
Federated Management Architecture
(FMA) Specification

Version 1.0

Revision 0.3
January 6, 2000

ii Federated Management Architecture Specification

Copyright © 1999 Sun Microsystems, Inc.

901 San Antonio Road, Palo Alto, CA 94303 USA

All rights reserved. Copyright in this document is owned by Sun Microsystems, Inc.

Sun Microsystems, Inc. (SUN) hereby grants to you at no charge a nonexclusive,
nontransferable, worldwide, limited license (without the right to sublicense) under
Sun's intellectual property rights in the Federated Management Architecture
Specification (Specification) to use the Specification for internal evaluation purposes
only. Other than this limited license, you acquire no right, title, or interest in or to the
Specification and you shall have no right to use the Specification for productive or
commercial use.

The Specification is the confidential and proprietary information of Sun
Microsystems, Inc. (Confidential Information). You may not disclose such
Confidential Information to any third part and shall use it only in accordance with
the terms of this license.

THIS SPECIFICATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF
ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. SUN
SHALL NOT BE LIABLE FOR ANY DAMAGES SUFFERED BY YOU AS A
RESULT OF USING THIS SPECIFICATION.

THIS SPECIFICATION COULD INCLUDE TECHNICAL INACCURACIES OR
TYPOGRAPHICAL ERRORS. CHANGES ARE PERIODICALLY ADDED TO
THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED
IN NEW EDITIONS OF THE SPECIFICATION. SUN MICROSYSTEMS, INC.
MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE SPECIFICATION
AT ANY TIME, IN ITS SOLE DISCRETION. SUN IS UNDER NO OBLIGATION
TO PRODUCE FURTHER VERSIONS OF THE SPECIFICATION OR ANY
PRODUCT OR TECHNOLOGY BASED UPON THE SPECIFICATION. NOR IS
SUN UNDER ANY OBLIGATION TO LICENSE THE SPECIFICATION OR
ANY ASSOCIATED TECHNOLOGY, NOW OR IN THE FUTURE, FOR
PRODUCTIVE OR OTHER USE.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the U.S. government is subject to restrictions of
FAR 52.227-14(g)(2)(6/87) and FAR 52.227-19(6/87), or DFAR 252.227-
7015(b)(6/95) and DFAR 227.7202-1(a).

Sun, the Sun Logo, Sun Microsystems, Jini,, JavaBeans, JDK, Java Solaris, NEO,
Netra, NFS, ONC, ONC+, OpenWindows, PC-NFS, EmbeddedJava, PersonalJava,
SNM, SunNet Manager, Solaris sunbrust design, Solstice, SunCore, SolarNet,
SunWeb, Sun Workstation, The Network Is The Computer, ToolTalk, Ultra,
Ultracomputing, Ultraserver, Where The Network Is Going, Sun WorkShop, XView,
Java WorkShop, and the Java Coffee Cup logo are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and other countries.

Federated Management Architecture Specification iii

Table Of Contents

1 ABOUT THIS DOCUMENT.. XIII

1.1 STATUS... XIII

1.2 ANNOTATIONS.. XIII

1.3 COMMENTS... XIII

2 INTRODUCTION ...1

2.1 AUDIENCE ..1
2.2 DOCUMENT GOALS...1
2.3 SPECIFICATION BOUNDARIES..1

3 SECTION 1: ANALYSIS MODEL..3

3.1 THREE TIERED ARCHITECTURE ..5
3.1.1 Client..5
3.1.2 Services ..6
3.1.3 Managed Resources ...7

3.2 HIGH LEVEL REQUIREMENTS..7
3.2.1 Automate Management7
3.2.2 Provide High Integrity Management8
3.2.3 Provide a Simple Programming Model8
3.2.4 Remote Management...8
3.2.5 Centralized Management8
3.2.6 Provide Highly Available Management8
3.2.7 The Management Infrastructure Should Not Be A Management Headache ..8

3.3 ASPECT REQUIREMENTS8
3.3.1 Controller..8
3.3.2 Logical Thread..9
3.3.3 Transaction9

3.4 INSTALLATION REQUIREMENTS ..9
3.4.1 Dynamic Installation..9

3.5 REGISTRATION REQUIREMENTS..9
3.5.1 Management Server Lookup9
3.5.2 Service Lookup..9

4 THE DYNAMIC SERVICES MODEL13

4.1 EXTENDED RMI SEMANTICS ..13
4.1.1 Remote Object Instantiation14
4.1.2 Remote Class Method Invocation14
4.1.3 High Availability...14
4.1.4 Context Information...14

4.2 PROGRAMMING INTERFACES VS. IMPLEMENTATIONS ...14
4.3 THE STRUCTURE OF DYNAMIC SERVICES ...15

iv Federated Management Architecture Specification

4.3.1 Service Proxy ...16
4.3.2 Point Objects..16
4.3.3 Public Interface..16
4.3.4 Service Implementation..16

4.3.4.1 Point Objects.. 16
4.3.4.2 Hidden Objects and Classes ... 16
4.3.4.3 Remote Objects and Classes .. 17

4.3.5 Service Packaging..17
4.3.5.1 JAR Files.. 17
4.3.5.2 Signing... 17
4.3.5.3 Versioning.. 17

4.4 REMOTE REFERENTS...17
4.4.1 Referent Classes..18
4.4.2 Referent Objects..18
4.4.3 Exclusion of RMI Remote Objects18

4.5 PROXIES..18
4.6 CONTEXT..20

4.6.1 OIDs as Globally Unique IDs..20
4.6.2 Logical Thread Identifiers ...20
4.6.3 Transactions...21
4.6.4 Controller...22
4.6.5 Context Propagation to Child Threads..22
4.6.6 Context Class ...22

4.7 THE STATION INTERFACE ...26
4.7.1 Method Signatures ...26
4.7.2 Station Registration ...26
4.7.3 Station Lookup ...26
4.7.4 The Station Interface..28

4.8 DEPLOYMENT ...31
4.8.1 Deployment Definition ...31
4.8.2 Class Loaders and Deployment ...32

4.9 SPECIFYING A PERSISTENT REFERENT OBJECT ...39
4.10 ACCEPTORS ..39
4.11 PROXY BINDING ...41

4.11.1 Proxy Binding During Proxy Instantiation ..41
4.11.2 Proxy Binding During Proxy Wrapping ..41

4.12 PROXY REBINDING ...42
4.13 PROXY TO REFERENT OVERVIEWS..43

4.13.1 Referent Object Method Invocation ...43
4.13.2 Referent Class Method Invocation...44
4.13.3 Referent Object Instantiation...45
4.13.4 Wrapping a Referent Object with a Proxy ...46
4.13.5 Proxy Rebinding ..47

4.14 ADJUNCT MODIFIERS..48
4.14.1 Class Modifiers ..48
4.14.2 Object Modifiers ..48
4.14.3 Method Modifiers...48
4.14.4 Modifier Precedence..49

Federated Management Architecture Specification Page v

4.14.5 Permissible Modifiers ..50
4.14.6 Applicability of Modifiers ..54

4.15 EXCEPTION HANDLING...55
4.15.1 InvocationTargetException..55

4.15.1.1 Proxy Response ... 55
4.15.2 RemoteException ...56

4.15.2.1 Proxy Response ... 56
4.15.3 Unechecked Exceptions ...56

4.15.3.1 Proxy Response ... 56
4.15.4 StationException Class ..57
4.15.5 Exception Handling Summary ...58

4.16 PROXY CLASS DETAILS ..58
4.16.1 Proxy interface...58
4.16.2 Remotely Exposed Methods and Constructors...59
4.16.3 Wrapper Constructor ...59
4.16.4 equals() and hashCode()..59
4.16.5 Clonable and Serializable..60
4.16.6 getReferentObjectClassName() and getReferentClassClassName()..60

4.17 NETWORK CLASS LOADING..60
4.17.1 Class Loaders and Deployments..60
4.17.2 Class Loading During Remote Instantiation..61
4.17.3 Class Loading During Remote Class Method Invocations ..61
4.17.4 Class Loading During Activation ..61

5 SECURITY...63

5.1 TRUSTED THIRD PARTY ARCHITECTURE ..64
5.1.1 Security Domains...64
5.1.2 Federations ..64

5.2 SCOPE OF SPECIFICATION ...65
5.2.1 Client/Station to the JAAS (Authentication)...65
5.2.2 JAAS to the Security Services...65
5.2.3 Service Objects to the JAAS (Authorization) ...65
5.2.4 Client to Proxy ...65
5.2.5 Referent Objects to Station ..65

5.3 TERMS AND DEFINITIONS ...65
5.3.1 Subject..65
5.3.2 Principal ..66
5.3.3 Stations versus JVMs ...66
5.3.4 Security Policy ...67
5.3.5 Role ..67
5.3.6 Anonymous Role ..70
5.3.7 Federations ..70
5.3.8 Security Manager and Class Loaders ..71
5.3.9 Security Service..71

5.4 SECURITY TOPOLOGY...71
5.4.1 Certificates...73

5.5 JAAS AUTHENTICATION OVERVIEW..73

vi Federated Management Architecture Specification

5.6 MANAGEMENT EXTENSION TO JAAS AUTHENTICATION..74
5.6.1 Security Service..74
5.6.2 Secure Subject..80
5.6.3 Well Known Subject ...82

5.7 AUTHORIZATION...85
5.7.1 JAAS Overview ..85
5.7.2 Modifications ...86
5.7.3 Station Authorization ...86

5.8 CLIENT TO PROXY ..88
5.9 REFERENT TO STATION...89

5.9.1 Intrinsic..89
5.9.2 Implicit ...89
5.9.3 Explicit ...89

5.10 SECURITY PERMISSION SUMMARY ...90
5.10.1 Station ..90
5.10.2 Acceptor...90
5.10.3 DeploymentStation...90
5.10.4 Proxy Trust ..90
5.10.5 WellKnownSubject (Station Subject) ...91
5.10.6 WellKnownSubject (Client Subject) ...91
5.10.7 WellKnownSubject (Trusted Roles)..91

5.11 VIEWS...91
5.11.1 Client Developer ..91
5.11.2 Service Developer ..91
5.11.3 System Administrator ...91

6 TRANSACTION ASPECT ...95

6.1 SYNCHRONIZED/TRANSACTIONS ..95
6.2 TRANSACTIONS CREATED ON BEHALF OF AN OBJECT ..95
6.3 REFERENTS AS TRANSACTION PARTICIPANTS...96
6.4 DEADLOCK PREVENTION ..96

7 LOGICAL THREAD ASPECT..97

7.1 SYNCHRONIZED/LOGICAL THREAD ..97
7.2 LOGICAL THREADS CREATED ON BEHALF OF AN OBJECT...97
7.3 DISTRIBUTED DEADLOCK ...98

8 CONTROLLER ASPECT ..99

8.1 CONTROLLERS..99
8.2 CONTROLLER ARCHITECTURE ..99

8.2.1 Controllers ...99
8.2.2 Locks ..100
8.2.3 State Distribution Between Stations and the Controller Service ...100
8.2.4 Station Responsibilities..100

8.2.4.1 Remote Instantiation .. 100
8.2.4.2 Controller Object Lifetime... 101
8.2.4.3 Remote Method Invocation.. 101

Federated Management Architecture Specification Page vii

8.2.4.4 Failed Lease Renewal .. 101
8.2.4.5 Station Restart.. 101
8.2.4.6 Notify Controller Objects of Possible Lock Loss... 101
8.2.4.7 Persistent Objects... 102

8.2.5 Client Responsibilities ...102
8.3 SYNCHRONIZED/CONTROLLER ...102
8.4 CONTROLLERS CREATED ON BEHALF OF A THREAD...103
8.5 DEADLOCK PREVENTION ..103
8.6 CLIENTS AS CONTROLLERS...103
8.7 REFERENT OBJECTS AS CONTROLLERS...104

8.7.1 Immutable Relationship Between Controller and Object ..104
8.7.2 Controller In Context...104
8.7.3 Releasing Locks Held by a Controller ...105

8.8 CONTROL RESERVATIONS...105

9 PERSISTENT OBJECTS ...107

9.1 SPECIFYING PERSISTENT OBJECTS..107
9.2 KINDS OF PERSISTENT STATE ...108

9.2.1 Existence ..108
9.2.2 Implicit ...108
9.2.3 Explicit ...109

9.3 READING STATE ...109
9.3.1 Activation...109
9.3.2 Transaction Abort ..109

9.4 WRITING STATE..109
9.4.1 Instantiation...109
9.4.2 Transaction Commits ...110
9.4.3 Dirty Optimization ...110

9.5 ACCESS OF PERSISTENT OBJECTS USING PROXIES..112
9.6 CONCURRENT OPERATIONS ..112

9.6.1 Operation in Progress on Methods Not Synchronized/Transaction ..112
9.6.2 Operation in Progress on Methods Synchronized/Transaction ...112
9.6.3 Operation Initiated on Methods Not Synchronized/Transaction ...112
9.6.4 Operation Initiated with New Transaction on Methods Synchronized/Transaction112
9.6.5 Operation Initiated with Old Transaction on Methods Synchronized/Transaction112

10 REGISTERED DYNAMIC SERVICES..113

10.1.1 Specifying the Service Entry ..113
10.1.2 Leases ..114
10.1.3 Response to Lease Renewal Failure ..114
10.1.4 Service IDs...114

11 INTERNATIONALIZATION AND LOCALIZATION ..115

11.1 OVERVIEW..115
11.2 INTERNATIONALIZATION ..116

11.2.1 LocalizableMessage...116
11.2.2 Providing Resource Files...119

viii Federated Management Architecture Specification

11.3 LOCALIZATION ...119
11.3.1 Finding Text...119
11.3.2 Localization Implementation ...119

11.4 SERIALIZATION OF MESSAGES..120
11.4.1 Failure to Serialize ..120
11.4.2 Failure to Serialize ..120
11.4.3 Low Risk Substitution Objects..120
11.4.4 Messages as Public Interfaces ...120

12 COMPOSITE EXCEPTIONS AND ERRORS...121

12.1 NESTED THROWABLES..121
12.2 INTERNATIONALIZATION AND LOCALIZATION OF THROWABLES ..122
12.3 STACK TRACES AND THROWABLE SERIALIZATION...122
12.4 RULES FOR HANDLING THROWABLES...123
12.5 COMPOSITE THROWABLE INTERFACE...123
12.6 COMPOSITE DELEGATE CLASS..125
12.7 COMPOSITE EXCEPTION CLASS...126
12.8 COMPOSITE ERROR CLASS..128
12.9 EXCEPTION DEBUGGING...130

13 STATIC SERVICES MODEL..133

14 TRANSACTION SERVICE ...136

14.1 NO TRANSACTION SERVICE..136
14.2 FAILED TRANSACTION SERVICE ...136
14.3 RECOVERED TRANSACTION SERVICE..136

15 CONTROLLER SERVICE ..137

15.1 CONTROLLER AND CONTROLLER GENERATIONS ..137
15.2 CONTROLLER SERVICE INTERFACE...137
15.3 CONTROLLER INTERFACE ...143
15.4 NO CONTROLLER SERVICE ...147
15.5 FAILED CONTROLLER SERVICE...147
15.6 CONTROLLER SERVICE RECOVERY...147
15.7 BREAKING CONTROLLER SERVICE LOCKS..148

16 LOG SERVICE..149

16.1 LOG SERVICE INTERFACES ...149
16.1.1 Log Messages...149
16.1.2 The Log Service Interface ..151
16.1.3 Retrieving Log Messages ...152

16.1.3.1 Predicates... 152
16.1.3.2 Searches... 153

16.1.4 Removing Log Messages..154
16.2 POSTING FAILURE SCENARIOS..155

16.2.1 Posting Reliability..155
16.2.2 Log Service Unavailable..155

Federated Management Architecture Specification Page ix

16.2.3 Marshaling Failure..155
16.2.4 Log Service Failure While Writing ..155

17 EVENT SERVICE...157

17.1 USE OF THE JINI TECHNOLOGY EVENT MECHANISM...157
17.2 THE EVENT OBJECT..158

17.2.1 Inherited Event Properties...158
17.2.1.1 Event ID .. 158
17.2.1.2 Handback... 158
17.2.1.3 Sequence Number.. 158
17.2.1.4 Source.. 158

17.2.2 Declared Event Properties...158
17.2.2.1 Topic.. 158
17.2.2.2 Base Event Object ... 159

17.2.3 Root Event Object ...160
17.3 EVENTSERVICE INTERFACE ..161
17.4 TOPICS..165
17.5 CHAIN OF RESPONSIBILITY ...166
17.6 SUBSCRIBING..166

17.6.1 Observing Listeners ...167
17.6.2 Responsible Listeners...167
17.6.3 Event Service as Listeners..167
17.6.4 Listeners as Good Citizens...167
17.6.5 Leases ..168

17.7 EVENT ORDERING...168
17.7.1 Observing Listeners ...169
17.7.2 Responsible Listeners...169
17.7.3 Event Service Listeners ..169
17.7.4 Sequence Numbers ...170

17.8 TRANSACTIONS...170
17.9 EVENT SERVICE PERSISTENCE..170
17.10 MANAGEMENT FACADES..170

17.10.1 Event Listening ..170
17.10.2 Event Generation ...170
17.10.3 Event Translation and Posting...171
17.10.4 Event Filtering ...171
17.10.5 Event Correlation...171

18 SCHEDULING SERVICE..173

18.1 SCHEDULINGSERVICE INTERFACE ..173
18.2 TICKET ...177
18.3 TASKS...178
18.4 SCHEDULES178
18.5 TASK PERFORMANCE..178

18.5.1 Thread..178
18.6 SCHEDULING CONFLICTS..178
18.7 PROTECTION FROM TASK EXCEPTIONS ...179

x Federated Management Architecture Specification

18.8 SCHEDULING SERVICE FAILURE ...179

Federated Management Architecture Specification Page xi

Table of Figures

Figure 1. The Three Tiered Architecture of Management Applications. ...5

Figure 2. Intradomain Federation. ...6

Figure 3. Interdomain Federation. ...7

Figure 4. Architectural Layering of RMI Semantics with Dynamic Services Semantics. ...13

Figure 5. A Comparison of Local Java Programming (top) and Remote Programming using Proxies and referents..19

Figure 7. Referent Object Method Invocation. ..43

Figure 8. Referent Class Method Invocation. ..44

Figure 9. Referent Object Instantiation..45

Figure 10. Wrapping a Referent Object with a Proxy..46

Figure 11. Proxy Rebinding...47

Figure 12. Security Architecture..64

Figure 13. Security services, Security Domains, Federations, Stations, and Clients. ..72

Figure 14. Remote Authorization Model. ..78

Figure 15. Remote Authorization Sequence. ...79

Figure 16. State Diagram of Object Methods Synchronized with Respect to Transactions.95

Figure 17. State Diagram of Object Methods Synchronized with Respect to Logical Threads...................................97

Figure 18. State Diagram of Object Methods Synchronized with Respect to Controllers. ..102

Federated Management Architecture Specification Page xiii

1 About This Document

1.1 Status
This document is a draft for final release, post public review, as defined by the Java™
Community Process (JCP). Minor changes are expected as the Reference Implementation
(RI) proceeds.

1.2 Annotations
Note – In this document you will notice several paragraphs appear in this style. These are
areas where we specifically invite comment. Consider them as “notes to reviewers”.

Terms in bold Italics are particularly important and are defined in the glossary.

1.3 Comments
Please direct comments to core-ri@thor.central.sun.com.

Federated Management Architecture Specification Page 1

2 Introduction

2.1 Audience
The readers of this document are assumed to be technical and versed in object oriented
design, the Unified Modeling Language (UML), Jini™ technology, and Java technology.
The audience is assumed to be implementers of this specification or of components which
are deployed on such an implementation. In the latter case, this specification is intended
as a reference rather than a guide.

2.2 Document Goals
This specification defines the Federated Management Architecture (FMA) sufficiently for
vendors providing implementations of the specification. As the scope of the platform
includes the interactions between an implementation and deployed components, this
specification also places constraints on the behavior of components in their contracts with
the implementation. However, this specification is not intended as a guide for vendors
writing or using management components. Design guidelines for management
components and their use of supporting technologies such as Web Based Enterprise
Management (WBEM) is the subject of other related documents.

2.3 Specification Boundaries
In leading the development of this specification, Sun has placed boundary conditions that
must not be violated and must remain part of the JCP. In particular, architecture is to be
based on Java technology and Jini technology. Java technology is used as the primary
mechanism for achieving platform neutrality. Given platform neutrality, one may derive
other forms of neutrality such as protocol neutrality. Language neutrality is not a goal for
the initial specification, but can be approached later through other means. While this
specification is Java technology centric, it is not Solaris operating environment centric.
The primary validation platforms are NT and the Solaris operating environment.

Federated Management Architecture Specification Page 3

3 Section 1: Analysis Model

This section presents an analysis model of management applications as assemblies of
management services, management clients, and managed resources. The model illustrates
how management services can use other management services, the interface between
management services and clients, as well as the interface between management services
and managed resources such as storage devices and applications. When management
services are assembled in hierarchies, complex storage systems can be made to appear
simple because users of the system interact only with the top-levels of the hierarchy at a
high level of abstraction. In particular, it is desirable that a given storage system be
managed at the same level of abstraction as the provided data. For example, when
managing a database appliance, an administrator would ideally manage the performance,
size, and other characteristics of tables rather than manipulating the disks and volumes on
which the database runs.

The analysis model describes the form of a solution to the management problem. The
solution model, described after the analysis model, specifies the infrastructure designed
to support such solutions.

Federated Management Architecture Specification Page 5

The Analysis Model

3.1 Three Tiered Architecture
The three tiered architecture has been validated in many application domains and has
well known properties. As applied to management, the first tier is the management client
tier, the second tier is the management services tier, and the third tier is the managed
resource tier. Clients are hosted by Java Virtual Machines (JVMs), services by JVMs
enabled as management servers, and resources by any appropriate host machine including
a JVM.

Clients

Services

Resources

Figure 1. The Three Tiered Architecture of Management Applications.

The client communicates with management services, which ensures that the third tier, the
resource tier, is manipulated in a controlled and consistent manner.

3.1.1 Client
The client locates and communicates with management services. Often the client is the
user interface for an administrative user, but this is not always the case. Clients are

The Analysis Model

6 Federated Management Architecture Specification

considered transitory. Objects associated exclusively with the client are only expected to
live as long as the client process, even if the client terminates abnormally or becomes
unreachable. This is also true for client objects that have been transferred to a
management server. For the purposes of defining expected high availability, it is
acceptable to restart the client in order to reestablish management capabilities in response
to the failure of a management server.

Java clients can locate and communicate with management services directly. Outside of
this specification, there can be bridges to connect non-Java clients. An example bridge
would be a servlet that allows using a browser for management. The servlet would
communicate with the browser using HTTP/HTML and with the services tier using Java
Remote Method Invocation (RMI).

Other than specifying how clients communicate with management services, this
specification will not define the architecture or design of management clients.

3.1.2 Services
Management logic is comprised of services hosted by management servers. Management
services are classified in a number of ways including whether they are transient,
persistent, static, or dynamic.

Management is divided into disjoint domains. Each management domain has a single
management server, called the shared management server, representing the domain as a
whole. There may be more than one shared server for the purposes of redundancy, but the
entire replication group is treated as a single logical server.

Appliances, such as encapsulated file servers, can also have embedded management
servers to host services that are private to the appliance. This class of server is called the
private management server. The union of shared and private management servers within
a single domain is called an intradomain federation.

Domain

ApplianceAppliance

Shared

ApplianceApplianceApplianceAppliance

Figure 2. Intradomain Federation.

The Analysis Model

Federated Management Architecture Specification Page 7

The union of the shared management servers of each domain forms the strictly
hierarchical interdomain federation.

Domain

DomainDomain

Figure 3. Interdomain Federation.

Shared management servers of different domains may communicate with one another.
Private management servers may not communicate across domain boundaries.

3.1.2.1 Managed Resources
The resource tier includes a mix of heterogeneous managed resources such as devices,
appliances, systems, and applications. Unlike business applications, most of the state that
is interesting to management resides not in a database but in managed resources. A
number of standards exist or are emerging, such as Web Based Enterprise Management
(WBEM), for communicating with managed resources.

While management servers will provide built-in support for WBEM, the architecture is
protocol neutral. If the managed resource is capable of hosting a JVM, it can choose to
embed a private management server and be managed using inter-service communication,
in which case the managed resource is called an appliance. This technique has the
advantage of propagating the features of management services to the appliance. Thus,
management services can be dynamically installed, updated, and otherwise manipulated
within an appliance.

3.2 High Level Requirements

3.2.1 Automate Management
Management to date has been dominated by monitoring. Moving from monitoring to
controlling and, finally, to automated or policy based management, requires infrastructure
support, such as control arbitration, not found in the current generation of management
products.

The Analysis Model

8 Federated Management Architecture Specification

3.2.2 Provide High Integrity Management
As managed systems become more automated and complex, it becomes essential for the
platform to provide some guarantees about the integrity of the management activities.
This requirement drives such features as security, transactions, and the control arbitration
as the set of mechanisms that protect management integrity.

3.2.3 Provide a Simple Programming Model
Vendors providing management components will generally not be experts in distributed
Java programming. The specification should be biased towards simplicity rather than
completeness or performance to minimize the cost of creating services by vendors who
are not Java technology centric. The simplicity can be achieved using a mix of
development tools, class factoring, and any other applicable techniques.

3.2.4 Remote Management
Management shall be possible from remote locations, including outside firewalls and
possibly over unsecured networks.

3.2.5 Centralized Management
It shall be possible to manage an entire management domain from a single location.

3.2.6 Provide Highly Available Management
The management services of highly available systems should themselves be highly
available. Highly available means that one can proceed with management tasks following
the loss of a management server. The continuation is not necessarily transparent, just
possible.

3.2.7 The Management Infrastructure Should Not Be A Management Headache
The solution to the management problem should not itself be a management problem.
This requirement drives a simple management solution compared to similar technologies
such as application servers.

3.3 Aspect Requirements
The implementation of this specification must support the following aspects applied to
management services.

3.3.1 Controller
An important objective of the specification is providing the infrastructure to support
control arbitration. The primitive required for arbitration is called the controller aspect of
the management services model and must support durable (long term) exclusive locking
of resources.

The Analysis Model

Federated Management Architecture Specification Page 9

3.3.2 Logical Thread
As the specification is intended to support active, autonomous management applications,
it must be able to support concurrent and reentrant conditions with respect to threads.
Management applications are made of distributed components, so the services model
introduces the concept of a logical thread that spans processes. Thus, behavior with
respect to threads can be specified with respect to logical threads instead of language
threads.

3.3.3 Transaction
Most distributed object models provide some form of transaction support to aid in
protecting the integrity of the resource layer. The specified transactions are inherited
from the Jini programming model and focus on supporting large numbers of
heterogeneous resources, rather than a single large resource (database). In many respects
they may be thought of as a distributed form of try/catch rather than the more classic
transaction model supported by transaction monitors and application servers.

3.4 Installation Requirements

3.4.1 Dynamic Installation
The specification must provide for the dynamic installation and updating of management
services without requiring that management servers be restarted. Installation shall support
both temporary installs as well as durable installs.

3.5 Registration Requirements

3.5.1 Management Server Lookup
Management servers shall registered with a well known lookup service where they may
be located by clients and other management servers. Management servers shall be well
good Jini technology citizens with respect to registration.

3.5.2 Service Lookup
Management services shall registered with a well known lookup service where they may
be located by clients and other management services. Management services shall be well
good Jini technology citizens with respect to registration.

Federated Management Architecture Specification Page 11

Section 2: Dynamic Services

While the analysis model describes the problem domain, which in the case of
infrastructure is a solution to a higher order problem, the solution model describes the
form of a solution. The problem is providing the infrastructure needed to support three
tiered management applications as described by the analysis model. The specified
solution to this problem provides a component model based on Jini technology services.

The specification classifies management services as static or dynamic. Static services,
called base services, include the transaction manager, logging, and other services
considered always present in a management domain as part of the environment. These
services are supplied as part of an implementation of this specification. As such, the
deployment of base services and the hosting environment are implementation rather than
specification issues. For example, the logging service could be implemented as an
Enterprise Java Beans (EJB) or even a native implementation exposed through a Java
facade.

Dynamic services are supplied independent of a management server implementation.
Since a vendor boundary exists between dynamic services and the management server
implementation on which they run, this boundary must be specified so that dynamic
services may be portable between management server implementations. The dynamic
services model specifies the involved contracts and compromises the majority of this
specification.

The dynamic services model extends Java RMI to support a higher level (application
level) of abstraction appropriate for management applications. The added abstractions
include the following.

1) The propagation of contextual information including security and controller
information.

2) Reference fault rebinding to allow management servers to be recovered on a
different host than the one on which they were started.

3) Management aspects (security, transaction, controller)

4) Transactional persistence

5) Remote class method (procedural) invocations.

6) Remote object instantiation.

Federated Management Architecture Specification Page 13

4 The Dynamic Services Model

Management servers, called stations in the context of dynamic services, host management
services that, in turn, communicate with other management services or managed
resources. Resources may be accessed using Web Based Enterprise Management
(WBEM), Simple Network Management Protocol (SNMP), or any other means
appropriate to a particular situation. Stations are Jini technology services and registered
with the lookup services serving the management domain to which the station belongs.
One can consider stations as services that host dynamic services.

4.1 Extended RMI Semantics
The dynamic services model adds application layer semantics to complement RMI
remote communication semantics for usage patterns common in the management domain.

RMI Semantics

(Object Methods)

O
bject Instantiation

C
lass M

ethods

H
igh A

vailability

Dynamic Services Model

Context Information

Figure 4. Architectural Layering of RMI Semantics with Dynamic Services Semantics.

Dynamic Services Model

14 Federated Management Architecture Specification

4.1.1 Remote Object Instantiation
Stations support remote instantiation of objects without the need to create explicit remote
factories by providing a reflective remote instantiation service that may be used directly
as a low-level interface or indirectly through Proxies (described later).

4.1.2 Remote Class Method Invocation
Stations also support remote invocation of class methods by providing a reflective class
method invocation service that may be used directly as a low-level interface or indirectly
through Proxies (described later).

4.1.3 High Availability
To support highly available stations, the dynamic services model defines a reference
faulting/rebinding scheme. A failed station may be restarted on another host and
communications with the objects hosted by that station will fail over to the new location.
This mechanism is distinct from the RMI activation reference faulting for the purposes of
activation within the bounds of a single host.

4.1.4 Context Information
The management architecture described in this specification is an explicit three tiered
architecture. There is a source of activity (client, resource, service, etc.), an arbitrarily
deep chain of logic that is largely stateless, and finally, the managed resources
themselves at the end of the logic chain. The resources must be guarded against
inappropriate access. Some such access can be malicious and must be guarded against
using a security mechanism. Other inappropriate access can include accessing the
resource using multiple, concurrent threads or transactions.

The information needed to guard a resource is passed implicitly in context. Thus, the
context information includes the following.

1) Security (unauthorized access).

2) Transactions (concurrent access under more than one transaction).

3) Logical Thread (concurrent access under more than one thread).

4) Controller (concurrent access by more than one controlling entity).

4.2 Programming Interfaces vs. Implementations
This specification defines the programming interfaces that station implementations must
support. Separating programming interfaces from implementation is done using several
mechanisms to handle abstractions of object methods, class methods, and constructors.

Object methods are abstracted using Java interfaces. The specification defines and a
number of such interfaces in the javax.fma package and sub-packages. Implementations
provide concrete classes that implement these interfaces. Java interfaces, however, do not
provide a way of abstracting class (static) methods or constructors, both of which require
an abstraction mechanism in order to cleanly separate the specification from the
implementation.

Dynamic Services Model

Federated Management Architecture Specification Page 15

Constructors are class operations much like class (static) methods. When a constructor
must be abstracted for the specification, it is replaced with a class (static) factory method.
This reduces the problem of interface/implementation separation to object methods and
class (static) methods.

Static methods are abstracted using implementation forwarding. For example, consider
a class A with a class method foo(). The specification provides an abstract class A in a
specification package (javax.fma…) with the class method foo(). The implementation
of the method fetches a reference to the implementation class A and invokes foo() on the
implementation class. This class has the same unqualified name, A, but resides in an
implementation package. A system property, “javax.fma.implementation”, provides the
implementation package. Thus, all such implementation classes reside, for convenience,
in the same package as defined by the system property “javax.fma.implementation”. If
the implementation package is not provided, “com.sun.fma.implementation” is used as
the default. Note that this property is static and cannot be changed at runtime.

package javax.fma.util;

import java.lang.reflect.Method;

/** Utility for consistent implementation delegation.
 * <P>
 * Implementation classes are located in the package specified by
 * the "javax.fma.implementation" property.
 */
public final class Implementation
{

/** Returns an implementation method.
 * @param interfaceClass Interface Class for which an
 * implementation is needed.
 * @param method Name of method.
 * @param params Array of method parameter types.
 * @return Returns requested implementation method.
 * @throws InternalError Implementation class or
 * method cannot be found. Considered
 * unrecoverable and should not be caught.
 * Error message contains the message of the
 * embedded exception.
 */
public static Method getImplementationMethod(

Class interfaceClass,
String method,
Class[] params

);
}

4.3 The Structure of Dynamic Services
Dynamic services all have a common structure and deployment. The structure is
dominated by the requirement to be a good, network loadable Jini citizens.

Dynamic Services Model

16 Federated Management Architecture Specification

4.3.1 Service Proxy
The service proxy is a Jini proxy that is registered by value with the lookup services
serving a particular management domain. Remote operations invoked on the proxy are
forwarded to the remote point objects - the remote entry point to the service. Generally,
there is a single point object that implements the same interface as the service proxy, but
this is not required.

4.3.2 Point Objects
Point objects are the entry points into a service. Other objects that comprise the interface
of the service are exposed, directly or indirectly, by the point objects. Objects may also
be exposed through remote instantiation and class method invocations. These operations
do not require access to the service through the service proxy.

