Federated Management Architecture
(FMA) Specification

Version 1.0

Revision 0.4
January 21, 2000

Copyright © 1999 Sun Microsystems, Inc.
901 San Antonio Road, Palo Alto, CA 94303 USA
All rights reserved. Copyright in this document is owned by Sun Microsystems, Inc.

Sun Microsystems, Inc. (SUN) hereby grants to you at no charge a nonexclusive,
nontransferable, worldwide, limited license (without the right to sublicense) under
Sun's intellectual property rights in the Federated Management Architecture
Specification (Specification) to use the Specification for internal evaluation purposes
only. Other than this limited license, you acquire no right, title, or interest in or to the
Specification and you shall have no right to use the Specification for productive or
commercial use.

The Specification is the confidential and proprietary information of Sun
Microsystems, Inc. (Confidential Information). You may not disclose such
Confidential Information to any third part and shall use it only in accordance with
the terms of this license.

THIS SPECIFICATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF
ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. SUN
SHALL NOT BE LIABLE FOR ANY DAMAGES SUFFERED BY YOU AS A
RESULT OF USING THIS SPECIFICATION.

THIS SPECIFICATION COULD INCLUDE TECHNICAL INACCURACIES OR
TYPOGRAPHICAL ERRORS. CHANGES ARE PERIODICALLY ADDED TO
THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED
IN NEW EDITIONS OF THE SPECIFICATION. SUN MICROSYSTEMS, INC.
MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE SPECIFICATION
AT ANY TIME, IN ITS SOLE DISCRETION. SUN IS UNDER NO OBLIGATION
TO PRODUCE FURTHER VERSIONS OF THE SPECIFICATION OR ANY
PRODUCT OR TECHNOLOGY BASED UPON THE SPECIFICATION. NOR IS
SUN UNDER ANY OBLIGATION TO LICENSE THE SPECIFICATION OR
ANY ASSOCIATED TECHNOLOGY, NOW OR IN THE FUTURE, FOR
PRODUCTIVE OR OTHER USE.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the U.S. government is subject to restrictions of
FAR 52.227-14(g)(2)(6/87) and FAR 52.227-19(6/87), or DFAR 252.227-
7015(b)(6/95) and DFAR 227.7202-1(a).

Sun, the Sun Logo, Sun Microsystems, Jini,, JavaBeans, JDK, Java Solaris, NEO,
Netra, NFS, ONC, ONC+, OpenWindows, PC-NFS, EmbeddedJava, PersonalJava,
SNM, SunNet Manager, Solaris sunbrust design, Solstice, SunCore, SolarNet,
SunWeb, Sun Workstation, The Network Is The Computer, ToolTalk, Ultra,
Ultracomputing, Ultraserver, Where The Network Is Going, Sun WorkShop, XView,
Java WorkShop, and the Java Coffee Cup logo are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and other countries.

Federatad Manegamant Ardhitsdire Soadification

Table Of Contents

TABLE OF CONTENTS ...ttt ettt ettt st s st e s s ht e s s e e s s bt e s sae e s sbee s sbeeesbbessaeeesbbessbeeesbbessaeessabessabessabessnressares 11
TABLE OF FIGURES ...ttt sttt ettt st s et s s ab e s s at e e sab e s sateesab e e saeeesabessabessabessabessabessabessares XI
1 ABOUT THIS DOCUMENT ...ttt st e ettt e s te e st s steesaeesstessseesssessaesesaseessesssasessasassasessaseesasaesasessesessnsnssressnnnesn X1l
1.1 R = L0 LT xiii

1.2 PN a1 al0] £ 11 0] TR Xiii

1.3 (000 1010101101 £<J T Xiii

A 1 =00 51U o4 1T N SRR 1
2.1 Y0 (0 (1< (oL TR 1

2.2 (DL 0 L1000 <01 A €0 = K 1

RGNS o= o) (o= L0 gl =0 0o Fo Y= 1
SECTION 1: ANALY SISIMODEL ...ttt ettt ettt s et s s e s st s sbes s s be s s sbes s bessabessbesssbeesbessbessnsessnbessnnessans 3
B THE ANALY SISIMIODEL ..utttiiiiiiiiittiteieeeeeiiittsseeesesessssbssseesssesassbssssesssssasssasssesssssasssssssssesssasssssssssesssassssssssesssensnrens 5
3.1 RN IR AL R0 AN o a1 (0 | T 5

311 Client

312 SErVICES. ..o
3121 Managed Resources

3.2 HighLevel Requirements
321 Automate Management

322 Provide High Integrity Management
323 Provide a Simple Programming Model
324 Remote Management

325 CentraliZE0 MBNAJEMENTcviiieeireee ettt r e e b e b et b s e a st e er et nn e e e nenennerea
3.26 Provide Highly Available Managementcceirieiriiennieenreeesee s e nes 8
327 The Management Infrastructure Should Not Be A Management Headache..........c.cccveiviirncnccncccncee 8
GG T A= o L= ol o 0= 107 01 8
331 (00011 o 1= ST ST U S TP RT ST SPTSOTR

332 Logical Thread
333 Transaction

34 INStallation REQUITEMENES........ciieeeeeeie st e st seesee e s este s sae e e e e e st e besaestesseenseseessetesaentestesaeesenneensenes
34.1 DYz g ol H g = L o RO TRSRP
35 RegiSration REQUITEIMENES.......ciiiiieeecie st e ste st ste s e te s e e st e st e s e e e eseese e teseestesreeaseseesestessestestesaeesenneensenes

351 Management Server Lookup
352 SEIVICE LOOKUD ...ttt ettt sttt ettt ettt b et e e s eae b e et e s e e e aseseebe e s et e e eseeaeebesbessenee £ebeebeste s enseseebeseesbeeensenens

SECTION 2: DYNAMIC SERVICESoo ittt st 11

4 THEDYNAMIC SERVICES IMODELuuutiiiiiiiiiiiutieiieseiesiiibsestessssssisbssssessssssssbassessesssssssasssssasssssssssssssessssssssrssseesss
41 EXtENdEd RMI SEIMANTICScueiiviivi ettt ettt ste e st e ebe et esateebeesbe e besbesasesaeesaeesaeenreensesssesseesbeerens
411 REMOLE ObJECE INSLANTIBLION........ecveiiieictiei ettt sr et b e st e b e e e e e tesb e stesbe e e s eseenesresbeneenean
412 Remote Class Method Invocation
413 High Availabilitycooveveiiieicceecee e
414 Context Information

Fedarated Manegemant Architeciure Spedification iii

4.2 Programming Interfaces vs. IMplementations.ccuireirereneneeese e 14

421 Abstraction of OBJECt MENOUS.........cccuiieieei e et ae st b snenean 14
422 ADStractiong Of CONSIIUCLOIScoiiiiiiiieieeei ettt ettt sb e e e e e be s tesbese e s e e esesbesbesaa s e sbasaenseseebessessensenean 15
4.2.3 ADSEraction Of Class MEBLNOUS...........couiuiiriiieere et e b ettt neben 15
424 Exception Handling Class Method Implementation FOrWardingccoeeverreineinenenneeseeseseeseesee e 15
425 The IMPIEMENLELION CIBSSovieireirieire et r bt s re st e en e e e n e et 16
4.3 The SIructure of DYNAMIC SEIVICES. .. c.uiiiiieieriestese st st see et e seesaesteseestesaestesseessesessesteseestesseesessessessennseneen 17
431 SEIVICE PIOXY ..vueivtteereesees sttt et a et b et R et ne bRt e Rt e Rt R e A e R e e e R £ e b e e b et ne b e e R e e nr s e nene s 18
432 POINE ODJECES. ...ttt e bR st e bt e R e b e st s e b £ e b e e nn e e R e st ne e b e e e ne e nreneanas 18
433 U o LTo g1 = = o= TSSO 18
434 SErVICE IMPIEMENTAIION ..ottt a e et b e e et e e eaeebeebesbe s beebesae s eseeaesteebesnennenn 18
B = o] 3| Q@ o 1= £ SRS 18
4342 Hidden ODJECtS AN ClaSSES.........ccuiiiiuiiiiiieieieiste ittt ettt sttt te b sre st e e assbesbess e s eseeneesesbesreseneens 18
4343 RemMOte OhJECIS AN ClaSSES.......ccciieiriitiieieetet ettt et te et e e e e aestesbesre s e e eseereabesbesseseeneesesbesreseneens 19
435 SEIVICE PECKBGING ... vveaeresetetese ettt etttk e bt e et s b e b s e st e R et et bt ne b n R e e e nene s 19
T A = 3 SRS 19
TS o 011 o [OOSR TSRS 19
R ST T VA = £ o]0 T oo ST PSPPSR 19
44 REMOIE REFEIENTSeiitiiieetieeee et e b e bttt b e s et b e s et b e s heea e e e e e e e seeer e besreebesneeneeneennan 19
44.1 REFEIENT ClASSES. ... eveueietiree ettt b ettt e et b et a e st b e se ket b e Rt s e b e e b eb e e e b e et e st st et e e e b e e nbene e 19
442 REFEIENT OBJECES......ecuiitiecicieci et st b e st st e e e st et e e besbe st e s eseeassebesbesse s eseensetesbeseeseneeseas 20
443 Exclusion of RMI REMOLE OBJECESc.cciiiiiiiieieieiete ettt sttt st be st st e s e s seenesresbesrenean 20
T 10 === OSSR 20
GO0 o= H PSPPSR PR 22
46.1 OIDS aS GlODallY UNIQUE IDS........ocuiieeieiieicte sttt sttt ettt tesbe s te st e e e e eseebess e sbesaeneeteabesreseneens 22
4.6.2 [oTo o I W alg=="o W Lo (=01 (1 11= (TSRS 22
4.6.3 RIS o 1o OSSOSO 23
46.4 [0 11 0] = TSR 24
4.65 Context Propagation to Child TRIrEaOS...........ccvieiiiiicre et s 24
4.6.6 (a1 oA O 1SR 24
A7 The SAtioN INEEITACE.......ci ettt et sttt sttt e e s es 28
471 MELNOU SIGNAEUIESeeeeteeeeeeireie ettt b e b et s bt e R e bR st ne b e e ene s bt e n et s e e s e nen et enennes 28
472 SEALTON REGISIBLION. ...ttt e b et r et e b e et s bt b et nn b e e n e ne e nene s 28
4.7.3 SEATION LOOKUDcevtiteitetetese ettt sttt ettt et et be st et et e se e st e beebess e s eseeseeseebesbassens e eaesbessesseneeseesesrensenseneens 28
474 THE SEALION INTEITACE.cueeeeeeie ettt b et b et ettt ettt et st ne bt 30
R B T o[}, 1 1= 0| TSSOSO PO U TSP P TSR PTSP 33
481 [DT= o]0V 00 1= LA = 1T a1 (1 o SRS 33
482 Class Loaders and DEPIOYMENL........ccuciiiiiieieieeeete st ste sttt e st sa et st e s e s e e eaestesbeseesbesseneereabesrenseneens 34
49 Specifying a Persistent Referent ODJECT ..o e 41
(O ool o (o = TS TP O P USROS
411 Proxy Binding
4111 Proxy Binding During ProXy INStaNtiation............cc.cieiiiierierieini ettt sseseenessesressennas 43
411.2 Proxy Binding DUring ProXy WIaDPiNG.........cieieiuerrerieieeristesiestesieessessessessessessssessessessessessssessessnsesssssssessessenss 43
412 Proxy REDINGINGooooiiieee et ettt bt b e p et b e e 44
4.13 Proxy to REfErent OVEIVIEBWS.........ccoiiiieieiirieeete ettt sttt b e et bt sbe et b e s 45
4131 Referent Object Method INVOCELION........c.cciiiiiiieieiee sttt st ae st s be st seeaesresbesaennan 45
4132 Referent Class Method INVOCEEION ..ot bbbt nen 46
4133 Referent ODJECt INSLANTIBLIONovieireireeir e et r e 47
4134 Wrapping a Referent ObjeCt WIth @PIrOXYcccieiriiiiiieireeesseese e e 48
4135 ProOXY REDINAING ...t eh e nn et e een e e 49
I Ao |0 o Y, o [= 50

Federatad Manegamant Ardhitsdire Soadification

4.14.1 (=Y Y, oo 1 1= £ 50

4.14.2 (@ o= vl Koo 1 = ¢TSRS 50
4143 MELNOO IMOTITIENS ...ttt bbbk ettt b et e b n s 50
4144 MOGITIEF PIECEUENCE ...ttt bbbttt bbbttt n e n b bens 51
4145 PErMISSIDIE MOGITIENS ...ttt bbbttt ettt bbb ens 52
4.14.6 APPlICaDIlitY OF MOUITIEIS.....co it e 56
ST (o= o L o I =T | gV R 57
4151 INVOCELT ONTAIGEEEXCEDIION ...ttt r et es e r e r e n et nes 57
41511 PrOXY RESPONSE......c.e ittt ettt e e e e s e e e e re s e e e rene e e ere e e e s seenenreerene e e e 57
4.15.2 REMOLEEXCEPLION ...ttt et e bt e s e en et r et e b e e n e e nas 58
41521 PrOXY RESPONSE......c.eieiieiiitiiiesie sttt sttt st se e e e e e e e b e re s e e s e se e e ere e e e eseenenreenenee e nnene 58
4153 UNECHECKEA EXCEPLIONS......cuiitiiiiieieeietiete sttt ettt b sttt e et e beste st e e eseeseetesae s etesaeaenseseenesrenbensenean 58
TR T I o (0) (= o 1 SRS 58
4154 StatiONEXCEPLION ClASSeiuiiiiiieieieiee sttt st s et s e b e st e e be st e s eseebeebe s ebesbesaenseseenesteabeseensenin 59
4155 EXCeption HanGliNg SUMIMAIYcvoiiiiiiiiecee sttt sttt b e e sesbesbesse s e snenseseenesresreneenean 60
416 ProxXy ClasS DEIAIIScoiueieiiieeeste ettt ettt et b e et e et b et bt b e 60
4.16.1 PrOXY INEEITACE. ...ttt b e h e e bt e R e R st ne b e n e rene e 60
4.16.2 Remotely Exposed Methods and CONSIIUCIOTS.........ccoueiireirrererirreesecreeesesee s e 61
4.16.3 WIADPET CONSIIUCTONeveeeeeieeeete ettt s r e e s e e e s e se e et e e e s e e eee e emeeeese e e eae s e e eneseenneneaean 61
4.16.4 eqUalS() AN NBSNCOUE().....c. vttt r e e b nn et n e n e es 61
4.16.5 Clonable @and SENTAliZADIE. ..ottt ettt et b e e e enn 62
4.16.6 getReferentObjectClassName() and getReferentClassClassName()cccevveveeeeiinesieseeiee e 62
417 NEtWOIK Class LOBGING.....c.ueueruereeerierieinie sttt sttt sttt st st sb e s ie b e b b e bbb et se b e s es

417.1 Class Loaders and Deployments
417.2 Class Loading During Remote I nstantiation

417.3 Class Loading During Remote Class Method INVOCALIONS.........c..ccuciiiiiiicieeic et 63
4174 Class Loading DUIMNG ACHIVALION.cciueiirieirieesieiee et nn s e r e n e enes 63

TS = o0 2 OSSP PP RS 65
51 Trusted Third Party ArChItECIUNE.........coiiiiieiieiriie bbb 66
511 SECUNTY DIOMAINS.....c.oiueiuieieitiiieiteeet ettt s et e et st e s be st e s e e e beebestesbe e enseseebessesbe s esseseetes sheebesbessenseseabesrensenseseenn 66
51.2 L= 0 (< = 0] 1TSS 66
5.2 SCOPE Of SPECITICALION.....c.eiuieiiietireeeeterte ettt b et b et b s bt b e s 67
521 Client/Station to the JAAS (AULhENICALTION)ccciveiiic e e 67
522 JAAS O the SECUMLY SEIVICESvcuieeeeiriceet ettt s e e b nr e n e nner e 67
523 Service Objects to the JAAS (AULNOTTZALION)c.coveeerriiieieereeree et e 67
524 ClIENE L0 PrOXY ...ttt ettt e e bRt s e Rt e ne £ e b e e b et ne b e nen et e s nene s 67
5.25 RefErent ODJECIS 10 SEALIONc.ecviiviicicece ettt st s b et e teeae s besbesae s eseebesresbeneeneas 67
53 TermsSand DeEfiNitIONS........cociiiiiiieieiee ettt st sae b et et e se e besbesnesbesneene e e enean 67
531 SUDJECE ...ttt b bR E £ S h bbb bbbttt 67
532 PIINCIPALottt ettt b e st e s be e e aeeseebesbe s te s eseeaeete s saeeteebesbese s eseeneereebeseenseneereas 68
533 SEELIONS VEISUS JV IMIS..c..oiiiicitittes ettt bbbt b bbbttt b bt 68
534 SEOUMLY POIICY .ttt h et e bt b et n e e n et e e ene s 69
5.35 ROI . . ettt h e eE e A e £ e Rt Rt eReeAeAe e e Rt e Rt eE e eaeeReebeeAetenteneeneeteebenteeeneeneas 69
536 = 0 (< = 0] 1TSS 72
537 Security Manager and ClaSS LOBOENS.ciririieerieeree et 72
538 SEOUMEY SEIVICE ...ttt e et h bt et e R et e et e e bt b et e b e R e s nene s 73
YT/ S < o 01 1Y e o o] oo 1Y/ 73
54.1 CIITICALES. ...ttt b E R b bRt E bbb 74
55 JAAS AULNENICAiON OVENVIEWc..ieeeiriiieeiriiieesie ettt et b e be s bt nesbeneeneees 75
56 Management Extension to JAAS AULNENtICALION........ccccvieieiiiirece e e 75
56.1 SEOUMEY SEIVICE ...ttt ettt b bt et e Rt E et e e bt bt ne b e e R e e nene s 76

Federatlad Manegament ArchitediLre Spadification Page v

5.6.2 ol S o = v ST RTSSSRR 81

5.6.3 WEI KNOWN SUBDJECE ...ttt sttt b e bt eeseeae st e s b e sa et ese e ebe s esaensereabesrenbensennas 83
57 F A0 11 g (o 7= 1 (o] o WSRO 86
571 JAAS OVEIVIBW ...ttt ete sttt sbe st e s testeeaaesbeeatesbeeaseabesasesbesse e beabeesbesbeenseabeeaeesbees sbesbeensesbaensesbeenseasessneses 86
57.2 Koo] o= o] OO 87
573 SEAION AULNOTIZALIONcvie ettt ettt et et e et e st e e be e e e e e teesasesbeesseeeste eesasessbesssseetessaseenseeanes 87
o3 T O 1= 0| (o 1 o) 89
5.9 R (= A= (IR (O RS =111 o] [OOSR PR 90
591 1) 1S RO 90

592 Implicit
59.3 Explicit

5.10 Security PErMISSION SUMIMIBIYcceceieeeieeeieesieseestesiesseseeseesseseessessessessessssssessessessessessesssessessessessessensesnees
5.10.1 RS - 1o TSRS
5.10.2 ACCEPLOr ..o
5.10.3 DeploymentStation
5.10.4 PrOXY TIUSE .ottt

5.10.5 WellKnownSubject (Station Subject)
5.10.6 WellKnownSubject (ClIent SUDJECL)ccoiriiirieieiieiririririe ettt bbb
5.10.7 WellKNownSUbjeCt (TTUSLED ROIES)cviviieieiireeiiesiee ettt s

5111 (G g1 al B I= Y= o] o= SRS USSP
511.2 Service Developer ...
5113 System Administrator

T TRANSACTION ASPECT .uvtiiteesuteeireesueeesteesseeessesssseesseesssssssseesssssssssssssssssssssssessssessnsesassessnsessssessnsessnsessnsessnseesnns
25 S Y/ Tor a1 o g o L I == Tox o T
7.2 Transactions Created on Behalf of an ODJECt...........cociiiiieeiese e s 97
7.3 Referentsas Transaction PartiCiPantS.........ccocvcvieeerieerieriesesesesesee e steseeste s st sse e esaesee e sae s seessesnsenes 98
7.4 DEAAIOCK PrEVENTION.ciieiieeite ettt e s et e b e sae e s be e et e e be e besatesaeesaeesaeesseenteenseeseesseesteesenn 98

8 LOGICAL THREAD ASPECT .uiiiutteiteestteiteessteesseassseesssesssssessssessssesssesssssssssssssssassssansesassessssssessessssesasessnsesassessnns 929
8.1 Synchronized/LogiCal THIrEAG ..ot 99
8.2 Logical Threads Created on Behalf of an ODJECtccooiiiiiiiiiiiee e 99
8.3 Distributed Deadlock

O CONTROLLER ASPECT ..uveiitiieiteestesessessstessssesstessasesssessnsessssesssesssesansssssessssssssesesssssssessssessnsessseesssssesensssnes
LS 00 @0 1 o] = SR
9.2

9.2.1
9.2.2
9.23
9.24 Station RESPONSIDITITIES........cuiiiiiiiiiiecec et a e be st e e et teeaesrenbeseeneas
9.24.1 REMOE INSIANTIGIION......vecieeeeieieetiitistes ettt ettt et se e e ae e te s b e s e e s eseeseesesbesbes sbesbessenseseeseseensesennas
9.24.2 Controller Object Lifetime
9.243 Remote Method Invocation

9.24.4 FaledLease RENBWAEcccovveveieciiceceee e
S RS v (o g1 =S - A
9.24.6 Notify Controller Objects of POSSIDIE LOCK LOSS........cccoviiiiiiieiciciece ettt sne e 103
9.247 PerSSIENT ODJECLS ...ttt ettt a e e e e b e be s te st e e enteae s beebe st e e ensereeaeseentenennan 104
9.25 ClENt RESPONSIDITITIESc..cueeuiciiiticieeece ettt sttt b e st e st e e eae e stesbe st e s eseeaestesbeseennenis 104
9.3 SYNCIIroNIiZEA/CONIIOITES ...t 104
9.4 Controllers Created on Behalf 0f @ THreadoooveiiiiiiiiiicieccee ettt ettt ere e e ereeenree e 105

Federatad Manegamant Ardhitsdire Soadification

9.5 (D10 [olet @ Rl H=Y/= 1110 o 105

0.6 ClIENtSAS CONTOIEIS ..ottt ettt b st et enesnenaenennas 105
9.7 Referent ObJECtS aS CONIOIErS......ccciiieciceesese sttt e e sttt e e e e be e sre e e e e e e sresneesaennens 106
9.7.1 Immutable Relationship Between Controller and ODJECL..........ooveireirieerereee e 106
9.7.2 (e 110 1T= g T o 0o 1 (o AR 106
9.7.3 Releasing LoCKS HElA By @ CONEIOIESoovieiieieciees e e 107
0.8 CONLrOl RESENVALIONScviiereetirieseet sttt s st et s st e st e e b et e s e s e be s e s e s b et e s e b e ntenesbeneenennan 107
10 PERSISTENT OBJIECTS ..uteiueeiueesseesseesseesesssesseesseessesssessesssesseesseesseessesaseanssasessseessessesssessesnssnessseesseensesnseans 109
10.1 SPeCifying PerSistent ODJECES......cc.ciiiiiiriiieceieeeres et e e st e e et saesreeesneere e e eneenes 109
10.2 KindS Of PErSISIENE SLALE.....cueeetiiiiieiisieieeie ettt sttt st se et st e et e sae et seenesbesbe e ebestenenrens 110
10.2.1 S = o= 110
10.2.2 00T o] ol SRS 110
10.2.3 T o1 SRS 111
O T == Vo 1 0T R =1 (= 111
10.3.1 Y o1 AV 1 o o [P SRS 111
10.3.2 TrANSACHON ADOIT ...ttt bbbt b etk et b et st et e bt sttt bene e 111
104 WWEITING SEBLE ... ettt ettt b bbbt b e btk h e e bt s e et ekt se e e eb e sb e e eb e sr e e ebesre e ere s 111
10.4.1 RS ISR 111
10.4.2 TraNSACHON COMIMITS......cuiieteirieieriete ettt sttt b et se et e e e b et st e b e e e b et et e nese et e e b et st e ne b e st ne et e neabenenes 112
10.4.3 (D10 Y@ o 114112 1 Lo o FO SRR SRS 112
10.5 Access of Persistent ObjeCtS USING PrOXi€S.........ccviirieiiirieinieneeesie sttt sre s 114
10.6 CONCUITENE OPEIALIONS.cueeterteeeterteeetesseeeteseeseesesre e ebesseeebesseseebesaeeebesaeneebeseeseebeseeneebesbeseeeebessennarens 114
10.6.1 Operation in Progress on Methods Not Synchronized/TranSaction..............cccceveeereeveeiesieseseseeeee e e 114
10.6.2 Operation in Progress on Methods Synchroni zed/TranSaCtion............coceveeeeierierieese e s 114
10.6.3 Operation Initiated on Methods Not Synchronized/TranSaCtioNcccevreereenesesse e e 114
10.6.4 Operation Initiated with New Transaction on Methods Synchronized/Transaction...........coecveireiensenennene 114
10.6.5 Operation Initiated with Old Transaction on Methods Synchronized/Transactionc.ccoeverreeenecnnenes 114
11 REGISTERED DYNAMIC SERVICES.ttetteuresseesseesreetessessesseesseesseesseesesnssssssssesssesssesssesnsesnssnessseessssnsesnseane 115
1111 SPECITYING the SENVICE ENLIY ...t et e e nr e n e 115
11.1.2 [2 S PSSP 116
11.1.3 Response to Lease RENEWEl FaIUIE...........c.ooiiiiiiieicec ettt et ae et besnennen 116
11.14 SEIVICE IDS....ccui ettt b et st e e a e st et e s b e et e s eseeae e teebe R e b eReeReeRe e ebeeRe et et eseeaeeteebenrebeneeneens 116
12 INTERNATIONALIZATION AND LOCALIZATION ..uvieittteiuteestteesseessseesseeessssesssesssssesssessssessssssssssesssesssssssssesssees 117
2 R @ Y= oY = Y PSR 117
122 INEErNALIONAIIZALION ..ottt sttt sttt ettt e et esee e sbesbe e ebente e enens 118
1221 LOCAli ZADIEMESSAGE. ... vttt ettt sttt ettt s b e e et et e e b e sb e et et e s s eaeebe b e te b e e et eteeneerenbeneennan 118
12.2.2 Providing RESOUICE FIIES ..ottt b bbb e st e b e s ste st e e et eteebesrenbeseennan 121

i 2C T Mo o= 1= 1o ISR 121
1231 FINAING TOXL....eueeeeeiciece ettt ettt s b et st e e e aeebe e b e s s e s e seeseebesbesbe s e ebeabestenseseenssteaaeseenseneeseas 121
12.3.2 Localization IMPlEMENTEEiONccciiiieicieese ettt se et b e s re st e e e e es sbeseenseseenesresbessennas 121
12,4 Serialization Of MESSAJESc..ceiirieeeie ettt sttt b e st be b ekt b e e bt b se bt beseeseebene et e sbe e ebesre e eneas 122
1241 FAIUrEE0 SET@AIIZE ...t ettt bttt ettt e e e b et ne e 122
12.4.2 FAITUPE TO SEITAIIZE ...ttt sttt ettt b e s e e e et e s e e ae s sheseeete s eseeneebesaesaenseneeneas 122
1243 Low RISk SUDSEITULION OBJECES.........eeiieireeirieiesisiees s e n e 122
1244 MeSSA0ES 8S PUDITIC INEEITACES......c.eeereirieiri e et 122
13 COMPOSITE EXCEPTIONS AND ERRORS.......viiiiiiieiieesieesie et smeesneenneen s e sneesneenreennens 123
Tt N s 1= o I 011 o 123
13.2 Internationalization and Localization of Throwables...........ccceiiiirininnieneneeseese e 124
13.3 Sack Tracesand Throwable Serializationcccoceiieiicci it 124

