
Sun Microsystems, Inc.
901 San Antonio Road

Palo Alto, CA 94303
U.S.A. 650-960-1300

Public Release 3, May 2000

Java™ Management Extensions
Instrumentation and Agent
Specification, v1.0

Please

Recycle

Copyright 2000 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303 U.S.A. All rights reserved.

This document and the technology it describes are protected by copyright and distributed under licenses restricting their use, copying,

distribution, and decompilation. No part of this document may be reproduced in any form by any means without prior written authorization of

Sun and its licensors, if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Sun, Sun Microsystems, the Sun logo, Java, the Java Coffee Cup logo, JMX, JDK, EmbeddedJava, PersonalJava, JavaBeans, Enterprise

JavaBeans, J2EE, J2ME, Java Naming and Directory Interface, JDBC, Javadoc, Java Community Process, Jini and Sun Spontaneous Management

are trademarks, registered trademarks, or service marks of Sun Microsystems, Inc. in the U.S. and other countries.

Federal Acquisitions, Commercial Software -- Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,

INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,

ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2000 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, Californie 94303 Etats-Unis. Tous droits réservés.

Ce document et la technologie qu’il décrit sont protégés par un copyright et distribués avec des licences qui en restreignent l’utilisation, la copie,

la distribution, et la décompilation. Aucune partie de ce document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit,

sans l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la

technologie relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Sun, Sun Microsystems, le logo Sun, Java, le logo Java Coffee Cup, JMX, JDK, EmbeddedJava, PersonalJava, JavaBeans, Enterprise JavaBeans,

J2EE, J2ME, Java Naming and Directory Interface, JDBC, Javadoc, Java Community Process, Jini et Sun Spontaneous Management sont des

marques de fabrique ou des marques déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays.

LA DOCUMENTATION EST FOURNIE "EN L’ETAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES

OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT

TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L’APTITUDE A UNE UTILISATION PARTICULIERE OU A

L’ABSENCE DE CONTREFAÇON.

Contents

1. Introduction to the JMX™ Specification 17

Benefits of the JMX Architecture 18

Scope of this Specification 19

Reference Implementation 20

Compatibility Test Suite 20

Architectural Overview 20

Instrumentation Level 21

Agent Level 22

Distributed Services Level 23

Additional Management Protocol APIs 24

Component Overview 25

Components of the Instrumentation Level 25

MBeans (Managed Beans) 25

Notification Model 26

MBean Metadata Classes 27

Components of the Agent Level 27

MBean Server 27

Agent Services 28

Conformance 29
iii

Instrumentation Level 29

Agent Level 29

What Has Changed 30

Part I. JMX Instrumentation Specification

2. MBean Instrumentation 33

Definition 33

Concrete Classes 34

MBean Public Constructor 34

Standard MBeans 36

MBean Interface 36

The MyClass Example MBean 37

Lexical Design Patterns 38

Attributes 38

Operations 39

Case Sensitivity 40

Dynamic MBeans 40

DynamicMBean Interface 41

Behavior of Dynamic MBeans 42

Coherence 43

Dynamics 43

Inheritance Patterns 44

JMX Notification Model 47

Notification Type 48

Notification Class 49

NotificationBroadcaster Interface 50

NotificationListener Interface 51

NotificationFilter Interface 51
iv JMX Instrumentation and Agent Specification, v1.0 • May 2000

Attribute Change Notifications 51

AttributeChangeNotification Class 52

AttributeChangeNotificationFilter Class 52

MBean Metadata Classes 53

MBeanInfo Class 54

MBeanFeatureInfo Class 55

MBeanAttributeInfo Class 55

MBeanConstructorInfo Class 56

MBeanOperationInfo Class 56

MBeanParameterInfo Class 57

MBeanNotificationInfo Class 57

3. Open MBeans 59

Overview 59

Basic Data Types 60

Representing Complex Data 61

CompositeData Class 62

TabularData Class 62

Open MBean Metadata Classes 63

OpenMBeanInfo Class 64

OpenMBeanOperationInfo and OpenMBeanConstructorInfo
Classes 64

OpenMBeanParameterInfo and OpenMBeanAttributeInfo Classes 65

CompositeParameterInfo and CompositeAttributeInfo Classes 66

TabularParameterInfo and TabularAttributeInfo Classes 66

Open MBean Requirements Summary 67

4. Model MBeans 69

Overview 69
Contents v

Generic Notifications 71

Interaction with Managed Resources 72

Interaction with Management Applications 73

Model MBean Metadata Classes 73

Descriptor Interface 74

Descriptor Interface Implementation 74

DescriptorAccess Interface 76

ModelMBeanInfo Interface 76

ModelMBeanInfo Implementation 77

ModelMBeanAttributeInfo Implementation 80

ModelMBeanConstructorInfo Implementation 81

ModelMBeanOperationInfo Implementation 81

ModelMBeanNotificationInfo Implementation 82

Model MBean Specification 83

ModelMBean Interface 83

ModelMBean Implementation 84

DynamicMBean Implementation 85

PersistentMBean Interface 87

ModelMBeanNotificationBroadcaster Interface 87

ModelMBeanNotificationBroadcaster Implementation 88

Descriptors 89

Attribute Behavior 90

Notification Logging Policy 90

Persistence Policy 90

Cached Values Behavior 91

Protocol Map Support 92

Export Policy 92
vi JMX Instrumentation and Agent Specification, v1.0 • May 2000

Visibility Policy 93

Presentation Behavior 93

Predefined Descriptor Fields 94

MBean Descriptor Fields 94

Attribute Descriptor Fields 95

Operation Descriptor Fields 97

Notification Descriptor Fields 98

Part II. JMX Agent Specification

5. Agent Architecture 101

Overview 101

JMX Compliant Agent 103

Protocol Adaptors and Connectors 103

6. Foundation Classes 105

ObjectName Class 105

Domain Name 106

Key Property List 106

String Representation of Names 106

Pattern Matching 107

Pattern Matching Examples 107

ObjectInstance Class 108

Attribute and AttributeList Classes 109

JMX Exceptions 109

JMException Class and Subclasses 109

JMRuntimeException Class and Subclasses 111

Description of JMX Exceptions 112

JMException Class 112
Contents vii

ReflectionException Class 112

MBeanException Class 112

OperationsException Class 112

InstanceAlreadyExistsException Class 113

InstanceNotFoundException Class 113

InvalidAttributeValueException Class 113

AttributeNotFoundException Class 113

IntrospectionException Class 113

MalformedObjectNameException Class 113

NotCompliantMBeanException Class 113

ServiceNotFoundException Class 113

MBeanRegistrationException Class 114

JMRuntimeException Class 114

RuntimeOperationsException Class 114

RuntimeMBeanException Class 114

RuntimeErrorException Class 114

7. MBean Server 115

Role of the MBean Server 115

MBean Server Factory 115

Registration of MBeans 116

MBean Registration Control 116

Operations on MBeans 118

MBean Server Delegate MBean 119

Remote Operations on MBeans 120

MBean Server Notifications 121

Queries 122

Scope of a Query 123

Query Expressions 123
viii JMX Instrumentation and Agent Specification, v1.0 • May 2000

Methods of the Query Class 124

Query Expression Examples 125

Query Exceptions 126

BadAttributeValueExpException Class 126

BadStringOperationException Class 126

BadBinaryOpValueExpException Class 126

InvalidApplicationException Class 126

8. Advanced Dynamic Loading 127

Overview 127

The MLET Tag 128

The M-Let Service 130

Loading MBeans from a URL 130

Class Loader Functionality 131

9. Monitoring 133

Overview 133

Types of Monitors 133

MonitorNotification Class 134

Common Monitor Notification Types 135

CounterMonitor Class 136

Counter Monitor Notification Types 137

GaugeMonitor Class 138

Gauge Monitor Notification Types 139

StringMonitor Class 140

String Monitor Notification Types 141

Implementation of the Monitor MBeans 141

10. Timer Service 143

Timer Notifications 143
Contents ix

TimerNotification Class 144

Adding Notifications to the Timer 144

Removing Notifications From the Timer 145

Starting and Stopping the Timer 145

11. Relation Service 147

The Relation Model 147

Terminology 148

Example of a Relation 148

Maintaining Consistency 149

Implementation 150

External Relation Types 151

External Relations 152

Relation Service Classes 153

RelationService Class 154

RelationNotification Class 156

MBeanServerNotificationFilter Class 156

Interfaces and Support Classes 157

RelationType Interface 158

RelationTypeSupport Class 158

Relation Interface 159

Specified Methods 159

Maintaining Consistency 160

RelationSupport Class 161

Role Description Classes 161

RoleInfo Class 162

Role Class 163

RoleList Class 163
x JMX Instrumentation and Agent Specification, v1.0 • May 2000

RoleUnresolved Class 164

RoleUnresolvedList Class 164

RoleResult Class 164

RoleStatus Class 164
Contents xi

xii JMX Instrumentation and Agent Specification, v1.0 • May 2000

Preface

This document provides an introduction to the Java™ Management extensions and

then gives the JMX™ instrumentation and agent specifications that define these

extensions. It is not intended to be a programming guide nor a tutorial, but rather a

comprehensive specification of the architecture, design patterns and programming

interfaces for these components.

The complete JMX specification is composed of this document and the

corresponding Javadoc™ API which completely defines all programming objects.

Who Should Use This Book

The primary focus of this specification is to define the extensions to the Java

programming language for all actors in the software and network management field.

Also, programmers who wish to build devices, applications, or implementations

which conform to JMX will find this specification useful as a reference guide.

Before You Read This Book

This specification assumes a working knowledge of the Java programming language

and of the development environment for the Java programming language. It is

essential to understand the JDKTM software and be familiar with system or network

management. A working knowledge of the JavaBeansTM model is also helpful.
xiii

All object diagrams in this book use the Unified Modeling Language (UML) for

specifying the objects in the Java programming language that comprise the JMX

specification. This allows a visual representation of the relation between classes and

their components. For a complete description of UML see:

http://www.rational.com/uml/resources/documentation/

How This Book Is Organized

Chapter 1 provides an overview of the scope and goals of the JMX specification. It

explains the overall management architecture and presents the main components.

Part I “JMX Instrumentation Specification”

Chapter 2 presents the standard and dynamic MBeans, their characteristics and

design patterns, their naming scheme, the notification model and the MBean

metadata classes.

Chapter 3 presents the optional open MBean components and their Java classes.

Chapter 4 presents the model MBean concept and the Java classes on which it relies.

Part II “JMX Agent Specification”

Chapter 5 presents the architecture of the JMX agent and its components.

Chapter 6 defines the foundation classes used by the interfaces of the JMX agent

components.

Chapter 7 defines the MBean server and the methods available to operate on

managed objects, including queries that retrieve specific managed objects.

Chapter 8 defines the m-let (management applet) service which loads classes and

libraries dynamically from a URL over the network.

Chapter 9 defines the monitoring service which observes the value of an attribute in

another managed object and signals when thresholds are reached.

Chapter 10 defines the timer service which provides scheduling capabilities.

Chapter 11 defines the relation service which creates relation types and maintains

relations between MBeans based on these types.
xiv JMX Instrumentation and Agent Specification, v1.0 • May 2000

Related Information

IBM has contributed the specification, reference implementation, and compatibility

test suites for model MBeans in the JMX Instrumentation specification, including

Chapter 4 of this document.

The definitive specification for all Java objects and interfaces of the JMX specification

is the Javadoc API generated for these classes. It is available as a compressed archive

file at the following URL:

http://java.sun.com/aboutJava/communityprocess/first/jsr003/index.html

The JMX additional management protocol APIs are described in separate

specifications. They are given in separate Java Specification Requests (JSRs) which

are being developed through the Java Community ProcessSM:

■ The JSR for the SNMP Manager API is currently being reviewed; it will appear at:

http://java.sun.com/aboutJava/communityprocess/accepted.html

■ JSR-000048 WBEM Services Specification has been accepted and is described at:

http://java.sun.com/aboutJava/communityprocess/jsr/jsr_048_wbem.html

■ JSR-000070 IIOP Protocol Adapter for JMX Specification has been accepted:

http://java.sun.com/aboutJava/communityprocess/jsr/jsr_070_jmxcorba.
html

Additional information can be found on the JMX web site:

http://java.sun.com/products/JavaManagement
Preface xv

Typographic Conventions

The following table describes the typographic changes used in this book.

TABLE P-1 Typographic Conventions

Typeface or
Symbol Meaning Example

AaBbCc123 The names of literals and the

underlined text of URLs

(Universal Resource Locators).

Set the value of the name descriptor.

See the http://java.sun.com web site

AaBbCc123 The names of interfaces, classes,

fields or methods in the Java

programming language.

The Timer class implements the

TimerMBean interface.

AaBbCc123 Book titles, new words or terms,

or words to be emphasized.

Read Chapter 6 in the User’s Guide.

These are called class options.

You must implement this interface.
xvi JMX Instrumentation and Agent Specification, v1.0 • May 2000

CHAPTER 1

Introduction to the
JMX™ Specification

The JavaTM Management extensions (also called the JMX™ specification) define an

architecture, the design patterns, the APIs, and the services for application and

network management in the Java programming language. This chapter introduces

all of these elements, presenting the broad scope of these extensions. The rest of this

document, along with its corresponding Javadoc API, represents the first phase of

the JMX specification.

The JMX specification provides Java developers across all industries with the means

to instrument Java code, create smart Java agents, implement distributed

management middleware and managers, and smoothly integrate these solutions into

existing management systems. In addition, the JMX specification is referenced by a

number of Java APIs for existing standard management technologies.

The JMX architecture is divided into three levels:

■ Instrumentation level

■ Agent level

■ Distributed services level

This chapter gives an introduction to each of these levels and describes their basic

components.

In addition, the JMX specification will be associated with a number of Java APIs for

existing, standardized management protocols. These APIs are independent of the

three-level model, yet they are essential because they enable JMX applications in the

Java programming language to link with current management technologies.

Currently, two management protocol APIs are being developed as separate Java

Specification Requests (JSRs) through the Java Community Process:

■ The JSR for the SNMP Manager API is currently being reviewed

■ JSR-000048 WBEM Services Specification for CIM/WBEM manager and provider

APIs has been accepted
17

Benefits of the JMX Architecture

Through an implementation of the JMX specification, the JMX architecture provides

the following benefits:

● Enables Java applications to be managed without heavy investment

The JMX architecture relies on a core managed object server that acts as a

‘management agent’ and can run on most Java-enabled devices. This allows Java

applications to be manageable with little impact on their design. A Java application

simply needs to embed a managed object server and make some of its functionality

available as one or several Manageable Beans registered in the object server; that is

all it takes to benefit from the management infrastructure.

JMX provides a standard way to enable manageability for any Java based

application, service or device. For example, Enterprise JavaBeans™ (EJB)

applications can conform to the JMX architecture to become manageable.

● Provides a scalable management architecture

Every JMX agent service is an independent module that can be plugged into the

management agent, depending on the requirements. This component-based

approach means that JMX solutions can scale from small footprint devices to large

telecommunications switches and beyond.

The JMX specification provides a set of core agent services. Additional services will

be developed by conformant implementations, as well as by the integrators of the

management solutions. All of these services can be dynamically loaded, unloaded,

or updated in the management infrastructure.

● Integrates existing management solutions

JMX smart agents are capable of being managed through HTML browsers or by

various management protocols such as SNMP and WBEM. The JMX API are open

interfaces that any management system vendor can leverage.

The JMX specification has spurred the definition of an SNMP manager API, a WBEM

client API, and a TMN manager API. These associated specifications are being

developed separately through the Java Community Process. They will provide the

interfaces needed to write applications that manage SNMP agents or act as a

Java/SNMP proxy, access a CIM Object Manager, or respond to a TMN manager.

● Leverages existing standard Java technologies

Whenever needed, the JMX specification will reference existing Java specifications

such as Java Naming and Directory Interface™ (JNDI), Java Database Connectivity

API (JDBC™), Java Transaction Services (JTS), or others.
18 JMX Instrumentation and Agent Specification, v1.0 • May 2000

● Can leverage future management concepts

The APIs of the JMX specification can implement flexible and dynamic management

solutions through the Java programming language which can leverage emerging

technologies. For example, JMX solutions can use lookup and discovery services and

protocols such as Jini™ connection technology, Universal Plug’n’Play (Upnp), and

the Service Location Protocol (SLP).

In a demonstration given by Sun Microsystems, Jini provides spontaneous discovery

of resources and services on the network, which are then managed by through a JMX

application. The combination of these two capabilities is called Sun Spontaneous

Management™.

● Defines only the interfaces necessary for management

The Java Management extensions are not designed to be a general purpose

distributed object system. Although it provides a number of services designed to fit

into a distributed environment, these are focused on providing functionality for

managing networks, systems, and applications.

Scope of this Specification

The JMX specification defines an architecture for management and a set of APIs that

describe the components of this architecture. These APIs cover functionality, both on

the manager and on the agent side, that compliant implementations will provide to

the developer of management applications.

This JMX specification document addresses the first two levels of the management

architecture. These parts are:

■ The instrumentation specification

■ The agent specification

This phase of the JMX specification only provides a brief overview of the distributed

services, to show how and where they interact with the other two levels. Other

related information may also appear in this specification, and it will be clearly stated

when this information is outside the scope of the present specification.

The additional management protocol APIs are described in separate documents

which are released independently through the Java Community Process, see

“Related Information” on page xv.
Chapter 1 Introduction to the JMX™ Specification 19

Reference Implementation

The reference implementation (RI) is the first working application of the JMX

specification, as mandated by the Java Community Process for defining extensions to

the Java programming language. The RI for both the instrumentation and agent

specifications has been developed by Sun Microsystems, Inc., in its role as the JMX

specification lead.

The RI allows developers of JMX-based management solutions to prototype their

applications easily. It also provides a working model for developers of an extended

management infrastructure. This is especially useful for those providing additional

services to the core JMX functionality.

Compatibility Test Suite

The compatibility test suite (CTS) for the JMX specification will check the conformance

of JMX implementations; it is also mandated by the Java Community Process. The

CTS verifies that applications claiming to conform to a specific part of JMX follow

every point of the specification. The CTS for both the instrumentation and agent

specifications has been developed by Sun Microsystems, Inc., again in its role as the

JMX specification lead.

Since the classes defined by the JMX specification are optional packages of the Java

platform, the CTS is implemented as a Technology Compatibility Kit (TCK) that is

run by JavaTest™.

Each part of the JMX specification may identify mandatory and optional

components. A JMX-compliant implementation must provide all mandatory

services, and may provide any subset of the optional services, but those it does

provide must conform to the specification.

When claiming JMX compliance, implementations list the optional services they

support, and are tested by the CTS against their statement of conformance. This

requires some modularity in the way the CTS can be run against various

implementations which implement a number of subsets of the specification.

Architectural Overview

This section describes each part of the JMX specification and its relation to the

overall management architecture:

■ Instrumentation level

■ Agent level
20 JMX Instrumentation and Agent Specification, v1.0 • May 2000

■ Distributed services level

■ Additional management protocol APIs

FIGURE 1-1 shows how the key components of JMX relate to one another within the

three levels of the architectural model. These components are introduced in the

following subsections and further discussed in the “Component Overview” on

page 25.

FIGURE 1-1 Relationship Between the Components of the JMX Architecture

Instrumentation Level

The instrumentation level provides a specification for implementing JMX manageable
resources. A JMX manageable resource can be an application, an implementation of a

service, a device, a user, and so forth. It is developed in Java, or at least offers a Java

wrapper, and has been instrumented so that it can be managed by JMX-compliant

applications.

Resource 1
(MBean)

Distributed
Services Level

Java virtual machine (host1)

Resource 2
(MBean)

MBean
Server

Current JMX specification

Future phases of the JMX specification

JMX-compliant
Management Application Web Browser

Agent Level

Instrumentation
Level

JMX
Manager

CIM/WBEM
API

SNMP
Manager API

Additional
Management
Protocol APIs

TMN
Manager API

Proprietary Management
Application

(host2)

PAC C

Agent
Services
(as MBeans)

Connectors and Protocol Adaptors

C

Separate JSRs
Chapter 1 Introduction to the JMX™ Specification 21

The instrumentation of a given resource is provided by one or more Managed Beans,

or MBeans, which are either standard or dynamic. Standard MBeans are Java objects

that conform to certain design patterns derived from the JavaBeans™ component

model. Dynamic MBeans conform to a specific interface which offers more flexibility

at run-time. For further information, see “MBeans (Managed Beans)” on page 25.

The instrumentation of a resource allows it to be manageable through the agent level

described in the next section. MBeans do not require knowledge of the JMX agent

with which they operate.

MBeans are designed to be flexible, simple, and easy to implement. Developers of

applications, services, or devices can make their products manageable in a standard

way without having to understand or invest in complex management systems.

Existing objects can easily be evolved to produce standard MBeans or wrapped as

dynamic MBeans, thus making existing resources manageable with minimum effort.

In addition, the instrumentation level also specifies a notification mechanism. This

allows MBeans to generate and propagate notification events to components of the

other levels.

Since the instrumentation level consists of design patterns and Java interfaces, the

reference implementation can only provide an example of the different MBeans and

of their notification mechanism.

However, the compatibility test suite for the instrumentation level will check that

MBeans being tested conform to the design patterns and implement the interfaces

correctly.

Resources that provide instrumentation in conformance with the JMX specification

(that is, they have been successfully tested against the CTS) are qualified as JMX

manageable resources.

JMX manageable resources are compatible with the JDK™ 1.1.x programming

environment, the EmbeddedJava™ environment, the PersonalJava™ environment,

or the Java 2 Platform, Standard Edition, v 1.2.

JMX manageable resources are automatically manageable by JMX-compliant agents.

They can also be managed by any non-JMX compliant system that supports the

MBean design patterns and interfaces.

Agent Level

The agent level provides a specification for implementing agents. Management

agents directly control the resources and make them available to remote

management applications. Agents are usually located on the same machine as the

resources they control, although this is not a requirement.
22 JMX Instrumentation and Agent Specification, v1.0 • May 2000

This level builds upon and makes use of the instrumentation level, in order to define

a standardized agent to manage JMX manageable resources. The JMX agent consists

of an MBean server and a set of services for handling MBeans. In addition, a JMX

agent will need at least one communications adaptor or connector, but these are not

specified in this phase. The MBean server implementation and the agent services are

mandatory in an implementation of the specification.

The JMX agent can be embedded in the machine that hosts the JMX manageable

resources when a Java Virtual Machine is available in that machine. Likewise, the

JMX agent can be instantiated into a mediation/concentrator element when the

managed resource only offers a proprietary (non-Java) environment. Otherwise, an

JMX agent does not need to know which resources it will serve: any JMX

manageable resource can use any JMX agent that offers the services it requires.

Managers access an agent’s MBeans and use the provided services through a

protocol adaptor or connector, as described in the next section. However, JMX agents

do not require knowledge of the remote management applications that use them.

JMX agents are implemented by developers of management systems, who can build

their products in a standard way without having to understand the semantics of the

JMX manageable resources, or the functions of the management applications.

The reference implementation of the JMX agent is a set of Java classes which provide

an MBean server and all of the agent services.

The agent compatibility test suite will check that agents being tested conform to the

interfaces and functionality set forth in the agent specification. Agents that have

been successfully tested against the agent CTS are qualified as JMX agents.

JMX agents run on the Java 2 Platform Standard Edition, and the objective is to be

able to run JMX agents on smaller Java platforms, for example PersonalJava, and

EmbeddedJava, once these are compatible with the Java 2 platform.

JMX agents will be automatically compatible with JMX distributed services, and can

also be used by any non-JMX compliant systems or applications that support JMX

agents.

Distributed Services Level

The detailed definition of the distributed services level is beyond the scope of this
phase of the specification. A brief description is given here in order to complete
the overview of the JMX architecture.

The distributed services level provides the interfaces for implementing JMX

managers. This level defines management interfaces and components that can

operate on agents or hierarchies of agents. These components can:
Chapter 1 Introduction to the JMX™ Specification 23

■ Provide an interface for management applications to interact transparently with

an agent and its JMX manageable resources through a connector

■ Expose a management view of a JMX agent and its MBeans by mapping their

semantic meaning into the constructs of a data-rich protocol (for example HTML

or SNMP)

■ Distribute management information from high-level management platforms to

numerous JMX agents

■ Consolidate management information coming from numerous JMX agents into

logical views that are relevant to the end user’s business operations

■ Provide security

Management components cooperate with one another across the network to provide

distributed, scalable management functions. Customized Java-based management

functions can be developed on top of these components in order to deploy a

management application.

The combination of the manager level with the other agent and instrumentation

levels provides a complete architecture for designing and developing complete

management solutions. The Java Management extensions technology brings unique

facilities to such solutions: portability, on-demand deployment of management

functionality, dynamic and mobility services, and security.

Additional Management Protocol APIs

The additional management protocol APIs provide a specification for interacting

with existing management environments. These APIs are currently being developed

as separate JSRs within the Java Community Process:

■ SNMP manager API

■ CIM/WBEM manager and provider API

These will be available on the JCP web site when ready: see “Related Information”

on page xv. Additional interfaces to other important management environments,

such as a TMN manager API, will be released in later phases.

Developers of management platforms and applications can use the APIs to interact

with these management environments, possibly by encapsulating this interaction in

a JMX manageable resource. For example, by developing an SNMP manager and

instrumenting it as an MBean, portable Java management solutions can replace

SNMP management applications on legacy systems.

These Java APIs thus help developers build platform-independent management

applications for the most common industry standards. New management solutions

can integrate the existing infrastructure and existing management can take

advantage of a Java-based management application.
24 JMX Instrumentation and Agent Specification, v1.0 • May 2000

The additional management protocol APIs do not define the functions of the

applications, or the architecture of the platforms, they only define standard Java

APIs to access management technologies such as SNMP.

Component Overview

The key components of each architectural level are listed below and discussed in the

subsequent sections.

■ Instrumentation level

■ MBeans (standard, dynamic, open, and model MBeans)

■ Notification model

■ MBean metadata classes

■ Agent level

■ MBean server

■ Agent services

Components of the Instrumentation Level

The key components of the instrumentation level are the Managed Bean (MBean)

design patterns, the notification model, and the MBean metadata classes.

MBeans (Managed Beans)

An MBean is a Java object that implements a specific interface and conforms to

certain design patterns. These requirements formalize the representation of the

resource’s management interface in the MBean. The management interface of a

resource is the set of all necessary information and controls that a management

application needs to operate on the resource.

The management interface of an MBean is represented as:

■ Valued attributes which may be accessed

■ Operations which may be invoked

■ Notifications which may be emitted (see “Notification Model” on page 26)

■ The constructors for the MBean’s Java class
Chapter 1 Introduction to the JMX™ Specification 25

MBeans encapsulate attributes and operations through their public methods and

follow the design patterns for exposing them to management applications. For

example, a read-only attribute in a standard MBean will have just a getter method,

whereas getter and a setter methods implement read-write access.

Any objects which are implemented as an MBeans and registered with the agent can

be managed from outside the agent’s Java virtual machine. Such objects include:

■ The resources your application wishes to manage

■ Value-added services provided to help manage resources

■ Components of the JMX infrastructure that can be managed

Other JMX components, such as agent services, are specified as fully instrumented

MBeans, which allows them to benefit from the JMX infrastructure and offer a

management interface.

The JMX architecture does not impose any restrictions on where compiled MBean

classes are stored. They can be stored at any location specified in the classpath of the

agent’s JVM, or at a remote site if class loading is used (see “Advanced Dynamic

Loading” on page 127).

JMX defines four types of MBeans: standard, dynamic, open and model MBeans.

Each of these corresponds to a different instrumentation need:

■ Standard MBeans are the simplest to design and implement, their management

interface is described by their method names.

■ Dynamic MBeans must implement a specific interface, but they expose their

management interface at run-time for greatest flexibility.

■ Open MBeans are dynamic MBeans which rely on basic data types for universal

manageability and which are self-describing for user-friendliness.

■ Model MBeans are also dynamic MBeans that are fully configurable and self-

described at run-time; they provide a generic MBean class with default behavior

for dynamic instrumentation of resources.

Notification Model

The JMX specification defines a generic notification model based on the Java event

model. Notifications can be emitted by MBean instances, as well as by the MBean

server. This specification describes the notification objects and the broadcaster and

listener interfaces that notification senders and receivers must implement.

A JMX implementation may provide services that allow distribution of this

notification model, thus allowing a management application to listen to MBean and

MBean server events remotely. How the distribution of the notification model is
achieved is outside the scope of this phase of the specification. Further phases of
this specification will address advanced notification services, such as forwarding
and storing until further retrieval by a management application.
26 JMX Instrumentation and Agent Specification, v1.0 • May 2000

MBean Metadata Classes

The instrumentation specification defines the classes that are used to describe the

management interface of an MBean. These classes are used to build a standard

information structure for publishing the management interface of an MBean. One of

the functions of the MBean server at the agent level is to provide the metadata of its

MBeans.

The metadata classes contain the structures to describe all of the components of an

MBean’s management interface: its attributes, operations, notifications and

constructors. For each of these, the metadata includes a name, a description and its

particular characteristics. For example, one characteristic of an attribute is whether it

is readable, writable or both; a characteristic of an operation is the signature of its

parameter and return types.

The different types of MBeans extend the metadata classes in order to provide

additional information. Through this inheritance, the standard information will

always be available and management applications which know how to access the

subclasses can obtain the extra information.

Components of the Agent Level

The key components in the agent level are the MBean server which is a registry for

objects in the instrumentation level, and the agent services which enable a JMX

agent to incorporate management intelligence for more autonomy and performance.

MBean Server

The Managed Bean server, or MBean server for short, is a registry for objects which

are exposed to management operations in an agent. Any object registered with the

MBean server becomes visible to management applications. However, the MBean

server only exposes an MBean’s management interface, never its direct object

reference.