4.3.3 Public Interface
The public interface of a service is the set of all objects, classes, and interfaces that may
be exposed to clients of the service. Not all of these entities may be statically determined.
For example, consider a service defining a method that returns an object of interface I.
The class of the actual object returned may be anything that implements I. This
implementation is part of the public interface because a client of the service would need
to load this class in order to communicate with the service. This kind of problem may be
reduced by using final classes and JDK classes as the arguments, return values, and
exceptions of remote operations when allowable by good design.

The public interface does not include remote objects: just the Proxies (or stub in the case
of RMI) to the remote objects. Since remote objects reside in the JVM hosting the
service, they do not need to be loaded by a client of the service and, therefore, or not
considered part of the public interface. The client will, however, need to load the client
side representation (proxy) of the remote object. Thus, Proxies and RMI stubs are
considered part of the public interface. The service proxy itself belongs to the public
interface.

4.3.4 Service Implementation
The parts of the service that are not the public interface are considered the service
implementation.

4.3.4.1 Point Objects
Point objects, previously described, are part of the service implementation as a special
kind of remote object.

4.3.4.2 Hidden Objects and Classes
Many, if not most, of the service implementation is composed of hidden objects and
classes. Hidden objects and classes are not exposed in any way to the client of the
service. Clients never communicate directly, or apparently directly, with hidden objects
and classes as they do remote objects and classes.

Dynamic Services Model

Federated Management Architecture Specification Page 17

4.3.4.3 Remote Objects and Classes
Remote objects and classes, which reside in the JVM hosting the service, are referred to
remotely using Proxies, and are considered part of the implementation. Remote objects
and classes are known collectively as remote referents.

4.3.5 Service Packaging

4.3.5.1 JAR Files
Services are packaged into two JARs for deployment: the implementation JAR and the
interface JAR. The two JAR files are known collectively as a deployment group. The
classes and resources needed to support the implementation and public interface shall be
contained in the implementation JAR. Only the classes and resources needed to support
the public interface shall be placed in the interface JAR. If the implementation JAR is
named x.jar, then the interface JAR must be named x-dl.jar in accordance with Jini
technology naming conventions. ’dl’ is case insensitive. Each JAR shall be self sufficient
in that it contains all of the classes and resources needed to load any of the contained
classes with the exception that the following infrastructure classes may be omitted.

1) JDK classes

2) Jini classes

3) Java extensions

4) Classes defined in this specification

This is similar to applet packaging except that the result is a deployment group (two
JARs) rather than a single JAR. The second JAR, the interface JAR, is a strict subset of
the first.

4.3.5.2 Signing
The deployment JAR files shall be signed to enable security. Stations are encouraged not
to grant any permission to anonymous code.

4.3.5.3 Versioning
The deployment JAR files are required to contain Java package version information in
the manifest according to the Java Package Versioning specification.

4.4 Remote Referents
Remote referents are the targets of remote operations and include referent classes and
referent objects. Referent objects may be stateful and are further classified as transient or
persistent. Referent classes are stateless: only constant static fields are permitted.

Dynamic Services Model

18 Federated Management Architecture Specification

4.4.1 Referent Classes
Stations, by providing generic factory and invocation services, permit class operations
including class method invocation and instantiation. These operations obey extended
RMI semantics as if the class was treated as a remote object.

4.4.2 Referent Objects
Referent objects are remote objects that support extended RMI semantics. The three
aspects (logical thread, transaction, and controller) may be applied to referent objects.
Referent objects are either transient or persistent.

4.4.3 Exclusion of RMI Remote Objects
The station security model depends on passing all remote access to the station through a
well controlled gateway. The use of RMI remote objects from within a station would
circumvent the security model and is therefore prohibited. Remote objects should instead
be proxied and participate in the extended RMI semantics of this specification.

4.5 Proxies
Remote operations are performed on referents, class or object, by invoking local
operations on a Proxy object or class. Proxy classes are created during development,
preferably with a wizard type tool, and often packaged as part of both the implementation
and interface JARs. The developer can choose to expose all public operations of the
referent to the Proxy, or just a subset. Operations on a Proxy class are forwarded to the
referent class while operations on a Proxy object are forwarded to the referent object.

A Proxy refers to a single referent. However, a single referent can have many Proxies just
as a local object can have many references.

A client can obtain a Proxy object in one of three ways:

1) remote instantiation,

2) receiving the Proxy as a result of a remote operation, or

3) receiving a Proxy as an argument to a remote operation invoked on the client.

Dynamic Services Model

Federated Management Architecture Specification Page 19

JVM

Obj Ref

JVM

Referent

JVM

Ref
Proxy

Figure 5. A Comparison of Local Java Programming (top) and Remote Programming
using Proxies and referents.

As shown above, when a reference and object coexist in the same JVM, the reference
points directly to the object: in effect the referent. In contrast, when the reference exists
in a different JVM than the referent, the reference points to a Proxy, which
communicates, through the station infrastructure, with the referent. When the Proxy and
the referent implement the same interfaces, the client is largely unaware of whether the
referent exists locally or remotely. That is not to say that referent always appears to be
local, but rather that it always appears to be remote and may be local.

It is important to note that while local and remote operations appear similar, they have
different behaviors, particularly with respect to failure modes and latency. The intent in
making remote programming appear similar to local programming is to minimize the
learning curve, not to hide the fact the remote operations must be treated differently than
local operations.

Proxy classes are independent of station implementations and, therefore, can be used
against any station implementation. The neutrality of the implementation is achieved by
defining an interface between the Proxy and the station proxy for communicating with a
station. The station proxy is a Jini proxy (the station is a Jini service), rather than a Proxy
in the sense of Proxies and referents. In this specification, proxy is used in the generic
sense of the Proxy Pattern and in the specific senses of referents and of Jini proxies.
When a proxy is referred to with respect to referents, the word Proxy is capitalized to
provide differentiation.

Proxies are durable in that they can be serialized for the purposes of persistence. When
Proxies are not live, however, they do not participate in the distributed garbage collector.

Dynamic Services Model

20 Federated Management Architecture Specification

Thus, it is possible that persisting a Proxy allows a transient referent to be prematurely
garbage collected.

4.6 Context
Certain contextual information can be associated with a thread of execution, both locally
and across remote operations. With the exception of security, this context information is
accessed on both the client and server side using methods on the
java.fma.common.Context class. The contextual information includes
LogicalThreadID, Transaction, and Controller. The security context is accessed
using the Subject class of the Java Authorization and Authentication Service (JAAS) and
is described fully the JAAS specification.

4.6.1 OIDs as Globally Unique IDs
Many of the identifiers in the FMA are expected to be globally unique. The OID class
provides a means by which the implementation provides a factory for producing globally
unique IDs.

package javax.fma.util;

import java.io.Serializable;
import java.lang.reflect.Method;
import javax.fma.util.Implementation;

/** Globally unique identifier. The implementation of
 * newOID() must not throw an exception.
 */
public abstract class OID implements Serializable, Comparable
{

/** Construct and return a new OID. The implementation
 * of newOID must not throw an exception.
 * @return OID - unique identifier
 * @throws InternalError if implementation delegation
 * fails
 */
public static OID newOID();

}

4.6.2 Logical Thread Identifiers
When the Proxy and its referent lie in different JVMs, they execute in different language
threads. This can cause reentrancy problems when the logical thread of execution spans
JVMs and thread concurrency control is based on language threads. To permit reentry
and support other thread related constructs, the concept of a logical thread is introduced.
During a remote operation that spans JVMs, both the caller and the called threads belong
to the same logical thread. This allows concurrency control to be based on logical threads
rather than language threads, if so desired.

Each logical thread is uniquely identified, with respect to the universe, by its
LogicalThreadID. A logical thread is assigned to a language thread when 1) the
language thread first invokes a remote operation or 2) when servicing a remote operation.

Dynamic Services Model

Federated Management Architecture Specification Page 21

Thus, the infrastructure is the only entity allowed to set the LogicalThreadID of a
language thread.

One can query the LogicalThreadID of the current thread using the Context class.
The returned ID is opaque, but can be compared for equality using equals().

package javax.fma.common;

import java.io.Serializable;

/** Logical Thread Identifier. LogicalThreadIDs are
 * used to uniquely identify logical threads across
 * JVMs.
 */
public class LogicalThreadID implements Serializable
{

static final long serialVersionUID = 3061985211975656460L;

/** Create a new LogicalThreadID.
 */
public LogicalThreadID();

/** Return true if the specified object compares
 * as equal to this LogicalThreadID.
 * @param object object with which to compare
 * this LogicalThreadID
 * @return boolean - true, if the objects
 * compare as equal
 */

 public boolean equals(Object object);

/** Return a hash code for this LogicalThreadID.
 * @return int - hash code
 */

 public int hashCode();

/** Return a String representation of this
 * LogicalThreadID. Primarily used for debugging.
 * The format should be human readable, but is
 * otherwise unspecified.
 * @return String - string representation of
 * LogicalThreadID
 */

 public String toString();
}

4.6.3 Transactions
Transactions are issued by a Jini transaction service: one of the base management
services. The semantics and transaction interfaces are more fully described in the Jini
Transaction Specification. One can query the transaction associated with the current
thread using the javax.fma.common.Context class.

Dynamic Services Model

22 Federated Management Architecture Specification

4.6.4 Controller
While logical threads and transactions are considered short-lived, bounded by the lives of
one or more processes, controllers are long lived. Controllers are assigned to each
controller object or client. Clients must obtain a controller directly from the controller
service. Stations hosting controller objects obtain controllers for these objects on their
behalf.

Clients obtain a controller from the controller service and retain the context for the life of
the client by maintaining the associated lease. Clients must cancel the lease at the end of
their lives. The controller service will cancel locks held by a controller in response to
lease expiration, presumably indicating that the client has unexpectedly failed or
otherwise become irrelevant. Controllers can exclusively lock resources for the life of the
controller. The locking mechanism is covered further in the controller aspect chapter.

import javax.fma.services.controller.ControllerService;
import javax.fma.services.controller.ClientController;
import javax.fma.services.ServiceFinder;

ControllerService controller =
ServiceFinder.getControllerService();

ClientController aController =
controller.newClientController(5*60*1000);

4.6.5 Context Propagation to Child Threads
When a child thread is created and the parent thread has an associated Context object, the
child thread shall be given an associated Context object which inherits the transaction and
controller properties of the parent thread. The Context object of the child thread shall be
assigned a new and unique logical thread ID. These parent/child thread semantics shall be
handled by the Context implementation as described by the
java.lang.InheritableThreadLocal documentation.

4.6.6 Context Class

package javax.fma.common;

import javax.fma.services.controller.Controller;
import net.jini.core.transaction.server.*;
import java.io.Serializable;
import java.rmi.RemoteException;

Dynamic Services Model

Federated Management Architecture Specification Page 23

/**Contextual information associated with a thread of
 * execution. This information is propagated implicitly
 * along with remote operation calls.
 * <p>
 * If a child thread is spawned from a parent thread with
 * an associated Context, then that child will inherit
 * the Context of its parent. All Context fields are
 * inherited with the exception of the logical thread.
 */
public class Context implements Serializable
{

static final long serialVersionUID =
8863107404674095386L;

/** empty context (context with all fields null) */
public static final Context EMPTY_CONTEXT;

/** logical thread ID associated with this context */
protected LogicalThreadID logicalThread;

/** transaction associated with this context */
protected final ServerTransaction transaction;

/** controller associated with this context */
protected final Controller controller;

/**mapping of physical threads to contextual
 * information (Thread=>Context)
 */

 protected static final ContextMap contexts;

//
// Constructors
//

 /**Construct a new Context object.
 * @param controller controller to associate with
 * current thread
 * @param transaction transaction to associate with
 * current thread
 */
public Context(

Controller controller,
ServerTransaction transaction

);

//
 // Accessors
 //

 /**Return the logical thread associated with this
 * context.
 * @return LogicalThreadID - logical thread associated
 * with this context (may be null)
 */

 public LogicalThreadID getLogicalThread();

Dynamic Services Model

24 Federated Management Architecture Specification

/**Return the transaction associated with this
 * context.
 * @return ServerTransaction - transaction associated
 * with this context (may be null)
 */
public ServerTransaction getTransaction();

/**Return the controller context associated with this
 * context.
 * @return Controller - controller associated with
 * this context (may be null)
 */
public Controller getController();

//
 // Class Methods
 //

 /**Return the Context associated with the current
 * thread of execution. If the current thread has no
 * associated Context, the default Context is
 * returned.
 * @return Context - context associated with current
 * thread
 */
public static Context getContext();

/**Associate the specified context with the calling
 * thread. The Context previously associated will be
 * returned (default Context, if no Context
 * was associated). A logical thread ID will be set
 * for the Context when this method is invoked. The
 * logic for doing so is as follows:
 * if the specified Context is the Empty Context
 * (EMPTY_CONTEXT), then no logical thread will be
 * assigned
 * else if a logical thread is currently
 * associated with the physical thread, then that
 * logical thread will be assigned to the Context
 * else if the specified Context has no currently
 * associated thread, a new logical thread ID will
 * be created and assigned
 * else the Context’s logical thread ID will
 * remain unchanged
 * @param context context to associate with the
 * calling thread
 * @return Context - context previously associated
 * with current thread (may be the default Context)
 * @precondition context != null
 */
public static Context setContext(

Context context
);

Dynamic Services Model

Federated Management Architecture Specification Page 25

/**Set the specified Context as the default Context.
 * This object will be returned by getContext()
 * for any calling thread that has no currently
 * associated Context.
 * @param context context to set as default
 * @return Context - context previously set as default
 * (EMPTY_CONTEXT if no Context was previously
 * associated)
 * @preconditon context != null
 */
public static Context setDefaultContext(

Context context
);

/**Cancel any locks currently held by the Controller
 * associated with this Context (if this method is
 * invoked from within a referent controller object
 * while servicing a remote operation).
 * @throws RemoteException if a communication error or
 * an unexpected exception occurs
 */
public static void cancelLocks();

//
 // Protected Methods (generally overridden in subclasses)
 //

 /**Return a clone of this context with the logical
 * thread ID set to null.
 * @return Context - Context clone
 */
protected Context cloneContext();

//
// java.lang.Object overrides
//

 /**Return true if the specified object compares as
 * equal to this Context. The objects are equal if
 * they are both Context objects and have equal
 * controllers, transactions, and logical threads.
 * @param object object with which to compare this
 * Context
 * @return boolean - true, if the objects compare as
 * equal
 */
public boolean equals(

Object object
);

/**Return a hash code for this Context.
 * @return int - hash code
 */
public int hashCode();

Dynamic Services Model

26 Federated Management Architecture Specification

/**Return a String representation of this Context.
 * Primarily used for debugging. The format should be
 * human readable, but is otherwise left unspecified.
 * @return String - string representation of Context
 */
public String toString();

}

4.7 The Station Interface
Stations are Jini technology services for hosting dynamic management services. The
primary responsibility of a station is providing means of introducing services into the
station: instantiation and installation. A secondary responsibility is providing a
mechanism for invoking methods on referents.

4.7.1 Method Signatures
Method signatures, as String objects, are used to specify methods and constructors.
Signatures consist of the method name followed by the method descriptor, as specified by
the Java Virtual Machine Specification. For example, the signature of the method ’void
foo(Integer i, int j)’ is foo(Ljava/lang/Integer;I)V. Constructor
signatures are method signatures with the special name of <init>.

4.7.2 Station Registration
Stations must register themselves with the all Jini lookup services servicing the
management domain to which the station belongs. The group name for a management
domain is the management domain name. The registered service item must contain a
proxy that implements the Station interface and a single item of type
javax.fma.common.StationAddress. Stations shall monitor the existence of lookup
services and register with any new relevant lookup services that join the network. In
short, stations shall be good Jini citizens.

4.7.3 Station Lookup
The station proxy is a Jini proxy and is looked up using a
javax.fma.common.StationAddress, a specialization of the
net.jini.lookup.entry.ServiceInfo class. The
net.jini.lookup.entry.ServiceInfo class provides the following fields.

1) Manufacturer

2) Model

3) Name

4) Serial number

5) Vendor

6) Version

Dynamic Services Model

Federated Management Architecture Specification Page 27

javax.fma.common.StationAddress adds two additional fields, role and
management domain (domain). All fields are public, so it is possible to base lookups on
any of the fields. In accordance with the Jini specification, empty fields are treated as
wild cards for the purposes of lookup.

package javax.fma.common;

import java.io.Serializable;
import net.jini.lookup.entry.ServiceInfo;

/** Used to locate a Station (or group of Stations) in
 * a particular management domain. A StationAddress is
 * used for registering and looking up a Station Proxy.
 * When used to register a Station Proxy, all fields
 * must be provided (non-null). When used to locate a
 * Station Proxy, certain fields can be left null. These
 * fields are treated as wildcards by the lookup service.
 * A Station Proxy registered with a lookup service
 * will match a StationAddress if every non-null field
 * of that address is equal to the corresponding field
 * of the address under which it was registered.
 * <p>
 * The domain field MUST be provided (i.e. cannot be
 * null). Failure to provide this field at
 * construction will result in an
 * IllegalArgumentException.
 */
public class StationAddress extends ServiceInfo

implements Serializable, Cloneable
{
 static final long serialVersionUID = 3339549009278688468L;

/**Name of management domain to which the station
 * belongs.
 */
public String domain;

/**Role of the station ("shared", "private", ...)
 */
public String role;

Dynamic Services Model

28 Federated Management Architecture Specification

/** Construct a new StationAddress.
 * @param domain station domain
 * @param role station role
 * @param name station name
 * @param manufacturer station manufacturer
 * @param vendor station vendor
 * @param version station version
 * @param model station model name or number
 * @param serialNumber station serial number
 * @throws IllegalArgumentException if domain == null
 */

 public StationAddress(
String domain,
String role,
String name,
String manufacturer,
String vendor,
String version,
String model,
String serialNumber

);

/** Return a clone of this StationAddress.
 * @return Object - StationAddress clone
 */

 public Object clone();

/** Return a String representation of this StationAddress.
 * Primarily used for debugging. The format should be
 * human readable, but is otherwise left unspecified.
 * @return String - string representation of
 * StationAddress
 */

 public String toString();
}

4.7.4 The Station Interface
All station proxies must implement the Station interface.

Dynamic Services Model

Federated Management Architecture Specification Page 29

package javax.fma.common;

import java.io.Serializable;
import java.lang.reflect.InvocationTargetException;
import java.rmi.RemoteException;
import net.jini.core.lookup.ServiceID;

/** A Station is a Jini service that is responsible
 * for hosting dynamic services. Hosting, in this
 * context, implies that the services are
 * instantiated in the Station’s address space.
 * Additionally, a Station is responsible for
 * providing a mechanism by which remote methods
 * can be invoked on service classes.
 */
public interface Station
{

/** Invoke a static method on the specified class.
 * Requires security permission of

 * javax.fma.server.AccessPermission with a target
 * of the class name and an action of the method
 * name, as specified in the FMA specification.
 * @param className name of the invocation target class
 * @param methodSignature signature of the method to
 * invoke
 * @param arguments method arguments
 * @param context current context
 * @param codebase Space delimited set of URLs from which
 * to attempt class loading of the referent class if
 * the class is not available locally. May be null.
 * @return result of the method invocation
 * @precondition className != null &&
 * methodSignature != null &&
 * arguments != null && context != null
 * @throws InvocationTargetException if the remote
 * method being invoked throws a throwable
 * @throws RemoteException if a throwable occurs
 * from infrastructure rather than the remote
 * method
 */

 Object invokeStaticMethod(
String className,
String methodSignature,
Object[] arguments,
Context context,
String codebase

)
throws RemoteException,

InvocationTargetException;

Dynamic Services Model

30 Federated Management Architecture Specification

/** Invoke a constructor on the specified class. The
 * result may be passed by value or reference using
 * BindInformation.
 * @param className name of the invocation target
 * class
 * @param constructorSignature signature of the
 * constructor to invoke
 * @param arguments constructor arguments
 * @param context current context
 * @param codebase Space delimited set of URLs from which
 * to attempt class loading of the referent class if
 * the class is not available locally. May be null.
 * @param byReference If true a BindInformation
 * object is returned. If false, the object is
 * returned by value.
 * @return result of the constructor invocation
 * @precondition className != null &&
 * constructorSignature != null &&
 * arguments != null && context != null
 * @throws InvocationTargetException if the remote
 * method being invoked throws a throwable
 * @throws RemoteException if a throwable occurs
 * from infrastructure rather than the remote
 * method
 */
Object invokeConstructor(

String className,
String constructorSignature,
Object[] arguments,
Context context,
String codebase,
boolean byReference

)
throws RemoteException,

InvocationTargetException;

/** Perform a rebind operation using the referent
 * identified by the specified cookie.
 * @param cookie cookie identifying the referent
 * with which to bind (returned when the referent
 * was remotely constructed) .
 * @return BindInformation - information associated
 * with the rebind
 * @throws java.rmi.NoSuchObjectException if no object
 * was found matching the specified cookie
 * @throws RemoteException if a communication error
 * or an unexpected exception occurs
 */

 BindInformation rebind(Object cookie)
throws RemoteException;

 /**Low cost roundtrip communication check.
 * @throws RemoteException if ping fails.
 */

void ping()
throws RemoteException;

Dynamic Services Model

Federated Management Architecture Specification Page 31

/** Information associated with proxy binding. An object
 * of this type is returned when a referent object is
 * constructed.
 */

 static public final class BindInformation
implements Serializable

{
static final long serialVersionUID = 1346600403395533696L;

/** Information needed to relocate this
 * particular station.

 */
public final ServiceID stationID;

/** Domain to which this station belongs.
 */
public final String domain;

/** Information needed to relocate referent. */
public final Object cookie;

/** Invocation path to referent */
public final Acceptor referent;

/** Construct a bind information object. */
public BindInformation(

ServiceID stationID,
String domain,
Object cookie,
Acceptor referent

);

/** Return a String representation of this StationAddress.
 * Primarily used for debugging. The format should be
 * human readable, but is otherwise left unspecified.
 * @return String - string representation of
 * StationAddress
 */

 public String toString()
}

}

4.8 Deployment
Stations that are shared management servers must implement the
javax.fma.common.DeploymentStation interface. Stations that are private
management servers may optionally implement the
javax.fma.common.DeploymentStation interface if they support deployment.

4.8.1 Deployment Definition
Deployment, as used in this specification, is the process of giving classes and resources,
packaged as JARs, to a station. Deployment is generally part of an installation process. A
single deployment is one deployment operation. If the same deployment group is

Dynamic Services Model

32 Federated Management Architecture Specification

deployed multiple times, even to the same station, each is considered a distinct
deployment.

4.8.2 Class Loaders and Deployment
Deployments and class loaders have a one-to-one relationship. To remain compatible
with RMI class loading, this mapping implies that each deployment is given a unique
code base. This code base shall consist of two ordered URLs. The first is a URL that may
be used to load the public interface JAR and the second is a URL that may be used to
load the implementation JAR. Note that the URLs are generated by the station to ensure
uniqueness of the code base and may not have any resemblance, in name, to the JARs of
the deployment group presented for deployment. Only HTTP is allowed as a protocol for
code base URLs.

A class that is loaded from a deployment group must be annotated with the code base of
the deployment according to RMI class loader semantics. This requirement helps ensure
that when objects of that class are passed outside of the originating JVM, network class
loading will work as outlined in the RMI specification.

Dynamic Services Model

Federated Management Architecture Specification Page 33

package javax.fma.common;

import java.io.Serializable;
import java.net.URL;
import java.rmi.RemoteException;
import net.jini.core.lease.Lease;

/** Interface the defines the set of methods that must
 * be implemented by proxies for stations that
 * support deployment.
 */
public interface DeploymentStation extends Station
{

/**Deploy a deployment group. If the lease duration
 * is specified as Lease.FOREVER, the lease does not
 * need to be maintained; however, the installing
 * entity must guarantee that the deployment group
 * will be recalled when appropriate. Other lease
 * values will result in a lease that must be
 * maintained. A cancelled or expired lease releases
 * the deployment group for garbage collection.
 * <P>This version of install should be used when
 * possible as it permits the JARs to be pulled rather
 * than pushed. Note that the provide URLs may not
 * have any relationship to the code base resulting
 * from the installation.
 * Requires javax.fma.server.DeploymentPermission with
 * a target of "deploy".
 * @param implementationJar JAR containing the
 * implementation resources.
 * @param interfaceJar JAR containing the
 * public interface resources.
 * @param leaseDuration Requested lease duration
 * for the deployment. May be Lease.NO_LEASE.
 * @param context Context under which this operation
 * should be carried out. The applicable Subject,
 * security purposes, is local with the calling
 * thread in accordance with the JAAS.
 * @throws RemoteException Error communicating with the
 * station or an unexpected exception.
 * @throws DeploymentException Unable
 * to deploy for reasons nested within the
 * DeploymentException.
 * @throws IllegalArgumentException null argument,
 * invalid URL, or invalid JAR file.
 */
Lease deploy(

URL implementationJar,
URL interfaceJar,
long leaseDuration,
Context context

)
throws RemoteException,

DeploymentException;

Dynamic Services Model

34 Federated Management Architecture Specification

/**Install a deployment group. If the lease duration
 * is specified as Lease.FOREVER, the lease does not
 * need to be maintained; however, the installing
 * entity must guarantee that the deployment group
 * will be uninstalled when appropriate. Other lease
 * values will result in a lease that must be
 * maintained. A cancelled or expired lease releases
 * the deployment group for garbage collection.
 * <P>This version of install is used when installing
 * from a location that will not accept http
 * connections. Thus, the JAR files must be pushed
 * during the call rather than pulled. The URL form of
 * install should be used when ever possible.
 * Requires javax.fma.server.DeploymentPermission with
 * a target of "deploy".
 * @param implementationJar JAR containing the
 * implementation resources.
 * @param interfaceJar JAR containing the
 * public interface resources.
 * @param leaseDuration Requested lease duration
 * for the deployment. May be Lease.NO_LEASE.
 * @param context Context under which this operation
 * should be carried out. The applicable Subject,
 * security purposes, is local with the calling
 * thread in accordance with the JAAS.
 * @throws RemoteException Error communicating with the
 * station or an unexpected exception.
 * @throws DeploymentException Unable
 * to deploy for reasons nested within the
 * DeploymentException.
 * @throws IllegalArgumentException null argument,
 * or invalid JAR file.
 */
Lease deploy(

byte[] implementationJar,
byte[] interfaceJar,
long leaseDuration,
Context context

)
throws RemoteException,

DeploymentException;

Dynamic Services Model

Federated Management Architecture Specification Page 35

/**Remove the deployment group identified by the given
 * code base. There is no assurance that the code base
 * being recalled is not in use.
 * Requires javax.fma.server.DeploymentPermission with
 * a target of "recall".
 * @param codeBase Code base to recall. null results
 * in an IllegalArgumentException.
 * @param context Context under which this operation
 * should be carried out. The applicable Subject,
 * security purposes, is local with the calling
 * thread in accordance with the JAAS.
 * @throws RemoteException Error communicating with the
 * station or an unexpected exception.
 * @throws UnknownCodeBaseException The code base
 * is not a known code base.
 * @throws DeploymentException Unable
 * to recall for reasons nested within the
 * DeploymentException.
 * @throws IllegalArgumentException null argument,
 * invalid URL, or invalid JAR file.
 */
void recall(

String codeBase,
Context context

)
throws RemoteException,

UnknownCodeBaseException,
DeploymentException;

/**List all of the installed deployment groups.
 * Returns an empty list if no deployment groups
 * have been deployed.
 * Requires javax.fma.server.DeploymentPermission with
 * a target of "inventory".
 * @throws RemoteException Error communicating with the
 * station or an unexpected exception.
 * @return A list of inventory records. The list
 * is empty if the inventory is empty.
 */
Deployment[] getInventory(Context context)

throws RemoteException;

Dynamic Services Model

36 Federated Management Architecture Specification

/**Get the code base for the latest version of the
 * given package that is compatible with the supplied
 * version. Compatibility between versions is defined
 * in java.lang.Package.
 * Requires javax.fma.server.DeploymentPermission with
 * a target of "inventory".
 * @param packageName The fully qualified package
 * name such as "com.sun.x.y".
 * @param version Requested version with which the
 * returned code base should be compatible.
 * @param context Context under which this operation
 * should be carried out. The applicable Subject,
 * security purposes, is local with the calling
 * thread in accordance with the JAAS.
 * @throws RemoteException Error communicating with the
 * station or an unexpected exception.
 * @throws UnknownPackageException The package
 * is not known.
 * @throws IllegalArgumentException null argument.
 * @return the code base for the given package
 * that is compatible with the supplied version
 */
String getCodeBase(

String packageName,
String version,
Context context

)
throws RemoteException

UnknownPackageException;

/**Get the code base for the latest version of the
 * given package.
 * Requires javax.fma.server.DeploymentPermission with
 * a target of "inventory".
 * @param packageName The fully qualified package
 * name such as "com.sun.x.y".
 * @param context Context under which this operation
 * should be carried out. The applicable Subject,
 * security purposes, is local with the calling
 * thread in accordance with the JAAS.
 * @throws RemoteException Error communicating with the
 * station or an unexpected exception.
 * @throws IllegalArgumentException null argument.
 * @return the code base for the latest version of
 * the given package
 */
String getCodeBase(

String packageName,
Context context

)
throws RemoteException

UnknownPackageException;

/** Each deployment has a record of type Deployment
 * in the inventory. This inner class is tagged as
 * serializable to support inventory persistence.
 *
 * @see #getInventory(Context context)
 */

Dynamic Services Model

Federated Management Architecture Specification Page 37

public static final class Deployment implements Serializable
{

static final long serialVersionUID = 5115543081359322429L;

/** Fully qualified package name. */
public final String packageName;

/** Version as defined by java.lang.Package. */
public final String version;

/** Code base as a space delimited ordered list
 * of URLs.
 */
public final String codeBase;

/** Construct a deployment record. */
public Deployment(

String packageName,
String version,
String codebase

);
}

}

package javax.fma.common;

import javax.fma.util.CompositeException;

/** Exception thrown when an attempt at deploying a deployment
 * group fails.
 */
public class DeploymentException extends CompositeException
{

static final long serialVersionUID = 7634942906640576531L;

/** Create a DeploymentException from a throwable.
 * @param t The exception thrown from the operation that
 * this DeploymentException wraps.

 */
 public DeploymentException(Throwable t);
}

Dynamic Services Model

38 Federated Management Architecture Specification

package javax.fma.common;

import javax.fma.util.CompositeException;

/** Exception throws when an unknown code base is used to
 * obtain deployment group information.
 */
public class UnknownCodeBaseException extends CompositeException
{
 static final long serialVersionUID = 6249829348304642811L;

 /** Create a UnknownCodeBaseException from a throwable.
 * @param t The exception thrown from the operation
 * that this UnknownCodeBaseException wraps.
 */
 public UnknownCodeBaseException(Throwable t);
}

package javax.fma.common;

import javax.fma.util.CompositeException;

/** Exception throws when an unknown package is used to
 * obtain information about a deployment code base.
 */
public class UnknownPackageException extends CompositeException
{
 static final long serialVersionUID= -3104509931454886361L;

 /** Create a UnknownPackageException from a throwable.
 * @param t The exception thrown from the operation
 * that this UnknownPackageException wraps.
 */
 public UnknownPackageException(Throwable t);
}

package javax.fma.server;

import java.io.Serializable;
import java.security.BasicPermission;

/** Permissions class for authorizing deployment operations.
 */
public final class DeploymentPermission

extends BasicPermission implements Serializable
{
 static final long serialVersionUID = -4122846412590798067L;

/** Do not call. Construct a DeploymentPermission
 * object.
 * @param target one of "deploy", "recall", or

 * "inventory".
 */

 public DeploymentPermission(String target)

 /** Do not call. Construct a DeploymentPermission
 * object.
 * @param target one of "deploy", "recall", or

Dynamic Services Model

Federated Management Architecture Specification Page 39

 * "inventory".
 * @param actions action list - not used
 */
 public DeploymentPermission(String target, String actions);

/** Construct a DeploymentPermission object.
 * @param target the targetname of the class/package_name.
 */
 private DeploymentPermission(String target);

 /** Construct a DeploymentPermission object for
 * authorizing deployment operations.
 */
 public static DeploymentPermission

newDeployDeploymentPermission();

 /** Construct a DeploymentPermission object for
 * authorizing recall operations.
 */
 public static DeploymentPermission

newRecallDeploymentPermission();

 /** Construct a DeploymentPermission object for
 * authorizing inventory operations.
 */
 public static DeploymentPermission

newInventoryDeploymentPermission();
}

4.9 Specifying a Persistent Referent Object
A referent object can declare itself as persistent using the class modifier field, as
described by the Modifier class documentation.

public class MyPersistentObject
{

private static final int classModifiers =
... | Modifiers.PERSISTENT | ...;

}

In this example, the MyPersistentObject is declaring itself as persistent. If the station
does not support the specified type of referent, the referent cannot be used in the station.
Simple stations are only required to support transient referents. Shared management
servers are required to support both transient and persistent referent objects.

4.10 Acceptors
The view of "proxy->referent", though useful for initial explanations, is not sufficient
to fully specify the remote communications between a Proxy and its referent object. In
particular, because Proxies and stations are potentially supplied by different vendors, the
interface between Proxies and station must be specified. A Proxy does not see a referent
object directly, but rather an interface representing the referent. This interface is the
acceptor for referent object, a one-to-one mapping.