Federatlad Manegament ArchitediLre Spadification Page vii

13.4 Rulesfor Handling ThrOWADIES..........couciiiiiiireee e 125

135 Composite Throwabhle INTErTACE.........coi i e 125
13.6 ComMpOSItE DElEQALE ClIASS......cceciiieuieieriesie sttt e ettt e e s te st e te s aeere e e e sestestestesreareeneensenes 127
13.7 CompoSite EXCEPLION ClASS.......cciiuieiieieiesiesiestesiesteseesaestesees e saesresseeseeaesaestesaestessesssessessesesseasesneensenes 128
13.8 COMPOSIEE EITOr ClIASS.....cciiieiiiitiiiestieeeiesestestestesteste e e eae st e tesaesresse e e e saessesteseesresresseeneensestesnearenneensenes 130
HICTES T ' CeT= o (0T T DT 0 o 10 132
SECTION 3: STATIC (BASE) SERVICES.ooit ittt ae e te e st na e ae e sre st snesneeneneenaensenns 133
14 STATIC SERVICES IMIODELeutttiitteestttesitee sttt sitesstte s siteesssessieeesateesstesssseessteassseessbeesasessateessseesabeesasessnseesnsensn 135
15 TRANSACTION SERVICE ...ciuttteitttiitttestteetesessaeastesassaessasaasesstasaasessstesasessssesasessssessnsesssessssessssessssessnsensssens 138
151 NO TraNSACHION SENVICE......eceiviiieteeiirieeeteeeiteeesteesibesesteesbesssteesbesasseesabessaseesabesssessabessseessresensesesesensessnns 138
15.2 Failed TranSaACtiON SENVICE.......coiuiiiiieceeeetee et e ettt etee et e e stee e bae e saeessbeeeeaeeebeseesessbesensessnbesessesebesensessnns 138
15.3 Recovered TranSaClion SEIVICE.........oiie ettt ettt ee e e sae e ste et e e e e eaeesbeesbe e beeateentesnnesneesas 138
16 CONTROLLER SERVICE ...ieuvtittteitteestetessteassssasssesssssasssessssessssesssseesssesssssesssessssessnsessssessssssssessnsessssessnsessnsens 139
16.1 Controller and Controller GENEIatioNS..........cceceeieriere st a e et s resreeas e e enee s 139
16.2 CoNntroller SErviCE INLEITACEuecueeeeeceic et st e et e b e besneere e e eneenes 139
T T @0 Tg 1 o 1= G T 01 = - Tor - 145
0 A N (o @ Ta 1 o 1= S = o 149
T =TT 1= o MO0 011 0] 1= S = o 149
16.6 CONrOlEr SErVICE RECOVEIY ...c.vecueeeeie et sttt eee e s e te st et ete s e e te s aeete s e e e enaeseetesaeerestesneanenneeneenes 149
16.7 Breaking Controller SErViCE LOCKS.ciiiiiiieiiie ettt st 150
17 LLOG SERVICE ...ttt itteiteeiiteestee st et e st e e bt e st eaabe e st e e easee s beeaaseesateeaaseesnteeaaseeanbeeeaseeenteeanseesnteeanseeenseeennneeins 151
17.1 LOQ SEIVICE INTEITACESoivieeieete ettt ettt b e et b et b e e bt b se b e b e sn e e ebesre e ereas 151
1701 LOGMESSAOES.eoveeeeeeeeeeeeeseeeeeeseeeeeeeseee e seeseeese e esees e seeseses e esese s ee e seeeeeeeesesese s s essesees s sseeeseseeeeeeseeessneses 151
17.1.2 ThE LOQg SErViCe INTEITACE.ce ittt s h e r et r e n e es 153
17.1.3 RELITEVING LOG MESSAGES.c.cvvereiieeteiste ettt ettt b et s bt n e e b e e nn et n e e b e nes 154
T 5 R = = [Tor= (-SSP 154
L17.1.3.2 SEAICNES.....i e etecteeee sttt ettt et e e et e te s te et et e e st e Eeeae et e she e eeaReeateeheeaeeabeeRe e tenteen eheereeaeetesreereareetenreennens 155

17.1.4 REMOVING LOG IMESSAQES......eeviierieuieieetestestet ettt st s te st et eseetesteste s e e eseeteebesse b esaeseeseebesaessen sbesenseseenessenbessenean 156

A oS 1] 0o = T LTS o= 7= oL 157
1721 POSHNG RETADNIILYveeeeeeseeeeeeeeee e seeee s ee s ssese e es e s s ese s es s s essesess e sseseseseeeseeseeessesenes 157
17.2.2 LOQ Service UNAVAIl@DIE........c.c.ceeiiiiciecte ettt a sttt s re st e e et eteenesrenbenaennan 157
17.2.3 MArShAlING FAIUNE.........ocuiiiiieeeec et sttt ae et e b e sa et e seebeste et sebesbesbeseenseteanesrenbeeennas 157
17.2.4 Log Service Failure Whil@ WIHTINGcoiuiiiieieicese ettt st a s saense e enesresbeseennan 157

18 EVENT SERVICE ... ttiitieiieeetes st e et e st e et e st eabe e sabeeaaae e s beeaaseesateeaaseesateeeaseesnbeeeaseeenteeenseeanteeanseesntasennnnens 159
18.1 Useof the Jini Technology Event MeChaniSMcccceiiieininieine et 159
18.2 THE EVENE ODJECL......cctiitieetiiteeet ettt ettt sttt et b et b e et b e s e et b se et eb e see e ebesb e e ebesre e enens 160
18.2.1 INNENTEO EVENE PrOPEITIES.....c.vieeeiceecti sttt sttt be st st e st e s e seebestesten shesbesbessensesearesrenseneens 160
S T O R V= 0| 1 5 TSP OPRPRPPRROUR 160

G 0t A o =0 To [0 PSSP 160
18.2.1.3 SEOUENCE NUIMDEN ..ottt ettt b et e st se b s ne b e e R et s e st s e eb e shesenaenenenr e e renennenens 160
S T o 11 | o = PSSR 160

18.2.2 DeClared EVENt PIOPEITIES.c.vcuiriiiieiieireeeees ettt e b nn et nes 160
S22 R o oo SRS 160
18.2.22 BaSEEVENT OBJECE ..ottt st sttt e b ettt e b e et reebesrerennens 161

18.2.3 ROOt EVENT ODJECL......cuiiiiiiiiieiciete sttt sttt b e st st se e b e et et e e e st eseebeste b sebestessessenseteabesrebesseneas 162

18.3 EVENESEIVICE INEEITACE ... ccuvi ettt ettt ettt e e et e e st e e sbe e e sae e e beeesbeeeebesenseeebeeenseeenbesenneeanns 163
L84 TOPICS. . eeueetereeteete sttt e ettt ettt ettt etk b e s e bt bt s ekt b e se bt e b e e b e R AR R AR e R e SRt R R e R e e R e R e e e e bt R e e bt e e e bt nre e ere s 167
185 Chain Of RESPONSIDIITYcciuiiieiiitiie et st et e e et e se e tesreere e e eneenes 168

viii Federatad Manegamant Ardhitsdire Soadification

G SIS U1 1= v T o1 oo P 168

18.6.1 OBSENVING LISIENEIS ...ttt ettt ne et bRt ne st e b e bt nr st nnen et et n et es 169
18.6.2 RESPONSIDIE LISLENEL'S ...ttt sttt b e st st e e e e st e be e b e ste b ese e ebesbeseenseseenesrenbeeeneas 169
18.6.3 EVENE SENVICE @S LISIENENS ...ttt ettt s bbb et nan 169
18.6.4 LiStENErs as GOOU CitIZENS.....c.uceivruierieirieenieteesee sttt b ekt b ettt se et e e b e et esesbene e ebeneanan 169
18.6.5 LLBASES ...ttt b b e bR h e R e R e R R SR e E e eR e R e eE e R e Rt R e R et e R e henb e Reneeneneeneas 170
18.7 EVENE OFOEITNG «.teeeeeitereeiiete ettt sttt sttt sttt se et b e se st b e sb e st b seeheeb e seeb e ebesee bt e b e seebeebesbe e ebesre e et e nnenereas 170
18.7.1 OBSENVING LISIENEIS ...ttt sttt ettt st e s b e e e e e te e b e s be st e e eaeeseebesbe s ebesbesenseseeaesresbeseensenis 171
18.7.2 RESPONSIDIE LISIENEN'S ...ttt st ne b e nr et n e e nes 171
18.7.3 EVENt SENVICE LISEENEIS.....oeeiiteeeeeeeteete ettt ettt st e e et bese et e e e s e ene et e s e steese e eneeseeneseebeneenean 171
18.7.4 SEOUENCE NUMDEIS......cveeeiiiietie ettt e Rt e et s st e E et R et ne s se b et nn e e nn e s e nr e r st s 172
18.8 TTANSACLIONSeveueetiieeetesieeete st et s bttt e et s ee et st et e be s be e e be s b et et e sb et et e s e e e e ke st e e ebeseesbe e ebenbeneebentenentens 172
18.9 EVEN SErVICE PEISISIENCE ...cvieciiiteiete sttt sttt sttt s b ettt se ettt et st e et e nte e erens 172
ST O \V o0 = o (= 00 = L B Vo Lo S 172
18.10.1 EVENE LISIENING. ..ttt et e s e s st e eb £ ne b e e nn et nene e b e n et ee 172
18.10.2 Y= g A €= g = (o) o U 172
18.10.3 Event Translation @nd POSHINGcoeeireiieeseeese e e e 173
18.104 Y= gLl T 1= T oo PSR TURRR 173
18.10.5 EVENE COTEIGLON.cuieieiieeieteteste ettt bbbttt b ettt a e et se ket e s et ne et e e b st s 173
19 SCHEDULING SERVICE ...t iutteutiattasteestessteesseseesueesaeasseaaseasesasesssasssesseassesssesasesasssaessaeesaeensssnsesnsessesssesssesnsens 175
19.1 SChedulingSarviCe INEEITACE.ciieceeceee ettt r e et sr e besreere e e eneenes 175
S I Yo 179
S T T I 1 180
S v 07 L1 =S 180
195 TaSK PEITOMTIANCEeuietiiteietesie ettt sttt sttt sttt sttt e et s b et et e s b e e et e st et e e ebesbe e ebenteneerens 180
195.1 10 == o ST 180
RS TS v 0= L1 1T o [@] 01 [Tox 180
19.7 Protection from Task EXCEPLIONS........ciiiiiieieeeeiesesresesiestes e eeeseesre e snesre s e eseesaeseestesaesresnessessessenseses 181
19.8 SCheduling SErviCe FailUre.........coiiiiiieeeeeeee ettt et s b e b e sne e ene s 181
L] 0 15T o SRS 181

Fedarated Manegemant Architeciure Spedification Page ix

Table of Figures

Figure 1. The Three Tiered Architecture of Management APPliCALTIONS.ccurireririiirireereeee s 5
Figure 2. Intradomain FEABIAION.cc.ciiiiieeiieciee sttt e e st et e e e e s e e e sae st e s aeeaeete e e eseeeestestesneerenneeneenes 6
Figure 3. INterdomain FEABIELION.ecieiriiieieie ettt ettt b bbb bbbt e s b s s e b e e se b s e e ns 7
Figure 4. Architectural Layering of RMI Semantics with Dynamic Services SEmantiCs.cocoveerereeneneeneneenens 13
Figure 5. A Comparison of Local Java Programming (top) and Remote Programming using Proxies and referents..21
Figure 7. Referent Object MethOd INVOCELION.ciiiiiieiiiiieieneeree ettt eb e e ene 45
Figure 8. Referent Class Method INVOCALION.ccceiiiiiiieieesese s e e st aese e e stesaestesnesresneenaeneens 46
Figure 9. Referent ODJECt INSTANLIALION.coeiiiiieieeeeteriee et b e e e b e s b e ebesr e ene 47
Figure 10. Wrapping a Referent ObjeCt With @PrOXY........ccccieieiiierise sttt 48
Figure 11. ProXy REDINAING.cceieiieiiciie st e et e e tese e besaesne e e ensestesaestesaesrennneneeneens 49
Figure 12. SECUNTY ATCRITECTUIE.c.ciuiieieete ettt ettt b e et b e et b e e be b st s b e e eb e sb e e e bt s b e e ebesre e enen 66
Figure 13. Security services, Security Domains, Federations, Stations, and ClIents.cccceeeveverievesiesesesiesseens 73
Figure 14. Remote AUthOIiZation MOOEL.cooiiiiiieie e b et b e ene 79
Figure 15. Remote AUthOriZatiON SEOUENCE.eceeieierieiese s ese st eee e e ste et st eesaesae e saestesaessesaestesnesrennnenaeneens 80
Figure 16. State Diagram of Object Methods Synchronized with Respect to Transactions.ccoeeeeeveneeenenienenn 97
Figure 17. State Diagram of Object Methods Synchronized with Respect to Logical Threads............cccoveevvienennnne. 99
Figure 18. State Diagram of Object Methods Synchronized with Respect to Controllers.ccoovvveveeveerieveniesennnns 104

Federatlad Manegament ArchitediLre Spadification Page xi

1 About This Document

1.1 Status

This document is a draft for final release, post public review, as defined by the Java™
Community Process (JCP). Minor changes are expected as the Reference Implementation
(RI) proceeds.

1.2 Annotations

Note — In this document you will notice several paragraphs appear in this style. These are
areas where we specifically invite comment. Consider them as “notes to reviewers”.

Terms inbold Italics are particularly important and are defined in the glossary.

1.3 Comments

Please direct comments to core-ri@thor.central.sun.com.

Federatlad Manegament ArchitediLre Spadification Page xiii

2 Introduction

2.1 Audience

The readers of this document are assumed to be technical and versed in object oriented

design, the Unified Modeling Language (UML), Jini™ technology, and Java technology.
The audience is assumed to be implementers of this specification or of components which
are deployed on such an implementation. In the latter case, this specification is intended
as a reference rather than a guide.

2.2 Document Goals

This specification defines the Federated Management Architecture (FMA) sufficiently for
vendors providing implementations of the specification. As the scope of the platform
includes the interactions between an implementation and deployed components, this
specification also places constraints on the behavior of components in their contracts with
the implementation. However, this specification is not intended as a guide for vendors
writing or using management components. Design guidelines for management
components and their use of supporting technologies such as Web Based Enterprise
Management (WBEM) is the subject of other related documents.

2.3 Specification Boundaries

In leading the development of this specification, Sun has placed boundary conditions that
must not be violated and must remain part of the JCP. In particular, architecture is to be
based on Java technology and Jini technology. Java technology is used as the primary
mechanism for achieving platform neutrality. Given platform neutrality, one may derive
other forms of neutrality such as protocol neutrality. Language neutrality is not a goal for
the initial specification, but can be approached later through other means. While this
specification is Java technology centric, it is not Solaris operating environment centric.
The primary validation platforms are NT and the Solaris operating environment.

Federatlad Manegament ArchitediLre Spadification Page 1

Section 1: Analysis Model

This section presents an analysis model of management applications as assemblies of
management services, management clients, and managed resources. The model illustrates
how management services can use other management services, the interface between
management services and clients, as well as the interface between management services
and managed resources such as storage devices and applications. When management
services are assembled in hierarchies, complex storage systems can be made to appear
simple because users of the system interact only with the top-levels of the hierarchy at a
high level of abstraction. In particular, it is desirable that a given storage system be
managed at the same level of abstraction as the provided data. For example, when
managing a database appliance, an administrator would ideally manage the performance,
size, and other characteristics of tables rather than manipulating the disks and volumes on
which the database runs.

The analysis model describes the form of a solution to the management problem. The
solution model, described after the analysis model, specifies the infrastructure designed
to support such solutions.

Federatlad Manegament ArchitediLre Spadification Page 3

3 The Analysis Model

3.1 Three Tiered Architecture

The three tiered architecture has been validated in many application domains and has
well known properties. As applied to management, the first tier is the management client
tier, the second tier is the management servicestier, and the third tier is the managed
resource tier. Clients are hosted by Java Virtual Machines (JVMs), services by IVMs
enabled as management servers, and resources by any appropriate host machine including

aM. - %%
!

Q
Services @@ @

Resources

Figure 1. The Three Tiered Architecture of Management Applications.

The client communicates with management services, which ensures that the third tier, the
resource tier, is manipulated in a controlled and consistent manner.

3.1.1 Client

The client locates and communi cates with management services. Often the client isthe
user interface for an administrative user, but thisis not aways the case. Clients are

Federatlad Manegament ArchitediLre Spadification Page 5

The Analysis Model

considered transitory. Objects associated exclusively with the client are only expected to
live aslong asthe client process, even if the client terminates abnormally or becomes
unreachable. Thisis also true for client objects that have been transferred to a
management server. For the purposes of defining expected high availability, it is
acceptable to restart the client in order to reestablish management capabilitiesin response
to the failure of a management server.

Java clients can locate and communicate with management services directly. Outside of
this specification, there can be bridges to connect non-Java clients. An example bridge
would be a servlet that allows using a browser for management. The servlet would
communicate with the browser using HTTP/HTML and with the servicestier using Java
Remote Method Invocation (RMI).

Other than specifying how clients communicate with management services, this
specification will not define the architecture or design of management clients.

3.1.2 Services

Management logic is comprised of services hosted by management servers. Management
services are classified in a number of ways including whether they are transient,
persistent, static, or dynamic.

Management is divided into digoint domains. Each management domain has a single
management server, called the shared management server, representing the domain as a
whole. There may be more than one shared server for the purposes of redundancy, but the
entire replication group istreated asasinglelogical server.

Appliances, such as encapsulated file servers, can aso have embedded management
serversto host services that are private to the appliance. This class of server is caled the
private management server. The union of shared and private management servers within
asingle domain is caled an intradomain federation.

Appliance Appliance

QQQ QQQ

Figure 2. Intradomain Federation.

6 Fedarated Manegamant Ardhiteciure Soedification

The Analysis Model

The union of the shared management servers of each domain forms the strictly
hierarchical interdomain federation.

Domain

%o
Domain Domain
QQ QG) % QG)

Figure 3. Interdomain Federation.

Shared management servers of different domains may communicate with one another.
Private management servers may not communicate across domain boundaries.

3.1.2.1 Managed Resources

The resource tier includes a mix of heterogeneous managed resources such as devices,
appliances, systems, and applications. Unlike business applications, most of the state that
isinteresting to management resides not in a database but in managed resources. A
number of standards exist or are emerging, such as Web Based Enterprise Management
(WBEM), for communicating with managed resources.

While management servers will provide built-in support for WBEM, the architecture is
protocol neutral. If the managed resource is capable of hosting aJVM, it can choose to
embed a private management server and be managed using inter-service communication,
in which case the managed resource is called an appliance. This technique has the
advantage of propagating the features of management services to the appliance. Thus,
management services can be dynamically installed, updated, and otherwise manipulated
within an appliance.

3.2 High Level Requirements

3.2.1 Automate Management
Management to date has been dominated by monitoring. Moving from monitoring to
controlling and, finally, to automated or policy based management, requires infrastructure
support, such as control arbitration, not found in the current generation of management
products.

Federatlad Manegament ArchitediLre Spadification Page 7

The Analysis Model

322 Provide High Integrity Management

As managed systems become more automated and complex, it becomes essential for the
platform to provide some guarantees about the integrity of the management activities.
This requirement drives such features as security, transactions, and the control arbitration
as the set of mechanisms that protect management integrity.

3.2.3 Provide a Simple Programming Model

Vendors providing management components will generally not be expertsin distributed
Java programming. The specification should be biased towards simplicity rather than
completeness or performance to minimize the cost of creating services by vendors who
are not Java technology centric. The simplicity can be achieved using amix of
development tools, class factoring, and any other applicable techniques.

3.2.4 Remote Management

Management shall be possible from remote locations, including outside firewalls and
possibly over unsecured networks.

3.2.5 Centralized Management
It shall be possible to manage an entire management domain from a single location.

3.2.6 Provide Highly Available Management

The management services of highly available systems should themselves be highly
available. Highly available means that one can proceed with management tasks following
the loss of a management server. The continuation is not necessarily transparent, just
possible.

3.2.7 The Management Infrastructure Should Not Be A Management Headache

The solution to the management problem should not itself be a management problem.
This requirement drives a simple management solution compared to similar technologies
such as application servers.

3.3 Aspect Requirements

The implementation of this specification must support the following aspects applied to
management services.

3.3.1 Controller

An important objective of the specification is providing the infrastructure to support
control arbitration. The primitive required for arbitration is called the controller aspect of
the management services model and must support durable (long term) exclusive locking
of resources.

8 Federatad Manegamant Ardhitsdire Soadification

The Analysis Model

3.3.2 Logical Thread
Asthe specification is intended to support active, autonomous management applications,
it must be able to support concurrent and reentrant conditions with respect to threads.
Management applications are made of distributed components, so the services model
introduces the concept of alogical thread that spans processes. Thus, behavior with
respect to threads can be specified with respect to logical threads instead of language
threads.

3.3.3 Transaction

Most distributed object models provide some form of transaction support to aid in
protecting the integrity of the resource layer. The specified transactions are inherited
from the Jini programming model and focus on supporting large numbers of
heterogeneous resources, rather than a single large resource (database). In many respects
they may be thought of as a distributed form of try/catch rather than the more classic
transaction model supported by transaction monitors and application servers.

3.4 Installation Requirements

3.4.1 Dynamic Installation

The specification must provide for the dynamic installation and updating of management
services without requiring that management servers be restarted. Installation shall support
both temporary installs as well as durable installs.

3.5 Registration Requirements

3.5.1 Management Server Lookup

Management servers shall registered with awell known lookup service where they may
be located by clients and other management servers. Management servers shall be well
good Jini technology citizens with respect to registration.

3.5.2 Service Lookup

Management services shall registered with awell known lookup service where they may
be located by clients and other management services. Management services shall be well
good Jini technology citizens with respect to registration.

Federatlad Manegament ArchitediLre Spadification Page 9

Section 2: Dynamic Services

While the analysis model describes the problem domain, which in the case of
infrastructure is a solution to a higher order problem, the solution model describes the
form of a solution. The problem is providing the infrastructure needed to support three
tiered management applications as described by the analysis model. The specified
solution to this problem provides a component model based on Jini technology services.

The specification classifies management services as static or dynamic. Static services,
called base services, include the transaction manager, logging, and other services
considered always present in a management domain as part of the environment. These
services are supplied as part of an implementation of this specification. As such, the
deployment of base services and the hosting environment are implementation rather than
specification issues. For example, the logging service could be implemented as an
Enterprise Java Beans (EJB) or even a native implementation exposed through a Java
facade.

Dynamic services are supplied independent of a management server implementation.
Since a vendor boundary exists between dynamic services and the management server
implementation on which they run, this boundary must be specified so that dynamic
services may be portable between management server implementations. The dynamic
services model specifies the involved contracts and comprises the mgority of this
specification.

The dynamic services model extends Java RMI to support a higher level (application
level) of abstraction appropriate for management applications. The added abstractions
include the following:

1) The propagation of contextual information including security and controller
information.

2) Reference fault rebinding to allow management serversto be recovered on a
different host than the one on which they were started.

3) Management aspects (security, transaction, controller)
4) Transactional persistence

5) Remote class method (procedural) invocations.

6) Remote object instantiation.

