connection to the EIS, the resource adapter returns the newly cre-

ated connection from the method ManagedConnectionFactory .createManagedConnection .

Application Server

Resource Adapter

JAAS Framework

JAAS Module

Security
Contract

<EIS A>

EIS A

Security
Configuration

EIS specific Authentication
protocol
172 October 7, 2000

Exceptions Connector Architecture 1.0
Appendix D: Related Documents
[1] Enterprise JavaBeans (EJB) specification, version 2.0:

http://java.sun.com/products/ejb/

[2] Java Transaction API (JTA) specification, version 1.x

http://java.sun.com/products/jta/

[3] JDBC API specification, version 3.0

http://java.sun.com/products/jdbc/

[4] X/Open CAE Specification -- Distributed Transaction Processing: the XA
specification, X/Open document

[5] RFC: Generic Security Service API (GSS-API) specification, version 2:

http://www.ietf.org/rfc/rfc2078.txt

[6] Java Specification Request: Generic Security Service API (GSS-API), Java bindings:

http://java.sun.com/aboutJava/communityprocess/jsr/
jsr_072_gss.html

[7] Java Authentication and Authorization Service, version 1.0:

http://java.sun.com/security/jaas/

[8] Java 2 Platform Enterprise Edition (J2EE), Platform specification, versions 1. 3:

http://java.sun.com/j2ee/

[9] Java Server Pages (JSP) specification, version 1.2:

http://java.sun.com/products/jsp/

[10] Servlets specification, version 2.3:

http://java.sun.com/products/servlet/
173 October 7, 2000

Exceptions Connector Architecture 1.0
Appendix E: Change History

E.1 Version 0.8
• Added a subsection to section 2.2 Rationale to introduce rationale for CCI

• Added section 3.2 to specify application contract

• Added section 4.1.5 for role Enterprise Tools vendors

• Updated scenario 4.2

• Updated goals of connection management contract based on the CCI requirements

• Updated section 5.5.1 based on the CCI requirements

• Added specification for Multiple Connection handles in section 5.5.4

• Changed name of ResourceManagerMetaData to ManagedConnectionMetaData

• Added additional definitions in section 7.3

• Restructured chapter 7 by moving sections to be subsections and added clarifications

• Added section 8.2.2 to specify ResourcePrincipal

• Changes made to section 8.2.3 and 8.2.4

• Added new chapter 9 to specify Common Client Interface

• Made changes to section 10.2 to have a two-level packaging format

• Removed connection-pooling deployment element for XML DD

• Added clarifications to sections 10.3.1, 10.3.3, 10.4.1, 10.4.3, 10.5.1, 10.5.2

• Moved JNDI Reference scenario from appendix to section 10.5.3

• Added a note to section 10.6 about the extensibility of XML DD

• Renamed IOException as CommException

E.2 Version 0.9
• Editorial run through the document

• Added section 1.4 on relationship between JDBC and Connector architecture

• Added scenario on B2B in the chapter 4

• Added java.io.Serializable to the code specification of interfaces that are required to

support Serializable interface

• Added clarifications in the chapter 5 based on the expert comments. The changes are

marked by change bars.

• Added equals and hashCode methods to interface ConnectionRequestInfo

• Added section 6.8 on Connection Association

• Added clarifications to the chapter 7. Did minor restructuring of the chapter based on

review comments. The changes are marked by change bars.

• Added clarifications to the chapter 8 based on expert comments

• Changed few details and added clarifications in the chapter 9 based on the review

comments. The changes are marked by change bars.

• Added more description for packaging and deployment in the chapter 10

• Clarified version dependencies in the chapter 11

• Introduced interface javax.resource.Referenceable for the standard setReference method

• Removed scenarios on Credentials Mapping and Single sign-on from Appendix C.

Updated scenario C.6.2 to refer GSS-API.
174 October 7, 2000

Exceptions Connector Architecture 1.0
E.3 Version 1.0 - Public Draft 1
• Removed definition of "Connector" from 2.1. The term Connector is now used broadly

refer to the Connector architecture, while resource adapter refers to the system library.

• Added requirement for ConnectionEventListener to 6.9.2: Application Server

• Added connection handle property to the ConnectionEvent, section 5.5.7

• Introduced getResultSetInfo method in the Connection interface

• Added "Administered Object" in the section 9.6.2

• Added more details to section "Auto Commit" in 9.5.2

• Introduced separate interface for ResultSetInfo in the section 9.10.3

• Changed specification of element config-property-type in section 10.6

• Added an example to illustrate security permission specification in the section 11.3

• Added CCI related information to Projected Items, chapter 12

E.4 Version 1.0 - Public Draft 2
• Section 5.5.1: Change based on introduction of ConnectionSpec interface

• Section 5.5.1: Added clarification to ConnectionRequestInfo section

• Section 5.5.4: Added clarification to section on "Cleanup of ManagedConnection"

• Section 5.5.6: Added clarification to paragraph after the interface for

ConnectionEventListener

• Section 5.9.1: Added clarification to description of the scenario

• Section 6.8: Moved earlier section "Details on Local transaction" ahead of connection

sharing section and renamed it "Scenarios: Local Transaction Management". No change in

any content.