Any resource that you want to manage from outside the agent’s Java virtual machine

must be registered as an MBean in the server. The MBean server also provides a

standardized interface for accessing MBeans within the same JVM, giving local

objects all of the benefits of manipulating manageable resources. MBeans can be

instantiated and registered by:

■ Another MBean

■ The agent itself

■ A remote management application (through the distributed services)
Chapter 1 Introduction to the JMX™ Specification 27

When you register an MBean, you must assign it a unique object name. A

management application uses the object name to identify the object on which it is to

perform a management operation. The operations available on MBeans include:

■ Discovering the management interface of MBeans

■ Reading and writing their attribute values

■ Performing operations defined by the MBeans

■ Getting notifications emitted by MBeans

■ Querying MBeans based on their object name or their attribute values

The MBean server relies on protocol adaptors and connectors to make the agent

accessible from management applications outside the agent’s JVM. Each adaptor

provides a view through a specific protocol of all MBeans registered in the MBean

server. For example, an HTML adaptor could display an MBean on a Web browser.

The view provided by protocol adaptors is necessarily different for each protocol
and none are addressed in this phase of the JMX specification.

Connectors provide a manager-side interface which handles the communication

between manager and agent. Each connector will provide the same remote interface

though a different protocol. When a remote management application uses this

interface, it can connect to an agent transparently through the network, regardless of

the protocol. The specification of the remote management interface will be
addressed in a future phase of the Java Management extensions.

Adaptors and connectors make all MBean server operations to be available to a

remote management application. For an agent to be managed, it must include at

least one protocol adaptor or connector. However, an agent can include any number

of these, allowing it to be managed by multiple managers, through different

protocols.

Agent Services

Agent services are objects that can perform management operations on the MBeans

registered in the MBean server. By including management intelligence into the

agent, JMX helps you build more powerful management solutions. Agent services

are often MBeans as well, allowing them and their functionality to be controlled

through the MBean server. The JMX specification defines the following agent

services:

■ Dynamic class loading through the m-let (management applet) service retrieves

and instantiates new classes and native libraries from an arbitrary network

location.

■ Monitors observe an MBean attribute’s numerical or string value and can notify

other objects of several types of changes in the target.

■ Timers provide a scheduling mechanism based on a one-time alarm-clock

notification or on a repeated, periodic notification.
28 JMX Instrumentation and Agent Specification, v1.0 • May 2000

■ The relation service defines associations between MBeans and enforces the

cardinality of the relation based on predefined relation types.

All of the agent services are mandatory in a JMX-compliant implementation.

Conformance

This section specifies which components of the instrumentation and agent levels are

mandatory or optional regarding compliance of implementations to the JMX

Instrumentation and Agent Specification, v1.0.

Instrumentation Level

Implementations compliant to the JMX Instrumentation Specification, v1.0, shall

provide all the components specified in Chapter 2 “MBean Instrumentation” and in

Chapter 4 “Model MBeans” of this specification. This includes all associated classes

as defined by their corresponding Javadoc API. These components provide support

for the instrumentation of standard and dynamic MBeans.

Provision of the components described in Chapter 3 “Open MBeans” of this

specification is not required of a JMX-compliant implementation. The intent is that

further releases of this specification will finalize the definition of open MBeans. The

support for open MBean instrumentation will then be mandatory for

implementations compliant to the new version of the specification.

Agent Level

Implementations compliant to the JMX Agent Specification, v1.0 shall provide all the

components specified in Part II “JMX Agents” of this specification. This includes an

implementation of the MBean server, the agent services, and all associated classes as

defined by their corresponding Javadoc API. Therefore, the implementation of all

four agent services that are specified is mandatory. The general intent is to keep the

number of optional components, and therefore the number of possible

configurations, to a minimum in this specification.
Chapter 1 Introduction to the JMX™ Specification 29

What Has Changed

This section lists all of the changes to the JMX specification since the previous

version (Public Release 2, December 1999). This sections includes:

■ Modifications to the specification itself (what is mandatory)

■ Modifications of the corresponding API

■ Modifications that would impact the understanding of the specification

(including changes in terminology)

It does not include cosmetic changes to the present document.

Instrumentation Level:

■ The API for the instrumentation level includes all Java interfaces defined for the

agent level services, except those of the relation service. This is necessary for

MBeans to call upon these services.

■ The MBeanInfo class and its associated classes are now referred to as MBean

metadata classes. The term descriptor specifically refers to the concept and classes

of model MBean descriptors.

■ The metadata for MBean attributes now indicates if a boolean attribute has an is
getter: the API for the MBeanAttributeInfo includes the new isIs method.

■ Open MBeans are not yet fully specified in this phase and none of the

corresponding Javadoc API is provided. Some implementation details have been

intentionally removed from this document, pending further developments.

Therefore, compliance to open MBean component specification cannot be claimed.

■ Model MBeans are now a mandatory component of the instrumentation

specification.

■ The XML grammar for model MBean descriptors is no longer specified, rather it is

left undefined.

Agent Level:

■ The classes used by the query mechanism of the MBean server have been

modified. In the API, QueryExp and ValueExp are now Java interfaces and no

longer abstract classes. The classes that inherited from these classes previously

now implement the corresponding interface instead.

■ The monitoring services were erroneously identified as optional in theirchapter

introduction. All agent services are now mandatory in a compliant

implementation, as stated in “JMX Compliant Agent” on page 103.

■ The relation service is completely new. Like all of the other services, its interfaces

and classes have all been grouped in a separate package of the API, namely

javax.management.relation . The relation model and the service classes are

fully specified in “Relation Service” on page 147.
30 JMX Instrumentation and Agent Specification, v1.0 • May 2000

PART I JMX Instrumentation Specification
31

32 JMX Instrumentation and Agent Specification, v1.0 • May 2000

CHAPTER 2

MBean Instrumentation

The instrumentation level of the JMX specification defines how to instrument

resources in the Java programming language so that they can be managed. Resources

which are developed according to the rules defined in this chapter are said to be

JMX manageable resources.

The Java objects which implement resources and their instrumentation are called

Managed Beans, or MBeans for short. MBeans must follow the design patterns and

interfaces defined in this part of the specification. This insures that all MBeans

provide the instrumentation of managed resources in a standardized way.

MBeans are manageable by any JMX agent, but they may also be managed by non-

compliant agents which support the MBean concept.

This part of the specification is primarily targeted at developers of applications or

devices wishing to provide management capabilities to their resources.

Developers of applications and devices are free to choose the granularity of objects

that should be instrumented as MBeans. An MBean might represent the smallest

object in an application, or it could represent the entire application. Application

components designed with their management interface in mind may typically be

written as MBeans. MBeans may also be used as wrappers for legacy code without a

management interface or as proxies for code with a legacy management interface.

Definition

An MBean is a concrete Java class that includes the following instrumentation:

■ A public constructor

■ The implementation of its own corresponding MBean interface

or an implementation of the DynamicMBean interface

■ Optionally, an implementation of the NotificationBroadcaster interface
33

A class which implements its own MBean interface is referred to as a standard
MBean. This is the simplest type of instrumentation available when developing new

JMX manageable resources. An MBean which implements the DynamicMBean
interface specified in this chapter is known as a dynamic MBean, since certain

elements of its instrumentation can be controlled at runtime.

Which interface the MBean implements determines how it will be developed, not

how it will be managed. JMX agents provide the abstraction for handling both types

of instrumentation transparently. In fact, when both types of MBeans are being

managed in a JMX agent, management applications handle them in a similar

manner.

When developing a Java class from the standard MBean interface, it exposes the

resource to be managed directly through its attributes and operations. Attributes are

internal entities which are exposed through getter and setter methods. Operations

are the other methods of the class that are available to managers. All of these

methods are defined statically in the MBean interface and visible to an agent

through introspection. This is the most straightforward way of instrumenting a new

resource.

When developing a Java class from the DynamicMBean interface, attributes and

operations are exposed indirectly through method calls. Instead of introspection,

JMX agents must call one method to find the name and nature of attributes and

operations. Then when accessing an attribute or operation, the agent calls a generic

getter, setter or invocation method whose argument is the name of the attribute or

operation. Dynamic MBeans enable you to rapidly instrument existing resources and

other legacy code objects you wish to manage.

Concrete Classes

The first requirement of all MBeans, no matter what type they are, is that they

cannot be abstract classes. Abstract classes cannot be instantiated and can therefore

not be managed. Therefore, an MBean must be a concrete Java class. The methods of

an MBean must all be implemented so that the MBean class can be instantiated and

the instance can be managed.

MBean Public Constructor

In order to be a JMX manageable resource, the Java class of an MBean, whether

standard or dynamic, must also have at least one public constructor. This allows the

MBean to be instantiated by a JMX agent on demand from a management

application.
34 JMX Instrumentation and Agent Specification, v1.0 • May 2000

An MBean may have any number of constructors, provided at least one is declared

public, in order to allow an agent to do an instantiation. An MBean may also have

any number of public constructors, all of which are available to a management

application through the MBean’s JMX agent.

Public constructors of an MBean may have any number and type of arguments. It is

the developer’s and administrator’s responsibility to guarantee that the classes for

all argument types are available to the agent and manager when instantiating an

MBean.

An MBean may omit all constructors and rely on the default constructor which the

Java compiler provides automatically in such a case. The default constructor is

public and takes no arguments, which complies with the specification of an MBean.

The Java compiler will not provide a default public constructor if any other

constructor, public or protected, is defined.

CODE EXAMPLE 2-1 shows a simple MBean example with two constructors, one of

which is the public constructor.

CODE EXAMPLE 2-1 Constructors of the Simple MBean Example

public class Simple {

private Integer state = new Integer (0);

// Default constructor only accessible from sub-classes
//
protected Simple() {
}

// Public constructor: this class is an MBean candidate
//
public Simple (Integer s) {

state = s;
}
...

}

Chapter 2 MBean Instrumentation 35

Standard MBeans

In order to be manageable through a JMX agent, a standard MBean explicitly defines

its management interface. The management interface defines the handles on the

resource that are exposed for management. An MBean’s interface is made up of the

methods it makes available for reading and writing its attributes and for invoking its

operations.

Standard MBeans rely on a set of naming rules, called design patterns, that should be

observed when defining the interface of their Java object. These naming rules define

the concepts of attributes and operations which are inspired by the JavaBeans™

component model. However, the actual design patterns for JMX take into

consideration the inheritance scheme of the MBean, as well as lexical design patterns

to identify the management interface. As a result, the design patterns for MBeans are

specific to the JMX specification.

The management interface of a standard MBean is composed of:

■ Its constructors: only the public constructors of the MBean class are exposed

■ Its attributes: the properties which are exposed through getter and setter methods

■ Its operations: the remaining methods exposed in the MBean interface

■ Its notifications: the notification objects and types that the MBean is likely to emit

As described in “MBean Public Constructor” on page 34, constructors are an

inherent component of an MBean. The attributes and operations are methods of an

MBean, but they are identified by the MBean interface, as described below. The

notifications of an MBean are defined through a different interface: see “JMX

Notification Model” on page 47.

The process of inspecting the MBean interface and applying these design patterns is

called introspection. The JMX agent uses introspection to look at the methods and

superclasses of a class, determine if it represents an MBean that follows the design

patterns, and recognize the names of both attributes and operations.

MBean Interface

The Java class of a standard MBean must implement a Java interface that is named

after the class. This interface mentions the complete signatures of the attribute and

operation methods that are exposed. Only the public methods contained in this

interface are exposed for management. All methods of the MBean’s Java class which

are not listed in this interface are not accessible to a management application.
36 JMX Instrumentation and Agent Specification, v1.0 • May 2000

The name of an MBean’s Java interface is formed by adding the MBean suffix to the

MBean’s Java class name. For example, the Java class MyClass would implement

the MyClassMBean interface. The interface of a standard MBean is referred to as its

MBean interface.

By definition, the Java class of an MBean must implement all of the methods in its

MBean interface. How it implements these methods determines its response to

management operations. An MBean may also define any other methods, public or

protected that do not appear in its MBean interface.

The MBean interface may list methods defined in the MBean, as well as methods

which the MBean inherits from its superclasses. This enables MBeans to extend and

instrument classes whose Java source code is inaccessible.

A standard MBean may also inherit its management interface if one of its

superclasses implements a Java interface named after itself (the superclass). For

example, if MySuperClass is an MBean and MyClass extends MySuperClass then

MyClass is also an MBean. If MyClass does not implement a MyClassMBean
interface, then it will have the same management interface as MySuperClass .

Otherwise, MyClass can re-define its management interface by implementing its

own MyClassMBean interface.

Since interfaces may also extend parent interfaces, all public methods in the

inheritance tree of the interface are also considered. For more information about how

an MBean inherits its management interface, see “Inheritance Patterns” on page 44.

Having to define and implement an MBean interface is the main constraint put on a

standard MBean in order to be a JMX manageable resource.

The MyClass Example MBean

CODE EXAMPLE 2-2 gives a basic illustration of the explicit definition of the

management interface for an MBean named MyClass . Among the public methods it

defines, getHidden and setHidden will not be part of the management interface

because they do not appear in the MyClassMBean interface.

CODE EXAMPLE 2-2 MyClassMBean interface and MyClass Example

public interface MyClassMBean {
public Integer getState();
public void setState(Integer s);
public void reset();

}

Chapter 2 MBean Instrumentation 37

Lexical Design Patterns

The lexical patterns for attribute and operation names rely on the method names in

an MBean interface. They enable a JMX agent to identify the names of attributes and

operations exposed for management in a standard MBean. They also allow the agent

to make the distinction between read-only, write-only and read-write attributes.

Attributes

Attributes are the fields or properties of the MBean which are in its management

interface. Attributes are discrete, named characteristics of the MBean which define

its appearance or its behavior, or are characteristics of the managed resource that the

MBean instruments. For example, an attribute named ipackets in an MBean

representing an Ethernet driver could be defined to represent the number of

incoming packets.

Attributes are always accessed via method calls on the object that owns them. For

readable attributes, there is a getter method to read the attribute value. For writable

attributes, there is a setter method to allow the attribute value to be updated.

public class MyClass implements MyClassMBean {
private Integer state = null;
private String hidden = null;

public Integer getState() {
return(state);

}
public void setState(Integer s) {

state = s;
}
public String getHidden() {

return(hidden);
}
public void setHidden(String h) {

hidden = h;
}
public void reset() {

state = null;
hidden = null;

}
}

38 JMX Instrumentation and Agent Specification, v1.0 • May 2000

The following design pattern is used to identify attributes:

If a class definition contains a matching pair of get AttributeName and

set AttributeName methods that take and return the same type, these methods define

a read-write attribute called AttributeName. If a class definition contains only one of

these methods, the method defines either a read-only or write-only attribute.

The AttributeType may be of any Java class, or an array of any Java class, provided

that this type is valid in the MBean’s run-time context or environment.

When the type of an attribute is an array type, the getter and setter methods operate

on the whole array. The design patterns do not include any getter or setter method

for accessing individual array elements. Such access methods for indexed attributes

are treated as MBean operations.

In addition, for boolean type attributes, it is possible to define a getter method using

the following design pattern:

In order to reduce redundancy, only one of the two getter methods for boolean types

is allowed. An attribute may have either an is AttributeName method or a

get AttributeName method, but not both in the same MBean.

Operations

Operations are the actions that a JMX manageable resource makes available to

management applications. These actions can be any computation which the resource

wishes to expose, and they can also return a value.

In a standard MBean, an operation is a Java method specified in its interface and

implemented in the class itself. Any method in the MBean interface which doesn’t fit

an attribute design pattern is considered to define an operation.

A typical usage is shown in CODE EXAMPLE 2-2 on page 37 where the MBean exposes

the reset method to re-initialize its exposed attributes and private fields. Simple

operations can also be written to access individual elements of an indexed array

attribute.

public AttributeType get AttributeName();
public void set AttributeName(AttributeType value);

public boolean is AttributeName();
Chapter 2 MBean Instrumentation 39

Case Sensitivity

All attribute and operation names derived from these design patterns are case-

sensitive. For example, this means that the methods getstate and setState
define two attributes, one called state that is read-only, and one called State that

is write-only.

While case sensitivity applies directly to component names of standard MBeans, it is

also applicable to all component names of all types of MBeans, standard or dynamic.

In general, all names of classes, attributes, operations, methods, and internal

elements defined in the JMX specification are case sensitive, whether they appear as

data or as functional code when they are manipulated by management operations.

Dynamic MBeans

Standard MBeans are ideally suited for straightforward management structures,

where the structure of managed data is well defined in advance and unlikely to

change often. In such cases, standard MBeans provide the quickest and easiest way

to instrument manageable resources. When the data structures are likely to evolve

often over time, the instrumentation must provide more flexibility, such as being

determined dynamically at run-time. Dynamic MBeans bring this adaptability to the

JMX specification and provide an alternative instrumentation with more elaborate

management capabilities.

Dynamic MBeans are resources that are instrumented through a pre-defined

interface which exposes the attributes and operations only at run-time. Instead of

exposing them directly through method names, dynamic MBeans implement a

method which returns all attributes and operation signatures.

Since the names of the attributes and operations are determined dynamically, these

MBeans provide great flexibility when instrumenting existing resources. An MBean

which implements the DynamicMBean interface provides a mapping for existing

resources which do not follow standard MBean design patterns. Instead of

introspection, JMX agents call the method of the MBean which returns the name of

the attributes and operations it exposes.

MBeans which implement the DynamicMBean interface are also known as JMX

manageable resources. When managed through a JMX agent, dynamic MBeans offer

all of the same capabilities that are available through standard MBeans.

Management applications which rely on JMX agents can manipulate all MBeans in

exactly the same manner regardless of their type.
40 JMX Instrumentation and Agent Specification, v1.0 • May 2000

DynamicMBean Interface

In order for a resource object to be recognized as a dynamic MBean by the JMX

agent, its Java class or one of its superclasses must implement the DynamicMBean
public interface. However, an MBean is not allowed to implement both the

DynamicMBean interface and its own MBean interface with standard design

patterns. The JMX agent verifies that all MBean are either dynamic or standard but

never both at the same time. Instrumentation developers must choose the

management scheme which fits with the nature of their manageable resources.

The DynamicMBean interface is defined by the UML diagram in FIGURE 2-1 below.

Each of the methods it defines is described in the following subsections.

FIGURE 2-1 Definition of the DynamicMBean Interface

getMBeanInfo Method

This method returns an MBeanInfo object which contains the definition of the

MBean’s management interface. Conceptually, dynamic MBeans have both attributes

and operations, only they are not exposed through method names. Instead, dynamic

MBeans expose attribute names and types and operation signatures through the

return value of this method at runtime.

This method returns an MBeanInfo object which contains a list of attribute names

and their types, a list of operations and their parameters, and other management

information. This type and its constituent classes are further described in “MBean

Metadata Classes” on page 53.

DynamicMBean

getMBeanInfo(): MBeanInfo
getAttribute(attribute:String): Object
getAttributes(attributes:String[]): AttributeList
setAttribute(attribute:Attribute): void
setAttributes(attributes:AttributeList): AttributeList
invoke(actionName:String,

params:Object[],
signature:String[]): Object

«Interface»
Chapter 2 MBean Instrumentation 41

getAttribute and getAttributes Methods

These methods take either an attribute name or a list of attribute names and return

the value of the corresponding attribute(s). These are like a standard getter method,

except the caller supplies the name of the attribute requested. It is up to the

implementation of the dynamic MBean to properly map the exposed attributes

names to their values through these methods.

The classes which describe attribute names, values and lists of names and values are

described in “Attribute and AttributeList Classes” on page 109. These data

types are also used by the setAttribute methods below.

setAttribute and setAttributes Methods

These methods take attribute name-value pairs and, like standard setter methods,

they write these values to the corresponding attribute. When setting several

attributes at a time, the list of attributes for which the write operation succeeded is

returned. When setting only one attribute, there is no return value and any error is

signaled by raising an exception. Again, it is up to the implementation of the

dynamic MBean to properly map the new values to the internal representation of

their intended attribute target.

invoke Method

The invoke method lets management applications call any of the operations exposed

by the dynamic MBean. Here the caller must provide the name of the intended

operation, the objects to be passed as parameters, and the types for these

parameters. By including the operation signature, the dynamic MBean

implementation may verify that the mapping is consistent between the requested

operation and that which is exposed.

If the requested operation is successfully mapped to its internal implementation, this

method returns the result of the operation. The calling application will expect to

receive the return type exposed for this operation in the MBeanInfo method.

Behavior of Dynamic MBeans

When registered in a JMX agent, a dynamic MBean is treated in exactly the same

way as a standard MBean. Typically, a management application will first obtain the

management interface through the getMBeanInfo method, in order to have the

names of the attributes and operations. The application will then make calls to

getters, setters and the invoke method of the dynamic MBean.
42 JMX Instrumentation and Agent Specification, v1.0 • May 2000

In fact, the interface for dynamic MBeans is very similar to that of the MBean server

in the JMX agent (see “Role of the MBean Server” on page 115). A dynamic MBean

provides the management abstraction that the MBean server provides for standard

MBeans. This is why management applications can manipulate both kinds of

MBeans indifferently: the same management operations are applied to both.

In the case of the standard MBean, the MBean server uses introspection to find the

management interface and then call the operations requested by the manager. In the

case of the dynamic MBean, these tasks are taken over by the dynamic MBean’s

implementation. In effect, the MBean server delegates the self-description

functionality to the getMBeanInfo method of a dynamic MBean.

Coherence

With this delegation comes the responsibility of ensuring coherence between the

dynamic MBean’s description and its implementation. The MBean server does not

test or validate the self-description of a dynamic MBean in any way. Its developer

must guarantee that the advertised management interface is accurately mapped to

the internal implementation. For more information about describing an MBean, see

“MBean Metadata Classes” on page 53.

From the manager’s perspective, how the dynamic MBean implements the mapping

between the declared management interface and the returned attribute values and

operation results is not important, it only expects the advertised management

interface to be available. This gives much flexibility to the dynamic MBean to build

more complex data structures, expose information which it can gather off-line, or

provide a wrapper for resources not written in the Java programming language.

Dynamics

Since the management interface of a dynamic MBean is returned at runtime by the

getMBeanInfo method, the management interface itself may be dynamic. That is,

subsequent calls to this method may not describe the same management interface.

It is not the intention of the JMX instrumentation specification to define an MBean

with a dynamic management interface. In the JMX architecture, a management

application which retrieves the management interface of an MBean can expect this

interface to be applicable throughout the life of the MBean. When instrumenting a

resource, the set of attributes, operations and notifications available through its

MBean instance should never change.

However, the MBean server in the JMX agent is not required to enforce a static

management interface. That is, the MBean server is not responsible for regularly

analyzing and comparing the management interface of its MBeans. Therefore, truly

dynamic MBeans are possible, though they can only be managed by proprietary

management applications designed specifically to handle them.
Chapter 2 MBean Instrumentation 43

Inheritance Patterns

The introspection of an MBean is the process that JMX agents use to determine its

management interface. This algorithm is applied at run-time by a JMX compliant

agent, but it is described here since it determines how the inheritance scheme of an

MBean influences its management interface.

When introspecting a standard MBean, the management interface is defined by the

design patterns used in its MBean interface. Since interfaces may also extend parent

interfaces, all public methods in the inheritance tree of the interface are also

considered. When introspecting a dynamic MBean, the management interface is

given through the DynamicMBean interface. In either case, the algorithm determines

the names of the attributes and operations that are exposed for the given resource.

The introspection algorithm used is the following:

1. Verify that the MBean is not an abstract class and that it provides at least one

public constructor. By nature, constructors are not inherited, meaning that even if

a class inherits its management interface, it must explicitly provide a public

constructor in order to be a valid JMX manageable resource.

2. If MyClass implements both a MyClassMBean interface and the DynamicMBean
interface, then MyClass is not a JMX manageable resource.

3. If the MyClass MBean implements a MyClassMBean interface, then only the

methods listed in, or inherited by, the interface are considered among all the

methods of the MBean. Among the methods of the MBean, those that it inherits

are also considered. The design patterns are then used to identify the attributes

and operations from the method names in the MyClassMBean interface and its

ancestors.

4. If MyClass implements the DynamicMBean interface, then the return value of its

getMBeanInfo method will list the attributes and operations of the resource.

5. If the MBean implements neither MyClassMBean nor DynamicMBean , the

inheritance tree of MyClass is examined, looking for the nearest superclass that

implements either its own MBean interface or DynamicMBean .

a. If there is an ancestor called SuperClass that implements

SuperClassMBean , the design patterns are used to derive the attributes and

operations from SuperClassMBean . In this case, the MBean MyClass then

has the same management interface as the MBean SuperClass .

b. If there is an ancestor called SuperClass that implements the DynamicMBean
interface, then its getMBeanInfo method will list the attributes and

operations. In this case, the MBean MyClass also has the same management

interface as the MBean SuperClass .
44 JMX Instrumentation and Agent Specification, v1.0 • May 2000

c. When there is no superclass implementing its own MBean interface or the

DynamicMBean interface, MyClass is not a JMX manageable resource.

As a general rule, the management interface is defined by the MBean class or the

nearest ancestor which implements either its own MBean interface or the

DynamicMBean interface. If the class or the nearest ancestor with a management

interface implements both, then there is an introspection error which is signalled to

the management application. If the class and none of its superclasses implement

neither interface, it is not a JMX manageable resource and the JMX agent will raise

an MBean error (see “JMX Exceptions” on page 109).

These rules do not exclude the rare case of a class inheriting one type of

management interface and overriding it by implementing the other type. For

example, MyClass may have an ancestor which is a dynamic MBean and yet

implement its own MyClassMBean , thereby becoming a standard MBean. Inversely,

MyClass may implement the DynamicMBean interface even if one of its ancestors is

a standard MBean. Whichever management interface is overridden will not be

exposed for management.

Standard MBean Inheritance

For standard MBeans, the management interface may be built up through

inheritance of both the class and its interface. This is shown in the following

examples, where the class fields a1, a2, ... stand for attributes or operations

recognized by the design patterns for standard MBeans. Various combinations of

these example cases are also possible.

FIGURE 2-2 Standard MBean Inheritance (Case 1)

AMBean

a1
a2

A

a1
a2
a3

In the simplest case, class A
implements class AMBean,
which therefore defines the
management interface for A:
{a1, a2}.

«implements»
Chapter 2 MBean Instrumentation 45

FIGURE 2-3 Standard MBean Inheritance (Case 2)

FIGURE 2-4 Standard MBean Inheritance (Case 3)

FIGURE 2-5 Standard MBean Inheritance (Case 4)

FIGURE 2-6 Standard MBean Inheritance (Case 5)

AMBean

a1
a2

A

a1
a2
a3

B

b1
b2

If class B extends A without
defining its own MBean
interface, then B is also an
MBean, provided it defines a
public constructor. B has the

«implements»

«extends»
same management interface
as A: {a1, a2}

AMBean

a1
a2

A

a1
a2
a3

B

b1
b2

BMBean

b2

If class B does implement
the BMBean interface, then
this defines the only
management interface
considered: {b2}.

«implements» «implements»

«extends»

AMBean

a1
a2

A

a1
a2
a3

B

b1
b2

BMBean

b2

The BMBean interface and all
interfaces it extends make up
the management interface
for the elements which B
defines or inherits: {a1, a2, b2}.

«implements» «implements»

«extends»

«extends»

Whether or not A implements
AMBean makes no difference
with regards to B.

AMBean

a1
a2

B

b1
b2

BMBean

b2

The class B must implement
all methods defined in or
inherited by the BMBean
interface. If it does not inherit
them, it must implement them

«implements»

«extends»

a1
a2

explicitly: {a1, a2, b2}.
46 JMX Instrumentation and Agent Specification, v1.0 • May 2000

Dynamic MBean Inheritance

Like standard MBeans, dynamic MBeans can also inherit their instrumentation from

a superclass. However, the management interface cannot be composed from the

inheritance tree of the dynamic MBean class. Instead, the management interface is

defined in its entirety by the getMBeanInfo method or the nearest superclass

implementation of this method.

In the same way, subclasses may also redefine the getters, setters and invoke
method, thus providing a different behavior for the same management interface. It is

the MBean developer’s responsibility that the subclass’ implementation of the

attributes or operations matches the management interface which is inherited or

exposed.

FIGURE 2-7 Dynamic MBean Inheritance

JMX Notification Model

The management interface of an MBean allows its agent to perform control and

configuration operations on the managed resources. However, such interfaces

provide only part of the functionality necessary to manage complex, distributed

systems. Most often, management applications need to react to a state change or to a

specific condition when it occurs in an underlying resource.

This section defines a model which allows MBeans to broadcast such management

events, which are called notifications. Management applications and other objects

register as listeners with the broadcaster MBean. The MBean notification model of JMX

enables a listener to register only once and still receive all different events that may

occur in the broadcaster.

This notification model only covers the transmission of events between MBeans

within the same JMX agent. How notifications are transmitted to remote
management applications is not covered in this phase of the specification.

DynamicMBean

getMBeanInfo
getters/setters

C

If class D extends C without
redefining the getMBeanInfo
method, then D is a dynamic
MBean with the same manage-
ment interface. However, D

«implements»

«extends»

overrides the getter and setter
methods of C, thus providing

invoke

getMBeanInfo
getters/setters

invoke

D

getters/setters a different implementation of
the same attributes.
Chapter 2 MBean Instrumentation 47

The JMX notification model relies on the following components:

■ A generic event type, Notification , which can signal any type of management

event. The Notification event may be used directly, or may be sub-classed,

depending on the information which needs to be conveyed with the event.

■ The NotificationListener interface, which needs to be implemented by

objects requesting to receive notifications sent by MBeans.

■ The NotificationFilter interface, which needs to be implemented by objects

which act as a notification filter. This interface lets notification listeners provide a

filter to be applied to notifications emitted by an MBean.

■ The NotificationBroadcaster interface, which needs to be implemented by

each MBean wanting to emit notifications. This interface allows listeners to register

their interest in the notifications emitted by an MBean.

By using a generic event type, this notification model allows any one listener to

receive all types of events from a broadcaster. The filter is provided by the listener to

specify only those events which are needed. Using a filter, a listener only needs to

register once in order to receive all selected events of an MBean.