Federatlad Manegament ArchitediLre Spadification Page 11

4 The Dynamic Services Model

Management servers, called stations in the context of dynamic services, host management
services that, in turn, communicate with other management services or managed
resources. Resources may be accessed using Web Based Enterprise Management
(WBEM), Simple Network Management Protocol (SNMP), or any other means
appropriate to a particular situation. Stations are Jini technology services and registered
with the lookup services serving the management domain to which the station belongs.
One can consider stations as services that host dynamic services.

4.1 Extended RMI Semantics

The dynamic services model adds application layer semantics to complement RMI
remote communication semantics for usage patterns common in the management domain.

Dynamic Services Model
Context Information
g,z
A
2 | 2|5
= | 2| §
8 | 8 | =
s | 1%
RMI| Semantics
(Object Methods)

Figure 4. Architectural Layering of RMI Semantics with Dynamic Services Semantics.

Federatlad Manegament ArchitediLre Spadification Page 13

Dynamic Services Model

4.1.1 Remote Object Instantiation

Stations support remote instantiation of objects without the need to create explicit remote
factories by providing areflective remote instantiation service that may be used directly
as alow-level interface or indirectly through Proxies (described later).

4.1.2 Remote Class Method Invocation

Stations also support remote invocation of class methods by providing areflective class
method invocation service that may be used directly as alow-level interface or indirectly
through Proxies (described later).

4.1.3 High Availability

To support highly available stations, the dynamic services model defines a reference
faulting/rebinding scheme. A failed station may be restarted on another host and
communications with the objects hosted by that station will fail over to the new location.
This mechanism is distinct from the RMI activation reference faulting for the purposes of
activation within the bounds of a single host.

4.1.4 Context Information

The management architecture described in this specification is an explicit three tiered
architecture. There is a source of activity (client, resource, service, etc.), an arbitrarily
deep chain of logic that islargely stateless, and finally, the managed resources
themselves at the end of the logic chain. The resources must be guarded against
inappropriate access. Some such access can be malicious and must be guarded against
using a security mechanism. Other inappropriate access can include accessing the
resource using multiple, concurrent threads or transactions.

The information needed to guard aresource is passed implicitly in context. Thus, the
context information includes the following.

1) Security (unauthorized access).

2) Transactions (concurrent access under more than one transaction).
3) Logical Thread (concurrent access under more than one thread).
4) Controller (concurrent access by more than one controlling entity).

4.2 Programming Interfaces vs. Implementations

This specification defines the programming interfaces that station implementations must
support. Separating programming interfaces from implementation is done using several
mechanisms to handle abstractions of object methods, class methods, and constructors.

4.2.1 Abstraction of Object Methods

Object methods are abstracted using Javainterfaces. The specification defines and a
number of such interfaces in the javax.fma package and sub-packages. | mplementations
provide concrete classes that implement these interfaces. Java interfaces, however, do not
provide away of abstracting class (static) methods or constructors, both of which require

14 Federatad Manegamant Ardhitsdire Soadification

Dynamic Services Model

an abstraction mechanism in order to cleanly separate the specification from the
implementation.

4.2.2 Abstractiong of Constructors

Constructors are class operations much like class (static) methods. When a constructor
must be abstracted for the specification, it is replaced with a class (static) factory method.
This reduces the problem of interface/implementation separation to object methods and
class (static) methods.

4.2.3 Abstraction of Class Methods

Static methods are abstracted using implementation forwarding. For example, consider
aclass A with a class method f oo() . The specification provides an abstract classA ina
specification package (javax.fma...) with the class methad) . The implementation

of the method fetches a reference toithglementation classA and invokes oo() on the
implementation class. This class has the same unqualified Aamé,resides in an
implementation package. A system property, “javax.fma.implementation”, provides the
implementation package. Thus, all such implementation classes reside, for convenience,
in the same package as defined by the system property “javax.fma.implementation”. If
the implementation package is not provided, “com.sun.fma.implementation” is used as
the default. Note that this property is static and cannot be changed at runtime.

4.2.4 Exception Handling Class Method Implementation Forwarding

In the context of the previous section, consider a programming interface (not Java
interface) class method foo() which declares a set of exceptiomgsSthrows clause.
foo() is implemented in a class belonging to some implementation packag¢hd
throwable thrown by the implementation of foo() andsEhe throwable to be thrown by
the the progamming interface foo().

Eis a... E
subclass of java.lang.Error i E
subclass of java.lang.RuntimeException | ¢ E
exception in § E

checked exception (not an error or runtime Implementation.ComplianceError
exception) noin 8

throwable thrown by the delegation Implementation.ComplianceError
mechanism

When a javax.fma.util.Implementation.ComplianceError is thrown, the message is of the
form <delegate_class_name>:<method_name>. A compliance error cannot happen with
an implementation that has passed signature tests. Furthermore, compliance errors should
not be caught or recovered from as they indicate a severe problem with a likely

Federatlad Manegament ArchitediLre Spadification Page 15

Dynamic Services Model

16

4.2.5

compromise in the integrity of the implementation. Thus,
I mplementation.ComplianceError is a subclass of java.lang.Error.

The Implementation Class

*
*
*

*/

package javax.fma.util;
i nport java.lang.refl ect. Met hod;

/** Uility for consistent inplenentation del egation.

<p>
I mpl ement ation classes are located in the package specified by
the "javax.fma.inplenmentation" property.

public final class Inplenmentation

/[** Returns an inpl enentation nethod.
* @araminterfaceC ass Interface Cass for which an

* i mpl enentation i s needed.

* @aram nmet hod Nane of nethod.

* @aram params Array of nethod paraneter types. My
* be nul I .

* @eturn Returns requested inplenentation nethod.

* @hrows Il egal Argunent Exception if interfaced ass
*

or nethod is null.
* @hrows ConplianceError Unable to resol ve nethod.
*
/
public static Method get | npl enent at i onMet hod(
C ass i nterfaced ass,
String nethod,
Cl ass[] parans

/** I nvoke a static nmethod which does not throw checked

* exceptions. Any checked exceptions thrown by the

del egate are consi dered conpliance erros.

Any errors or runtime exceptions thrown by the del egate

are thrown directly to the caller. Throwabl es throw

by the del egation process cause a ConplianceError.

@ar am net hod Met hod to be invoked.

@aram args Argurment array. May be null.

@aram returnType The expect type of the return val ue.
null if no return value is expected.

@hrows |11 egal Argunent Exception if method is null.

@hrows ConplianceError if the nethod cannot be invoked or
the return type is not correct. This includes if the
del egate throws any exceptions which are not errors
or runtinme exceptions.

* % X X X X X X X X X X

*

*

/

public static Object i nvokeW t hout Except i ons(
Met hod net hod,
oj ect[] args,
Cl ass returnType

Federatad Manegamant Ardhitsdire Soadification

Dynamic Services Model

/** Invoke a static method which throws checked exceptions.
* Any errors or runtime exceptions thrown by the del egate
are thrown directly to the caller. O her exceptions
thrown by the del egate are captured in the
I nvocati onTar get Excepti on. Throwabl es thrown by the
del egati on process cause a ConplianceError.
@ar am net hod Met hod to be invoked.
@aram args Argurment array. May be null.
@aram returnType The expect type of the return val ue.
null if no return value is expected.
@hrows | nvocationTarget Exception if the del egate
nmet hod throws an exception which is not an error
or runtine exception.
@hrows 111 egal Argument Exception if nethod is null.
@hrows ConplianceError if the nethod cannot be invoked or
the return type is not correct.

* 0% % O X X X X X X X X X

*

*/

public static Object i nvokeW t hExcept i ons(
Met hod net hod,
hj ect[] args,
Cl ass returnType

throws I nvocati onTar get Excepti on;

/** Conpl i anceErrors represnt a msmatch between the specified
* interface and the inplenentation del egate. The mismatch
can be any nunber of problens including non-existent class,
nmet hod, wrong arguments, undecl ared checked exception
thrown, ... The error nessage is always of the form
<del egat e_cl ass_nane>: <net hod_nane>.

*

*

*

*

*/

public static final class ConplianceError extends Error
{

[** Construct a ConplianceError froma class nane and
* et hod nane.
* @aram cl assNane C ass nanme. Must not be null.
* @ar am nmet hodNane Met hod nane. Miust not be null.
*
/
publ i ¢ ConplianceError (
String cl assNane,
String net hodNane

[** Construct a ConplianceError froma Method.
* @ar am nmet hod Met hod. Must not be null.

*/

publi ¢ ConplianceError(Method nethod);

4.3 The Structure of Dynamic Services

Dynamic services al have a common structure and deployment. The structure is
dominated by the requirement to be a good, network loadable Jini citizens.

Fedarated Manegemant Architeciure Spedification Page 17

Dynamic Services Model

18

4.3.1 Service Proxy

The service proxy isaJini proxy that isregistered by value with the lookup services
serving a particular management domain. Remote operations invoked on the proxy are
forwarded to the remote point objects - the remote entry point to the service. Generally,
thereis asingle point object that implements the same interface as the service proxy, but
thisis not required.

4.3.2 Point Objects

Point objects are the entry points into a service. Other objects that comprise the interface
of the service are exposed, directly or indirectly, by the point objects. Objects may aso
be exposed through remote instantiation and class method invocations. These operations
do not require access to the service through the service proxy.

4.3.3 Public Interface

The public interface of a serviceisthe set of all objects, classes, and interfaces that may
be exposed to clients of the service. Not al of these entities may be statically determined.
For example, consider a service defining a method that returns an object of interfacel.
The class of the actual object returned may be anything that implements|. This
implementation is part of the public interface because a client of the service would need
to load this classin order to communicate with the service. This kind of problem may be
reduced by using final classes and JDK classes as the arguments, return values, and
exceptions of remote operations when allowable by good design.

The public interface does not include remote objects: just the Proxies (or stub in the case
of RMI) to the remote objects. Since remote objects reside in the VM hosting the
service, they do not need to be loaded by a client of the service and, therefore, or not
considered part of the public interface. The client will, however, need to load the client
side representation (proxy) of the remote object. Thus, Proxies and RMI stubs are
considered part of the public interface. The service proxy itself belongsto the public
interface.

4.3.4 Service Implementation

434.1

4.3.4.2

The parts of the service that are not the public interface are considered the service
implementation.

Point Objects

Point objects, previously described, are part of the service implementation as a special
kind of remote object.

Hidden Objects and Classes

Many, if not mogt, of the service implementation is composed of hidden objects and
classes. Hidden objects and classes are not exposed in any way to the client of the
service. Clients never communicate directly, or apparently directly, with hidden objects
and classes as they do remote objects and classes.

Federatad Manegamant Ardhitsdire Soadification

Dynamic Services Model

4.3.4.3 Remote Objects and Classes

Remote objects and classes, which reside in the VM hosting the service, are referred to
remotely using Proxies, and are considered part of the implementation. Remote objects
and classes are known collectively as remote referents.

4.3.5 Service Packaging

4.3.5.1 JAR Files

Services are packaged into two JARSs for deployment: the implementation JAR and the
interface JAR. The two JAR files are known collectively as a deployment group. The
classes and resources needed to support the implementation and public interface shall be
contained in the implementation JAR. Only the classes and resources needed to support
the public interface shall be placed in the interface JAR. If theimplementation JAR is
named X.jar, then the interface JAR must be named x-dl.jar in accordance with Jini
technology naming conventions. 'dl’ is case insensitive. Each JAR shall be salf sufficient
inthat it contains all of the classes and resources needed to load any of the contained
classes with the exception that the following infrastructure classes may be omitted.

1) JDK classes

2) Jini classes

3) Javaextensions

4) Classes defined in this specification

Thisissimilar to applet packaging except that the result is a deployment group (two
JARS) rather than a single JAR. The second JAR, the interface JAR, is a strict subset of
the first.

4.3.5.2 Signing
The deployment JAR files shall be signed to enable security.

4.3.5.3 Versioning

The deployment JAR files are required to contain Java package version information in
the manifest according to the Java Package V ersioning specification.

4.4 Remote Referents

Remote referents are the targets of remote operations and include referent classes and
referent objects. Referent objects may be stateful and are further classified as transient or
persistent. Referent classes are stateless: only constant static fields are permitted.

4.4.1 Referent Classes

Stations, by providing generic factory and invocation services, permit class operations
including class method invocation and instantiation. These operations obey extended
RMI semantics asif the class was treated as a remote object.

Federatlad Manegament ArchitediLre Spadification Page 19

Dynamic Services Model

4.4.2 Referent Objects

Referent objects are remote objects that support extended RMI semantics. The three
aspects (logical thread, transaction, and controller) may be applied to referent objects.
Referent objects are either transient or persistent.

4.4.3 Exclusion of RMI Remote Objects

The station security model depends on passing all remote access to the station through a
well controlled gateway. The use of RMI remote objects from within a station would
circumvent the security model and is therefore prohibited. Remote objects should instead
be proxied and participate in the extended RMI semantics of this specification.

4.5 Proxies

Remote operations are performed on referents, class or object, by invoking local
operations on a Proxy object or class. Proxy classes are created during devel opment,
preferably with awizard type tool, and often packaged as part of both the implementation
and interface JARS. The devel oper can choose to expose al public operations of the
referent to the Proxy, or just a subset. Operations on a Proxy class are forwarded to the
referent class while operations on a Proxy object are forwarded to the referent object.

A Proxy refersto asingle referent. However, asingle referent can have many Proxies just
asalocal object can have many references.

A client can obtain a Proxy object in one of three ways:
1) remote instantiation,
2) receiving the Proxy as aresult of aremote operation, or
3) receiving a Proxy as an argument to a remote operation invoked on the client.

20 Federatad Manegamant Ardhitsdire Soadification

Dynamic Services Model

VM

o o0

VM VM

@ aleue] Referent

Figure5. A Comparison of Local Java Programming (top) and Remote Programming
using Proxies and referents.

As shown above, when a reference and object coexist in the same JVM, the reference
points directly to the object: in effect the referent. In contrast, when the reference exists
in adifferent VM than the referent, the reference points to a Proxy, which
communicates, through the station infrastructure, with the referent. When the Proxy and
the referent implement the same interfaces, the client is largely unaware of whether the
referent exists locally or remotely. That is not to say that referent always appears to be
local, but rather that it always appears to be remote and may be local.

It isimportant to note that while local and remote operations appear similar, they have
different behaviors, particularly with respect to failure modes and latency. Theintent in
making remote programming appear similar to local programming isto minimize the
learning curve, not to hide the fact the remote operations must be treated differently than
local operations.

Proxy classes are independent of station implementations and, therefore, can be used
against any station implementation. The neutrality of theimplementation is achieved by
defining an interface between the Proxy and the station proxy for communicating with a
station. The station proxy is aJini proxy (the stationisa Jini service), rather than a Proxy
in the sense of Proxies and referents. In this specification, proxy is used in the generic
sense of the Proxy Pattern and in the specific senses of referents and of Jini proxies.
When a proxy isreferred to with respect to referents, the word Proxy is capitalized to
provide differentiation.

Proxies are durable in that they can be serialized for the purposes of persistence. When
Proxies are not live, however, they do not participate in the distributed garbage collector.

Federatlad Manegament ArchitediLre Spadification Page 21

Dynamic Services Model

4.6 Context

22

4.6.1

4.6.2

Thus, it is possible that persisting a Proxy allows a transient referent to be prematurely
garbage collected.

Certain contextual information can be associated with athread of execution, both locally
and across remote operations. With the exception of security, this context information is
accessed on both the client and server side using methods on the

j ava. f ma. conmon. Cont ext class. The contextual information includes

Logi cal Threadl D, Transacti on, and Cont r ol | er . The security context is accessed
using the Subject class of the Java Authorization and Authentication Service (JAAS) and
is described fully the JAAS specification.

OIDs as Globally Unique IDs

Many of the identifiersin the FMA are expected to be globally unique. The OID class
provides a means by which the implementation provides a factory for producing globally
unique IDs.

package javax.fma.util;

i nport java.io.Serializable;
i mport java.lang.reflect.Met hod;
i nport javax.fma.util.lnplenmentation;

/** d obally unique identifier. The inplenentation of
* newd D() nust not throw an exception.
*/
public abstract class O D inplenents Serializable, Conparable

/** Construct and return a new O D. The inplenmentation
* of newd D nust not throw an exception.

* @eturn QD - unique identifier

* @hrows Internal Error if inplenmentation delegation
* fails

*/

public static O D newd D();

Logical Thread Identifiers

When the Proxy and its referent lie in different 3V Ms, they execute in different language
threads. This can cause reentrancy problems when the logical thread of execution spans
JVMsand thread concurrency control is based on language threads. To permit reentry
and support other thread related constructs, the concept of alogical thread isintroduced.
During aremote operation that spans JVMs, both the caller and the called threads belong
to the same logical thread. This alows concurrency control to be based on logical threads
rather than language threads, if so desired.

Each logical thread is uniquely identified, with respect to the universe, by its
Logi cal Threadl D. A logical thread is assigned to alanguage thread when 1) the
language thread first invokes a remote operation or 2) when servicing a remote operation.

Federatad Manegamant Ardhitsdire Soadification

Dynamic Services Model

Thus, the infrastructure is the only entity allowed to set the Logi cal Threadl D of a
language thread.

One can query the Logi cal Thr ead! D of the current thread using the Cont ext class.
Thereturned 1D is opaque, but can be compared for equality using equal s() .

package j avax. fnma. common;
import java.io.Serializable;

/** Logical Thread ldentifier. Logical ThreadlDs are
* used to uniquely identify |logical threads across
* JVMs.

*/
public class Logical Threadl D i npl ements Seri alizabl e

static final long serial VersionU D = 3061985211975656460L;

/** Create a new Logi cal Threadl D.
*
/
public Logical Threadl D();

[** Return true if the specified object conpares
* as equal to this Logical Threadl D

* (@aram obj ect object with which to conpare

* this Logical Threadl D

* @eturn boolean - true, if the objects

* conpare as equal

*

publ i ¢ bool ean equal s(Cbject object);

/** Return a hash code for this Logical Threadl D.
* @eturn int - hash code
*
/
public int hashCode() ;

/** Return a String representation of this
Logi cal Threadl D. Primarily used for debugging.
* The format should be hunman readable, but is
* ot herw se unspecified.
* @eturn String - string representation of
* Logi cal Threadl D
*

public String toString();

4.6.3 Transactions

Transactions are issued by a Jini transaction service: one of the base management
services. The semantics and transaction interfaces are more fully described in the Jini
Transaction Specification. One can query the transaction associated with the current
thread using thej avax. f ma. conmon. Cont ext class.

Fedarated Manegemant Architeciure Spedification Page 23

Dynamic Services Model

4.6.4

4.6.5

4.6.6

24

Controller

While logical threads and transactions are considered short-lived, bounded by the lives of
one or more processes, controllers are long lived. Controllers are assigned to each
controller object or client. Clients must obtain a controller directly from the controller
service. Stations hosting controller objects obtain controllers for these objects on their
behalf.

Clients obtain a controller from the controller service and retain the context for the life of
the client by maintaining the associated lease. Clients must cancel the lease at the end of
their lives. The controller service will cancel locks held by a controller in response to
lease expiration, presumably indicating that the client has unexpectedly failed or
otherwise become irrelevant. Controllers can exclusively lock resources for the life of the
controller. The locking mechanism is covered further in the controller aspect chapter.

i nport javax.fnma.services.controller.ControllerService;
i nport javax.fma. services.controller.CdientController;
i mport j avax.fma. services. Servi ceFi nder;

Control |l erService controller =
Servi ceFi nder. get Control | er Service();

ClientController aController =
controller.newC ientController(5*60*1000);

Context Propagation to Child Threads

When achild thread is created and the parent thread has an associated Context object, the
child thread shall be given an associated Context object which inherits the transaction and
controller properties of the parent thread. The Context object of the child thread shall be
assigned a new and unique logical thread ID. These parent/child thread semantics shall be
handled by the Context implementation as described by the

java.l ang. I nheritabl eThr eadLocal documentation.

Context Class

package javax. fma. comon;

i nport javax.fma.services.controller.Controller;
i mport net.jini.core.transaction.server.*;

i nport java.io.Serializable;

i mport java.rm .RenoteException;

Federatad Manegamant Ardhitsdire Soadification

Dynamic Services Model

/ **Cont extual information associated with a thread of
* execution. This information is propagated inplicitly

* along with renote operation calls.

* <p>

* |f achild thread is spawned froma parent thread with
* an associ ated Context, then that child will inherit

*

the Context of its parent. Al Context fields are
* inherited with the exception of the |ogical thread.
*/

public class Context inplements Serializable

static final long serialVersionUD =
8863107404674095386L;

/** enpty context (context with all fields null) */
public static final Context EMPTY_CONTEXT;

/** logical thread ID associated with this context */
prot ected Logi cal Threadl D | ogi cal Thr ead;

/** transaction associated with this context */
protected final ServerTransactiontransaction;

[** controller associated with this context */
protected final Controller controller;

[**mappi ng of physical threads to contextual
* information (Thread=>Context)

*/

protected static final ContextMap contexts;

I
/1l Constructors
I

/**Construct a new Context object.

* @aramcontroller controller to associate with
* current thread
* @aramtransaction transaction to associate with
* current thread
*
/

public Context (
Controller controller,
Server Transacti on transacti on

)
/
/'l Accessors
/1

/**Return the | ogical thread associated with this

* context.

* @eturn Logical Threadl D - |ogical thread associ ated
* with this context (may be null)

*/

publi ¢ Logical Threadl D get Logi cal Thread();

Fedarated Manegemant Architeciure Spedification Page 25

Dynamic Services Model

/**Return the transaction associated with this

* context.

* @eturn ServerTransaction - transaction associ ated
* with this context (may be null)

*/

publ i c ServerTransaction get Transaction();
/**Return the controller context associated with this
* context.

* @eturn Controller - controller associated with

* this context (may be null)

*/

public Controller getController();

/1

/] O ass Methods
I

/**Return the Context associated with the current

* thread of execution. If the current thread has no
* associ ated Context, the default Context is
*
*

returned.

@eturn Context - context associated with current
* t hread
*/
public static Context get Cont ext ();

/**Associ ate the specified context with the calling
* thread. The Context previously associated will be

* returned (default Context, if no Context

* was associated). Alogical thread IDwll be set

* for the Context when this method is invoked. The

* |logic for doing so is as follows:

* f the specified Context is the Empty Context
* (EMPTY_CONTEXT), then no |ogical thread will be
* assi gned

* else if a logical thread is currently

* associated with the physical thread, then that
* logical thread will be assigned to the Context
* else if the specified Context has no currently
* associ ated thread, a new |ogical thread ID wll
* be created and assi gned

* else the Context’s logical thread ID wll

* remai n unchanged</ ul >

* @aram context context to associate with the

* calling thread

* @eturn Context - context previously associated

* with current thread (may be the default Context)
* @recondition context != null

*

/
public static Context set Cont ext (

Cont ext cont ext

);

26 Fedarated Manegamant Ardhiteciure Soedification

Dynamic Services Model

/**Set the specified Context as the default Context.

* This object will be returned by get Context()
* for any calling thread that has no currently

* associ ated Context.

* @aram context context to set as default

* @eturn Context - context previously set as default
* (EMPTY_CONTEXT if no Context was previously

* associ at ed)

* @reconditon context != null
*/
public static Context set Def aul t Cont ext (

Cont ext cont ext

)

/**Cancel any locks currently held by the Controller

* associated with this Context (if this nethod is

* invoked fromw thin a referent controller object

whil e servicing a renote operation).

@hrows RenoteException if a conmmunication error or
an unexpected exception occurs

*
*
*

*/
public static void cancel Locks();

11
Il Protected Methods (generally overridden in subclasses)
11

/**Return a clone of this context with the | ogical
* thread ID set to null.
* @eturn Context - Context clone

*/
prot ected Context cl oneCont ext () ;
11
/'l java.l ang. Cbj ect overrides
11

[**Return true if the specified object conmpares as

* equal to this Context. The objects are equal if

* they are both Context objects and have equal

* controllers, transactions, and |ogical threads.

* @aram obj ect object with which to conpare this

* Cont ext

* @eturn boolean - true, if the objects conpare as
* equal

*/

publ i ¢ bool ean equal s(

hj ect obj ect

/**Return a hash code for this Context.

* @eturn int - hash code

*/

public int hashCode() ;

Fedarated Manegemant Architeciure Spedification Page 27

Dynamic Services Model

/**Return a String representation of this Context.

* Primarily used for debugging. The format shoul d be
* human readable, but is otherwise |eft unspecified.
* @eturn String - string representation of Context
*/

public String toString();

4.7 The Station Interface

Stations are Jini technology services for hosting dynamic management services. The
primary responsibility of a station is providing means of introducing servicesinto the
station: instantiation and installation. A secondary responsibility is providing a
mechanism for invoking methods on referents.

4.7.1 Method Signatures

Method signatures, as String objects, are used to specify methods and constructors.
Signatures consist of the method name followed by the method descriptor, as specified by
the Java Virtual Machine Specification. For example, the signature of the method 'voi d
foo(lnteger i, int j)' isfoo(Ljava/lang/|nteger;|)V.Constructor
signatures are method signatures with the special name of <i ni t >.

4.7.2 Station Registration

Stations must register themselves with the all Jini lookup services servicing the
management domain to which the station belongs. The group name for a management
domain is the management domain name. The registered service item must contain a
proxy that implements the Station interface and a single item of type

j avax. f ma. conmon. St at i onAddr ess. Stations shall monitor the existence of lookup
services and register with any new relevant lookup services that join the network. In
short, stations shall be good Jini citizens.

4.7.3 Station Lookup

The station proxy isaJini proxy and islooked up using a

j avax. f ma. conmon. St at i onAddr ess, aspecialization of the
net.jini.lookup.entry. Servicel nfo class. The

net.jini.l ookup.entry. Servicel nf o class provides the following fields.