Proxy Acceptor Stub
1* 1*

Referent ObjectAcceptor
10..* 10..*

rem ote

11 11

Dynamic Services Model

40 Federated Management Architecture Specification

Figure 6. Proxies, Acceptors and Referent Objects.

package javax.fma.common;

import java.lang.reflect.InvocationTargetException;
import java.rmi.RemoteException;
import javax.fma.common.Context;

/** An Acceptor is an object involved in the communication
 * path between a Proxy and a remote Station. Acceptors
 * represents the portion of the Station that is responsible
 * for invoking methods on the referent. For each referent
 * object in the remote Station, there is a single Acceptor
 * instance.
 * <p>
 * The Acceptor interface defines the contract between a
 * Proxy and an Acceptor.
 */
public interface Acceptor
{

/** Attempt a remote operation on the referent associated
 * with this Acceptor.
 * @param methodSignature signature of the operation to
 * invoke.
 * @param arguments operation arguments
 * @param context current context
 * @return Object - operation result
 * @precondition methodSignature != null &&
 * arguments != null && context != null
 * @throws InvocationTargetException if the remote
 * method being invoked throws a throwable
 * @throws RemoteException if a throwable occurs
 * from infrastructure rather than the remote
 * method
 */
Object invokeMethod(

String methodSignature,
Object[] arguments,
Context context

)
throws

InvocationTargetException,
RemoteException;

/**Test referential integrity.
 * @return Returns true if the acceptor refers to a
 * valid referent object. false if not.
 * @throws RemoteException Unable to test referential
 * integrity because of a communication error.
 */
boolean isValid()

throws RemoteException;
}

Dynamic Services Model

Federated Management Architecture Specification Page 41

The acceptor presents RMI semantics to the Proxy. Context information is made explicit
by the Proxy. In implementation, the proxy has a reference to a RMI stub which refers to
the remote acceptor residing in the same JVM as the referent object.

4.11 Proxy Binding
A Proxy must acquire an appropriate acceptor at such time as the Proxy acquires an
associated referent object. This happens in two scenarios: Proxy instantiation and Proxy
wrapping, described later. The process of Proxy to acceptor association is called Proxy
binding. The acceptor bound to a Proxy possibly becomes invalid when a station is
restarted on a different machine, such as when reacting to a failed host in a high
availability scenario.

4.11.1 Proxy Binding During Proxy Instantiation
The Proxy constructor obtains a station proxy from a lookup service using the station
address passed to the Proxy constructor, by convention as the last argument to the
constructor. The Proxy then invokes invokeConstructor() on the station proxy,
which returns an acceptor for the newly constructed referent object.

4.11.2 Proxy Binding During Proxy Wrapping
In the second case, Proxy wrapping, a Proxy is instantiated with a single argument, the
referent object itself, using a special constructor called the wrapping constructor. The
Proxy is instantiated in the station containing the referent object; thus, Proxy wrapping is
not a remote operation. In the wrapping constructor, the Proxy invokes the
javax.fma.server.LocalStation.export() method to retrieve an acceptor for the
referent object to be wrapped. The newly instantiated Proxy object may then be passed
remotely as a remote reference to the referent object.

package javax.fma.server;

import javax.fma.common.Station;
import javax.fma.common.StationAddress;
import javax.fma.common.Station.BindInformation;
import javax.fma.util.Implementation;
import java.lang.reflect.Method;
import java.rmi.RemoteException;

/** Class used to retrieve a reference to the local
 * Station. This reference is typically used by Proxy
 * objects to access the Station in which they are
 * resident.
 */
public final class LocalStation
{

/** Return a reference to the local station.
 * @return Station - local station (may be null)
 * @throws Error if implementation delegation fails
 */
static public Station getStation();

Dynamic Services Model

42 Federated Management Architecture Specification

/** Start an embedded Station.
 * @return Station - local station (may be null)
 * @throws StationStartException if Station start fails
 * @throws Error if implementation delegation fails
 */
public static void start(StationAddress address)

throws StationStartException;

/** Return an acceptor for the given referent object.
 * This method should only be called by Proxy objects
 * from within a wrapper constructor.
 * @param object object to export (object for which to
 * return an acceptor)
 * @return BindInformation - information associated
 * with the export
 * @precondition object != null
 * @throws Error if implementation delegation fails
 * @throws RemoteException if the export fails
 */
static public BindInformation export(Object object)

throws RemoteException;
}

package javax.fma.server;

import javax.fma.util.CompositeException;

/** Exception thrown from a failed attempt to start an embedded
 * Station.
 * @see javax.fma.server.LocalStation
 */
public class StationStartException extends CompositeException
{

static final long serialVersionUID = -9215837774402205113L;

/** Create a StationStartException.
 */
public StationStartException(Throwable t);

}

4.12 Proxy Rebinding
The acceptor bound to a Proxy possibly becomes invalid when a station is restarted on a
different machine, such as when reacting to a failed host in a high availability scenario.
The Proxy must be able to rebind to the acceptor in such cases. The information required
to rebind includes the service ID of the station, to uniquely identify it among other
stations, and a cookie, issued by the station as part of the binding information, to uniquely
identify the referent object within the station. All of this information is provided by the
station during initial binding and must be retained by the proxy.

When a Proxy is unable to communicate with a referent object and the Proxy determines
that this is likely because the hosting station is no longer reachable
(javax.fma.common.Station.ping()), then the Proxy should initiate rebinding. The
rebinding involves relocating the station using the service ID and, if successful,
requesting a fresh acceptor for the referent object using the
javax.fma.common.Station.rebind() operation.

Dynamic Services Model

Federated Management Architecture Specification Page 43

4.13 Proxy to Referent Overviews
The following sequence diagrams are summaries of end-to-end remote communication.
They elide exceptional and minor flows for the sake of clarity.

4.13.1 Referent Object Method Invocation

ReferentAcc eptorClient Proxy

1: foo()

2: extract context

3: remote invokeMethod()

4: establish context

5: foo()

Figure 7. Referent Object Method Invocation.

1) The client invokes the object operation foo() on the Proxy. The Proxy will already
have been bound to an acceptor when the Proxy was instantiated.

2) The Proxy extracts context (transaction, etc.) information to be passed explicitly to
the acceptor.

3) The Proxy forwards the invocation request to the acceptor. This is a remote
operation.

4) The acceptor uses the explicitly passed context information to establish a thread local
context.

5) Finally, the acceptor invokes foo() on the referent object.

Dynamic Services Model

44 Federated Management Architecture Specification

4.13.2 Referent Class Method Invocation

Station Referent ClassStation ProxyClient Proxy
Class

1: foo()

4: invokeStaticMethod()

2: lookup station proxy

5: private - remote

3: extract context

6: establish context

7: foo()

Figure 8. Referent Class Method Invocation.

1) The client invokes the class operation foo(), a static method, on the Proxy class.

2) The Proxy class will need to lookup an appropriate station proxy by querying a
lookup service with the station address supplied as the last argument to the static
method call.

3) The Proxy extracts context (transaction, etc.) information to be passed explicitly to
the station proxy.

4) The Proxy class passes the operation request to the station proxy.

5) The station proxy forwards the request to the station.

6) The station uses the explicitly passed context information to establish a context.

7) Finally, the station invokes foo() on the referent class.

Dynamic Services Model

Federated Management Architecture Specification Page 45

4.13.3 Referent Object Instantiation

Referent ObjectStationStation ProxyCl ient Proxy

1: <init>()

4: invokeConstructor()

5: private - remote

2: lookup s tation proxy

3: extract context

9: return acceptor

10: bind ac ceptor

6: establish c ontext

7: <init>()

8: create acceptor for referent object

Figure 9. Referent Object Instantiation.

1) The client instantiates a Proxy using any one of the available constructors. The last
argument of the constructor is the station address of the station that is to host the
referent object.

2) The Proxy class will need to lookup an appropriate station proxy by querying a
lookup service with the station address supplied as the last argument to the
constructor.

3) The Proxy extracts context (transaction,etc.) information to be passed explicitly to
the station proxy.

4) The Proxy class passes the operation request to the station proxy.

5) The station proxy forwards the request to the station.

6) The station uses the explicitly passed context information to establish a context.

7) The station locally instantiates the referent object.

Dynamic Services Model

46 Federated Management Architecture Specification

8) The station must now create an acceptor for the new referent object.

9) The newly creating acceptor is eventually returned to the Proxy as an acceptor
embedded in a binding information object.

10) The Proxy then binds the returned acceptor. All remote method invocations on the
Proxy will now be forwarded through the acceptor to the referent object.

4.13.4 Wrapping a Referent Object with a Proxy
To pass a referent object by reference during a remote operation, the referent must be
wrapped with a Proxy. Each Proxy class provides a wrapper constructor for this purpose.
Note that the wrapping is local to the referent object being wrapped: no remote calls are
involved. The wrapping sequence is similar to object instantiation except that the referent
already exists and the Proxy communicates with the local station rather than a remote
station.

LocalStationClient Proxy

1: <init>(referent)

2: export(referent)

5: bind acceptor

3: create acceptor for the referent

4: return acceptor in bind info

Figure 10. Wrapping a Referent Object with a Proxy.

1) The client invokes the Proxy wrapper constructor, passing the referent object as the
only argument. In this sense, a client is simply the entity invoking the wrapping
constructor of the Proxy.

2) The Proxy, from within the wrapping constructor, requests an acceptor from the local
station by doing an export. The export provides a binding information object which
contains the acceptor.

3) The station creates an acceptor for the referent object.

Dynamic Services Model

Federated Management Architecture Specification Page 47

4) The station returns a binding information object, which contains and acceptor, to the
Proxy. The acceptor should already be substituted with an acceptor stub so that RMI
semantics will be followed when invoking methods on the Proxy.

5) The Proxy then binds the returned acceptor. All remote method invocations on the
Proxy will now be forwarded through the acceptor to the referent object.

4.13.5 Proxy Rebinding
In highly available installations, a station may move to a failover host if the original host
fails. This move can cause all acceptor stubs issued by the original incarnation of the
station to become invalid. Proxies, upon failure of the original acceptors, proceed through
a rebinding process to retrieve fresh acceptor stubs from the station at its new location.
The following sequence diagram shows the rebinding in the context of a failed object
method invocation.

Referent ObjectFresh Acc eptorClient Proxy

1: foo()

2: extract context

6: remote invokeMethod()

7: establish context

8: foo()

Stale Acceptor

3: failed invocation attempt

Restarted
Station

4: lookup station

5: rebind()

Figure 11. Proxy Rebinding.

1) The client invokes the object operation foo() on the Proxy.

2) The Proxy extracts context (transaction, etc.) information to be passed explicitly to
the acceptor.

3) The Proxy attempts a remote call to the stale acceptor, no longer in existence,
resulting in an exception. If the exception indicates that the station has become

Dynamic Services Model

48 Federated Management Architecture Specification

unreachable, the proxy shall continue with the rebinding, otherwise the exception
shall be thrown to the client.

4) The Proxy looks up the restarted station using the original service ID of the station,
retained during the original binding process.

5) The Proxy requests a fresh acceptor stub from the station. From this point on the
invocation proceeds as with the normal object method invocation.

6) The Proxy forwards the invocation request to the acceptor.

7) The acceptor uses the explicitly passed context information to establish a context.

8) Finally, the acceptor invokes foo() on the referent object.

4.14 Adjunct Modifiers
Java defines a number of well-known modifiers, such as static and public, that may be
applied to classes and methods. The dynamic services model extends this set with
additional modifiers, adjunct modifiers, which have specific meanings to the station
infrastructure. Because the Java language is not to be extended with application class
features, adjunct modifiers are expressed as bit fields (int) in various well-known
constant fields. These fields shall be immutable (final).

4.14.1 Class Modifiers
Modifiers are attached to a class using the private static field classModifiers. With
the exception of the controller and persistence modifiers, the modifiers do not apply to
the class itself, but rather establish a set of default modifiers that apply to the class (static)
methods of the class.

public class AClass
{

...
private static final int classModifiers = ...;
...

}

4.14.2 Object Modifiers
Modifiers are attached to an object using the private field objectModifiers. The
modifiers establish a set of default modifiers that apply to the methods of objects of the
given class.

public class AClass
{

...
private static final int objectModifiers = ...;
...

}

4.14.3 Method Modifiers
Method modifiers attach modifiers to a class method, object method, or constructor. The
method or constructor is specified as a signature, as defined in the previous Method
Signature section.

Dynamic Services Model

Federated Management Architecture Specification Page 49

package javax.fma.server;

/** MethodModifiers objects are used attach modifiers to a
 * class method, object method, or constructor.
 */
public final class MethodModifiers
{

/** Construct a new method modifier. The signature is
 * as defined by the object model and therefore includes
 * constructors.
 * @param signature signature of the method or
 * constructor to which this modifier set applies
 * @param modifiers modifier bit field to apply to
 * the method or constructor (built by OR’ing
 * Modifiers constants)
 * @see Modifiers
 */

 public MethodModifiers(
String signature, int modifiers

);

/** Return the modifier bit field to apply to the
 * method or constructor.
 * @return int - modifier bit field
 */

 public int getModifiers();

/** Return the signature of the method or constructor
 * to which this modifier set applies.
 * @return String - method or constructor signature
 */
public String getSignature();

}

Modifiers are attached to methods (class or object) using the static table
methodModifiers. The table has an entry for each method or constructor for which
modifiers are specified. Methods without modifiers need not be present in the table.

public class AClass
{

...
private static MethodModifiers[] methodModifiers =
{

new MethodModifier(...),
...

};
...

}

4.14.4 Modifier Precedence
With the exception of the controller modifier, adjunct modifiers only have meaning at the
method or constructor level. Modifiers attached to classes and objects simply establish
default modifiers for the class or object methods. Thus, class and object modifiers can be
overridden by modifiers attached to individual methods. Adjunct modifiers are
overridden in sets of independent modifier categories. Effectively each set is an

Dynamic Services Model

50 Federated Management Architecture Specification

enumeration of exclusive modifiers. That is to say, that only one modifier of a given set
can be applied to the class or method.

4.14.5 Permissible Modifiers
The following modifiers are permissible. The modifiers are categorized as controller,
aspect, or security modifiers. The semantics of each modifier set will be defined in a
subsequent section of this specification.

package javax.fma.server;

import java.lang.reflect.Method;
import java.lang.reflect.Constructor;

/** Definitions and convenience routines related to
 * the handling of adjunct modifiers.
 */
public abstract class Modifiers
{
 /** class modifiers field name */
 static public final String CLASS_MODIFIERS_FIELD =

"classModifiers";

 /** object modifiers field name */
 static public final String OBJECT_MODIFIERS_FIELD =

"objectModifiers";

 /** method modifiers field name */
 static public final String METHOD_MODIFIERS_FIELD =

"methodModifiers";

//
// Controller modifier set
//

/** Declares objects of the class to be controllers
 * for classes only).
 */
public static final int IS_CONTROLLER = 0x0001;

/** Return true if the specified modifier bit field
 * implies IS_CONTROLLER.
 * @return boolean - true, if bit field implies
 * IS_CONTROLLER
 */

 public static boolean isController(int modifier);

//
// Security modifiers.
// Sensitivity Set
// If none is set, PUBLIC is assumed.
//

/** Indicates that invocations involve only public,
 * not sensitive, information.
 */
public static final int PUBLIC = 0x0002;

Dynamic Services Model

Federated Management Architecture Specification Page 51

/** Indicates that invocations involve some sensitive,
 * not public, information, but not information that
 * is strictly private, such as a password.
 */
public static final int SENSITIVE = 0x0004;

/** Indicates that invocations involve confidential
 * information, such as a password, that should be
 * protected from public visibility.
 */
 public static final int CONFIDENTIAL = 0x0008;

/** Return true if the specified modifier bit
 * field implies PUBLIC.
 * @return boolean - true, if bit field implies
 * PUBLIC.
 */

 public static boolean isPublic(int modifier);

/** Return true if the specified modifier bit
 * field implies SENSITIVE.
 * @return boolean - true, if bit field implies
 * SENSITIVE.
 */
public static boolean isSensitive(int modifier);

/** Return true if the specified modifier bit field
 * implies CONFIDENTIAL.
 * @return boolean - true, if bit field implies
 * CONFIDENTIAL.
 */
public static boolean isConfidential(int modifier);

//
// Security modifiers.
// Server Subject Usage
// If none is set, the method is invoked without a
// Subject.
//

Dynamic Services Model

52 Federated Management Architecture Specification

/**Method shall be invoked with the Subject of the
 * client or no Subject if the client did not

 * authenticate a Subject. The Subject may or may not
 * contain private credentials depending on whether
 * the client choose to delegate. This modifier will
 * result in a security exception being thrown to
 * the client if the referent object or class does
 * not have javax.fma.common.WellKnownSubjectPermission
 * with a target of "getClientSubject".
 */
public static final int AS_CLIENT = 0x0010;

/**Method shall be invoked with the well known Subject
 * of the station or no Subject if the well known
 * Subject has not been set. The Subject will contain
 * private credentials. This modifier will
 * result in a security exception being thrown to
 * the client if the referent object or class does
 * not have javax.fma.common.WellKnownSubjectPermission
 * with a target of "getSubject".
 */
public static final int AS_SERVER = 0x0020;

/** Return true if the specified modifier bit field
 * implies AS_CLIENT.
 * @return boolean - true, if bit field implies
 * AS_CLIENT.
 */
public static boolean asClient(int modifier);

/** Return true if the specified modifier bit field
 * implies AS_SERVER.
 * @return boolean - true, if bit field implies
 * AS_SERVER.
 */
public static boolean asServer(int modifier);

//
// Security modifiers.
// Delegation set
// If none is set, USES_DELGATION is assumed
// to be false (not set).
//

/**Hint modifier for delegation. If uses delegation is
 * not set, the client does not need to pass the private
 * credentials of the Subject. If uses delegation is set
 * the private credentials must be passed. Note that
 * this is an optimization. Always passing private
 * credentials regardless of uses delegation is a
 * compliant implementation.
 */
public static final int USES_DELEGATION = 0x0040;

Dynamic Services Model

Federated Management Architecture Specification Page 53

/** Return true if the specified modifier bit field
 * implies DELEGATION.
 * @return boolean - true, if bit field implies
 * DELEGATION.
 */
public static boolean usesDelegation(int modifier);

//
// Aspect modifiers.
// Transaction set
//

/**Indicates that the method is synchronized with
 * respect to transactions.
 */
public static final int SYNCHRONIZED_TRANSACTION

= 0x0080;

/** Return true if the specified modifier bit field
 * implies SYNCHRONIZED_TRANSACTION.
 * @return boolean - true, if bit field implies
 * SYNCHRONIZED_TRANSACTION.
 */
public static boolean isSynchronizedTransaction(

int modifier
);

//
// Component modifiers.
// Logical thread set
//

/**Indicates that the method is synchronized with
 * respect to logical threads.
 */
public static final int SYNCHRONIZED_LOGICAL_THREAD

= 0x0100;

/** Return true if the specified modifier bit field
 * implies SYNCHRONIZED_LOGICAL_THREAD.
 * @return boolean - true, if bit field implies
 * SYNCHRONIZED_LOGICAL_THREAD.
 */
public static boolean isSynchronizedLogicalThread(

int modifier
);

//
// Component modifiers.
// Controller set
//

/**Indicates that the method is synchronized with
 * respect to controllers.
 */
public static final int SYNCHRONIZED_CONTROLLER

= 0x0200;

Dynamic Services Model

54 Federated Management Architecture Specification

/** Return true if the specified modifier bit field
 * implies SYNCHRONIZED_CONTROLLER.
 * @return boolean - true, if bit field implies
 * SYNCHRONIZED_CONTROLLER.
 */
public static boolean isSynchronizedController(

int modifier
);

//
// Persistence Policy Set
//

/** Indicates that the referent object is to be
 * persisted.
 */
public static final int PERSISTENT = 0x2000;

/** Return true if the specified modifier bit field
 * implies PERSISTENT.
 * @return boolean - true, if bit field implies
 * PERSISTENT.
 */
public static boolean isPersistent(int modifier);

}

4.14.6 Applicability of Modifiers
The following table shows which modifiers are applicable to object methods, class
methods, constructors and classes. Modifiers which are not applicable are ignored.
Modifiers that are applicable to class methods but applied to a class define the default
modifier pattern for all class methods. Modifiers that are applicable to object methods but
applied to an object define the default modifier pattern for all class methods.

Modifier Applicability Default Field

IS_CONTROLLER class classModifiers

PUBLIC static method

object method

classModifiers,

objectModifiers, or

methodModifiers

SENSITIVE static method

object method

classModifiers,

objectModifiers, or

methodModifiers

CONFIDENTIAL static method

object method

classModifiers,

objectModifiers, or

methodModifiers

AS_CLIENT static method

object method

classModifiers,

objectModifiers, or

methodModifiers

Dynamic Services Model

Federated Management Architecture Specification Page 55

AS_SERVER static method

object method

classModifiers,

objectModifiers, or

methodModifiers

USES_DELAGATION static method

object method

classModifiers,

objectModifiers, or

methodModifiers

SYNCHRONIZED_LOGICAL_THREAD object method objectModifiers, or

methodModifiers

SYNCHRONIZED_TRANSACTION object method objectModifiers, or

methodModifiers

SYNCHRONIZED_CONTROLLER object method objectModifiers, or

methodModifiers

4.15 Exception Handling
Exception handling, which exceptions are thrown in reponse to specific conditions, are
specified in this section with respect to the ‘invoke’ methods on the Station and
Acceptor interfaces. In general, exception handling during remote operations must obey
RMI semantics. In addition, the invoke methods, must obey the specialization of RMI
semantics described here. The invoke methods declare two exceptions: RemoteException
and InvocationTargetException. In addition, the foloowing sections specify how Proxies
are to respond to undeclared exception that may be thrown from the Station and
Acceptor interfaces.

4.15.1 InvocationTargetException
An InvocationTargetException indicates that the remote operation was dispatched
on the referent (class or object) and that the operation threw an throwable, the target of
the InvocationTargetException. Thus, an InvocationTargetException is not
the result of a condition in the infrastructure, but rather a condition in the referent.

4.15.1.1 Proxy Response
A Proxy must extract the target exception from the InvocationTargetException and
throw according to the kind of target exception, as follows. Note that the
InvocationTargetException is never thrown or propagated by a Proxy and that the
following rules are applied in the order listed.

Kind of Target Exception (t) Proxy Throws

java.rmi.RemoteException java.rmi.ServerException

Dynamic Services Model

56 Federated Management Architecture Specification

(t nested)

Declared throwable t

java.lang.RuntimeException t

java.lang.Error java.rmi.ServerError

java.lang.Exception java.rmi.UnexpectedException

(t nested)

4.15.2 RemoteException
A RemoteException indicates a condition in the infrastructure rather than the referent.
The FMA introduces a layer on top of RMI and, therefore, specializes
RemoteException to distinguish between condition in the RMI layer and the FMA
layer. The specialization is the StationException exception, which implements
ComposteThrowable.

4.15.2.1 Proxy Response
A Proxy must respond to the various classes of RemoteException according to the
rules of the following table. The rules are to be applied in the order listed.

Kind of RemoteException (e) Proxy Throws

java.rmi.NoSuchObjectException e rethrown

javax.fma.common.StationException e rethrown

java.rmi.RemoteException with a
target of type StationException

rethrow target

other Proxy attempts rebind
and retry of
operation. If rebind
fails, e is rethrown.

4.15.3 Unechecked Exceptions
An unchecked exception (error or runtime exception) thrown from a Station or
Acceptor interface indicates a local error condition from recovery is not reasonable.

4.15.3.1 Proxy Response
Proxies should propagate unchecked exceptions unmodified. In general, this means that
proxies should only catch RemoteException and InvocationTargetException
from ‘invoke’ operations.

Dynamic Services Model

Federated Management Architecture Specification Page 57

4.15.4 StationException Class
package javax.fma.common;

import java.util.Locale;
import java.io.Serializable;
import java.rmi.RemoteException;

import javax.fma.util.CompositeThrowable;
import javax.fma.util.LocalizableMessage;

/** RemoteException implementation of CompositeThrowable.
 */
public class StationException extends RemoteException

implements CompositeThrowable
{
 static final long serialVersionUID = -8311358440368993358L;

/** Construct StationException with nested exception.
 * @param nestedException Throwable which is a
 * cause of this exception. May be null.
 * @param serverSide Indicates if exception was thrown
 * by the server (true) or client (false).
 */
public StationException(

Throwable nestedException,
 boolean serverSide

);

/** Construct StationException with provided message
 * and nested exception.
 * @param message Informative failure message.
 * @param nestedException Throwable which is a
 * cause of this exception. May be null.
 * @param serverSide Indicates if exception was thrown
 * by the server (true) or client (false).
 */

 public StationException(
LocalizableMessage message,
Throwable nestedException,
boolean serverSide

);

/** Indicates if exception was thrown by the server or client.
 * @return true if thrown by the server, false if thrown by
 * the client.
 */
public boolean thrownByServer();

 /** Returns a localized description of this
 * CompositeThrowable using the default locale.
 * @return Returns the localized message.
 */

public String getLocalizedMessage();

Dynamic Services Model

58 Federated Management Architecture Specification

/** Returns a localized description of this
 * CompositeThrowable using the given locale.
 * @param locale Locale in which to perform the localization.
 * An IllegalArgumentException is thrown if locale
 * is null.
 * @return Returns the localized message.
 * @throws IllegalArgumentException if locale is null.
 */
public String getLocalizedMessage(Locale locale);

/** Returns the array of (causal) nested exceptions
 * included in the CompositeThrowable.
 * @return Returns an array containing the causal
 * nested exceptions.
 */
public Throwable[] getNestedExceptions();

/** Returns a stack trace for a nested excepetion.
 * @param nestedException Nested exception for which
 * a stack is being requested.
 * @return Returns stack trace for indicated nested throwable.
 */
public String getNestedStackTrace(Throwable t);

/** Facilitates saving of remote stack trace information.
 * This method is called by the FMA station before a
 * CompositeThrowable is thrown to a Proxy to indicate that
 * the remote station should concatenate its stack information
 * with the current stack information for this
 * CompositeThrowable.
 * <P>
 * This method does not need to be called explicitly.
 */
public void saveRemoteStackTrace();

/** Returns a message describing this throwable.
 */
public String getMessage();

/** Returns a short description of the
 * StationException object.
 * @return Returns a string representation of
 * this StationException.
 */
public String toString();

}

4.15.5 Exception Handling Summary

4.16 Proxy Class Details
The Proxy interface is the public interface that must be implemented by all Proxy
classes.

4.16.1 Proxy interface
The Proxy interface includes a method returning the class name of the referent object’s
class.

Dynamic Services Model

Federated Management Architecture Specification Page 59

package javax.fma.client;

import java.io.Serializable;
import java.rmi.RemoteException;

/** Interface for Proxies.
 */
public interface Proxy extends Serializable, Cloneable
{

/**Returns the name of the referent object
 * class.
 */
String getReferentObjectClassName();

/**Test referential integrity.
 * @return Returns true if the Proxy refers to a valid
 * referent object. false if not.
 * @throws RemoteException Unable to test referential
 * integrity because of a communication error.
 */
boolean isValid()

throws RemoteException;
}

4.16.2 Remotely Exposed Methods and Constructors
Implementations of the Proxy interface contain selected methods, constructors, and
interfaces that are to be exposed through the Proxy. Signatures for exposed methods are
identical to those of the referent with the following exceptions.

1) Class (static) methods have an additional last argument of type
javax.fma.common.StationAddress.

2) Constructors have an additional last argument of type
javax.fma.common.StationAddress.

3) All remote methods and constructors throw java.rmi.RemoteException.

4.16.3 Wrapper Constructor
Proxy classes must contain a wrapper constructor that takes a single argument of the
type java.lang.Object, i.e., MyProxy(Object object). The wrapper
constructor allows a referent object to be effectively passed by value as an argument to a
remote method call or returned by value from a remote method call. The referent object
passed to the wrapper constructor must be an instance of the referent class or a
java.lang.ClassCastException will be thrown by the wrapper constructor.

4.16.4 equals() and hashCode()
equals() and hashCode() follow RMI semantics associated with stubs. Thus, two
Proxies are considered equal if and only if they refer to the same referent object.

Dynamic Services Model

60 Federated Management Architecture Specification

4.16.5 Clonable and Serializable
The Proxy interface extends java.lang.Clonable and java.io.Serializable.
Proxy classes must implement java.lang.Clonable such that the clone() method
returns a new Proxy that refers to the same referent object. Proxy classes must implement
java.io.Serializable.

4.16.6 getReferentObjectClassName() and getReferentClassClassName()
Proxy classes contain methods for returning the class name of both the referent object’s
class and the referent class’s class. These may differ if the referent object’s class is an
extension or implementation of the referent class’s class.

The method getReferentObjectClassName()returns the class of the referent object.
The referent object is the target object of remote object method invocations on the Proxy
object. Thus, getReferentObjectClassName() is declared as an object method on
the Proxy.

The method getReferentClassClassName() returns the class of the referent class.
The referent class is the target class of remote class (static) method invocations on the
Proxy class. Thus, getReferentClassClassName() is declared as a static method on
the Proxy.

4.17 Network Class Loading
RMI network class loading provides a mechanism by which argument and return value
(including exceptions) classes may be loaded. The dynamic services model inherits this
mechanism and extends it to include network class loading of referent classes when
performing remote instantiation and class method invocations.

4.17.1 Class Loaders and Deployments
As previously mentioned, each deployment has a single, unique code base and associated
class loader. One can consider a station as containing the primordial class loader (also
known as the system or null class loader) and a number of deployment class loaders,
which are children of the primordial class loader. The primordial class loader loads
infrastructure including the Java Runtime Environment (JRE), extensions, Jini
technology classes, and the FMA implementation classes. The java.rmi.server.codebase
property is the code base assigned to classes loaded by the primordial class loader. When
one of these classes is passed to a remote JVM, the remote JVM will use the RMI code
base property of the originating JVM to load the class. This property cannot be changed
at runtime; therefore, updates to the infrastructure classes require restarting the station
JVM. The value of the RMI code base property is implementation dependent.

Unlike infrastructure, classes and resources for dynamic services are not placed in the
CLASSPATH or loaded by the primordial class loader. They are packaged into a
deployment group and deployed on a station. The station accepts the JARs and stores
them somewhere such that they may be accessed through the HTTP class server
associated with or contained by the station. The station assigns a code base, containing
the URLs that can be used to network load the JARs, to the deployment. The station also
inspects the manifest of the JARs in order to build an inventory map of package/version

Dynamic Services Model

Federated Management Architecture Specification Page 61

tuples to code bases. When the station needs to load a class to support remote
instantiation, remote class method invocation, or activation, the station consults this map
to retrieve the code base associated with the latest version of the class’s package. Given
this code base, the station then requests the RMI class loader to load the needed class.

4.17.2 Class Loading During Remote Instantiation
During remote instantiation, the station needs to load the class of the object to be
instantiated. The search for the class shall proceed as follows.

1) Retrieve the code base of the latest version of the class’s package using the local
inventory.

2) If a code base was found, attempt to load the class using
java.rmi.server.RMIClassLoader. The RMI class loader will always
attempt to use the parent class loader before trying the code base.

3) If a code base was not found, attempt to the class using the primordial class
loader (java.lang.Class.forName(...)).

4) If the class has still not been found, attempt to load the class using the client’s
RMI code base, if not null. This code base is embedded in the operation request.
The client is the JVM requesting the remote operation.

4.17.3 Class Loading During Remote Class Method Invocations
During remote class method invocation, the station needs to load the referent class. The
search for the class shall proceed as follows.

1) Retrieve the code base of the latest version of the class’s package using the local
inventory.

2) If a code base was found, attempt to load the class using
java.rmi.server.RMIClassLoader. The RMI class loader will always
attempt to use the parent class loader before trying the code base.

3) If a code base was not found, attempt to the class using the primordial class
loader (java.lang.Class.forName(...)).

4) If the class has still not been found, attempt to load the class using the client’s
RMI code base, if not null. This code base is embedded in the operation request.
The client is the JVM requesting the remote operation.

4.17.4 Class Loading During Activation
During activation of a persistent object, the station needs to load the class of the object
being activated. The class shall be located according to the following sequence.

1) Retrieve the code base of the latest version of the class’s package using the local
inventory.

2) If a code base was found, attempt to load the class using
java.rmi.server.RMIClassLoader. The RMI class loader will always
attempt to use the parent class loader before trying the code base.

Dynamic Services Model

62 Federated Management Architecture Specification

3) If a code base was not found, attempt to the class using the primordial class
loader (java.lang.Class.forName(...)).

4) If the class has still not been found, attempt step 1 using the code base stored
with the object. If this succeeds, activation shall continue but a warning, in the
form of a log message, shall be issued indicating that an out of date class has
been loaded during activation because of a backwards compatibility.

The semantics of class loading during activation is to use the latest available version of a
particular class. If activation fails with the latest version, an attempt is made to recover by
using the version that was in effect when the object was stored. Note that this requires the
persistence of the object to include the code base, effective at the time of persistence, for
the object’s class. This is considered a recovery scenario and shall result in a log message
to that effect.

Federated Management Architecture Specification Page 63

5 Security

The following security mechanisms are addressed by an implementation of this security
model:

1) Remote authentication and authorization

2) Delegation

3) Auditing

4) Cryptographic data protection (confidentiality, integrity,..)

As this specification is only concerned with standardizing vendor boundaries to allow
interoperability, the specification standardizes only those mechanisms, such as security
domain and federations, which serve as a basis with interoperability between stations,
clients, managed resources, and dynamic services. This version does not attempt to
standardize administration interfaces, such as key management, of stations, services, or
any other entity.

The following is the list of security issues specified in this document:

1) Security topology

2) Authentication and authorization mechanism. Station authentication and
authorization is based on the Java Authentication and Authorization Service
(JAAS) and the standard Java security model. Although the reader is assumed to
be familiar with both of these security technologies, the following sections
review the JAAS while presenting additional specifications and constraints
associated with this security model.

3) Role based access control

4) Key/certificate infrastructure

5) Delegation

The security architecture is one of a security domain with a trusted third party, the
security service for the domain.

Security

64 Federated Management Architecture Specification

5.1 Trusted Third Party Architecture

5.1.1 Security Domains
Security domains are realms of trust against which subjects are authorized and Roles
defined. Management domains and security domain, though separate concepts, are
mapped one-to-one and share the same domain name. Thus, a management domain of
name "boulder" belongs to a security domain of name "boulder". Each security domain
has a single well-known security services as a trusted third party. A single security
service, however, may serve more than one security domain, if supported by the
particular security service implementation.