Any type of MBean, standard or dynamic, may be either a notification broadcaster, a

notification listener, or both at the same time. Notification filters are usually

implemented as callback methods of the listener itself, but this is not a requirement.

Notification Type

The type of a notification, not to be confused with its Java class, is the

characterization of a generic notification object. The type is assigned by the

broadcaster object and conveys the semantic meaning of a particular notification.

The type is given as a String field of the Notification object. This string is

interpreted as any number of dot-separated components, allowing an arbitrary, user-

defined structure in the naming of notification types.

All notification types prefixed by “jmx. ” are reserved for the notifications emitted

by the components of the JMX infrastructure defined in this specification, such as

jmx.mbean.registered . Otherwise, notification broadcasters are free to define all

types they wish to use when naming the notifications they emit. Usually, MBeans

will use type strings that reflect the nature of their notifications within the larger

management structure in which they are involved.

For example, a vendor who provides JMX manageable resources as part of a

management product might prefix all its notification types with vendorName.

FIGURE 2-8 below shows a tree representation of the structure induced by the dot

notation in notification type names.
48 JMX Instrumentation and Agent Specification, v1.0 • May 2000

FIGURE 2-8 Structure of Notification Type Strings

Notification Class

The Notification class extends the java.util.EventObject base class and

defines the minimal information contained in a notification. It contains the following

fields:

■ The notification type, which is a string expressed in a dot notation similar to Java

properties, for example: vendorName.resourceA.eventA1

■ A sequence number, which is a serial number identifying a particular instance of

notification in the context of the notification broadcaster

■ A time stamp, indicating when the notification was generated

■ A message contained in a string, which could be the explanation of the notification

for displaying to a user

■ User data is used for whatever other data the notification broadcaster wishes to

communicate to its listeners

Notification broadcasters should use the notification type to indicate the nature of

the event to their listeners. Additional information that needs to be transmitted to

listeners should be placed in the message or in the user data fields.

In most cases, this information is sufficient to allow broadcasters and listeners to

exchange instances of the Notification class. However, subclasses of the

Notification class may be defined when additional semantics are required within

the notification object.

jmx.mbean.registered
jmx.mbean.unregistered
...

vendorName.event1
vendorName.resourceA.eventA1
vendorName.resourceA.eventA2
...

jmx

mbean ...

registered

unregistered

vendorName

resourceA ...

eventA1

eventA2

event1
Chapter 2 MBean Instrumentation 49

NotificationBroadcaster Interface

This interface specifies three methods which MBeans acting as notification

broadcasters must implement:

■ getNotificationInfo gives a potential listener the description of all

notifications this broadcaster may emit. This method returns an array of

MBeanNotificationInfo objects, each of which describes a notification. For

more information about this class, see “MBeanNotificationInfo Class” on

page 57.

■ addNotificationListener registers a listener’s interest in notifications sent

by this MBean. This method takes a reference to a NotificationListener
object, a reference to a NotificationFilter object, and a hand-back object.

The hand-back object is provided by the listener upon registration and is opaque

to the broadcaster MBean. The implementation of the broadcaster interface must

store this object and return its reference to the listener with each notification. This

hand-back object can allow the listener to retrieve context information for use

while processing the notification.

The same listener object may be registered more than once, each time with a

different hand-back object. This means that the handleNotification method of

this listener will be invoked several times, with different hand-back objects.

The MBean has to maintain a table of listener, filter and hand-back triplets.

When the MBean emits a notification, it invokes the handleNotification
method of all the registered NotificationListener objects, with their

respective hand-back object.

If the listener has specified a NotificationFilter when registering as a

NotificationListener object, the MBean will invoke the filter’s

isNotificationEnabled method first. Only if the filter returns an affirmative

(true) response will the broadcaster then call the notification handler.

■ removeNotificationListener unregisters the listener from a notification

broadcaster. This method takes a reference to a NotificationListener object,

as well as a hand-back object.

If the hand-back object is provided, only the entry corresponding to this listener

and hand-back pair will be removed. The same listener object may still be

registered with other hand-back objects. Otherwise, if the hand-back is not

provided, all entries corresponding to the listener will be removed.

Any type of MBean may implement the NotificationBroadcaster interface.

This may lead to a special case of a standard MBean which has an empty

management interface: its role as a manageable resource is to be a broadcaster of

notifications. It must be a concrete class with a public constructor, and it must

implement an MBean interface, which in this case defines no methods. The only

methods in its class are those implementing the NotificationBroadcaster
interface. This MBean may be registered in a JMX agent, and its management

interface only contains the list of notifications that it may send.
50 JMX Instrumentation and Agent Specification, v1.0 • May 2000

NotificationListener Interface

This interface must be implemented by all objects interested in receiving

notifications sent by any broadcaster. It defines a unique callback method,

handleNotification , which will be invoked by a broadcaster MBean when it

emits a notification.

Besides the Notification object, the listener’s hand-back object is passed as an

argument to the handleNotification method. This is a reference to the same

object that the listener provided upon registration. It is stored by the broadcaster and

returned unchanged with each notification.

Since all notifications are characterized by their type string, notification listeners

only implement one handler method for receiving all notifications from all potential

broadcasters. This method should then rely on the type string, other fields of the

notification object and on the hand-back object to determine the broadcaster and the

meaning of the notification.

NotificationFilter Interface

This interface is implemented by objects acting as a notification filter. It defines a

unique method, isNotificationEnabled , which will be invoked by the

broadcaster before it emits a notification. This method takes the Notification object

that the broadcaster intends to emit and, based on its contents, returns true or

false , indicating whether or not the listener should receive this notification.

The filter object is provided by the listener when it registers for notifications with the

broadcaster, so each listener may provide its own filter. The broadcaster must apply

each listener’s filter, if defined, before calling the handleNotification method of

the corresponding listener.

Listeners rely on the filter to screen all possible notifications and only handle the

ones in which they are interested. An object may be both a listener and a filter by

implementing both the NotificationListener and the NotificationFilter
interfaces. In this case, the object reference will be given for both the listener and the

filter object when registering it with a broadcaster.

Attribute Change Notifications

This section introduces a specific family of notifications, the attribute change
notifications, which allows management services and applications to be notified

whenever the value of a given MBean attribute is modified.
Chapter 2 MBean Instrumentation 51

In the JMX architecture, the MBean has the full responsibility of sending

notifications when an attribute change occurs. The mechanism for detecting changes

in attributes and triggering the notification of the event is not part of the JMX

specification. The attribute change notification behavior is therefore dependent upon

the implementation of each MBean’s class.

MBeans are not required to signal attribute changes, but if they wish to do so within

the JMX architecture, they should rely on the following components:

■ A specific event class, AttributeChangeNotification , which can signal any

attribute change event.

■ A specific filter support, AttributeChangeNotificationFilter , which

allows attribute change notification listeners to filter the notifications depending

on the attributes of interest.

Otherwise, attribute change notification broadcasters and listeners are defined by the

same interfaces as in the standard notification model. Any MBean wishing to send

attribute change notifications must implement the NotificationBroadcaster
interface, as described in the “JMX Notification Model” on page 47. Similarly, the

NotificationListener interface must be implemented by all objects interested in

receiving attribute change notifications sent by an MBean.

AttributeChangeNotification Class

The AttributeChangeNotification class extends the Notification class and

defines the following additional fields:

■ The name of the attribute which has changed

■ The type of the attribute which has changed

■ The old value of the attribute

■ The new value of the attribute

When implementing the attribute change notification model, broadcaster MBeans

must use this class when sending notifications of attribute changes. They may also

send other Notification objects for other events. The additional fields of this class

provide the listener with information about the attribute which has changed. The

notification type of all attribute change notifications must be

jmx.attribute.change . This type is defined by the static string

ATTRIBUTE_CHANGEdeclared in this class.

AttributeChangeNotificationFilter Class

The AttributeChangeNotificationFilter class implements the

NotificationFilter interface and defines the following additional methods:
52 JMX Instrumentation and Agent Specification, v1.0 • May 2000

■ enableAttribute - Enables notifications for the given attribute name.

■ disableAttribute - Filters out notifications for the given attribute name.

■ disableAllAttributes - Effectively disables all attribute change notifications.

■ getEnabledTypes - Returns a list of all attribute names which are currently

enabled for receiving notifications

Notification listeners wishing to observe certain attributes for changes may

instantiate this class, configure the set of “enabled” attributes and use this object as

the filter when registering as a listener with a known attribute change broadcaster.

The attribute change filter allows the listener to receive attribute change notifications

only for those attributes which are desired.

MBean Metadata Classes

This section defines the classes that describe an MBean. These classes are used both

for the introspection of standard MBeans and for the self-description of all dynamic

MBeans. These classes describe the management interface of an MBean in terms of

its attributes, operations, constructors and notifications.

The JMX agent exposes all of its MBeans, regardless of their type, through the

MBean metadata classes. All clients, whether management applications or other

local MBeans wishing to view the management interface of an MBean, need to be

able to interpret these objects and their constructs. Certain MBeans may provide

additional data by extending these classes (see “Open MBean Metadata Classes” on

page 63 and “Model MBean Metadata Classes” on page 73).

In addition to providing an internal representation of any MBean, these classes can

be used to construct a visual representation of any MBean. One approach to

management is to present all manageable resources to an operator through a

graphical user interface. To this end, the complete description of all MBeans includes

a descriptive text for each of their components. How this information is displayed is

completely dependent upon the application which manages the MBean and is

outside the scope of this specification.

The following classes define an MBean’s management interface; they are referred to

collectively as the MBean metadata classes throughout this document:

■ MBeanInfo - lists the attributes, operations, constructors and notifications

■ MBeanFeatureInfo - superclass for the following classes

■ MBeanOperationInfo - describes the method of an operation

■ MBeanConstructorInfo - describes a constructor

■ MBeanParameterInfo - describes a method parameter

■ MBeanAttributeInfo - describes an attribute

■ MBeanNotificationInfo - describes a notification
Chapter 2 MBean Instrumentation 53

The following UML diagram shows the relationship between these classes as well as

the components of each. Each class is fully described in the subsequent sections.

FIGURE 2-9 The MBean Metadata Classes

MBeanInfo Class

This class is used to fully describe an MBean: its attributes, operations, its

constructors, and the notification types it may send. For each of these categories, this

class stores an array of metadata objects for the individual components. If an MBean

has no component in a certain category, for example no notifications, the

corresponding method returns an empty array.

MBeanOperationInfo MBeanNotificationInfo

MBeanAttributeInfo

MBeanInfo

getClassName(): String
getNotifications(): MBeanNotificationInfo[]
getAttributes(): MBeanAttributeInfo[]
getConstructors(): MBeanConstructorInfo[]
getOperations(): MBeanOperationInfo[]
getDescription(): String

getType(): String
isReadable(): boolean
isWritable(): boolean
isIs(): boolean

getReturnType(): String
getSignature(): MBeanParameterInfo[]
getImpact(): int

UNKNOWN: int {frozen}
ACTION: int {frozen}
INFO: int {frozen}
ACTION_INFO: int {frozen}

getNotifTypes(): String[]

MBeanConstructorInfo

getSignature(): MBeanParameterInfo[]

MBeanParameterInfo

getType(): String

0..*

MBeanFeatureInfo

getName(): String
getDescription(): String

0..*

0..*

0..*

0..*0..*
54 JMX Instrumentation and Agent Specification, v1.0 • May 2000

Each metadata object is a class which contains information which is specific to the

type of component. For example, attributes are characterized by their type and read-

write access, and operations by their signature and return type. All components

have a case-sensitive name and a description string.

Besides the array of metadata objects for each component category, the MBeanInfo
class has two descriptive methods. The getClassName method returns a string

containing the Java class name of this MBean. The getDescription method should

be used to return a string describing the MBean that is suitable for displaying to a

user in a GUI. It should describe the MBean’s overall purpose or functionality.

In the case of a standard MBean, the information contained in the MBeanInfo class

is provided by the introspection mechanism of the JMX agent. Introspection can

determine the components of the MBean, but it cannot provide a qualitative

description. The introspection of standard MBeans provides a simple generic

description string for the MBeanInfo object and all of its components. Therefore, all

standard MBeans will have the same description. For dynamic MBeans, it is the

developer’s responsibility to ensure that the description strings for the MBeanInfo
object and all of its components provide correct and useful information about the

MBean.

MBeanFeatureInfo Class

This class is not directly returned by an MBeanInfo object

, but it is the parent of all of the other component metadata classes. All of the

subsequent objects subclass MBeanFeatureInfo and inherit its two methods,

getName and getDescription .

The getName method returns a string with the name of the component. This name is

case-sensitive and identifies the given component within the MBean. For example, if

an MBean interface exposes the getstate method, it will be described by an

MBeanAttributeInfo object whose inherited getName method will return

“state ”.

The getDescription method returns a string which provides a human readable

explanation of a component. In the case of dynamic MBeans, this string must be

provided by the developer. This string should be suitable for displaying to an

operator through the user interface of a management application, for example.

MBeanAttributeInfo Class

The MBeanAttributeInfo class describes an attribute in the MBean’s management

interface. An attribute is characterized by its type and by how it is accessed.
Chapter 2 MBean Instrumentation 55

The type of an attribute is the Java class which is used to represent it when calling its

getter or setter methods. The getType method returns the name of this class as a

string. The type string includes a terminating pair of brackets (“[] ”) when the

attribute is an array type.

MBean access is either readable, writable or both. Read access implies that a

manager may get the value of this attribute, and write access that it may set its

value:

■ The isReadable method will return true if this attribute has a getter method in

its MBean interface or if the getAttribute method of the DynamicMBean
interface will succeed with this attribute’s name as the parameter; otherwise it

will return false .

■ The isWritable method will return true if this attribute has a setter method in

its MBean interface or if the setAttribute method of the DynamicMBean
interface will succeed with this attribute’s name as a parameter; otherwise it will

return false .

■ The isIs method will return true if this attribute has a boolean type and a

getter method with the is prefix (versus the get prefix); otherwise it will return

false . Note that this information is only relevant for a standard MBean.

See “Lexical Design Patterns” on page 38 for the definition of getter and setter

methods in standard MBeans.

Note – By this definition, the access information does not take into account any read

or write access to an attribute’s internal representation which an MBean developer

might provide through one of the operations.

MBeanConstructorInfo Class

MBean constructors are described solely by their signature: the order and types of

their parameter. This class describes a constructor and contains one method,

getSignature , which returns an array of MBeanParameterInfo objects. This

array has no elements if the given constructor has no parameters. Elements of the

parameter array are listed in the same order as constructor parameters, and each

element gives the type of its corresponding parameter (see “MBeanParameterInfo
Class” on page 57).

MBeanOperationInfo Class

The MBeanOperationInfo class describes an individual operation of an MBean.

An operation is defined by its signature, return type, and its impact.
56 JMX Instrumentation and Agent Specification, v1.0 • May 2000

The getImpact method returns an integer that can be mapped using the static

fields of this class. Its purpose is to communicate the impact this operation will have

on the managed entity represented by the MBean. A method described as INFO will

not modify the MBean, it is a read-only method which only returns data. An ACTION
method has some effect on the MBean, usually a write operation or some other state

modification. The ACTION_INFO method has both read and write roles.

The UNKNOWNvalue is reserved for the description of all operations of a standard

MBean, as introspected by the MBean server.

Impact information is very useful for making decisions on which operations to

expose to users at different times. It can also be used by some security schemes. It is

the dynamic MBean developer’s responsibility to correctly and consistently assign

the impact of each method in its metadata object. Indeed, the difference between

“information” and “action” is dependent on the design and usage of each MBean.

The getReturnType method returns a string containing the class name of the Java

object returned by the operation being described. The return type may be an array of

objects, in which case the string name includes a terminating pair of brackets (“[] ”).

The getSignature method returns an array of MBeanParameterInfo objects

where each element describes a parameter of the operation. The array elements are

listed in the same order as the operation’s parameters, and each element gives the

type of its corresponding parameter (see below).

MBeanParameterInfo Class

The MBeanParameterInfo class is used to describe a parameter of an operation or

of a constructor. This class gives the class type of the parameter and also extends the

MBeanFeatureInfo class in order to provide a name and description.

The getType method returns a string which identifies the Java class of the object

being described. The parameter may be an array of objects, in which case the type

name includes a terminating pair of brackets (“[] ”).

MBeanNotificationInfo Class

The MBeanNotificationInfo class is used to describe the notifications that are

sent by an MBean. This class extends the MBeanFeatureInfo class in order to

provide a name and a description. The name should give the fully qualified class

name of the notification objects that are actually broadcast.

The getNotifTypes method returns an array of strings containing the notification

types that the MBean may emit. The notification type is a string containing any

number of elements in dot notation, not the name of the Java class which
Chapter 2 MBean Instrumentation 57

implements this notification. As described in “JMX Notification Model” on page 47,

a single notification class may be used to send several notification types. All of these

types are returned in the string array returned by this method.
58 JMX Instrumentation and Agent Specification, v1.0 • May 2000

CHAPTER 3

Open MBeans

This chapter defines a way of instrumenting resources that MBeans should conform

to if they wish to be “open” to the widest range of management applications. These

MBeans are called open MBeans.

This chapter is incomplete and open MBeans are not fully specified in the JMX

instrumentation specification, v1.0. As a consequence none of the Javadoc API for

open MBean components is provided with the specification, even for those classes

presented in this chapter. Concepts and classes of open MBeans are presented in this

chapter are still subject to change.

Hence, compliance to open MBeans is not required, and in fact, compliance to open

MBeans is impossible to claim in this phase of the specification. Open MBeans are

intended to be fully defined and to become mandatory in the next release.

Overview

The goal of open MBeans is to provide a mechanism that will allow management

applications and their human administrators to understand and use new managed

objects as they are discovered at runtime. These MBeans are called “open” because

they rely on small, predefined set of universal Java types and they advertise their

functionality.

Management applications and open MBeans are thus able to share and use

management data and operations at runtime without requiring the recompilation,

reassembly or expensive dynamic linking of management applications. In the same

way, human operators are able to intelligently use the newly discovered managed

object without having to consult additional documentation. Thus, open MBeans

contribute to the flexibility and scalability of management systems.
59

In order to provide its own description to management applications, an open MBean

must be a dynamic MBean (see “Dynamic MBeans” on page 40). Beyond the

DynamicMBean interface, there is no corresponding “open” interface that must be

implemented. Instead, an MBean earns its “openness” by providing a descriptively

rich metadata and by using only certain predefined data types in its management

interface.

An open MBean has attributes, operations, constructors and possibly notifications

like any other MBeans. It is a dynamic MBean with the same behavior and all of the

same functionality. It also has the responsibility of providing its own description.

However, all of the object types that the MBean manipulates, its attribute types, its

operation parameters and return types, and its constructor parameters, must belong

to the set defined in “Basic Data Types” below. It is the developer’s responsibility to

fully implement the open MBean using these data types exclusively.

An MBean indicates whether it is open or not through the MBeanInfo object it

returns. Open MBeans return an OpenMBeanInfo object which is a subclass of

MBeanInfo . Other component metadata classes are also subclassed and it is the

developer’s responsibility to fully describe the open MBean using the proper classes.

If an MBean is marked as open in this manner, it is a guarantee that a JMX-compliant

management application can immediately make use of all attributes and operations

without requiring additional classes.

Since open MBeans are also dynamic MBeans and provide their own description, the

MBean server does not check the accuracy of the OpenMBeanInfo object (see

“Behavior of Dynamic MBeans” on page 42). The developer of an open MBean must

guarantee that the management interface relies on the basic data types and provides

a rich, human-readable description. As a rule, the description provided by the

various parts of an open MBean must be suitable for displaying to a user through a

Graphical User Interface (GUI).

Basic Data Types

In order for management applications to immediately make use of MBeans without

recompilation, re-assembly, or dynamic linking, all MBean attributes, method return

values, and method arguments must be limited to a universal set of data types. This

set is called the basic data types for open MBeans. This set is defined as: the wrapper

objects that correspond to the Java primitive types (such as Integer, Long, Boolean,

etc.), String, CompositeData, TabularData, and arrays of these data types.
60 JMX Instrumentation and Agent Specification, v1.0 • May 2000

The following list specifies all data types that are allowed in open MBeans:

All of the wrapper classes for the primitive types are defined and implemented in all

Java virtual machines. The CompositeData and TabularData classes are defined

in the javax.management.openmbean package. They are used to form aggregates

of the basic data types and provide a mechanism for expressing complex data objects

in a consistent manner.

Since CompositeData and TabularData are also basic data types, these structures

can contain other composite or tabular structures and have arbitrary complexity. The

TabularData class can be used to represent tables, a very common structure in the

management domain. The basic data types can therefore be used alone or in

combination to satisfy most data representation requirements.

Representing Complex Data

This section presents the two non-primitive classes that are included in the set of

basic data types: CompositeData and TabularData . These two classes are not

fully specified at this time, but their main characteristics are presented here.

These classes represent complex data types within open MBeans. Both of these

classes are used to create aggregate structures which are built up from the primitive

data types and these classes themselves. This means that any JMX agent or any JMX-

compliant management application may manipulate any open MBean and use the

arbitrarily complex structures it contains.

The two classes provide some semantic structure to build aggregates from the basic

data types. An instance of the CompositeData class is equivalent to a hash table:

values are retrieved by giving the name of the desired data item. An instance of

TabularData contains an array of CompositeData instances which can be

• java.lang.Boolean • java.lang.Boolean[]

• java.lang.Byte • java.lang.Byte[]

• java.lang.Character • java.lang.Character[]

• java.lang.String • java.lang.String[]

• java.lang.Short • java.lang.Short[]

• java.lang.Integer • java.lang.Integer[]

• java.lang.Long • java.lang.Long[]

• java.lang.Float • java.lang.Float[]

• java.lang.Double • java.lang.Double[]

• javax.management.openmbean.
CompositeData

• javax.management.openmbean.
CompositeData[]

• javax.management.openmbean.
TabularData

• javax.management.openmbean.
TabularData[]
Chapter 3 Open MBeans 61

retrieved individually by giving a unique key. However, instances of both classes are

immutable, as are the composite structures they define. For example, once a

CompositeData object is instantiated, you cannot add an item to it and you cannot

change the value of an existing item. You must instantiate another CompositeData
object with the desired structure and values.

CompositeData Class

The CompositeData class defines an immutable hash table with an arbitrary

number of entries, called data items, which can be of any type. In order to comply

with the design patterns for open MBeans, all data items must have a type among

the set of basic data types. Since this set also includes CompositeData , complex

hierarchies may be represented by creating composite types which contain other

composite types.

A CompositeData instance associates string keys with the values of each data item.

Since the instances are immutable, the class constructor takes arguments to fully

describe the contents of all items. The methods of the class then search for and

return data items based on their string key. The enumeration of all data items is also

possible.

TabularData Class

The TabularData class defines a table structure with an arbitrary number of rows

which can be indexed by any number of columns. Each row is a CompositeData
instance, but all rows must have the same composite data description. The columns

of the table are headed by the names of the data items which make up the uniform

CompositeData rows. The index consists of a subset of the data items in the

common composite data structure, with the requirement that this subset must be a

key which uniquely identifies each row of the table.

A TabularData instance defines an immutable table: its structure and contents are

given to the constructor for instantiation, and thereafter, no methods are provided to

modify the structure, add a row or modify its contents. The constructor verifies that

all rows are uniform and that they can be uniquely indexed by a given subset of the

data items.

The methods of the TabularData class take an array of objects representing a key

value which indexes one row and returns the CompositeData instance which

makes up the designated row. All rows of the table can also be retrieved in an

enumeration.
62 JMX Instrumentation and Agent Specification, v1.0 • May 2000

Open MBean Metadata Classes

To distinguish open MBeans from other MBeans, JMX provides a set of metadata

classes which are used specifically to describe open MBeans. These classes are

subclasses of the MBeanInfo class and its components; the MBeanInfo classes are

fully described in “MBean Metadata Classes” on page 53. The present section

discusses only those components which are particular to open MBeans.

The following classes of the javax.management.openmbean package define the

management interface of an open MBean:

■ OpenMBeanInfo - lists the attributes, operations, constructors and notifications

■ OpenMBeanOperationInfo - describes the method of an operation

■ OpenMBeanConstructorInfo - describes a constructor

■ OpenMBeanParameterInfo - describes a method parameter

■ OpenMBeanAttributeInfo - describes an attribute

All of the above classes directly extend the MBean metadata class whose name is

given by removing the Open prefix. Each of these classes describes a category of

components in an open MBean. However, open MBeans do not have a specific

metadata object for notifications: they use the MBeanNotificationInfo class

described on page 57.

In order to describe the aggregate data types specific to the open MBean model, the

javax.management.openmbean package also defines the following classes. These

extend the parameter and attribute metadata classes, respectively, and must be used

when a parameter or attribute is an aggregate data type:

■ CompositeParameterInfo
■ CompositeAttributeInfo
■ TabularParameterInfo
■ TabularAttributeInfo

Through methods inherited from their superclasses, the open MBean metadata

objects describe the management interface of an open MBean. Beyond this

description, they override certain methods to provide the extra information required

of open MBeans and to return the metadata of the new aggregate data types.

Since open MBeans are meant to be a universal way of exchanging management

functionality, their description must be rich enough for an operator to understand

and use their functionality. All of the open MBean metadata classes inherit the

getDescription method which must return a non-empty string. Each component

of an open MBean must use this method to provide a description of itself, for

example, the side-effects of an operation or the significance of an attribute. All

descriptions should be suitable for displaying to a user in a GUI.
Chapter 3 Open MBeans 63

The extra information that the open MBean model requires the developer to provide

is a list of legal values and one default value for all attributes and all operation

parameters. This information allows any user to intelligently manipulate a new or

unfamiliar open MBean.

Finally, the metadata classes for composite and tabular types provide the structure

for describing these aggregate types which are specific to open MBeans. These

structures are recursive, that is can contain instances of themselves, since aggregate

types can be built from other aggregate objects. All of the other basic data types are

adequately described by the information structure for simple types inherited from

the basic MBean metadata classes.

OpenMBeanInfo Class

The OpenMBeanInfo class provides the main information structure for describing

an open MBean. It directly extends the MBeanInfo class and thus inherits the

methods for specifying the class name and overall MBean description. It also inherits

the method for returning an array of notification metadata objects, as notifications

are described in the same way as for dynamic MBeans.

However, this class overrides all other methods which describe each category of

MBean component: attributes, operations and constructors. Their new

implementation still describes all components of a given category, but they now rely

on the open MBean metadata classes. Since each of the open MBean metadata objects

subclasses the original metadata object, each method returns an array of the subclass

type to describe an open MBean. The open MBean metadata classes for each

category of component are described in the subsequent sections.

OpenMBeanOperationInfo and

OpenMBeanConstructorInfo Classes

The OpenMBeanOperationInfo and OpenMBeanConstructorInfo classes extend

the MBeanOperationInfo and MBeanConstructorInfo classes, respectively (see

their definition on page 56). The former describes an operation of an open MBean,

and the latter describes one of its constructors.

Both of these classes override the getSignature method of their respective

superclass, again only to describe their parameters with open MBean metadata

objects. The getSignature method nominally returns an array of

MBeanParameterInfo objects, but both implementations actually return instances

of the OpenMBeanParameterInfo class described in the next section.
64 JMX Instrumentation and Agent Specification, v1.0 • May 2000

Only the OpenMBeanOperationInfo class inherits the getImpact () method, and

in the case of open MBean, it cannot return UNKNOWN. This means that all operations

must be identified as ACTION, INFO, or ACTION_INFO when instantiating their

metadata objects. It is the open MBean developer’s responsibility to correctly assign

the impact of each operation. The “impact” provides information to the user about

an operation’s side effects, as a complement to its self-description.

OpenMBeanParameterInfo and

OpenMBeanAttributeInfo Classes

The OpenMBeanParameterInfo and OpenMBeanAttributeInfo classes extend

the MBeanParameterInfo and MBeanAttributeInfo classes, respectively (see

their definition on page 57 and page 55). The former describes one parameter of an

operation or constructor, and the latter describes an attribute of an open MBean.

Both of these classes inherit the getType method from their superclass, and the

attribute metadata information inherits isReadable , isWritable , and isIs for

defining attribute access. None of these methods are overridden and therefore have

the same functionality as in the superclass.

Both classes define the getDefaultValue and getLegalValues methods to

provide additional information about the parameter or attribute. These methods are

implemented identically in both classes and have exactly the same functionality in

each object.

The getDefaultValue method is used to indicate a default value for a given

parameter or attribute. At run-time, it returns an Object which must be assignment

compatible with the type named by the getType method of the same parameter or

attribute description object. The default value can be used to initialize an attribute or

to provide a parameter value when the operation’s caller has no particular

preference for some parameter.

The getLegalValues method is used to return a list of permissible values for a

given parameter or attribute. It returns an Object array, the elements of which must

assignment compatible with the type named by the getType method of the same

parameter or attribute description object. The legal values can be used to provide the

user with a list of choices when editing writable attributes or filling in operation

parameters. For readable attributes, this method provides a list of legal values that

may be expected. If a set of legal values is supplied, then the MBean server will

verify that any value written to the attribute or used for this parameter is a member

of this set.

Since these classes are specific to open MBeans, all parameter and attribute types are

necessarily one of the basic data types. However, these classes have specific

subclasses for describing aggregate types: CompositeParameterInfo and
Chapter 3 Open MBeans 65

CompositeAttributeInfo must be used to describe a composite data object, and

TabularParameterInfo and TabularAttributeInfo must be used to describe

a tabular data object. These classes are described in the next two sections.

CompositeParameterInfo and

CompositeAttributeInfo Classes

The CompositeParameterInfo and CompositeAttributeInfo classes extend

the OpenMBeanParameterInfo and OpenMBeanAttributeInfo classes,

respectively (see the previous section). They describe an instance of the

CompositeData class when used either as a parameter or as an attribute type.