• Section 6.9: Added more details on connection sharing based on the changes in EJB 2.0 and

J2EE 1.3 platform specification.

• Section 6.10: Added this section to clarify local transaction optimization. This is based on

changes in EJB 2.0 and J2EE 1.3 platform specification.

• Section 6.11: Made a new section on "Scenarios: Connection sharing". No change in

content.

• Section 6.12: Added clarifications and requirements in the section on "Connection

Association"

• Section 6.13.2: Moved requirements on connection sharing to section 6.9

• Section 7.4.2: Code sample changed to reflect ConnectionSpec usage

• Section 9.5.1: Changed getConnection(Map) to getConnection(ConnectionSpec) and

added clarifications.

• Section 9.5.2: Introduced a section on ConnectionSpec

• Section 9.7.2: Added methods to ResourceAdapterMetaData interface. Added description

of these methods.

• Section 9.9.1: Record, MappedRecord and IndexedRecord now extend Serializable

interface.

• Section 9.10: Added note on JDBC semantics in relation to CCI ResultSet

• Section 9.10.3: Added note on ResultSetInfo implementation requirements

• Section 10.6: Change to auth-mechanism specification in DTD. Removed + from credential-

interface.

• Figure 29: Added clarifications for the diagram

• Section 8.3: Clarified security contract requirements for the application server
175 October 7, 2000

Exceptions Connector Architecture 1.0
• Section 9.5.1: Moved method getRecordFactory from Interaction to ConnectionFactory.

Note that it is not necessary to have an active connection to create generic record instances.
176 October 7, 2000

JavaSoft

2550 Garcia Avenue

Mountain View, CA 94043

408-343-1400

For U.S. Sales Office locations, call:

800 821-4643

In California:

800 821-4642

Australia: (02) 9844 5000

Belgium: 32 2 716 7911

Canada: 416 477-6745

Finland: +358-0-525561

France: (1) 30 67 50 00

Germany: (0) 89-46 00 8-0

Hong Kong: 852 802 4188

Italy: 039 60551

Japan: (03) 5717-5000

Korea: 822-563-8700

Latin America: 415 688-9464

The Netherlands: 033 501234

New Zealand: (04) 499 2344

Nordic Countries: +46 (0) 8 623 90 00

PRC: 861-849 2828

Singapore: 224 3388

Spain: (91) 5551648

Switzerland: (1) 825 71 11

Taiwan: 2-514-0567

UK: 0276 20444

Elsewhere in the world,

call Corporate Headquarters:

415 960-1300

Intercontinental Sales: 415 688-9000

	1 Introduction
	1.1 Overview
	1.2 Scope
	1.3 Target Audience
	1.4 JDBC and Connector Architecture
	1.5 Organization
	1.6 Document Convention
	1.7 Connector Architecture Expert Group
	1.8 Acknowledgements

	2 Overview
	2.1 Definitions
	2.2 Rationale
	2.2.1 System Contracts
	2.2.2 Common Client Interface

	2.3 Goals

	3 Connector Architecture
	3.1 System Contracts
	3.2 Client API
	3.3 Requirements
	3.4 Non-managed Environment

	4 Roles and Scenarios
	4.1 Roles
	4.1.1 Resource Adapter Provider
	4.1.2 Application Server Vendor
	4.1.3 Container Provider
	4.1.4 Application Component Provider
	4.1.5 Enterprise Tools Vendors
	4.1.6 Application Assembler
	4.1.7 Deployer
	4.1.8 System Administrator

	4.2 Scenario: Integrated Purchase Order system
	4.3 Scenario: Business-to-Business (B2B)

	5 Connection Management
	5.1 Overview
	5.2 Goals
	5.3 Architecture: Connection Management
	5.4 Application Programming Model
	5.4.1 Managed Application scenario
	5.4.2 Non-managed Application scenario

	5.5 Interface/Class specification
	5.5.1 ConnectionFactory and Connection
	5.5.2 ConnectionManager
	5.5.3 ManagedConnectionFactory
	5.5.4 ManagedConnection
	5.5.5 ManagedConnectionMetaData
	5.5.6 ConnectionEventListener
	5.5.7 ConnectionEvent

	5.6 Error Logging and Tracing
	5.7 Object Diagram
	5.8 Illustrative Scenarios
	5.8.1 Scenario: Connection Pool Management
	5.8.2 Scenario: Connection Matching
	5.8.3 Scenario: Connection Event Notifications and Connection Close

	5.9 Architecture: Non-managed Environment
	5.9.1 Scenario: Programmatic Access to ConnectionFactory
	5.9.2 Scenario: Connection Creation in Non-managed Application Scenario