Entities in one security domain do not understand nor trust the security credentials of
another security domain. When communication occurs between security domains, the
party initiating the communication must join the target security domain as a client.

5.1.2 Federations
As a station may only belong to a single management domain, it may only belong to a
single security domain. A station has an associated well known Subject representing the
authentication of the station itself. Some stations, by virtue of being authenticated as a
federation member, a special status with a security domain, belong to the containing
security domain’s federation and are completely trusted by other participants in the
security domain. Clients, when discussing security, are considered to be JVMs that
participate in a security domain that are not stations. Clients may participate in more than
one security domain.

Security Domain D1

Federation F1

S tation
S tation

Federation F2

S tation

Client

Security Service

Security Domain D2

S tation
Client

Figure 12. Security Architecture.

Security

Federated Management Architecture Specification Page 65

5.2 Scope of Specification
This specification standardizes only the programming interfaces at vendor boundaries.
With respect to security, the main boundaries are as follows.

5.2.1 Client/Station to the JAAS (Authentication)
Clients and stations must authenticate themselves with the security services of the
security domains in which they participate. Such authentication is performed by the
authentication portion of the JAAS together with a plug in login module that
communicates with the security service of the management domain.

5.2.2 JAAS to the Security Services
Because the proper JAAS login module and the security service can be supplied by
different vendors, the interface to the security service is specified.

5.2.3 Service Objects to the JAAS (Authorization)
On the server side, service objects must be able to perform authorization checks. An
interface for performing such checks is specified as well as a migration path from JDK1.2
to JDK1.3, the officially supported JDK for the JAAS.

5.2.4 Client to Proxy
A client, in the sense of something invoking operations on a Proxy, is required to present
certain security information to the Proxy. This information, principally a Subject of
specific composition, is specified. This point is addressed in a subsequent section entitled
Client to Proxy on Page 88.

5.2.5 Referent Objects to Station
Referent objects inform the hosting station about the sensitivity of certain operations as
well as whether a particular operation will require delegation. This point is addressed in a
subsequent section entitled Referent Objects to Station on Page 89

5.3 Terms and Definitions
The following terms are fundamental to the security model. Additional terms and
definitions are introduced as needed in the course of the chapter.

5.3.1 Subject
Subject is a JAAS concept that represents the source of an operation request, such as a
person or service. Once authenticated, a Subject is populated with associated identities, or
Principals, as explained later. A Subject may also be populated with credentials such as
certificates, tickets, and keys. The public credentials of a Subject can be accessed without

Security

66 Federated Management Architecture Specification

restriction. Accessing private credentials, such as private keys, requires special
permissions.

Subjects are associated with threads of execution and carried in context. Thus, at any
point in a call stack one may retrieve the Subject associated with the current thread and
perform an authorization check to verify whether the Subject has permission to perform a
particular operation. This authorization based on Subject, supplied by the JAAS,
augments the Java authorization model that is based on the level of trust in a class. The
method of associating a subject with a thread of execution and retrieving the subject
associated with the current thread is provided by the JAAS. The two security models
(JAAS and Java) are fully described in the security documentation associated with the
JAAS and the JDK.

5.3.2 Principal
Subjects are populated, during authentication, with Principals, a JAAS and Java
technology concept. Population of a subject requires specific permissions; thus, the
association between subjects and principals is trusted to the same extent as the entity
performing the population (usually a JAAS Login Module). A Principal may be thought
of as one possible name for the subject. For example, the Solaris Login Module
associates three Principals with a Subject during authentication:

1) SolarisUserPrincipal (user name),

2) SolarisNumericUserPrincipal,

3) SolarisNumericGroupPrincipal.

Each of the Principals has a type, given by its Java class, and a name.

If the creator, generally a Login Module, of the Principal is trusted (to create only trusted
classes of Principals and give them trusted names) then the type and name of the
Principal can be trusted. If a Principal is passed remotely from a source to a destination,
the destination must be able to establish its own trust in the Principal (class and name).
This generally involves the source proving to the destination, by the presentation of
certain credentials, that it is in fact a legitimate holder of the Principal. Clearly, such
credentials are sensitive information.

5.3.3 Stations versus JVMs
Not all parties in the security domain are stations. Parties that communicate with remote
objects, rather than hosting remote objects, need only be a client JVM in which the
appropriate client side classes (Proxy support) have been loaded. Only in a few instances
is it necessary to treat stations as if they were different from client JVMs. In the context
of security, the following classes of JVMs are referred to by this specification:

1) JVM A client or station JVM participating in a security domain.

2) Station A JVM enabled to support the dynamic services model: capable
of hosting remote objects.

3) Client A JVM capable of communicating with a station

Security

Federated Management Architecture Specification Page 67

4) Authenticated JVM A JVM with an authorized and well-known Subject. Authorized
objects within the JVM can access and use the well-known
subject of the JVM using the
javax.fma.common.WellKnownSubject class. If the JVM
is authenticated as a server during communications, it will
present its well-known Subject as its identity. Variations are
authenticated station and authenticated client.

5.3.4 Security Policy
The security policy is a Java concept manifest by a security policy "file". In this context,
a "file" is usually a file in terms of the local operating system, but can be multiple files or
remotely loaded data sources specified by one or more URLs. Java policy files consist of
a number of entries granting permissions to classes, as specified by code base or the
signer of a class. For example, the following is an entry granting code from the
/home/sysadmin code base directory read access to the file /tmp/abc.

grant Codebase "file:/home/sysadmin/" {
permission java.io.FilePermission "/tmp/abc", "read";

};

The JAAS extends the Java security policy file syntax to include entries that grant
permissions to Principals and, therefore indirectly to Subjects.

// grant permissions to a Code/Signers/Principals triplet
grant
Codebase "www.foo.com",
SignedBy "bar",
Principal com.sun.security.auth.SolarisPrincipal "duke" {
 permission java.io.FilePermission "/duke", "read,write";
};

In addition to permission grants, the policy file specifies the location of the key store
containing the certificates used to verify class signatures. See the JDK security
documentation for further information about policy files and the policy tool that can be
used to create and edit such files.

Policy files can be specified, using standard options, when starting a JVM.
Implementations can provide other means of specifying security policy files such as
secure remote loading. Authorization uses the policy file; thus, a policy file is loaded into
the JVM controlling the resources to be protected by the policies.

5.3.5 Role
Role is a concept introduced to ease the burden of creating and maintaining access
control lists. The JAAS service does not standardize the Principals associated with a
Subject. As a result, the security policies (access control lists - described later) depend,

Security

68 Federated Management Architecture Specification

indirectly, on the method of authorization. For example, if the security policy granted
permissions only to SolarisUserPrincipals and a NIS login module was used to
authenticate a Subject, the Subject would not have any permissions because the NIS does
not populate the Subject with Solaris principals. The net effect is that independent
security policies would have to be maintained for each method of Subject authentication.
Roles, a specialization of Principal, reduce the cost of maintaining security policies by
standardizing the Principal used for management system security.

package javax.fma.common;

import java.security.Principal;
import java.io.Serializable;

/**Role represents a standard, abstract kind of Principal
 * for roles based authorization. Two roles are
 * considered equal iff they have the same Role name,
 * security domain name, and the same class name.
 */
public class Role implements Principal, Serializable
{

/**Construct a new Role object. Role names and
 * security domain names may not contain unmatched
 * braces "{}".
 * @param roleName Name of the Role. This is the
 * Principal name and may be retrieved using
 * Principal.getName()
 * @param securityDomainName Name of the security
 * domain against which this Role was issued.
 * @throws IllegalArgumentException roleName or
 * or securityDomainName are null or contain
 * unmatched braces.
 */
public Role(

String roleName,
String securityDomainName

);

/** Get the role name of this Role.
 * @return the name of the role.
 */
public final String getRoleName();

/** Get the name of the security domain against which
 * this Role was issued.
 * @return the name of the security domain.
 */
public final String getSecurityDomainName();

Security

Federated Management Architecture Specification Page 69

/** Get composite name of this role in the form
 * "{roleName}{securityDomainName}". If role name or
 * security domain name is empty, the braces are still
 * present.
 * @return the name of this role.
 */
public final String getName();

/** Compares this role to the specified object.
 * Two roles are considered equal if they have the same
 * Role name, security domain name,
 * and if they are of the same class.
 * @param another role to compare with.
 * @return true if the role passed in is the same as that
 * encapsulated by this role, and false otherwise.
 */
public final boolean equals(Object another);

/** Returns a hashcode for this role.
 * @return a hashcode for this role.
 */
public final int hashCode();

/** Get the string representation of this Role
 * as defined by <code>getName</code>.
 * @return a string representation of this role.
 */
public String toString();

}

Permissions may only be granted to Roles, code bases, and signers. For example, a
security policy file might contain the following entry. Note that this technique is
compatible with the JAAS and Java security.

// Grant permissions to a Role, regardless of code base
// and signers.
grant
Principal javax.fma.common.Role "{administrator}{boulder}" {
 permission java.io.FilePermission "/duke", "read,write";
};

A Subject, when authorized, can be populated with many Principals, including more than
one Role, and all of these Principals are applicable to permissions within the JVM in
which the Subject was authorized (local security). However, when the Subject is passed
(explicitly or implicitly) to a remote JVM, the resultant Subject in the remote JVM shall
consist of a single Principal that is a Role. In the remote propagation of Subjects, the
following rules apply:

1) Principals contained in the Subject are not propagated unless they are Roles.

2) A Role shall not be propagated unless it has an associated RoleKey credential.
(Role Keys are described later in relation to secure Subjects.) This credential is the
basis of the propagation.

Security

70 Federated Management Architecture Specification

3) Only Roles that belong to the same security domain as the remote (target) station, if
it belongs to a security domain, are eligible for propagation.

4) If more than one eligible Role/credential pair exists, the method by which an
implementation chooses which single Role to propagate is undefined.

While the use of Roles and the propagation of only a single Role have benefits
(simplifying the security model, implementation, and maintenance), there are associated
costs. If a user is compromised, the roles to which that user can access are also
compromised. This is a result of users being authorized with respect to a role rather than
respect to each user. The security model allows the end administrator, who configures the
security system, to choose an appropriate tradeoff between simplicity and the size of a
compromised Role scope. In one extreme, each user has a unique Role. Permissions
would be maintained against each user. In the other extreme, there is a single Role that
allows access to the entire system and is shared by all users.

5.3.6 Anonymous Role
The semantics of the JAAS permission checks is to bypass the subject permission check,
if no subject is associated with the current thread. This security model supplements the
JAAS by defining the anonymous Role. The anonymous Role has a name of
“anonymous”, case sensitive, and the security domain name is always empty. If a remote
operation request does not have an associated subject, the target station shall assign a
Subject with an anonymous Role. Permissions are granted to anonymous Roles as in the
following example.

grant Principal javax.fma.common.Role "{anonymous}{}" {
 permission java.security.AllPermission;
};

5.3.7 Federations
A federation of stations is the set of authenticated stations that are considered as trusted
as the security server of the security domain containing the federation. A federation
member is trusted because the entity (perhaps an administrator) authenticating the station
as such is trusted to make that determination. A federation is bounded by its security
domain; thus, each security domain has a single, possibly empty, federation of trusted
stations. The federation name and the name of the security domain containing the
federation are the same.

Members of a federation trust each other because each has authenticated itself
specifically as a member of the federation and, as a result, holds the private security key
of the federation. Members of the federation can use the key to secure communications
among themselves. In this manner, a federation of JVMs becomes a web of trust where
each member trusts the other and intra-federation communications can be secured. A
consequence of this simplification is that a malicious member of the federation can
compromise the federation. Because of this vulnerability, the entity providing the
authentication credentials, such as a password, necessary to join a federation is
responsible for ensuring that an installation (JVM, security policies, etc.) is, in fact,
secure.

Security

Federated Management Architecture Specification Page 71

Within a security domain, entities outside of the federation trust the federation; however,
the trust is not reciprocated: federation members do not, in general fully trust non-
members.

5.3.8 Security Manager and Class Loaders
An implementation shall not depend on installing its own class loaders or security
manager. In general, implementations shall not assume that they own the hosting JVM
and shall be well behaved with existing class loaders, including the RMI class loader, and
security manager.

5.3.9 Security Service
The primary responsibility of a security service is to provide authentication services to
the participants of a security domain. The security service provides credentials,
encapsulated in an authenticated Subject, that the authenticating party may use to prove
its authentication to other parties that trust the security service. Clients, stations, and
federations depend on the trust of the security service. The security service is, of course,
quite sensitive; a compromised security services can compromise the entire security
domain.

There is a single security service per security, and therefore management, domain, but
security domains can share a security service. The limiting factor is the reliable
reachability of the security services from the security domains and the ability of a
particular security service implementation to support multiple domains, which is not
required.

5.4 Security Topology
The following Figure shows the topology of two security domains served by a single
security service. The Figure also shows the distributed of various keys and certificates at
a certain point in time. The depicted client has been authenticated against two security
domains and, therefore, has an authenticated subject with two different roles, one for each
security domain.

Security

72 Federated Management Architecture Specification

Security Domain D1

Federation F1

SD1

R1D1

SF1S1

SD1

SF1S2

Federation F2

F2

SF2S1

Client

Security Server

R1D1

Private key Certificate containing public key

Security Domain D2

SD2
R1D2

F1

F1
F1

SD2

SD1

F1

F2

R*D1

R*D2

Authenticated Subject

SD2

SD1

Figure 13. Security services, Security Domains, Federations, Stations, and Clients.

Private keys are shown as key icons and certificates (which contain the public keys) as
certificate icons, both with annotations as follows:

1) F<d> where d is the security domain name.

2) SD<d> to represent the key pair for the security domain d.

3) R<r>D<d> to represent the Role r in the security domain d. Note that Roles are
qualified by security domain. Although two security domains may have Roles with
the same name, they are not considered the same role because security domains are
the scope limit of Roles.

Key/certificate pairs are issued as a result of authorization against a security service and
are encapsulated in a Subject. Often the authorized Subject is the well-known Subject of
the particular entity.

In text, the annotations are subscripts, the private key icon is represented by K’ and the
certificate (public key) by K. For example, the private key for the security domain 1 is
represented by K’SD1. Authorized Subjects are represented by an S{principal list}, such as
S{R1D1, R1D2}. Unauthorized Subjects have an empty list, S{}.

Stations are denoted by SD<d>S<s> where s is the identification of security domain to which
the station belongs and s is the station identification.

Private keys are issued only in response to authorization and, unlike certificates, are
never persisted or otherwise passed outside of the JVM to which the security service
granted the key. Private keys are kept as a private credential of the authorized Subject.
Thus, even within the JVM containing the Subject, access to privates keys is only

Security

Federated Management Architecture Specification Page 73

allowed to trusted code. In general, the only code trusted with this access is the Login
Module, which provided the private key during authorization, and the communications
infrastructure that needs the key to support secure communications. All others shall be
denied access to prevent malicious code within the JVM from compromising the Role.
However, none of these mechanisms can protect the private key if the JVM itself is
compromised.

5.4.1 Certificates
The certificate for the security domain, SD<d>, boots the security mechanism by
establishing trust in the security service itself. The means by which this certificate is
obtained, or more generally, how trust is established with this certificate, is not part of
this specification and expected to be handled as appropriate for a particular
implementation and installation.

To permit implementation independence while preserving interoperability, the
specification does standardize the format of all certificates to be X.509 (v1, v2, or v3). In
addition, security domain certificates shall have a subject distinguished name common
name equal to the name of the security domain. All role and federation certificates shall
be signed by the private key of the security domain against which the certificates were
issued. Thus, a holder of a trusted security domain certificate can establish trust in the
role and federation certificates of that security domain. The subject distinguished name
common name of Role certificates shall be the name of the Role.

The security domain certificates are the only ones that must be stored persistently. The
authorization process, in particular a Login Module (described in the following section),
must be able to locate the security domain certificate for a particular domain. Security
domain certificates shall be made available through the Java key store facility under the
alias "javax.fma:<security domain name>", such as
"javax.fma:boulder". The keystore location is specified as a URL by the
system property "javax.fma.security.keystore". If this property is not
specified, the Login Module will look for the keys stored in a file ".keystore" in the
user’s home directory as indicated by the standard system property "user.home". (See
the JDK documentation for a precise algorithm by which the home directory is
determined for various operating systems.) For conventional installations, providing the
security domain certificates is a matter of storing the certificates in the default key store
file using the keytool tool supplied with the JDK.

5.5 JAAS Authentication Overview
Authentication is the secure process of associated Principals and, optionally, credentials
with a Subject. The association shall be done in such a manner as to be trusted by the
mechanism performing authorization. Note that both the association of a Principal with a
particular Subject and the class of the Principal must be trusted. The class of the Principal
must be trusted to trust the Principal name, which is a factor in granting permissions.

The JAAS authentication mechanism is designed primarily for the local (within a JVM)
authentication of users. In its most basic form, the JAAS authentication algorithm

Security

74 Federated Management Architecture Specification

performs a multi-phase login across one or more trusted Login Modules, with each Login
Module being specific to a method of authorization, such as host based Solaris operating
environment authentication or NIS authentication. As the Login Modules are trusted,
(they have been granted certain permissions by the policy file associated with the JVM in
which authentication is being performed) they have permission to add Principals and
credentials to the Subject of the login. Thus, the composition of the resulting Subject is
trusted to the extent that the relevant policy file (and JVM) are trusted. In general, this
level of trust is sufficient to make authorization decisions when the Subject is
authenticated in the same JVM in which the authorization is taking place. Further details
can be found in the JAAS documentation.

5.6 Management Extension to JAAS Authentication
The JAAS is sufficient when the authentication and authorization occur in the same JVM.
In the case of the security model of this specification, authorization and authentication
can happen in different JVMs. In particular, unless other measures are taken beyond
JAAS, the authorization process in a distributed environment cannot trust a Subject
because the authorization cannot trust the source of the Subject, nor can it trust the
communication channel by which the Subject was transferred from the authenticating
JVM to the authorizing JVM. The purpose of the management extensions to JAAS are to
establish the trust in foreign Subjects, that is, Subjects authenticated in a remote JVM.

Though the specification often refers to passing a Subject from one JVM to another, it is
unlikely that an implementation would choose to literally pass a Subject. Rather, the
Subject would generally be reconstructed in the target JVM based on security information
supplied by the source JVM. In any case, the Subject is logically transferred, but the
mechanism by which this transfer is achieved is implementation dependent.

5.6.1 Security Service
As previously described, the primary responsibility of the security service is to perform
secure authentication. It does so by supplying a JAAS Login Module that communicates
with the security service to perform authorization. The Login Module appears as a local
Login Module, but the actual authorization is performed remotely in a trusted security
service.

The JAAS, however, cannot directly use the Login Module as supplied by the security
service because the JAAS expects to be able to instantiate, not retrieve a Login Module.
There is also the issue of establishing trust in the Login Module and certificates supplied
by the security service, which requires well known, but secure, access to the certificate of
the security services. In addition, trust must be established in the proxy itself.

Security

Federated Management Architecture Specification Page 75

package javax.fma.services.security;

import javax.security.auth.spi.LoginModule;
import java.rmi.RemoteException;
import java.security.cert.CertificateException;

/**Interface implemented by the security service proxy.
 */
public interface SecurityService
{

/** Factory method to get a new LoginModule for
 * authentication.
 * @param securityDomainName The name of the security
 * domain against which the authentication should
 * be performed.
 * @throws RemoteException any remote exception thrown during
 * execution of that operation
 * @throws CertificateException indicates various problems
 * with certificate location or verification
 */
LoginModule newLoginModule(String securityDomainName)

throws
RemoteException,
CertificateException;

}

The proxy must be trusted to verify its communications with the security service and for
providing the certificate to the Login Modules returned by newLoginModule() so that
the Login Modules can also validate their communications with the security service. In
general, this requires that the proxy fetch the certificate of a particular security domain
from the key store. The alias used to access the certificate as well as the search for the
key store file are outlined in the previous section about certificates.

To establish trust in a proxy, one must establish trust in the proxy code, which may have
been loaded from a remote source. This is a question of whether the client, not the server,
trusts the proxy. Therefore, the validation depends on information available on the client
side. A trusted proxy is a proxy to which the client has granted
javax.fma.common.TrustedProxyPermission. This will require that the local
(client side) policy file contain a grant entry granting this permission to the proxy
supplied by the security service. Note that the particular class of this proxy will
necessarily depend on the security service implementation. Changing the implementation
of a security service will require changing client side policy files. The details of the
process of trusting a proxy are general to all secure proxies and outlined in the following
code segment.

Security

76 Federated Management Architecture Specification

// Check to see if a particular object is trusted as a
// secure proxy. Note that this check requires that the
// entity doing the checking have permission to access
// the protection domain of the class
// RuntimePermission("getProtectionDomain"). The
// proxy being checked must have the
// javax.fma.common.TrustedProxyPermission()
// permission to be trusted.
...
boolean trusted = false;
try
{

trusted =
aProxy.getClass().getProtectionDomain().implies(

new javax.fma.common.TrustedProxyPermission()
)

);
}
catch(NullPointerException e) { }
...

package javax.fma.common;

import java.io.Serializable;
import java.security.BasicPermission;

/** Permissions class for authorizing trusted Proxies.
 */
public final class TrustedProxyPermission

extends BasicPermission implements Serializable
{
 static final long serialVersionUID = -4122846412590798067L;

/** Do not call. Construct a TrustedProxyPermission object.
 * @param target the target name
 */
public TrustedProxyPermission(String target);

/** Do not call. Construct a TrustedProxyPermission object.
 * @param target the target name
 * @param actions not used
 */

 public TrustedProxyPermission(
String target,
String actions

);

 /** Construct a TrustedProxyPermission object for
 * authorizing trusted Proxies.
 */
 public static TrustedProxyPermission

newTrustedProxyPermission();
}

To establish this trust, the proxy must have been signed, presumably by the vendor of the
security service to which the proxy refers. Note that this trust only verifies that the class

Security

Federated Management Architecture Specification Page 77

of the proxy is trusted. A proxy class worthy of such trust must ensure that it can trust the
parties with which it communicates.

package javax.fma.common;

/** Interface implemented by secure proxies.
 * The proxy class must have the
 * javax.fma.security.TrustedProxyPermission
 * permission to be trusted.
 * <p>The following outlines the process of how the proxy
 * trust check is performed. Note that this check requires
 * that the entity doing the checking have permission to
 * access the protection domain of the class
 * RuntimePermission("getProtectionDomain").
 *
 * <pre>
 * import javax.fma.security.TrustedProxyPermission;
 * ...
 * boolean trusted = false;
 * try
 * {
 * trusted =
 * aProxy.getClass().
 * getProtectionDomain().
 * implies(rustedProxyPermission());
 * }
 * catch(NullPointerException e) { }
 * </pre>
 */
public interface SecureProxy { }

Proxies may implement the javax.fma.common.SecureProxy tag interface.
Implementations of stations may allow a mode in which proxies tagged as secure are only
allowed to be loaded into the station if they are trusted according to the described trust
testing algorithm. Thus, proxy clients can assume the proxy is trusted if it implements
javax.fma.common.SecureProxy.

// Grant statement for security services proxy signed by
// the vendor "wahoo". The "wahoo" certificate will need
// to be available from the key store.
grant SignedBy "wahoo" {

permission javax.fma.common.TrustedProxyPermission;
};

The proper JAAS Login Module is a JAAS compliant login module that knows how to
communicate with the security service. The implementation of the proper Login Module
is independent of the security service implementation and may be provided by the
security service vendor or as part of a software development kit. The proper Login
Module is a thin object that, when instantiated, locates a security service proxy, which
shall be validated as trusted, to an appropriate remote security service. To request a Login
Module from the security service, the Login Module must know the security domain

Security

78 Federated Management Architecture Specification

name against which authorization shall be performed. This name is provided by the
system property "javax.fma.security.domain". This name is identical to the
name of the management domain to which the security domain belongs. From then on, all
method invocations are delegated to the Login Module provided by the security service.

JAAS Proper Login Module

Security Service Proxy Security Service
remote communication

Remote Login Module supplies

Figure 14. Remote Authorization Model.

Security

Federated Management Architecture Specification Page 79

JAAS
Authorization

Proper
Login Module

Remote
Login Module

Securi ty
Service Proxy

Security
Service

Jini Lookup
Service

2: initialize()

3: locate security service proxy for federation

5: newLoginModule()

4: establish trust in proxy

7: login()/commit()/...

1: new()

8: delegate operation

9: local and delegated operations

10: private communications

6: private communications

Figure 15. Remote Authorization Sequence.

1) The JAAS authorization module instantiates the proper Login Context. This Login
Context is specified in the JAAS configuration.

2) The JAAS authorization module initializes the proper Login Context. Some of the
information that must be available to the proper Login Context at the time of
initialization is the public certificate for the security service and the security domain
name.

3) Using the security domain name, the proper Login Context can locate an appropriate
Jini lookup service using the group name "<security domain name>", such as
"us.co.boulder".

4) The proper Login Context must establish trust in the proxy retrieved from the lookup
service.

Security

80 Federated Management Architecture Specification

5) Once trust has been established, the proper Login Context requests a new Login
Module from the security service for a particular security domain.

6) The security service proxy performs any needed private communications with the
security service. Note that the proxy has access to the certificate of the specified
security domain by way of the local key store.

7) The JAAS authorization module can perform any number of operations on the proper
Login Context, such as login() and commit().

8) The proper Login Context delegates these operations directly to the remote Login
Module. Note that the remote Login Module is remote to the security service, but
local to the proper Login Context.

9) The remote Login Module does whatever is necessary to perform the requested
operation. In general, this will involve both local operations and remote
communication with the security service.

10) The communication between the security service and its proxy is private. The proxy
and security services shall appropriately secure all such communications. This may
be done using the public/private key pair associated with the security services.

The security service implementation must satisfy a number of requirements:

1) The implementation cannot assume that the JVM hosting the Login Module can
perform socket accepts. In general, this means that some sort of duplex
communication or polling must be provided to simulate the Login Module callbacks.

2) All communications between the security service proxy and the security service shall
be server authenticated, tamper resistant, and private. In particular, the proxy will be
passing sensitive information, such as user names and passwords, to the security
service. This information shall not be sent as clear text. Because the proxy cannot
always distinguish between sensitive and public information, all communications
shall be private. Because the security service has the private key of the security
domain and the security service proxy has access to the public certificates of each
security domain (from the local key store), providing secure communications should
be straightforward.

3) The Login Module shall populate the Subject with a single Role and an associated
private credential, represented as a RoleKey, containing the private key and public
certificate of the authenticated Role. The RoleKey and Role are matched by Role.

4) If the authenticated Role was as a federation member, the Role shall be of type
FederationMember.

5.6.2 Secure Subject
A secure Subject is an authenticated Subject containing one or more Role objects and
matching RoleKey objects as private credentials. Referring back to Figure 13, each
private key associated with a JVM (as opposed to the security services) is contained,
along with its public certificate, in the RoleKey of a secure Subject as a result of
authentication.

Security

Federated Management Architecture Specification Page 81

package javax.fma.common;

import java.io.Serializable;
import java.security.PrivateKey;
import java.security.cert.Certificate;

/**Private credentials associated with a Role. The
 * Role/RoleKey relationship is established by the
 * Role property of the RoleKey. The RoleKey also
 * contains the public key, as part of the Role’s
 * public certificate, and the private key for the
 * Role.
 */
public final class RoleKey implements Serializable
{
 static final long serialVersionUID = -125509265494041025L;

/** Constructs RoleKey for a give role, private key
 * and certificate.
 * @param key Private key for the role, may be null
 * @param certificate Public certificate for the
 * role, may be null
 * @param role Role associated with current RoleKey.
 * Must not be null
 * @throws IllegalArgumentException if role is null
 */
public RoleKey(

PrivateKey key,
Certificate certificate,
Role role

);

/** Get the private key for the associated Role.
 * @return private key, may be null
 */
public PrivateKey getKey();

/** Get the public certificate for the associated Role.
 * @return Certificate, may be null
 */
public Certificate getCertificate();

/** Get the associated Role.
 * @return Role with which this RoleKey is associated.
 */
public Role getRole();

}

If the secure Subject was the result of the authentication of a federation member, then the
Role associated with the Subject is a FederationMember object.

Security

82 Federated Management Architecture Specification

package javax.fma.common;

/** Special Role issued to members of a federation.
 * Note that FederationMember may be subclassed to
 * establish Roles even within a Federation.
 */
public class FederationMember extends Role
{

/** Construct a new FederationMember Role object for a
 * given role and security domain.
 *

 * @param roleName Name of the Role. Should not be
 * null or contain unbalanced braces.
 * @param securityDomainName Name of the security
 * domain issuing the Role. Should not be
 * null or contain unbalanced braces.
 * @throws IllegalArgumentException if roleName or
 * securityDomainName is null or contains un-
 * balanced braces "{}".

 */
public FederationMember(

String roleName,
String securityDomainName

);
}

The private credentials of a secure Subject shall never be exposed directly on the
network, in persistent storage, or other unsecured environment.

5.6.3 Well Known Subject
Each authenticated station has a well-known, authenticated Subject. Authentication or re-
authentication can occur at any time simply by proceeding through the remote
authorization procedure and making the authenticated Subject well known. Authorized
objects have access to the well-known Subject and can, therefore, assume the identity of
the well-known Subject. Only privileged objects, such as the communication
infrastructure, shall be allowed access to the RoleKey of the well-known Subject. This
requires the permissions as specified by the JAAS. Usually only the Login Module has
permission to invoke javax.fma.common.WellKnownSubject.setSubject() to
change the well known authenticated Subject.

WellKnownSubject also provides access to the client Subject if the current thread is
servicing a remote operation and the client Subject was authenticated.

Security

Federated Management Architecture Specification Page 83

package javax.fma.common;

import javax.security.auth.Subject;
import java.rmi.server.ServerNotActiveException;

/**Support for setting and getting a well known Subject.
 */
public abstract class WellKnownSubject
{

/** Cannot be instantiated */
private WellKnownSubject() {}

/**Set the well known Subject.
 * Requires javax.fma.common.WellKnownSubjectPermission with
 * a target of "setSubject".
 * @param The well known Subject. May be null to
 * clear.
 * @return The previous well known Subject.
 * @throws java.security.AccessControlException
 * if permission to set the Subject is not
 * granted to the caller.
 */
public static Subject setSubject(Subject subject);

/**Get the well known Subject.
 * Requires javax.fma.common.WellKnownSubjectPermission with
 * a target of "getSubject".
 * @return The well known Subject.
 * @throws java.security.AccessControlException
 * if permission to set the Subject is not
 * granted to the caller.
 */
public static Subject getSubject();

/**Get the client Subject if the current thread
 * is server a remote operation. If the client
 * Subject was not authenticated, null is returned.
 * Requires javax.fma.common.WellKnownSubjectPermission with
 * a target of "getClientSubject".
 * @return The well known Subject.
 * @throws java.security.AccessControlException
 * if permission to set the Subject is not
 * granted to the caller.
 * @throws java.rmi.server.ServerNotActiveException if
 * the current thread is not servicing a remote
 * operation.
 */
public static Subject getClientSubject()

throws ServerNotActiveException;

Security

84 Federated Management Architecture Specification

/**Return the list of trusted Roles for delegation
 * purposes. This is effectively a local cache of the
 * list of trusted roles returned from the security
 * service. Requires
 * javax.fma.common.WellKnownSubjectPermission with
 * a target of "getTrustedRoles".
 * @return A list of Roles trusted for delegation. If
 * none, an empty array is returned.
 * @throws java.security.AccessControlException
 * if permission to set the Subject is not
 * granted to the caller.
 */
public static Role[] getTrustedRoles();

/**Set the list of trusted Roles for delegation
 * purposes. Requires
 * javax.fma.common.WellKnownSubjectPermission with
 * a target of "setTrustedRoles".
 * @param roles the list of trusted roles.
 * @return The previous list of trusted Roles.
 * @throws java.security.AccessControlException
 * if permission to set the Subject is not
 * granted to the caller.
 */
public static Role[] setTrustedRoles(

Role[] roles
);

}

package javax.fma.common;

import java.io.Serializable;
import java.security.BasicPermission;

/** Permissions class for authorizing operations on
 * the WellKnownSubject class methods.
 */
public final class WellKnownSubjectPermission

extends BasicPermission implements Serializable
{
 static final long serialVersionUID = -4122846412590798067L;

/** Do not use. Construct a WellKnownSubjectPermission
 * object.
 * @param target the target name.
 */
public WellKnownSubjectPermission(String target);

/** Do not call. Construct a WellKnownSubjectPermission
 * object.
 * @param target the target name.
 * @param actions action list. Not used.
 */
public WellKnownSubjectPermission(

String target,
String actions

);

Security

Federated Management Architecture Specification Page 85

/** Construct a WellKnownSubjectPermission object for
 * authorizing setSubject operations.
 */
 public static WellKnownSubjectPermission

newSetSubjectPermission();

 /** Construct a WellKnownSubjectPermission object for
 * authorizing getSubject operations.
 */
 public static WellKnownSubjectPermission

newGetSubjectPermission();

 /** Construct a WellKnownSubjectPermission object for
 * authorizing getClientSubject operations.
 */
 public static WellKnownSubjectPermission

newGetClientSubjectPermission();

 /** Construct a WellKnownSubjectPermission object for
 * authorizing getTrustedRoles operations.
 */
 public static WellKnownSubjectPermission

newGetTrustedRolesPermission();

 /** Construct a WellKnownSubjectPermission object for
 * authorizing setTrustedRoles operations.
 */
 public static WellKnownSubjectPermission

newSetTrustedRolesPermission();
}

5.7 Authorization
Authorization is the verification that a particular thread of execution has permission to
perform a particular task, such as accessing a secure resource. This verification may
require inspecting both the classes involved in the call chain, standard Java security, and
the Subject associated with the current thread, the JAAS extension to the standard model.
JAAS authorization is supported by Java 2 version 1.3 and later. The specification
provides an similar means of authorization for version 1.2 for migration purposes.