Both classes define a method for obtaining a description of all data items in the

given composite data: getParameterInfo and getAttributeInfo , respectively.

These return an array of metadata objects, one element for each data item in the

composite data object. Each data item of a composite parameter is described by an

OpenMBeanParameterInfo instance, and each of a composite attribute by an

OpenMBeanAttributeInfo instance. In this way, every data item in a composite

data type will inherit the methods for describing its own default and legal values.

Composite data objects may also have data items which are other aggregate data

objects (see “CompositeData Class” on page 62). In this case, the corresponding

element of the returned array will be an instance of either

CompositeAttributeInfo , CompositeParameterInfo ,

TabularParameterInfo , or TabularAttributeInfo , depending on the case.

Such a structure will recursively define complex data types until all data items

belong to one of the basic data types.

TabularParameterInfo and

TabularAttributeInfo Classes

The TabularParameterInfo and TabularAttributeInfo classes extend the

CompositeParameterInfo and CompositeAttributeInfo classes, respectively

(see the previous section). They describe an instance of the TabularData class

when used either as a parameter or as an attribute type.

These classes inherit the getParameterInfo and getAttributeInfo methods,

respectively, which return an array describing a composite data. In the superclass,

this array described the composite data itself. In the tabular data metadata objects,

this array describes the table structure, one element for each column of the table.

Each element describes a data item and the array defines the composite data to

which all table rows must conform.
66 JMX Instrumentation and Agent Specification, v1.0 • May 2000

Both classes then define the getIndexNames method which returns an array of

strings. Each element is the name of a column, and the group of columns make up

the index for the table. All index names must be found among the names given by

the metadata information of the table columns. The index must be a key which can

uniquely identify each row of the table.

Open MBean Requirements Summary

To summarize, an open MBean must possess the following properties:

■ It must fully implement the DynamicMBean interface.

■ All attributes, method arguments, and non-void return values must be objects in

the set of basic data types for open MBeans.

■ The implementation of the getMBeanInfo method must return an

OpenMBeanInfo instance which fully describes the MBean components using the

open MBean metadata objects.

■ All objects of type CompositeData that are described in the OpenMBeanInfo
object must be fully described using the CompositeParameterInfo or

CompositeAttributeInfo class. Using only its superclass is insufficient.

■ All objects of type TabularData that are described in the OpenMBeanInfo must

be fully described using the TabularParameterInfo or

TabularAttributeInfo class. Using any of their superclasses is insufficient.

■ All of the following methods must return valid, meaningful data (non-empty

strings) suitable for display to users:

■ OpenMbeanInfo.getDescription
■ OpenMBeanOperationInfo.getDescription
■ OpenMBeanConstructorInfo.getDescription
■ OpenMBeanParameterInfo.getDescription
■ OpenMBeanAttributeInfo.getDescription
■ CompositeParameterInfo.getDescription
■ CompositeAttributeInfo.getDescription
■ TabularParameterInfo.getDescription
■ TabularAttributeInfo.getDescription
■ MBeanNotificationInfo.getDescription

■ Instances of OpenMBeanOperationInfo.getImpact must return one of the

constant values ACTION, INFO, or ACTION_INFO. The value UNKNOWNmay not be

used.
Chapter 3 Open MBeans 67

Note – As with other dynamic MBeans, the MBean server does not verify the proper

usage of the open MBean metadata classes. It is up to the MBean developer to insure

that all composite data and tabular data metadata provide coherent default values,

legal values and indexes.

The developer must also insure that all MBean components are adequately described

in a meaningful way for the intended users. This qualitative requirement cannot be

programmatically enforced.
68 JMX Instrumentation and Agent Specification, v1.0 • May 2000

CHAPTER 4

Model MBeans

A model MBean is a generic, configurable MBean which anyone can use to rapidly

instrument almost any resource. Model MBeans are dynamic MBeans which also

implement the interfaces specified in this chapter. These interfaces define structures

that, when implemented, provide an instantiable MBean with default and

configurable behavior.

Further, the Java Management extensions specify that a model MBean

implementation must be supplied as part of all conforming JMX agents. This means

that resources, services and applications can rely on the presence of a generic,

template for creating manageable objects on-the-fly. Users only need to instantiate a

model MBean, configure the exposure of the default behavior, and register it in a

JMX agent. This significantly reduces the programming burden for gaining

manageability. Developers can instrument their resources with JMX in as little as

3 to 5 lines of code.

Instrumentation with model MBeans is universal because instrumentors are

guaranteed that there will be a model MBean appropriately adapted to all

environments which implement the Java Management extensions.

Overview

The model MBean specification is set of interfaces that provides a management

template for managed resources. It is also a set of concrete classes provided in

conjunction with the JMX agent. The JMX agent must provide an implementation

class named javax.management.modelmbean.RequiredModelMBean . This

model MBean implementation is intended to provide ease of use and extensive

default management behavior for the instrumentation.
69

The MBean server is a repository and a factory for the model MBean, so the

managed resource obtains its model MBean object from the JMX agent. The managed

resource developer does not have to supply his own implementation of this class.

Instead, the resource is programmed to create and configure its model MBean at run-

time, dynamically instrumenting the management interface it needs to expose.

Resources to be managed add custom attributes, operations, and notifications to the

basic model MBean object by interfacing with the JMX agent and model MBeans that

represent the resource. There may be one or more instances of a model MBean for

each instance of a resource (application, device, and so forth) to be managed in the

system. The model MBean is a dynamic MBean, meaning that it implements the

DynamicMBean interface. As such, the JMX agent will delegate all management

operations to the model MBean instances.

The model MBean instances are created and maintained by the JMX agent, like other

MBean instances. The managed resource instantiating the model MBean does not

have to be aware of the specifics of the implementation of the model MBean.

Implementation differences between environments include the JVM, persistence,

transactional behavior, caching, scalability, throughput, location transparency,

remoteability, and so on. The RequiredModelMBean implementation will always be

available, but there may be other implementations of the model MBean available,

depending upon the needs of the environment in which the JMX agent is installed.

For example, a JMX agent running in a J2ME™ (Java 2 Platform, Micro Edition)

environment may provide a RequiredModelMBean with no persistence or

remoteability. A JMX agent running in an application server’s JVM supporting

J2EE™ (Java 2 Platform, Enterprise Edition) technologies may provide a

RequiredModelMBean that handles persistence, transactions, remote access,

location transparency, and security. In either case, the instrumentation programmer’s

task is the same. The MBean developer does not have to provide different versions

of its MBeans for different Java environments, nor does he have to program to a

specific Java environment.

The model MBean, in cooperation with its JMX agent, will be implemented to

support its own persistence, transactionalism, location transparency, and locatability,

as applicable in its environment. The instrumentation developer does not need to

develop an MBean with its own transactional and persistence characteristics. He

merely instantiates his model MBean in the JMX agent and trusts the

implementation of the model MBean that the JMX agent has is appropriate for the

environment in which the JMX agent currently exists.

Any implementation of the model MBean must implement the ModelMBean
interface which extends the DynamicMBean , PersistentMBean and

ModelMBeanNotificationBroadcaster interfaces. The model MBean must

expose its metadata in a ModelMBeanInfoSupport object which extends

MBeanInfo and implements the ModelMBeanInfo interface. A model MBean

instances sends attribute change notifications and generic notifications for which
70 JMX Instrumentation and Agent Specification, v1.0 • May 2000

both the managed resource and management applications may listen. The model

MBean has both a default constructor and a constructor which takes a

ModelMBeanInfo instance.

The model MBean information includes a descriptor for each attribute, constructor,

operation, and notification in its management interface. A descriptor is an essential

component of the model MBean. It contains dynamic, extensible, configurable

behavior information for each MBean component. This includes, but is not limited

to, logging policy, notification responses, persistence policy, value caching policy.

Most importantly, the descriptors of a model MBean provide the mapping between

the attributes and operations in the management interface and the actual methods

that need to be called to satisfy the get, set, or invoke request.

Allowing methods to be associated with the attribute allows for dynamic, runtime

delegation. For example, a getAttribute("myApplStatus ") call may actually

invoke the myAppl.StatusChecker method on another object that is part of the

managed resource. The object myAppl may be in this JVM, or it may be in another

JVM on this host or another host, depending on how the model MBean has been

configured through its descriptors. In this way, distributed, component oriented

applications are supported.

The ModelMBean interface extends the DynamicMBean interface. The

implementation of the DynamicMBean methods should use the policy in the

descriptors to guide how the requests are satisfied. How this should be done is

described in greater detail in “DynamicMBean Implementation” on page 85.

The ModelMBean interface also extends the PersistentMBean interface specific to

model MBeans. The load and store methods of this interface are responsible for

analyzing and complying with the persistence policy in the descriptors. The

persistence policy should be specifiable at both the MBean level and at the attribute

level. These methods should be called when appropriate by the model MBean

implementation itself and not necessarily by the managed resource or a management

application. The implementation may choose to not support any actual, direct

persistence, in which case these methods will do nothing.

Generic Notifications

The ModelMBean interface extends the ModelMBeanNotificationBroadcaster
interface. This interface defines a sendNotification method which sends any

Notification object to all registered listeners. It also overloads the

sendNotification method to accepts a text message and wraps it in a notification

named Generic of type jmx.modelmbean.general . This makes it easier for

managed resources to signal important events as well as informational events.

Finally, this interface also provides methods for sending the attribute change

notifications for which the model MBean’s implementation is responsible.
Chapter 4 Model MBeans 71

Interaction with Managed Resources

When a managed resource is instrumented through a model MBean, it uses the

ModelMBeanInfo interface to expose its intended management interface. At

initialization, the managed resource obtains access to the JMX agent through the

static findMBeanServer method of the MBeanServerFactory class (see “MBean

Server Factory” on page 115). The managed resource then will create or find and

reference one or more instances of the model MBean using the instantiate ,

create , getObjectInstance , or queryMBeans methods. The predefined

attributes that are part of the model MBean’s name are meant to establish a unique

managed resource (MBean) identity.

The managed resource then configures the model MBean object with its management

interface. This includes the custom attributes, operations, and notifications that it

wants management applications to access through the JMX agent. The resource

specific information can thus be dynamically determined at execution time. The

managed resource sets and updates any type of data as an attribute in the model

MBean at will with a single setAttribute method invocation. The attribute is now

published for use by any management system.

The model MBean has an internal caching mechanism for storing attribute values

that are provided by the management resource. Maintaining values of fairly static

attributes in the model MBean allows it to return that value without calling the

managed resource. The resource may also set its model MBean to disable caching,

meaning that the resource will be called whenever an attribute is accessed. In this

case, the managed resource is invoked and it returns the attribute values and to the

model MBean. In turn, the model MBean returns these values to the MBean server

which returns them to the request originator, usually a management application.

Since the model MBean can be persistent and is locatable, critical but transient

managed resources can retain any required counters or state information within the

JMX agent. Likewise, if persistence is supported, the managed resource’s data

survives recycling of the JMX agent.

The model MBean implements the NotificationBroadcaster interface. One

sendNotification API call on the model MBean by the managed resource sends

notifications to all “interested” management systems. Predefined or unique

notifications can be sent for any managed resource or management system defined

significant event. These notifications must be documented in the

ModelMBeanNotificationInfo object. Notifications are typically sent by a

managed resource when operator intervention is required or the application’s state

is unacceptable. Notifications can also be sent based on MBean life cycle, attribute

changes, or for informative reasons. The model MBean sends attribute change

notifications whenever a custom attribute is set through the model MBean. The

managed resource can capture change requests initiated by the management system

by listening for the attribute change notification as well. The managed resource can

then choose to implement the attribute change from the model MBean into the

resource.
72 JMX Instrumentation and Agent Specification, v1.0 • May 2000

Interaction with Management Applications

Management applications access model MBeans in the same way that they access

dynamic or standard MBeans. However, if the manager understands model MBeans

it will be able to get additional information out of the descriptors that are part of the

model MBean. This additional metadata makes it easier for an arbitrary

management consoles to understand and treat managed resources that are

instrumented as model MBeans. As with any MBean, the management application

will “find” the JMX agent and model MBean objects through the methods of the

MBean server.

The manager may then interact with the model MBean through the JMX agent. It

will find the available attributes and operations through the MBeanInfo provided

by the managed resource. For model MBeans, the manager will find out behavior

details about supported attributes, operations, and notifications through the

ModelMBeanInfo and Descriptor interfaces. Like any other MBean, attributes are

accessed through the getter and setter methods of the MBean server, and operations

through its invoke method. Since the model MBean is a notification broadcaster,

management notification may be added as listeners for any notifications or attribute

change notifications from the managed resource.

Model MBean Metadata Classes

The management interface of a model MBean is described by its ModelMBeanInfo
instance. The getMBeanInfo method of a model MBean (specified by the

DynamicMBean interface) must return an extension of MBeanInfo which also

supports the ModelMBeanInfo interface. The ModelMBeanInfo interface adds

MBean descriptor and managedResource components to the MBeanInfo .

ModelMBeanInfo returns arrays of ModelMBeanAttributeInfo ,

ModelMBeanOperationInfo , ModelMBeanConstructorInfo , and

ModelMBeanNotificationInfo instances. These classes extend the MBean

metadata classes whose name is given by removing the Model prefix.

The model MBean extensions of the MBean metadata classes implement the

DescriptorAccess interface. This essentially adds a Descriptor for each

attribute, constructor, operation, and notification in its management interface. The

descriptor is accessed through the metadata object for each component.
Chapter 4 Model MBeans 73

Descriptor Interface

A descriptor defines behavioral and run-time metadata that is specific to model

MBeans. The descriptor data is kept as a set of fields, each consisting of a name-

value pair. The Descriptor interface must be implemented by the class

representing a descriptor. The DescriptorAccess interface defines how to get and

set the Descriptor from within the model MBean metadata classes. The

Descriptor interface describes how to interact with a descriptor instance returned

by the DescriptorAccess interface. See “Predefined Descriptor Fields” on page 94

for a discussion of the valid field names and values that must be supported.

Descriptor Interface Implementation

The Descriptor interface implementation must have the following constructors

and methods:

Descriptor()

Default constructor which returns an empty descriptor.

Descriptor(with Descriptor)

Copy constructor for the Descriptor class.

Descriptor(with field names and values)

Constructor that verifies that the field names include a descriptor type. It verifies

that the predefined fields contain valid values.

Descriptor

clone(): Object
getFieldNames(): String[]
getFieldValue(fieldName: String): Object
getFieldValues(fieldNames: String[]): Object[]
getFields(): String[]
setField(fieldName: String, fieldValue: Object)
setFields(fieldNames: String[], fieldValues: Object[])
removeField(fieldName: String)
isValid(): boolean

«Interface»
74 JMX Instrumentation and Agent Specification, v1.0 • May 2000

Descriptor(with field list)

Constructor that verifies that the field list includes a name and descriptor type. It

verifies that the predefined fields contain valid values.

getFieldNames

Returns all the field names of the descriptor in a String array.

getFieldValue(s)

Finds the given field name(s) in a descriptor and returns its (their) value.

setField(s)

Finds the given field name(s) in a descriptor and sets it (them) to the provided value.

getFields

Returns the descriptor information as an array of strings, each with the

fieldName=fieldValue format. If the field value is null then the field is defined

as fieldName= .

removeFields

Removes a descriptor field from the descriptor.

clone

Returns a new Descriptor instance which is a duplicate of the descriptor.

isValid

Returns true if this descriptor is valid for its descriptorType field.

toString

Returns a human readable string containing the descriptor information.
Chapter 4 Model MBeans 75

DescriptorAccess Interface

This interface must be implemented by the ModelMBeanAttributeInfo ,

ModelMBeanConstructorInfo , ModelMBeanOperationInfo , and

ModelMBeanNotification classes.

getDescriptor

This method returns a copy of the descriptor associated with the metadata class.

setDescriptor

This method replaces the descriptor associated with the metadata class with a copy

of the one passed in. This is a full replacement, not a merge.

ModelMBeanInfo Interface

The ModelMBeanInfo interface is defined to allow the association of a descriptor

with the model MBean, attribute, constructor, operation, and notification metadata

classes. This descriptor is used to define behavioral characteristics of the model

MBean instance. The descriptor is accessed through the DescriptorAccess
interface. When the getMBeanInfo method of the DynamicMBean interface is

invoked on a model MBean, it must return an instance of a class which implements

the ModelMBeanInfo interface.

getDescriptor(): Descriptor
setDescriptor(inDescr: Descriptor)

DescriptorAccess
«Interface»
76 JMX Instrumentation and Agent Specification, v1.0 • May 2000

ModelMBeanInfo Implementation

The requirements of the ModelMBeanInfo implementation are the following:

■ It should extend the MBeanInfo class.

■ It must implement the ModelMBeanInfo interface.

■ Its getAttributes , getConstructors , getOperations , and

getNotifications methods must return ModelMBeanAttributeInfo ,

ModelMBeanConstructorInfo , ModelMBeanOperationInfo , and

ModelMBeanNotificationInfo arrays, respectively.

■ The ModelMBeanAttributeInfo , ModelMBeanConstructorInfo ,

ModelMBeanOperationInfo , and ModelMBeanNotificationInfo classes it

returns must extend their respective MBeanAttributeInfo ,

MBeanConstructorInfo , MBeanOperationInfo , and

MBeanNotificationInfo classes.

■ The ModelMBeanAttributeInfo , ModelMBeanConstructorInfo ,

ModelMBeanOperationInfo , and ModelMBeanNotificationInfo classes it

returns must implement the DescriptorAccess interface. This interface

associates a configurable Descriptor object with the metadata class. The

descriptor allows the definition of behavioral policies for the MBean component.

■ It must implement the following constructors:

clone(): Object
getMBeanDescriptor(): Descriptor
setMBeanDescriptor(inDescriptor: Descriptor)
getDescriptor(inDescriptorName: String, inDescriptorType: String): Descriptor
getDescriptors (inDescriptorType: String): Descriptor[]
setDescriptor(inDescriptor: Descriptor, inDescriptorType: String)
setDescriptors(inDescriptors: Descriptor[])
getAttribute(inAttrName: String): ModelMBeanAttributeInfo
getNotification(inNotifName: String): ModelMBeanNotificationInfo
getOperation(inOperName: String): ModelMBeanOperationInfo
getAttributes(): MBeanAttributeInfo[]
getNotifications(): MBeanNotificationInfo[]
getOperations(): MBeanOperationInfo[]
getConstructors(): MBeanConstructorInfo[]
getClassName(): String
getDescription(): String

ModelMBeanInfo
«Interface»
Chapter 4 Model MBeans 77

ModelMBeanInfo

The default constructor which constructs a ModelMBeanInfo with empty

component arrays and a default MBean descriptor.

ModelMBeanInfo (with ModelMBeanInfo)

Constructs a ModelMBeanInfo which is a duplicate of the one passed in.

ModelMBeanInfo (with className, description,
ModelMBeanAttributeInfo[], ModelMBeanConstructorInfo[],
ModelMBeanOperationInfo[], ModelMBeanNotificationInfo[])

Creates a ModelMBeanInfo with the provided information, but the MBean

descriptor is a default. The MBean descriptor must not be null. The default

descriptor should at least contain the name and descriptorType fields. The

name should match the MBean name.

ModelMBeanInfo (with className, description,
ModelMBeanAttributeInfo[], ModelMBeanConstructorInfo[],
ModelMBeanOperationInfo[], ModelMBeanNotificationInfo[],
MBeanDescriptor)

Creates a ModelMBeanInfo with the provided information. The MBean

descriptor is verified: if it is not valid, an exception will be thrown and a default

MBean descriptor will be set.

■ It must implement the following model MBean-specific methods:

getMBeanDescriptor

Returns the MBean descriptor. This descriptor contains default configuration and

policies that apply to the whole MBean and to its components by default. The

descriptorType field will be “MBean”.

setMBeanDescriptor

Sets the MBean descriptor. This descriptor contains MBean-wide default

configuration and policies. This is a full replacement, no merging of fields is done.

The descriptor is verified before it is set: if it is not valid, the change will not

occur.
78 JMX Instrumentation and Agent Specification, v1.0 • May 2000

getDescriptor(s)

Returns a descriptor from a model MBean metadata object by name and

descriptor type (as found in the descriptorType field on the descriptor).

setDescriptor(s)

Sets a descriptor in the model MBean in a model MBean metadata object by name

and descriptor type (found in the descriptorType field on the descriptor).

Replaces the descriptor in its entirety.

getAttribute

Returns a ModelMBeanAttributeInfo by name.

getOperation

Returns a ModelMBeanOperationInfo by name.

getNotification

Returns a ModelMBeanNotificationInfo by name.

■ It must implement the following methods specified in the ModelMBeanInfo
interface but identical to those of the MBeanInfo class (see “MBeanInfo Class”

on page 54):

getAttributes

Returns an array of all ModelMBeanAttributeInfo objects.

getNotifications

Returns an array of all ModelMBeanNotificationInfo objects.

getOperations

Returns an array of all ModeMBeanOperationInfo objects.

getConstructors

Returns an array of all ModelMBeanConstructorInfo objects.
Chapter 4 Model MBeans 79

getClassName

Returns the name of the managed resource class.

getDescription

Returns the description of this model MBean instance.

ModelMBeanAttributeInfo Implementation

The ModelMBeanAttributeInfo must extend the MBeanAttributeInfo class

and implement the DescriptorAccess interface. The DescriptorAccess
interface associates a Descriptor instance with the existing metadata of the

MBeanAttributeInfo class.

This descriptor must have a name field which matches the name given by the

getName method of the corresponding metadata object. It must have a

descriptorType with the value “attribute ”. It may also contain the following

defined fields: value , default , displayName , getMethod , setMethod ,

protocolMap , persistPolicy , persistPeriod , currencyTimeLimit ,

lastUpdatedTimeStamp , iterable , visibility , and presentationString .

See “Attribute Descriptor Fields” on page 95 for a detailed description of each of

these fields.

The ModelMBeanAttributeInfo class must have the following constructors:

■ A constructor accepting a name, description, getter Method , and setter Method
which sets the descriptor to a default value with at least the name and

descriptorType fields set.

■ A constructor accepting a name, description, getter Method , setter Method , and a

Descriptor instance which has at least its name and descriptorType fields

set.

■ A constructor accepting a name, type, description, isReadable , isWritable ,

and isIs boolean parameters which sets the descriptor to a default value with at

least the name and descriptorType fields set.

■ A constructor accepting a name, description, isReadable , isWritable , and

isIs boolean parameters, and a Descriptor instance which has at least its

name and descriptorType fields set.

■ A copy constructor accepting a ModelMBeanAttributeInfo object.
80 JMX Instrumentation and Agent Specification, v1.0 • May 2000

ModelMBeanConstructorInfo Implementation

The ModelMBeanConstructorInfo must extend the MBeanConstructorInfo
class and implement the DescriptorAccess interface. The DescriptorAccess
interface associates a Descriptor instance with the existing metadata of the

MBeanConstructorInfo class.

This descriptor must have a name field which matches the name given by the

getName method of the corresponding metadata object. It must have a

descriptorType with the value “operation ” and a role of “constructor ”. It

may also contain the following defined fields: displayName , class , visibility ,

and presentationString . See “Operation Descriptor Fields” on page 97 for a

detailed description of each of these fields.

The ModelMBeanConstructorInfo class must have the following constructors:

■ A constructor accepting a description and Constructor object which sets the

descriptor to a default value with at least name and descriptorType fields set.

■ A constructor accepting a description, a Constructor object, and a Descriptor
instance which has at least the name and descriptorType fields set.

■ A constructor accepting a name, a description, and an MBeanParameterInfo
array which sets the descriptor to a default value with at least the name and

descriptorType fields set.

■ A constructor accepting a name, description, MBeanParameterInfo array, and a

Descriptor instance which has at least its name and descriptorType fields

set.

■ A copy constructor accepting a ModelMBeanConstructorInfo object.

ModelMBeanOperationInfo Implementation

The ModelMBeanOperationInfo must extend the MBeanOperationInfo class

and implement the DescriptorAccess interface. The DescriptorAccess
interface associates a Descriptor instance with the existing metadata of the

MBeanOperationInfo class.

This descriptor must have a name field which matches the name given by the

getName method of the corresponding metadata object. It must have a

descriptorType with the value “operation ” and a role of “operation ”,

“getter ”, or “setter ”. It may also contain the following defined fields:

displayName , class , targetObject , targetType , lastReturnedValue ,

currencyTimeLimit , lastReturnedTimeStamp , visibility , and

presentationString . See “Operation Descriptor Fields” on page 97 for a detailed

description of each of these fields.

The ModelMBeanOperationInfo class must have the following constructors:
Chapter 4 Model MBeans 81

■ A constructor accepting a description and a Method object which sets the

descriptor to a default value with at least its name and descriptorType fields

set.

■ A constructor accepting a description, a Method object, and a Descriptor
instance which at has least its name and descriptorType fields set.

■ A constructor accepting a name, description, MBeanParameterInfo array, type,

and an impact which sets the descriptor to a default value with at least the name
and descriptorType fields set.

■ A constructor accepting a name, description, MBeanParameterInfo array, type,

impact and a Descriptor instance which has at least its name and

descriptorType fields set.

■ A copy constructor accepting a ModelMBeanOperationInfo object.

ModelMBeanNotificationInfo Implementation

The ModelMBeanNotificationInfo must extend the MBeanNotificationInfo
class and implement the DescriptorAccess interface. The DescriptorAccess
interface associates a Descriptor instance with the existing metadata of the

MBeanNotificationInfo class.

This descriptor must have a name field which matches the name given by the

getName method of the corresponding metadata object. It must have a

descriptorType with the value “notification ”. It may also contain the

following defined fields: displayName , severity , messageID , log , logfile ,

visibility , and presentationString . See “Notification Descriptor Fields” on

page 98 for a detailed description of each of these fields.

The ModelMBeanNotificationInfo class must have the following constructors:

■ A constructor accepting an array of notification types, a name and a description

which sets the descriptor to a default value with at least its name and

descriptorType fields set.

■ A constructor accepting an array of notification types, a name, a description, and

a Descriptor instance which has at least its name and descriptorType fields

set.

■ A copy constructor accepting a ModelMBeanNotificationInfo .
82 JMX Instrumentation and Agent Specification, v1.0 • May 2000

Model MBean Specification

All JMX agents must have an implementation class of a model MBean which is

called javax.management.modelmbean.RequiredModelMBean . The

RequiredModelMBean and any other compliant model MBean must comply with

the following requirements:

■ Implement the Model MBean interface which extends the following interfaces:

■ DynamicMBean

■ PersistentMBean

■ ModelMBeanNotificationBroadcaster

■ Return an object from the getMBeanInfo method of the DynamicMBean
interface which:

■ Implements the ModelMBeanInfo interface

■ Extends MBeanInfo

■ Returns ModelMBeanAttributeInfo objects from the getAttributes
method

■ Returns ModelMBeanConstructorInfo objects from the getConstructors
method

■ Returns ModelMBeanOperationInfo objects from the getOperations
method

■ Returns ModelMBeanNotificationInfo objects from the

getNotifications method

■ Have the following constructors:

■ A default constructor having an empty parameter list

■ A constructor accepting a ModelMBeanInfo

ModelMBean Interface

Java technology-based resources wishing to be manageable instantiate the

RequiredModelMBean or another compliant model MBean using the MBean

server's createMBean method. The resource then sets the ModelMBeanInfo
(including its descriptors) for the ModelMBean instance. The attributes and

operations exposed via the ModelMBeanInfo for the model MBean are accessible to

other MBeans, and to management applications. Through the ModelMBeanInfo
descriptors, values and methods in the managed application can be defined and
Chapter 4 Model MBeans 83

mapped to attributes and operations of the model MBean. This mapping can be

defined during development in a file, or dynamically and programmatically at

runtime.

The ModelMBean interface extends DynamicMBean , PersistentMBean , and

ModelMBeanNotificationBroadcaster and its unique methods are defined by

the following UML diagram.

ModelMBean Implementation

The following sections describe how the ModelMBean interface is implemented by

the RequiredModelMBean class and should be implemented by compliant model

MBeans. This combines both the meaning of the methods and the implementation

details.

setModelMBeanInfo (with ModelMBeanInfo)

Creates the model MBean to reflect the given ModelMBeanInfo interface. Sets the

ModelMBeanInfo object for the model MBean to the provided ModelMBeanInfo
object. Initializes a ModelMBean instance using ModelMBeanInfo passed in.

The model MBean must be instantiated, but not yet registered with the MBean

server. Only after the model MBean's ModelMBeanInfo and its Descriptor objects

are customized, should the model MBean be registered with the MBean server.

setManagedResource (with ManagedResourceObject, Type)

Sets the managed resource attribute of the model MBean to the supplied object. Sets

the instance of the object against which to execute all operations in this model

MBean management interface (metadata and descriptors). The String field encodes

the target object type of reference for the managed resource. This can be:

ObjectReference , Handle , IOR, EJBHandle , or RMIReference . If the MBean

server cannot process the given target object type, this method will throw an

InvalidTargetTypeException .

If the targetObject field of an operation’s descriptor is set and is valid, then it

overrides the managed resource setting for that operation’s invocation.

ModelMBean
«Interface»

setModelMBeanInfo(mbi: MBeanInfo)
setManagedResource(mr: Object, mr_type: String)
84 JMX Instrumentation and Agent Specification, v1.0 • May 2000

DynamicMBean Implementation

The DynamicMBean interface defines the following methods:

■ getMBeanInfo
■ getAttribute and getAttributes
■ setAttribute and setAttributes
■ invoke

The description of these methods is given in “DynamicMBean Interface” on page 41.

Here, we define how the model MBean implementation expresses the functionality

of each method of the interface.

getMBeanInfo

Returns the ModelMBeanInfo object which implements the ModelMBeanInfo
interface for the ModelMBean . Valid attributes, constructors, operations, and

notifications defined by the managed resource can be retrieved from the

ModelMBeanInfo with the getOperations , getConstructors ,

getAttributes , and getNotifications methods.