1) Manufacturer
2) Mode

3) Name

4) Seria number
5) Vendor

6) Version

28 Federatad Manegamant Ardhitsdire Soadification

Dynamic Services Model

j avax. f ma. cormon. St at i onAddr ess adds two additional fields, role and
management domain (domain). All fields are public, so it is possible to base lookups on
any of the fields. In accordance with the Jini specification, empty fields are treated as
wild cards for the purposes of lookup.

package javax. fma. common;

i nport java.io.Serializable;
i mport net.jini.lookup.entry. Servicelnfo;

/** Used to |locate a Station (or group of Stations) in

* a particular managenent donmin. A StationAddress is
used for registering and | ooking up a Station Proxy.
When used to register a Station Proxy, all fields
nmust be provided (non-null). Wen used to |ocate a
Station Proxy, certain fields can be left null. These
fields are treated as wildcards by the | ookup service.
A Station Proxy registered with a | ookup service

will match a StationAddress if every non-null field
of that address is equal to the corresponding field
of the address under which it was registered.

<p>

The domain field MUST be provided (i.e. cannot be
null). Failure to provide this field at

construction will result in an

I'l'l egal Argunent Excepti on.

E R R B R I T R R R B N R

*/
public class StationAddress extends Servicelnfo
i mpl enents Serializable, Coneable
static final long serial VersionUD = 3339549009278688468L;

/**Name of managenent domain to which the station

* bel ongs.

*/

public String domai n;

/**Rol e of the station ("shared", "private", ...)
*/

public String rol e;

/** No arg constructor for internal Jini use. Do not call.
*/

public StationAddress();

Fedarated Manegemant Architeciure Spedification Page 29

Dynamic Services Model

30

4.7.4

/** Construct a new StationAddress.
* @aram domai n station donain

* @aramrole station role
* @aram nane station nane
* @aram manuf acturer station manufacturer
* @aram vendor station vendor
* @aramversion station version
* @aram nodel station nodel nanme or numnber
* @aram serial Nunmber station serial number
* @hrows Il egal Argunment Exception if domain == null
*
/

public StationAddress(
String donain,
String role,
String nane,
String manufacturer,
String vendor,
String version,
String nodel ,
String serial Number
)

/** Return a clone of this Stati onAddress.
* @eturn hject - StationAddress clone

*/

public Qbject clone();

/** Return a String representation of this StationAddress.
* Primarily used for debugging. The fornmat should be

* human readable, but is otherwise left unspecified.

* @eturn String - string representation of

* St at i onAddr ess

*

public String toString();

}

The Station Interface
All station proxies must implement the Station interface.

Federatad Manegamant Ardhitsdire Soadification

Dynamic Services Model

*

E L I I

*

*/
public interface Station

package javax. fma. comon;

i nport java.io.Serializable;

i mport java.lang.reflect.|nvocationTarget Excepti on;
i nport java.rm . Renot eException;

i mport net.jini.core.lookup. Servicel D

/** A Station is a Jini service that is responsible

for hosting dynanmic services. Hosting, in this
context, inplies that the services are
instantiated in the Station’s address space.
Additionally, a Station is responsible for
provi ding a nechani sm by which renote nethods
can be invoked on service classes.

/** Invoke a static method on the specified class.
* Requires security perm ssion of

* javax.fma. server. AccessPermi ssion with a target

* of the class nane and an action of the nethod

* nane, as specified in the FMA specification.

* @aram cl assNane nane of the invocation target class
* @ar am nmet hodSi gnature signature of the nmethod to

* i nvoke

* @aram argunments nethod argunents

* (@aram context current context

* @aram codebase Space delinited set of URLs from which
* to attenpt class loading of the referent class if
* the class is not available locally. May be null.
* @eturn result of the nethod invocation

* @recondition className != null &&

* nmet hodSi gnature !'= null &&

* argurments !'= null && context != null

* @hrows |nvocationTarget Exception if the renote

* net hod being i nvoked throws a throwabl e

* @hrows RenoteException if a throwabl e occurs

* frominfrastructure rather than the renote

* nmet hod

*/

hj ect i nvokeSt ati cMet hod(

String cl assNane,
String met hodSi gnat ur e,
hj ect[] argunents,
Cont ext context,

String codebase

t hrows Renot eExcepti on,
I nvocati onTar get Excepti on;

Fedarated Manegemant Architeciure Spedification Page 31

Dynamic Services Model

/** I nvoke a constructor on the specified class. The

* result may be passed by value or reference using

Bi ndl nf or mati on.

@)ar?m cl assNanme nane of the invocation target
cl ass

@ar am constructor Signature signature of the
constructor to invoke

@ar am ar gunent s constructor argunents

@ar am cont ext current context

@ar am codebase Space delinmted set of URLs from which
to attenpt class loading of the referent class if
the class is not available locally. May be null.

@ar am byReference |If true a Bindlnformation
object is returned. If false, the object is
returned by val ue.

@eturn result of the constructor invocation

@recondition classNane !'= null &&
constructorSignature !'= null &&
argunents !'= null && context != null

@hrows |nvocationTarget Exception if the renote
nmet hod bei ng i nvoked throws a throwable

@hrows RenoteException if a throwabl e occurs
frominfrastructure rather than the renote
nmet hod

E I B R B SR T B R R I T R B R T I R B I

/

oj ect i nvokeConst ruct or (

String cl assNane,

String constructorSignature,
hj ect[] argunents,

Cont ext cont ext,

String codebase,

bool ean byRef erence

t hrows Renot eExcepti on,
I nvocat i onTar get Excepti on;

/** Performa rebind operation using the referent

* jidentified by the specified cookie.

@ar am cooki e cooki e identifying the referent
with which to bind (returned when the referent
was renotely constructed)

@eturn Bindlnformation - information associ at ed
with the rebind

@hrows java.rm . NoSuchQbj ect Exception if no object
was found matching the specified cookie

@hrows RenoteException if a comunication error
or an unexpected exception occurs

/

Bi ndl nformati on rebi nd(Obj ect cookie)
t hrows Renot eExcepti on;

* % X X X X X X X X

/**Low cost roundtrip communi cati on check.
* @hrows RenoteException if ping fails.
*/

voi d pi ng()

t hrows Renot eExcepti on;

32 Fedarated Manegamant Ardhiteciure Soedification

Dynamic Services Model

/** Information associ ated with proxy binding. An object
* of this type is returned when a referent object is
* construct ed.

*/
final class Bindlnformation inplenents Serializable

static final long serial VersionU D = 1346600403395533696L;

/** I nformation needed to relocate this
* particular station.

*/

public final ServicelD stationlD

/** Domain to which this station bel ongs.
*/
public final String domai n;

/[** Information needed to relocate referent. */
public final Object cooki €;

/** Invocation path to referent */
public final Acceptor referent;

/** Construct a bind information object. */
publ i ¢ Bi ndl nformati on(

Servicel D stationl D,

String domain,

hj ect cooki e,

Acceptor referent

);

/** Return a String representation of this StationAddress.
* Primarily used for debugging. The format shoul d be

* human readable, but is otherwi se |eft unspecified.

* @eturn String - string representation of

*/ St at i onAddr ess

*

public String toString()

4.8 Deployment

Stations that are shared management servers must implement the

j avax. f ma. conmon. Depl oynent St at i on interface. Stations that are private
management servers may optionally implement the

j avax. f ma. conmon. Depl oynent St at i on interfaceif they support deployment.

4.8.1 Deployment Definition
Deployment, as used in this specification, is the process of giving classes and resources,
packaged as JARS, to a station. Deployment is generally part of an installation process. A
single deployment is one deployment operation. If the same deployment group is
deployed multiple times, even to the same station, each is considered a distinct
deployment.

Fedarated Manegemant Architeciure Spedification Page 33

Dynamic Services Model

4.8.2

Class Loaders and Deployment

Deployments and class |oaders have a one-to-one relationship. To remain compatible
with RMI class loading, this mapping implies that each deployment is given a unique
code base. This code base shall consist of two ordered URLSs. Thefirstisa URL that may
be used to load the public interface JAR and the second is a URL that may be used to
load the implementation JAR. Note that the URLs are generated by the station to ensure
uniqueness of the code base and may not have any resemblance, in name, to the JARs of
the deployment group presented for deployment. Only HTTP is allowed as a protocol for
code base URLs.

A classthat isloaded from a deployment group must be annotated with the code base of
the deployment according to RMI class loader semantics. This requirement helps ensure
that when objects of that class are passed outside of the originating JVM, network class
loading will work as outlined in the RMI specification.

Federatad Manegamant Ardhitsdire Soadification

Dynamic Services Model

package javax. fma. comon;

i nport java.io.Serializable;

i mport java.net. URL;

i nport java.rm . Renot eException;
import net.jini.core.lease. Lease;

[** Interface the defines the set of nethods that mnust
* be inplenented by proxies for stations that

* support depl oyment.

*/

public interface Depl oyment Station extends Station

[**Depl oy a deploynent group. If the | ease duration
* is specified as Lease. FOREVER, the | ease does not
need to be maintained; however, the installing
entity nust guarantee that the depl oyment group
will be recalled when appropriate. Ot her |ease
values will result in a | ease that must be
mai nt ai ned. A cancelled or expired | ease rel eases
t he depl oynent group for garbage collection.
<P>This version of install should be used when
possible as it pernmits the JARs to be pulled rather
than pushed. Note that the provide URLs nay not
have any rel ationship to the code base resulting
fromthe installation.
Requi res javax.fma. server. Depl oynent Perni ssion with
a target of "deploy".
@ar am i npl enent ati onJar JAR containing the
i mpl enent ati on resources.
@aram interfacedar JAR containing the
public interface resources.
@ar am | easeDur ati on Requested | ease duration
for the deploynment. May be Lease. NO LEASE.
@ar am cont ext Context under which this operation
shoul d be carried out. The applicabl e Subject,
security purposes, is local wth the calling
thread i n accordance with the JAAS.
@ hrows RenoteException Error conmunicating with the
station or an unexpected exception.
@ hrows Depl oynent Excepti on Unabl e
to deploy for reasons nested within the
Depl oynent Excepti on.
@hrows |11 egal Argument Exception null argunent,
invalid URL, or invalid JAR file.

F % Ok O F 3 X F X F X F X X X X X F X X X X X X X X X F F

*

*

/

Lease depl oy(
URL i npl emrent ati onJar,
URL interfacelar,
| ong | easeDurati on,
Cont ext cont ext

t hr ows Renot eExcepti on,
Depl oynent Excepti on;

Fedarated Manegemant Architeciure Spedification Page 35

Dynamic Services Model

36

/**Install a deploynent group. If the |ease duration
* is specified as Lease. FOREVER, the | ease does not
need to be maintai ned; however, the installing
entity nust guarantee that the depl oyment group
will be uninstalled when appropriate. O her |ease
values will result in a | ease that mnmust be

mai nt ai ned. A cancelled or expired | ease rel eases

t he depl oynent group for garbage collection.

<P>Thi s version of install is used when installing

froma location that will not accept http

connections. Thus, the JAR files nmust be pushed
during the call rather than pulled. The URL form of
install should be used when ever possible.

Requi res javax.fma. server. Depl oynent Perni ssion with

a target of "deploy".

@ar am i npl enent ati onJar JAR containing the
i mpl enent ati on resources.

@aram interfacedar JAR containing the
public interface resources.

@ar am | easeDur ati on Requested | ease duration
for the deploynment. May be Lease. NO LEASE.

@ar am cont ext Context under which this operation
shoul d be carried out. The applicabl e Subject,
security purposes, is local wth the calling
thread i n accordance with the JAAS.

@ hrows RenoteException Error conmunicating with the
station or an unexpected exception.

@ hrows Depl oynent Excepti on Unabl e
to deploy for reasons nested within the
Depl oynent Excepti on.

@hrows |11 egal Argument Exception null argunent,
or invalid JAR file.

F % Ok O X 3 F O X 3 X F X F X X X X X X X X X X X X X F F

*

*
/
Lease depl oy(
byte[] inplenmentationdar,
byte[] interfacelar,
| ong | easeDurati on,
Cont ext cont ext

t hr ows Renot eExcepti on,
Depl oynent Excepti on;

Federatad Manegamant Ardhitsdire Soadification

Dynamic Services Model

/ **Renmove the deploynment group identified by the given
* code base. There is no assurance that the code base

being recalled is not in use.

Requi res javax. fma. server. Depl oynment Permi ssion with

a target of "recall".

@ar am codeBase Code base to recall. null results
in an Il1egal Argunent Excepti on.

@ar am cont ext Context under which this operation
shoul d be carried out. The applicabl e Subject,
security purposes, is local wth the calling
thread 1 n accordance with the JAAS.

@ hrows Renot eException Error conmunicating with the
station or an unexpected exception.

@ hrows UnknownCodeBaseExcepti on The code base
is not a known code base.

@ hrows Depl oynent Excepti on Unabl e
to recall for reasons nested within the
Depl oynent Except i on.

@hrows |11 egal Argunent Excepti on null argunent,
invalid URL, or invalid JAR file.

E R I I B T I B R B B I B R

*

*/
voi d recal | (
String codeBase,
Cont ext cont ext

t hrows Renot eExcepti on,
UnknownCodeBaseExcepti on,
Depl oynent Excepti on;

/**List all of the installed depl oynment groups.

* Returns an enpty list if no deploynment groups

* have been depl oyed.

* Requires javax.fma. server. Depl oynent Perni ssion with
* a target of "inventory".

* @hrows RenoteException Error conmunicating with the
* station or an unexpected exception.

* @eturn Alist of inventory records. The li st

* is enmpty if the inventory is enpty.

*

/
Depl oynent[] getlnventory(Context context)

t hr ows Renot eExcepti on;

Fedarated Manegemant Architeciure Spedification Page 37

Dynamic Services Model

38

/**Get the code base for the latest version of the

* given package that is conpatible with the supplied
version. Conpatibility between versions is defined
in java.l ang. Package.

Requi res javax. fma. server. Depl oynment Perm ssion with

a target of "inventory".

@ar am packageNarme The fully qualified package
nane such as "com sun. x.y".

@ar am ver si on Requested version with which the
returned code base should be conpati bl e.

@ar am cont ext Context under which this operation
shoul d be carried out. The applicabl e Subject,
security purposes, is local wth the calling
thread 1 n accordance with the JAAS.

@ hrows Renot eException Error conmunicating with the
station or an unexpected exception.

@ hrows UnknownPackageException The package
is not known.

@hrows |11 egal Argument Exception null argunent.

@eturn the code base for the given package
that is conpatible with the supplied version

EEE I B R I I N R R . I B L N

*

*

/

String get CodeBase(
String packageNane,
String version,
Cont ext cont ext

t hrows Renot eException
UnknownPackageExcepti on;

/**Get the code base for the |l atest version of the
* given package.

* Requires javax.fnma.server. Depl oynent Perm ssion with
* a target of "inventory".

* @aram packageName The fully qualified package

* nane such as "com sun. x.y".

* @aram cont ext Context under which this operation

* shoul d be carried out. The applicabl e Subject,

* security purposes, is local wth the calling

* thread 1 n accordance with the JAAS.

* @hrows RenoteException Error conmunicating with the
* station or an unexpected exception.

* @hrows |11 egal Argurment Exception null argument.

* @eturn the code base for the | atest version of

*/ the given package

*

String get CodeBase(

String packageNane,
Cont ext cont ext

t hrows Renot eException
UnknownPackageExcepti on;

/** Each depl oynent has a record of type Depl oynent
* in the inventory. This inner class is tagged as
serializable to support inventory persistence.

@ee #getlnventory(Context context)

*
*
*
*

Federatad Manegamant Ardhitsdire Soadification

Dynamic Services Model

final class Deploynent inplenments Serializable
static final long serial VersionU D = 5115543081359322429L;

/** Fully qualified package nane. */
public final String packageNane;

/** Version as defined by java.lang. Package. */
public final String version;

/** Code base as a space delinmted ordered |ist
* of URLs.

*/

public final String codeBase;

[** Construct a deploynent record. */
publ i ¢ Depl oynent (

String packageNane,

String version,

String codebase

package j avax. fnma. common;
i mport javax.fma. util.ConpositeException;

[** Exception thrown when an attenpt at depl oying a depl oynent
* group fails.

*/

public class Depl oynent Excepti on ext ends ConpositeException

static final long serial VersionU D = 7634942906640576531L;

/** Create a Depl oynent Exception froma throwabl e.

* @aramt The exception thrown fromthe operation that
* thi s Depl oynent Excepti on wr aps.
*/

publ i ¢ Depl oynent Exception(Throwable t);

Fedarated Manegemant Architeciure Spedification Page 39

Dynamic Services Model

40

package j avax. fnma. common;
i mport javax.fma.util.ConpositeException;

[** Exception throws when an unknown code base is used to

* obtain depl oynent group information.

*/

public class UnknownCodeBaseExcepti on extends ConpositeException

static final long serial VersionU D = 6249829348304642811L;

/** Create a UnknownCodeBaseException froma throwable.
* @aramt The exception thrown fromthe operation

* that this UnknownCodeBaseExcepti on wr aps.

*/

publ i ¢ UnknownCodeBaseException(Throwable t);

package j avax. fma. common;
i nport javax.fma.util.ConpositeException;

/** Exception throws when an unknown package is used to

* obtain information about a depl oynent code base.

*/

public class UnknownPackageExcepti on ext ends ConpositeException

static final long serial Versi onU D= -3104509931454886361L;

/** Create a UnknownPackageException from a throwabl e.
* @aramt The exception thrown fromthe operation
* that this UnknownPackageException wr aps.

*/
publ i ¢ UnknownPackageException(Throwable t);

package javax. fma. server;

i nport java.io.Serializable;
i mport java.security. BasicPerm ssion;

/** Perm ssions class for authorizing depl oyment operations.
*/
public final class Depl oynment Pernission
ext ends Basi cPermi ssion inplenents Serializable

static final long serial VersionU D = -4122846412590798067L;

/** Do not call. Construct a Depl oynment Perni ssion
* object.
* @aramtarget one of "deploy", "recall", or
* "inventory".
*
/

publ i c Depl oynent Permi ssion(String target)

/** Do not call. Construct a Depl oynent Permi ssion
* object.
* @aramtarget one of "deploy", "recall", or

Fedarated Manegamant Ardhiteciure Soedification

Dynamic Services Model

* "inventory".
* @aramactions action list - not used
*/

publ i c Depl oynent Permission(String target, String actions);

[** Construct a Depl oynent Permi ssion object.
* @aramtarget the targetnane of the cl ass/package_nane.
*/

private Depl oynent Permi ssion(String target);

/** Construct a Depl oynent Perni ssion object for
* authorizing depl oyment operations.
*/
public static Depl oyment Perm ssion
newDepl oyDepl oynment Per nmi ssi on();

/** Construct a Depl oynent Perni ssion object for
* authorizing recall operations.
*/
public static Depl oyment Perm ssion
newRecal | Depl oynent Per nmi ssi on();

/** Construct a Depl oynent Perni ssion object for
* authorizing inventory operations.
*/
public static Depl oyment Perm ssion
newl nvent or yDepl oynment Per m ssi on() ;

4.9 Specifying a Persistent Referent Object

A referent object can declare itself as persistent using the class modifier field, as
described by the Modifier class documentation.

public class MyPersistent Qbject

private static final int classMdifiers =
... | Modifiers. PERSI STENT |

In this example, the MyPersistentObject is declaring itself as persistent. If the station
does not support the specified type of referent, the referent cannot be used in the station.
Simple stations are only required to support transient referents. Shared management
servers are required to support both transient and persistent referent objects.

4.10 Acceptors

The view of "pr oxy- >r ef er ent ", though useful for initial explanations, is not sufficient
to fully specify the remote communications between a Proxy and its referent object. In
particular, because Proxies and stations are potentially supplied by different vendors, the
interface between Proxies and station must be specified. A Proxy does not see areferent
object directly, but rather an interface representing the referent. Thisinterfaceisthe
acceptor for referent object, a one-to-one mapping.

Fedarated Manegemant Architeciure Spedification Page 41
remote
Proxy | | Acceptor Stub Acceptor | | Referent Object
* 1 0.* 1 11

Dynamic Services Model

42

Figure 6. Proxies, Acceptors and Referent Objects.

package j avax. fma. common;

i nport java.lang.reflect.|nvocationTarget Excepti on;
i mport java.rm .RenoteException;
i nport javax.fma. conmon. Cont ext;

/** An Acceptor is an object involved in the comunication
* path between a Proxy and a renote Station. Acceptors

* represents the portion of the Station that is responsible
* for invoking nmethods on the referent. For each referent

* object in the renpte Station, there is a single Acceptor
* jinstance.

* <p>

*

The Acceptor interface defines the contract between a
* Proxy and an Acceptor.

*/

public interface Acceptor

/** Attenpt a renpte operation on the referent associ ated
* with this Acceptor.

* @ar am nmet hodSi gnature signature of the operation to
* i nvoke.
* @aram argunments operation argunents
* (@aram cont ext current context
* @eturn Qhject - operation result
* @recondition methodSignature !'= null &&
* argunents !'= null && context != null
* @hrows | nvocationTarget Exception if the renote
* nmet hod bei ng i nvoked throws a throwable
* @hrows RenoteException if a throwabl e occurs
* frominfrastructure rather than the renote
* nmet hod
*/
hj ect i nvokeMet hod(
String met hodSi gnat ur e,
hj ect[] argunents,
Cont ext cont ext
t hr ows

I nvocat i onTar get Excepti on,
Renot eExcepti on;

/**Test referential integrity.

* @eturn Returns true if the acceptor refers to a
* valid referent object. false if not.

* @hrows RenoteException Unable to test referential
* integrity because of a conmunication error.

*

/
bool ean i svalid()

t hrows Renot eExcepti on;

Federatad Manegamant Ardhitsdire Soadification

Dynamic Services Model

The acceptor presents RMI semantics to the Proxy. Context information is made explicit
by the Proxy. In implementation, the proxy has areference to a RMI stub which refersto
the remote acceptor residing in the same JVM as the referent object.

4.11 Proxy Binding

A Proxy must acquire an appropriate acceptor at such time as the Proxy acquires an
associated referent object. This happens in two scenarios. Proxy instantiation and Proxy
wrapping, described later. The process of Proxy to acceptor association is called Proxy
binding. The acceptor bound to a Proxy possibly becomesinvalid when astationis
restarted on a different machine, such as when reacting to afailed host in a high
availability scenario.

4.11.1 Proxy Binding During Proxy Instantiation

The Proxy constructor obtains a station proxy from alookup service using the station
address passed to the Proxy constructor, by convention as the last argument to the
constructor. The Proxy then invokes i nvokeConst r uct or () onthe station proxy,
which returns an acceptor for the newly constructed referent object.

4.11.2 Proxy Binding During Proxy Wrapping

In the second case, Proxy wrapping, a Proxy is instantiated with a single argument, the
referent object itself, using a special constructor called the wrapping constructor. The
Proxy isinstantiated in the station containing the referent object; thus, Proxy wrapping is
not a remote operation. In the wrapping constructor, the Proxy invokes the

j avax. f ma. server. Local St ati on. export() method to retrieve an acceptor for the
referent object to be wrapped. The newly instantiated Proxy object may then be passed
remotely as aremote reference to the referent object.

package javax. fma. server;

i nport javax.fma.conmon. Station;

i mport javax.fnma.comon. St ati onAddr ess;

i nport javax.fma.common. Station. Bi ndl nformati on;
i mport javax.fma.util.|nplenmentation;

i nport java.lang.refl ect. Met hod;

i mport java.rm .RenoteException;

[** Class used to retrieve a reference to the |ocal

* Station. This reference is typically used by Proxy
* objects to access the Station in which they are

* resident.

*/

public final class Local Station

/** Return a reference to the |ocal station.

* @eturn Station - |ocal station (may be null)

* @hrows Error if inplenmentation delegation fails
*/

static public Station getStation();

Federatlad Manegament ArchitediLre Spadification Page 43

Dynamic Services Model

/** Start an enbedded Station.
* @eturn Station - local station (may be null)
* @hrows StationStartException if Station start fails
* @hrows Error if inplenmentation delegation fails
*
/
public static void start(Stati onAddress address)
throws StationStartException;

/** Return an acceptor for the given referent object.

* This method should only be called by Proxy objects

fromw thin a wapper constructor.

@ar am obj ect object to export (object for which to
return an acceptor)

@eturn Bindlnformation - information associ at ed
with the export

@r econdi tion object !'= null

@hrows Error if inplementation delegation fails

* @hrows RenoteException if the export fails

*

/

static public Bindlnformati on export(Object object)

t hrows Renot eExcepti on;

* % X X X X F

package j avax. fnma. server;
i mport javax.fma. util.ConpositeException;

/** Exception thrown froma failed attenpt to start an enbedded
* Station.
* @ee javax.fma. server. Local Station
*/

public class StationStartException extends ConpositeException

static final long serial VersionU D = -9215837774402205113L;
/** Create a StationStartException.

*/
public StationStartException(Throwable t);

4.12 Proxy Rebinding

The acceptor bound to a Proxy possibly becomesinvalid when a station is restarted on a
different machine, such as when reacting to afailed host in a high availability scenario.
The Proxy must be able to rebind to the acceptor in such cases. The information required
to rebind includes the service ID of the station, to uniquely identify it among other
stations, and a cookie, issued by the station as part of the binding information, to uniquely
identify the referent object within the station. All of thisinformation is provided by the
station during initial binding and must be retained by the proxy.