5.7.1 JAAS Overview
JAAS authorization is directly supported by the JDK 1.3 AccessController, thus
authorization does not require the use of any JAAS class and is retroactively applicable to
classes written prior to JAAS. In general, authorization is done by performing a check
permission call on the AccessController class.

FilePermission perm =
new FilePermission("/temp/testFile", "read");

AccessController.checkPermission(perm);

Security

86 Federated Management Architecture Specification

This permission check verifies whether the current thread is allowed read access to the
specified file. The decision is based on the grant entries in the policy file associated with
the JVM, the class of objects in the call chain, and the Subject (specifically the Principals
of the Subject) associated with the current thread. The Java and the JAAS security
documentation fully detail how the permission checks are calculated.

5.7.2 Modifications
The security model specified is fully compatible with, and does not require modifications
of, the JAAS authorization mechanism. However, to allow early use of authorization
(before wide availability of JDK 1.3), this specification provides the following
convenience class for migration of JAAS authorization.

package javax.fma.server;

import java.security.AccessControlException;
import java.security.Permission;

/**AccessController provides a temporary entry point
 * for java.server.AccessController.checkPermission()
 * for Subject based authorization until it is available
 * directly in the JDK.
 */
public final class AccessController
{

/**Temporary implementation of
 * java.server.AccessController.checkPermission()
 * for Principal (Subject) based authorization without
 * JDK 1.3.
 * @see java.server.AccessController#checkPermission
 */
public static void checkPermission(Permission perm)

throws AccessControlException
}

The intent is to easily replace the implementation of this class when the JAAS becomes
widely available. With the arrival of JDK 1.3, one should be able to change package
names without perturbing source code in any other fashion.

5.7.3 Station Authorization
Stations may perform authorization when a remote operation is requested of the station.
The permission required to perform the remote operation is of class
javax.fma.server.AccessPermission.

package javax.fma.server;

import java.io.Serializable;
import java.security.BasicPermission;
import java.security.Permission;

Security

Federated Management Architecture Specification Page 87

/** Permissions class for authorizing operations
 * on Stations (class methods and constructors) and
 * Acceptors (object methods). In each case, the
 * referent class or class of the referent object
 * is specified as the permission target, with
 * wildcard conventions as specified for
 * BasicPermission. For example, a target of
 * com.yoyo.* implies all classes in the packages
 * com.yoyo and com.yoyo.beep, but not classes in
 * packages such as com.sun. The permission action
 * is a list, comman delimited, of method names or
 * signatures. A method name implies all method
 * signatures of the given name. Constructors have
 * the special name of <init>. The method list may
 * be mixed names and signatures.
 */
public final class AccessPermission

extends BasicPermission implements Serializable
{

static final long serialVersionUID = -4122846412590798067L;

/** Construct a AccessPermission object.
 * @param className the referent class name.
 * @actions methods the referent method list.
 */
public AccessPermission(String className, String methods);

/** Checks if this AccessPermission object "implies"
 * the specified permission.
 * <P>
 * More specifically, this method returns true if:
 *

 *
 * <I>p</I>’s class is the same as this object’s
 * class, and

 * <I>p</I>’s class name equals or (in the case of
 * wildcards) is implied by this object’s class name.
 * For example, "a.b.*" implies "a.b.c", and

 * <I>p</I>’s actions are a proper subset of
 * this object’s actions.

 *
 *
 * @param p the permission to check.
 * @return true if the specified permission is implied
 * by this object, false if not.
 *
 * @see java.security.BasicPermission
 */
public boolean implies(Permission p);

/** Checks two AccessPermission objects for equality.
 * @return true if both AccessPermission objects are
 * equivalent.
 */
public boolean equals(Object obj);

/** Returns the hash code value for this AccessPermission.
 * @return a hash code value for this object.
 */
public int hashCode();

Security

88 Federated Management Architecture Specification

/** Returns the actions for this AccessPermission.
 * @return the actions represented as a comma-delimited
 * String of method names or signatures.
 */

 public String getActions();

If a permission check fails during a remote operation request, the station shall throw a
javax.fma.common.StationSecurityException.

package javax.fma.common;

/**StationSecurityException is thrown by a station when
 * a front door security check fails during a remote
 * operation request.
 */
public class StationSecurityException

extends SecurityException
{

static final long serialVersionUID = -2988418186346831363L;

/** Create a StationSecurityException with no detail message.
 */

public StationSecurityException();

/** Construct StationSecurityException with nested exception.
 * @param nestedException Throwable which is a
 * cause of this exception. May be null.
 */
public StationSecurityException(Throwable nestedException);

/** Construct StationSecurityException with message and
 * nested exception.
 * @param message Informative failure message.
 * @param nestedException Throwable which is a
 * cause of this exception. May be null.
 */
public StationSecurityException(

LocalizableMessage message,
Throwable nestedException

);
}

5.8 Client to Proxy
Up to this point, this chapter has been mainly concerned with the architecture of the
management security model and the interactions with the JAAS. In addition, there are
two other vendor boundary interfaces to address. The first is client to proxy. The entire
interaction that a client has with the proxy, with respect to security, is through the Subject
context. The client is responsible for:

1) providing Subject authenticated against the security domain and

Security

Federated Management Architecture Specification Page 89

2) associating the Subject with the current thread of execution before invoking methods
on the Proxy.

This association is done using the Subject.doAs() methods.

There are other client responsibilities, such as delegation decisions, beyond the scope of
this specification. These responsibilities involve the boundary between a particular
implementation of the FMA and the administrator.

5.9 Referent to Station
The actual security mechanisms (encryption, auditing, etc.) invoked when
communicating with a particular referent are a result of security policy, supplied by the
administrator, applied to information supplied by the developer. The former is not in the
scope of this specification. The latter is part of the referent to station contract. The
information supplied by the developer is classified as intrinsic, implicit, and explicit.

5.9.1 Intrinsic
Intrinsic information includes class names, interface names, method signatures and any
other information intrinsically available from any object. The developer makes no special
effort to provide this information; however, security decisions may be based on this
information, if supported by a station implementation. For example, a station could allow
call auditing to be specified by the administrator on a class-by-class basis. As another
example, auditing of all remote operations on a particular class of objects.

5.9.2 Implicit
Implicit information supplied by the referent to the station includes semantics associated
with certain method patterns by virtue of the JavaBeans component model. Methods can
be categorized as accessors, mutators, and others. Security decisions can be based on this
classification. For example, one possible security policy would allow unauthenticated
access to accessors but require authorized access to mutators and other methods.

5.9.3 Explicit
Explicit information is supplied by the referent in the form of modifiers. With respect to
security, the modifiers are grouped into two sets: sensitivity and subject propagation. The
administrator is not expected to know the details of particular classes or objects. Thus, the
developer specifies the sensitivity of particular operations. The sensitivity is specified as
public, sensitive, or private. If no sensitivity is specified, public is assumed. Note that the
developer does not specify what mechanisms should be used with each of the levels of
sensitivity. The mechanisms are specified by the administrator based on, possibly, a
combination of intrinsic, implicit, and explicit information, as supported by the
administration capabilities of a particular station implementation.

The subject propagation modifiers are the means by which a referent informs the station
that the referent wishes to be invoked under the subject of the client or under the well
known subject of the station. In either case, if the specified subject has not been provided,

Security

90 Federated Management Architecture Specification

then the referent will be invoked without a subject. In addition, the referent must have
been granted certain permissions in order to assume the subject of a client or the station,
as specified in the javax.fma.common.Modifiers documentation. Insufficient
permission results in an java.security.AccessControlException being thrown
back to the client.

5.10 Security Permission Summary
All permission checks defined in this chapter are based on permission classes in
javax.fma.common and javax.fma.server. The specific action and target of the permission
depend on the specific permission class; however, all permission classes are
specializations of java.security.BasicPermission and, thus, support pattern matching as
implemented by java.security.BasicPermission.

5.10.1 Station
The javax.fma.common.Station methods invokeConstructor() and
invokeStaticMethod() require javax.fma.server.AccessPermission with a
target of class name and an action of method list. The rebind() and ping() methods
do not require specific permission. A method list is a comma delimited list of signatures,
such as setPassword(Ljava/lang/String;)V and method names, such as
setPassword. Signatures and method names may be mixed in the same list.

5.10.2 Acceptor
The javax.fma.common.Acceptor method invokeObjectMethod() requires
javax.fma.server.AccessPermission with a target of class name and an action of
method list, as described in the previous section.

5.10.3 DeploymentStation
The javax.fma.common.DeploymentStation methods deploy() and recall()
require javax.fma.common.DeploymentPermission with a target of “deploy”. The
method recall()requires javax.fma.common.DeploymentStation with a target of
“recall”. The methods getInventory()and getCodeBase() require
javax.fma.common.DeploymentStation with a target of “inventory”.

5.10.4 Proxy Trust
The method of establishing Proxy trust requires that the Proxy have permission
javax.fma.common.TrustedProxyPermission.

5.10.5 WellKnownSubject (Station Subject)
The javax.fma.common.WellKnownSubject method getSubject() requires
javax.fma.common.WellKnownSubjectPermission with a target of “getSubject”.
The method setSubject() requires
javax.fma.common.WellKnownSubjectPermission with a target of “setSubject”.

Security

Federated Management Architecture Specification Page 91

5.10.6 WellKnownSubject (Client Subject)
The javax.fma.common.WellKnownSubject method getClientSubject()
requires javax.fma.common.WellKnownSubjectPermission with a target of
“getClientSubject”.

5.10.7 WellKnownSubject (Trusted Roles)
The javax.fma.common.WellKnownSubject method getTrustedRoles()
requires javax.fma.common.WellKnownSubjectPermission with a target of
“getTrustedRoles”. The javax.fma.common.WellKnownSubject method
setTrustedRoles() requires
javax.fma.common.WellKnownSubjectPermission with a target of
“setTrustedRoles”.

5.11 Views
Different roles see and need to understand different aspects of security.

5.11.1 Client Developer
The client developer must understand the JAAS authentication framework as well as the
extensions of this chapter, principally the Login Module.

5.11.2 Service Developer
The service developer must tag classes and objects with private, confidential, public, and
delegation modifiers as well as following JavaBeans coding conventions for properties.
Generally, this is done with tool assistance, but it is possible to perform the task manually
by creating the modifier tables by hand. In advanced cases, developers may wish to
perform explicit security checks (javax.fma.server.AccessController) or assume
the identity of the station (javax.fma.common.WellKnownSubject).

5.11.3 System Administrator
The system administrator is responsible for providing security policies, both in the sense
of Java security policy files and in the sense of specifying mechanisms. The former is
covered by the security information associated with the JDK, the JAAS, and the specific
permissions required to perform certain tasks. The latter is implementation specific but
generally consists of some means by which the administrator can control encryption,
auditing, and the like based on various attributes, including the security modifiers
assigned by the developer to particular methods.

Most of the complexity of security falls on the system administrator. The security model
allows for a wide range of granularities. The following is an example of how an
installation could be configured with a very coarse level of granularity to achieve a level
of simplicity.

1) Grant all permissions to the role of administrator.

Security

92 Federated Management Architecture Specification

2) Grant permission for the roles of user to access get methods labeled as public.

3) Grant no permission to other roles.

4) Grant all permissions to classes signed by Sun, IBM, and the lead administrator.

5) Grant no permissions to other classes.

6) Encrypt communications with all methods tagged as private or sensitive.

7) Plain text communications with all method tagged as public.

8) Audit communications with all methods tagged as private.

9) Perform client authentication with all methods tagged as private or sensitive.

Federated Management Architecture Specification Page 93

Aspects

Referents have three aspects: transaction, logical thread, and controller. Aspects are
handled by the infrastructure on behalf of the referent according to aspect policy
specified by the referent. These aspect policies are specified by the aspect modifiers
(SYNCHRONIZED_TRANSACTION, SYNCHRONIZED_LOGICAL_THREAD,
SYNCHRONIZED_CONTROLLER) applied to methods and constructors.

Each aspect serializes object access based on a particular concept, much in the same way
as Java thread synchronization serializes object access based on language thread. For
example, SYNCHRONIZED_TRANSACTION, serializes object access based on transactions
such that the object may only be involved in a single transaction at a time. With all
aspects, an exclusive lock on the object is acquired when a ’synchronized’ method is
invoked. (Each aspect has an independent lock.) The aspects differ however as to when
the lock is released. Logical thread based locks are released when the invoked method
returns. Transaction based locks are released when the transaction is committed or
aborted. The basis for lock release is known as the relevancy of the aspect. Aspects also
differ in their response to a failure to acquire an unavailable lock, as described in the
following sections.

Aspects are only applied to an object when the object is accessed using its Proxy.
Therefore, it is unsafe and forbidden to invoke any method with aspect modifiers except
through the object’s Proxy.

Much as adjunct modifiers are thought of as extensions to the Java language modifiers,
aspects may be thought of as extensions to the Java thread synchronization primitive.

Federated Management Architecture Specification Page 95

6 Transaction Aspect

6.1 Synchronized/Transactions
The developer indicates that a method is synchronized with respect to transactions by
tagging the method with the
javax.fma.server.Modifiers.SYNCHRONIZED_TRANSACTION modifier. The set of
such methods form an exclusion group such that, with respect to these methods, the
object may only be involved with one transaction at a time. The semantics of the
synchronization obey the following state diagram.

Free Involved

instantiate

invoke synchroniz ed

commit/abort

invoke synchronized

If not of the involved transaction and does not
transition to free state within time out tolerance,
throws a ConcurrentTransactionException.

Figure 16. State Diagram of Object Methods Synchronized with Respect to Transactions.

6.2 Transactions Created on Behalf of an Object
If a thread of execution does not have an associated transaction (see
javax.fma.common.Context), then the station must initiate a transaction before
invoking a method synchronized with respect to transactions. The station is then

Transaction Aspect

96 Federated Management Architecture Specification

responsible for committing or aborting the transaction when the method returns. The
transaction shall by aborted if a throwable is thrown and committed otherwise. Stations
may perform the following optimization. If an object is involved with a transaction and a
synchronized/transaction method is invoked without a transaction, there is no need to
create and abort the transaction before throwing the
javax.fma.common.ConcurrentTransactionException.

package javax.fma.common;

/** Exception thrown when a synchronized/transaction method is
 * invoked on an object by an entity that is not part of the
 * owning transaction. The Station will attempt to acquire the
 * transaction lock for a period of time specified by the
 * javax.fma.transaction_tolerance property before the
 * exception is thrown.
 */
public class ConcurrentTransactionException

extends StationException
{

static final long serialVersionUID = -9215837774402205113L;

/**Create a ConcurrentTransactionException.
 */
public ConcurrentTransactionException();

}

6.3 Referents as Transaction Participants
If a referent object implements the
net.jini.core.transaction.server.TransactionParticipant interface, the
station will join the referent object to a transaction when the object transitions from the
free state to the involved state. Note that this only happens during invocations of methods
synchronized with respect to transactions. The station is not required to join the referent
directly. For example, the station could join an internal object to the transaction and
forward the prepare/commit/rollback messages to the referent.

6.4 Deadlock Prevention
If the transaction lock is not available, the object is already involved. Then an exception
is thrown. Thus, deadlocks will be broken; however, thrashing may result during
contention for transaction locks. Stations shall attempt to acquire the transaction lock for
a period of time specified by the “javax.fma.transaction_tolerance” system
property before throwing a
javax.fma.common.ConcurrentTransactionException. The default value is
10,000 milliseconds and is specified in milliseconds. Note that
javax.fma.common.ConcurrentTransactionException, is an unchecked
exception.

Federated Management Architecture Specification Page 97

7 Logical Thread Aspect

7.1 Synchronized/Logical Thread
The developer indicates that a method is synchronized with respect to logical threads by
tagging the method with the
javax.fma.server.Modifiers.SYNCHRONIZED_LOGICAL_THREAD modifier. The
set of such methods form an exclusion group such that, with respect to these methods, the
object may only be involved with one logical thread at a time. The semantics of the
synchronization obey the following state diagram.

Free Involved

If not of the involved logical thread and does not
transition to free state within time out tolerance,
throws a ConcurrentThreadException.

invoke synchroniz ed

method return

invoke synchronized

instantiate

Figure 17. State Diagram of Object Methods Synchronized with Respect to Logical
Threads.

7.2 Logical Threads Created on Behalf of an Object
If a thread of execution does not have an associated logical thread (see
javax.fma.common.Context), then the station must initiate a logical thread before

Logical Thread Aspect

98 Federated Management Architecture Specification

invoking a method synchronized with respect to logical threads. Stations may perform the
following optimization. If an object is involved with a logical thread and a
synchronized/logical thread method is invoked without a logical thread, there is no need
to create the logical thread before throwing the
javax.fma.common.ConcurrentThreadException.

package javax.fma.common;

/** Exception thrown when a synchronized/logical thread method
 * is invoked on an object by an entity that is not associated
 * with the owning logical thread. The Station will attempt to
 * acquire the thread lock for a period of time specified by
 * the javax.fma.thread_deadlock_tolerance property before the
 * exception is thrown.
 */
public class ConcurrentThreadException extends StationException
{

static final long serialVersionUID = -9215837774402205113L;

/** Create a ConcurrentThreadException.
 */
public ConcurrentThreadException();

}

7.3 Distributed Deadlock
Distributed deadlock is a class of problems that are particularly difficult to diagnose and
correct. Because objects in a distributed are more loosely coupled that in the local case,
distributed deadlock is a more difficult situation than local deadlock. In general, the best
cure is prevention by good coding practices. For example, one should avoid, as much as
possible, holding locks when making out calls. Out calls are method invocations on
objects, which are not encapsulated by the calling object. The calling object generally
does not know what locks the target object will acquire. Therefore, it is not safe for the
calling objects to hold any locks while invoking methods on the target object. A classic
example of an out call is when a subject invokes a callback on an observer (Subject
Observer pattern).

Clever use of synchronization and local variables can help release locks when it may
initially appear impossible. However, sometimes it is simply not possible to release all
locks before making an out call. If the out call is known not to cross a partition (involve a
remote operation), one should judiciously use Java thread synchronization. Only as a last
resort, when the out call involves a remote operation, should locking be performed based
on logical thread. Methods synchronized with respect to logical threads should be rare.

To help avoid distributed deadlock even when logical threads are used judiciously,
stations can be directed to give up waiting for a lock to become available after a given
amount of time. This deadlock tolerance is controlled by the system property
“javax.fma.thread_deadlock_tolerance”. The default value is infinite: a thread
will block forever waiting to lock an object.

Federated Management Architecture Specification Page 99

8 Controller Aspect

8.1 Controllers
Controllers allow various resources to be locked with respect to a controller for a long
period of time: possibly the life of the controller, which may be persistent. This primitive
forms the basis for control arbitration of managed resources. A controller must register
itself with the controller service, a base service, and maintain the associated lease. The
controller may then explicitly or implicitly reserve managed resources for its exclusive
use. When the lease has been cancelled or expired, the reserved resources are released for
use by other controllers. A controller’s locks may also be released without releasing the
controller itself. Unlike transaction and logical thread locks, controller locks are long
lived.

8.2 Controller Architecture
While controllers are a common concept for both clients and stations, they are treated
somewhat differently do to scalability requirements. Clients are expected to contain a few
controllers, with a single controller being the most common case. Stations may contain
thousands of controllers in large configurations. Thus, the interface used by clients and
stations are slightly different.

8.2.1 Controllers
A Controller object represents a single controller, a single point in a chain of control.
Generally controllers are dynamics services that determine policy or are management
clients. Controllers are issued by the controller service for the management domain and
may have over any number of generations. Clients contact the controller service directly
to get a controller. Controller objects running in a station will have a controller allocated
exclusively to the object by the containing station.

A given controller moves to its next generation when its owner, client or controller
object, requests that the locks owned by the controller be released, or more precisely,

Controller Aspect

100 Federated Management Architecture Specification

allowed to expire. The change in generation requires communication with the controller
service.

8.2.2 Locks
Locks are issued by a controller against a specific generation of the controller. Given a
lock, one can query the lock to see if it has been released. This query requires
communication with the controller service. A lock is released under two conditions.

1) The lease maintaining the controller expires or is cancelled. In the case of
controllers issued to clients, the lease if for a specific controller. In the case of
controllers issued to controller objects in stations, the lease is for all controllers
in the station.

2) If the controller issuing the lock is still valid, but is no longer of the generation
that issued the lock. This allows a controller to effectively release all of its locks
by changing generations.

8.2.3 State Distribution Between Stations and the Controller Service
Stations maintain a list of controllers that have been acquired on behalf of controller
objects hosted by the station. The subset of this list pertaining to persistent controller
objects must also be persistent. The controller service maintains a copy of this list so that
other parties may query the validity of a lock without having to contact the station
containing the controller, which may not be available. The station controller list is the
master and the controller service list the slave.

The controller list in the controller service is leased by the station. Failure to renew this
lease indicates that the station and controller service may be out of synch. The controller
service provides a synchronization method to resynchronize with a station; however, loss
of synchronization may imply the loss of controllers locks. The controller list state can
change only as follows:

1) A controller is added.

2) A controller is removed.

3) A controller changes generation.

All of these changes require communication with the controller service in order to
maintain synchronization.

8.2.4 Station Responsibilities

8.2.4.1 Remote Instantiation
When remotely instantiating a controller object, stations must contact the controller
service serving the management domain to which the station belongs and request a new
controller for the controller object. This controller is passed in context to the controller
object whenever a method synchronized with respect to controllers is invoked remotely.

Controller Aspect

Federated Management Architecture Specification Page 101

8.2.4.2 Controller Object Lifetime
When the controller object is garbage collected (transient) or removed (persistent), the
station must also delete the associated controller. If it is unable to do so, state
synchronization has been lost and the station should resynchronize with the controller
service when the service again becomes reachable.

8.2.4.3 Remote Method Invocation
When invoking a method synchronized with respect to controllers, the station may need
to verify the relevancy of a lock. When a lock is acquired on behalf of a controller, the
station will need to request and retain a lock object from the controller.

8.2.4.4 Failed Lease Renewal
When the station fails to renew its lease with the controller service, it must start a
prolonged attempt to resynchronize with the controller service. The retry interval shall be
between 10 seconds and 5 minutes. If the station is not able to contact. The station shall
assume that locks have been lost and notify controller objects as described in 8.2.4.6.

8.2.4.5 Station Restart
Station must persist their lease with the controller service and resume its maintenance
when the station restarts by immediately attempting a lease renewal. Regardless of
whether the renewal succeeds or fails, the station should begin state synchronization with
the controller service because any transient controllers would have been lost in the station
but still present in the controller service. If the renewal fails, the station must assume that
locks have been lost and notify controller objects as described in 8.2.4.6.

8.2.4.6 Notify Controller Objects of Possible Lock Loss
If the station suspects the possible loss of controller locks, it must notify all controller
objects to given them the opportunity to reestablish any locks that they may hold. All
controller objects that implement the following method shall be notified as soon as
practicable after the station detects the possible loss of lock integrity. Note that in many
cases, the controller service will be unreachable it this time.

private void onControllerFailure()

After station the station has reestablished state synchronization with the controller
service, it must inform the controller objects of the recovery. Controller objects that
implement the following method signature shall be notified. In addition, the station
should ensure that the controller of the controller object is established in context before
invoking the method.

private void onControllerRecovery()

Controller Aspect

102 Federated Management Architecture Specification

During the period between suspecting loss of lock integrity (lease renewal failure or
remote communication failure with the controller service) and resynchronization with the
controller service, the station should refuse all remote operations by throwing a
javax.fma.services.ServiceFinder.ServiceNotFoundException.

8.2.4.7 Persistent Objects
The list of controllers that must be synchronized with the controller service includes
those of persistent controller object which are not activated. For example, on restart, the
station must build a synchronization list of controllers associated with all persistent
controller objects, none of which are activate at startup.

8.2.5 Client Responsibilities
Clients must directly contact the controller service to acquire a controller and are then
responsible for maintaining the associated lease. Clients and there controllers are
considered short lived and transient without any mechanism for reregistering a client
controller.

8.3 Synchronized/Controller
The developer indicates that a method is synchronized with respect to controllers by
tagging the method with the
javax.fma.server.Modifiers.SYNCHRONIZED_CONTROLLER modifier. The set of
such methods form an exclusion group such that, with respect to these methods, the
object may only be owned by only one controller at a time. The semantics of the
synchronization obey the following state diagram.

Free Owned

If not of the owning controller and does not
transition to free state within time out tolerance,
throws a ConcurrentControllerException.

in voke synchroniz ed

controller cancelled locks or
lea se expi red

invoke synchronized

instantiate

Figure 18. State Diagram of Object Methods Synchronized with Respect to Controllers.

Controller Aspect

Federated Management Architecture Specification Page 103

8.4 Controllers Created on Behalf of a Thread
If a thread of execution does not have an associated controller (see
javax.fma.common.Context), then the station must create a controller before
invoking a method synchronized with respect to controllers. The station is then
responsible for canceling the controller lease when the method returns, regardless of
whether or not the method threw a throwable. As with transactions, this is an expensive
operation and clients should create a context (transaction and controller) to be used across
many remote operations. Stations may perform the following optimization. If an object is
owned by a controller and a synchronized/controller method is invoked without a
controller, there is no need to create a new controller before throwing the
javax.fma.common.ConcurrentControllerException.

package javax.fma.common;

/** Exception thrown when a synchronized/controller method is
 * invoked on an object by an entity other than the owning
 * controller.
 */
public class ConcurrentControllerException

extends StationException
{

static final long serialVersionUID = -9215837774402205113L;

/** Create a ConcurrentControllerException.
 */

 public ConcurrentControllerException();
}

8.5 Deadlock Prevention
If the controller lock is not available, the object is already owned by another controller,
then a javax.fma.common.ConcurrentControllerException is thrown. Thus,
deadlock is not a problem. Unlike transactions, however, controller locks are considered
relatively static, thus contention thrashing is not likely. For this reason, stations are not
required to attempt a controller lock over a period of time.

8.6 Clients as Controllers
Clients are always considered to be controllers. Clients must contact the controller
service and request a controller to identify the client as a controller. It is possible that
some forms of clients may be partitioned into more than one controller. A client
controller must be associated with the current thread before invoking remote operations
using Proxies.

Controller Aspect

104 Federated Management Architecture Specification

8.7 Referent Objects as Controllers
Some referent objects should be controllers, known as controller objects. Consider the
management control path from the source of activity (client, event service, or scheduling
service) through the implementation object of one or more dynamic services to managed
resources. Many of the intermediate object are points of control; they affect some sort of
policy on the control path and are considered to be controller objects. Other objects
simply route the management path or provide access to information: these are not
controllers. Controllers include objects in services such as groupers, which manage a
group of resources as a single consistent unit, and reactors that respond to an event by
manipulating managed resources.

A class indicates that objects of that class are controller objects by using the
javax.fma.common.Modifier.IS_CONTROLLER modifier on the class. The station
ensures that each controller object has an assigned controller and is responsible for
maintaining the associated lease. (The associated lease is actually the global lease
between the station and the controller.)

8.7.1 Immutable Relationship Between Controller and Object
Each controller object has a single exclusive controller. The controller can only be set
once and is an immutable relationship with the controller object. During remote
instantiation of a controller object, the station must contact the controller service and
request a controller on behalf of the object. This controller must be set in context before
invoking the constructor of the controller object.

While the relationship between a controller and a controller object is immutable, the
controller itself is mutable. Releasing controller locks held by the controller result in
mutation of the controller: a change in generation. Thus, the issue of reference sharing
and interning of controllers becomes important. The implementation must ensure the
following:

1) Within the station containing the controller object, public copies (copies not
under the exclusive control of the implementation) of the associated controller,
as returned by the controller service, are not permitted.

2) A controller may by passed to other stations, such as during a remote operation;
however, the resulting copy must be made immutable. The
releaseLocks()operatios must be disabled in such cases, throwing a
java.lang.UnsupportedOperationException.

8.7.2 Controller In Context
Though controller aspect locking is always based on the incoming controller, the
controller within a controller object method synchronized with respect to controllers is
always the controller of the controller object, not the controller of the calling thread.

Controller Aspect

Federated Management Architecture Specification Page 105

8.7.3 Releasing Locks Held by a Controller
A controller object may need to cancel resource reservations, such as when the set of
resources needed to perform a certain operation changes. In such cases, the controller
object releases all locks associated with its controller and reestablishes new locks. To
support this kind of change, controller objects will need to remember reservations that it
has granted so that it may reaffirm the reservations, which will have been lost when the
locks were released. In general, controller objects will also need to maintain this
information to support recovery from suspected loss of lock integrity.

Locks are released in a lazy fashion. After the controller releaseLocks() method is
invoked, the isRelevent() method of previously issued locks must return false. The
controller aspect locking must proceed in a manner equivalent to the following:

1) The station, as previously described, ensures that the current thread has an
associated controller.

2) If the referent object is currently in an owned state, as evidenced by the
existence of a lock, the station invokes the isOwner() method on the lock,
passing the incoming controller, to determine if the controller owns the current
lock.

a. If isOwner() returns false, the station must contact the controller
service and determine if the old lock is still relevant. To do so, the
station invokes the isRelevent() method on the lock object. If so, an
ConcurrentControllerException is thrown, as previously
described. If not, the associated lock is replaced by a new lock issued
by the incoming controller.

b. If isOwner() returns true, the incoming thread is allowed to access the
referent object.

3) If the reference is currently in a free state, the station places the object in an
owned state and associates a new lock object, provided by the incoming
controller, with the object. The incoming thread is then allowed to access the
referent object.

In this scenario, remote communications with the controller service happens only when
attempting to establish a new lock: a change in controller ownership of the object. This
communication may fail if the controller service is unreachable. In such cases, the lock
should assume to still be relevant.

8.8 Control Reservations
Controller locks may be acquired just in time, in the normal course of performing an
operation involving synchronized/controller methods, or they may be reserved.
Reservations are made by invoking reservation operations on an object with the
reserving controller in context. Reservation operations are of the following form.

public void reserve<operation name>(<args>)
throws javax.fma.common.ConcurrentControllerException

Controller Aspect

106 Federated Management Architecture Specification

The arguments and operation name are optional. If no operation name is provided, the
reservation is assumed to be made for all operations supported by the object. Otherwise,
the reservation is assumed to be made for a specific operation or set of operations. The
implementations of the reserve operations (reservation methods) are generally nested
calls to the reserve operations of other object. Note that reservation methods must be
synchronized with respect to controllers.

Controller objects make a best attempt at reserving resources. Network failures,
controller service failures, and other failure scenarios can result in the loss of
reservations. Clients and services should be designed in such a way as to tolerate or
recover from such reservation failures.

Federated Management Architecture Specification Page 107

9 Persistent Objects

9.1 Specifying Persistent Objects
A referent object can declare itself as persistent using the class modifier field, as
described by the Modifier class documentation.

public class MyPersistentObject
{

private static final int classModifiers =
... | Modifiers.PERSISTENT | ...;

}

Stations that support persistent objects will provide specialized acceptors, when the
referent is persistent, that implement the PersistentAcceptor interface. Proxies to
persistent referent objects have a remove(boolean force) method that invokes the
remove method of the PersistentAcceptor.

package javax.fma.common;

import java.rmi.RemoteException;

/** Acceptor extension to support removal of persistent
 * objects from the durable storage.
 */
public interface PersistentAcceptor extends Acceptor
{

Persistent Objects

108 Federated Management Architecture Specification

/**Remove a persistent object from durable storage.
 * This method will fail if any operations are in
 * progress on the referent object, unless force is
 * true. Subsequent operation attempts result in an
 * RemoteException.
 * @param force if true, the persistent referent
 * object is removed even if there are operations
 * in progress.
 * @param context Context containing the any
 * applicable transaction, logical thread, or
 * controller. The Subject is passed implicitly.
 * @throws RemoteException Error communicating with
 * the target station or referent object has
 * already been removed (NoSuchObjectException).
 * @return True if removal was successful, false
 * if the removal failed because other operations
 * are in progress.
 */

 boolean remove(
boolean force,
Context context

)
throws RemoteException;

}

If the removal succeeds and the persistent object implements a remove method, then that
method is invoked to allow the object to clean up any persistence for which it is
responsible. A failure of the remove method will not cause the remove operation to fail.
However, stations should log the exception to indicate that some resources may not have
been released. Note that unlike finalize(), remove() is guaranteed to be called when
the persistent object is removed. The remove method signature is as follows:

 private void remove();

9.2 Kinds of Persistent State

9.2.1 Existence
The existence state of a persistent object is a durable record of the object. This state is
handled by the infrastructure and is invisible to the persistent object. When a persistent
object is remotely instantiated (the only permissible means of instantiation for persistent
objects) a record of its existence is noted. A persistent element exists until its persistent
image is removed and is not subject to distributed garbage collection.

9.2.2 Implicit
The implicit state is that portion of a persistent object’s state that is handled by the station
on behalf of the object. The implicit state of a persistent object is captured by serializing
the object directly. Thus, the transitive closure of the non-transient fields of a persistent
object comprises its implicit state. The object output stream used for serialization shall be

Persistent Objects

Federated Management Architecture Specification Page 109

tagged with the javax.fma.server.PersistenceStream interface to provide a
means by which an object can discern if it is being serialized for the purpose of
persistence.

9.2.3 Explicit
Persistent objects can also explicitly control state internal or external to the object. To do
so, the object must implement the
net.jini.core.transaction.server.TransactionParticipant interface. The
persistent object will write explicit state during the prepare or commit operations.

9.3 Reading State
The state of a persistent object is read when the object is activated and when a transaction
in which the object is involved is aborted.

9.3.1 Activation
A persistent object is activated as a side effect of reference faulting while attempting a
remote operation on the object as a referent. The object is stored as a serialized byte array
and unserialized when activated. If the persistent object needs to acquire other state when
activated, it must provide a readObject() or readExternal() method as provided
for in the Java serialization specification.