The ModelMBeanInfo instance returns ModelMBeanOperationInfo ,

ModelMBeanConstructorInfo , ModelMBeanAttributeInfo , and

ModelMBeanNotificationInfo arrays, respectively. These classes extend

MBeanOperationInfo , MBeanConstructorInfo , MBeanAttributeInfo , and

MBeanNotificationInfo , respectively. These extensions must implement the

DescriptorAccess interface which sets and returns the descriptor associated with

each of these metadata classes. The ModelMBeanInfo also maintains a descriptor

for the model MBean referred to as the MBean descriptor.

getAttribute and getAttributes

Invoked to get attribute information from this instance of the ModelMBean
implementation synchronously. Model MBeans which support attribute value

caching will do cache checking and refreshing in this method. Model MBean caching

policy is set and values are cached in the descriptor for each attribute. If the model

MBean supports the getMethod field of the descriptor (assignment of an operation

to be invoked when a get is requested for an attribute) then this method will invoke

that operation and return its results as the attribute value. If no value or

getMethod descriptor fields are defined the defaultValue field is returned. If no

default value is defined then null will be returned.

If caching is supported, then the following algorithm will be used. The model

MBean will check for attribute value staleness. Staleness is determined from the

CurrencyTimeLimit and LastUpdatedTime fields in the descriptor for the
Chapter 4 Model MBeans 85

attribute in its ModelMBeanAttributeInfo object. If CurrencyTimeLimit is 0,

then the value will always be stale. If CurrencyTimeLimit is -1 , then the value

will never be stale.

If the value in the model MBean is set and not stale, then it will return this value

without invoking any methods on the managed resource. If the attribute value is

stale, then the model MBean will invoke the operation defined in the getMethod
field of the attribute descriptor. The returned value from this invocation will be

stored in the model MBean as the current value. LastUpdatedTime will be reset to

the current time. If a getMethod is not defined and the value is stale, then the

defaultValue from the Descriptor for the attribute will be returned.

setAttribute and setAttributes

Invoked to set information for an attribute of this instance of the ModelMBean
implementation synchronously. The model MBean will invoke the operation defined

in the setMethod field of the attribute descriptor. If no setMethod operation is

defined then only the value field of the attribute’s descriptor will be set. Invocation

of this method where the new attribute value does not match the current attribute

value causes an AttributeChangeNotification to be generated.

If caching is supported by the model MBean, the new attribute value will be cached

in the value field of the descriptor if the currencyTimeLimit field of the

descriptor is not 0. The LastUpdatedTime field should be set whenever the value
field is set.

invoke

The invoke method will execute the operation name passed in with the parameters

passed in, according to the DynamicMBean interface. The method will be invoked on

the model MBean’s managed resource (as set by the setManagedResource
method). If the targetObject field of the descriptor is set and the value of the

targetObjectType field is valid for the implementation, then the method will be

invoked on the value of the targetObject instead. Valid values for

targetObjectType include, but are not limited to, ObjectReference , IOR,

EJBHandle , and RMIReference .

If operation caching is supported, the response from the operation will be cached in

the lastReturnedValue and LastUpdatedTime fields of the operation’s

descriptor if the currencyTimeLimit field in the operation’s descriptor is not 0. If

the invoke is executed for a method and lastReturnedValue field does not

contain a stale value then it will be returned and the associated method will not

actually be executed.
86 JMX Instrumentation and Agent Specification, v1.0 • May 2000

PersistentMBean Interface

This interface is implemented by all model MBeans. If the model MBean is not

persistent or not responsible for its own persistence then these methods may do

nothing. The methods of the PersistentMBean interface are not intended to be

called directly by management applications. Rather, they are called by the required

model MBean to implement the persistence policy advertised by the MBean

descriptor, to the level that it is supported by the JMX agent’s runtime environment.

load

Locates the MBean in a persistent store and primes this instance of the MBean with

the stored values. Any currently set values are overwritten. Should only be called by

an implementation of the ModelMBean interface. (optional)

store

Writes the MBean in a persistent store. Should only called by an implementation of

the ModelMBean interface to store itself according to persistence policy for the

MBean. When used, it may be called with every invocation of setAttribute or on

a periodic basis. (optional)

ModelMBeanNotificationBroadcaster
Interface

This interface extends the NotificationBroadcaster interface and must be

implemented by any MBean wishing to broadcast custom, generic, or attribute

change notifications to listeners. Model MBeans must implement this interface.

In the model MBean, AttributeChangeNotifications are sent to a separate set

of listeners than those that other notifications would go to. All other notifications

should go to listeners who registered using the methods defined in the

NotificationBroadcaster interface. AttributeChangeNotifications can

also be sent to all notification listeners simply by using the

NotificationBroadcaster interface alone.

load()
store()

PersistentMBean
«Interface»
Chapter 4 Model MBeans 87

The model MBean sends an AttributeChangeNotification to all registered

notification listeners whenever a value change for the attribute in the model MBean

occurs. By default, no AttributeChangeNotification will be sent unless a

listener is explicitly registered for them. Normally, the setAttribute on the model

MBean invokes the set method defined for the attribute on the managed resource

directly. Alternatively, managed resources can use the attribute change notification

to trigger internal actions to implement the intended effect of changing the attribute

value on the model MBean.

ModelMBeanNotificationBroadcaster
Implementation

The ModelMBeanNotificationBroadcaster interface extends the

NotificationBroadcaster interface for its addNotificationListener and

removeNotificationListener methods. The following methods are specific to

open MBeans.

addAttributeChangeNotificationListener

Registers an object which implements the NotificationListener interface as a

listener for AttributeChangeNotifications from this MBean.

removeAttributeChangeNotificationListener

Removes a listener for AttributeChangeNotifications from the MBean.

sendAttributeChangeNotification (with AttributeChangeNotification)

Sends the given AttributeChangeNotification object to all registered listeners.

ModelMBeanNotificationBroadcaster

addAttributeChangeNotificationListener(inListener: NotificationListener,
inAttributeName: String,
java.lang.Object inhandback: Object)

removeAttributeChangeNotificationListener(inListener: NotificationListener,
inAttributeName: String)

sendNotification(ntfyObj: Notification)
sendNotification(ntfyText: String)
sendAttributeChangeNotification(ntfyObj: AttributeChangeNotification)
sendAttributeChangeNotification(inOldValue: Attribute, inNewValue: Attribute)

«Interface»
88 JMX Instrumentation and Agent Specification, v1.0 • May 2000

sendAttributeChangeNotification (with new and old Attributes)

Creates and sends an AttributeChangeNotification to all registered listeners.

sendNotification (with Notification)

Sends the given Notification object to all registered listeners.

sendNotification (with String)

Creates a Notification named “generic ” of type jmx.modelmbean.generic
and sends it to all registered listeners. The source of the notification is this

ModelMBean instance, sequence 1, and severity of 5 (informative).

Descriptors

The ModelMBeanInfo interface publishes metadata about the attributes, operations,

and notifications in the management interface. The model MBean descriptors contain

behavioral information and policies about the same management interface. A

descriptor consists of a set of fields, each of which is a String name and Object
value pair. They can be used to store any additional metadata about the

management information. The managed resource or management applications can

add, modify, or remove fields in any model MBean descriptor at run time.

Some standard field names are reserved and predefined in this specification to

handle common data management policies such as caching and persistence. The

descriptors also contain the names for the getter and setter operations for attributes.

This allows applications to distribute attribute support naturally across the

application, regardless of class, and to change that responsibility at runtime.

Descriptors are objects which implement the Descriptor interface. They are

accessible through the methods defined in the DescriptorAccess interface and

implemented in the ModelMBeanAttributeInfo , ModelMBeanOperationInfo ,

ModelMBeanConstructorInfo , and ModelMBeanNotificationInfo classes.

Arrays of these classes are accessed through the ModelMBeanInfo instance. Each of

these returns a descriptor which contains information about the component it

describes. A managed resource can define the values in the descriptors by

constructing a ModelMBeanInfo object and using it to define its model MBean

through the setModelMBeanInfo method or through the ModelMBean constructor.
Chapter 4 Model MBeans 89

Attribute Behavior

For an attribute, if the descriptor in the ModelMBeanAttributeInfo for it has no

method signature associated with it, then no managed resource method can be

invoked to satisfy it. This means that for setAttribute the value is simply

recorded in the descriptor, and any attribute change notification listeners are sent a

AttributeChangeNotification . For getAttribute , the current value for the

attribute in the model MBean is simply returned from the descriptor and its value

cannot be refreshed from the managed resource. This can be useful to minimize

managed resource interruption for static resource information. The attribute

descriptor also include policy for managing its persistence, caching, and protocol

mapping. For operations, the method signature must be defined. For notifications,

type, id, severity, and logging policy are optionally defined.

Notification Logging Policy

The model MBean will log notifications if the log fields of the MBean descriptor or

of the ModelMBeanNotificationInfo descriptor is set to true. A logfile field

must also be defined with a fully qualified file name at one of these levels to indicate

where the notifications should be logged. The setting at the

ModelMBeanNotificationInfo level will take precedence over the setting at the

MBean descriptor level. If the ModelMBean implementation or the JMX agent does

not support logging, then the log and logfile fields are ignored.

Persistence Policy

Persistence is handled within the model MBean. However, this does not mean that a

model MBean must implement persistence itself. Different implementations of the

JMX agent may have different levels of persistence. When there is no persistence,

objects will be completely transient in nature. In a simple implementation, the

ModelMBeanInfo may be serialized into a flat file. In a more complex environment

persistence may be handled by the JMX agent in which the model MBean has been

instantiated. If the JMX agent is not transient and the model MBean is persistable it

should support persistence policy at the attribute level and model MBean level.

The persistence policy may switch persistence off, force persistence on checkpoint

intervals, allow it to occur whenever the model MBean is updated, or throttle the

update persistence so that it does not write out the information any more frequently

than a certain interval. If the model MBean is executing in an environment where

management operations are transactional, this should be shielded from the managed

resource. If the managed resource must be aware of the transaction, then this will

mean that the managed resource depends on a proprietary version of the JMX agent

and model MBean to be accessible.
90 JMX Instrumentation and Agent Specification, v1.0 • May 2000

The ModelMBean constructor will attempt to prime itself by calling the

ModelMBean.load method. This method must determine if this model MBean has a

persistent representation by invoking the findPersistent method. Then the load

method must determine where this data is located, retrieve it, and initialize the

model MBean. For simpler representations, the directory and filename to be used for

persistence can be defined right in the MBean descriptor’s PersistLocation and

PersistName fields. The model MBean can, through JDBC™ (Java Database

Connectivity) operations, write data to and populate the model MBeans from any

number of data storage options such as an LDAP server, a database application, a

flat file, an NFS file, an FAS file, or an internal high performance cache.

The load method allows the JMX agent to be independent and ignorant of data

locale information and knowledge. This allows data location to vary from one

installation to another depending on how the JMX agent and managed resource are

installed and configured. It also permits managed resource configuration data to be

defined within the directory service for use by multiple managed resource instances

or JMX agent instances. In this way, data locale has no impact on the interaction

between the managed resource, its model MBean, the JMX agent, the adaptor or the

management system. As with all data persistence issues, the platform data services

characteristics may have an impact upon performance and security.

Since the persistence policy can be set at the model MBean attribute level, all or

some of the model MBean attributes can be stored by the ModelMBean . The model

MBean will detect that it has been updated and invoke its own store method. If the

model MBean service is configured to periodically checkpoint model MBeans by

invoking the ModelMBean.store method. Like the load method, the store
method must determine where the data should reside and store it there

appropriately.

The JMX agent’s persistence setting would apply to all of its model MBeans unless

one of them defines overriding policies. The model MBean persistence policy

provides a specified persistence event (update/checkpoint) and timing granularity

concerning how the designated attributes, if any, are stored. The model MBean

persistence policy will allow persistence on a “whenever updated” basis, a “periodic

checkpoint” basis, or a “never persist” basis. If no persistence policy for a model

MBean is defined, then its instance will be transient.

Cached Values Behavior

The descriptor for an attribute or operation contains the cached value and default

value for the data along with the caching policy. In general, the adaptors access the

application’s ModelMBean as it is returned by the JMX agent. If the data requested

by the adaptor is current, then the managed resource is not interrupted with a data

retrieval request. Therefore, direct interaction with the managed resource is not

required for each interaction with the management system. This helps minimize the

impact of management activity on runtime application resources and performance.
Chapter 4 Model MBeans 91

The attribute descriptor contains currencyTimeLimit and

lastUpdatedTimeStamp fields which are expressed in units of seconds. If the

current time is past lastUpdateTimeStamp + currencyTimeLimit , then the

attribute value is stale. If a getAttribute is received for an attribute with a stale

value (or no value) in the descriptor, then the getMethod for the attribute will be

invoked and the returned value will be recorded in the value field in the descriptor

for the attribute, lastUpdatedTimeStamp will be reset, and the caller will be

handed the new value. If there is no getMethod defined, then the default value

from default field in the descriptor for the attribute will be returned.

Protocol Map Support

The model MBean’s default behavior and simple APIs satisfies the management

needs of most applications. However, the interfaces of a model MBean also allow

complex managed resource management scenarios. The model MBean APIs allow

mapping of the application’s model MBean attributes to existing management data

models, i.e. specific MIBs or CIM objects through the ProtocolMap field of the

descriptor. Conversely, the managed resource can take advantage of generic

mappings to MIBs and CIM objects generated by tools interacting with the JMX

agent. For example, a MIB generator can interact with the JMX agent and create a

MIB file that is loaded by an SNMP management system. The generated MIB file can

represent the resources known by the JMX agent. The applications represented by

those resources do not have to be cognizant of how the management data is mapped

to the MIB. This scenario will also work for other definition files required by

management systems.

The ProtocolMap field of an attribute’s descriptor must contain a reference to an

instance of a class which implements the Descriptor interface. The contents (or

mappings) of the ProtocolMap must be appropriate for the attribute. The entries in

the ProtocolMap can be updated or augmented at runtime.

Export Policy

If the JMX agent implementation supports operating in a multi-JMX agent

environment, then the JMX agent will need to advertise its existence and availability

with the appropriate directory or lookup service. The JMX agent may also need to

register MBeans that wish to be locatable from other JMX agents without advance

knowledge about which JMX agent the MBean is currently registered with. MBeans

that want to be locatable in this type of environment should define an export field

in the MBean descriptor in its ModelMBeanInfo object.
92 JMX Instrumentation and Agent Specification, v1.0 • May 2000

The value of the export field should be the external name or object required to

export the MBean appropriately. If the JMX agent does not support interoperating

with a directory or lookup service and the export field is defined, then the field

will be ignored. If the value of the export field is F or false or the export field is

undefined, then the MBean will not be exported.

Visibility Policy

Model MBeans in the JMX specification provide developers of managed resources

with the ability to instrument manageability that supports both their custom, stand-

alone, domain manager as well as interchangeable enterprise managers. However,

the level of detail that should be available from these types of managers can be

significantly different. Enterprise managers may want to interact with higher level

management objects. Domain managers generally manage all details of the

application. Most management systems show large grain objects on a user interface

screen and show small grain objects on a detailed or advanced screen. The

visibility field in the descriptor is a hint about the level of granularity an

MBean, attribute, or operation represents. The visibility field can be used by a

custom implementation of a protocol adaptor/connector or by a management

system to filter out MBeans, attributes, or operations that it doesn’t need to

represent.

The visibility field’s value is an integer ranging from 1 to 4. The largest grain is

1, for an MBean or a component which is nearly always visible. The smallest grain is

4, for an MBean or a companionate which is only visible in special cases. The JMX

specification does not further define these levels.

Presentation Behavior

A PresentationString field can be defined in any descriptor. This string is an

XML formatted string meant to provide hints to a console so that it can generate

user interfaces for a management object. A standard set of presentation fields have

not yet been defined.
Chapter 4 Model MBeans 93

Predefined Descriptor Fields

The fields in each descriptor describe standard and custom information about model

MBean components. All predefined fields for the each of the descriptors are

specified below. The fields defined here are standardized so that the management

instrumentation is portable between implementations of model MBeans. More fields

may be defined in a management to store custom information as needed.

MBean Descriptor Fields

These are the predefined fields for the MBean descriptor. These values are valid for

the entire model MBean. These values may be overridden by descriptor fields with

the same name defined at the attribute, operation, or notification level. Optional

fields are in italics:

name - The case-sensitive name of the MBean.

descriptorType - String which always contains the value “MBean”.

displayName - Displayable name of attribute. In the absence of a value, the value

of the name field should be used instead.

persistPolicy - Takes on one of the following values:

■ Never - The attribute is never stored. This is useful for highly volatile data or

data that only has meaning within the context of a session or execution period.

■ OnTimer - The attribute is stored whenever the model MBean’s persistence

timer, as defined in the persistPeriod field, expires.

■ OnUpdate - The attribute is stored every time the attribute is updated.

■ NoMoreOftenThan - The attribute is stored every time it is updated unless the

updates are closer together than the persistPeriod . This acts as an update

throttling mechanism that helps prevent temporarily highly volatile data from

impacting performance.

persistPeriod - Valid only if the persistPolicy field’s value is OnTimer or

NoMoreOftenThan . For OnTimer , the attribute is stored at the beginning of each

persistPeriod starting from when the value is first set. For NoMoreOftenThan ,

the attribute will be stored every time it is updated unless the persistPeriod
hasn’t elapsed since the previous storage.
94 JMX Instrumentation and Agent Specification, v1.0 • May 2000

persistLocation - The fully qualified directory where files representing the

persistent MBeans should be stored (for this reference implementation). For other

implementations this value may be a keyword or value to assist the appropriate

persistence mechanism.

persistName - The filename into which this MBean should be stored. This should

be the same as the MBean’s name (for this reference implementation). For other

implementations this value may be a keyword/value to assist the appropriate

persistence mechanism.

log - A boolean where true indicates that all sent notifications should be logged to

a file, and false indicates that no notification logging should be done. This setting

can be overridden for a particular notification by defining the log field in the

notification descriptor.

logFile - The fully qualified file name where notifications should be logged. If

logging is true and the logFile is not defined or invalid, no logging will be

performed.

currencyTimeLimit - Time period in seconds from when an attribute value is

current and not stale. If the saved value is current then that value is returned and the

getMethod (if defined) is not invoked. If the currencyTimeLimit is 0, then the

value must be retrieved on every request. If currencyTimeLimit is -1 then the

value is never stale.

export - Its value can be any object that is serializable and contains the information

necessary to make the MBean locatable. null indicates that the MBean should not

be exposed to other JMX Agents. A defined value indicates that the MBean should

be exposed to other JMX Agents and also be findable when the JMX agent address is

unknown. If exporting MBeans and MBean servers is not supported, then this field

is ignored.

visibility - Integer set from 1 to 4 which indicates a level of granularity for the

MBean. 1 is for the large grain and most often viewed MBeans. 4 is the smallest

grain and possibly the least often viewed MBeans. This value may be used by

adaptors or management applications.

presentationString - XML-encoded string which describes how the attribute

should be presented.

Attribute Descriptor Fields

An attribute descriptor represents the metadata for one of the attributes of a model

MBean. Optional fields are in italics:

name - The case-sensitive name of the attribute.

descriptorType - A string which always contains the value “attribute ”.
Chapter 4 Model MBeans 95

value - The value of this field is the object representing the current value of

attribute, if set. This is, in effect, the cached value of the attribute that will be

returned if the currencyTimeLimit is not stale.

default - An object which is to be returned if the value is not set and the

getMethod is not defined.

displayName - The displayable name of the attribute.

getMethod - Operation name from the operation descriptors to be used to retrieve

the value of the attribute. The returned object is saved in the value field.

setMethod - Operation name from the operation descriptors to be used to set the

value of the attribute in the managed resource. The new value will also be saved in

the value field.

protocolMap - The value of this field must be a Descriptor object. It contains the

set of protocol name and mapped protocol value pairs. This allows the attribute to

be associated with a particular identifier (CIM schema, SNMP MIB Oid, etc.) for a

particular protocol. This descriptor should be set by the managed resource and used

by the adaptors as hints for representing this attribute to management applications.

persistPolicy - Takes on of one of the following values:

■ Never - The attribute is never stored. This is useful for highly volatile data or

data that only has meaning within the context of a session or execution period.

■ OnTimer - The attribute is stored whenever the model MBean service

persistPeriod expires.

■ OnUpdate - The attribute is stored every time the attribute is updated.

■ NoMoreOftenThan - The attribute is stored every time it is updated unless the

updates are closer together than the persistPeriod . This acts as an update

throttling mechanism that helps prevent temporarily highly volatile data from

impacting performance.

persistPeriod - Valid only if persistPolicy is OnTimer or

NoMoreOftenThan . For OnTimer the attribute is stored at the beginning of each

persistPeriod starting from when the value is first set. For NoMoreOftenThan
the attribute will be stored every time it is updated as long as the updates are not

closer together than the persistPeriod .

currencyTimeLimit - Time period in seconds from when a value is set that the

value is current and not stale. If the value is current then the saved value is

returned and the getMethod (if defined) is not invoked. If the

currencyTimeLimit is 0, then the value must be retrieved for every request. If

currencyTimeLimit is -1 then the value is never stale.

lastUpdatedTimeStamp - Time stamp from when the value field was last

updated.
96 JMX Instrumentation and Agent Specification, v1.0 • May 2000

iterable - A boolean value where true indicates the value is enumerable, and

false indicates the value is not enumerable.

visibility - Integer set from 1 to 4 which indicates a level of granularity for the

MBean attribute. 1 is for the large grain and most often viewed MBean attributes. 4
is the small grain and the least often viewed MBean attributes. This value may be

used by adaptors or management applications.

presentationString - XML-encoded string which describes how the attribute

should be presented.

Operation Descriptor Fields

The operation descriptor represents the metadata for operations of a model MBean.

Optional fields are in italics:

name - The case-sensitive operation name.

descriptorType - A string which always contains the value “operation ”.

displayName - Display name of the operation.

lastReturnedValue - The value that was returned from the operation the last

time it was executed. This allows the caching of operation responses. Operation

responses are only cached if the currencyTimeLimit field is not 0.

currencyTimeLimit - The period of time in seconds that the

lastReturnedValue is current and not stale. If the lastReturnedValue is

current then it is returned without actually invoking the method on the managed

resource. If the value is stale then the method is invoked. If currencyTimeLimit
is 0, then the value is always stale and is not cached. If the currencyTimeLimit is

-1 , then the value is never stale.

lastReturnedTimeStamp - The time stamp of when the lastReturnedValue
field was updated.

visibility - Integer set from 1 to 4 which indicates a level of granularity for the

MBean operation. 1 is for the large grain and most often viewed MBean operations.

4 is the smallest grain and the least often viewed MBean operations. This value may

be used by adaptors or management applications.

presentationString - XML-encoded string that defines how to present the

operation, parameters, and return type to a user.
Chapter 4 Model MBeans 97

Notification Descriptor Fields

Notification Descriptor represents the metadata for the notifications of a model

MBean. Optional fields are in italics:

name - The case-sensitive name of the notification.

descriptorType - A string which always contains the value “notification ”.

severity - Integer range of 0 to 6 interpreted as follows:

messageId - ID for the notification. Usually used to retrieve text to match the ID to

minimize message size or perform client side translation.

log - A boolean that is true if this notification should be logged to a file and false
if not. There can be a default value for all notifications of an MBean by defining the

log field in the MBean descriptor.

logFile - The fully qualified file name where notifications should be logged. If log
is true but the logFile is not defined or invalid, no logging will be performed.

This setting can also have an MBean-wide default by defining the logFile field in

the MBean descriptor.

PresentationString - XML-encoded string which describes how to present the

notification to a user.

0 • Unknown, Indeterminate

1 • Non recoverable

2 • Critical, Failure

3 • Major, Severe

4 • Minor, Marginal, or Error

5 • Warning

6 • Normal, Cleared, or Informative
98 JMX Instrumentation and Agent Specification, v1.0 • May 2000

PART II JMX Agent Specification
99

100 JMX Instrumentation and Agent Specification, v1.0 • May 2000

CHAPTER 5

Agent Architecture

This chapter gives an overview of the JMX agent architecture and its basic concepts.

It serves as an introduction to the agent specification of the Java Management

extensions.

Overview

A JMX agent is a management entity which runs in a JVM and acts as the liaison

between the MBeans and the management application. A JMX agent is composed of

an MBean server, a set of MBeans representing managed resources, a minimum number

of agent services implemented as MBeans, and typically at least one protocol adaptor or

connector.

The key components in the JMX agent architecture can be further defined as follows:

■ MBeans which represent managed resources, as specified in Part I, “JMX

Instrumentation Specification” on page 31.

■ The MBean server which is the key-stone of this architecture and the central

registry for MBeans. All management operations applied to MBeans need to go

through the MBean server.

■ Agent services which can either be components defined in this specification or

services developed by third parties. The agent service MBeans defined by the JMX

specification provide:

■ Dynamic loading services which allow the agent to instantiate MBeans using

java classes and native libraries dynamically downloaded from the network

■ Monitoring capabilities for attribute values in MBeans; the service notifies its

listeners upon detecting certain conditions

■ A timer service that can send notifications at pre-determined intervals and act

as a scheduler
101

■ A relation service that defines associations between MBeans and maintains the

consistency of the relation

Remote management applications may access an agent through different protocol

adaptors and connectors. These objects are part of the agent application but they are

not part of the JMX agent specification. They will be defined in the distributed

services specification in the next phase of Java Management extensions.

FIGURE 5-1 shows how the agent’s components relate to each other and to a

management application.

FIGURE 5-1 Key Concepts of the JMX Agent Architecture

The JMX architecture allows objects to perform the following operations on a JMX

agent. These objects may either be in the agent-side application or in a remote

management application. They can:

■ Manage existing MBeans by:

■ Getting their attribute values

■ Changing their attribute values

■ Invoking operations on them

■ Get notifications emitted by any MBean

■ Instantiate and register new MBeans from:

Java virtual machine

Java virtual machine

Monitor

Relation

Resource 1

Connector
Server

MBean Server

Agent service MBean

Connector
Client

Protocol
Adaptor Management Application

with a view of the JMX agent
through a protocol adaptor
(SNMP, for example)

JMX managed resource MBean

 Agent side Manager side

JMX-enabled
Management
Application

Resource 2
102 JMX Instrumentation and Agent Specification, v1.0 • May 2000

■ Java classes already loaded into the agent JVM

■ New classes downloaded from the local machine or from the network

■ Use the agent services to implement management policies involving existing

MBeans

In the JMX architecture, all of these operations are performed, either directly or

indirectly through the MBean server of the JMX agent.

JMX Compliant Agent

All of the agent components and classes described in the agent specification are

mandatory. In order to conform to the agent specification, a JMX agent

implementation must therefore provide the following components:

■ The MBean server implementation

■ All of the agent services:

■ Dynamic class loading

■ Monitoring

■ Timer

■ Relation

All of these components are specified in this document and in the associated Javadoc

API. The Agent Compatibility Test Suite will check that all components are actually

provided by an implementation of the specification.

Protocol Adaptors and Connectors

Protocol adaptors and connectors are not covered in this phase of the specification,
they are described here to provide a more complete overview of the agent’s
architecture.

Protocol adaptors and connectors make the agent accessible from remote management

applications. They provide a view through a specific protocol of the MBeans

instantiated and registered in the MBean server. They enable a management

application outside the JVM to:

■ Get or set attributes of existing MBeans

■ Perform operations on existing MBeans

■ Instantiate and register new MBeans

■ Register for and receive notifications emitted by MBeans
Chapter 5 Agent Architecture 103

Connectors are used to connect an agent with a remote JMX-enabled management

application; that is: a management application developed using the JMX distributed

services. This kind of communication involves a connector server in the agent and a

connector client in the manager.

These components convey management operations transparently point-to-point over

a specific protocol. The distributed services on the manager side provide a remote

interface to the MBean server through which the management application can

perform operations. A connector is specific to a given protocol, but the management

application can use any connector indifferently since they have the same remote

interface.

Protocol adaptors provide a management view of the JMX agent through a given

protocol. They adapt the operations of MBeans and the MBean server into a

representation in the given protocol, and possibly into a different information

model, for example SNMP.

Management applications that connect to a protocol adaptor are usually specific to

the given protocol. This is typically the case for legacy management solutions that

rely on a specific management protocol. They access the JMX agent not through a

remote representation of the MBean server, but through operations that are mapped

to those of the MBean server.

Both connector servers and protocol adaptors use the services of the MBean server in

order to apply the management operation they receive to the MBeans, and in order

to forward notifications to the management application.

For an agent to be manageable, it must include at least one protocol adaptor or

connector server. However, an agent can include any number of these, allowing it to

be managed remotely through different protocols simultaneously.

The adaptors and connectors provided by a JMX implementation should be

implemented as MBeans. This allows them to be managed as well as to be loaded

and unloaded dynamically, as needed.
104 JMX Instrumentation and Agent Specification, v1.0 • May 2000

CHAPTER 6

Foundation Classes

The foundation classes describe objects which are used as argument types or

returned values in methods of various JMX APIs. The foundation classes described

in this chapter are:

■ ObjectName
■ ObjectInstance
■ Attribute and AttributeList
■ JMX exceptions

The following classes are also considered as foundation classes; they are described in

“MBean Metadata Classes” on page 53:

■ MBeanInfo
■ MBeanFeatureInfo
■ MBeanAttributeInfo
■ MBeanOperationInfo
■ MBeanConstructorInfo
■ MBeanParameterInfo
■ MBeanNotificationInfo

All foundation classes are included in the JMX instrumentation API so that MBeans

may be developed solely from the instrumentation specification, yet be manipulated

by a JMX agent.

ObjectName Class

An object name uniquely identifies an MBean within an MBean server. Management

applications use this object name to identify the MBean on which to perform

management operations. The class ObjectName represents an object name which

consists of two parts:

■ A domain name
105

■ An unordered set of one or more key properties

The components of the object name are described below.