	5.10 Requirements
	5.10.1 Resource Adapter
	5.10.2 Application Server

	6 Transaction Management
	6.1 Overview
	6.2 Transaction Management Scenarios
	6.2.1 Transactions across multiple Resource Managers
	6.2.2 Local Transaction Management

	6.3 Transaction Management Contract
	6.3.1 Interface: ManagedConnection
	6.3.2 Interface: XAResource
	6.3.3 Interface: LocalTransaction

	6.4 Relationship to JTA and JTS
	6.5 Object Diagram
	6.6 XAResource-based Transaction Contract
	6.6.1 Scenarios Supported
	6.6.2 Resource Adapter Requirements
	6.6.3 Transaction Manager Requirements
	6.6.4 Scenario: Transactional setup for a ManagedConnection
	6.6.5 Scenario: Connection Close and JTA Transactional Cleanup
	6.6.6 OID: Transaction Completion

	6.7 Local Transaction Management Contract
	6.7.1 Interface: Local Transaction
	6.7.2 Interface: ConnectionEventListener

	6.8 Scenarios: Local Transaction Management
	6.8.1 Local Transaction Cleanup
	6.8.2 Component Termination
	6.8.3 Transaction Interleaving

	6.9 Connection Sharing
	6.10 Local Transaction Optimization
	6.11 Scenarios: Connection Sharing
	6.11.1 Container-Managed Transaction Demarcation
	6.11.2 Component-Managed Transaction Demarcation

	6.12 Connection Association
	6.13 Requirements
	6.13.1 Resource Adapter
	6.13.2 Application Server

	7 Security Architecture
	7.1 Overview
	7.2 Goals
	7.3 Terminology
	7.4 Application Security Model
	7.4.1 Scenario: Container-managed Sign-on
	7.4.2 Scenario: Component-Managed Sign-on

	7.5 EIS Sign-on
	7.5.1 Authentication Mechanism
	7.5.2 Resource Principal
	7.5.3 Authorization Model
	7.5.4 Secure Association

	7.6 Roles and Responsibilities
	7.6.1 Application Component Provider
	7.6.2 Deployer
	7.6.3 Application Server
	7.6.4 EIS Vendor
	7.6.5 Resource Adapter Provider
	7.6.6 System Administrator

	8 Security Contract
	8.1 Security Contract
	8.2 Interfaces/Classes
	8.2.1 Subject
	8.2.2 ResourcePrincipal
	8.2.3 GenericCredential
	8.2.4 PasswordCredential
	8.2.5 ConnectionManager
	8.2.6 ManagedConnectionFactory
	8.2.7 ManagedConnection

	8.3 Requirements

	9 Common Client Interface
	9.1 Overview
	9.2 Goals
	9.3 Scenarios
	9.3.1 Enterprise Application Integration Framework
	9.3.2 Metadata Repository and API
	9.3.3 Enterprise Application Development Tool

	9.4 Common Client Interface
	9.4.1 Requirements

	9.5 Connection Interfaces
	9.5.1 ConnectionFactory
	9.5.2 ConnectionSpec
	9.5.3 Connection

	9.6 Interaction Interfaces
	9.6.1 Interaction
	9.6.2 InteractionSpec
	9.6.3 LocalTransaction

	9.7 Basic Metadata Interfaces
	9.7.1 ConnectionMetaData
	9.7.2 ResourceAdapterMetaData

	9.8 Exception Interfaces
	9.8.1 ResourceException
	9.8.2 ResourceWarning

	9.9 Record
	9.9.1 Component-view Contract
	9.9.2 Interaction and Record
	9.9.3 Resource Adapter-view Contract

	9.10 ResultSet
	9.10.1 ResultSet Interface
	9.10.2 ResultSetMetaData
	9.10.3 ResultSetInfo

	9.11 Code Samples
	9.11.1 Connection
	9.11.2 InteractionSpec
	9.11.3 Generic Record
	9.11.4 ResultSet
	9.11.5 Custom Record

	10 Packaging and Deployment
	10.1 Overview
	10.2 Packaging
	10.3 Deployment
	10.3.1 Resource Adapter Provider
	10.3.2 Deployer
	10.3.3 Application Server

	10.4 Interfaces/Classes
	10.4.1 ManagedConnectionFactory
	10.4.2 Properties Conventions
	10.4.3 Standard Properties

	10.5 JNDI Configuration and Lookup
	10.5.1 Responsibilities
	10.5.2 Scenario: Serializable
	10.5.3 Scenario: Referenceable

	10.6 Resource Adapter XML DTD

	11 Runtime Environment
	11.1 Programming APIs
	11.2 Security Permissions
	11.3 Responsibilities
	11.4 Privileged Code

	12 Projected Items
	13 Exceptions
	13.1 ResourceException
	13.2 System Exceptions
	13.3 Additional Exceptions

	Appendix A: Caching Manager
	Appendix B: Security Scenarios
	Appendix C: JAAS based Security Architecture
	Appendix D: Related Documents
	Appendix E: Change History