When persistent objects are activated, they assume the latest deployed versions of the
needed classes. This was detailed previously in Class Loading During Activation, page
61.

9.3.2 Transaction Abort
If a persistent object is involved with a transaction and the transaction is aborted, the
object is immediately deactivated. Operations in progress during the abort will continue
with the now stale object. Note that methods synchronized with respect to transactions
will be blocked during the abort operation. If these operations have not timed out by the
time the object is rolled back, they will continue by activating the object with the last
committed state. Thus, the transaction abort reduces to a throw away followed by
activation with the last committed state.

9.4 Writing State
The state of a persistent object is written when the object is remotely (using a Proxy)
instantiated and when a transaction in which the object is involved is committed.

9.4.1 Instantiation
The state of the persistent object, when instantiated, is supplied as constructor arguments.
Additional state may be acquired by the object in its constructor. The state, including the
existence of the object, is not considered durable until the transaction under which the

Persistent Objects

110 Federated Management Architecture Specification

object was instantiated is committed. Constructors of persistent objects are always treated
as synchronized with respect to transactions. Thus, if the client does not provide a
transaction, the station will create and commit a transaction bracketing the constructor
invocation. If the constructor throws an exception, the transaction is aborted.

In response to the constructor transaction preparing, the station serializes the persistent
object and prepares to store the resulting byte stream. Any errors in serialization cause
the transaction to abort. On commit, the station is responsible for making the serialized
state of the object durable.

If the persistent object implements TransactionParticipant, then the station will
invoke the prepare(), commit(), and abort() operations after the station has
performed its transaction duties, as previously outlined.

9.4.2 Transaction Commits
When a transaction is committed in which the persistent object is involved, the object
may be serialized and persisted. The pattern follows that of instantiation: serialization
during prepare, object transaction operations invoked after station transaction duties, etc.

If the transaction aborts, the station immediately deactivates the object. Subsequent
communications with the object as a referent (the only valid way of communicating with
the object) results in activation of the previously committed version.

9.4.3 Dirty Optimization
Stations are only required to persists dirty persistent objects as an optimization that
avoids persisting objects that have not been mutated. The station assumes that mutator
methods modify state and all other methods do not. To be considered a mutator, the
method must follow the JavaBeans setter pattern. If other methods modify state such that
the persistent object needs to be persisted, they must call the
javax.fma.common.PersistentContext.setDirty() method. The
PersistentContext is available as the context for all persistent objects.

Persistent Objects

Federated Management Architecture Specification Page 111

package javax.fma.server;

import javax.fma.services.controller.Controller;

import net.jini.core.transaction.server.ServerTransaction;

/**Specialized Contextual for persistent object.
 */
public class PersistentContext extends Context
{
 static final long serialVersionUID = -7628337970388961833L;

/** Construct a new Context object.
 * @param controller controller context to associate
 * with current thread
 * @param transaction transaction to associate with
 * current thread
 */
public PersistentContext(

Controller controller,
ServerTransaction transaction

);

/** Return a clone of this context with the logical
 * thread ID set to null.
 * @return Context - Context clone
 */
public Context cloneContext();

/** Return true if the specified object compares as
 * equal to this Context. The objects are equal if
 * they are both Context objects and have equal
 * controller contexts, transactions, and logical
 * threads.
 * @param compareObject object with which to
 * compare this Context
 * @return boolean - true, if the objects compare
 * as equal
 */

 public boolean equals(Object compareObject);

/** Return a String representation of this Context.
 * Primarily used for debugging. The format should
 * be human readable, but is otherwise left
 * unspecified.
 * @return String - string representation of
 * Context
 */

 public String toString();

/** Informs the station that this object has been
 * mutated.
 * @return boolean true if the object was already
 * dirty.
 */
public boolean setDirty();

}

Persistent Objects

112 Federated Management Architecture Specification

9.5 Access of Persistent Objects Using Proxies
As with all referent objects, persistent object must only be instantiated and accessed
through an appropriate Proxy. Only when the object is accessed by proxy is the station
able to apply the semantics associated with the aspects and persistence.

9.6 Concurrent Operations
There may be operations in progress while a transaction is being prepared, committed, or
aborted. From the time the prepare operation begins until the commit or abort ends, the
station will react as follows to remote operation attempts.

9.6.1 Operation in Progress on Methods Not Synchronized/Transaction
These methods are assumed not to be involved with state (logic methods) and are allowed
to continue uninterrupted.

9.6.2 Operation in Progress on Methods Synchronized/Transaction
These operations are allowed to complete before the prepare operation is handled by the
station.

9.6.3 Operation Initiated on Methods Not Synchronized/Transaction
These methods are assumed not to be involved with state (logic methods) and are allowed
to initiate without interruption.

9.6.4 Operation Initiated with New Transaction on Methods Synchronized/Transaction
Station throws a javax.fma.common.ConcurrentTransactionException as the
persistent object is still considered involved with the transaction in progress.

9.6.5 Operation Initiated with Old Transaction on Methods Synchronized/Transaction
Station throws an net.jini.core.transaction.UnknownTransactionException
as the transaction in progress is considered closed to participants after the prepare
operation has been initiated.

Federated Management Architecture Specification Page 113

10 Registered Dynamic Services

Dynamic services must be registered with the lookup service for the management domain
to which they belong. The hosting station handles the registration of the service with the
lookup service as well as maintenance (lease renewal and removal) of the lookup service
entry on behalf of the service.

10.1.1 Specifying the Service Entry
Each dynamic service has one single proxy registered with the lookup services serving
the management domain to which the service belongs. Unlike static services, the proxy of
a dynamic service is required to be a Proxy in the sense of the dynamic services model.
The referent of this Proxy is the primordial point object of the service; thus, the
primordial point object must be proxied and the Proxy available to the station in the same
package as the point object. Each dynamic service must have a single primordial point
object that implements the following method.

private net.jini.core.entry.Entry[] getLookupEntries();

This method provides a list of entries (possibly empty or null) under which the elements
service be registered. The set of registration entries is considered immutable for the life
of the service. When the primordial point object is remotely instantiated, the only
allowable method of instantiation, the station will invoke getLookupEntries() after
the constructor has completed. This is coincident with the time that the station begins to
register the point object, and, therefore, the service itself, with the appropriate lookup
services. As lookup services are dynamic in existence and the registration process
asynchronous, there is no guarantee as to when the service will be successfully registered
with any particular lookup service.

In addition to the entries provide by the service’s primordial point object, the station will
add an additional ServiceInfo entry, if a ServiceInfo entry is not already present in
the entry list. The ServiceInfo entry must be populated using the package information
associated with the primordial point object according to the following table.

ServiceInfo Property java.lang.Package Property

Registered Dynamics Services

114 Federated Management Architecture Specification

manufacturer ImplementationVendor

model full class name of primordial point object

name toString() of primordial point object

serialNumber 0

vendor ImplementationVendor

version ImplementationVersion

If the primordial point object provides the ServiceInfo itself, it may provide
specialized values for model, name, serialNumber and manufacturer. Other fields should
be taken from the package level information. Note that this information is specified in the
manifest of the JAR file in which the service classes are resources are deployed.

The dynamic service will be registered with all lookups services for a particular
management domain. The management domain is determined by the management
domain to which the station hosting the service belongs. Thus, all services in a given
station belong to the same management domain as the station itself. The station also
oversees the maintenance of registrations and re-registrations in the case of lookup
service or station restarts such that dynamic services are considered ‘good’ Jini
technology citizens as outlined in the Jini technology specification.

10.1.2 Leases
Stations are responsible for maintaining the registration leases of all hosted dynamic
services, including those that are persistent but not currently active.

10.1.3 Response to Lease Renewal Failure
Upon failure to renew a registration lease, the station will periodically attempt to
reregister the associated service point object with any available lookup services. The
reregistration strategy is implementation specific.

10.1.4 Service IDs
In the case of persistent service (services with a persistent primordial point object),
stations shall persist the service ID, issued when the service was first registered with a
lookup service, such that the service will always be registered under the same service ID
across restarts of both the station and the lookup services.

Federated Management Architecture Specification Page 115

11 Internationalization and Localization

Internationalization is the steps taken to make a program easier to localize. Localization
is the process of having a program work in terms of the conventions appropriate to a
particular locale. One of these conventions is the language appropriate for the locale. In
fact, a localized program needs to have changes other than just language: often there must
be changes in the recognition of time zone, the formatting of dates, currency, and other
similar translations.

Internationalization must be done in a consistent manner throughout a system. To
encourage the use of a single standard of internationalization, a method for
internationalization and a class for localization are included as part of this specification.
The defined method is an extension to the internationalization support provided by the
JDK and uses the java.util.Locale, java.util.Properties,
java.util.ResourceBundle, and java.text.MessageFormat JDK classes, with
which the reader should be familiar.

11.1 Overview
Internationalization is performed by always referring to user viewable messages
indirectly through resource bundles. Each class can have one or more associated resource
bundles containing lists of key-message pairs, both of which are strings. The key is a
simple string and the message is a string suitable for constructing a
java.text.MessageFormat object. Thus, the message string can contain substitution
placeholders. A particular message is specified by providing:

1) a context class (to be used to locate the resource bundle),

2) a message key (to identify a single message within the resource bundle), and

3) a possibly empty list of objects for substitution into the message.

In a distributed environment, the context class and the classes of parameter objects must
be internally represented as a class name and code base pair, as is done with
java.rmi.MarshalledObject, so that localization resources can be network loaded
according to RMI network class loading semantics.

The substitution objects can be strings or more complex objects, such as a
java.util.Date object. In the latter case, the substitution operation, which is done

Internationalization and Localization

116 Federated Management Architecture Specification

during localization, performs format conversion as defined by
java.text.MessageFormat.

The localization process uses the context class, combined with a specified locale, to
locate the appropriate resource bundle. Once the bundle is loaded, localization can select
the correct message using the message key. This message is converted into a
java.text.MessageFormat object that can provide the fully localized message given
the list of substitution objects.

11.2 Internationalization

11.2.1 LocalizableMessage
LocalizableMessage encapsulates the concept of an internationalized message that can be
localized.

package javax.fma.util;

import java.io.Serializable;
import java.util.Locale;

/**Encapsulation of a localizable message. Localizable
 * messages should be treated as immutable. To this
 * end, the constructor clones the substitution object
 * array. Callers should ensure that the individual
 * objects of the array are themselves immutable. In
 * addition, it is recommended that these objects be
 * of JDK classes, such as Number and String, which are
 * immutable. An exception is the use of java.util.Date,
 * which is mutable. Such objects should be cloned with
 * the array containing the only reference to the clone.
 */
public final class LocalizableMessage

implements Serializable, Cloneable
{

Internationalization and Localization

Federated Management Architecture Specification Page 117

/**Create a localizable message object.
 * @param context The class used as a root in order
 * to load localization resources. If null, an
 * IllegalArgumentException will be thrown.
 * @param key The message key to locate an
 * individual message in a properties file. If

 * null or an empty string, an
 * IllegalArgumentException will be thrown.
 * @param params Parameter (substitution) objects.
 * may be null. It is recommended that only
 * java.* class objects be used to avoid the
 * need to network load other classes in support
 * of the localization process.
 * @param locale The locale to be considered as the
 * originating locale. If null, the default
 * locale will be used. This locale is used to
 * create the fall back text for this message.
 * @return The newly created message object. The
 * fall back message will have already been
 * created.
 * @throws IllegalArgumentException if any argument
 * except params is null, params contains a null, or
 * key is an empty string.
 */
public LocalizableMessage(

Class context,
String key,
Serializable[] params,
Locale locale

);

/** Get the localized text for this message.
 * If the localization fails (for example if the
 * resources needed to perform localization are
 * currently not available on the network) and
 * useFallback is set to true, then
 * the fall back text is returned. The fall back
 * text was formed when the message was created
 * using the locale provided to the constructor.
 * If localization fails and useFallback is set
 * to false, a LocalizationError is thrown.
 * @param locale Locale to be used for localization.
 * A IllegalArgumentException is thrown if
 * locale is null.
 * @param useFallback if true, on a localization
 * failure, use the fall back text. if false, on
 * a localization failure throw an
 * LocalizationException.
 * @throws Throws IllegalArgumentException if locale
 * is null.
 * @throws Throws LocalizationError if localization
 * fails and useFallback is false.
 * @return Localized text of the message.
 */

 public String getLocalizedText(
Locale locale,
boolean useFallback

);

/** Get the localized text for this message using the

Internationalization and Localization

118 Federated Management Architecture Specification

 * default locale as returned by Locale.getDefault().
 * If the localization fails (for example if the
 * resources needed to perform localization are
 * currently not available on the network) and
 * useFallback is set to true, then
 * the fall back text is returned. The fall back
 * text was formed when the message was created
 * using the locale provided to constructor.
 * If localization fails and
 * useFallback is set to false, an
 * IllegalArgumentException is thrown.
 * @param useFallback If true, on a localization
 * failure, use the fall back text. If false, on
 * a localization failure throw a
 * LocalizationError.
 * @throws LocalizationError if localization
 * fails and useFallback is false.
 * @return Localized text of the message.
 */

 public String getLocalizedText(boolean useFallback);

/**Get the locale used to create this message. This
 * will also be locale that was used to generate the
 * fall back text.
 * @return The locale used to create this message.
 */

 public Locale getFallbackLocale();

public static final class LocalizationError
extends Error implements CompositeThrowable

{
/** Construct a LocalizationError using default message.
 * @param detail Detail as to why localization failed.
 * May be null.
 * @param contextClassName Name of context class for
 * which localization failed. May be null.
 * @param key Name of key for which localization failed.
 * May be null.
 * @param locale Locale for which localization failed.
 * May be null.
 * @param reason Throwable indicating why localization
 * failed. May be null.
 */
public LocalizationError(

String detail,
String contextClassName,
String key,
Locale locale,
Throwable reason);

/** Returns the nested exception.
 */
public Throwable getTargetException()

}
}

A LocalizableMessage encapsulates a context class, message key, substitution objects
(possibly none), fall back locale, and a fall back text. During the localization process,

Internationalization and Localization

Federated Management Architecture Specification Page 119

described fully in section 11.3, a properties files containing the texts for a given locale
must be loaded. Resource loading is always relative to a given class: in this case the
context class. Thus, the context, locale, and key are used to load and select a single text
for the message. Then the parameter objects, if any, are substituted into the text to arrive
at a localized text for the message. Note that localization may involve the network
loading of property files and classes if they are not available locally.

11.2.2 Providing Resource Files
The resources for a class of package a.b.c are located in the package
a.b.c.resources. As described by java.util.ResourceBundle, the default
resource file will have a base name identical to the unqualified class name. Resource files
containing messages particular to a locale are named as specified by
java.util.ResourceBundle. For example, the French resource file for the class A
would be A_fr.properties, if it is a properties file, and stored in the resource
directory below A.class. The JDK allows resources to be class files or property files. In
either case, the result is a key-value pair in which, for the purposes of localization, both
the key (message key) and value (text) must be strings. For simplicity, the examples use
property files with the understanding that equivalent behavior can be had with class files.

11.3 Localization
Localization of a given message happens first when the message is created, to create the
fall back text, and subsequently whenever the getLocalizedText() is invoked.

11.3.1 Finding Text
Given a Locale and class A, a resource bundle is located using the
java.util.ResourceBundle class. The search for a particular property or class file
defining the resource bundle for a given locale is described by the
java.util.ResourceBundle documentation. If the resource bundle is found and
contains the desired message key, the resulting text is used for localization. If not, the
search continues up the inheritance tree using a breadth first search with preference given
to classes over interfaces at the same depth. No ordering is specified with respect to
interfaces at the same depth. The search will not include classes that are rooted at java
packages. If no message is found using this search, the fall back text will be used.

11.3.2 Localization Implementation
Localizable messages must use the localization facilities of the local station as provided
by the javax.fma.util.LocalizableMessage.localize() method. This method
delegates to an implementation as described in section 4.2.

11.4 Serialization of Messages
Messages must be serializable for the purposes of marshaling during remote operations
and for persistence of messages. The serialization shall follow RMI marshaling

Internationalization and Localization

120 Federated Management Architecture Specification

semantics: classes shall be annotated with their code bases. An implementation of
LocalizableMessage might, for example, encapsulate the context and substitution
parameters in a java.rmi.MarshalledObject object. Deserialization of the context
class and the substitution objects could involve network class loading of the annotated
classes: a high risk activity. As the localizable message is intended to be a highly reliable
class, it must obey the following rules with respect to serialization failures.

11.4.1 Failure to Serialize
If any portion of a LocalizableMessage, except the fall back text, fails to serialize
then the LocalizableMessage must recover and still serialize at least the fall back
text. Localization attempts on the resulting deserialized message shall return the fall back
text.

11.4.2 Failure to Serialize
If any portion of a LocalizableMessage, except the fall back text, fails to serialize
then the LocalizableMessage must recover and still serialize at least the fall back
text. Localization attempts on the resulting deserialized message shall return the fall back
text.

11.4.3 Low Risk Substitution Objects
To reduce network resource loading and, therefore, increase the reliability of localizing
messages, it is strongly encourage to use only substitution objects of classes in the java.
packages, such as java.lang.String and java.util.Date.

11.4.4 Messages as Public Interfaces
Messages issued by a service are part of the public interface of that service. As such, all
of the localization resources needed to localize the messages must be include in the
dynamic ("-dl") JAR of the deployment group for the service.

Federated Management Architecture Specification Page 121

12 Composite Exceptions and Errors

Much like internationalization, exception and error handling benefits from
standardization and so are included in this specification as strong recommendations for
dynamic service developers. In Java, error conditions are uniformly indicated by
throwing throwables, which includes exceptions and errors of various sorts. Checked
throwables are those that must be declared. Unchecked throwables are those that need not
be declared.

Two distinct problems are being addressed by the proposed throwable extensions: nested
throwables and internationalized throwables. At points of abstraction in an object
oriented design, often indicated by interfaces, one wishes to decouple the implementation
from the abstraction. Abstract throwables, particularly exceptions, must be defined in
addition to the interface in order to achieve sufficient decoupling. Indeed the JDK has
several examples of this pattern, including
java.lang.reflection.InvocationTargetException and
java.rmi.RemoteException. These abstract exceptions each have encapsulated target
exceptions. In this specification, the mechanism is unified by providing a standard
method of nesting one or more throwables within another throwable.

The messages of the JDK throwables are not internationalized and, therefore, not suitable
for user viewing. It is essential that sophisticated users are able to view throwable
messages to diagnose the cause of the failure.

The interface defined to handle these problems is
javax.fma.util.CompositeThrowable. All throwables that could possibly be
viewed by the user or considered abstract, in the sense that they can be thrown in
response to another exception, should implement this interface. A delegate implemtation
class, javax.fma.util.CompositeDelegate, is provided to aid in such
implementations and two classes, javax.fma.util.CompositeException and
javax.fma.util.CompositeError, are also provided as base implementations of
javax.fma.util.CompositeThrowable.

12.1 Nested Throwables
An abstract throwable is one that is thrown in response to another thrown throwable. For
example, consider a virtual volume component with a method sizeVolume(long
size) to change the size of a virtual volume. The operation could fail for any number

Composite Exceptions and Errors

122 Federated Management Architecture Specification

of reasons and many of those reasons would be specific to a particular implementation of
the component. Therefore, it would be appropriate to have the method throw an abstract
ResizeFailedException in response to an error condition during the operation
attempt. If the implementation caught an IOException, for example, during the
execution of the sizeVolume() method, it should create a ResizeFailedException
with the IOException as a nested child exception. The method can throw the
ResizeFailedException without losing the information contained in the
IOException. This is the basic nesting pattern.

The nesting of throwables is not necessarily linear. Particularly when alternate strategies
and retries are involved in attempting to complete an operation, there can be more than
one nested child throwable. Thus, a javax.fma.util.CompositeThrowable can
represent a tree of throwables containing information pertinent to the failure of the
attempted operation.

javax.fma.util.CompositeThrowable supports multiple nested child throwables.
One can navigate from the parent throwable to child throwables, but not from child to
parent. All throwables are considered immutable objects; therefore, the list of child
throwables is established during the instantiation of the parent and cannot be changed.

12.2 Internationalization and Localization of Throwables
Many exceptions are ultimately destined for informing the user, even if simply because
the application has no other idea what to do with them. Exceptions usually carry message
information for user viewing, whether in a graphical alert box or on the command line.

javax.fma.util.CompositeThrowable implementations require a
javax.fma.util.LocalizableMessage object, or the arguments needed to construct
a LocalizableMessage object, as arguments to all constructors. The localizable
message may also be retrieved using the getMessage() method.

12.3 Stack Traces and Throwable Serialization
When a throwable is serialized, such as when thrown during a remote operation, the stack
trace is lost, as stack information is considered transient by the JDK. This behavior
results in the loss of valuable diagnostic information. To compensate for this
shortcoming, javax.fma.util.CompositeException and
javax.fma.util.CompositeError, when first serialized, build text versions of
the stack traces associated with each nested throwable. Stack trace information is
maintained and can be retrieved. Because not all throwables subclass
javax.fma.util.CompositeException or javax.fma.util.CompositeError,
the root throwable must be responsible for the stack traces of all its descendents, not just
for its immediate children.

For remote method calls, the logical stack trace for an exception spans JVMs. To assist in
exception diagnosis, Proxy implementations shall append stack trace information for the
local JVM when an exception thrown by a remote method is being rethrown in the local
JVM.

Composite Exceptions and Errors

Federated Management Architecture Specification Page 123

12.4 Rules for Handling Throwables
1) Never discard one throwable and throw another throwable. The original

throwable can contain valuable information needed to diagnose the problem.

2) Never concatenate messages as a way of nesting throwables. This primitive
nesting is not consistent, cannot be reliably traversed, and cannot be localized.

3) Provide as much context information, in the form of localizable messages, as
reasonable. Throwing a file permission exception without including the file
name, for example, does little to help the user diagnose the problem.

12.5 Composite Throwable Interface
CompositeException and CompositeError both implement the
CompositeThrowable interface. This interface provides operations for getting
messages and nested exceptions.

package javax.fma.util;

import java.util.Locale;

/** Abstraction for Throwables with localizable message,
 * nested exceptions, and remote stack tracing.
 * <P>
 * CompositeThrowable provides methods for
 *
 * getting a localized message for the Throwable,
 * getting nested (casual) exceptions for the Throwable, and
 * getting stack trace information for nested exceptions.
 *
 *
 * CompositeThrowable also provides the necessary hook for
 * correctly handling remote stack trace information.
 *
 * The {@link CompositeDelegate} class provides an implementation
 * of CompositeThrowable which correctly handles localization,
 * nested exceptions, and remote stack tracing.
 *
 * @see javax.fma.util.CompositeException
 * @see javax.fma.util.CompositeError
 */
public interface CompositeThrowable
{

/** Returns a localized description of this
 * CompositeThrowable using the default locale.
 * @return Returns the localized message.
 */
String getLocalizedMessage();

Composite Exceptions and Errors

124 Federated Management Architecture Specification

/** Returns a localized description of this
 * CompositeThrowable using the given locale.
 * @param locale Locale in which to perform the localization.
 * An IllegalArgumentException is thrown if locale
 * is null.
 * @return Returns the localized message.
 * @throws IllegalArgumentException if locale is null.
 */

 String getLocalizedMessage(Locale locale);

/** Returns the array of (causal) nested exceptions
 * included in the CompositeThrowable.
 * @return Returns an array containing the causal
 * nested exceptions.
 */
Throwable[] getNestedExceptions();

/** Returns a stack trace for a nested exception.
 * @param nestedException Nested exception for which
 * a stack is being requested.
 * @return Returns stack trace for indicated nested throwable.
 */
String getNestedStackTrace(Throwable nestedException);

/** Facilitates saving of remote stack trace information.
 * This method is called by the Jiro station before a
 * CompositeThrowable is thrown to a Proxy to indicate that
 * the remote station should concatenate its stack
 * information with the current stack information for this
 * CompositeThrowable.
 * <P>
 * This method does not need to be called explicitly.
 */
void saveRemoteStackTrace();

}

Composite Exceptions and Errors

Federated Management Architecture Specification Page 125

12.6 Composite Delegate Class
package javax.fma.util;

import java.util.Locale;
import java.io.Serializable;

/** Delegate object for CompositeThrowable implemenations.
 * <P>
 * CompositeDelegate provides an implementation of
 * CompositeThrowable which correctly handles localization,
 * nested exceptions, and remote stack tracing.
 * <P>
 * In addition to providing a reusable implementation of
 * CompositeThrowable, CompositeDelegate provides a
 * convenience class method, {@link #getNestedExceptions()
 * getNestedExceptions()}, for retrieving nested exceptions
 * from any Throwable.
 *
 * @see CompositeError
 * @see CompositeException
 */
public final class CompositeDelegate

implements CompositeThrowable, Serializable
{

static final long serialVersionUID = 7917115786927613507L;

/** Construct CompositeDelegate with provided message
 * and nested exception.
 * @param message Informative failure message.
 * @param nestedExceptions Throwables which are a cause
 * of this exception. May be null. Null entries in
 * the array are ignored.
 */

 public CompositeDelegate(
CompositeThrowable throwable,

 LocalizableMessage message,
 Throwable[] nestedExceptions

);

/** Returns array of nested Throwables for a given Throwable.
 * @param t Throwable to retrieve nested exceptions from.
 * @return Returns an array of Throwables, zero length if
 * no nested throwables exist.
 */
static public Throwable[] getNestedExceptions(Throwable t);

/** Returns a localized description of this
 * CompositeThrowable using the default locale.
 * @return Returns the localized message.
 */
public String getLocalizedMessage();

/** Returns a localized description of this
 * CompositeThrowable using the given locale.
 * @param locale in which to perform the localization.
 * An IllegalArgumentException is thrown if locale
 * is null.
 * @return Returns the localized message.

Composite Exceptions and Errors

126 Federated Management Architecture Specification

 * @throws IllegalArgumentException if locale is null.
 */
public String getLocalizedMessage(Locale locale);

/** Returns the array of (causal) nested exceptions
 * included in the CompositeThrowable.
 * @return Returns an array containing the causal
 * nested exceptions.
 */
public Throwable[] getNestedExceptions();

/** Returns a stack trace for a nested excepetion.
 * @param nestedException Nested exception for which
 * a stack is being requested.
 * @return Returns stack trace for indicated nested throwable.
 */
public String getNestedStackTrace(Throwable t);

/** Facilitates saving of remote stack trace information.
 * This method is called by the Jiro station before a
 * CompositeThrowable is thrown to a Proxy to indicate that
 * the remote station should concatenate its stack
 * information with the current stack information for this
 * CompositeThrowable.
 * <P>
 * This method does not need to be called explicitly.
 */
public void saveRemoteStackTrace();

/** Returns fallback message. To be used in
 * Throwable.getMessage().
 */
public String getFallbackMessage();

}

12.7 Composite Exception Class
package javax.fma.util;

/** Exception implementation of CompositeThrowable.
 * @see CompositeException
 * @see CompositeThrowable
 */
public class CompositeException

extends Exception implements CompositeThrowable
{

static final long serialVersionUID = -8311358440368993358L;

Composite Exceptions and Errors

Federated Management Architecture Specification Page 127

/** Construct CompositeException with provided message
 * and nested exception.
 * @param message Informative failure message.
 * @param nestedExceptions Throwables which are a
 * cause of this exception. May be null. Null
 * array entries are ignored.
 */
public CompositeException(

LocalizableMessage message,
Throwable[] nestedExceptions

);

/** Construct CompositeException using its own class
 * for the LocalizableMessage context.
 * @param key Identifies message within the resource bundle.
 * @param params Localization substitution parameteres.
 * @param nestedExceptions Throwables which are a cause of
 * this exception. May be null. Null array entries in the
 * are ignored.
 * @throws IllegalArgumentException if messageKey is null or if
 * messageParams array contains nulls.
 */
public CompositeException(

String messagekey,
Serializable[] messageParams,
Throwable[] nestedExceptions

);

/** Returns a localized description of this
 * CompositeThrowable using the default locale.
 * @return Returns the localized message.
 */
public String getLocalizedMessage();

/** Returns a localized description of this
 * CompositeThrowable using the given locale.
 * @param locale Locale in which to perform the localization.
 * An IllegalArgumentException is thrown if locale
 * is null.
 * @return Returns the localized message.
 * @throws IllegalArgumentException if locale is null.
 */

 public String getLocalizedMessage(Locale locale);

/** Returns the array of (causal) nested exceptions
 * included in the CompositeThrowable.
 * @return Returns an array containing the causal
 * nested exceptions.
 */

 public Throwable[] getNestedExceptions();

/** Returns a stack trace for a nested exception.
 * @param nestedException Nested exception for which
 * a stack is being requested.
 * @return Returns stack trace for indicated nested
 * throwable.
 */
public String getNestedStackTrace(Throwable t);

Composite Exceptions and Errors

128 Federated Management Architecture Specification

/** Facilitates saving of remote stack trace information.
 * This method is called by the Jiro station before a
 * CompositeThrowable is thrown to a Proxy to indicate that
 * the remote station should concatenate its stack information
 * with the current stack information for this
 * CompositeThrowable.
 * <P>
 * This method does not need to be called explicitly.
 */
public void saveRemoteStackTrace();

/** Return a message describing this throwable.
 */

 public String getMessage();

/** Returns a short description of the
 * CompositeException object.
 * @return Returns a string representation of
 * this CompositeException.
 */
public String toString();

}

12.8 Composite Error Class
package javax.fma.util;

/** Error implementation of CompositeThrowable.
 * @see CompositeException
 * @see CompositeThrowable
 */
public class CompositeError

extends Error implements CompositeThrowable
{

static final long serialVersionUID = -8311358440368993358L;

/** Construct CompositeError with provided message
 * and nested exception.
 * @param message Informative failure message.
 * @param nestedExceptions Throwables which are a
 * cause of this exception. May be null. Null
 * array entries are ignored.
 */
public CompositeError(

LocalizableMessage message,
Throwable[] nestedExceptions

);

Composite Exceptions and Errors

Federated Management Architecture Specification Page 129

/** Construct CompositeError using using its own class
 * for the LocalizableMessage context.
 * @param key Identifies message within the resource bundle.
 * @param params Localization substitution parameters.
 * @param nestedExceptions Throwables which are a cause of
 * this exception. May be null. Null array entries are
 * ignored.
 * @throws IllegalArgumentException if messageKey is null or if
 * messageParams array contains nulls.
 */
public CompositeError(

String messagekey,
Serializable[] messageParams,
Throwable[] nestedExceptions

);

/** Returns a localized description of this
 * CompositeThrowable using the default locale.
 * @return Returns the localized message.
 */
public String getLocalizedMessage();

/** Returns a localized description of this
 * CompositeThrowable using the given locale.
 * @param locale Locale in which to perform the localization.
 * An IllegalArgumentException is thrown if locale
 * is null.
 * @return Returns the localized message.
 * @throws IllegalArgumentException if locale is null.
 */

 public String getLocalizedMessage(Locale locale);

/** Returns the array of (causal) nested exceptions
 * included in the CompositeThrowable.
 * @return Returns an array containing the causal
 * nested exceptions.
 */

 public Throwable[] getNestedExceptions();

/** Returns a stack trace for a nested exception.
 * @param nestedException Nested exception for which
 * a stack is being requested.
 * @return Returns stack trace for indicated nested
 * throwable.
 */
public String getNestedStackTrace(Throwable t);

/** Facilitates saving of remote stack trace information.
 * This method is called by the Jiro station before a
 * CompositeThrowable is thrown to a Proxy to indicate that
 * the remote station should concatenate its stack information
 * with the current stack information for this
 * CompositeThrowable.
 * <P>
 * This method does not need to be called explicitly.
 */
public void saveRemoteStackTrace();

Composite Exceptions and Errors

130 Federated Management Architecture Specification

/** Returns a message describing this throwable.
 */

 public String getMessage();

/** Returns a short description of the
 * CompositeError object.
 * @return Returns a string representation of
 * this CompositeError.
 */
public String toString();

}

12.9 Exception Debugging
To facilitate the debugging of exceptions, this specification defines an abstract static
method, javax.fma.util.Debug.debugException(), which can be called when
an exception is caught. The specific behavior of this method is left up to the
implementation provider, but the method should usually store the exception somewhere
external to the JVM such that it can be retrieved and analyzed by a developer at a later
occasion. Debug.debugException() must never throw a throwable under any
condition, return reasonably quickly, and not in any way impair the further functioning of
a station.

The information passed to debugException() is intended for debugging use only.

For example, an implementation of Debug.debugException() might serialize
exceptions and stack trace information into a file for later retrieval and viewing by a
developer.

package javax.fma.util;

/** Debug utility class.
 */
public final class Debug
{

/**Does something to facilitate debugging of an exception.
 * This method will not throw an exception.
 * @param clue String giving a clue as to what happened.
 * May be null.
 * @param exception Exception which happened.
 */

 public static void debugException(
 String clue,

Throwable exception
);

}

Federated Management Architecture Specification Page 131

Section 3: Static (Base) Services

Base services are a guaranteed part of the environment in a management domain. The
base services include transaction, controller, logging, events, and scheduling. They are
available for use by the clients and services belonging to a management domain and do
not depend on the dynamic services model. In other words, the services are standalone
and good Jini technology citizens in their own right. There must only be one of each type
of service available in each management domain. If a given service features replication
for the purposes of high availability, the replication is not visible to the service client and
the service appears logically as a single service. In particular, the service registers a
single service proxy in the lookup services for the domain.