Domain Name

The domain name is a case-sensitive string. It provides a structure for the naming

space within a JMX agent or within a global management solution. The domain

name part may be omitted in an object name, as the MBean server is able to provide

a default domain. When an exact match is required (see “Pattern Matching” on

page 107), omitting the domain name will have the same result as using the default

domain defined by the MBean server.

How the domain name is structured is application-dependent. The domain name

string may contain any characters except those which are object name separators or

wildcards, namely the colon, comma, equals sign, asterisk or question mark (:,=*?).

JMX always handles the domain name as a whole, therefore any semantic sub-

definitions within the string are opaque to a JMX implementation.

Key Property List

The key property list enables you to assign unique names to the MBeans of a given

domain. A key property is a property-value pair, where the property does not need

to correspond to an actual attribute of an MBean.

The key property list must contain at least one key property. It may contain any

number of key properties, whose order is not significant.

String Representation of Names

Object names are usually built and displayed using their string representation,

which has the following syntax:

[domainName]:property=value[,property=value]*

The domain name may be omitted to designate the default domain.

The canonical name of an object is a particular string representation of its name where

the key properties are sorted in lexical order. This representation of the object name

is used in lexicographic comparisons performed in order to select MBeans based on

their object name.
106 JMX Instrumentation and Agent Specification, v1.0 • May 2000

Pattern Matching

Most of the basic MBean operations (for example, create, get and set attribute) need

to uniquely identify one MBean by its object name. In that case, exact matching of the

name is performed.

On the other hand, for query operations, it is possible to select a range of MBeans by

providing an object name expression. The MBean server will use pattern matching on

the names of the objects. The matching features for the name components are as

follows:

Domain Name

The matching syntax is consistent with standard file globing, in other words:

* matches any character sequence, including an empty one

? matches any one single character

Key Property List

There is no wildcard matching performed on property names nor on property

values. Only complete property-value pairs are used in pattern matching. While key

properties are atomic, the list of key properties may be incomplete and used as a

pattern.

The * is the wildcard for key properties, it replaces any number of key properties

which may take on any value. If the whole key property list is given as * , this will

match all the objects in the selected domain(s). If at least one key property is given in

the list pattern, the wildcard may be located anywhere in the given pattern,

provided it is still a comma-separated list: “:property=value,* ” and

“:*,property=value ” are both valid patterns. In this case, objects having the

given key properties as subsets of their key property list will be selected.

If no wildcard is used, only object names matching the complete key property list

will be selected. Again, the list is unordered, so the key properties in the list pattern

can be given in any order.

Pattern Matching Examples

Assuming that the MBeans with the following names are registered in the MBean

server:

MyDomain:description=Printer,type=laser

MyDomain:description=Disk,capacity=2

DefaultDomain:description=Disk,capacity=1

DefaultDomain:description=Printer,type=ink
Chapter 6 Foundation Classes 107

DefaultDomain:description=Printer,type=laser,date=1993

Socrates:description=Printer,type=laser,date=1993

Here are some examples of queries that can be performed using pattern matching:

■ “*:*” will match all the objects of the MBean server. A null string object or

empty string (“”) name used as a pattern is equivalent to “*:*”.

■ “:*” will match all the objects of the default domain

■ “MyDomain:*” will match all objects in MyDomain

■ “??Domain:*” will also match all objects in MyDomain

■ “*Dom*:*” will match all objects in MyDomain and DefaultDomain

■ “*:description=Printer,type=laser,*” will match the following objects:

MyDomain:description=Printer,type=laser

DefaultDomain:description=Printer,type=laser,date=1993

Socrates:description=Printer,type=laser,date=1993

■ “*Domain:description=Printer,*” will match the following objects:

MyDomain:description=Printer,type=laser

DefaultDomain:description=Printer,type=ink

DefaultDomain:description=Printer,type=laser,date=1993

ObjectInstance Class

The ObjectInstance class is used to represent the link between an MBean’s object

name and its Java class. It is the full description of an MBean within an MBean

server, though it does not allow you to access the MBean by reference.

The ObjectInstance class contains the following elements:

■ The Java class name of the corresponding MBean

■ The ObjectName registered for the corresponding MBean

■ A test for equality with another ObjectInstance

An ObjectInstance is returned when an MBean is created and is used

subsequently for querying.
108 JMX Instrumentation and Agent Specification, v1.0 • May 2000

Attribute and AttributeList
Classes

These classes are used to represent MBean attributes and their value. They contain

the attribute name string and its value cast as an Object instance.

JMX defines the following classes:

■ The Attribute class represents a single attribute-value pair

■ The AttributeList class represents a list of attribute-value pairs

The Attribute and AttributeList objects are typically used for conveying the

attribute values of an MBean, as the result of a getter operation, or as the argument

of a setter operation.

JMX Exceptions

The JMX exceptions are the set of exceptions that are thrown by different methods of

the JMX interfaces. This section describes what error cases are encapsulated by these

exceptions.

JMX exceptions mainly occur:

■ While the MBean server or JMX agent services perform operations on MBeans

■ When the MBean code raises user defined exceptions

The organization of the defined JMX exceptions is based on the nature of the error

case (runtime or not) and on the location where it was produced (manager, agent, or

during communication).

Only exceptions raised by the agent are within the scope of this release of the

specification. This section only describes exceptions that are thrown by the MBean

server. Agent services also define and throw particular exceptions, these are

described in their respective Javadoc API.

JMException Class and Subclasses

As shown in FIGURE 6-1 the base exception class is named JMException and it

extends the java.lang.Exception class. The JMException represents all the

exceptions thrown by methods of a JMX agent implementation.
Chapter 6 Foundation Classes 109

In order to characterize the JMException and to give information for the location of

the exception’s source, some subclass exceptions are defined. They are grouped by

exceptions thrown while performing operations in general

(OperationsException), exceptions thrown during the use of the reflection API

for invoking MBean methods (ReflectionException) and exceptions thrown by

the MBean code (MBeanException).

The ReflectionException wraps the actual core Java exception thrown when

using the reflection API. The MBeanException should also wrap the actual user

defined exception thrown by an MBean method.

FIGURE 6-1 The JMX Exceptions Object Model

java.lang.Exception

JMException

MBeanException

MBeanRegistrationException

OperationsException ReflectionException

InstanceNotFoundException

AttributeNotFoundException

InvalidAttributeValueException

ListenerNotFoundException

InstanceAlreadyExistsException

«wraps»

ClassNotFoundException

NoSuchMethodException

InstantiationException

IllegalAccessException

Any exception thrown

Core Java Exceptions

IntrospectionException

MalformedObjectNameException

NotCompliantMBeanException

by an MBean

«wraps»

«wraps»

ServiceNotFoundException
110 JMX Instrumentation and Agent Specification, v1.0 • May 2000

JMRuntimeException Class and Subclasses

As shown in FIGURE 6-2 the base JMX runtime exception defined is named

JMRuntimeException and it extends the java.lang.RuntimeException class.

The JMRuntimeException represents all the runtime exceptions thrown by

methods of a JMX implementation. Like the java.lang.RuntimeException , a

method of a JMX implementation is not required to declare in its throws clause any

subclasses of JMRuntimeException that might be thrown during the execution of

the method but not caught.

The JMRuntimeException is specialized into OperationsRuntimeException
for representing the runtime exceptions thrown while performing operations in the

agent, MBeanRuntimeException representing the runtime exceptions thrown by

the MBean code, and RuntimeErrorException representing errors thrown in the

agent and re-thrown as runtime exceptions.

FIGURE 6-2 The JMX Runtime Exceptions Object Model

java.lang.RuntimeException

JMRuntimeException

RuntimeMBeanExceptionRuntimeOperationsException RuntimeErrorException

«wraps»

IndexOutOfBoundsException

IllegalArgumentException

NullPointerException

Core Java Runtime Exceptions java.lang.Error

«wraps»

Any runtime exception

«wraps»

thrown by an MBean
Chapter 6 Foundation Classes 111

Description of JMX Exceptions

JMException Class

This class represents exceptions thrown by JMX implementations. It does not include

the runtime exceptions.

ReflectionException Class

This class represents exceptions thrown in the agent when using the java.lang.reflect

classes to invoke methods on MBeans. It “wraps” the actual

java.lang.Exception thrown.

The following are the exception classes that may be “wrapped” in a

ReflectionException :

■ ClassNotFoundException - Thrown when an application tries to load in a class

through its string name using the forName method in class “Class ”.

■ InstantiationException - Thrown when an application tries to create an

instance of a class using the newInstance method in class “Class ”, but the

specified class object cannot be instantiated because it is an interface or an

abstract class.

■ IllegalAccessException - Thrown when an application tries to load in a class

through its string name using the forName method in class “Class ”.

■ NoSuchMethodException - Thrown when a particular method cannot be found.

MBeanException Class

This class represents “user defined” exceptions thrown by MBean methods in the

agent. It “wraps” the actual “user defined” exception thrown. This exception will be

built by the MBean server when a call to an MBean method results in an unknown

exception.

OperationsException Class

This class represents exceptions thrown in the agent when performing operations on

MBeans. It is the superclass for all of the following exception classes, except for the

runtime exceptions.
112 JMX Instrumentation and Agent Specification, v1.0 • May 2000

InstanceAlreadyExistsException Class

The MBean is already registered in the repository.

InstanceNotFoundException Class

The specified MBean does not exist in the repository.

InvalidAttributeValueException Class

The specified value is not a valid value for the attribute.

AttributeNotFoundException Class

The specified attribute does not exist or cannot be retrieved.

IntrospectionException Class

An exception occurred during introspection of the MBean, when trying to determine

its management interface.

MalformedObjectNameException Class

The format or contents of the information passed to the constructor does not allow a

valid ObjectName instance to be built.

NotCompliantMBeanException Class

This exception occurs when trying to register an object which is not a JMX compliant

MBean in the MBean server.

ServiceNotFoundException Class

This class represents exceptions raised when a requested service is not supported.
Chapter 6 Foundation Classes 113

MBeanRegistrationException Class

This class wraps exceptions thrown by the preRegister and preDeregister
methods of the MBeanRegistration interface.

JMRuntimeException Class

This class represents runtime exceptions emitted by JMX implementations.

RuntimeOperationsException Class

This class represents runtime exceptions thrown in the agent when performing

operations on MBeans. It wraps the actual java.lang.RuntimeException
thrown.

Here are the exception classes that may be “wrapped” in a

RuntimeOperationsException :

■ IllegalArgumentException - Thrown to indicate that a method has been

passed an illegal or inappropriate argument.

■ IndexOutOfBoundsException - Thrown to indicate that an index of some sort

(such as to an array, to a string, or to a vector) is out of range.

■ NullPointerException - Thrown when an application attempts to use null in a

case where an object is required.

RuntimeMBeanException Class

This class represents runtime exceptions thrown by MBean methods in the agent. It

“wraps” the actual java.lang.RuntimeException exception thrown. This

exception will be built by the MBean server when a call to an MBean method throws

a runtime exception.

RuntimeErrorException Class

When a java.lang.Error occurs in the agent it should be caught and re-thrown

as a JRuntimeErrorException .
114 JMX Instrumentation and Agent Specification, v1.0 • May 2000

CHAPTER 7

MBean Server

This chapter describes the Managed Bean server, or MBean server for short, which is

the core component of the JMX agent infrastructure.

Role of the MBean Server

The MBean server is a registry for MBeans in the agent. The MBean server is the

component which provides the services for manipulating MBeans. All management

operations performed on the MBeans are done through the MBeanServer interface.

In general, the following kinds of MBeans would be registered in an MBean server:

■ MBeans which represent managed resources for management purposes. These

resources may be of any kind: application, system, or network resources which

provide a Java interface or a Java wrapper.

■ MBeans which add management functionality to the agent. This functionality

may be fully generic, providing for instance a logging or a monitoring capability,

or it may be specific to a technology or to a domain of application. Some of these

MBeans are defined by the JMX specification, others will be provided by

management application developers.

■ Some components of the infrastructure, such as the connector clients and protocol

adaptors, may be implemented as MBeans. This allows such components to

benefit from the dynamic management infrastructure.

MBean Server Factory

A JMX agent has a factory class for finding or creating an MBean server through the

factory’s static methods. This allows more flexible agent applications and possibly

more than one MBean server in an agent.
115

The MBeanServer interface defines the operations available on a JMX agent. An

implementation of the JMX agent specification provides a class that implements the

MBeanServer interface. Throughout this document, we use the term MBean server to

refer to the implementation of the MBeanServer interface which is available in an

agent.

The MBeanServerFactory is a class whose static methods return instances of the

implementation class. This object is cast as an instances of the MBeanServer
interface, thereby isolating other objects from any dependency on the MBean

server’s actual implementation class. When creating an MBean server, the caller can

also specify the name of the default domain that will be used in the JMX agent it

represents.

An agent application uses these methods to create the single or multiple MBean

servers that contain its MBeans. The JMX agent specification only defines the

behavior of a single MBean server. The additional behavior required in a JMX agent

containing multiple MBean servers is outside the scope of this specification.

The factory also defines static methods for finding an MBean server which has

already been created. In this way, objects loaded into the JVM can access an existing

MBean server without any prior knowledge of the agent application.

Registration of MBeans

The first responsibility of the MBean server is to be a registry for MBeans. MBeans

may be registered either by the agent application, or by other MBeans. The interface

of the MBeanServer class allows two different kinds of registration:

■ Instantiation of a new MBean and registration of this MBean in a single operation.

In this case, the loading of the java class of the MBean can be done either by using

a default class loader, or by explicitly specifying the class loader to use.

■ Registration of an already existing MBean instance.

An object name is assigned to an MBean when it is registered. The object name is a

string whose structure is defined in detail in “ObjectName Class” on page 105. The

object name allows an MBean to be identified uniquely in the context of the MBean

server. This unicity is checked at registration time by the MBean server, which will

refuse MBeans with duplicate names.

MBean Registration Control

The MBean developer may exercise some control upon the registering/unregistering

of the MBean in the MBean server. This can be done in the MBean by implementing

the MBeanRegistration interface. Before and after registering and deregistering
116 JMX Instrumentation and Agent Specification, v1.0 • May 2000

an MBean, the MBean server checks dynamically whether the MBean implements

the MBeanRegistration interface. If this is the case, the appropriate callbacks are

invoked.

The MBeanRegistration interface is actually an API element of the JMX

instrumentation specification. It is described here because it is the implementation of

the MBean server which defines the behavior of the registration control mechanism.

Implementing this interface is also the only means by which MBeans can get a

reference to the MBeanServer with which they are registered. This means that they

are aware of their management environment and become capable of performing

management operations on other MBeans.

If the MBean developer chooses to implement the MBeanRegistration interface,

the following methods must be provided:

■ preRegister - This is a callback method that the MBean server will invoke

before registering the MBean. The MBean will not be registered if any exception is

raised by this method. This method may throw the

MBeanRegistrationException which will be re-thrown as is by the MBean

server. Any other exception will be caught by the MBean server, encapsulated in

an MBeanRegistrationException and re-thrown.

This method may be used to:

■ Allow an MBean to keep a reference on its MBean server.

■ Perform any initialization that needs to be done before the MBean is exposed

to management operations.

■ Perform semantic checking on the object name, and possibly provide a name if

the object was created without a name.

■ Get information about the environment, for instance, check on the existence of

services the MBean depends upon. When such required services are not

available, the MBean might either try to instantiate them, or raise a

ServiceNotFoundException exception.

■ postRegister - This is a callback method that the MBean server will invoke

after registering the MBean. Its boolean parameter will be true if the registration

was done successfully, and false if the MBean could not be registered. If the

registration failed, this method can free resources allocated in preregistration.

■ preDeregister - this is a callback method that the MBean server will invoke

before de-registering an MBean.

This method may throw an MBeanRegistrationException , which will be re-

thrown as is by the MBean server. Any other exception will be caught by the

MBean server, encapsulated in an MBeanRegistrationException and

re-thrown.The MBean will not be de-registered if any exception is raised by this

method.

■ postDeregister - This is a callback method that the MBean server will invoke

after de-registering the MBean.
Chapter 7 MBean Server 117

FIGURE 7-1 describes the way the methods of the MBeanRegistration are called by

the MBean server when an MBean registration or a de-registration is performed. The

methods illustrated with a thick border are MBeanServer methods, the others are

implemented in the MBean.

FIGURE 7-1 Calling Sequence for the MBean Registration Methods

Operations on MBeans

The methods of the MBeanServer interface define the following management

operations to be performed on registered MBeans:

■ Retrieve a specific MBean by its object name.

■ Retrieve a collection of MBeans, by means of a pattern matching on their names,

and optionally by means of a filter applied to their attribute values. Such a filter

may be constructed by using the query expressions defined in “Queries” on

page 122.

■ Get one or several attribute value(s) of an MBean.

■ Invoke an operation on an MBean.

■ Discover the management interface of an MBean, that is, its attributes and

operations. This is what is called the introspection of the MBean.

preRegister(...) register
OK

postRegister(false)

Exception

OK
postRegister(true)

Registration phase

preDeregister(...) deregister
OK OK

postDeregister()

De-registration phase

Exception

Return without registering

Exception

Return without deregistering
118 JMX Instrumentation and Agent Specification, v1.0 • May 2000

■ Register interest in the notifications emitted by an MBean.

The methods of the MBean server are generic: they all take an object name which

determines the MBean on which the operation is to be performed. The role of the

MBean server is to resolve this object name reference, determine if the requested

operation is allowed on the designated object, and if so, invoke the MBean method

that performs the operation. If there is a result, the MBean server returns its value to

the caller.

The detailed description of all MBean server operations is given in the Javadoc API.

MBean Server Delegate MBean

The MBean server defines a domain called “JMImplementation ” in which one

MBean of class MBeanServerDelegate is registered. This object identifies and

describes the MBean server in which it is registered. It is also the broadcaster for

notifications emitted by the MBean server. In other words, this MBean acts as a

delegate for the MBean server which it represents.

The complete object name of this delegate object is specified by JMX, as follows:

“JMImplementation:type=MBeanServerDelegate ”.

The delegate object provides the following information about the MBean server, all

of which are exposed as read-only attributes of type String :

■ The MBeanServerId identifies the agent. The format of this string is not

specified, but it is intended to provide a unique id for the MBean server, for

example, based on the hostname and a time stamp.

■ The SpecificationName indicates the full name of the specification on which

the MBean server implementation is based. The value of this attribute must be

“Java Management Extensions ”.

■ The SpecificationVersion indicates the version of the JMX specification on

which the MBean server implementation is based. For this release, the value of

this attribute must be “1.0 Public Release 3 ”.

■ The SpecificationVendor indicates the name of the vendor of the JMX

specification on which the MBean server implementation is based. The value of

this attribute must be “Sun Microsystems ”.

■ The ImplementationName gives the implementation name of the MBean server.

The format and contents of this string is given by the implementor.

■ The ImplementationVersion gives the implementation version of the MBean

server. The format and contents of this string is given by the implementor.

■ The ImplementationVendor gives the vendor name of the MBean server

implementation. The contents of this string is given by the implementor.
Chapter 7 MBean Server 119

The MBeanServerDelegate class implements the NotificationBroadcaster
interface and sends the MBeanServerNotifications that are emitted by the

MBean server. Object wishing to receive these notifications must register with the

delegate object (see “MBean Server Notifications” on page 121).

Note – The “JMImplementation ” domain name is reserved for use by JMX Agent

implementations. The MBeanServerDelegate MBean cannot be de-registered from

the MBean server.

Remote Operations on MBeans

The remote interface for the MBean server is not specified in this phase of the
JMX specification. It it presented here to provide a more complete view of the
distributed services in the JMX architecture. The interface shown here is only a
conceptual example.

Using an appropriate connector server in the agent, a remote management

application will be able to perform operations on the MBeans through the

corresponding connector client, once a connection is established.

FIGURE 7-2 shows how a management operation can be propagated from a remote

management application to the MBean on the agent side. The example illustrates the

propagation of a method for getting the “State” attribute of a standard MBean, in the

following cases:

■ The management application invokes a generic getValue method on the

connector client which acts as a remote representation of the MBean server. This

type of dynamic invocation is typically used in conjunction with the MBean

introspection functionality which dynamically discovers the management

interface of an MBean, even from a remote application.

■ The management application invokes the getState method directly on a proxy

object which is typically generated automatically from the MBean class (in the

case of a Java application). The proxy object relies on the interface of the

connector client to transmit the request to the agent and ultimately to the MBean.

The response follows the inverse return path.
120 JMX Instrumentation and Agent Specification, v1.0 • May 2000

FIGURE 7-2 Propagation of a Remote Operation to an MBean.

MBean Server Notifications

The MBean server will always emit notifications when MBeans are registered or

deregistered. A specific subclass of the Notification class is defined for this

purpose: the MBeanServerNotification class, which contains a list of object

names involved in the operation.

The MBean server object doesn’t broadcast notifications itself: its unique delegate

MBean implements the NotificationBroadcaster interface to actually broadcast

the notifications in its place.

To register for MBean server notifications, the listener will call the

addNotificationListener method of the MBean server, as when registering for

MBean notifications, but it will provide the standardized object name of the MBean

server delegate object (see “MBean Server Delegate MBean” on page 119).

As when receiving MBean notifications, an object interested in receiving MBean

server notifications must implement the NotificationListener interface.

Through its delegate, the MBean server emits the following two types of

notifications:

■ jmx.mbean.created
This notifications informs of the registration of one or several MBeans. The

notification will convey the list of object names of these MBeans.

■ jmx.mbean.deleted
This notifications informs of the de-registration of one or several MBeans. The

notification will convey the list of object names of these MBeans.

Connector
MBean Server

Manager sideAgent side

getState()

getState()

getValue(“State”)

Server
Connector
Client

Proxy Object

Interface
resembles
the MBean
Server

Interface
resembles
the MBean

Standard MBean

ge
tV

al
ue

(“
S

ta
te

”)
Chapter 7 MBean Server 121

Note – The MBean server does not send notifications when attributes of registered

MBeans change values. When implemented, this type of notification is handled

directly by the MBean, as described in “Attribute Change Notifications” on page 51.

Queries

Queries retrieve sets of MBeans from the MBean server, according to their object

name, their current attribute values, or both. The JMX specification defines the

classes that are used to build query expressions. These objects are then passed to

methods of the MBeanServer interface to perform the query.

The query mechanism described in this chapter can be used both by agent-side

objects and by manager applications. However, since managers rely on protocol

adaptors or connectors that are not yet defined, only agent-side queries are covered

in this version of the specification. As with most other functionality, it is intended

that the remote MBean server interface be identical, relying on the same classes and

allowing managers to perform queries in an identical fashion.

The methods of the MBeanServer interface that perform queries are:

■ queryMBeans(ObjectName name, QueryExp query) - Returns a Set
containing object instances (object name and class name pairs) for MBeans

matching the name and query.

■ queryNames(ObjectName name, QueryExp query) - Returns a Set
containing object names for MBeans matching the name and query.

The meaning of the parameters is the same for both methods. The object name

parameter defines a pattern: the scope of the query is the set of MBeans whose object

name satisfies this pattern. The query expression is the user-defined criteria for

filtering MBeans within the scope, based on their attribute values. If either query

method finds no MBeans in the given scope and/or satisfying the given query

expression, the returned Set will contain no elements.

When the object name pattern is null , the scope is equivalent to all MBeans in the

MBean server. When the query expression is null , MBeans are not filtered and the

result is equivalent to the scope. When both parameters are null , the result is the set

of all MBeans registered in the MBean server.

The set of all MBeans registered in the MBean server always includes the delegate

MBean, as does any count of the registered MBeans. Other queries may also return

the delegate MBean if its object name is within the scope and/or if it satisfies the

query expression (see “MBean Server Delegate MBean” on page 119).
122 JMX Instrumentation and Agent Specification, v1.0 • May 2000

Scope of a Query

The scope is defined by an object name pattern: see “Pattern Matching” on page 107.

Only those MBeans whose object name match the pattern are considered in the

query. The query expression then needs to be applied to each MBean in the scope to

filter the final result of the query. If the query mechanism is properly implemented

and the user gives a relevant object name pattern, the scope of the query can greatly

reduce the execution time of the query.

It is possible for the pattern to be a complete object name, meaning that the scope of

the query is a single MBean. In this case, the query is equivalent to testing the

existence of a registered MBean with that name, or, if the query expression is not

null , testing the attribute values of that MBean.

Query Expressions

A query expression is built up from constraints on attribute values (such as “equals”

and “less-than” for numeric values and “matches” for strings). These constraints

may then be associated by relational operators (“and”, “or”, and “not”) to form

complex expressions involving several attributes of an MBean.

For example, the agent or the manager should be able to express a query such as:

“Retrieve the MBeans for which the attribute age is at least 20 and the attribute

name starts with G and ends with ling ”.

A query expression is evaluated on a single MBean at a time, and if and only if the

expression is true, that MBean is included the query result. The MBean server tests

the expression individually for every MBean in the scope of the query. It is not

possible for a query expression to apply to more than one MBean: there is no

mechanism for defining cross-MBean constraints.

The following classes and interfaces are defined for developing query expressions:

■ The QueryExp interface identifies objects that are complete query expressions.

These objects can be used in a query or composed to form more complex queries.

■ The ValueExp and StringValueExp interfaces identify objects that represent

numeric and string values, respectively, for placing constraints on attribute

values.

■ The AttributeValueExp interface identifies objects that represent the attribute

involved in a constraint.

■ The Query class supports the construction of the query. It contains static methods

that return the appropriate QueryExp and ValueExp objects.
Chapter 7 MBean Server 123

In practice, users do not instantiate the ValueExp and QueryExp implementation

classes directly. Instead, they should rely on the methods of the Query class to

return the values and expressions, composing them together to form the final query

expression.

Methods of the Query Class

The static methods of the Query class are used to construct the values, constraints,

and subexpressions of a query expression.

The following methods return a ValueExp instance that may be used as part of a

constraint, as described:

■ classattr - The result represents the class name of the MBean and may only be

used in a string constraint.

■ attr - The result represents the value of the named attribute. This result may be

used in boolean, numeric or string constraints, depending upon the type of the

attribute. Attributes may also be constrained by the values of other attributes of

an equivalent type. This method is overloaded to also take a class name: this is

equivalent to also setting a constraint on the name of the MBean’s class.

■ value - The result represents the value of the method’s argument, and it is used

in a constraint. This method is overloaded to take any one of the following types:

■ java.lang.String
■ java.lang.Number
■ int
■ long
■ float
■ double
■ boolean

In all of these cases, the resulting value must be used in a constraint on an

equivalent attribute value.

■ plus , minus , times , div - These methods each take two ValueExp arguments

and return a ValueExp object that represents the result of the operation. These

operations only apply to numeric values. These methods are useful for

constructing constraints between two attributes of a same MBean.

The following methods represent a constraint on one or more values. They take

ValueExp objects and return a QueryExp object that indicates if the constraint is

satisfied at runtime. This return object can be used as the query expression, or it can

be composed into a more complex expression using the logical operators.

■ gt , geq , lt , leq , eq - These methods represent the standard relational operators

between two numeric values, respectively: greater than, greater than or equals,

less than, less than or equals, and equals. The constraint is satisfied if the relation

is true with the arguments in the given order.
124 JMX Instrumentation and Agent Specification, v1.0 • May 2000

■ between - This method represents the constraint where the first argument is

strictly within the range defined by the other two arguments. All arguments must

be numeric values.

■ in - This method is equivalent to multiple “equals” constraints between a

numeric value argument and an array of numeric values. The constraint is

satisfied (true) if the numeric value is equal to any one of the array elements.

■ match - This method represents the equality between an attribute’s value and a

given string value or string pattern. The pattern admits wildcards (* and ?),

character sets ([Aa]), and character ranges ([A-Z]) with the standard meaning.

The attribute must have a string value, and the constraint is satisfied if it matches

the pattern.

■ initialSubString , finalSubString , anySubString - These methods

represent substring constraints between an attribute’s value and a given substring

value. The constraint is satisfied if the substring is a prefix, suffix or any substring

of the attribute string value, respectively.

A constraint can be seen as computing a boolean value and can be used as a

subexpression to the following methods. They also return a QueryExp object that

can either be used in a query or as a subexpression of an even more complex query

using the same methods:

■ and - The resulting expression is the logical AND of the two subexpression

arguments.

■ or - The resulting expression is the logical OR of the two subexpression

arguments.

■ not - The resulting expression is the logical negation of the single subexpression

argument.

Query Expression Examples

Using these methods, the sample query mentioned at the beginning of this section

will be built as follows. When constructing constraints on string values, the asterisk

(*) is a wildcard character which can replace any number of characters, including

zero. Alternatively, the programmer may use the substring matching methods of the

Query class.

CODE EXAMPLE 7-1 Building a Query

QueryExp exp = Query. and (
 Query. geq (Query.attr("age"),

Query.value(20)),
 Query. match (Query.attr("name"),

Query.value("G*ling")));
Chapter 7 MBean Server 125

Most queries follow the above pattern: the named attributes of an MBean are

constrained by programmer-defined values and then composed into a query across

several attributes. All exposed attributes can be used for filtering purposes, provided

that they may be constrained by numeric, boolean or string values.

It is also possible to perform a query based on the name of the Java class that

implements the MBean, using the classattr method of the Query class.

CODE EXAMPLE 7-2 shows how to build a query for filtering all MBeans of the

fictional class managed.device.Printer . This constraint may also be composed

with constraints on the attribute values to form a more selective query expression.

CODE EXAMPLE 7-2 Building a Query Based on the MBean Class

Query Exceptions

Constructing or performing queries can result in some exceptions which are specific

to the filtering methods.

BadAttributeValueExpException Class

The BadAttributeValueExpException is thrown when an invalid name for an

MBean attribute is passed to a query constructing method.

BadStringOperationException Class

This exception is thrown when an invalid string operation is passed to a method for

constructing a query.

BadBinaryOpValueExpException Class

This exception is thrown when an invalid expression is passed to a method for

constructing a query.

InvalidApplicationException Class

This exception is thrown when an attempt is made to apply a constraint with class

name to an MBean of the wrong class.