When a Proxy is unable to communicate with a referent object and the Proxy determines
that thisislikely because the hosting station is no longer reachable

(j avax. f ma. cormon. St ati on. pi ng()), then the Proxy should initiate rebinding. The
rebinding involves relocating the station using the service ID and, if successful,
requesting a fresh acceptor for the referent object using the

j avax. f ma. conmon. St ati on. r ebi nd() operation.

44 Federatad Manegamant Ardhitsdire Soadification

Dynamic Services Model

4.13 Proxy to Referent Overviews

The following sequence diagrams are summaries of end-to-end remote communication.
They elide exceptional and minor flows for the sake of clarity.

4.13.1 Referent Object Method Invocation

1)

2)

3)

4)

5)

Client Proxy Acceptor Referent

L 1: foo() ‘

2: extract context ‘

—

3: remote invokeMethod() ‘

4: establish context

-

5: foo()

Figure 7. Referent Object Method Invocation.

The client invokes the object operation f oo() on the Proxy. The Proxy will already
have been bound to an acceptor when the Proxy was instantiated.

The Proxy extracts context (transaction, etc.) information to be passed explicitly to
the acceptor.

The Proxy forwards the invocation request to the acceptor. Thisis aremote
operation.

The acceptor uses the explicitly passed context information to establish a thread local
context.

Finally, the acceptor invokesf oo() on the referent object.

Federatlad Manegament ArchitediLre Spadification Page 45

Dynamic Services Model

46

4.13.2 Referent Class Method Invocation

1
2)

3)

4)
5)
6)
7

Cient Proxy Station Proxy Station Referent Class
dass

1 1o ‘

P

3: extract context ‘

<

4: invokeStaticMethod()
\

2: lookup station proxy ‘
\

Figure 8. Referent Class Method Invocation.

The client invokes the class operation f oo() , a static method, on the Proxy class.

The Proxy class will need to lookup an appropriate station proxy by querying a
lookup service with the station address supplied as the last argument to the static
method call.

The Proxy extracts context (transaction, etc.) information to be passed explicitly to
the station proxy.

The Proxy class passes the operation request to the station proxy.

The station proxy forwards the request to the station.

The station uses the explicitly passed context information to establish a context.
Finaly, the station invokesf oo() on the referent class.

Federatad Manegamant Ardhitsdire Soadification

Dynamic Services Model

4.13.3 Referent Object Instantiation

1)

2)

3)

4)
5)
6)
7

Client Proxy Station Proxy Station Referent Object

L1 <init>()

2: Iookupstauon proxy ‘

3: extract context

-

4: invokeConstructor()

|
5: private - remot%
%

6: establish context

i

7: <init>()

8: create acceptor for referent object

P

9: return acceptor

10: bind acceptor

—
|
\

Figure 9. Referent Object Instantiation.

The client instantiates a Proxy using any one of the available constructors. The last
argument of the constructor is the station address of the station that is to host the
referent object.

The Proxy class will need to lookup an appropriate station proxy by querying a
lookup service with the station address supplied as the last argument to the
constructor.

The Proxy extracts context (transaction,etc.) information to be passed explicitly to
the station proxy.

The Proxy class passes the operation request to the station proxy.

The station proxy forwards the request to the station.

The station uses the explicitly passed context information to establish a context.
The station locally instantiates the referent object.

Fedarated Manegemant Architeciure Spedification Page 47

Dynamic Services Model

48

8) The station must now create an acceptor for the new referent object.

9) The newly creating acceptor is eventually returned to the Proxy as an acceptor
embedded in a binding information object.

10) The Proxy then binds the returned acceptor. All remote method invocations on the
Proxy will now be forwarded through the acceptor to the referent object.

Wrapping a Referent Object with a Proxy

To pass areferent object by reference during aremote operation, the referent must be
wrapped with a Proxy. Each Proxy class provides a wrapper constructor for this purpose.
Note that the wrapping is local to the referent object being wrapped: no remote calls are
involved. The wrapping sequence is similar to object instantiation except that the referent
already exists and the Proxy communicates with the local station rather than a remote
station.

Client Proxy LocalStation

N1: <init>(referent)‘ ‘

|
2: export(referentﬁ
%

3: create acceptor for the referent

<

4: return acceptor in bind info
S —

5: bind acceptor

< |

Figure 10. Wrapping a Referent Object with a Proxy.

1) Theclient invokes the Proxy wrapper constructor, passing the referent object asthe

only argument. In this sense, aclient is simply the entity invoking the wrapping
constructor of the Proxy.

2) The Proxy, from within the wrapping constructor, requests an acceptor from the local

station by doing an export. The export provides a binding information object which
contains the acceptor.

3) The station creates an acceptor for the referent object.

Federatad Manegamant Ardhitsdire Soadification

Dynamic Services Model

4) The station returns a binding information object, which contains and acceptor, to the
Proxy. The acceptor should already be substituted with an acceptor stub so that RMI
semantics will be followed when invoking methods on the Proxy.

5) The Proxy then binds the returned acceptor. All remote method invocations on the
Proxy will now be forwarded through the acceptor to the referent object.

4.13.5 Proxy Rebinding

In highly available installations, a station may moveto afailover host if the origina host
fails. This move can cause all acceptor stubsissued by the original incarnation of the
station to become invalid. Proxies, upon failure of the original acceptors, proceed through
arebinding process to retrieve fresh acceptor stubs from the station at its new location.
The following sequence diagram shows the rebinding in the context of a failed object
method invocation.

Client Proxy Stale Acceptor Restarted Fresh Acceptor| |Referent Object
Station
ik 1: foo() ‘ ‘ ‘
2: extract context ‘ ‘ ‘ ‘
3: failed invocation attempt
I
4: lookup station /I-H ‘ ‘ ‘
5: rebind() ‘ ‘ ‘
6: remo# invokeMethod ()/I—H ‘ ‘
‘ ‘ Tl
‘ ‘ 7: establish context
‘ ‘ 8: foo()
y I ‘ ‘ ‘

Figure 11. Proxy Rebinding.

1) Theclient invokes the object operation f oo() on the Proxy.

2) The Proxy extracts context (transaction, etc.) information to be passed explicitly to
the acceptor.

3) The Proxy attempts a remote call to the stale acceptor, no longer in existence,
resulting in an exception. If the exception indicates that the station has become

Federatlad Manegament ArchitediLre Spadification Page 49

Dynamic Services Model

unreachable, the proxy shall continue with the rebinding, otherwise the exception
shall be thrown to the client.

4) The Proxy looks up the restarted station using the original service ID of the station,
retained during the original binding process.

5) The Proxy requests a fresh acceptor stub from the station. From this point on the
invocation proceeds as with the normal object method invocation.

6) The Proxy forwards the invocation request to the acceptor.

7) The acceptor uses the explicitly passed context information to establish a context.

8) Finaly, the acceptor invokesf oo() on the referent object.

4.14 Adjunct Modifiers

Java defines a number of well-known modifiers, such as static and public, that may be
applied to classes and methods. The dynamic services model extends this set with
additional modifiers, adjunct modifiers, which have specific meanings to the station
infrastructure. Because the Java language is not to be extended with application class
features, adjunct modifiers are expressed as bit fields (i nt) in various well-known
constant fields. These fields shall be immutable (final).

4.14.1 Class Modifiers
Modifiers are attached to a class using the private static field cl assModi fi er s. With
the exception of the controller and persistence modifiers, the modifiers do not apply to
the classitself, but rather establish a set of default modifiers that apply to the class (static)
methods of the class.

public class Ad ass

bfivate static final int classMdifiers = ...;

}

4.14.2 Object Modifiers

Modifiers are attached to an object using the private field obj ect Modi fi ers. The
modifiers establish a set of default modifiers that apply to the methods of objects of the
given class.

public class Ad ass

|'o'ri'vate static final int objectMdifiers = ...;

}

4.14.3 Method Modifiers
Method modifiers attach modifiers to a class method, object method, or constructor. The
method or constructor is specified as a signature, as defined in the previous Method
Signature section.

50 Federatad Manegamant Ardhitsdire Soadification

Dynamic Services Model

package javax. fma. server;

/** Met hodMbdi fiers objects are used attach nodifiers to a
* class nethod, object nmethod, or constructor.

*/

public final class MethodMvodifiers

{

[** Construct a new method nodifier. The signature is
* as defined by the object nodel and therefore includes
constructors.
@ar am si gnature signature of the nethod or
constructor to which this nodifier set applies
@aram nodifiers nodifier bit field to apply to
the method or constructor (built by OR ing
Modi fiers constants)
*/ @ee Mdifiers
*
public Met hodModi fi er s(
String signature, int nodifiers

EE R I I

/** Return the nodifier bit field to apply to the
* method or constructor.
* @eturn int - nodifier bit field
*
/
public int get Modi fiers();

/** Return the signature of the nmethod or constructor
* to which this nodifier set applies.

* @eturn String - nethod or constructor signature
*/

public String get Signature();

Modifiers are attached to methods (class or object) using the static table
met hodModi fi er s. Thetable has an entry for each method or constructor for which
modifiers are specified. Methods without modifiers need not be present in the table.

public class Ad ass
{
private static MethodMbdifiers[] nethodMbdifiers =
new Met hodMvbdi fier(...),
b
}

4.14.4 Modifier Precedence
With the exception of the controller modifier, adjunct modifiers only have meaning at the
method or constructor level. Modifiers attached to classes and objects simply establish
default modifiers for the class or object methods. Thus, class and object modifiers can be
overridden by modifiers attached to individual methods. Adjunct modifiersare
overridden in sets of independent modifier categories. Effectively each set isan

Fedarated Manegemant Architeciure Spedification Page 51

Dynamic Services Model

52

4.14.5

enumeration of exclusive modifiers. That isto say, that only one modifier of agiven set
can be applied to the class or method.

Permissible Modifiers
The following modifiers are permissible. The modifiers are categorized as controller,
aspect, or security modifiers. The semantics of each modifier set will be defined in a
subsequent section of this specification.

package javax. fma. server;

i nport java.lang.refl ect. Met hod;
i mport java.lang.refl ect.Constructor;

/** Definitions and conveni ence routines related to
* the handling of adjunct nodifiers.
*/

public abstract class Mdifiers

/** class nodifiers field nane */
static public final String CLASS_MODI FI ERS_FI ELD =
"classModi fiers”;

/** object nodifiers field nane */
static public final String OBJECT_MODI FI ERS_FI ELD =
"obj ect Modi fiers”;

/** method nodifiers field nane */
static public final String METHOD_MODI FI ERS_FI ELD =
"met hodModi fiers”;

~——

/
/ Controller nodifier set
/

/** Decl ares objects of the class to be controllers
* for classes only).

*/

public static final int IS _CONTROLLER = 0x0001;

/** Return true if the specified nodifier bit field
* inplies | S CONTROLLER

* @eturn boolean - true, if bit field inplies

* I S CONTROLLER

*/

public static boolean isController(int nodifier);

Security nodifiers.
Sensitivity Set
If none is set, PUBLIC is assuned.

~—— — —
~ e~~~

/** I ndi cates that invocations involve only public,
* not sensitive, information.
*/

public static final int PUBLIC = 0x0002;

Fedarated Manegamant Ardhiteciure Soedification

Dynamic Services Model

/** I ndicates that invocations involve sone sensitive,
* not public, information, but not information that
* js strictly private, such as a password.

*/
public static final int SENSITIVE = 0x0004;

/** I ndi cates that invocations involve confidenti al
* information, such as a password, that should be
* protected frompublic visibility.

*/

public static final int CONFI DENTI AL = 0x0008;

/** Return true if the specified nodifier bit

* field inplies PUBLIC

* @eturn boolean - true, if bit field inplies
* PUBLI C.

*/

public static boolean isPublic(int nodifier);

/** Return true if the specified nodifier bit

* field inplies SENSITIVE.

* @eturn boolean - true, if bit field inplies

* SENSI Tl VE.

*/

public static boolean isSensitive(int nodifier);

/** Return true if the specified nodifier bit field
* inplies CONFIDENTI AL.
* @eturn boolean - true, if bit field inplies
* CONFI DENTI AL.
*
/
public static boolean isConfidential(int nodifier);

Security nodifiers.
Server Subject Usage
If none is set, the nethod is invoked w thout a
Subj ect .

~— — — ~— ~—
~ N~~~

Fedarated Manegemant Architeciure Spedification Page 53

Dynamic Services Model

/**Method shall be invoked with the Subject of the

* client or no Subject if the client did not
authenticate a Subject. The Subject may or may not
contain private credentials dependi ng on whet her
the client choose to delegate. This nodifier wll
result in a security exception being thrown to
the client if the referent object or class does
not have javax.fma. conmon. Wl | KnownSubj ect Per mi ssi on
*/ with a target of "getdientSubject".

*

public static final int AS_CLI ENT = 0x0010;

EE R I I

/**Met hod shall be invoked with the well known Subject
* of the station or no Subject if the well known
* Subj ect has not been set. The Subject will contain
* private credentials. This nodifier wll
* result in a security exception being thrown to
* the client if the referent object or class does
* not have javax.fnma. common. el | KnownSubj ect Per ni ssi on
* with a target of "getSubject".
*
/
public static final int AS_SERVER = 0x0020;

/** Return true if the specified nodifier bit field
* inplies AS_CLI ENT.

* @eturn boolean - true, if bit field inplies

* AS_CLI ENT.

*/

public static boolean asClient(int nodifier);

/** Return true if the specified nodifier bit field
* inplies AS_SERVER

* @eturn boolean - true, if bit field inplies

* AS_SERVER.

*/

public static boolean asServer(int nodifier);

Security nodifiers.
Del egati on set
If none is set, USES DELGATION is assuned
to be false (not set).

~— — — ~— ~—
~ N~~~

/**Hi nt nodifier for delegation. If uses delegation is
* not set, the client does not need to pass the private
* credentials of the Subject. If uses delegation is set
* the private credentials nust be passed. Note that
* this is an optimzation. Al ways passing private
* credentials regardl ess of uses delegation is a
* conpliant inplenentation.
*
/
public static final int USES DELEGATI ON = 0x0040;

Federatad Manegamant Ardhitsdire Soadification

Dynamic Services Model

/** Return true if the specified nodifier bit field
* inmplies DELEGATI ON
* @eturn boolean - true, if bit field inplies

* DELEGATI ON.

*/

public static boolean usesDelegation(int nodifier);
11

/1 Aspect nodifiers.

I Transaction set

11

/**Indicates that the nmethod is synchronized with

* respect to transactions.

*/

public static final int SYNCHRONI ZED_TRANSACTI ON
= 0x0080;

/** Return true if the specified nodifier bit field
* inplies SYNCHRONI ZED TRANSACTI ON.
* @eturn boolean - true, if bit field inplies
* SYNCHRONI ZED_TRANSACTI ON.
*
/
public static boolean isSynchronizedTransaction(
int nmodifier

Conponent nodifiers.
Logi cal thread set

~—— —
~—~

/**Indi cates that the nmethod is synchronized with

* respect to |ogical threads.

*/

public static final int SYNCHRONI ZED LOd CAL_THREAD
= 0x0100;

/** Return true if the specified nodifier bit field
* inplies SYNCHRONI ZED LOG CAL_THREAD.
* @eturn boolean - true, if bit field inplies
* SYNCHRONI ZED_LOG CAL_THREAD.
*
/
public static boolean isSynchronizedLogi cal Thread(
int nmodifier

Conponent nodifiers.

/
/
/ Controller set
/

~—~

/**Indi cates that the nmethod is synchronized with
* respect to controllers.
*/
public static final int SYNCHRONI ZED_CONTRCLLER
= 0x0200;

Fedarated Manegemant Architeciure Spedification Page 55

Dynamic Services Model

56

4.14.6

/** Return true if the specified nodifier bit field
* inplies SYNCHRONI ZED CONTROLLER.
* @eturn boolean - true, if bit field inplies
* SYNCHRONI ZED CONTROLLER.
*
/
public static boolean isSynchronizedController(
int nmodifier
)

~——
~~

Per si stence Policy Set

/** I ndicates that the referent object is to be

* persisted.

*/

public static final int PERSI STENT = 0x2000;

/** Return true if the specified nodifier bit field
* inplies PERSI STENT.

* @eturn boolean - true, if bit field inplies

* PERSI STENT.

*/

public static boolean isPersistent(int nodifier);

}

Applicability of Modifiers

The following table shows which modifiers are applicable to object methods, class
methods, constructors and classes. Modifiers which are not applicable are ignored.
Modifiers that are applicable to class methods but applied to a class define the default
modifier pattern for al class methods. Modifiers that are applicable to object methods but
applied to an object define the default modifier pattern for all class methods.

Modifier Applicability Default Field

IS CONTROLLER class classModifiers
PERSISTENT class classModifiers
PUBLIC static method classModifiers,

object method | objectModifiers, or
methodM odifiers
SENSITIVE static method classModifiers,
object method | objectModifiers, or
methodM odifiers
CONFIDENTIAL static method classModifiers,
object method | objectModifiers, or
methodM odifiers
AS CLIENT static method classModifiers,

Federatad Manegamant Ardhitsdire Soadification

Dynamic Services Model

object method | objectModifiers, or
methodModifiers
AS SERVER static method classModifiers,
object method | objectModifiers, or
methodM odifiers
USES DELAGATION static method classModifiers,
object method | objectModifiers, or
methodM odifiers
SYNCHRONIZED_LOGICAL_THREAD | object method | objectModifiers, or
methodM odifiers

SYNCHRONIZED_TRANSACTION object method | objectModifiers, or
methodM odifiers
SYNCHRONIZED_CONTROLLER object method | objectModifiers, or

methodM odifiers

4.15 Exception Handling

Exception handling, which exceptions are thrown in reponse to specific conditions, are

specified in this section with respect to the ‘invoke’ methods ostthei on and

Accept or interfaces. In general, exception handling during remote operations must obey
RMI semantics. In addition, the invoke methods, must obey the specialization of RMI
semantics described here. The invoke methods declare two exceptions: RemoteException
and InvocationTargetException. In addition, the following sections specify how Proxies
are to respond to undeclared exception that may be thrown fradndheon and

Accept or interfaces.

4.15.1 InvocationTargetException

An | nvocati onTar get Except i on indicates that the remote operation was dispatched
on the referent (class or object) and that the operation threw an throwable, the target of
thel nvocat i onTar get Except i on. Thus, arl nvocat i onTar get Excepti on is not

the result of a condition in the infrastructure, but rather a condition in the referent.

4.15.1.1 Proxy Response

A Proxy must extract the target exception fromitheocat i onTar get Except i on and
throw according to the kind of target exception, as follows. Note that the

I nvocat i onTar get Except i on is never thrown or propagated by a Proxy and that the
following rules are applied in the order listed.

Federatlad Manegament ArchitediLre Spadification Page 57

Dynamic Services Model

Kind of Target Exception (t) Proxy Throws

java.rm . Renot eException java.rm . Server Exception
(t nested)

Declared throwable t

java. l ang. Runti meException |t

java.lang. Error java.rm . ServerError

j ava. |l ang. Excepti on java. rm . Unexpect edExcepti on
(t nested)

4.15.2 RemoteException

A Renot eExcept i on indicates a condition in the infrastructure rather than the referent.
The FMA introduces alayer on top of RMI and, therefore, specializes

Renot eExcept i on to distinguish between condition in the RMI layer and the FMA
layer. The specialization isthe St at i onExcept i on exception, which implements
Conpost eThr owabl e.

4.15.2.1 Proxy Response

A Proxy must respond to the various classes of Renot eExcept i on according to the
rules of the following table. The rules are to be applied in the order listed.

Kind of RemoteException (e) Proxy Throws

java. rm . NoSuchQnbj ect Excepti on e rethrown

j avax. f ma. conmon. St at i onException | e rethrown

java.rm . Renot eException with a rethrow target

target of type StationException

ot her Proxy attenpts rebind
and retry of
operation. If rebind
fails, e is rethrown.

4.15.3 Unechecked Exceptions

An unchecked exception (error or runtime exception) thrown froma St ati on or
Accept or interface indicates alocal error condition from recovery is not reasonable.

4.15.3.1 Proxy Response

Proxies should propagate unchecked exceptions unmodified. In general, this means that
proxies should only catch Renot eExcepti on and | nvocat i onTar get Excepti on
from ‘invoke’ operations.

58 Federatad Manegamant Ardhitsdire Soadification

Dynamic Services Model

4.15.4 StationException Class

package j avax. fnma. common;

i nport java.util.Locale;
i mport java.io.Serializable;
i nport java.rm . Renot eException;

i nport javax.fma.util.ConpositeThrowabl e;
i mport javax.fma.util.Localizabl eMessage;

/** Renot eException inmplenentati on of ConpositeThrowabl e.
*/
public class StationException extends RenoteException
i npl emrent's Conposit eThr owabl e

static final long serial VersionU D = -8311358440368993358L;

/** Construct StationException with nested exception.
* @aram nest edException Throwabl e which is a

* cause of this exception. May be null.
* @aram serverSide Indicates if exception was thrown
* by the server (true) or client (false).
*
/
public St ati onExcepti on(
Thr owabl e nest edExcepti on,
bool ean server Si de
)

[** Construct StationException with provided nessage
* and nested exception.
@ar am nessage Infornative failure nessage.
@ar am nest edExcepti on Throwabl e which is a
cause of this exception. May be null.
@ar am serverSide Indicates if exception was thrown
by the server (true) or client (false).

EE R I I

public St ati onExcepti on(
Local i zabl eMessage nessage,
Thr owabl e nest edExcepti on,
bool ean server Si de

);

/**Indicates if exception was thrown by the server or client.
* @eturn true if thrown by the server, false if thrown by
* the client.

*/

public bool ean t hr owmnBySer ver () ;

/** Returns a localized description of this
* ConpositeThrowabl e using the default |ocale.
* @eturn Returns the |ocalized nessage.
*/

public String get Local i zedMessage() ;

Fedarated Manegemant Architeciure Spedification Page 59

Dynamic Services Model

4.15.5

/** Returns a |l ocalized description of this
* ConpositeThrowabl e using the given |ocale.

* @aram | ocale Locale in which to performthe |ocalization.
* An ||l egal Argunment Exception is thrown if |ocale

* is null.

* @eturn Returns the |ocalized nessage.

* @hrows |11 egal Argurment Exception if locale is null.

*/

public String get Local i zedMessage(Local e locale);

/[** Returns the array of (causal) nested exceptions
* included in the ConpositeThrowabl e.
* @eturn Returns an array containing the causal

* nest ed exceptions.
*/
publ i c Throwabl €[] get Nest edExcepti ons();

/** Returns a stack trace for a nested excepetion.
* @aram nest edExcepti on Nested exception for which

* a stack is being requested.

* @eturn Returns stack trace for indicated nested throwable.
*/

public String get Nest edSt ackTrace(Throwable t);

/** Facilitates saving of renpte stack trace information.

* This method is called by the FMA station before a
ConpositeThrowabl e is thrown to a Proxy to indicate that
the renpote station should concatenate its stack infornation
with the current stack information for this
Conposi t eThr owabl e.
<p>
* This method does not need to be called explicitly.

*

/
public void saveRenot eSt ackTrace() ;

EE I

/** Returns a nessage describing this throwable.
*/
public String get Message() ;

/** Returns a short description of the
* StationException object.
* @eturn Returns a string representation of

* this Stati onException.
*/
public String toString();

Exception Handling Summary

4.16 Proxy Class Details

60

4.16.1

The Pr oxy interface is the public interface that must be implemented by all Proxy
classes.

Proxy interface
The Pr oxy interface includes a method returning the class name of the referent object’s
class.
Federatad Manegamant Ardhitsdire Soadification

Dynamic Services Model

package javax.fma.client;

import java.io.Serializable;
i nport java.rm . Renot eException;

/** I nterface for Proxies.
*/
public interface Proxy extends Serializable, Coneable

/**Returns the nane of the referent object
* cl ass.

*/

String get Ref er ent bj ect Cl assNane() ;

/**Test referential integrity.
* @eturn Returns true if the Proxy refers to a valid
* referent object. false if not.
* @hrows RenoteException Unable to test referential
*/ integrity because of a communication error.
*
bool ean i sValid()
t hr ows Renot eExcepti on;

4.16.2 Remotely Exposed Methods and Constructors

Implementations of the Pr oxy interface contain selected methods, constructors, and
interfaces that are to be exposed through the Proxy. Signatures for exposed methods are
identical to those of the referent with the following exceptions.

1) Class (static) methods have an additional last argument of type
j avax. f ma. common. St at i onAddr ess.

2) Constructors have an additional last argument of type
j avax. f ma. comrmon. St at i onAddr ess.

3) All remote methods and constructorsthrow j ava. r m . Renot eExcept i on.

4.16.3 Wrapper Constructor

Pr oxy classes must contain awrapper constructor that takes a single argument of the
typej ava. | ang. bj ect , i.e.,, MyProxy(Obj ect object).Thewrapper
constructor allows a referent object to be effectively passed by value as an argument to a
remote method call or returned by value from aremote method call. The referent object
passed to the wrapper constructor must be an instance of the referent classor a

j ava.l ang. O assCast Except i on will be thrown by the wrapper constructor.

4.16.4 equals() and hashCode()

equal s() and hashCode() follow RMI semantics associated with stubs. Thus, two
Pr oxi es are considered equal if and only if they refer to the same referent object.

Federatlad Manegament ArchitediLre Spadification Page 61

Dynamic Services Model

4.16.5

4.16.6

Clonable and Serializable

The Pr oxy interface extendsj ava. | ang. Cl onabl e andj ava. i 0. Seri al i zabl e.
Proxy classes must implement j ava. | ang. d onabl e such that thecl one() method
returns a new Proxy that refers to the same referent object. Proxy classes must implement
java.io. Serializable.

getReferentObjectClassName() and getReferentClassClassName()

Proxy classes contain methods for returning the class name of both the referent object’s
class and the referent class's class. These may differ if the referent object’s classisan
extension or implementation of the referent class's class.