Services must be registered with a populated BaseServiceInfo entry. Services must
register their proxies with all lookup services that belong to the “<management domain
name>” group. To do so, services must continually listen for the arrival of lookup
services belonging to the management domain. Within a lookup service, the individual
service types are distinguished by interface.

package javax.fma.common;

import net.jini.lookup.entry.ServiceInfo;

/**Used to locate a base (static) management service in
 * a particular management domain. Fields other than the
 * domain name can be left null. These fields are treated
 * as wildcards by the lookup service. The domain field
 * MUST be provided (i.e. cannot be null). Failure to
 * specify this field will result in an
 * IllegalArgumentException.
 */
public final class BaseServiceInfo extends ServiceInfo
{

/**Name of management domain to which the service
 * belongs.
 */
public String domain;

Static Services Model

132 Federated Management Architecture Specification

/**Create a station address matching template.
 * @param domain - management domain to which the
 * service belongs
 * @param name service name
 * @param manufacturer service manufacturer
 * @param vendor service vendor
 * @param version service version
 * @param model service model name or number
 * @param serialNumber service serial number
 * @throws IllegalArgumentException if domain is null.
 */
public BaseServiceInfo (

String domain,
String name,
String manufacturer,
String vendor,
String version,
String model,
String serialNumber

);
}

Federated Management Architecture Specification Page 133

13 Static Services Model

While it is permissible to directly contact a lookup service and retrieve a proxy for a
particular management service, stations are required to provide local convenience access
to the base services using the abstract class javax.fma.services.ServiceFinder,
as follows.

package javax.fma.services;

import javax.fma.util.CompositeException;
import javax.fma.util.LocalizableMessage;
import javax.fma.services.controller.ControllerService;
import javax.fma.services.log.LogService;
import javax.fma.services.event.EventService;
import javax.fma.services.scheduling.SchedulingService;
import net.jini.core.transaction.server.*;

/** Convenience access to static (base) services.
 * Implementations may cache service proxies that
 * have been retrieved. Implementations may also
 * place limits on how long they will wait for
 * a lookup service to respond before failing.
 * Before providing a service proxy, the implementation
 * must verify that the service is reachable using
 * the proxy. If not and the proxy was from a cache,
 * the cache must be invalidated and the service
 * proxy refetched from a lookup service. If not and
 * the service was not cached, the method must throw
 * a ServiceNotFoundException.
 */
public final class ServiceFinder
{

/** Returns transaction service for local management domain.
 * @return TransactionManager for local management domain.
 * @throws ServiceNotFoundException if service is not found.
 */
public static TransactionManager getTransactionService()

throws ServiceNotFoundException;

Static Services Model

134 Federated Management Architecture Specification

/** Returns controller service for local management domain.
 * @return ControllerService for local management domain.
 * @throws ServiceNotFoundException if service is not found.
 */
public static ControllerService getControllerService()

throws ServiceNotFoundException;

/** Returns log service for local management domain.
 * @return LogService for local management domain.
 * @throws ServiceNotFoundException if service is not found.
 */
public static LogService getLogService()

throws ServiceNotFoundException;

/** Returns event service for local management domain.
 * @return EventService for local management domain.
 * @throws ServiceNotFoundException if service is not found.
 */
public static EventService getEventService()

throws ServiceNotFoundException;

/** Returns scheduling service for local management domain.
 * @return SchedulingService for local management domain.
 * @throws ServiceNotFoundException if service is not found.
 */

 public static SchedulingService getSchedulingService()
throws ServiceNotFoundException;

/** Returns transaction service for specified management domain.
 * @param domain Management domain of desired service.
 * @return TransactionManager for specified management domain.
 * @throws ServiceNotFoundException if service is not found.
 */
public static TransactionManager getTransactionService(

String domain)
 throws ServiceNotFoundException;

/** Returns controller service for specified management domain.
 * @param domain Management domain of desired service.
 * @return ControllerService for specified management domain.
 * @throws ServiceNotFoundException if service is not found.
 */
public static ControllerService getControllerService(

String domain)
throws ServiceNotFoundException;

/** Returns log service for specified management domain.
 * @param domain Management domain of desired service.
 * @return LogService for specified management domain.
 * @throws ServiceNotFoundException if service is not found.
 */
public static LogService getLogService(

String domain)
throws ServiceNotFoundException;

Static Services Model

Federated Management Architecture Specification Page 135

/** Returns event service for specified management domain.
 * @param domain Management domain of desired service.
 * @return EventService for specified management domain.
 * @throws ServiceNotFoundException if service is not found.
 */
public static EventService getEventService(

String domain)
throws ServiceNotFoundException;

/** Returns scheduling service for specified management domain.
 * @param domain Management domain of desired service.
 * @return SchedulingService for specified management domain.
 * @throws ServiceNotFoundException if service is not found.
 */
public static SchedulingService getSchedulingService(

String domain)
throws ServiceNotFoundException;

/** Exception indicating that a service was not found. */
public static final class ServiceNotFoundException

extends CompositeException
{

/** Construct a ServiceNotFoundException.
 * @param serviceType Interface of service which was not
 * found.
 * @param reasons Nested throwables indicating why service
 * was not found.
 */
public ServiceNotFoundException(

Class serviceType,
String domain,
Throwable[] reasons

);

/** Construct a ServiceNotFoundException.
 * @param message Message indicating failure reason.
 * @param reasons Nested throwables indicating why service
 * was not found.
 */
public ServiceNotFoundException(

LocalizableMessage message,
Throwable[] reasons

);
}

}

ServiceFinder is an application interface class that uses implementation delegation;
however, only the methods taking a management domain name are delegated directly to
the implementation. The methods that do not take a management domain name are
delegated to the previous methods while using the “javax.fma.domain” system
property to supply the management domain. This property is dynamic and must be
refetched each time a get<name>Service() method is called.

Federated Management Architecture Specification Page 136

14 Transaction Service

The well-known transaction service is a Jini technology transaction manager serving a
particular management domain.

14.1 No Transaction Service
If no transaction service is present, transaction activity cannot be initiated, but previously
completed transactions are not affected. Sources of activity, principally clients, the event
service, and the scheduler service, will need to wait until a transaction service is available
before initiating activity. Failure to do so results in thrown exceptions when an attempt is
made to create a new transaction, directly or indirectly.

14.2 Failed Transaction Service
Transactions are not considered long-lived and will be lost if the transaction service fails
while a transaction is in progress. A transaction in progress when the transaction manager
fails will generally fail when the transaction initiator aborts or commits the transaction.
As the transaction initiator does not have knowledge of all the transaction participants,
participants should consider verifying that the transaction in which they are participating
is still valid if a reasonable length of time, such as five minutes, has passed without a
commit or abort. If the transaction is no longer valid, participants should behave as if the
transaction had been aborted. As any exceptions encountered during the abort will not be
thrown to the transaction initiator, as would normally be the case, the exceptions should
usually be logged and possibly result in a notification event.

14.3 Recovered Transaction Service
A transaction manager is not required to recover any state, other than its service ID, when
restarted after failure as all transactions in progress are assumed to have been lost.

Federated Management Architecture Specification Page 137

15 Controller Service

The controller service is responsible for issuing controllers to both clients and stations
acting on behalf of controller objects. It maintains a centralized view of all the controllers
in the system; however, this view is considered slave, not master, state. The master state
is maintained internally by the clients and stations. Leases are in place such that when is
lease fails to renew, it is an indication that state synchronization may have been lost and
the state of the controller service should be rebuilt. The state rebuilding is done by
stations informing the controller service about the controllers for which the station is
responsible. Client controllers may be lost when the controller service fails or becomes
unreachable. Thus, clients may have to restarted if the controller service fails.

Objects never need to contact the controller service or invoke methods on a controller or
lock object directly. These duties are handle by the station on behalf of controller objects.
Controller objects may cancel locks held by a controller by calling
javax.fma.common.Context.releaseLocks().

15.1 Controller and Controller Generations
In the course of remotely invoking methods synchronized with respect to controllers,
object level locks may be acquire and assigned to the calling controller based on the
semantics of the controller aspect. These locks belong forever to a specific controller and
generation. A single controller can undergo a change in generation after which it is the
same controller, but of a different generation. To effectively release locks held by a
controller (Controller.releaseLocks()), the generation is changed, a matter of
internal bookkeeping. As the previous generation of controller no longer exists,
previously issued lock become irrelevant, effectively releasing them to be acquired by
another controller.

15.2 Controller Service Interface

Controller Service

138 Federated Management Architecture Specification

package javax.fma.services.controller;

import java.io.Serializable;
import java.rmi.MarshalledObject;
import java.rmi.RemoteException;
import javax.fma.util.CompositeException;
import net.jini.core.Lease;
import net.jini.core.lookup.ServiceID;

/**Interface to the controller service. Only station
 * implementations and clients should contact the
 * controller service directly. Even then, clients
 * should only invoke the newClientController()
 * operation.
 */
public interface ControllerService
{

//
// Operations for clients. These are the only
// operations that may be invoked by a client.
//

/**Create a new controller that will live in a
 * client. The duration of the returned Lease,
 * embedded in the returned ClientController, shall
 * be between 1 minute and 5 minutes. Lease
 * termination will release all locks belonging to
 * the client controller.
 * @return ClientController containingg a controller
 * and a lease of 1 to 5 minute duration to be
 * be maintained by the station. Cancellation or
 * expiration of the lease may result in the
 * controller service releasing the resources,
 * including controller locks, assigned to this
 * client
 * @throws RemoteException Error communicating with
 * the controller service.
 * @throws ControllerServiceException Wrapper exception
 * thrown when a new lease is denied, a proxy is
 * uninstantiable, a MarshalledObject fails to marshall
 * or unmarshall for any reason, etc.
 */
ClientController newClientController(

long leaseDuration
)

throws RemoteException, ControllerServiceException;

//
// Operations for stations. These are the only
// operations that may be invoked by a station.
//

Controller Service

Federated Management Architecture Specification Page 139

/**Create a new controller that will live in the
 * station identified by the provided service ID.
 * @param serviceID Station identifier of the station
 * requesting a new controller. Must not be null.
 * @throws UnknownStationException The service ID
 * is not known by the service.
 * @throws IllegalArgmentException stationID was null.
 * @throws RemoteException Unable to communicate with
 * the controller service.
 * @throws ControllerServiceException Wrapper exception
 * thrown when a new lease is denied, a proxy is
 * uninstantiable, a MarshalledObject fails to marshall
 * or unmarshall for any reason, etc.
 */
Controller newController(ServiceID stationID)

throws RemoteException,
UnknownStationException,
ControllerServiceException;

//
// Callback operations for controllers and
// locks. Only controllers and locks are allowed
// to invoke these callback methods and then only on
// the controller service that issued the controller
// or lock.
//

/**Delete an existing controller.
 * @param handBack Handback embedded in a controller
 * issued by this service.
 * @throws UnknownControllerException the hand back
 * does not correspond to controller known by this
 * service.
 * @throws RemoteException Unable to communicate with
 * the controller service.
 * @throws ControllerServiceException Wrapper exception
 * thrown when a new lease is denied, a proxy is
 * uninstantiable, a MarshalledObject fails to marshall
 * or unmarshall for any reason, etc.
 */
void deleteController(

MarshalledObject handBack
)

throws RemoteException,
UnknownControllerException,
ControllerServiceException;

Controller Service

140 Federated Management Architecture Specification

/**Release the locks held by this controller. This
 * method changes the generation of this controller.
 * Locks held by the previous generation are no
 * longer valid. This method returns a new hand back
 * representing the new generation of the controller.
 * @param handBack Handback embedded in a controller
 * issued by this service.
 * @return New handBack object for the controller.
 * @throws UnknownControllerException the hand back
 * does not correspond to controller known by this
 * service.
 * @throws RemoteException Unable to communicate with
 * the controller service.
 * @throws ControllerServiceException Wrapper exception
 * thrown when a new lease is denied, a proxy is
 * uninstantiable, a MarshalledObject fails to marshall
 * or unmarshall for any reason, etc.
 */
MarshalledObject releaseLocks(

MarshalledObject handBack
)

throws RemoteException,
UnknownControllerException,
ControllerServiceException;

/**Returns true if the lock ID is still relevant,
 * false otherwise. A lock ID becomes irrelevant
 * if the issuing controller was cancelled
 * or if the issuing controller released
 * its locks.
 * @param handBack The owner field of the lock
 * being verified.
 * @throws RemoteException Unable to communicate with
 * the controller service.
 * @throws ControllerServiceException Wrapper exception
 * thrown when a new lease is denied, a proxy is
 * uninstantiable, a MarshalledObject fails to marshall
 * or unmarshall for any reason, etc.
 */
boolean isRelevant(

MarshalledObject handBack
)

throws RemoteException,
ControllerServiceException;

Controller Service

Federated Management Architecture Specification Page 141

/** Snchronize a station’s state (list of controllers) with the
 * cntroller service. The station’s state is considered the
 * master and overrides any state the service has for that
 * particular station. Stations are uniquely identified by
 * their service IDs, which are issued when the station
 * registers with a lookup service. Controllers are the only
 * objects that should call this method. Stations MUST call
 * the corresponding static method on javax.fma.Controller
 * @param handBacks list of controller handbacks issued to
 * the station. Must not be null or contain null entries.
 * @param stationID Station identifier. Must not be null.
 * @param leaseDuration A suggested lease duration.
 * @return A lease of 5 to 30 minutes duration to be
 * maintained by the station. Cancellation or expiration
 * of the lease may result in the controller service
 * releasing the resources, including controller locks,
 * assigned to the controllers of this station.
 * @throws IllegalArgumentException If the controllers is
 * null or contains a null element, or if stationID is
 * null.
 * @throws RemoteException Unable to communicate with the
 * controller service.
 * @throws ControllerServiceException Wrapper exception
 * thrown when a new lease is denied, a proxy is
 * uninstantiable, a MarshalledObject fails to marshall
 * or unmarshall for any reason, etc.
 */
Lease synchronizeWithStation(

MarshalledObject []handBacks,
ServiceID stationID,
long leaseDuration

)
throws RemoteException,

ControllerServiceException;

/**Interface representing objects returned from a
 * controller registration.
 */
public final static class ClientController

implements Serializable
{

/**Should only be called by the controller
 * service.
 * @throws IllegalArgumentException If either
 * argument is null.
 */
public ClientController(

Controller controller,
Lease lease

);

/**Return the lease that a client must
 * maintain to sustain the controller locks
 * held by the client.
 */
Lease getLease();

Controller Service

142 Federated Management Architecture Specification

/**Return the controller itself.
 */
Controller getController();

};

/** Thrown when an operation is requested on a controller to
 * which the Service no longer has any reference, either
 * because it never existed, its lease may have expired, or
 * after a recovery, but before stations have re-sync’d.
 */
public final static class UnknownControllerException

extends CompositeException
{

/** Construct a new UnknownControllerException.
 */
public UnknownControllerException ();

}

/** Thrown when a newController is requested from a station
 * that has not previously identified itself with the Service
 * via the synchronizeWithStation() method.
 */
public final static class UnknownStationException

extends CompositeException
{

/** Construct a new UnknownStationException with
 * the given stationID.
 * @param stationID ID of station which was unknown.
 * May not be null.
 * @throws IllegalArgumentException if stationID is
 * null.
 */
public UnknownStationException(ServiceID stationID);

}

Controller Service

Federated Management Architecture Specification Page 143

/** Base exception for any implementation dependent
 * exceptions such as when a new lease is denied, a proxy is
 * uninstantiable, a MarshalledObject fails to marshall or
 * unmarshall for any reason, etc.
 */

 public static class ControllerServiceException
extends CompositeException

{
/** Constructor which passes a trinket and a throwable to
 * CompositeException’s constructor
 * @see javax.fma.util.CompositeException
 */
public ControllerServiceException(

String trinket,
Serializable[] params,
Throwable caughtThrowable

);

/** Constructor which passes a trinket to
 * CompositeException’s constructor
 * @param trinket A localization trinket.
 * @see javax.fma.util.CompositeException
 */
public ControllerServiceException(String trinket);

}
}

15.3 Controller Interface

Controller Service

144 Federated Management Architecture Specification

package javax.fma.services.controller;

import java.io.Serializable;
import java.rmi.MarshalledObject;
import java.rmi.RemoteException;

/**Interface representing objects returned from a
 * controller registration.
 */
public final class Controller implements Serializable
{

/**Called only by a controller service.
 * @param service A remote reference (RMI Stub,
 * proxy, ...) back to the controller service
 * issuing this controller. service must be
 * useable across restarts of the controller
 * service and movement of the service from one
 * host to another.
 * @param handBack Closure object that uniquely
 * identifies this controller in its first
 * generation.
 */
public Controller(

ControllerService service,
MarshalledObject handBack

);

/** Synchronize a station’s state (list of controllers) with
 * the controller service. The station’s state is considered
 * the master and overrides any state the service has for
 * that particular station. Stations are uniquely identified
 * by their service IDs, which are issued when the station
 * registers with a lookup service. Stations MUST call this
 * method before any controllers are created in the station
 * even if the station does not currently have any controllers.
 * In that specific case, controllers should be a zero-length
 * array. Regardless of the requested lease duration, the
 * returned lease shall have a duration between 5 minutes and
 * 30 minutes. Shorter lease durations mean locks are
 * released sooner when the controller holding the locks
 * becomes unreachable. The controller service will need to
 * block certain operations while synchronizing to ensure
 * proper state mirroring.
 * @param controllers list of controllers issued to the
 * station. Must not be null or contain null entries.
 * @param service Proxy to the relevant controller service.
 * Must not be null.
 * @param stationID Station identifier. Must not be null.
 * @param leaseDuration A suggested lease duration.
 * @return A lease of 5 to 30 minutes duration to be
 * maintained by the station. Cancellation or expiration
 * of the lease may result in the controller service
 * releasing the resources, including controller locks,
 * assigned to the controllers of this station.
 * @throws IllegalArgumentException If controllers is null
 * or contains a null element, or if either stationID or
 * service is null.
 * @throws RemoteException Unable to communicate with the
 * controller service.
 * @throws ControllerServiceException Wrapper exception

Controller Service

Federated Management Architecture Specification Page 145

 * thrown when a new lease is denied, a proxy is
 * uninstantiable, etc.
 */
public static Lease synchronizeWithStation(

Controller[] controllers,
ControllerService service,
ServiceID stationID,
long leaseDuration)

throws RemoteException, ControllerServiceException;

/**Return a proxy to the controller service that
 * owns this controller.
 */
public ControllerService getControllerService();

/** Cancel a controller as irrelevant. The controller will no
 * longer issue locks and all locks issued by the controller
 * become released.
 * @throws RemoteException Error communicating with the
 * controller service.
 * @throws ControllerServiceException Wrapper exception
 * thrown when a new lease is denied, a proxy is
 * uninstantiable, a MarshalledObject fails to marshall
 * or unmarshall for any reason, etc.

 */
 public void delete()

throws RemoteException, ControllerServiceException;

/** Invalidate all previously issued locks. This effectively
 * releases locks held by this controller by incrementing
 * the generation of the controller.
 * @throws RemoteException Error communicating with the
 * controller service.
 * @throws UnknownControllerException the handback does
 * not correspond to controller known by this service.
 * @throws ControllerServiceException Wrapper exception
 * thrown when a new lease is denied, a proxy is
 * uninstantiable, a MarshalledObject fails to marshall
 * or unmarshall for any reason, etc.
 */
public void releaseLocks()

throws
RemoteException,
ControllerService.UnknownControllerException,
ControllerServiceException;

/**Issue a new lock.
 * @return Lock A new lock object.
 */
public Lock newLock();

Controller Service

146 Federated Management Architecture Specification

/** Abstract type representing a lock. Locks
 * may be compared for equality or used as keys
 * in hash tables and the like.
 */
public final static class Lock extends Serializable
{

/** The handback object of the Controller this Lock is
 * for.
 */
final MarshalledObject owner;

/** The service proxy that created the Controller this
 * Lock is for.
 */
final ControllerService service;

/** Create a new Lock.
 * Only called by Controller.
 * @param owner The handback object of the Controller
 * this Lock is for.
 * @param service The service proxy that created the
 * Controller this Lock is for.
 */
Lock(

MarshalledObject owner,
ControllerService service

);

/**Return true if this lock was issued by the
 * given controller/generation. This is true
 * iff the owner field of this lock is equal
 * to the handBack field of the controller.
 * @param controller The controller to check this lock
 * against.
 * @return boolean true if the given controller is the
 * owner of this lock.
 */
public boolean isOwner(

Controller controller
);

Controller Service

Federated Management Architecture Specification Page 147

/**Returns true if the lock is still valid. If
 * a remote exception is thrown, it is unknown
 * whether the lock is valid or not. On a remote
 * exception, the lock should usually be considered
 * relevant if it was ever known to have been
 * relevant.
 * @throws RemoteException Communication error
 * with the controller service.
 * @return boolean true if the given controller is the
 * owner of this lock.
 */
public boolean isRelevant()

throws RemoteException, ControllerServiceException;

/** Checks two locks to determine if they are Locks for
 * the same
 * generation of the same controller. (The service proxies
 * equality check returns true if they refer to the same
 * object).
 * @param other The object to check against this Lock for
 * equality.
 * @return boolean true if the other object is a Local
 * object equal to this one.
 */
public boolean equals(Object other);

/** Returns hash code to match value based equality.
 * @return hash code to match value based equality.
 */
public int hashCode();

}
}

15.4 No Controller Service
If no controller service is present, any attempt to initiate an operation on a component
method synchronized with respect to the controller aspect will fail with an exception.
Attempting to start, or restart, a station may fail or block depending on the
implementation of the station, until the controller service for the management domain is
again operational.

15.5 Failed Controller Service
Unlike transactions, controllers are considered long-lived and are bound to the service
with which they are registered. The failure of a particular controller service affects those
components that are locked, for the purposes of controller concurrency control, by a
controller registered with the failed service. Operations on these components will not be
able to proceed until the failed controller service has recovered.

15.6 Controller Service Recovery
A controller need only persist its serviceID. Additional persistence capabilities are
considered optimizations to reduce the network flooding while stations resynchronize

Controller Service

148 Federated Management Architecture Specification

with a restarted controller service. In order to station sufficient time to resynchronize, a
restarted controller service should not respond to any requests other than
resynchronization for a period of time greater than the longest issued lease duration.

15.7 Breaking Controller Service Locks
There may be conditions under which it becomes necessary to break controller service
locks and controller service implementations may provide administrative interfaces to do
so; however, this specification does not standardize administrative interfaces of any kind.

Federated Management Architecture Specification Page 149

16 Log Service

Whether or not an object is acting autonomously (on its own accord or thread), it may
wish to log certain decisions that have been made, operations that have been requested, or
any other information deemed interesting by the object. Log messages can be very
important for auditing, and certain guarantees must be given that a log message is posted
and will not be lost. It is also important that the information contained in a log message is
internationalized so that the message can be viewed by any particular locale.

16.1 Log Service Interfaces

16.1.1 Log Messages
Log messages contain a localizable message, a category, and possibly a throwable, if the
log message is in response to an error condition manifested as a throwable. The category
is a dot (".") delimited string that must begin with one of the major categories enumerated
in the LogMessage class.

Log Service

150 Federated Management Architecture Specification

package javax.fma.services.log;

import javax.fma.util.LocalizableMessage;
import java.io.Serializable;

/**A log message. Log messages are immutable. Thus,
 * mutable objects, such as Date objects, are cloned
 * at the LogMessage interface to preserve immutability
 * of the LogMessage. Throwable are not cloned under
 * the assumption that all throwables are immutable.
 */
public final class LogMessage implements Serializable
{

//constants for major categories
/** Audit message category. */
static public final String AUDIT = "audit";
/** Debug message category. */
static public final String DEBUG = "debug";
/** Warning message category. */
static public final String WARNING = "warning";
/** Informational message category. */
static public final String INFO = "info";
/** Error message category. */
static public final String ERROR = "error";
/** Trace message category. */
static public final String TRACE = "trace";

/**Construct a log message object. The constructor
 * adds the time stamp.
 * @throws IllegalArgumentException If message or
 * category is null, or if the category does not
 * begin with one of the major categories
 * defined in this class.
 */
public LogMessage(

LocalizableMessage message,
String category,
Throwable exceptionObject

);

/**Returns the localizable message for this
 * log message.
 */
public LocalizableMessage getMessage();

/**Returns category of log message, a dot delimited
 * string beginning with one of the major
 * categories.
 */
public String getCategory();

/**Return the throwable object, if one exists
 */
public Throwable getThrowable();

Log Service

Federated Management Architecture Specification Page 151

/**Return posting date and time in UTC.
 */
public Date getTimeStamp();

/**Special exception indicating that the throwable
 * failed to serialize when this log message was
 * posted.
 */
public static final class SerializationFailureException

extends Exception
{
}

}

16.1.2 The Log Service Interface
Log service implementations must implement the
javax.fma.services.log.LogService interface. The interface includes one method
for posting log messages and another for retrieving log messages based on search criteria.

package javax.fma.services.log;

import java.rmi.RemoteException;

/** Interface for posting to and searching the LogService.
 */
public interface LogService
{

/**Log a message. This method shall not, under
 * any condition, throw a throwable. The log
 * service proxy is responsible for dealing with
 * all error conditions.
 */
void log(LogMessage message);

/**Perform a synchronous search for log records
 * matching the provided criteria, which must not be
 * null. The search can be cancelled by canceling or
 * not maintaining the Search lease.
 * @param predicate Predicate to determine interesting
 * log messages to be matched.
 * @param batchSize target size of a batch of
 * delivered log messages to the iterator.
 * @param leaseValue leas duration in milliseconds.
 * @return Search used to enumerate the result set.
 */
Search search(

Predicate predicate,
int batchSize,
long leaseValue

)
throws RemoteException;

}

Log Service

152 Federated Management Architecture Specification

16.1.3 Retrieving Log Messages

16.1.3.1 Predicates
Log messages are logically retrieved, for enumeration or removal, by invoking the
LogService.search() method. The most significant argument is the predicate object.
The predicate, which is passed to the log service by value, selects which log messages are
returned as part of the search.

package javax.fma.services.log;

import java.io.Serializable;

/**Unary predicate used to select log messages during
 * a query operation.
 */
public interface Predicate extends Serializable
{

/** Execute the predicate. Iff true, the log message
 * is selected for the search.
 * @param message Log message to evaluate. May not
 * be null.
 */
boolean execute(LogMessage message);

}

Since the predicate object is passed by value, the log service will need to network load
the class of the predicate object according to RMI semantics. Some clients may not be
able to provide a predicate class through a class server to support such an operation.
These clients, and others, can use the well known
javax.fma.services.log.LogSearchCriteria class to create predicate objects
that support a fixed selection criteria. Because the LogSearchCriteria is supplied as
part of the infrastructure, it does not need to be loaded over the network.

Log Service

Federated Management Architecture Specification Page 153

package javax.fma.services.log;

/**Convenience log searching predicate that searches
 * based on posting date, category, and message.
 */
public final class LogSearchCriteria

implements Predicate
{

/** Construct a search criteria object.
 * Dates are compared directly with the posting Date
 * of the log messages without localizing.
 * @param beginDate Beginning date, inclusive, or no
 * beginning date, if null.
 * @param endDate Ending date, inclusive, or no ending
 * date, if null.
 * @param category Dot-delimited category (i.e.,
 * "error.severe.disk_failure"). Most significant
 * word must be one of predefined constants
 * in LogMessage. Search failes if message category
 * does not begin with specified search catetory.
 * @param searchLocale Locale in which message are
 * localized before comparison to messagePattern.
 * A null value indicates that the message’s
 * fallback Locale should be used.
 * @param messagePattern Localized pattern to search
 * for. For example, "disk" would match any log
 * message whose localized message contains "disk".
 */
public LogSearchCriteria(

Date beginDate,
Date endDate,
String category,
Locale searchLocale,
String messagePattern

);

/** Execute the predicate. Iff true, the log message
 * is selected for the search.
 * @param message Log message to evaluate. May not be null.
 */
public boolean execute(LogMessage message);

}

16.1.3.2 Searches
A search operation on a log service return a javax.fma.services.log.Search
object, which is a kind of iterator. The log service must maintain the results of a
particular search, which consumes significant resources. These resources are reserved by
the search using the lease returned as part of the search result. If this lease is cancelled or
expires, the log service may discard resources associated with search and any further
attempts to access the Search object may throw a throwable.

Log Service

154 Federated Management Architecture Specification

package javax.fma.services.log;

import java.rmi.RemoteException;
import java.util.Iterator;
import net.jini.core.lease.Lease;

/**Specialized iterator that also supports polling to
 * retrieve log messages and remove them. Search does
 * not support the Iterator.remove() operation.
 */
public interface Search extends Iterator
{

/**Return the lease used to maintain the
 * resources associated with this search.
 */
Lease getLease();

/**Returns an array (batch) of messages. The target
 * size of the batch was specified when initiated
 * the search.
 * @return Array of log messages (LogMessage[])
 * @throws NoSuchElementException no more
 * messages available that match the search
 * predicate or a remote exception during
 * communication with the log service.
 */
Object next();

/**Strongly typed version of next().
 */
LogMessage[] nextMessageBatch()

throws RemoteException;

/**Remove all messages matching this search. If the
 * search has been enumerated, fully or partially,
 * it is guaranteed that only the messages that
 * were enumerated will be removed.
 */
void removeAll()

throws RemoteException;
}

16.1.4 Removing Log Messages
Log messages can be removed by invoking the removeAll() operation on a valid
Search object. If next() or nextMessageBatch() has never been called on the
Search object, all log messages matching the search criteria, at some point in time after
the search was initiated, shall be removed. Otherwise, only the specific messages which
have been enumerated shall be removed.

Log Service

Federated Management Architecture Specification Page 155

16.2 Posting Failure Scenarios

16.2.1 Posting Reliability
The LogService.log() method must not, under any circumstances, throw an exception
to the posting client. The log service proxy must handle any failure conditions to the best
of its ability. In some failure scenarios, this may imply that log messages are not posted.

16.2.2 Log Service Unavailable
If the log service is unavailable at the time of posting, the log service proxy may drop the
log message. More capable log services may provide proxies that queue postings until
such time as the log service again becomes reachable; however, this is not required. Log
service unavailability means that the proxy was unable to post the log message to the log
service for a reason other than a marshaling failure.

16.2.3 Marshaling Failure
A log message consists of a localizable message, optional throwable, category (String),
and time stamp (Date). The localizable message, category, and time stamp are guaranteed
to always serialize. Thus, if one can guarantee that the throwable, if present, will
serialize, one can guarantee that the log message as a whole will serialize, avoiding
marshaling errors when posting. To this end, the LogMessage serialization method must
recover from a serialization error of the throwable object by replacing it with a
LogMessage.SerializationFailureException.

16.2.4 Log Service Failure While Writing
If the log service terminates while in the process of writing a log message to its persistent
store (file, data base, ...), it shall not corrupt any log messages already written nor the
durable log as a whole. Only the log message being posted at the time of the termination
is allowed to be lost.

Federated Management Architecture Specification Page 157

17 Event Service

An event service is a collection of topics to which event sources may post events and
from which event subscribers may receive events. Each topic accepts events from event
sources and forward them to event subscribers that have indicated an interest in the topic
by subscribing to the topic. Each management domain has a single (possibly replicated)
centralized event service for the domain. This well-known event service is registered with
the lookup services for a particular management domain and implements the
javax.fma.services.event.EventService interface.

The topics of the event service are organized into a hierarchy such that each topic has a
single parent topic and all topics ultimately descend from the root topic of the service.
Each topic has an associated unordered list of observing listeners that have subscribed to
the topic.

Each topic, in addition to its unordered event subscribers, may have an optional chain of
responsibility. The chain of responsibility (Chain of Responsibility pattern) supports an
ordered list of subscribers to support cases in which at most one subscriber should
respond to a particular event.

17.1 Use of the Jini Technology Event Mechanism
Events are based on the Jini event specification, which provides the basic mechanisms for
distributed event systems of many types. This specification specializes Jini events for the
specific purpose of supporting a transient publish/subscribe event service. By adhering to
the Jini specification, general purpose adapters, such as mailboxes and store/forward
delegates, that are developed for Jini technology can be used with the event service
specified herein.

Events all have a event ID of javax.fma.services.event.Event.ID. The events
are further discriminated by the topic (‘.’ delimited strings), available as a topic property,
to which the event was posted.

 Event services must provide the minimal Jini specification guarantees with respect to
event sequence numbers. Details are available in the Jini event specification. In summary,
each event posted to the event service must be assigned a unique and increasing sequence
number. The conditions under which this guarantee holds, such as a minimum reboot
time, are implementation dependent.

Event Service

158 Federated Management Architecture Specification

17.2 The Event Object

17.2.1 Inherited Event Properties
The event object inherits the following event object properties from
net.jini.core.event.RemoteEvent.

17.2.1.1 Event ID

The event ID is always set to javax.fma.services.event.Event.ID.

17.2.1.2 Handback
The handback is a closure object that is provided by a listener and passed back to the
listener as part of the event object delivered to that particular listener.

17.2.1.3 Sequence Number
A number such that each posted event is assigned a unique number that increases
monotonically in the order that events are posted to the event service in accordance with
the Jini event specification. The sequence number are only guaranteed to be increasing,
not necessarily increasing by increments of one.

17.2.1.4 Source
The event source is of type java.lang.Object. Topics to which an event is posted may
further constrain the type of the source property as part of the contract between event
sources and listeners coupled through the topic. For example, the topic x.y.z may imply
that the source is of type Proxy. Verification that the event source is of an acceptable type
is not performed by the event service. In the presence of poorly behaved event sources,
listeners may receive events with invalid event sources. Note also that if a topic x.y.z
specifies a source type of T, then all specialized topics of x.y.z (such as x.y.z.1) must
specify a source Ts such that Ts specializes (implements or extends, directly or
indirectly) T.

17.2.2 Declared Event Properties
In addition to the inherited properties, events add the following declared properties.

17.2.2.1 Topic
The topic property is a ‘.’ delimited String specifying the topic to which the event was
posted. Note that this is not necessarily the topic from which the event was delivered to a
given listener. Thus, a listener registered for topic x may receive events with topics such
as x.y, x.y.z, and the like.