QueryExp exp = Query. eq(
Query.classattr(),
Query.value(“managed.device.Printer”));
126 JMX Instrumentation and Agent Specification, v1.0 • May 2000

CHAPTER 8

Advanced Dynamic Loading

This chapter describes the dynamic loading services which provide the ability to

retrieve and instantiate MBeans using new Java classes and possibly native libraries

from a remote server.

Dynamic loading is performed by the m-let service which is used to instantiate

MBeans obtained from a remote URL (Universal Resource Locator) on the network.

M-let is an abbreviation for management applet.

This is a mandatory JMX component for all compliant JMX agents.

Overview

The m-let service allows you to instantiate and register in the MBean server, one or

several MBeans coming from a remote URL. The m-let service does this by loading

an m-let text file, which specifies information on the MBeans to be obtained. The

information on each MBean is specified in an XML-like tag, called the MLETtag. The

location of the m-let text file is specified by a URL. When an m-let text file is loaded,

all classes specified in MLET tags are downloaded, and an instance of each MBean

specified in the file is created and registered.

The m-let service is itself implemented as an MBean and registered in the MBean

server, so it can be used either by other MBeans, by the agent application, or by

remote management applications.

The operation of the m-let service is illustrated in FIGURE 8-1.
127

FIGURE 8-1 Operation of the M-Let Service

The MLET Tag

The m-let file may contain any number of MLET tags, each for instantiating a

different MBean in a JMX agent. The MLET tag has the following syntax:

<MLET

CODE = class | OBJECT = serfile
ARCHIVE = "archivelist"
[CODEBASE = codebaseURL]
[NAME = MBeanName]
[VERSION = version]

>

classes/object1.class
classes/object2.class
classes/object3.class

object 1

object 2

object 6

object 3

CLASSPATH

Java virtual machine

MBeans created dynamically
using the m-let service

Instances of classes accessible
through the agent’s classpath

m-let service

<MLET
CODE=object6
ARCHIVE=mybean.jar
NAME="object6 "

>
</MLET>

http://soft.dist/mybean.txt

http://soft.dist

http://soft.dist/mybean.jar

object6.class
object7.class
128 JMX Instrumentation and Agent Specification, v1.0 • May 2000

[arglist]

</MLET>

The elements of this tag are explained below:

■ CODE = class

This attribute specifies the full Java class name, including package name, of the

MBean to be obtained. The compiled .class file of the MBean must be contained

in one of the JAR files specified by the ARCHIVEattribute. Either the CODEor the

OBJECTattribute must be present.

■ OBJECT = serfile

This attribute specifies the .ser file that contains a serialized representation of

the MBean to be obtained. This file must be contained in one of the JAR files

specified by the ARCHIVEattribute. If the JAR file contains a directory hierarchy,

this attribute must specify the path of the file within this hierarchy, otherwise a

match will not be found.

■ ARCHIVE = archiveList

This mandatory attribute specifies one or more JAR files containing MBeans or

other resources used by the MBean to be obtained. One of the JAR files must

contain the file specified by the CODEor OBJECTattribute. If archive list contains

more than one file:

■ Each file must be separated from the one that follows it by a comma (,)

■ The whole list must be enclosed in double quote marks ("")

All JAR files in the archive list must be stored in the directory specified by the

code base URL, or in the same directory as the m-let file which is the default code

base when none is given.

■ CODEBASE = codebaseURL

This optional attribute specifies the code base URL of the MBean to be obtained.

It identifies the directory that contains the JAR files specified by the ARCHIVE

attribute. Specify this attribute only if the JAR files are not in the same directory

as the m-let text file. If this attribute is not specified, the base URL of the m-let

text file is used.

■ NAME = MBeanName

This optional attribute specifies the string format of an object name to be assigned

to the MBean instance when the m-let service registers it in the MBean server.

■ VERSION = version

This optional attribute specifies the version number of the MBean and associated

JAR files to be obtained.

This version number can be used to specify whether or not the JAR files need to

be loaded from the server to update those already loaded by the m-let service.

The version must be a series of non-negative decimal integers each separated by

a dot (.), for example 2.14 .
Chapter 8 Advanced Dynamic Loading 129

■ arglist

The optional contents of the MLET tag specify a list of one or more arguments to

pass to the constructor of the MBean to be instantiated. The m-let service will look

for a constructor with a signature that matches the types of the arguments

specified in the arglist . Instantiating objects with a constructor other than the

default constructor is limited to constructor arguments for which there is a string

representation.

Each item in the arglist corresponds to an argument in the constructor. Use the

following syntax to specify the argList :

<ARG TYPE=argumentType VALUE=argumentValue>

where:

■ argumentType is the class of the argument (for example Integer)

■ argumentValue is the string representation of the value of the argument

The M-Let Service

The classes of the m-let service are members of the javax.management.loading
package. The MLet class implements the MLetMBean, which contains the methods

exposed for remote access. This implies that the m-let service is itself an MBean and

may be managed as such.

The MLet class also extends the java.net.URLClassLoader object, meaning that

it is itself a class loader. This allows several shortcuts for loading classes without

requiring an m-let file.

Loading MBeans from a URL

The getMBeansFromURL methods of the m-let service perform the class loading

based on the m-let text file on a remote server. The m-let file and the class files need

to be available on the server as described in “The MLET Tag” on page 128. The two

overloaded versions of this method take the URL argument as a string or as a

java.net.URL object.

Each MLET tag in the m-let file describes one MBean to be downloaded and created

in the MBean server. When the call to a getMBeansFromURL method is successful,

the newly downloaded MBeans are instantiated in the JMX agent and registered

with the MBean server. The methods return the object instance of the MBeans that

were successfully created and a throwable object for those that weren’t.
130 JMX Instrumentation and Agent Specification, v1.0 • May 2000

Other methods of the MLet class manage the directory for native libraries

downloaded in JAR files and used by certain MBeans. See the Javadoc API for more

details.

Class Loader Functionality

The m-let service uses its class loader functionality to access the code base given in

an m-let file or given by the URL itself. This code base is then available in the m-let

service for downloading other MBeans from the same code base.

For example, an m-let file may specify a number of MLET tags in order to populate

all of the MBeans in a JMX agent. Once the getMBeansFromURL method has been

invoked to do this, the m-let service can be used to instantiate any one of those

MBeans again, or any other class at the same code base.

This is done by passing the m-let service’s object name as a class loader parameter to

the createMBean method of the MBean server (see the corresponding Javadoc API).

Since the code base has already been accessed by the m-let service, its class loader

functionality can access the code base again. In this case, the information in the

MLET tag is no longer taken into account, although the parameters of the

createMBean method can be used to specify the parameters to the class constructor.

Since the createMBean methods of the MBeanServer interface take the object

name of the class loader, this functionality is also available to remote management

applications which do not have direct object references in the JMX agent.

The m-let service MBean also exposes the addURL methods for specifying a code

base without needing to access any m-let file. These methods add the code base

designated by the given URL to the class loader of the m-let service. MBean classes

at this code base can be downloaded and created in the MBean server directly

through the createMBean method, again with the m-let service given as the class

loader object.

Note – Using the class loader of the m-let service to load create classes from

arbitrary code bases or reload classes from m-let code bases implies that the agent

application or the MBean developer has some prior knowledge of the code base

contents at runtime.
Chapter 8 Advanced Dynamic Loading 131

132 JMX Instrumentation and Agent Specification, v1.0 • May 2000

CHAPTER 9

Monitoring

This chapter specifies the family of monitor MBeans which allow you to observe the

variation over time of attribute values in other MBeans and emit notifications at

threshold events. As a whole they are referred to as the monitoring services.

Monitoring services are a mandatory part of JMX-compliant agents, and they must

be implemented in full.

Overview

Using a monitoring service, the observed attribute of another MBean (the observed
MBean) is monitored at intervals specified by the granularity period. The type of the

observed attribute is one of the types supported by the specific monitor subclass

which is used. The monitor derives a value from this observation, called the derived
gauge. This derived gauge is either the exact value of the observed attribute, or

optionally, the difference between two consecutive observed values of a numeric

attribute.

A specific notification type is sent by each of the monitoring services when the value

of the derived gauge satisfies one of a set conditions. The conditions are specified

when the monitor is initialized, or dynamically through the monitor MBean’s

management interface. Monitors may also send notifications when certain error

cases are encountered during the observation.

Types of Monitors

Information on the value of an attribute within an MBean may be provided by three

different types of monitors:
133

■ CounterMonitor - Observes attributes with integer types (Byte , Integer ,

Short , Long) which behave like a counter; that is:

■ Their value is always positive or null

■ They can only be incremented

■ They may wrap, and in that case a modulus value is defined

■ GaugeMonitor - Observes attributes with integer or floating point types (Float ,

Double) which behave as a gauge (arbitrarily increasing and decreasing).

■ StringMonitor - Observes an attribute of type String .

All types of monitors extend the abstract Monitor class, which defines common

attributes and operations.

Each of the monitors is also a standard MBean, allowing them to be created and

configured dynamically by other MBeans or by management applications.

MonitorNotification Class

A specific subclass of the Notification class is defined for use by all monitoring

services: the MonitorNotification class.

This notification is used to report one of the following cases:

■ One of the conditions explicitly monitored is detected, for example, the high

threshold of a gauge is reached.

■ An error occurs during an observation of the attribute, for example, the observed

object is no longer registered.

The notification type string within a MonitorNotification instance identifies the

specific monitor event or error condition, as shown in FIGURE 9-1. The fields of a

MonitorNotification instance contain the following information:

■ The observed object name

■ The observed attribute name

■ The derived gauge, that is, the last value computed from the observation

■ The threshold value or string which triggered this notification

The tree representation of all notification types which may be generated by the

monitoring services is given in FIGURE 9-1. None of the monitor MBeans generate all

of these types: the error types are common to all and described below, but each of

the threshold events is particular to its monitor and described in the corresponding

section.
134 JMX Instrumentation and Agent Specification, v1.0 • May 2000

FIGURE 9-1 Tree Representation of Monitor Notification Types

Common Monitor Notification Types

The following notifications types are common to all monitors; they are emitted to

reflect error cases:

■ jmx.monitor.error.mbean - Sent when the observed MBean is not registered

in the MBean server. The observed object name is provided in the notification.

■ jmx.monitor.error.attribute - Sent when the observed attribute does not

exist in the observed object. The observed object name and observed attribute name
are provided in the notification.

■ jmx.monitor.error.type - Sent when the observed attribute is not of the

appropriate type for the given monitor. The observed object name and observed
attribute name are provided in the notification.

■ jmx.monitor.error.runtime - All exceptions (except the cases described

above) that occur while trying to get the value of the observed attribute are

caught by the monitor and will be reported in a notification of this type.

The following notification type is common to the counter and the gauge monitors; it

is emitted to reflect specific error cases:

■ jmx.monitor.error.threshold - Sent in case of any incoherence in the

configuration of the monitor parameters:

■ Counter monitor: the threshold, the offset, or the modulus is not of the same

type as the observed counter attribute.

■ Gauge monitor: the low threshold or high threshold is not of the same type as

the observed gauge attribute.

jmx

monitor

counter gauge string error

mbean

attribute

type

matches

differs

high

low

threshold

runtime

threshold
Chapter 9 Monitoring 135

CounterMonitor Class

A counter monitor sends a notification when the value of the observed counter

attribute reaches or exceeds a threshold known as the comparison level. In addition,

an offset mechanism enables particular counting intervals to be detected, as follows:

■ If the offset value is not zero, whenever the threshold is triggered by the counter

value reaching a comparison level, that comparison level is incremented by the

offset value. This is regarded as taking place instantaneously, that is, before the

count is incremented. Thus, for each level, the threshold triggers an event

notification every time the count increases by an interval equal to the offset value.

■ If the counter we are monitoring wraps around when it reaches its maximum

value then the modulus value needs to be set to that maximum value. The

modulus is the value at which the counter is reset to zero.

■ If the counter difference option is used, then the value of the derived gauge is

calculated as the difference between the observed counter values for two

successive observations. If this difference is negative then the value of the derived

gauge is incremented by the value of the modulus.

The derived gauge value (V[t]) for the counter difference is calculated at time t
using the following method, where GPis the granularity period:

■ if (counter[t] - counter[t-GP]) is positive then

V[t] = counter[t] - counter[t-GP]

■ if (counter[t] - counter[t-GP]) is negative then

V[t] = counter[t] - counter[t-GP] + MODULUS

The counter monitor has the following constraint:

■ The threshold value, the offset value and the modulus value properties must be of

the same type as the observed attribute.

The operation of a counter monitor example with an offset of 2 is illustrated in

FIGURE 9-2.
136 JMX Instrumentation and Agent Specification, v1.0 • May 2000

FIGURE 9-2 Operation of the CounterMonitor

The monitor observes a counter C(t) which varies with time t . The granularity

period is GPand the comparison level is T. A CounterMonitor sends a notification

when the value of the counter reaches or exceeds the comparison (threshold) level.

After the notification has been sent, the comparison level is incremented by the

offset value until the comparison level is greater than the current value of the

counter.

Counter Monitor Notification Types

In addition to the monitor error notification types, a CounterMonitor MBean may

broadcast the following notification type:

■ jmx.monitor.counter.threshold
This notification type is triggered when the derived gauge has reached or

exceeded the threshold value.

3

7

5

Offset

granularityPeriod (GP)

eventevent event

Offset

comparison
level (T)
(threshold) t

count (C) threshold thresholdthreshold
Chapter 9 Monitoring 137

GaugeMonitor Class

A gauge monitor observes the value of a numerical attribute which behaves as a

gauge. A hysteresis mechanism is provided to avoid the repeated triggering of

notifications when the gauge makes small oscillations around the threshold value.

This capability is provided by specifying threshold values in pairs; one being a high
threshold value and the other being a low threshold value. The difference between

threshold values is the hysteresis interval.

The GaugeMonitor MBean has the following structure:

■ The HighThreshold attribute defines the value that the gauge must reach or

exceed in order to trigger a notification which will be broadcast only if the

NotifyHigh boolean attribute is true .

■ The LowThreshold attribute defines the value that the gauge must fall to or

below in order to trigger a notification which will be broadcast only if the

NotifyLow boolean attribute is set to true .

The gauge monitor has the following constraints:

■ The threshold high value and the threshold low value properties are of the same

type as the observed attribute.

■ The threshold high value is greater than or equal to the threshold low value.

The gauge monitor has the following behavior:

■ Initially, if NotifyHigh is true and the gauge value becomes equal to or greater

than the HighThreshold value while the gauge is increasing, then the defined

notification is triggered; subsequent crossings of the high threshold value will not

trigger further notifications until the gauge value becomes equal to or less than

the LowThreshold value.

■ Initially, if NotifyLow is true and the gauge value becomes equal to or less than

the LowThreshold value while the gauge is decreasing, then the defined

notification is triggered; subsequent crossings of the low threshold value will not

cause further notifications until the gauge value becomes equal to or greater than

the HighThreshold value.

If the gauge difference option is used, then the value of the derived gauge is

calculated as the difference between the observed gauge values for two successive

observations.

In this case, the derived gauge value (V[t]) is calculated at time t using the

following equation, where GPis the granularity period:

V[t] = gauge[t] - gauge[t-GP]
138 JMX Instrumentation and Agent Specification, v1.0 • May 2000

The operation of the GaugeMonitor is illustrated in FIGURE 9-3, assuming both

notification switches are true .

FIGURE 9-3 Operation of the GaugeMonitor

Gauge Monitor Notification Types

In addition to the monitor error notification types, a GaugeMonitor MBean may

broadcast the following notification types:

■ jmx.monitor.gauge.high
This notification type is triggered when the derived gauge has reached or

exceeded the high threshold value.

■ jmx.monitor.gauge.low
This notification type is triggered when the derived gauge has decreased to or

below the low threshold value.

P(t)
eventevent event

thresholdLowValue

thresholdHighValue

granularityPeriod

high low high
Chapter 9 Monitoring 139

StringMonitor Class

A string monitor observes the value an attribute of type String . The derived gauge

in this case is exactly the value of the observed attribute. The string monitor is

configured with a value for the string called string-to-compare, and is able to detect

the following two conditions:

■ The derived gauge matches the string-to-compare. If the NotifyMatch attribute

of the monitor is true , then a notification is sent. At the following observation

times (defined by the granularity period), no other notification will be sent as

long as the attribute value matches the string-to-compare.

■ The value of the derived gauge differs from the string-to-compare. If the

NotifyDiffer attribute of the monitor is true , then a notification is sent. At the

following observation points, no other notification will be sent, for as long as the

attribute value differs from the string-to-compare.

Assuming both notifications are selected, this mechanism ensures that matches and

differs are strictly alternating, each occurring the first time the condition is observed.

The operation of the string monitor is illustrated in FIGURE 9-4. The granularity

period is GP, and the string-to-compare is “XYZ”.

FIGURE 9-4 Operation of the StringMonitor

granularityPeriod (GP)

eventevent

event

t

observed attribute

event

“XYZ” “xx” “XYZ” “yyyy”

matches

differs

matches

differs

“zzzzz”
140 JMX Instrumentation and Agent Specification, v1.0 • May 2000

String Monitor Notification Types

In addition to the monitor error notification types, a StringMonitor MBean may

broadcast the following notification types:

■ jmx.monitor.string.matches
This notification type is triggered when the derived gauge first matches the string

to compare.

■ jmx.monitor.string.differs
This notification type is triggered when the derived gauge first differs from the

string to compare.

Implementation of the Monitor MBeans

FIGURE 9-5 provides the class diagram of the various monitor MBeans, with the

interfaces they implement. The Javadoc API provides the complete description of all

monitoring service interfaces and classes.

FIGURE 9-5 The Package and Class Diagram of the Monitor MBeans

NotificationBroadcasterSupport

Monitor

CounterMonitor

GaugeMonitor

StringMonitor

CounterMonitorMBean

GaugeMonitorMBean

«Interface»
MonitorMBeanMBeanRegistration

«Interface»

«Interface»
StringMonitorMBean

«Interface»

«Interface»

javax.management.monitor
Chapter 9 Monitoring 141

142 JMX Instrumentation and Agent Specification, v1.0 • May 2000

CHAPTER 10

Timer Service

The timer service triggers notifications at specific dates and times; it may also trigger

notifications repeatedly at a constant interval. The notifications are sent to all objects

registered to receive notifications emitted by the timer. The timer service is an

MBean that can be managed, allowing applications to set up a configurable

scheduler.

Conceptually, the Timer class manages a list of dated notifications that are sent

when their date and time arrives. Methods of this class are provided to add and

remove notifications from the list. In fact, the notification type is provided by the

user, along with the date and optionally a period and the number of repetitions. The

timer service always sends the notification instances of its specific

TimerNotification class.

Timer Notifications

The timer service can manage notifications in two different ways:

■ Notifications that are triggered only once

■ Notifications that are repeated with a defined period and/or number of

occurrences

This behavior is defined by the parameters passed to the timer when the notification

is added into the list of notifications. Each of the notifications that is added to the

timer service is assigned a unique identifier number. Only one identifier number is

assigned to a notification, no matter how many times it is triggered.
143

TimerNotification Class

A specific subclass of the Notification class is defined for use by the timer

MBeans: the TimerNotification class. The notification type contained in

instances of the TimerNotification class is particular: it is defined by the user

when the notification is added to the timer.

The TimerNotification class has a notification identifier field that uniquely

identifies the timer notification which triggered this notification instance.

Adding Notifications to the Timer

The timer service maintains an internal list of the dated notifications that it has been

asked to send. Notifications are added to this list using the Timer class’

addNotification methods. This method can take the following parameters. These

parameters are used by the timer to create a TimerNotification object and then

add it to the list:

■ type - The notification type string.

■ message - The notification’s detailed message string.

■ usedData - The notification’s user data object.

■ date - The date when the notification will occur.

The addNotification method is overloaded and, in addition to the notification’s

parameters and date, it can take the following optional parameters:

■ period - The interval in milliseconds between notification occurrences.

Repeating notifications are not enabled if this parameter is zero or null .

■ nbOccurences - The total number of times that the notification will occur. If the

value of nbOccurences is zero or is not defined (null), and if the period is not

zero or null , then the notification will repeat indefinitely.

If the notification to be inserted has a date that is before the current date, the

addNotification method attempts to update this entry as follows:

■ If the notification is added with a non-null period, the method updates the

notification date by adding the defined period interval until the notification date

is later than the current date. When the notification date is later than the current

date, the method inserts the notification into the list of notifications.

■ If a number of occurrences is specified with a periodicity, the method updates the

notification date as explained above. The number of times that the method adds

the period interval is limited by the specified number of occurrences which is

decreased in proportion. If the notification date remains earlier than the current

date, a standard Java IllegalArgumentException is thrown.
144 JMX Instrumentation and Agent Specification, v1.0 • May 2000

■ If the notification is added with a null or zero-length period, the notification date

cannot be updated to a valid date, and a standard Java

IllegalArgumentException is thrown.

The addNotification method returns the identifier of the new timer notification.

This identifier can be used to retrieve information about the notification from the

timer or to remove the notification from the timer’s list of notifications.

After a notification has been added to the list of notifications, its associated

parameters cannot be updated.

Removing Notifications From the Timer

Timer notifications are removed from the list of notifications using the one of the

following methods of the Timer class:

■ removeNotification - Takes the notification identifier as parameter and

removes the corresponding notification from the list.

■ removeNotifications - Takes the notification type as parameter and removes

all notifications from the list that were added with that type.

If the specified notification identifier or type does not correspond to any

notifications in the list, the methods throw an InstanceNotFoundException .

■ removeAllNotifications - Empties the timer’s list of notifications.

Starting and Stopping the Timer

The timer is started using the timer start method and stopped using the stop
method. If the list of notifications is empty when the timer is started, the timer waits

for a notification to be added. No timer notifications will be triggered before the

timer is started or after it is stopped.

You can determine whether the timer is running or not by invoking the timer

method isActive . The isActive method returns true if the timer is running.

If any of the notifications in the timer’s list have associated dates that have passed

when the timer is started, the timer attempts to update them. The dates of periodic

notifications are incremented by their interval period until their dated is greater than

the current date. The number of increments may be limited by their defined number

of occurrences. Notifications with fixed dates preceding the start date and limited

occurrence notifications which cannot be updated to exceed the start date are

removed from the timer’s list of notifications.
Chapter 10 Timer Service 145

When a notification is updated or removed during timer start-up, its notification is

either triggered or ignored, depending upon the sendPastNotifications
attribute of the Timer class:

■ sendPastNotifications = true - All notifications with a date before the start

date are triggered; if the notification is periodic, its date is updated and the

notification is sent.

■ sendPastNotifications = false - Notifications with a date before the start

date are ignored; if the notification is periodic, the notification date is updated but

no notification is sent.

Setting the sendPastNotifications flag to false can be used to suppress a

flood of notifications being sent out when the timer is started. The default value for

this flag is false . Setting this flag to true insures that notification dates which

occur when the timer is stopped are not lost. The user can choose to receive them

when the timer is started again, even though they no longer correspond to their set

dates.
146 JMX Instrumentation and Agent Specification, v1.0 • May 2000

CHAPTER 11

Relation Service

As part of the agent specification, the Java Management extensions also define a

model for relations between MBeans. A relation is a user defined, n-ary association

between MBeans in named roles. The JMX specification defines the classes that are

used to construct an object representing a relation, and it defines the relation service

which centralizes all operations on relations in an agent.

All relations are defined by a relation type that provides information about the roles

it contains, such as their multiplicity, and the class name of MBeans which fulfill the

role. Through the relation service, users create new types and then create, update, or

remove relations that fulfill these types. The relation service also performs queries

among all relations to find related MBeans.

The relation service maintains the consistency of relations, checking all operations

and all MBean deregistrations to ensure that a relation always conforms to its

relation type. If a relation is no longer valid, it is removed from the relation service,

though its member MBeans continue to exist otherwise.

The Relation Model

A relation is composed of named roles, each of which has a value consisting of the

list of MBeans in that role. This list must comply with the role information which

defines the multiplicity and class of MBeans in the corresponding role. A set of one

or more role information definitions constitutes a relation type. The relation type is a

template for all relation instances that wish to associate MBeans representing its

roles. We use the term relation to mean a specific instance of a relation that associates

existing MBeans according to the roles in its defining relation type.
147

Terminology

The JMX relation model relies on the following terms. Here we only define the

concepts represented by a term, not the corresponding Java class.

Example of a Relation

Throughout this chapter we will use the example of a relation between books and

their owner.

In order to represent this relation in the JMX model, we say that Books and Owner
are roles. Books represents any number of owned books of a given MBean class, and

Owner is a book owner of another MBean class. We might define a relation type

containing these two roles and call it Personal Library : it represents the concept

of book ownership.

role information Describes one of the roles in a relation. The role information gives the name

of the role, its multiplicity expressed as a single range, the name of the class

that fulfills this role, read-write permissions, and a description string.

relation type The metadata for a relation, composed of a set of role information. It

describes the roles that a relation must fulfill, and it serves as a template for

creating and maintaining relations.

relation A current association between the MBeans that fulfill a given relation type. A

relation can only be created and modified such that the roles of its defined

type are always respected. A relation may also have properties and methods

that operate on its MBeans.

role value The list of MBeans that currently fulfill a given role in a relation. The role

value must at all times conform to its corresponding role information.

unresolved role An unresolved role is the result of an illegal access operation on a role,

compared to its role information. Instead of the resulting role value, the

unresolved role contains the reason for the refused operation. For example,

setting a role with the wrong class of MBean, providing a list with an illegal

cardinality, or attempting to write a read-only role will all return an

unresolved role.

support classes Internal classes used to represent relation types and relation instances. The

support classes are also exposed to simplify user implementations of relation

classes. The user’s external implementation must still rely on the relation

service to maintain the consistency of the relation model.

relation service An MBean which can access and maintain the consistency of all relation types

and all relation instances within a JMX agent. It provides query operations to

find related MBeans and their role in a relation. It is also the sole source of

notifications concerning relations.
148 JMX Instrumentation and Agent Specification, v1.0 • May 2000

The following diagram represents this sample relation, as compared to the UML

modeling of its corresponding association.

FIGURE 11-1 Comparison of the Relation Models

In the JMX model, the relation type is a static set of roles. Relation types may be

defined at run-time, but once defined, their roles and the role information cannot be

modified. The relation instance of a given type defines the MBeans in each role and

provides operations on them, if necessary.

Maintaining Consistency

MBeans are related through relation instances defined by relation types in the

relation service, but the MBeans remain completely accessible through the MBean

server. Only registered MBeans, identified by their object name, may be members of

a relation. The relation service never operates on member MBeans, it only provides

their object names in response to queries.

The relation service blocks the creation of invalid relation types, for example if the

role information is inconsistent. In the same way, invalid relations may not be

created, either because the relation type is not respected or because the object name

of a member MBean does not exist in the MBean server. The modification of a role

value is also subject to the same consistency checks.

When a relation is removed from the relation service, its member MBeans are no

longer related through the removed instance, but are otherwise unaffected. When a

relation type is removed, all existing relations of that type are first removed. The

caller is responsible for being aware of the consequences of removing a relation type.

Because relations are defined only between registered MBeans, deregistering a

member MBean modifies the relation. The relation service listens for all MBean

server notifications that indicate when a member of any relation is deregistered. The

JMX Model UML Model

«Relation Type»
Personal Library

«Role»
Owner

«Role»
Books

0..*1..1
«Personal

BooksOwner

Library»

1..1 0..*
Chapter 11 Relation Service 149

corresponding MBean is then removed from any role value where it appears. If the

new cardinality of the role is not consistent with the corresponding relation type,

that relation is removed from the relation service.

The relation service sends a notification after all operations that modify a relation

instance, either creation, update, or removal. This notification provides information

about the modification, for example new role values, or the identifier of the relation.

The notification also indicates whether the relation was internally or externally

defined (see “External Relations” on page 152).

There is a slight difference between the two models presented in FIGURE 11-1 on

page 149. The UML association implies that each one of the Books can only have

one owner. Our relation type only models a set of roles, indicating that a relation

instance has one Owner MBean and any number of MBeans in the Books role.

The JMX relation model only guarantees that an MBean fulfills its designated role, it

does not allow a user to define how many relations in which an MBean may appear.

Therefore, the relation service does not do inter-relation consistency checks, they are

the responsibility of the management application when creating relation instances.

If it is needed, the designer of a management solution must implement this level of

consistency in the applications that call upon the relation service. In our example,

the designer would need to ensure that the same book MBean does not participate in

two different Personal Library relations, while allowing it for an owner MBean.

Implementation

The JMX specification defines the Java classes whose behavior implements this

relation model. Each of the concepts defined in “Terminology” on page 148 has a

corresponding Java class (see FIGURE 11-2 on page 151). Along with the behavior of

the relation service object itself, these classes determine how the relation service is

used in management solutions.

This section will explain the interaction between the relation service and the support

classes. The operations and other details of all classes will be covered in further

sections. The exception classes are all subclasses of the RelationException class

and provide only a message string. The Javadoc API for the other classes indicates

which exceptions are raised by specific operations.

In practice, role description structures are handled outside of the relation service,

and their objects are instantiated directly by the user (see “Role Description Classes”

on page 161). Role information objects are grouped into arrays to define a relation

type. Role objects and role lists are instantiated to pass to setters of role values. Role

results are returned by getters of role values, and their role lists and unresolved role

lists can be extracted for processing.
150 JMX Instrumentation and Agent Specification, v1.0 • May 2000

FIGURE 11-2 Classes of the javax.management.relation package

On the other hand, relation types and relation instances are controlled by the

relations service in order to maintain the consistency of the relation model. The

implementation of the JMX relation model provides a flexible design whereby

relation types and instances can be either internal or external to the relation service.

Internal relation types and instances are created by the relation service and can only

be accessed through its operations. The objects representing types and relations

internally are not accessible to the user. External relation types and instances are

objects instantiated outside of the relation service and added under its control. Users

can access these object in any manner that has been designed into them, including as

registered MBeans.