The method get Ref er ent Obj ect O assNane() returns the class of the referent object.
The referent object is the target object of remote object method invocations on the Proxy
object. Thus, get Ref er ent Obj ect Ol assName() is declared as an object method on
the Proxy.

The method get Ref er ent O assCl assNanme() returnsthe class of the referent class.
The referent classisthe target class of remote class (static) method invocations on the
Proxy class. Thus, get Ref er ent O assCl assNane() isdeclared as a static method on
the Proxy.

4.17 Network Class Loading

62

4.17.1

RMI network class loading provides a mechanism by which argument and return value
(including exceptions) classes may be loaded. The dynamic services model inheritsthis
mechanism and extends it to include network class loading of referent classes when
performing remote instantiation and class method invocations.

Class Loaders and Deployments

As previously mentioned, each deployment has a single, unique code base and associated
class loader. One can consider a station as containing the primordial class loader (also
known as the system or null class loader) and a number of deployment class loaders,
which are children of the primordial classloader. The primordial class loader loads
infrastructure including the Java Runtime Environment (JRE), extensions, Jini
technology classes, and the FMA implementation classes. The java.rmi.server.codebase
property is the code base assigned to classes loaded by the primordial class loader. When
one of these classesis passed to aremote VM, the remote VM will use the RMI code
base property of the originating JVM to load the class. This property cannot be changed
at runtime; therefore, updates to the infrastructure classes require restarting the station
JVM. The value of the RMI code base property isimplementation dependent.

Unlike infrastructure, classes and resources for dynamic services are not placed in the
CLASSPATH or loaded by the primordial class loader. They are packaged into a
deployment group and deployed on a station. The station accepts the JARS and stores
them somewhere such that they may be accessed through the HTTP class server
associated with or contained by the station. The station assigns a code base, containing
the URLs that can be used to network load the JARS, to the deployment. The station also
inspects the manifest of the JARsin order to build an inventory map of package/version

Federatad Manegamant Ardhitsdire Soadification

Dynamic Services Model

tuples to code bases. When the station needs to load a class to support remote
instantiation, remote class method invocation, or activation, the station consults this map
to retrieve the code base associated with the latest version of the class's package. Given
this code base, the station then requests the RMI class |oader to load the needed class.

4.17.2 Class Loading During Remote Instantiation

During remote instantiation, the station needs to load the class of the object to be
instantiated. The search for the class shall proceed as follows.

1) Retrievethe code base of the latest version of the class's package using the local
inventory.

2) If acode base was found, attempt to load the class using
java.rmi .server. RM O assLoader. The RMI class loader will always
attempt to use the parent class loader before trying the code base.

3) If acode base was not found, attempt to the class using the primordial class
loader (j ava. | ang. O ass. f or Nanme(...)).

4) If theclass has still not been found, attempt to load the class using the client’s
RMI code base, if not null. This code base is embedded in the operation request.
Theclient isthe JVM requesting the remote operation.

4.17.3 Class Loading During Remote Class Method Invocations

During remote class method invocation, the station needs to load the referent class. The
search for the class shall proceed as follows.

1) Retrievethe code base of the latest version of the class's package using the local
inventory.

2) If acode base was found, attempt to load the class using
java.rm .server. RM O assLoader. The RMI class loader will always
attempt to use the parent class loader before trying the code base.

3) If acode base was not found, attempt to the class using the primordial class
loader (j ava. | ang. O ass. f or Nanme(...)).

4) If theclass has still not been found, attempt to load the class using the client’s
RMI code base, if not null. This code base is embedded in the operation request.
Theclient isthe JVM requesting the remote operation.

4.17.4 Class Loading During Activation

During activation of a persistent object, the station needs to load the class of the object
being activated. The class shall be located according to the following sequence.

1) Retrievethe code base of the latest version of the class's package using the local
inventory.

2) If acode base was found, attempt to load the class using
java.rm .server. RM C assLoader . The RMI class loader will always
attempt to use the parent class loader before trying the code base.

Federatlad Manegament ArchitediLre Spadification Page 63

Dynamic Services Model

3) If acode base was not found, attempt to the class using the primordial class
loader (j ava. | ang. C ass. f or Name(...)).

4) If the class has still not been found, attempt step 1 using the code base stored
with the object. If this succeeds, activation shall continue but awarning, in the
form of alog message, shall be issued indicating that an out of date class has
been loaded during activation because of a backwards compatibility.

The semantics of class loading during activation is to use the latest available version of a
particular class. If activation fails with the latest version, an attempt is made to recover by
using the version that was in effect when the object was stored. Note that thisrequiresthe
persistence of the object to include the code base, effective at the time of persistence, for
the object’s class. Thisis considered a recovery scenario and shall result in alog message
to that effect.

64 Federatad Manegamant Ardhitsdire Soadification

5 Security

The following security mechanisms are addressed by an implementation of this security
model:

1) Remote authentication and authorization

2) Delegation

3) Auditing

4) Cryptographic data protection (confidentiaity, integrity,..)

Asthis specification is only concerned with standardizing vendor boundariesto allow
interoperability, the specification standardizes only those mechanisms, such as security
domain and federations, which serve as a basis with interoperability between stations,
clients, managed resources, and dynamic services. This version does not attempt to
standardize administration interfaces, such as key management, of stations, services, or
any other entity.

Thefollowing isthe list of security issues specified in this document:
1) Security topology

2) Authentication and authorization mechanism. Station authentication and
authorization is based on the Java Authentication and Authorization Service
(JAAS) and the standard Java security model. Although the reader is assumed to
be familiar with both of these security technologies, the following sections
review the JAAS while presenting additional specifications and constraints
associated with this security model.

3) Role based access control
4) Keyl/certificate infrastructure
5) Delegation

The security architecture is one of a security domain with atrusted third party, the
security service for the domain.

Federatlad Manegament ArchitediLre Spadification Page 65

Security

5.1 Trusted Third Party Architecture

51.1 Security Domains

Security domains are realms of trust against which subjects are authorized and Roles
defined. Management domains and security domain, though separate concepts, are
mapped one-to-one and share the same domain name. Thus, a management domain of
name "boulder" belongs to a security domain of name "boulder”. Each security domain
has a single well-known security service as atrusted third party. A single security service,
however, may serve more than one security domain, if supported by the particular
security service implementation.

Entities in one security domain do not understand nor trust the security credentials of
another security domain. When communication occurs between security domains, the
party initiating the communication must join the target security domain asaclient.

5.1.2 Federations

Asastation may only belong to a single management domain, it may only belong to a

single security domain. A station has an associated well known Subject representing the
authentication of the station itself. Some stations, by virtue of being authenticated as a

federation member, a special status within a security domain, belong to the containing

security domain’s federation and are completely trusted by other participants in the
security domain. Clients, when discussing security, are considered to be JVMs that
participate in a security domain but are not stations. Clients may participate in more than
one security domain.

Security Domain D2

Security Domain D1 _
- ...
i Client
Federation F1 Federation F2

Figure 12. Security Architecture.

66 Fedarated Manegamant Ardhiteciure Soedification

Security

5.2 Scope of Specification

This specification standardizes only the programming interfaces at vendor boundaries.
With respect to security, the main boundaries are as follows.

521 Client/Station to the JAAS (Authentication)
Clients and stations must authenticate themselves with the security services of the
security domains in which they participate. Such authentication is performed by the
authentication portion of the JAAS together with a plug in login module that
communicates with the security service of the management domain.

522 JAAS to the Security Services

Because the proper JAAS login module and the security service can be supplied by
different vendors, the interface to the security service is specified.

523 Service Objects to the JAAS (Authorization)

On the server side, service objects must be able to perform authorization checks. An
interface for performing such checksis specified as well as a migration path from JDK 1.2
to JDK 1.3, the officially supported JDK for the JAAS.

524 Client to Proxy

A client, in the sense of something invoking operations on a Proxy, is required to present
certain security information to the Proxy. Thisinformation, principally a Subject of
specific composition, is specified. This point is addressed in a subsequent section entitled
Client to Proxy on Page 89.

525 Referent Objects to Station

Referent objects inform the hosting station about the sensitivity of certain operations as
well as whether a particular operation will require delegation. Thispoint is addressed in a
subsequent section entitled Referent Objectsto Station on Page 90

5.3 Terms and Definitions

The following terms are fundamental to the security model. Additional terms and
definitions are introduced as needed in the course of the chapter.

531 Subject

Subject isa JAAS concept that represents the source of an operation request, such asa
person or service. Once authenticated, a Subject is populated with associated identities, or
Principals, as explained later. A Subject may also be populated with credentials such as
certificates, tickets, and keys. The public credentials of a Subject can be accessed without

Federatlad Manegament ArchitediLre Spadification Page 67

Security

5.3.2

5.3.3

68

restriction. Accessing private credentials, such as private keys, requires special
permissions.

Subjects are associated with threads of execution and carried in context. Thus, at any
point in acall stack one may retrieve the Subject associated with the current thread and
perform an authorization check to verify whether the Subject has permission to perform a
particular operation. This authorization based on Subject, supplied by the JAAS,
augments the Java authorization model that is based on the level of trust in aclass. The
method of associating a subject with a thread of execution and retrieving the subject
associated with the current thread is provided by the JAAS. The two security models
(JAAS and Java) are fully described in the security documentation associated with the
JAAS and the JDK.

Principal

Subjects are populated, during authentication, with Principals, a JAAS and Java
technology concept. Population of a subject requires specific permissions; thus, the
association between subjects and principalsis trusted to the same extent as the entity
performing the population (usually a JAAS Login Module). A Principal may be thought
of as one possible name for the subject. For example, the Solaris Login Module
associates three Principal s with a Subject during authentication:

1) SolarisUserPrincipal (user name),
2) SolarisNumericUserPrincipal,
3) SolarisNumericGroupPrincipal.
Each of the Principals has atype, given by its Java class, and a name.

If the creator, generally aLogin Module, of the Principal istrusted (to create only trusted
classes of Principals and give them trusted names) then the type and name of the
Principal can be trusted. If aPrincipal is passed remotely from a source to a destination,
the destination must be able to establish its own trust in the Principal (class and name).
This generally involves the source proving to the destination, by the presentation of
certain credentials, that it isin fact alegitimate holder of the Principal. Clearly, such
credentials are sengitive information.

Stations versus JVMs

Not all partiesin the security domain are stations. Parties that communicate with remote
objects, rather than hosting remote objects, need only be aclient VM in which the
appropriate client side classes (Proxy support) have been loaded. Only in a few instances
isit necessary to treat stations asif they were different from client JVMs. In the context
of security, the following classes of JVMs are referred to by this specification:

1) JVM A client or station JVM participating in a security domain.

2) Station A VM enabled to support the dynamic services model: capable
of hosting remote objects.

3) Client A VM capable of communicating with a station

Federatad Manegamant Ardhitsdire Soadification

Security

4) Authenticated JVM A VM with an authorized and well-known Subject. Authorized
objects within the VM can access and use the well-known
subject of the VM using the
j avax. f ma. common. Wl | KnownSubj ect class. If the VM
is authenticated as a server during communications, it will
present its well-known Subject asitsidentity. Variations are
authenticated station and authenticated client.

5.34 Security Policy

The security policy is a Java concept manifest by a security policy "file". In this context,
a"file" isusualy afilein terms of the local operating system, but can be multiple files or
remotely loaded data sources specified by one or more URLSs. Java policy files consist of
anumber of entries granting permissions to classes, as specified by code base or the
signer of aclass. For example, the following is an entry granting code from the

/ hone/ sysadm n code base directory read accessto thefile/ t np/ abc.

grant Codebase "file:/honme/sysadm n/" {
perm ssion java.io.FilePerm ssion "/tnp/abc", "read";

The JAAS extends the Java security policy file syntax to include entries that grant
permissions to Principals and, therefore indirectly to Subjects.

/Il grant perm ssions to a Code/ Signers/Principals triplet

grant

Codebase "www. f 00. cont',

Si gnedBy "bar",

Princi pal com sun.security.auth. Sol ari sPrincipal "duke" {
perni ssion java.io.FilePermssion "/duke", "read,wite";

In addition to permission grants, the policy file specifies the location of the key store
containing the certificates used to verify class signatures. See the JDK security
documentation for further information about policy files and the policy tool that can be
used to create and edit such files.

Policy files can be specified, using standard options, when starting a JVM.
Implementations can provide other means of specifying security policy files such as
secure remote loading. Authorization uses the policy file; thus, apolicy fileisloaded into
the VM controlling the resources to be protected by the policies.

5.3.5 Role

Roleis a concept introduced to ease the burden of creating and maintaining access
control lists. The JAAS service does not standardize the Principals associated with a
Subject. As aresult, the security policies (access control lists - described later) depend,

Federatlad Manegament ArchitediLre Spadification Page 69

Security

70

indirectly, on the method of authorization. For example, if the security policy granted
permissions only to SolarisUserPrincipals and a NIS login module was used to
authenticate a Subject, the Subject would not have any permissions because the NIS does
not populate the Subject with Solaris principals. The net effect is that independent
security policies would have to be maintained for each method of Subject authentication.
Roles, a specialization of Principal, reduce the cost of maintaining security policies by
standardizing the Principal used for management system security.

package j avax. fma. common;

i nport java.security. Principal;
i mport java.io.Serializable;

/**Rol e represents a standard, abstract kind of Principal
* for roles based authorization. Two roles are
* considered equal iff they have the same Rol e nane,
* security domain name, and the sane cl ass nane.
*/
public class Role inplenments Principal, Serializable
{
/**Construct a new Rol e object. Role nanes and
* security domain names may not contain unmatched

* braces "{}".
* @aramrol eNane Name of the Role. This is the
* Princi pal nane and may be retrieved using
* Princi pal . get Name()
* @aram securityDonai nName Nane of the security
* domai n agai nst which this Role was issued.
* @hrows Il egal Argument Excepti on rol eNanme or
* or securityDonmai nName are null or contain
* unmat ched braces.
*

/

public Rol e(
String rol eNane,
String securityDomai nNanme

);

/** Get the role nanme of this Role.

* @eturn the nanme of the role.

*/

public final String get Rol eNane() ;

/** Get the nane of the security domai n agai nst which
* this Role was issued.

* @eturn the nane of the security domain.

*/

public final String get Securi t yDomai nNane() ;

Federatad Manegamant Ardhitsdire Soadification

Security

[** Get conposite nane of this role in the form

* "{rol eNane}{securityDonmai nNane}". If role name or
* security domain name is enpty, the braces are still
* present.
* @eturn the nane of this role.
*

/

public final String get Nane();

/** Conpares this role to the specified object.

* Two roles are considered equal if they have the sane

Rol e nane, security domai n nane,

and if they are of the sane class.

@ar am another role to conpare with.

@eturn true if the role passed in is the same as that
encapsul ated by this role, and fal se otherw se.

* 0% X X X

*/
public final bool ean equal s(Cbject another);

/** Returns a hashcode for this role.
* @eturn a hashcode for this role.
*/
public final int hashCode() ;

/** Get the string representation of this Role

* as defined by <code>get Nane</ code>.

* @eturn a string representation of this role.
*/

public String toString();

Permissions may only be granted to Roles, code bases, and signers. For example, a
security policy file might contain the following entry. Note that this techniqueis
compatible with the JAAS and Java security.

/1 Grant permissions to a Role, regardl ess of code base
/1 and signers.

grant
Princi pal javax.fma. common. Rol e "{adm nistrator}{boul der}" {
perm ssion java.io.FilePerm ssion "/duke", "read,wite";

A Subject, when authorized, can be populated with many Principals, including more than
one Role, and all of these Principals are applicable to permissions within the VM in
which the Subject was authorized (local security). However, when the Subject is passed
(explicitly or implicitly) to aremote VM, the resultant Subject in the remote JVM shall
consist of asingle Principal that is a Role. In the remote propagation of Subjects, the
following rules apply:

1) Principals contained in the Subject are not propagated unless they are Roles.

2) A Role shall not be propagated unlessit has an associated Rol eKey credential.
(Role Keys are described later in relation to secure Subjects.) This credentia isthe
basis of the propagation.

Federatlad Manegament ArchitediLre Spadification Page 71

Security

5.3.6

5.3.7

72

3) Only Rolesthat belong to the same security domain as the remote (target) station, if
it belongs to a security domain, are eligible for propagation.

4) If morethan one eligible Role/credential pair exists, the method by which an
implementation chooses which single Role to propagate is undefined.

While the use of Roles and the propagation of only a single Role have benefits
(simplifying the security model, implementation, and maintenance), there are associated
costs. If auser is compromised, the roles to which that user can access are also
compromised. Thisisaresult of users being authorized with respect to arole rather than
respect to each user. The security model allows the end administrator, who configures the
security system, to choose an appropriate tradeoff between simplicity and the size of a
compromised Role scope. In one extreme, each user has a unique Role. Permissions
would be maintained against each user. In the other extreme, thereis a single Role that
allows access to the entire system and is shared by all users.

Federations

A federation of stationsis the set of authenticated stations that are considered as trusted
as the security server of the security domain containing the federation. A federation
member is trusted because the entity (perhaps an administrator) authenticating the station
as such istrusted to make that determination. A federation is bounded by its security
domain; thus, each security domain has a single, possibly empty, federation of trusted
stations. The federation name and the name of the security domain containing the
federation are the same.

Members of afederation trust each other because each has authenticated itsel f
specifically as a member of the federation and, as aresult, holds the private security key
of the federation. Members of the federation can use the key to secure communications
among themselves. In this manner, a federation of JVMs becomes a web of trust where
each member trusts the other and intra-federation communications can be secured. A
conseguence of this simplification is that a malicious member of the federation can
compromise the federation. Because of this vulnerability, the entity providing the
authentication credentials, such as a password, necessary to join afederation is
responsible for ensuring that an installation (JVM, security policies, etc.) is, in fact,
secure.

Within a security domain, clients and stations outside of the federation trust the

federation; however, the trust is not reciprocated: federation members do not, in general
fully trust non-members.

Security Manager and Class Loaders

An implementation shall not depend on installing its own class |oaders or security
manager. In general, implementations shall not assume that they own the hosting VM
and shall be well behaved with existing class loaders, including the RMI class loader, and
Security manager.

Federatad Manegamant Ardhitsdire Soadification

Security

5.3.8 Security Service

The primary responsibility of a security service isto provide authentication servicesto
the participants of a security domain. The security service provides credentials,
encapsulated in an authenticated Subject, that the authenticating party may use to prove
its authentication to other parties that trust the security service. Clients, stations, and
federations depend on the trust of the security service. The security serviceis, of course,
quite sensitive; a compromised security services can compromise the entire security
domain.

There isasingle security service per security, and therefore management, domain, but
security domains can share a security service. The limiting factor isthe reliable
reachability of the security services from the security domains and the ability of a
particular security service implementation to support multiple domains, which is not
required.

5.4 Security Topology

The following Figure shows the topology of two security domains served by a single
security service. The Figure also shows the distribution of various keys and certificates at
acertain point in time. The depicted client has been authenticated against two security
domains and, therefore, has an authenticated subject with two different roles, one for each
security domain.

Security Domain D2

Security Domain D1

L] 17 rRiD1
| ySD1_ySD2 4F 153 rans

Federation F2

| Security Server |
T oY reD1
T o211 ReD2
!
o 0]

? Private key E Certificate containing public key Authenticated Subject

Figure 13. Security services, Security Domains, Federations, Stations, and Clients.

Fedarated Manegemant Architeciure Spedification Page 73

Security

54.1

74

Private keys are shown as key icons and certificates (which contain the public keys) as
certificate icons, both with annotations as follows:

1) F<d> whered isthe security domain name.
2) SD<d> to represent the key pair for the security domain d.

3) R<r>D<d> to represent the Roler in the security domain d. Note that Roles are
qualified by security domain. Although two security domains may have Roles with
the same name, they are not considered the same role because security domains are
the scope limit of Roles.

Key/certificate pairs are issued as a result of authorization against a security service and
are encapsulated in a Subject. Often the authorized Subject is the well-known Subject of
the particular entity.

In text, the annotations are subscripts, the private key icon is represented by K’ and the
certificate (public key) by K. For example, the private key for the security domain 1is
represented by K'sp;. Authorized Subjects are represented by an S{ principal list}, such as
S{R1D1, R1D2}. Unauthorized Subjects have an empty list, {}.

Stations are denoted by Spg-s<s- Where d is the identification of security domain to which
the station belongs and sis the station identification.

Private keys are issued only in response to authorization and, unlike certificates, are
never persisted or otherwise passed outside of the JVM to which the security service
granted the key. Private keys are kept as a private credential of the authorized Subject.
Thus, even within the JVM containing the Subject, access to privates keysisonly
allowed to trusted code. In general, the only code trusted with this accessisthe Login
Module, which provided the private key during authorization, and the communications
infrastructure that needs the key to support secure communications. All others shall be
denied access to prevent malicious code within the VM from compromising the Role.
However, none of these mechanisms can protect the private key if the VM itself is
compromised.

Certificates

The certificate for the security domain, SD<d>, boots the security mechanism by
establishing trust in the security serviceitself. The means by which this certificateis
obtained, or more generally, how trust is established with this certificate, is not part of
this specification and expected to be handled as appropriate for a particular
implementation and installation.

To permit implementation independence while preserving interoperability, the
specification does standardize the format of all certificates to be X.509 (v1, v2, or v3). In
addition, security domain certificates shall have a subject distinguished name common
name egual to the name of the security domain. All role and federation certificates shall
be signed by the private key of the security domain against which the certificates were
issued. Thus, a holder of atrusted security domain certificate can establish trust in the
role and federation certificates of that security domain. The subject distinguished name
common name of Role certificates shall be the name of the Role.

Federatad Manegamant Ardhitsdire Soadification

Security

The security domain certificates are the only ones that must be stored persistently. The
authorization process, in particular a Login Module (described in the following section),
must be able to locate the security domain certificate for a particular domain. Security
domain certificates shall be made available through the Java key store facility under the
dias"j avax. fma: <security domai n nane>", suchas

"I avax. f ma: boul der". Thekeyst or e location is specified asa URL by the
system property "j avax. f ma. security. keyst or e". If this property is not
specified, the Login Module will look for the keys stored in afile".keyst or " in the
user's home directory as indicated by the standard system property "user . horre". (See
the IDK documentation for a precise algorithm by which the home directory is
determined for various operating systems.) For conventional installations, providing the
security domain certificates is a matter of storing the certificates in the default key store
fileusing thekeyt ool tool supplied with the JDK.

5.5 JAAS Authentication Overview

Authentication is the secure process of associating Principals and, optionally, credentials
with a Subject. The association shall be done in such a manner as to be trusted by the
mechanism performing authorization. Note that both the association of a Principal with a
particular Subject and the class of the Principal must be trusted. The class of the Principal
must be trusted to trust the Principal name, which isafactor in granting permissions.

The JAAS authentication mechanism is designed primarily for the local (within aJVM)
authentication of users. In its most basic form, the JAAS authentication algorithm
performs a multi-phase login across one or more trusted Login Modules, with each Login
Module being specific to a method of authorization, such as host based Solaris operating
environment authentication or NIS authentication. As the Login Modules are trusted,
(they have been granted certain permissions by the policy file associated with the VM in
which authentication is being performed) they have permission to add Principals and
credentials to the Subject of the login. Thus, the composition of the resulting Subject is
trusted to the extent that the relevant policy file (and JVM) are trusted. In general, this
level of trust is sufficient to make authorization decisions when the Subject is
authenticated in the same JVM in which the authorization is taking place. Further details
can be found in the JAAS documentation.

5.6 Management Extension to JAAS Authentication

The JAAS s sufficient when the authentication and authorization occur in the same JVM.
In the case of the security model of this specification, authorization and authentication
can happen in different JVMs. In particular, unless other measures are taken beyond
JAAS, the authorization process in a distributed environment cannot trust a Subject
because the authorization cannot trust the source of the Subject, nor can it trust the
communication channel by which the Subject was transferred from the authenticating
JVM to the authorizing VM. The purpose of the management extensionsto JAAS are to
establish the trust in foreign Subjects, that is, Subjects authenticated in aremote VM.

Federatlad Manegament ArchitediLre Spadification Page 75

Security

5.6.1

76

Though the specification often refers to passing a Subject from one VM to another, it is
unlikely that an implementation would choose to literally pass a Subject. Rather, the
Subject would generally be reconstructed in the target VM based on security information
supplied by the source JVM. In any case, the Subject islogically transferred, but the
mechanism by which this transfer is achieved isimplementation dependent.

Security Service

As previously described, the primary responsibility of the security serviceisto perform
secure authentication. It does so by supplying a JAAS Login Module that communicates
with the security service to perform authorization. The Login Module appears as alocal
Login Module, but the actual authentication is performed remotely in atrusted security
service.

The JAAS, however, cannot directly use the Login Module as supplied by the security
service because the JAAS expects to be able to instantiate, not retrieve a Login Module.
There isaso the issue of establishing trust in the Login Module and certificates supplied
by the security service, which requires well known, but secure, access to the certificate of
the security services. In addition, trust must be established in the proxy itself.

package javax. fma. services. security;

i nport javax.security. auth. spi.Logi nModul e;
i mport java.rm .RenoteException;
i nport java.security.cert.CertificateException;

/**Interface inplenented by the security service proxy.
*/
public interface SecurityService

/** Factory nmethod to get a new Logi nModul e for

* aut hentication.