Event Service

Federated Management Architecture Specification Page 159

17.2.2.2 Base Event Object
An event object class is any class that, directly or indirectly, extends
javax.fma.events.Event. Event classes must be immutable, safely serializable, and
conform to JavaBeans coding conventions in terms of exposing properties as standard
getter methods.

package javax.fma.services.event;

import net.jini.core.event.RemoteEvent
import java.rmi.MarshalledObject;

/**Abstract event class. Subclasses must override
 * to add a type safe constructor for the events source.
 * Each event class implies a type for the source:
 * Proxy, String, URL, ... All subclass must also ensure
 * that clone(...) operates correctly.
 */
public abstract class Event extends RemoteEvent
{

static final long serialVersionUID = -7900250700219109818L;

public static final long ID = -2479143000061671589L;

/** Create an event object with populated source and topic
 * fields. The sequence number is undefined and the event ID
 * will be set to Event.ID
 * @param source The event object’s source (user defined).
 * @param topic The topic the event is to be posted to
 * (can’t be null).
 * @throws IllegalArgumentException Thrown if the topic is
 * null.
 */

 protected Event(Object source, String topic);

/** Topic to which this event was or will be posted.
 * This may not be the topic from which the event is
 * delivered, but may be instead being delivered in a parent
 * topic.
 * @return String The topic name.
 */

 public String getTopic();

Event Service

160 Federated Management Architecture Specification

/** Clone this event object. Implemented by the client.
 * @param Object The clone of this event object.
 */
public abstract Object clone();

/** Clone this event with a specific sequence number and
 * handback fields. Used only by the event service to create
 * an event for each subscription during delivery.
 * @param sequenceNum The sequence number of this event as
 * given by the event service to which it posted.
 * @param handback A registration object which is set to
 * match the handback of the listener this event is
 * being sent to.
 * @return Object The clone.
 */
public Event clone(

long sequenceNum,
MarshalledObject handback

);
}

17.2.3 Root Event Object

package javax.fma.services.event;

/**The root event is the type of event issued by
 * by the root topic. Generally, root events are passed
 * from a source event service to another listener
 * event service, of different management domains.
 * In addition to the contained event, the root event
 * carries a flag indicating whether the event was
 * already handled by a responsible listener. In such
 * cases, the event must not be passed to additional
 * responsible listeners.
 */
public final class RootEvent extends Event
{

static final long serialVersionUID = 3762653442195963656L;

Event Service

Federated Management Architecture Specification Page 161

/** Create a root event object containing a contained event
 * which may or may not have been handled. The source is
 * set to the name of the management domain containing the
 * event service providing the event. The topic is the root
 * topic (’.’) EventService.ROOT_TOPIC. This constructor
 * should only be called by the Event Service.
 * @param event The Event object to be contained in this
 * RootEvent.
 * @param handled Flag to indicate whether any further
 * processing needs to be done with respect to responsible
 * subscribers.
 */

 public RootEvent(Event event, boolean handled);

/** Get the contained event.
 * @return Event The contained event object.
 */
public Event getContainedEvent();

/** Return if this event has been handled by a responsible
 * listener.
 * @return boolean true if the Event was handled by a listener
 * in this Event Service, false if it was not.
 */

 public boolean isHandled();

/** Clone this event.
 * @return Object Returns a new RootEvent with the same field
 * values as the current one.
 */
public Object clone();

}

17.3 EventService Interface

Event Service

162 Federated Management Architecture Specification

package javax.fma.services.event;

import net.jini.core.event.RemoteEventListener;
import java.rmi.MarshalledObject;
import java.rmi.RemoteException;
import javax.fma.util.LocalizableMessage;

/** The Event Service interface. This event service follows a
 * publish/subscribe pattern for its operation. Objects post to
 * specific topics and RemoteEventListeners subscribe (or listen)
 * to topics. This enables a decoupling of the event sources from
 * the recipients. Event Services may also be subscribed to other
 * event services in other domains allowing one domain to
 * effectively "listen in" on another.
 */
public interface EventService

implements RemoteEventListener
{

/** Topic path for root topics
 */
String ROOT_TOPIC = (".");

/** Post an event to a topic.
 * @param event Event to be posted to the service.
 * @throws RemoteException Error communicating with the
 * service.
 */

 void post(Event event)
throws RemoteException;

/** Register as a subscriber of this event service.
 * All events posted to the service will be sent to
 * the subscriber, regardless of the posting topic,
 * after they have been fully processed by the local
 * event service. In particular, the service must
 * determine whether the event will be handled
 * locally by a responsible listener. Only a single
 * listening event service may subscribe to a source
 * event service. The event sent to the listening
 * service is of type RootEvent.
 * @param subscriber The event service to subscribe to this
 * one.
 * @param leaseLength Length of the lease desired for this
 * subscription.
 * @return Lease A lease which keeps the subscription alive
 * in the Event Service.
 * @throws TooManyListenersException Thrown if the event
 * service already has another service subscribed on it.
 * @throws RemoteException Error communicating with the
 * service.

 */
 Lease subscribeToEventService(

EventService subscriber,
long leaseLength

)
throws RemoteException, TooManyListenersException;

Event Service

Federated Management Architecture Specification Page 163

/** Subscribe as a observing listener to a topic. All events
 * posted to the topic, or a subtopic, will be sent to the
 * subscriber.
 * @param topic The name of the topic which to subscribe this
 * listener.
 * @param subscriber The listener wishing to subscribe.
 * @param handback An identifying object which is passed back
 * to the listener with each event.
 * @param leaseLength Length of the lease desired for this
 * subscription.
 * @return Lease A lease which keeps the subscription alive
 * in the Event Service.
 * @throws RemoteException Error communicating with the
 * service.
 */

 Lease subscribeObserver(
String topic,
RemoteEventListener subscriber,
MarshalledObject handback,
long leaseLength

)
throws RemoteException;

/** Register as a responsible listener in front of another
 * listener.
 * @param topic The name of the topic which to subscribe this
 * listener.
 * @param index Listener in front of which the new listener
 * must be inserted. If null, the new listener is added
 * as the first in the list for the given topic.
 * @param subscriber The listener wishing to subscribe.
 * @param description A description of this listener for
 * sorting purposes.
 * @param handback An identifying object which is passed back
 * to the listener with each event.
 * @param leaseLength Length of the lease desired for this
 * subscription.
 * @return Lease A lease which keeps the subscription alive
 * in the Event Service.
 * @throws UnknownListenerException Thrown if the listener
 * passed in the index parameter is not currently a
 * listener of the topic. This happens if the topic and
 * index are mismatched or if the listener’s lease expired.
 * @throws RemoteException Error communicating with the
 * service.
 */

 Lease subscribeResponsibleBefore(
String topic,
ResponsibleListenerInfo index,
RemoteEventListener subscriber,
String description,
MarshalledObject handback,
long leaseLength

)
throws RemoteException, UnknownListenerException;

Event Service

164 Federated Management Architecture Specification

/** Register as a responsible listener after another listener.
 * @param topic The name of the topic which to subscribe this
 * listener.
 * @param index Listener after which the new listener must be
 * inserted. If null, the new listener is added as the last
 * in the list for the given topic.
 * @param subscriber The listener wishing to subscribe.
 * @param description A description of this listener for
 * sorting purposes.
 * @param handback An identifying object which is passed back
 * to the listener with each event.
 * @param leaseLength Length of the lease desired for this
 * subscription.
 * @return Lease A lease which keeps the subscription alive in
 * the Event Service.
 * @throws UnknownListenerException Thrown if the listener
 * passed in the index parameter is not currently a
 * listener of the topic. This happens if the topic and
 * index are mismatched or if the listener’s lease expired.
 * @throws RemoteException Error communicating with the
 * service.

 */
 Lease subscribeResponsibleAfter(

ResponsibleListenerInfo index,
RemoteEventListener subscriber,
String description,
MarshalledObject handback,
long leaseLength

)
throws RemoteException, UnknownListenerException;

/** Return a list of responsible listeners for a given topic.
 * The results of this call can be used to determine where in
 * the responsible queue to insert a different listener.
 * @param topic The name of the topic for which to get the
 * info list.
 * @return ResponsibleListenerInfo[] An array of informational
 * objects which contains a handback object and a
 * description for each of the responsible listeners of
 * this topic.
 * @throws RemoteException Error communicating with the
 * service.
 */

 ResponsibleListenerInfo[] listResponsibleListeners(
String topic

)
throws RemoteException;

/** Information object which may be used to determine a
 * priority ordering for responsible subscriptions.
 */

 public static final class ResponsibleListenerInfo
implements Serializable

{
static final long serialVersionUID = -7411239350117183596L;

/** Description of the responsible listener to which this
 * object refers.
 */

Event Service

Federated Management Architecture Specification Page 165

 public final String description;

/** Handback of the responsible listener to which the
 * object refers.
 */

 public final MarshalledObject cookie;

/** Constructor used only by an Event Service
 * implementation.
 * @param description The description of this listener
 * given to the Event Service by the subscriber.
 * @param handback The handback object of given to the
 * Event Service by the subscriber.
 */

 public ResponsibleListenerInfo(
String description,
MarshalledObject cookie

);
}

}

package javax.fma.services.event;

import javax.fma.util.CompositeException;

/** Exception thrown by the Event Service by the two
 * subscribeResponsible methods. This will happen when there
 * is a request to place a new subscription in front of or after
 * another subscription that the Event Service can not find. A
 * possible cause for this exception could be that the old
 * subscription’s lease expired between the
 * "listResponsibleListeners()" and the "subscribeResponsible()"
 * methods.
 */
public class UnknownListenerException extends CompositeException
{
 static final long serialVersionUID = -3619356673049442353L;

/** Default constructor.
 * @see javax.fma.util.CompositeException
 */
 public UnknownListenerException();

/** Constructor which passes a trinket to
 * CompositeException’s constructor
 * @param trinket A localization trinket.
 * @see javax.fma.util.CompositeException
 */

 public UnknownListenerException(String trinket)
}

17.4 Topics
The topic space is a tree of individual topics. Each topic is uniquely identified by
appending the name of the topic to the name of its parent topic, using a ’.’ (period) as a

Event Service

166 Federated Management Architecture Specification

delimiter, to a form a topic path. The root topic is special. It is denoted by ’.’ and the topic
path for a child of the root topic is the topic name with a single prepended ’.’. For
example, the topic path of the top level topic of error would be ".error".

Each topic implies a specific class of event that it will accept and deliver. There is no
runtime maintenance or checking of this mapping, but is rather part of the contract
between event sources and listeners. The topic operates as an ignorant decoupling
between the source and listener without enforcing any aspects of such a contract. Thus, it
is possible that listeners receive an event object of an unexpected class. Listeners should
be written defensively to ignore such occurrences.

17.5 Chain of Responsibility
The event service features an implementation of the Chain of Responsibility pattern to
support events that warrant at most one response, such as a corrective action, to the event.
In addition to the unordered list of listeners, observing listeners, associated with a topic,
each topic also has an ordered list of responsible listeners. The topic will deliver a given
event to responsible subscribers synchronously in their order of registration. Delivery to
responsible subscribers may be done before, after, or concurrently with delivery to
observer subscribers. Events are first delivered to the most specialized chain of
responsibility and then, if not consumed by a responsible listener, to the chain of
responsibility of the next more general topic.

A responsible subscriber is considered to have handled an event if it returns from its post
operation without throwing an exception, checked or unchecked. If the exception is of
class EventNotHandledException, an unchecked exception, then the event service
must simply continue with the remaining responsible subscribers. Otherwise, the event
service may choose to log the exception as an indication of a faulty listener.

package javax.fma.services.event;

import java.rmi.RemoteException;

/** Exception thrown by responsible Event Service Subscribers to
 * signal that the event passed to them was not handled for some
 * reason.
 */
public class EventNotHandledException extends RemoteException
{

static final long serialVersionUID = -1147286052615567143L;

/**Construct a new EventNotHandledException. */
public EventNotHandledException();

}

17.6 Subscribing
Listeners subscribe as observing or responsible listeners to a particular topic. In either
case, a Lease is returned that must be maintained.

Event Service

Federated Management Architecture Specification Page 167

17.6.1 Observing Listeners
Observing listeners are an unordered set of listeners for a particular topic. Listeners for a
topic will also receive events from all descendent topics. There is no order of delivery
implied with respect to listeners of a topic versus listeners of a subtopic.

17.6.2 Responsible Listeners
Responsible listeners are ordered both within a topic and between child and parent topics.
Given an event posting to a particular topic T, the ordered set of responsible listeners is
formed by taking the responsible listeners of T and appending the responsible listeners of
the parent of T and so on recursively. Thus, events are delivered first to the responsible
listeners of the most specific topic.

Because responsible listeners are ordered, the subscription methods include variants to
control where a responsible listener is placed within the list of responsible listeners.

17.6.3 Event Service as Listeners
When one event service subscribes as a listener to another event service, special listener
semantics apply in order to ensure that only one responsible listener handles a particular
event, even across event services. The first of these is that an event service supports only
a single listener to the service itself. Secondly, the event must by fully processed in the
source event service, with respect to responsible listeners, before passing it to the
listening event service. This allows the source event service to inform the listening event
service as to whether the event must be propagated to additional responsible listeners.

The event object passed from a source event service to a listening event service is of type
RootEvent. These objects contain an the posted event as well as a handled flag. An
event service receiving a handled event must not pass it on to any responsible listeners
under its control. In addition, it must make sure the handled flag is set if it passes the
event to another listening event service.

17.6.4 Listeners as Good Citizens
Events delivered to listeners are done so in threads granted to the listener by the event
service. Listeners must only perform simple, low risk operations in the event delivery
thread and decouple more complex tasks to a thread owned by the subscriber. The event
service can detect a hung or unresponsive listener and cease to deliver events to the
listener in order to conserve resources within the event service. A subscription may be
cancelled autonomously by the event service only in response to the following
conditions.

1) The listener fails to return the event delivery thread within a reasonable time limit,
not shorter than 15 seconds, as perceived by the event service.

2) The Lease associated with the subscription is not renewed.

The events service must cancel a subscription in response to the following conditions.

Event Service

168 Federated Management Architecture Specification

1) Event delivery results in a java.rmi.RemoteException that is not a
java.rmi.UnexpcetedException. This would indicate a communication error or
that the listener has otherwise become unreachable.

2) Event delivery throws a
java.fma.services.event.RemoveListenerException.

3) The Lease associated with the subscription is cancelled.

Listeners should only throw
java.fma.services.event.EventNotHandledException,
java.fma.services.event.RemoveListenerException, and
net.jini.core.event.UnknownEventException.

A listener can cancel its own subscription explicitly by canceling the associated Lease.
Regardless of how the subscription is terminated, the event service must ensure that any
attempt to renew or otherwise access the associated Lease associated with a terminated
subscription results in an UnknownLeaseException.

package javax.fma.services.event;

import java.rmi.RemoteException;

/** Exception thrown by Event Service Subscribers to signal that
 * they wish their subscription to be removed from the Event
 * Service.
 */
public class RemoveListenerException extends RemoteException
{
 static final long serialVersionUID = -5813372277389410796L;

/** Construct a RemoveListenerException object. */
public RemoveListenerException();

}

17.6.5 Leases
Leases are used to reserve the resources associated with a subscription. Either the listener
(or another party, which has access to the Lease) or the event service, may nullify the
Lease. Leases will also be lost if an event service crashes and is restarted. The inability
to maintain a Lease, indicated by an
net.jini.core.lease.UnknownLeaseException thrown during renewal, indicates
that the subscription is no longer intact, for whatever reason. In response, the listener can
choose to heal the situation by subscribing again and do any work that may be required
given the expected loss of events.

17.7 Event Ordering
For the purposes of event ordering, one can consider observing listeners and responsible
listeners independently as there is no ordering specified between the two groups.

Event Service

Federated Management Architecture Specification Page 169

Ordering is specified with respect to event postings and subscriptions. An event posting
E2 is said to be after an event posting E1 if and only if the posting of E1 returns before the
posting of E2 is initiated.

Each subscription to a topic results in a single, unique subscription. If a listener
subscribes to N topics (or one topic N times), the result is N subscriptions. Ordering is
specified with respect to a subscription, not a listener. Subscriptions may be unordered
(observing listeners) or ordered (responsible listeners). Subscriptions also have
relationships based on the hierarchical relationships of their associated topics. A
subscription S1 is superior to a subscription S2 if and only if the topic associated with S1

is the parent of the topic associated with S2.

One says that an event E1 is delivered before E2 to a subscription if and only if the
delivery method of the associated listener returns from delivering E1 before the method is
invoked to deliver E2: non-overlapping deliveries.

One says that an event is delivered to a subscription S1 before a subscription S2 if and
only if the delivery associated with S1 returns before the delivery associated with S2 is
invoked: non-overlapping deliveries.

17.7.1 Observing Listeners
The following subscriptions are with respect to observing listeners.

1) For a given event posting, there is no specified order in which the event is
delivered to observing listener subscriptions.

2) If E2 is posted after E1, then E2 must be delivered after E1, with respect to any
one observing listener subscription. The effect is as if each subscription had an
associated queue to which events were posted synchronously and delivered
asynchronously.

17.7.2 Responsible Listeners
The following subscriptions are with respect to responsible listeners.

1) For a given event posting, if a subscription S1 is before S2, both of the same
topic, then the event must be delivered to the listener of S1 before being
delivered to the listener of S2.

2) For a given event posting, if a subscription S2 is superior to a subscription S1,
then the event must be delivered to the listener of S1 before being delivered to
the listener of S2.

3) If E2 is posted after E1, then E2 must be delivered after E1, with respect to any
one responsible listener subscription with the exception that this ordering is no
longer pertinent if E1 will never be delivered to the responsible listener
(presumably because is was handled).

17.7.3 Event Service Listeners
1) An event service may have at most one event service listener.

Event Service

170 Federated Management Architecture Specification

2) For a given event, the event must have been delivered to all of the pertinent
responsible listeners or have been handled before delivering the event to the
event service listener.

3) If E2 is posted after E1, then E2 must be delivered to the event service listener
after E1.

17.7.4 Sequence Numbers
1) If E2 is posted after E1, then E2 must be assigned a sequence number that is

greater than the sequence number assigned to E1.

17.8 Transactions
Listener subscription and event dispatching ignore any transaction context that may exist.
If a listener registers interest in a topic within the context of a transaction and the
transaction aborts, the listener will not be removed. If an even source delivers an event to
a topic, which forwards the events asynchronously to interested listeners, the listeners
will not receive the event in the transaction context in which it was sent.

17.9 Event Service Persistence
An event service persists only its service ID. The event service is otherwise stateless and
must not persist subscriptions and associated information. When an event service is
shutdown and restarted, all subscription information is lost. The subscriptions are rebuilt
over time as listeners respond to failed Leases by re-subscribing and performing any
actions associated with the possible loss of events while the event service was
inoperative.

17.10 Management Facades
A management façade, a group of objects acting on behalf of a managed resource,
directly handles events on behalf of its resource. This includes subscribing, generating
events, translating, filtering, correlating, and posting events from its resource.

17.10.1 Event Listening
The management façade subscribes for events that are relevant to its resource, and using
an appropriate message and its associated protocol, notifies the resource of the event.

17.10.2 Event Generation
The management façade should generate events and post them to the event service on
behalf of its resource when the relevant conditions occur, but for which the resource itself
does not generate notifications. For example, the management façade can generate events
to indicate:

1) Loss of contact, or restored contact with the resource.

Event Service

Federated Management Architecture Specification Page 171

2) Unexpected or incorrect behavior by the resource.

3) Incorrect behavior by other objects interacting with the management façade.

4) Inconsistent internal states inside the management façade itself.

5) Important incidents or changes of state in the managed resource that the management
façade detects by polling, rather than by notifications from the resource.

17.10.3 Event Translation and Posting
The management façade is responsible for receiving notifications from its resource,
translating them into management events and posting the event to the appropriate event
service.

17.10.4 Event Filtering
The management façade can choose not to post a notification from its resource to the
event service, if the notification is not relevant to other objects in the system. For
example, if the notification indicates a condition that can be handled completely by the
management façade itself, without intervention by the network operator or by other
components, the management façade may choose not to post that notification to the event
service.

17.10.5 Event Correlation
The management façade should correlate event notifications from its resource whenever
possible and consolidate multiple related events into a single post to the event service.

Federated Management Architecture Specification Page 173

18 Scheduling Service

The scheduling service allows autonomous tasks to be scheduled for performance at some
future time or times. Scheduled tasks are persistent and do not have to be rescheduled if
the scheduler server terminates and is restarted. The scheduling service is used to
schedule large-scale activities, not for small-scale activities or transient tasks, as the
scheduling and notification overhead (remote communication, security, transactions,
leases, etc.) is substantial. For scheduling small, rapid, or transient tasks, a local facility is
recommended.

18.1 SchedulingService Interface
Scheduling services proxies must implement the
javax.fma.services.scheduling.SchedulingService interface.
Implementations must persist scheduled tasks to allow continued performance of tasks in
case of scheduling service failure and recovery. Scheduled tasks should be performed as
close as reasonable to the scheduled time, but timeliness guarantees are not required.

Tasks are scheduled using the scheduleTask() method, which returns a Ticket object
representing the scheduling. If a single task is scheduled multiple times with the
scheduling service (i.e., the scheduleTask() method is called more than once with the
same task), a different Ticket is returned for each schedule. A scheduling service does
not attempt to detect or disallow the duplicate scheduling of a task.

Scheduled tasks are cancelled with the cancel() method of the Ticket object.
Alternately, a task may throw a net.jini.core.event.UnknownEventException exception
from within its notify() method. When all scheduled performances of a task are
completed, the task is automatically cancelled.

Scheduling Service

174 Federated Management Architecture Specification

package javax.fma.services.scheduling;

import java.io.Serializable;
import java.rmi.MarshalledObject;
import java.rmi.RemoteException;
import java.util.Date;

import javax.fma.util.LocalizableMessage;

import net.jini.core.event.RemoteEvent;
import net.jini.core.event.RemoteEventListener;

/** Scheduling service
 */
public interface SchedulingService
{
 // Constants for latePerformancesAllowed parameter

 /**No late performances are allowed.
 * Late performances will be skipped.
 */
 int NONE = 0;

 /**Only one late performance is allowed.
 * Duplicate late performances will be skipped.
 */
 int ONE = 1;

 /**All late performances are allowed.
 * All scheduled performances will occur.
 */

int ALL = Integer.MAX_VALUE;

Scheduling Service

Federated Management Architecture Specification Page 175

/**Schedule task to be performed according to
 * schedule.
 * @param task Task to be performed.
 * @param description Description describing this
 * task. May be used in administrative interfaces
 * to the scheduling service.
 * @param schedule Schedule of task performances.
 * @param latePerformancesPolicy Number of
 * performances that should be initiated when
 * performance times have been missed. NONE, ONE,
 * or ALL are the only allowable values.
 * @param handback Closure handback object to be
 * passed back to the Task when performed. May be
 * null.
 * @return Returns Ticket object for canceling the
 * task.
 * @throws IllegalArgumentException If an argument
 * except handback is null or if
 * latePerformancesPolicy is not one of NONE, ONE,
 * or ALL.
 */

 Ticket scheduleTask(
 RemoteEventListener task,

LocalizableMessage description,
 Schedule schedule,
 int latePerformancesPolicy,

MarshalledObject handback
)

throws RemoteException;

/**Cancel a scheduled task. Only called by
 * the Ticket.cancel() method.
 * @param cookie The cookie of a Ticket issued by this
 * scheduling service.
 * @throws IllegallArgumentException The cookie is
 * null or was not issued by this service, the task
 * was already cancelled, or the cookie is
 * otherwise invalid.
 */
void cancel(MarshalledObject cookie)

throws RemoteException;

/** Create a schedule for specified dates.
 * @param performanceDates Dateson which the task
 * should be performed.
 * @throws IllegalArgumentException If array is null
 * or empty.
 */
Schedule newDateSchedule(Date[] performanceDates);

Scheduling Service

176 Federated Management Architecture Specification

/** Create a schedule for performing tasks on even
 * intervals between a start and end date.
 * @param startDate Date first performance is
 * scheduled.
 * @param endDate Date after which no performances
 * are scheduled.
 * @throws IllegalArgumentException If dates are null
 * or intervalsMillis is negative.
 */
Schedule newDurationSchedule(

Date startDate,
Date endDate,
long intervalsMillis

);

/** Create a Schedule which will repeatedly perform
 * a task according to a calendar. Parameters are
 * similar to UNIX crontab scheduling. Day and month
 * constants are found in the Calendar class.
 * @param startDate Date before which no performances
 * are to be scheduled.
 * @param endDate Date after which no performances are
 * to be scheduled.
 * @param months Months during which task should be
 * run (i.e., Calendar.OCTOBER).
 * @param daysOfMonth Days of the month performances
 * are scheduled. May be null or empty if
 * daysOfWeek is specified.
 * @param daysOfWeek Days of the week performances are
 * scheduled (i.e., Calendar.FRIDAY). May be
 * null or empty if daysOfMonth are specified.
 * @param hours Hours (0-23) at which performances are
 * scheduled.
 * @param minutes Minutes (0-59) at which performances
 * are scheduled.
 * @param seconds Seconds (0-59) at which performances
 * are scheduled.
 * @param timeZone The time zone in which performances
 * are being scheduled.
 * @throws IllegalArgumentException If daysOfMonth
 * and daysOfWeek are both null or empty arrays, or
 * if months, hours, or minutes are null or empty
 * arrays, or if any array values are out of bounds.
 */
Schedule newRepeatedDateSchedule(

Date startDate,
Date endDate,
int[] months,
int[] daysOfMonth,
int[] daysOfWeek,
int[] hours,
int[] minutes,
TimeZone timeZone

);

Scheduling Service

Federated Management Architecture Specification Page 177

/**Return from a scheduling operation so that a
 * scheduled task may be cancelled.
 */
public static final class Ticket

implements Serializable
{

private final MarshalledObject cookie;

/**Construct a Ticket. May only be called by a
 * scheduling service.
 */
public Ticket(

SchedulingService service,
MarshalledObject cookie

);

/**Cancel a previously scheduled task. Invokes
 * the cancel method of the service with the
 * provided cookie.
 */
public void cancel()

throws RemoteException;
}

/**The schedule interface. Encapsulates a
 * schedule.
 */
public interface Schedule extends Serializable
{

/**Return the next scheduled performance after the
 * specified time.
 * @param date Date beyond which to search for
 * the next performance.
 * @return Return Date at which the next
 * performance is scheduled to occur or null
 * if no more performances are scheduled.
 * @throws IllegalArgumentException If date is
 * null.

 */
Date getNextPerformance(Date date);

}
}

18.2 Ticket
A Ticket is evidence of the scheduling of a task. Ticket objects are created exclusively
by the SchedulingService.scheduleTask() method. Future scheduled
performances of a task may be cancelled using the cancel() operation on Ticket. Note
that the cancel operation prevents further execution of the task under a particular
schedule. It does not abort a currently executing task. In general, it is considered unsafe
to interrupt executing tasks and no means are provided for doing so.

Scheduling Service

178 Federated Management Architecture Specification

18.3 Tasks
Tasks must implement the net.jini.core.event.RemoteEventListener interface
and be serializable. The RemoteEventListener.notify() method provides the point
of initiation for a task. The event object shall be of
typenet.jini.core.event.RemoteEvent and contain the hand back object, if any,
provide when the task was scheduled. The event source shall be a String of the form:
"Management Scheduling Service". The event sequence number shall increase with each
task initiated by the service, but is not required to increment by one. If a task is
reinitiated, because of failure of the task or the scheduling service, the event shall retain
its original number. The event ID is not used and shall be set to 0L.

Tasks must be serializable to allow the scheduling service to persist the scheduled task.
Implementations of the scheduling service must hold a hard reference to the task to
ensure that it is not garbage collected before all scheduled performances are completed.

18.4 Schedules
The Schedule interface has three standard implementations: DateSchedule,
RepeatedDateSchedule, and DurationSchedule. These standard schedules are
created using the factory methods on the SchedulingService interface. Note that these
methods are local and do not throw a remote exception.

Other custom implementations are allowable by implementing the Schedule interface.
Schedule mplementations must be safely serializable as they are passed by value to the
service.

18.5 Task Performance
When the scheduled time for a task arrives, the task is performed by calling the
RemoteEventListener.notify() method. A task may indicate that no future
scheduled performances shall be performed by throwing a
net.jini.core.event.UnknownEventException.

18.5.1 Thread
Threads are granted from the scheduling service to the task. Implementations of the
scheduling service may limit the number of threads available or otherwise limit the
resource consumption of the scheduling service.

18.6 Scheduling Conflicts
The SchedulingService will not initiate concurrent performances of a scheduled task.
Thus, it is possible that one or more scheduled performance times may pass while the
service is waiting for the current performance to complete. When a task completes, if
scheduled performances have been missed, the scheduling service determines how many
(if any) of the missed performances will be performed. This is determined by the value of
the latePerformancesPolicy parameter of the scheduleTask() method.

Scheduling Service

Federated Management Architecture Specification Page 179

Acceptable values are SchedulingService.NONE, SchedulingService.ONE, and
SchedulingService.ALL.

Concurrent performances of a single task can be achieved by scheduling a task with
multiple schedules (i.e., calling scheduleTask() multiple times).

18.7 Protection from Task Exceptions
The scheduling service must protect itself from throwables thrown from task execution.
These exceptions shall be caught and logged to the log service, but not propagated
further.

18.8 Scheduling Service Failure
If a scheduling service fails and is recovered, it must not lose scheduled tasks. Thus,
SchedulingService implementations are responsible for persisting scheduled tasks.
Remote tasks in progress when the service fails will continue to run except that they will
be unable to renew their leases. If detected, the tasks should consider this an indication to
abort. When the scheduling service recovers, the running tasks will be considered
incomplete and will be restarted.

It is possible, depending on the timing of a task and the failure of the service, that a task
is executed more than once.

It is also possible that copies of a task can be executed concurrently. For example, if a
task is running when the service fails, but the task doesn’t notice (failure to renew the
lease) the failure until some time after the service has recovered. The service, on
recovery, will attempt to restart the task, which could result in two copies of the task
running concurrently. Tasks, which are not idempotent, may protect themselves against
multiple execution runs using means specific to the task. None-the-less, the scheduling
service should minimize the possibility by, on recovery, waiting T seconds, where T is
twice the longest outstanding task lease duration, before restarting tasks. This delay
allows orphan tasks a reasonable chance to detect the failure of the service and react
accordingly. To be reasonable, the lease duration should be at least 60 seconds and as
high as 300 seconds.

Glossary

A

180 Federated Management Architecture Specification

access control The security control of a particular thread of execution to a protected
resource.

acceptor stubs Remote references to corresponding acceptors. The acceptor stub/acceptor
pair forms the RMI based outer interfaces to a referent object.

appliance A managed resource with an embedded station capable of hosting dynamic
services.

auditing The durable recording of the performance of certain operations, such as
authentication success or failure, for the purposes of respective analysis, often
in response to a suspected security breach.

authentication A classification of security constraint that verifies that the operation is
executed on behalf of a certain Principal.

C
client A client is an external source of activity: external in the sense of being

outside of the specified system whether it be a federation of station or a
middle tier. The term "client" is sensitive the context in which it being used.
For example, consider two-object communicating peer-to-peer. In the context
of a single communication, the object initiating the communication (source of
activity) is the client while the other is the server. In the context of another
communication, the roles may be reversed. Thus, one cannot label a particular
entity as a client (or server) with specifying the context in which the labeling
applies, such as a particular communication.

Common Information Model
(CIM)

A specification that is a description of an object model and of a language in
which to describe the classes and the instances of objects of that model.

Common Information Model
Schema

A set of standardized default objects and associations for representing
computing systems.

confidentiality The protection, or desire for protection, of information as to be
incomprehensible by unauthorized parties.

F
Federation of Stations The set of authenticated JVMs, usually stations that are considered

completely secure.

I
implementation delegation A technique used to abstract static methods when separating implementation

from specification. Object methods may be abstracted for this purpose using
interfaces. However, constructors and class methods require some form of
implementation delegation.

Interdomain federation A union of shared and private management servers within a single domain.

Federated Management Architecture Specification Page 181

integrity The protection, or desire for protection, of information as to be unalterable,
without detection, by unauthorized parties.

Intrinsic class servers Small HTTP class servers, which are embedded in clients or stations, for the
purpose of support RMI network class loading.

J
JAAS Java Authentication and Authorization Service

L
logic method A method that is not directly responsible for state - stateless.

M
management façade (MF) A dynamic service that provides access to a managed resource.

management server A station capable of supporting dynamic services.

management server federation The union of shared and private management servers with a single
management domain. The domain maps to the Jini technology group with
which the servers are registered. From a practical standpoint, a federation
must generally be contained within a Local Area Network (LAN). Thus,
members of the federation are not expected to be separated by unreliable
networks or such constructs as firewalls.

O
observer subscribers Topic subscribers that are not "responsible subscribers". Observer subscribers

may receive event notification but cannot consume an event.

P
Principal A JAAS and Java concept that can be thought of as one possible name for a

subject.

private management servers A class of management server that is embedded in storage appliances.

proxy A remote reference to a referent. The referent can be an object or class.

Proxy binding The process of associating a Proxy with its acceptor, whether initially or for
refreshing.

R
referents The object or class to which a particular Proxy refers.

182 Federated Management Architecture Specification

replication group A group of stations that are considered to be a single logical entity but
replicated for the purposes of redundancy. The members of a replication
group, therefore, must be interchangeable.

responsible subscriber A subscriber that can consume (handle) and event and prevent propagation of
the event to other responsible subscribers.

Roles A standard class of Principal in the security model.

S
security domain A realm of trust against which Subjects are authorized and Roles defined.

Security service A server that performs secure authentication and user/role management.

shared management server The server (or replicated set of servers) that belongs to and represents an
entire management domain.

station A JVM enabled to support dynamic services. Stations are themselves Jini
technology services.

station proxy A proxy, in the Jini technology sense, that refers to a station.

subject A JAAS concept that represents the source of an operation request, such that
a person or service.

sub topics Topics that specialize, either directly or indirectly, a base topic.