External Relation Types

The relation service maintains a list of relation types that are available for defining

new relations. A relation type must be created internally or instantiated externally

and added to the relation service before it can be used to define a relation.

Objects representing external relation types must implement the RelationType
interface. The relation service relies on its methods to access the role information for

each of the roles defined by the external object. See “RelationTypeSupport Class” on

page 158 for the description of a class used to define external relation types.

javax.management.relation

«relation service»
RelationService
RelationServiceMBean
RelationNotification
MBeanServerNotificationFilter

«relation support»
RelationType
RelationTypeSupport
Relation
RelationSupport
RelationSupportMBean

«role description»
RoleInfo
Role
RoleList
RoleUnresolved
RoleUnresolvedList
RoleResult
RoleStatus

«exception superclass»
RelationException

«relation type creation errors»
InvalidRoleInfoException
InvalidRelationTypeException

«relation creation errors»
InvalidRelationServiceException
RelationServiceNotRegistered-

RoleInfoNotFoundException
InvalidRoleValueException
RelationTypeNotFoundException
InvalidRelationIdException

«relation access errors»
RelationNotFoundException
RoleNotFoundException

Exception
Chapter 11 Relation Service 151

Relation types are immutable, meaning that once they are added to the relation

service, their role definitions cannot be modified. If an external relation type exposes

methods for modifying the set of role information, they should not be invoked by its

users after the instance has been added under the control of the relation service. The

result of doing so is undefined, and consistency within the relation service is no

longer guaranteed.

The benefit of using an external relation type class is that the role information may

be defined statically in a class constructor, for example. This allows predefined types

to be rapidly instantiated and then added to the relation service.

Once it has been added to the relation service, an external relation type can be used

indifferently to create internal or external relations. An external relation type is also

removed from the relation service in the same way as an internal relation type, with

the same consequences (see “RelationService Class” on page 154)

External Relations

The relation service also maintains a list of the relations that it controls. Internal

relations are created through the relation service and are only accessible through its

methods. External relations are MBeans instantiated by the user and added under

the control of the relation service. They must be registered in the MBean server

before they can be added to the relation service. They are accessible both through the

relation service and through the MBean server.

An external relation object must implement the Relation interface which defines

the methods that the relation service will use to access its role values. An external

relation is also responsible for maintaining its own consistency, by only allowing

access to its role values as described by its relation type. Finally, an external relation

must inform the relation service when any role values are modified.

The relation service object exposes methods for checking role information and

updating its internal role values. The external relation object must be designed to

call these when appropriate. Failure to do so will result in an inconsistent relation

service whose behavior is thereafter undefined.

The major benefit of external relations is the ability to provide methods that return

information about the relation’s members or even operate on the role values. Since

the external relation is also an MBean, it may choose to expose these methods as

attributes and operations.

For example, the book ownership relation may be represented by a unary relation

type containing only the role Books . The relation would be implemented by

instances of an Owner MBean that are external to the relation service. This MBean

could have an attribute such as bookCount and operations such as buy and sell
which all apply to the current members of the relation.

See “RelationSupport Class” on page 161 for an example of an external relation.
152 JMX Instrumentation and Agent Specification, v1.0 • May 2000

Relation Service Classes

The relation service is implemented in the RelationService object, a standard

MBean defined by the RelationServiceMBean interface. It can therefore be

accessed and managed remotely from a management application.

FIGURE 11-3 Relation Service Classes

«constructor» RelationService(purgeFlag: boolean)
«operations» addRelation(relationMBeanName: ObjectName)

addRelationType(relationType: RelationType)
createRelation(relationId: String, relationTypeName: String, roleList: RoleList)
createRelationType(relationTypeName: String, roleInfos: RoleInfo[])
findAssociatedMBeans(MBeanName: ObjectName,

relationTypeName: String, roleName: String): Map
findReferencingRelations(MBeanName: ObjectName,

relationTypeName: String, roleName: String): Map
findRelationsOfType(relationTypeName: String): List
getAllRoles(relationId: String): RoleResult
getReferencedMBeans(relationId: String): Map
getRelationTypeName(relationId: String): String
getRole(relationId: String, roleName: String): List
getRoleInfo(relationTypeName: String, roleName: String): RoleInfo
getRoleInfos(relationTypeName: String): List
getRoles(relationId: String, roleNames: String[]): RoleResult
hasRelation(relationId: String): boolean
isRelation(MBeanName: ObjectName): String
isRelationMBean(relationId: String): ObjectName
purgeRelations()
removeRelation(relationId: String)
removeRelationType(relationTypeName: String)
setRole(relationId: String, role: Role)
setRoles(relationId: String, roleList: RoleList): RoleResult

RelationService

RelationNotification

«send»

«notification types»
RELATION_BASIC_CREATION: String {frozen}
RELATION_BASIC_REMOVAL: String {frozen}
RELATION_BASIC_UPDATE: String {frozen}
RELATION_MBEAN_CREATION: String {frozen}
RELATION_MBEAN_REMOVAL: String {frozen}
RELATION_MBEAN_UPDATE: String {frozen}

MBeanServerNotificationFilter

«use»

RelationServiceMBean
«Interface»
Chapter 11 Relation Service 153

The relation service MBean is a notification broadcaster and the only object to send

RelationNotification objects. In order to maintain consistency, it also listens for

MBean server notifications through an MBeanServerNotificationFilter object.

RelationService Class

The relation service exposes methods for creating and removing relation types and

relation instances, and for accessing roles in relations. It also exposes methods for

querying the relations and their members in order to find related MBeans.

There are two methods to define a relation type:

■ createRelationType - Creates an internal relation type from an array of role

information objects; the relation type will be identified by a name passed as a

parameter and which must be unique among all relation type names.

■ addRelationType - Makes an externally defined relation type available through

the relation service (see “RelationType Interface” on page 158).

There are also two similar methods for defining a relation. Every new relation

triggers a RelationNotification :

■ createRelation - Creates an internal relation using the given list of role values;

the relation will be identified by an identifier passed as a parameter and which

must be unique among all relation identifiers.

■ addRelation - Places an external relation represented by a MBean under the

control of the relation service; the MBean must have been previously instantiated

and registered in the MBean server.

The method removeRelationType removes both internal or external relation

types. All relations of that type will be removed with the removeRelation method

(see “Maintaining Consistency” on page 149).

The removeRelation method removes a relation from the relation service,

meaning that it can no longer be accessed. Member MBeans in the roles of the

relation continue to exist. When an external relation is removed, the MBean that

implements it will still be available in the MBean server. Removing a relation

triggers a relation notification.

The relation service provides methods to access a relation type, identified by its

unique name: getRoleInfo and getRoleInfos .

It provides methods to access the relation and its role values. All access to roles is

subject to the access mode defined in the relation type and to consistency checks,

especially for setting role values: getRelationTypeName , getRole , getRoles ,

getAllRoles , getReferencedMBeans , setRole and setRoles . Setting roles will

trigger a relation update notification.
154 JMX Instrumentation and Agent Specification, v1.0 • May 2000

There are also methods for identifying internal and external relations:

■ hasRelation - Indicates if a given relation identifier is defined.

■ isRelation - Takes an object name and indicates if it has been added as an

external relation to the service.

■ isRelationMBean - Returns the object name of an externally defined relation.

The following query methods retrieve relations where a given MBean is involved:

■ findReferencingRelations - Retrieves the relations where a given MBean is

referenced.

It is possible to restrict the scope of the search by specifying the type of the

relations to look for and/or the role where the MBean is expected to be found in

the relation.

In the result, relation identifiers are mapped to a list of role names where the

MBean is referenced (as an MBean can be referenced in several roles of the same

relation).

■ findAssociatedMBeans - Retrieves the MBeans associated to a given MBean in

the relation service.

It is possible to restrict the scope of the search by specifying the type of the

relations to look for and/or the role where the MBean is expected to be found in

the relation.

In the result, the object names of related MBeans are mapped to a list of relation

identifiers where the two are associated.

The method findRelationsOfType returns the relation identifiers of all the

relations of the given relation type.

To maintain the consistency, the relation service listens to the deregistration

notifications from the MBean server delegate. It will be informed when an external

relation’s MBean is unregistered, in which case the relation is removed, or when an

MBean that is a member of a relation is unregistered (see “Maintaining Consistency”

on page 149). The purgeRelations method will check all relation data for

consistency and remove all relations that are no longer valid.

Every time a relevant deregistration notification is received, the relation service

behavior depends upon the purge flag attribute:

■ If the purge flag is true, the purgeRelations method will be called

automatically.

■ When the purge flag is false, no action is taken and the relation service might be

in an inconsistent state until the purgeRelations method is called by the user.

The relation service also exposes methods that allow external relation MBeans to

implement the expected behavior, or to inform the relation service so that it can

maintain the consistency:

■ checkRoleReading and checkRoleWriting - Check if a given role can be read

and updated by comparing the new value to the role information.
Chapter 11 Relation Service 155

■ sendRelationRemovalNotification , sendRoleUpdateNotification , and

sendRelationCreationNotification - Trigger a notification for the given

event.

■ updateRoleMap - Informs the relation service that a role value has been

modified, so that it may update its internal data.

RelationNotification Class

An instance of that class is created and sent as a notification when a relation is

created or added, updated, and removed. It defines two separate notification type

for each of these events, depending upon whether the event concerns an internal or

external relation. The static fields of this class describe all notification type strings

that the relation service may send (see FIGURE 11-3 on page 153).

The methods of this class allow the listener to retrieve information about the event:

■ getRelationId - Returns the identifier of the relation affected by this event.

■ getRelationTypeName - Returns the relation type identifier of the relation

affected by this event.

■ getObjectName - Returns the object name only if the involved relation was an

externally defined MBean.

■ getRoleName , getOldRoleValue , getNewRoleValue - Give additional

information about a role update event.

■ getMBeansToUnregister - Returns the list of object names for MBeans

expected to be unregistered due to a relation removal.

MBeanServerNotificationFilter Class

This class is used by the relation service to receive only those notifications

concerning MBeans that are role members or external relation instances. It filters

MBeans based on their object name, ensuring that the relation service will only

receive the deregistration notifications for MBeans of interest.

Its methods allow the relation service to update the filter when it must add or

remove MBeans in relations or representing external relations.

The filter instance used by the relation service is not exposed for management by the

relation service. This class is described here because it is available as part of the

javax.management.relation package and may be reused elsewhere.
156 JMX Instrumentation and Agent Specification, v1.0 • May 2000

ist)
er,
Interfaces and Support Classes

External relation types and relation instances rely on the interfaces defined in the

following figure and may choose to extend the support classes for convenience.

Implementations of the JMX specification may also rely on these classes internally.

FIGURE 11-4 Interfaces and Support Classes

«operations» getRelationTypeName(): String
getRoleInfo(roleName: String): RoleInfo
getRoleInfos(): List

«constructor» RelationTypeSupport(typeName: String, roleInfos: RoleInfo[])
«operations» getRelationTypeName(): String

getRoleInfo(roleName: String): RoleInfo
getRoleInfos(): List
#addRoleInfo(theRoleInfo: RoleInfo)

«operations» getRelationId(): String
getRelationServiceName(): ObjectName
getRelationTypeName(): String
getReferencedMBeans(): Map
getRoleCardinality(theRoleName: String): Integer
getRole(roleName: String): List
getRoles(roleNames: String[]): RoleResult
getAllRoles(): RoleResult
setRole(role: Role)
setRoles(roles: RoleList): RoleResult
handleMBeanUnregistration(objName: ObjectName, roleName: String)

«constructors» RelationSupport(relId: String, relServObjName: ObjectName, relTypeName: String, roles: RoleL
RelationSupport(relId: String, relServObjName: ObjectName, relServMBeanServer: MBeanServ

relTypeName: String, roles: RoleList)

«describes»

0..*

RelationTypeSupport

Relation

RelationSupport

1

RelationType

RelationSupportMBean
«Interface»

«Interface»

«Interface»
Chapter 11 Relation Service 157

RelationType Interface

Any external representation of a relation type must implement the RelationType
interface in order to be recognized by the relation service. The methods of this

interface expose the name of the relation type and its role information (see “RoleInfo

Class” on page 162).

The relation service will invoke the methods of this interface to access the relation

type name or the role information. Because a relation type is immutable, the

returned values should never change while the relation type is registered with the

relation service.

An instance of an object that implements this interface can be added as an external

relation type, using the addRelationType method of the relation service.

Providing its implementation is coherent, it can be accessed through the relation

service in the same manner as an internal relation type. In fact, internal relation

types are usually represented by an object that also implements this interface

RelationTypeSupport Class

This class implements the RelationType interface and provides a generic

mechanism for representing any relation type. The name of the relation type is

passed as a parameter to the class constructor.

There are two ways which may be used to define a specific relation type through an

instance of the RelationTypeSupport class:

■ Its constructor takes an array of RoleInfo objects.

■ The addRoleInfo method takes a single RoleInfo object at a time.

Role information may not be added after an instance of this class has been used to

define an external relation type in the relation service.

Users may also extend this class to create custom relation types without needing to

rewrite the role information access methods. For example, the constructor of the

subclass may determine the RoleInfo objects to be passed to the superclass

constructor. This effectively encapsulates a relation type definition in a class which

may be downloaded and instantiated dynamically.

The implementation of the relation service will usually instantiate the

RelationTypeSupport class to define internal relation types, but these objects are

not accessible externally.
158 JMX Instrumentation and Agent Specification, v1.0 • May 2000

Relation Interface

The Relation interface describes the operations to be supported by a class whose

instances are expected to represent relations. Through the methods of this interface,

the implementing class exposes all the functionality needed to access the relation.

The class that implements the Relation interface to represent an external relation

must be instrumented as an MBean. The object must be instantiated and registered

in the MBean server before it can be added to the relation service. Then, it can be

accessed either through the relation service or whatever management interface it

exposes in the MBean Server.

Specified Methods

Each relation is identified in the relation service by a unique relation identifier that is

exposed through the getRelationId method. The string that it returns must be

unique among all relations in the service at the time it is registered. The relation

service will refuse to add an external relation with a duplicate or null identifier.

In the same way, the getRelationTypeName method must return a valid relation

type name, in this case, one that has already been defined in the relation service. An

external relation instance must also know about the relation service object where it

will be controlled: this can be verified through the getRelationServiceName
method. This method returns an object name which is assumed to be valid in the

same MBean server as the external relation implementation.

The other methods of the Relation interface are used by the relation service to access

the roles of a relation under its control. Role values can be read or written either

individually or in bulk (see “Role Description Classes” on page 161). Individual

roles which cannot be accessed cause an exception whose class indicates the nature

of the error (see the exception classes in FIGURE 11-2 on page 151).

The methods for bulk role access follow a “best effort” policy: access to all indicated

roles is attempted and roles which cannot be accessed do not block the operation.

Those which cannot be accessed, either due to error in the input or due to the access

rights of the role, will return an unresolved role object indicating the nature of the

error (see “RoleUnresolved Class” on page 164).

The getReferencedMBeans method returns a list of object names for all MBeans

referenced in the relation, with each object name mapped to the list of roles where the

MBean is a member.
Chapter 11 Relation Service 159

Maintaining Consistency

The relation service delegates the responsibility of maintaining the role consistency

to the relation object. In that way, consistency checks can be performed when the

roles are accessed through methods of the external relation. However, the relation

service must be informed of any role modifications, so that it can update its internal

data structures and send notifications.

When accessing a role, either getting or setting its value, the relation instance must

verify that:

■ The named role has a corresponding role information in the relation type.

■ The role has the appropriate access rights according to its role information.

■ The role value provided for setting a role is consistent with that role’s information

regarding cardinality and MBean class.

An implementation of the Relation interface may rely on the methods of the

relation service MBean that are provided to simplify these verifications:

checkRoleReading and checkRoleWriting .

After setting a role, an external relation must call the updateRoleMap operation of

the relation service, providing the old and new role values. This allows the relation

service to update its internal data for maintaining consistency.

The relation service must be informed of all new role values so that it may listen for a

deregistration notification concerning any of the member MBeans. When a member

MBean of an external relation is deregistered from the is MBean server, the relation

service checks the new cardinality of the role it fulfilled.

If the cardinality is no longer valid, the relation service will remove this relation

instance (see “RelationService Class” on page 154). If the external relation is still valid,

the relation service will call its handleMBeanUnregistration method.

When called, this method should remove the MBean from the role where it was

referenced (since all role members must be registered MBeans). The guarantee that the

relation service will call this method when necessary frees the external relation from

having to listen for MBean deregistrations itself. It also allows the relation

implementation to define how the corresponding role will be updated. For example,

the deregistration of an MBean in a given role could update other roles.

In this case, and in any other case where an exposed method modifies a role value, the

implementation should use its own setRole method or call the appropriate relation

service methods, such as updateRoleMap . It is the responsibility of all

implementations of the Relation interface to maintain the consistency of their

relation instance, as well as that of the relation service concerning their role values.
160 JMX Instrumentation and Agent Specification, v1.0 • May 2000

RelationSupport Class

This class is a complete implementation of the Relation interface that provides a

generic relation mechanism. This class must be instantiated with a valid role list that

defines the relation instance it will represent. The constructor also requires a unique

relation identifier, and the name of an existing relation type that is fulfilled by the

given role list.

In fact, the RelationSupport class implements the RelationSupportMBean
which extends the Relation interface. This implies that it is also a standard MBean

whose management interface exposes all of the relation access methods. Since an

external relation must first be registered in the MBean server, external instances of

the relation support class can be managed by remote applications.

Users may also extend the RelationSupport class in order to take advantage of its

implementation when developing a customized external relation. Users may also

choose to extend its MBean interface in order to expose other attributes or

operations that access the relation. This customization must still maintain the

consistency of role access and role updating, but it can use the consistency

mechanism built into the methods of the RelationSupport class.

The relation service will usually instantiate the RelationSupport class to define

internal relation instances, but these objects are not accessible externally.

Role Description Classes

The relation service accesses the roles of a relation for both reading and writing

values. The JMX specification defines the classes that are used to pass role values as

parameters and receive them as results. These classes are also used by external

relation MBeans that implement the behavior of a relation.
Chapter 11 Relation Service 161

FIGURE 11-5 Role Description Classes

RoleInfo Class

The role information provides a metadata description of a role. It specifies:

■ The name of the role.

■ The multiplicity of the role, expressed as a single closed interval between the

minimum and maximum number of MBeans that can be referenced in that role.

■ The name of the MBean class of which all members must be instances.

«constructor» RoleInfo(roleName:String, MBeanClassName: String,
isReadable: boolean, isWritable: boolean,
minDegree: int, maxDegree: int,
description: String)

:Role

«constructor» Role(name: String, referencedMBeanNames: List)

:RoleInfo

{fulfills}

RoleUnresolved

«constructor» Role(name: String, referencedMBeanNames: List,
problem: int)

0..*

RoleUnresolvedList

RoleList

:Relation

:RelationType

RoleStatus

1

RoleResult

0..*

0..*
«use»

1

1

{fulfills}0..*

1

1..*

1..*

LESS_THAN_MIN_ROLE_DEGREE: int {frozen}
MORE_THAN_MAX_ROLE_DEGREE: int {frozen}
NO_ROLE_WITH_NAME: int {frozen}
REF_MBEAN_NOT_REGISTERED: int {frozen}
REF_MBEAN_OF_INCORRECT_CLASS:int {frozen}
ROLE_NOT_READABLE: int {frozen}
ROLE_NOT_WRITABLE: int {frozen}
162 JMX Instrumentation and Agent Specification, v1.0 • May 2000

■ The role access mode, that is whether the role is readable, writable, or both

When role information is used as a parameter for a new relation type, it is the

defining information for a role. When that relation type is declared in the relation

service, the service will verify that:

■ The role information object is not null.

■ The role name is unique among all roles of the given relation type; the relation

service does not guarantee that roles with the same name across relation types are

identical, this is the user’s responsibility.

■ The minimum and maximum cardinality define a proper, non-null interval.

Role Class

An instance of the Role class represents the value of a role in a relation. It contains

the role name and the list of object names that reference existing MBeans.

A role value must always fulfill the role information of its relation’s type. The role

name is the key for associating the role value with its role definition.

The Role class is used as a parameter to the setRole method of both the relation

service and the Relation interface. It is also a component of the lists that are used

in bulk setter methods and for defining an initial role value. For each role being

initialized or updated, the relation service will verify that:

■ A role with the given name is defined in the relation type.

■ The number of referenced MBeans is greater than or equal to the minimum

cardinality and less or equal to the maximum cardinality.

■ Each object name references a registered MBean of the expected MBean class.

RoleList Class

This class extends java.util.ArrayList to represents a set of Role objects.

Instances of the RoleList class are use to define initial values for a relation. When

calling the createRelation method of the relation service, roles which admit a

cardinality of 0 may be omitted from the role list. All other roles of the relation type

must have a well-formed role value in the initial role list.

Role list objects are also use as parameters to the setRoles method of both the

relation service and the Relation interface. These methods will set only the roles

for which a valid role value appears in the role list.

Finally, all bulk access methods return a result containing a RoleList object

representing the roles that were successfully accessed.
Chapter 11 Relation Service 163

RoleUnresolved Class

An instance of this class represents an unsuccessful read or write access to a given

role in a relation. It is used only in the return values of role access methods of either

the relation service or of an object implementing the Relation interface.

The object contains:

■ The name of the role that could not be accessed

■ The value provided for an unsuccessful write access

■ The reason why the attempt has failed, encoded as an integer value; the constants

for decoding the problem are given in the FIGURE 11-5 on page 162.

RoleUnresolvedList Class

This class extends java.util.ArrayList to represents a set of RoleUnresolved
objects. All bulk access methods returns a result containing a

RoleUnresolvedList object representing the roles that could not be accessed.

RoleResult Class

The RoleResult class is the return object for all bulk access methods of both the

relation service and implementations of the Relation interface. A role result

contains a list of roles and their values, and a list of unresolved roles and the reason

each could not be accessed.

As the result of a getter, the role values contain the current value of the requested

roles. The unresolved list contains the roles which could not be read, either because

the role name is not valid or because the role does not permit reading.

As the result of a setter, the role values contain the new value for those roles where

the operation was successful. The unresolved list contains the roles which could not

be written, for any access or consistency reason.

RoleStatus Class

This class contains static fields giving the possible error codes of an unresolved role.

The error codes are either related to access permissions or consistency checking. The

names of the fields identify the nature of the problem; they are given in FIGURE 11-5

on page 162.
164 JMX Instrumentation and Agent Specification, v1.0 • May 2000

	Preface
	Introduction to the JMX™�Specification
	Benefits of the JMX Architecture
	Scope of this Specification
	Reference Implementation
	Compatibility Test Suite

	Architectural Overview
	Instrumentation Level
	Agent Level
	Distributed Services Level
	Additional Management Protocol APIs

	Component Overview
	Components of the Instrumentation Level
	MBeans (Managed Beans)
	Notification Model
	MBean Metadata Classes

	Components of the Agent Level
	MBean Server
	Agent Services

	Conformance
	Instrumentation Level
	Agent Level

	What Has Changed

	I JMX Instrumentation Specification
	MBean Instrumentation
	Definition
	Concrete Classes
	MBean Public Constructor

	Standard MBeans
	MBean Interface
	The MyClass Example MBean

	Lexical Design Patterns
	Attributes
	Operations
	Case Sensitivity

	Dynamic MBeans
	DynamicMBean Interface
	getMBeanInfo Method
	getAttribute and getAttributes Methods
	setAttribute and setAttributes Methods
	invoke Method

	Behavior of Dynamic MBeans
	Coherence
	Dynamics

	Inheritance Patterns
	Standard MBean Inheritance
	Dynamic MBean Inheritance

	JMX Notification Model
	Notification Type
	Notification Class
	NotificationBroadcaster Interface
	NotificationListener Interface
	NotificationFilter Interface

	Attribute Change Notifications
	AttributeChangeNotification Class
	AttributeChangeNotificationFilter Class

	MBean Metadata Classes
	MBeanInfo Class
	MBeanFeatureInfo Class
	MBeanAttributeInfo Class
	MBeanConstructorInfo Class
	MBeanOperationInfo Class
	MBeanParameterInfo Class
	MBeanNotificationInfo Class

	Open MBeans
	Overview
	Basic Data Types
	Representing Complex Data
	CompositeData Class
	TabularData Class

	Open MBean Metadata Classes
	OpenMBeanInfo Class
	OpenMBeanOperationInfo and OpenMBeanConstructorInfo Classes
	OpenMBeanParameterInfo and OpenMBeanAttributeInfo Classes
	CompositeParameterInfo and CompositeAttributeInfo Classes
	TabularParameterInfo and TabularAttributeInfo Classes

	Open MBean Requirements Summary

	Model MBeans
	Overview
	Generic Notifications
	Interaction with Managed Resources
	Interaction with Management Applications

	Model MBean Metadata Classes
	Descriptor Interface
	Descriptor Interface Implementation
	Descriptor()
	Descriptor(with Descriptor)
	Descriptor(with field names and values)
	Descriptor(with field list)
	getFieldNames
	getFieldValue(s)
	setField(s)
	getFields
	removeFields
	clone
	isValid
	toString

	DescriptorAccess Interface
	getDescriptor
	setDescriptor

	ModelMBeanInfo Interface
	ModelMBeanInfo Implementation
	ModelMBeanInfo
	ModelMBeanInfo (with ModelMBeanInfo)
	ModelMBeanInfo (with className, description, ModelMBeanAttributeInfo[], ModelMBeanConstructorInfo...
	ModelMBeanInfo (with className, description, ModelMBeanAttributeInfo[], ModelMBeanConstructorInfo...
	getMBeanDescriptor
	setMBeanDescriptor
	getDescriptor(s)
	setDescriptor(s)
	getAttribute
	getOperation
	getNotification
	getAttributes
	getNotifications
	getOperations
	getConstructors
	getClassName
	getDescription

	ModelMBeanAttributeInfo Implementation
	ModelMBeanConstructorInfo Implementation
	ModelMBeanOperationInfo Implementation
	ModelMBeanNotificationInfo Implementation

	Model MBean Specification
	ModelMBean Interface
	ModelMBean Implementation
	setModelMBeanInfo (with ModelMBeanInfo)
	setManagedResource (with ManagedResourceObject, Type)

	DynamicMBean Implementation
	getMBeanInfo
	getAttribute and getAttributes
	setAttribute and setAttributes
	invoke

	PersistentMBean Interface
	load
	store

	ModelMBeanNotificationBroadcaster Interface
	ModelMBeanNotificationBroadcaster Implementation
	addAttributeChangeNotificationListener
	removeAttributeChangeNotificationListener
	sendAttributeChangeNotification (with AttributeChangeNotification)
	sendAttributeChangeNotification (with new and old Attributes)
	sendNotification (with Notification)
	sendNotification (with String)

	Descriptors
	Attribute Behavior
	Notification Logging Policy
	Persistence Policy
	Cached Values Behavior
	Protocol Map Support
	Export Policy
	Visibility Policy
	Presentation Behavior

	Predefined Descriptor Fields
	MBean Descriptor Fields
	Attribute Descriptor Fields
	Operation Descriptor Fields
	Notification Descriptor Fields

	II JMX Agent Specification
	Agent Architecture
	Overview
	JMX Compliant Agent
	Protocol Adaptors and Connectors

	Foundation Classes
	ObjectName Class
	Domain Name
	Key Property List
	String Representation of Names
	Pattern Matching
	Domain Name
	Key Property List
	Pattern Matching Examples

	ObjectInstance Class
	Attribute and AttributeList Classes
	JMX Exceptions
	JMException Class and Subclasses
	JMRuntimeException Class and Subclasses
	Description of JMX Exceptions
	JMException Class
	ReflectionException Class
	MBeanException Class
	OperationsException Class
	InstanceAlreadyExistsException Class
	InstanceNotFoundException Class
	InvalidAttributeValueException Class
	AttributeNotFoundException Class
	IntrospectionException Class
	MalformedObjectNameException Class
	NotCompliantMBeanException Class
	ServiceNotFoundException Class
	MBeanRegistrationException Class
	JMRuntimeException Class
	RuntimeOperationsException Class
	RuntimeMBeanException Class
	RuntimeErrorException Class

	MBean Server
	Role of the MBean Server
	MBean Server Factory
	Registration of MBeans
	MBean Registration Control

	Operations on MBeans

	MBean Server Delegate MBean
	Remote Operations on MBeans
	MBean Server Notifications
	Queries
	Scope of a Query
	Query Expressions
	Methods of the Query Class
	Query Expression Examples

	Query Exceptions
	BadAttributeValueExpException Class
	BadStringOperationException Class
	BadBinaryOpValueExpException Class
	InvalidApplicationException Class

	Advanced Dynamic Loading
	Overview
	The MLET Tag
	The M-Let Service
	Loading MBeans from a URL
	Class Loader Functionality

	Monitoring
	Overview
	Types of Monitors

	MonitorNotification Class
	Common Monitor Notification Types

	CounterMonitor Class
	Counter Monitor Notification Types

	GaugeMonitor Class
	Gauge Monitor Notification Types

	StringMonitor Class
	String Monitor Notification Types

	Implementation of the Monitor MBeans

	Timer Service
	Timer Notifications
	TimerNotification Class
	Adding Notifications to the Timer
	Removing Notifications From the Timer

	Starting and Stopping the Timer

	Relation Service
	The Relation Model
	Terminology
	Example of a Relation
	Maintaining Consistency
	Implementation
	External Relation Types
	External Relations

	Relation Service Classes
	RelationService Class
	RelationNotification Class
	MBeanServerNotificationFilter Class

	Interfaces and Support Classes
	RelationType Interface
	RelationTypeSupport Class
	Relation Interface
	Specified Methods
	Maintaining Consistency

	RelationSupport Class

	Role Description Classes
	RoleInfo Class
	Role Class
	RoleList Class
	RoleUnresolved Class
	RoleUnresolvedList Class
	RoleResult Class
	RoleStatus Class