@ar am securi tyDomai nNamre The nanme of the security
donmai n agai nst which the authentication should
be perforned.

@ hrows Renot eException any renote exception thrown during
execution of that operation

@hrows CertificateException indicates various problens
with certificate location or verification

@ hrows II Ill egal Argunent Exception if securityDomai nNane
is null.

* 0% X X X X X X X

*
/
Logi nModul e newLogi nModul e(String securityDomai nNane)
t hr ows
Renot eExcepti on,
Certificat eException;

The proxy must be trusted to verify its communications with the security service and for
providing the certificate to the Login Modules returned by newLogi nMbdul e() so that
the Login Modules can also validate their communications with the security service. In
general, this requires that the proxy fetch the certificate of a particular security domain

Federatad Manegamant Ardhitsdire Soadification

Security

from the key store. The alias used to access the certificate as well as the search for the
key storefile are outlined in the previous section about certificates.

To establish trust in a proxy, one must establish trust in the proxy code, which may have
been loaded from aremote source. Thisis a question of whether the client, not the server,
trusts the proxy. Therefore, the validation depends on information available on the client
side. A trusted proxy is aproxy to which the client has granted

j avax. f ma. conmon. Tr ust edPr oxyPer mi ssi on. Thiswill require that the local
(client side) poalicy file contain a grant entry granting this permission to the proxy
supplied by the security service. Note that the particular class of this proxy will
necessarily depend on the security service implementation. Changing the implementation
of asecurity service will require changing client side policy files. The details of the
process of trusting a proxy are general to all secure proxies and outlined in the following

code segment.

/Il Check to see if a particular object is trusted as a
/'l secure proxy. Note that this check requires that the
/1 entity doing the checking have pernission to access
/'l the protection domain of the class

/1 Runti mePerm ssion("getProtectionbDomain"). The

/'l proxy being checked nust have the

/] javax.fma. cormon. Trust edPr oxyPer mi ssion()

/1 perm ssion to be trusted.

i mport javax.fma.comon. Tr ust edPr oxyPer mi ssi on;

bbbl ean trusted = fal se;

try
trusted =
aProxy. get C ass().get Protecti onDonai n().inplies(
Trust edPr oxyPer mi ssi on newTr ust edPr oxyPer m ssi on()
)
)

}
catch(Nul | Poi nterException e) { }

package j avax. fnma. common;

i mport java.io.Serializable;
i nport java.security. Basi cPerm ssion;

/** Perm ssions class for authorizing trusted Proxies.
*/
public final class TrustedProxyPerm ssion
ext ends Basi cPernission inplements Serializable

static final long serial VersionU D = -4122846412590798067L;

/** Do not call. Construct a TrustedProxyPerni ssion object.
* @aramtarget the target nane
*/

publ i c TrustedProxyPerm ssion(String target);

Fedarated Manegemant Architeciure Spedification Page 77

Security

78

/** Do not call. Construct a TrustedProxyPermn ssi on object.
* @aramtarget the target nane
*/ @ar am acti ons not used
*
public Trust edPr oxyPer m ssi on(
String target,
String actions

)

/** Construct a TrustedProxyPerm ssion object for
* authorizing trusted Proxies.
*/
public static TrustedProxyPerni ssion
newTr ust edPr oxyPer nmi ssi on();

To establish this trust, the proxy must have been signed, presumably by the vendor of the
security service to which the proxy refers. Note that this trust only verifies that the class

of

the proxy istrusted. A proxy class worthy of such trust must ensure that it can trust the

parties with which it communicates.

package javax. fma. common;

/*

*

ECREE B I R N S T R B I B R R I T I R B

* | nterface inplenmented by secure proxies.
The proxy class must have the
javax. fma. security. Trust edPr oxyPer m ssi on
permni ssion to be trusted.
<p>The followi ng outlines the process of how t he proxy
trust check is performed. Note that this check requires
that the entity doing the checking have perm ssion to
access the protection domain of the class
Runt i mePer m ssi on("getProtecti onDomai n").

<p|’ e>
i mport javax.fma.security. TrustedProxyPerm ssion;

bbbl ean trusted = fal se;
try

trusted =
aProxy. get C ass() .
get Prot ecti onDomai n() .
i mplies(TrustedProxyPerm ssion());

}
catch(Nul | Poi nterException e) { }
</ pre>

*/
public interface SecureProxy { }

Proxies may implement thej avax. f ma. cormon. Secur ePr oxy tag interface.
Implementations of stations may allow a mode in which proxies tagged as secure are only
allowed to be loaded into the station if they are trusted according to the described trust
testing algorithm. Thus, proxy clients can assume the proxy is trusted if it implements

j avax. f ma. comrmon. Secur ePr oxy.

Federatad Manegamant Ardhitsdire Soadification

Security

/1l Grant statenent for security services proxy signed by
/'l the vendor "wahoo". The "wahoo" certificate will need
/'l to be available fromthe key store.
grant Si gnedBy "wahoo" {

perm ssion javax. fma. common. Trust edPr oxyPer mi ssi on “”;

The proper JAAS Login Module isa JAAS compliant login module that knows how to
communicate with the security service. The implementation of the proper Login Module
isindependent of the security service implementation and may be provided by the
security service vendor or as part of a software development kit. The proper Login
Moduleis athin object that, when instantiated, locates a security service proxy, which
shall be validated as trusted, to an appropriate remote security service. To request aLogin
Module from the security service, the Login Module must know the security domain
name against which authorization shall be performed. This nameis provided by the
system property "j avax. f ma. domai n". Thisnameisidentical to the name of the
management domain to which the security domain belongs. From then on, all method
invocations are del egated to the Login Module provided by the security service.

JAAS Proper Login Module
|
Remote Login Module supplies
‘ remote communication
Security Senvice Proxy Security Senice

Figure 14. Remote Authorization Model.

Federatlad Manegament ArchitediLre Spadification Page 79

Security

JAAS Proper Jini Lookup Remote Security Security
Authorization Login Module Senice Login Module Senice Proxy Senice

[1: new() ‘

2: initialize() |

) |

3: locate security senvice proxy for federation

4: establish trust in proxy

P

> |
6: Dl\ﬂte communications

|
|
1 | |

|

login()/commit()/...

~

5: newLoginMo dulep
\

8: delegat? operation

‘ 9: ocaNand delegated operations

10: private commumcatlons

Figure 15. Remote Authorization Sequence.

1) The JAAS authorization module instantiates the proper Login Module. ThisLogin
Context is specified in the JAAS configuration.

2) The JAAS authorization module initializes the proper Login Context. Some of the
information that must be available to the proper Login Context at the time of
initialization is the public certificate for the security service and the security domain
name.

3) Using the security domain name, the proper Login Context can locate an appropriate
Jini lookup service using the group name"<security domai n nanme>", suchas
"us. co. boul der".

4) The proper Login Context must establish trust in the proxy retrieved from the lookup
service.

5) Once trust has been established, the proper Login Context requests a new Login
Module from the security service for a particular security domain.

80 Fedarated Manegamant Ardhiteciure Soedification

Security

6) The security service proxy performs any needed private communications with the
security service. Note that the proxy has access to the certificate of the specified
security domain by way of the local key store.

7) The JAAS authorization module can perform any number of operations on the proper
Login Context, such asl ogi n() and conmi t ().

8) The proper Login Context delegates these operations directly to the remote Login
Module. Note that the remote Login Module is remote to the security service, but
local to the proper Login Context.

9) Theremote Login Module does whatever is necessary to perform the requested
operation. In general, thiswill involve both local operations and remote
communication with the security service.

10) The communication between the security service and its proxy is private. The proxy
and security services shall appropriately secure al such communications. This may
be done using the public/private key pair associated with the security services.

The security service implementation must satisfy a number of requirements:

1) Theimplementation cannot assume that the VM hosting the Login Module can
perform socket accepts. In general, this means that some sort of duplex
communication or polling must be provided to simulate the Login Module callbacks.

2) All communications between the security service proxy and the security service shall
be server authenticated, tamper resistant, and private. In particular, the proxy will be
passing sensitive information, such as user names and passwords, to the security
service. Thisinformation shall not be sent as clear text. Because the proxy cannot
always distinguish between sensitive and public information, all communications
shall be private. Because the security service has the private key of the security
domain and the security service proxy has access to the public certificates of each
security domain (from the local key store), providing secure communications should
be straightforward.

3) TheLogin Module shall populate the Subject with a single Role and an associated
private credential, represented as a Rol eKey, containing the private key and public
certificate of the authenticated Role. The Rol eKey and Role are matched by Role.

4) If the authenticated Role was as a federation member, the Role shall be of type
Feder ati onMenber.

5.6.2 Secure Subject
A secure Subject is an authenticated Subject containing one or more Role objects and
matching Rol eKey objects as private credentials. Referring back to Figure 13, each
private key associated with a VM (as opposed to the security service) is contained, along
with its public certificate, in the RoleKey of a secure Subject as aresult of authentication.

Federatlad Manegament ArchitediLre Spadification Page 81

Security

82

package j avax. fnma. common;

import java.io.Serializable;
i nport java.security. PrivateKey;
i mport java.security.cert.Certificate;

/[**Private credentials associated with a Role. The
* Rol e/ Rol eKey relationship is established by the
* Role property of the Rol eKey. The Rol eKey al so
* contains the public key, as part of the Role's
* public certificate, and the private key for the
* Rol e.

*/
public final class RoleKey inplenments Serializable
static final long serial VersionU D = -125509265494041025L;

/** Constructs RoleKey for a give role, private key
* and certificate.

* @aramkey Private key for the role. May be null
* @aramcertificate Public certificate for the
* role. May be null
* @aramrole Role associated with current Rol eKey.
* Mist not be null
* @hrows |11 egal Argurment Exception if role is null
*

/

public Rol eKey (
Privat eKey key,
Certificate certificate,
Role role

);

[** CGet the private key for the associated Rol e.
* @eturn private key. May be null

*/

public PrivateKey get Key();

/** Get the public certificate for the associated Role.
* @eturn Certificate. May be null

*/

public Certificate getCertificate();

/** Get the associated Rol e.

* @eturn Role with which this RoleKey is associ at ed.
*/

public Role get Rol e();

If the secure Subject was the result of the authentication of a federation member, then the
Role associated with the Subject is a FederationMember object.

package javax. fma. common;

/** Special Role issued to nenbers of a federation.
* Note that FederationMenber may be subcl assed to
* establish Roles even within a Federation.

*/

Federatad Manegamant Ardhitsdire Soadification

Security

public class Federati onMenber extends Role

/** Construct a new Federati onMenber Rol e object for a
* given role and security domain.
@ar am rol eNane Nane of the Role. Should not be
nul | or contain unbal anced braces.
@ar am securityDomai nNanme Nane of the security
domai n issuing the Role. Should not be
null or contain unbal anced braces.
@hrows 111 egal Argument Exception if rol eNane or
securityDomai nNane is null or contains un-
*/ bal anced braces "{}".
*
public Feder at i onMenber (
String rol eNane,
String securityDomai nNane

* 0% X X X X X

)

The private credentials of a secure Subject shall never be exposed directly on the
network, in persistent storage, or other unsecured environment.

5.6.3 Well-Known Subject

Each authenticated station has a well-known, authenticated Subject. Authentication or re-
authentication can occur at any time simply by proceeding through the remote
authorization procedure and making the authenticated Subject well known. Authorized
objects have access to the well-known Subject and can, therefore, assume the identity of
the well-known Subject. Only privileged objects, such as the communication
infrastructure, shall be allowed access to the Rol eKey of the well-known Subject. This
requires the permissions as specified by the JAAS. Usually only the Login Module has
permission to invokej avax. f ma. common. Wl | KnownSubj ect . set Subj ect () to
change the well known authenticated Subject.

Wl | KnownSubj ect also provides access to the client Subject if the current thread is
servicing a remote operation and the client Subject was authenticated.

Federatlad Manegament ArchitediLre Spadification Page 83

Security

package j avax. fnma. common;

i mport javax.security.auth. Subject;
i mport java.rm.server. Server Not Acti veExcepti on;

/**Support for setting and getting a well-known Subject.
*/
public abstract class Well KnownSubj ect

/** Cannot be instantiated */
private Wl |l KnownSubject () {}

/**Set the well known Subject.
* Requires javax.fm. conmon. Wl | KnownSubj ect Permi ssion with
a target of "setSubject".
@ar am The wel |l known Subject. My be null to
cl ear.
@eturn The previous well known Subject.
@hrows java.security. AccessControl Exception
if permission to set the Subject is not
* granted to the caller.
*/
public static Subject setSubject(Subject subject);

E N I I B

/**CGet the well known Subject.
* Requires javax.fm. conmon. Wl | KnownSubj ect Permi ssion with
* a target of "getSubject".
* @eturn The wel |l -known Subj ect.
* @hrows java.security.AccessControl Exception
* if permission to get the Subject is not
* granted to the caller.
*
/
public static Subject getSubject();

/**Cet the client Subject if the current thread
* |s serving a renote operation. If the client

* Subject was not authenticated, null is returned.
* Requires javax.fm. conmon. Wl | KnownSubj ect Permi ssion with
* a target of "getdientSubject".
* @eturn The client Subject.
* @hrows java.security.AccessControl Exception
* if permission to set the Subject is not
* granted to the caller.
* @hrows java.rm.server. Server Not Acti veException if
* the current thread is not servicing a renote
* operati on.
*
/

public static Subject getdientSubject()
throws Server Not Acti veExcepti on;

Federatad Manegamant Ardhitsdire Soadification

Security

/**Return the list of trusted Roles for delegation
* purposes. This is effectively a | ocal cache of the

* Jist of trusted roles returned fromthe security
* service. Requires
* javax. fma. common. Wl | KnownSubj ect Permi ssion with
* a target of "getTrustedRol es".
* @eturn Alist of Roles trusted for delegation. If
* none, an enpty array is returned.
* @hrows java.security.AccessControl Exception
* if permission to set the Subject is not
* granted to the caller.
*
/

public static Role[] get Trust edRol es() ;

/**Set the list of trusted Roles for del egation
* purposes. Requires
J avax. f ma. common. Wl | KnownSubj ect Perm ssi on with
a target of "setTrustedRol es".
@aramroles the list of trusted roles.
@eturn The previous list of trusted Roles.
@hrows java.security. AccessControl Exception
if permission to set the Subject is not
* granted to the caller.
*
/
public static Role[] set Trust edRol es(
Rol e[] roles

* X X X X X

package javax. fma. common;

i nport java.io.Serializable;
i mport java.security. BasicPerm ssion;

/** Perm ssions class for authorizing operations on
* the Well KnownSubj ect class nethods.
*/
public final class Well KnownSubj ect Perm ssi on
ext ends BasicPerm ssion inplenments Serializable

static final long serial VersionU D = -4122846412590798067L;

/** Do not use. Construct a Wel| KnownSubj ect Per ni ssi on
* object.
* @aramtarget the target namne.
*/

public Vel | KnownSubj ect Permi ssion(String target);

/** Do not use. Construct a Wel| KnownSubj ect Per ni ssi on
* object.
* @aramtarget the target namne.
* (@aram actions action list. Not used.
*
/
public Vel | KnownSubj ect Per nmi ssi on(
String target,
String actions

Fedarated Manegemant Architeciure Spedification Page 85

Security

/** Construct a Well KnownSubj ect Perm ssi on object for
* authorizing setSubject operations.
*/
public static Well KnownSubj ect Perm ssi on
newSet Subj ect Per mi ssi on();

/** Construct a Wl | KnownSubj ect Per i ssion object for
* authorizing getSubject operations.
*/
public static Well KnownSubj ect Perm ssi on
newGet Subj ect Per mi ssi on() ;

/** Construct a Wl | KnownSubj ect Per i ssion object for
* authorizing getdientSubject operations.
*/
public static Well KnownSubj ect Perm ssi on
newGet C i ent Subj ect Per m ssi on();

/** Construct a Wl | KnownSubj ect Permi ssion object for
* authorizing getTrustedRol es operations.
*/
public static Well KnownSubj ect Perm ssi on
newGet Tr ust edRol esPer mi ssi on();

/** Construct a Wl | KnownSubj ect Permi ssion object for
* authorizing setTrustedRol es operations.
*/
public static Well KnownSubj ect Perm ssi on
newSet Tr ust edRol esPer mi ssi on();

5.7 Authorization

Authorization is the verification that a particular thread of execution has permission to
perform a particular task, such as accessing a secure resource. This verification may
require inspecting both the classes involved in the call chain, standard Java security, and
the Subject associated with the current thread (the JAAS extension to the standard model)
JAAS authorization is supported by Java 2 version 1.3 and later. The specification
provides an similar means of authorization for version 1.2 for migration purposes.

571 JAAS Overview
JAAS authorization is directly supported by the JDK 1.3 AccessController, thus
authorization does not require the use of any JAAS class and is retroactively applicable to
classes written prior to JAAS. In general, authorization is done by performing a check
permission call onthe AccessContr ol | er class.

Fi | ePerm ssion perm =
new Fil ePerm ssion("/tenp/testFile", "read");
AccessControl | er. checkPerm ssion(perm);

86 Federatad Manegamant Ardhitsdire Soadification

Security

This permission check verifies whether the current thread is allowed read access to the
specified file. The decision is based on the grant entries in the policy file associated with
the VM, the class of objectsin the call chain, and the Subject (specifically the Principals
of the Subject) associated with the current thread. The Java and the JAAS security
documentation fully detail how the permission checks are calcul ated.

5.7.2 Modifications

The security model specified is fully compatible with, and does not require modifications
of, the JAAS authorization mechanism. However, to allow early use of authorization
(before wide availability of JDK 1.3), this specification provides the following
convenience class for migration of JAAS authorization.

package j avax. fnma. server;

i mport java.security.AccessControl Excepti on;
i nport java.security. Perm ssion;

/**AccessControl l er provides a tenporary entry point
* for java.server.AccessControl | er.checkPerm ssion()

* for Subject based authorization until it is available
* directly in the JDK
*/

public final class AccessController

[**Tenporary inplenentation of
* java.server. AccessControll er.checkPerm ssion()
* for Principal (Subject) based authorization wthout

* JDK 1. 3.
* @ee java.server.AccessControl | er#checkPerni ssion
*/

public static void checkPerm ssion(Perm ssion perm)
t hrows AccessControl Exception

The intent is to easily replace the implementation of this class when the JAAS becomes
widely available. With the arrival of JDK 1.3, one should be able to change package
names without perturbing source code in any other fashion.

5.7.3 Station Authorization

Stations may perform authorization when a remote operation is requested of the station.
The permission required to perform the remote operation is of class
j avax. f ma. server. AccessPer ni ssi on.

package javax. fma. server;

i nport java.io.Serializable;
i mport java.security. BasicPerm ssion;
i nport java.security. Perm ssion;

Federatlad Manegament ArchitediLre Spadification Page 87

Security

88

/** Perm ssions class for authorizing operations

* on Stations (class nethods and constructors) and
Acceptors (object nmethods). In each case, the
referent class or class of the referent object
is specified as the permission target, with

wi | dcard conventions as specified for

Basi cPermi ssi on. For exanple, a target of
comyoyo.* inplies all classes in the packages
comyoyo and com yoyo. beep, but not classes in
packages such as com sun. The perm ssion action
is alist, comman delimted, of nmethod names or
signatures. A nethod nane inplies all nethod
signatures of the given nane. Constructors have
the special nanme of <init> The nethod list may
be m xed names and signatures.

* % X F X X X X X X X X F

*/
public final class AccessPernission o
ext ends Basi cPermi ssion inplenents Serializable

static final long serial VersionUD = -4122846412590798067L;

/** Construct a AccessPerm ssion object.
* @aram cl assNane the referent class nane.
* @ctions nethods the referent nethod |ist.
*/
public AccessPerm ssion(String classNane, String nethods);

/** Checks if this AccessPerm ssion object "inplies"
* the specified perm ssion.

<pP>

More specifically, this nethod returns true if:

<I>p</1>"s class is the sane as this object’s
cl ass, and

<I>p</1>"s class nane equals or (in the case of
wi | dcards) is inplied by this object’s class nane.
For exanple, "a.b.*" inplies "a.b.c", and

<I>p</1>"s actions are a proper subset of
this object’s actions.

</ UL>

@aram p the perm ssion to check.
@eturn true I f the specified permssionis inplied
by this object, false if not.

EEEE I I S R I R R B B I B I

*

@ee java.security.Basi cPerm ssion
*/
public boolean inplies(Pernmission p);

/ ** Checks two AccessPerni ssion objects for equality.
* @eturn true if both AccessPerm ssion objects are
* equi val ent .

*/
public boolean equals(Object obj);

/** Returns the hash code value for this AccessPerni ssion.
* @eturn a hash code value for this object.

*/

public int hashCode() ;

Federatad Manegamant Ardhitsdire Soadification

Security

/** Returns the actions for this AccessPerm ssion.

* @eturn the actions represented as a comma-delimted
* String of method nanes or signatures.

*/

public String get Actions();

If a permission check fails during a remote operation request, the station shall throw a
j avax. f ma. common. St ati onSecurit yExcepti on.

package j avax. fnma. common;
/**StationSecurityException is thrown by a station when
* a front door security check fails during a renote
* operation request.
*/
public class StationSecurityException
extends SecurityException
{
static final long serial VersionU D = -2988418186346831363L;
/** Create a StationSecurityException with no detail nessage.
*/
public StationSecurityException();
/** Construct StationSecurityException with nested exception.
* @aram nest edException Throwabl e which is a
* cause of this exception. May be null.
*/
public StationSecurityException(Throwabl e nestedException);
/** Construct StationSecurityException with nessage and
* nested exception.
* @aram nessage Informative failure nessage.
* @aram nest edException Throwabl e which is a
* cause of this exception. May be null.
*/
public StationSecurityException(
Local i zabl eMessage nessage,
Thr owabl e nest edExcepti on
)
}

5.8 Client to Proxy

Up to this point, this chapter has been mainly concerned with the architecture of the
management security model and the interactions with the JAAS. In addition, there are
two other vendor boundary interfaces to address. The first is client to proxy. The entire
interaction that a client has with the proxy, with respect to security, is through the Subject
context. The client is responsible for:

1) providing a Subject authenticated against the security domain and

Fedarated Manegemant Architeciure Spedification Page 89

Security

2) associating the Subject with the current thread of execution before invoking methods
on the Proxy.

This association is done using the Subj ect . doAs() methods.

There are other client responsibilities, such as delegation decisions, beyond the scope of
this specification. These responsibilities involve the boundary between a particular
implementation of the FM A and the administrator.

5.9 Referent to Station

90

The actual security mechanisms (encryption, auditing, etc.) invoked when
communicating with a particular referent are aresult of security policy, supplied by the
administrator, applied to information supplied by the developer. The former is not in the
scope of this specification. The latter is part of the referent to station contract. The
information supplied by the developer is classified asintrinsic, implicit, and explicit.

5.9.1 Intrinsic

Intrinsic information includes class names, interface names, method signatures and any
other information intrinsically available from any object. The developer makes no special
effort to provide thisinformation; however, security decisions may be based on this
information, if supported by a station implementation. For example, a station could allow
call auditing to be specified by the administrator on a class-by-class basis. As another
example, auditing of all remote operations on a particular class of objects.

5.9.2 Implicit

Implicit information supplied by the referent to the station includes semantics associated
with certain method patterns by virtue of the JavaBeans component model. M ethods can
be categorized as accessors, mutators, and others. Security decisions can be based on this
classification. For example, one possible security policy would allow unauthenticated
access to accessors but require authorized access to mutators and other methods.

5.9.3 Explicit

Explicit information is supplied by the referent in the form of modifiers. With respect to
security, the modifiers are grouped into two sets: sensitivity and subject propagation. The
administrator is not expected to know the details of particular classes or objects. Thus, the
developer specifies the sensitivity of particular operations. The sensitivity is specified as
public, sensitive, or private. If no sensitivity is specified, public is assumed. Note that the
developer does not specify what mechanisms should be used with each of the levels of
sensitivity. The mechanisms are specified by the administrator, possibly based on a
combination of intrinsic, implicit, and explicit information, as supported by the
administration capabilities of a particular station implementation.

The subject propagation modifiers are the means by which areferent informs the station
that the referent wishes to be invoked under the subject of the client or under the well
known subject of the station. In either case, if the specified subject has not been provided,
then the referent will be invoked without a subject. In addition, the referent must have

Federatad Manegamant Ardhitsdire Soadification

Security

been granted certain permissions in order to assume the Subject of a client or the station,
as specified inthej avax. f ma. conmon. Modi f i er s documentation. Insufficient
permission resultsinan j ava. security. AccessCont rol Excepti on beingthrown
back to the client.

5.10 Security Permission Summary

5.10.1

5.10.2

5.10.3

5.104

5.10.5

All permission checks defined in this chapter are based on permission classesin
javax.fma.common and javax.fma.server. The specific action and target of the permission
depend on the specific permission class; however, all permission classes are
specializations of java.security.BasicPermission and, thus, support pattern matching as
implemented by java.security.BasicPermission.

Station

Thej avax. f ma. conmon. St at i on methodsi nvokeConst ructor () and

i nvokeSt ati cMet hod() requirej avax. f ma. server. AccessPer i ssi on witha
target of class name and an action of method list. Ther ebi nd() and pi ng() methods
do not require specific permission. A method list isacomma delimited list of signatures,
such asset Passwor d(Lj ava/ | ang/ St ri ng;) V and method names, such as

set Passwor d. Signatures and method names may be mixed in the same list.

Acceptor
Thej avax. f ma. common. Accept or method i nvokeObj ect Met hod() requires
j avax. f ma. server. AccessPer nm ssi on with atarget of class name and an action of
method list, as described in the previous section.

DeploymentStation
Thej avax. f ma. conmon. Depl oynent St at i on methodsdepl oy() andrecal | ()
requirej avax. f ma. conmon. Depl oynent Per mi ssi on with a target of “deploy”. The
methodr ecal | () require§ avax. f ma. conmon. Depl oynent St at i on with a target of
“recall”. The methodget I nvent or y() andget CodeBase() require
j avax. f ma. common. Depl oynent St at i on with a target of “inventory”.

Proxy Trust

The method of establishing Proxy trust requires that the Proxy have permission
j avax. f ma. conrmon. Tr ust edPr oxyPer ni ssi on.

WellKnownSubject (Station Subject)

Thej avax. f ma. cormon. Wl | KnownSubj ect method get Subj ect () requires

j avax. f ma. common. Wl | KnownSubj ect Per mi ssi on with a target of “getSubject”.
The methodset Subj ect () requires

j avax. f ma. conmon. Wl | KnownSubj ect Per i ssi on with a target of “setSubject”.

Federatlad Manegament ArchitediLre Spadification Page 91

Security

5.11 Views

92

5.10.6

5.10.7

5.11.1

5.11.2

5.11.3

WellKnownSubject (Client Subject)

Thej avax. f ma. conmon. V&l | KnownSubj ect method get O i ent Subj ect ()
requiresj avax. f ma. common. Wl | KnownSubj ect Per i ssi on with atarget of
“getClientSubject”.

WellKnownSubject (Trusted Roles)

Thej avax. f ma. conmon. Wl | KnownSubj ect method get Tr ust edRol es()
requireg avax. f ma. common. Wl | KnownSubj ect Per i ssi on with a target of
“get Trust edRol es”. Thej avax. f ma. conmon. Wl | KnownSubj ect method
set Trust edRol es() requires

j avax. f ma. conmon. Vel | KnownSubj ect Per ni ssi on with a target of

“set Trust edRol es”.

Different roles see and need to understand different aspects of security.

Client Developer

The client developer must understand the JAAS authentication framework as well as the
extensions of this chapter, principally the Login Module.

Service Developer

The service developer must tag classes and objects with private, confidential, public, and
delegation modifiers as well as following JavaBeans coding conventions for properties.
Generally, this is done with tool assistance, but it is possible to perform the task manually
by creating the modifier tables by hand. In advanced cases, developers may wish to
perform explicit security checkg{vax. f ma. server. AccessControl | er) or assume

the identity of the statior) &vax. f ma. conmon. Wl | KnownSubj ect).

System Administrator

The system administrator is responsible for providing security policies, both in the sense
of Java security policy files and in the sense of specifying mechanisms. The former is
covered by the security information associated with the JDK, the JAAS, and the specific
permissions required to perform certain tasks. The latter is implementation specific but
generally consists of some means by which the administrator can control encryption,
auditing, and the like based on various attributes, including the security modifiers
assigned by the developer to particular methods.

Most of the complexity of security falls on the system administrator. The security model
allows for a wide range of granularities. The following is an example of how an
installation could be configured with a very coarse level of granularity to achieve a level
of simplicity.

1) Grant all permissions to the role of administrator.
2) Grant permission for the roles of user to access get methods labeled as public.

Federatad Manegamant Ardhitsdire Soadification

Security

3) Grant no permission to other roles.

4) Grant al permissions to classes signed by Sun, IBM, and the lead administrator.
5) Grant no permissions to other classes.

6) Encrypt communications with all methods tagged as private or sensitive.

7) Plain text communications with all method tagged as public.

8) Audit communications with al methods tagged as private.

9) Perform client authentication with all methods tagged as private or sensitive.

Fedarated Manegemant Architeciure Spedification Page 93

6 Aspects

Referents have three aspects: transaction, logical thread, and controller. Aspects are
handled by the infrastructure on behalf of the referent according to aspect policy
specified by the referent. These aspect policies are specified by the aspect modifiers
(SYNCHRONI ZED_TRANSACTI ON, SYNCHRONI ZED LOG CAL_THREAD,

SYNCHRONI ZED_CONTROLLER) applied to methods and constructors.

Each aspect serializes object access based on a particular concept, much in the same way
as Java thread synchronization serializes object access based on language thread. For
example, SYNCHRONI ZED TRANSACTI ON, serializes object access based on transactions
such that the object may only be involved in a single transaction at atime. With all
aspects, an exclusive lock on the object is acquired when a’synchronized’ method is
invoked. (Each aspect has an independent lock.) The aspects differ however as to when
the lock isreleased. Logical thread based locks are released when the invoked method
returns. Transaction based locks are released when the transaction is committed or
aborted. The basis for lock release is known as therelevancy of the aspect. Aspects also
differ in their response to afailure to acquire an unavailable lock, as described in the
following sections.

Aspects are only applied to an object when the object is accessed using its Proxy.
Therefore, it is unsafe and forbidden to invoke any method with aspect modifiers except
through the object’s Proxy.

Much as adjunct modifiers are thought of as extensions to the Java language modifiers,
aspects may be thought of as extensions to the Java thread synchronization primitive.

Federatlad Manegament ArchitediLre Spadification Page 95

7 Transaction Aspect

7.1 Synchronized/Transactions

The developer indicates that a method is synchronized with respect to transactions by
tagging the method with the

javax. f ma. server. Modi fi ers. SYNCHRONI ZED_TRANSACTI ON modifier. The set of
such methods form an exclusion group such that, with respect to these methods, the
object may only be involved with one transaction at atime. The semantics of the
synchronization obey the following state diagram.

If not of the involved transaction and does not
transition to free state within time out tolerance,
throws a ConcurrentTransactionException.

—

—
—
. invoke synchronized

\ —
instantiate ,e/ \

?ﬁ invoke synchronized \(—'_}
Free L /{ Involved
J= N

commit/abort

Figure 16. State Diagram of Object Methods Synchronized with Respect to Transactions.

7.2 Transactions Created on Behalf of an Object

If athread of execution does not have an associated transaction (see
j avax. f ma. conmon. Cont ext), then the station must initiate a transaction before
invoking a method synchronized with respect to transactions. The station is then

Federatlad Manegament ArchitediLre Spadification Page 97

Transaction Aspect

7.3 Referents

responsible for committing or aborting the transaction when the method returns. The
transaction shall by aborted if athrowable is thrown and committed otherwise. Stations
may perform the following optimization. If an object isinvolved with atransaction and a
synchronized/transaction method isinvoked without a transaction, there is no need to
create and abort the transaction before throwing the

j avax. f ma. conmon. Concur r ent Tr ansact i onExcepti on.

package j avax. fma. common;

/** Exception thrown when a synchronized/transaction nethod is
* invoked on an object by an entity that is not part of the
* owning transaction. The Station wll attenpt to acquire the
* transaction lock for a period of tine specified by the
* javax.fma.transaction_tol erance property before the
* exception is thrown.

*
/

public class Concurrent Transacti onExcepti on

extends Stati onException

static final long serial VersionU D = -9215837774402205113L;
/**Create a Concurrent Transacti onExcepti on.

*/
publ i ¢ Concurrent Transacti onException();

as Transaction Participants

If areferent object implements the

net.jini.core.transaction.server. TransactionParti ci pant interface, the
station will join the referent object to a transaction when the object transitions from the
free state to the involved state. Note that this only happens during invocations of methods
synchronized with respect to transactions. The station is not required to join the referent
directly. For example, the station could join an internal object to the transaction and
forward the prepare/commit/rollback messages to the referent.

7.4 Deadlock Prevention

98

If the transaction lock is not available, the object is already involved. Then an exception
isthrown. Thus, deadlocks will be broken; however, thrashing may result during
contention for transaction locks. Stations shall attempt to acquire the transaction lock for
a period of time specified by thgdvax. f ma. t ransacti on_t ol er ance” system
propertybefore throwing a

j avax. f ma. common. Concurrent Transact i onExcept i on. The default value is
10,000 milliseconds and is specified in milliseconds. Note that

j avax. f ma. conmon. Concurrent Tr ansact i onExcept i on, is an unchecked
exception.

Federatad Manegamant Ardhitsdire Soadification

8 Logical Thread Aspect

8.1 Synchronized/Logical Thread

The developer indicates that a method is synchronized with respect to logical threads by
tagging the method with the

javax. f ma. server. Modi fi ers. SYNCHRONI ZED _LOG CAL_THREAD modifier. The
set of such methods form an exclusion group such that, with respect to these methods, the
object may only be involved with one logical thread at a time. The semantics of the
synchronization obey the following state diagram.

transition to free state within time out tolerance,
throws a ConcurrentThreadException.

If not of the involved logical thread and does not T

—

—
—
. invoke synchronized

\ =
instantiate ,e/ \

?ﬁ invoke synchronized \(—'_}
Free L /{ Involved
J= N

method return

Figure 17. State Diagram of Object Methods Synchronized with Respect to Logical
Threads.

8.2 Logical Threads Created on Behalf of an Object

If athread of execution does not have an associated logical thread (see
j avax. f ma. conmon. Cont ext), then the station must initiate alogical thread before

Federatlad Manegament ArchitediLre Spadification Page 99

Logical Thread Aspect

invoking a method synchronized with respect to logical threads. Stations may perform the
following optimization. If an object isinvolved with alogical thread and a
synchronized/logical thread method is invoked without alogical thread, there is no need
to create the logical thread before throwing the

j avax. f ma. coormon. Concur r ent Thr eadExcepti on.

package javax. fma. common;

/** Exception thrown when a synchroni zed/ | ogical thread nethod

* is invoked on an object by an entity that is not associated
* with the owming logical thread. The Station will attenpt to
* acquire the thread lock for a period of tinme specified by

* the javax.fnma.thread_deadl ock_tol erance property before the
* exception is thrown.

*

/
public class Concurrent ThreadExcepti on extends StationException

static final long serial VersionU D = -9215837774402205113L;
/** Create a Concurrent ThreadExcepti on.

*
/
publ i ¢ Concurrent ThreadException();

8.3 Distributed Deadlock

100

Distributed deadlock is a class of problems that are particularly difficult to diagnose and
correct. Because objects in a distributed are more |oosely coupled that in the local case,
distributed deadlock is a more difficult situation than local deadlock. In general, the best
cure is prevention by good coding practices. For example, one should avoid, as much as
possible, holding locks when making out calls. Out calls are method invocations on
objects, which are not encapsulated by the calling object. The calling object generally
does not know what locks the target object will acquire. Therefore, it is not safe for the
calling objects to hold any locks while invoking methods on the target object. A classic
example of an out call is when a subject invokes a callback on an observer (Subject
Observer pattern).

Clever use of synchronization and local variables can help release locks when it may
initially appear impossible. However, sometimesit is ssmply not possible to release all
locks before making an out call. If the out call is known not to cross a partition (involve a
remote operation), one should judiciously use Java thread synchronization. Only as alast
resort, when the out call involves a remote operation, should locking be performed based
on logical thread. Methods synchronized with respect to logical threads should be rare.

To help avoid distributed deadlock even when logical threads are used judiciously,
stations can be directed to give up waiting for alock to become available after a given
amount of time. This deadlock tolerance is controlled by the system property

“j avax. f ma. t hread_deadl ock_t ol er ance”. The default value is infinite: a thread
will block forever waiting to lock an object.

Federatad Manegamant Ardhitsdire Soadification

9 Controller Aspect

9.1 Controllers

Controllers allow various resources to be locked with respect to a controller for along
period of time: possibly the life of the controller, which may be persistent. This primitive
forms the basis for control arbitration of managed resources. A controller must register
itself with the controller service, a base service, and maintain the associated lease. The
controller may then explicitly or implicitly reserve managed resources for its exclusive
use. When the lease has been cancelled or expired, the reserved resources are rel eased for
use by other controllers. A controller's locks may also be released without releasing the
controller itself. Unlike transaction and logical thread locks, controller locks are long
lived.

9.2 Controller Architecture

While controllers are acommon concept for both clients and stations, they are treated
somewhat differently do to scalability requirements. Clients are expected to contain afew
controllers, with a single controller being the most common case. Stations may contain
thousands of controllersin large configurations. Thus, the interface used by clients and
stations are slightly different.

9.2.1 Controllers

A Controller object represents a single controller, asingle point in a chain of control.
Generally controllers are dynamics services that determine policy or are management
clients. Controllers are issued by the controller service for the management domain and
may have over any number of generations. Clients contact the controller service directly
to get a controller. Controller objects running in a station will have a controller alocated
exclusively to the abject by the containing station.

A given controller moves to its next generation when its owner, client or controller
object, requests that the locks owned by the controller be released, or more precisely,

Federatlad Manegament ArchitediLre Spadification Page 101

Controller Aspect

102

allowed to expire. The change in generation reguires communication with the controller
service.

Locks

Locks are issued by a controller against a specific generation of the controller. Given a
lock, one can query the lock to seeiif it has been released. This query requires
communication with the controller service. A lock isreleased under two conditions.

1) Thelease maintaining the controller expires or is cancelled. In the case of
controllersissued to clients, the lease if for a specific controller. In the case of
controllersissued to controller objectsin stations, the leaseis for all controllers
in the station.

2) If thecontroller issuing the lock is still valid, but is no longer of the generation
that issued the lock. This allows a controller to effectively release all of itslocks
by changing generations.

State Distribution Between Stations and the Controller Service

Stations maintain alist of controllers that have been acquired on behalf of controller
objects hosted by the station. The subset of thislist pertaining to persistent controller
objects must also be persistent. The controller service maintains a copy of thislist so that
other parties may query the validity of alock without having to contact the station
containing the controller, which may not be available. The station controller list isthe
master and the controller service list the slave.

The controller list in the controller serviceis leased by the station. Failure to renew this
lease indicates that the station and controller service may be out of synch. The controller
service provides a synchronization method to resynchronize with a station; however, loss
of synchronization may imply the loss of controllers locks. The controller list state can
change only as follows:

1) A controller is added.
2) A controller isremoved.
3) A controller changes generation.

All of these changes require communication with the controller service in order to
maintain synchronization.

Station Responsibilities

9.2.4.1 Remote Instantiation

When remotely instantiating a controller object, stations must contact the controller
service serving the management domain to which the station belongs and request a new
controller for the controller object. This controller is passed in context to the controller
object whenever a method synchronized with respect to controllersis invoked remotely.

Federatad Manegamant Ardhitsdire Soadification

Controller Aspect

9.2.4.2 Controller Object Lifetime

When the controller object is garbage collected (transient) or removed (persistent), the
station must also delete the associated controller. If it is unable to do so, state
synchronization has been lost and the station should resynchronize with the controller
service when the service again becomes reachable.

9.2.4.3 Remote Method Invocation

When invoking a method synchronized with respect to controllers, the station may need
to verify the relevancy of alock. When alock is acquired on behalf of a controller, the
station will need to request and retain alock object from the controller.

9.2.4.4 Failed Lease Renewal

When the station fails to renew its lease with the controller service, it must start a
prolonged attempt to resynchronize with the controller service. The retry interval shall be
between 10 seconds and 5 minutes. If the station is not able to contact. The station shall
assume that locks have been lost and notify controller objects as described in 9.2.4.6.

9.2.4.5 Station Restart

Station must persist their lease with the controller service and resume its maintenance
when the station restarts by immediately attempting alease renewal. Regardless of
whether the renewal succeeds or fails, the station should begin state synchronization with
the controller service because any transient controllers would have been lost in the station
but still present in the controller service. If the renewal fails, the station must assume that
locks have been lost and notify controller objects as described in 9.2.4.6.

9.2.4.6 Notify Controller Objects of Possible Lock Loss

If the station suspects the possible loss of controller locks, it must notify all controller
objects to given them the opportunity to reestablish any locks that they may hold. All
controller objects that implement the following method shall be notified as soon as
practicable after the station detects the possible loss of lock integrity. Note that in many
cases, the controller service will be unreachable it thistime.

private void onControllerFailure() H

After station the station has reestablished state synchronization with the controller
service, it must inform the controller objects of the recovery. Controller objects that
implement the following method signature shall be notified. In addition, the station
should ensure that the controller of the controller object is established in context before
invoking the method.

| private void onControl | erRecovery() H

Federatlad Manegament ArchitediLre Spadification Page 103

Controller Aspect

During the period between suspecting loss of lock integrity (lease renewal failure or
remote communication failure with the controller service) and resynchronization with the
controller service, the station should refuse all remote operations by throwing a

javax. f ma. servi ces. Servi ceFi nder. Servi ceNot FoundExcepti on.

9.2.4.7 Persistent Objects

The list of controllers that must be synchronized with the controller service includes
those of persistent controller object which are not activated. For example, on restart, the
station must build a synchronization list of controllers associated with all persistent
controller objects, none of which are activate at startup.

9.2.5 Client Responsibilities

Clients must directly contact the controller service to acquire a controller and are then
responsible for maintaining the associated lease. Clients and there controllers are
considered short lived and transient without any mechanism for reregistering a client
controller.

9.3 Synchronized/Controller

The developer indicates that a method is synchronized with respect to controllers by
tagging the method with the

javax. f ma. server. Modi fi ers. SYNCHRONI ZED CONTROLLER modifier. The set of
such methods form an exclusion group such that, with respect to these methods, the
object may only be owned by only one controller at atime. The semantics of the
synchronization obey the following state diagram.

If not of the owning controller and does not
transition to free state within time out tolerance,
throws a ConcurrentControllerException.

~

—
—
. invoke synchronized

instantiate J/\
wned

invoke synchroniz ed ‘
Free L /[(0]

controller cancelled locks or
lease expired

Figure 18. State Diagram of Object Methods Synchronized with Respect to Controllers.

104 Federatad Manegamant Ardhitsdire Soadification

Controller Aspect

9.4 Controllers Created on Behalf of a Thread

If athread of execution does not have an associated controller (see

j avax. f ma. conmon. Cont ext), then the station must create a controller before
invoking a method synchronized with respect to controllers. The station is then
responsible for canceling the controller lease when the method returns, regardless of
whether or not the method threw a throwable. As with transactions, thisis an expensive
operation and clients should create a context (transaction and controller) to be used across
many remote operations. Stations may perform the following optimization. If an object is
owned by a controller and a synchronized/controller method isinvoked without a
controller, there is no need to create a new controller before throwing the

j avax. f ma. coormon. Concur rent Control | er Excepti on.

package j avax. fma. common;

/** Exception thrown when a synchronized/controller method is
* invoked on an object by an entity other than the owning
* controller.
*/
public class ConcurrentControl |l erException
extends StationException

static final long serial VersionU D = -9215837774402205113L;
/** Create a ConcurrentControl |l erException.

*/
public Concurrent Control | er Exception();

9.5 Deadlock Prevention

If the controller lock is not available, the object is already owned by another controller,
then aj avax. f ma. common. Concur r ent Cont r ol | er Except i on isthrown. Thus,
deadlock is not a problem. Unlike transactions, however, controller locks are considered
relatively static, thus contention thrashing is not likely. For this reason, stations are not
required to attempt a controller lock over a period of time.

9.6 Clients as Controllers

Clients are aways considered to be controllers. Clients must contact the controller
service and request a controller to identify the client as a controller. It is possible that
some forms of clients may be partitioned into more than one controller. A client
controller must be associated with the current thread before invoking remote operations
using Proxies.

Federatlad Manegament ArchitediLre Spadification Page 105

Controller Aspect

9.7 Referent Objects as Controllers

Some referent objects should be controllers, known as controller objects. Consider the
management control path from the source of activity (client, event service, or scheduling
service) through the implementation object of one or more dynamic services to managed
resources. Many of the intermediate object are points of control; they affect some sort of
policy on the control path and are considered to be controller objects. Other objects
simply route the management path or provide access to information: these are not
controllers. Controllers include objects in services such as groupers, which manage a
group of resources as a single consistent unit, and reactors that respond to an event by
mani pulating managed resources.

A class indicates that objects of that class are controller objects by using the

j avax. f ma. common. Modi fi er. | S_CONTROLLER modifier on the class. The station
ensures that each controller object has an assigned controller and is responsible for
maintaining the associated lease. (The associated lease is actually the global lease
between the station and the controller.)

9.7.1 Immutable Relationship Between Controller and Object

Each controller object has a single exclusive controller. The controller can only be set
once and is an immutable relationship with the controller object. During remote
instantiation of a controller object, the station must contact the controller service and
request a controller on behalf of the object. This controller must be set in context before
invoking the constructor of the controller object.

While the relationship between a controller and a controller object isimmutable, the
controller itself is mutable. Releasing controller locks held by the controller result in
mutation of the controller: achange in generation. Thus, the issue of reference sharing
and interning of controllers becomes important. The implementation must ensure the
following:

1) Within the station containing the controller object, public copies (copies not
under the exclusive control of the implementation) of the associated controller,
as returned by the controller service, are not permitted.

2) A controller may by passed to other stations, such as during a remote operation;
however, the resulting copy must be made immutable. The
rel easelLocks() operatios must be disabled in such cases, throwing a
j ava. | ang. Unsupport edOper ati onExcepti on.

9.7.2 Controller In Context

Though controller aspect locking is always based on the incoming controller, the
controller within a controller object method synchronized with respect to controllersis
always the controller of the controller object, not the controller of the calling thread.

106 Federatad Manegamant Ardhitsdire Soadification

Controller Aspect

9.7.3 Releasing Locks Held by a Controller

A controller object may need to cancel resource reservations, such as when the set of
resources needed to perform a certain operation changes. In such cases, the controller
object releases all locks associated with its controller and reestablishes new locks. To
support this kind of change, controller objects will need to remember reservations that it
has granted so that it may reaffirm the reservations, which will have been lost when the
locks were released. In general, controller objects will also need to maintain this
information to support recovery from suspected loss of lock integrity.

Locks are released in alazy fashion. After the controller r el easeLocks() method is
invoked, thei sRel event () method of previously issued locks must return false. The
controller aspect locking must proceed in a manner equivalent to the following:

1) The station, as previously described, ensures that the current thread has an
associated controller.

2) If thereferent object is currently in an owned state, as evidenced by the
existence of alock, the station invokesthei sOaner () method on the lock,
passing the incoming controller, to determine if the controller owns the current
lock.

a. IfisOmer () returnsfalse, the station must contact the controller
service and determine if the old lock is still relevant. To do so, the
station invokesthei sRel event () method on the lock object. If so, an
Concurrent Control | er Excepti on isthrown, as previously
described. If not, the associated lock is replaced by a new lock issued
by the incoming controller.

b. If i sOaner () returnstrue, theincoming thread is allowed to access the
referent object.

3) If thereferenceis currently in afree state, the station places the object in an
owned state and associates a new lock object, provided by the incoming
controller, with the object. The incoming thread is then allowed to access the
referent object.

In this scenario, remote communications with the controller service happens only when
attempting to establish anew lock: a change in controller ownership of the object. This
communication may fail if the controller service is unreachable. In such cases, the lock
should assume to still be relevant.

9.8 Control Reservations

Controller locks may be acquired just in time, in the normal course of performing an
operation involving synchronized/controller methods, or they may be reserved.
Reservations are made by invoking reservation operations on an object with the
reserving controller in context. Reservation operations are of the following form.

public void reserve<operati on nane>(<args>)
t hrows javax. fma. conmon. Concurrent Control | er Exception

Federatlad Manegament ArchitediLre Spadification Page 107

Controller Aspect

The arguments and operation name are optional. If no operation name is provided, the
reservation is assumed to be made for all operations supported by the object. Otherwise,
the reservation is assumed to be made for a specific operation or set of operations. The
implementations of the reserve operations (reservation methods) are generally nested
callsto the reserve operations of other object. Note that reservation methods must be
synchronized with respect to controllers.

Controller objects make a best attempt at reserving resources. Network failures,
controller service failures, and other failure scenarios can result in the loss of
reservations. Clients and services should be designed in such away as to tolerate or
recover from such reservation failures.

108 Federatad Manegamant Ardhitsdire Soadification

10Persistent Objects

10.1 Specifying Persistent Objects

A referent object can declare itself as persistent using the class modifier field, as
described by the Modifier class documentation.

public class MPersistent Qject
{
private static final int classMdifiers =
... | Modifiers. PERSI STENT | :
}

Stations that support persistent objects will provide specialized acceptors, when the
referent is persistent, that implement the Per si st ent Accept or interface. Proxiesto
persistent referent objects have ar enove(bool ean force) method that invokesthe
remove method of the Per si st ent Accept or .

package j avax. fnma. common;
i mport java.rm .RenoteException;

/** Acceptor extension to support renoval of persistent
* objects fromthe durable storage.

*/

public interface PersistentAcceptor extends Acceptor

Federatlad Manegament ArchitediLre Spadification Page 109

Persistent Objects

/**Renove a persistent object from durable storage.

* This method will fail if any operations are in

progress on the referent object, unless force is

true. Subsequent operation attenpts result in an

Renot eExcepti on.

@aramforce if true, the persistent referent
object is renoved even if there are operations
in progress.

@ar am cont ext Context containing the any
applicabl e transaction, |ogical thread, or
control ler. The Subject is passed inplicitly.

@ hrows Renot eException Error conmunicating with
the target station or referent object has
al ready been renmoved (NoSuchObj ect Exception).

@eturn True if renoval was successful, false
if the renoval failed because other operations
are in progress.

ECEE R R R I T R R R B N R

*

*/

bool ean renove(
bool ean force,
Cont ext cont ext

t hrows Renot eExcepti on;

If the removal succeeds and the persistent object implements a remove method, then that
method is invoked to allow the object to clean up any persistence for which it is
responsible. A failure of the remove method will not cause the remove operation to fail.
However, stations should log the exception to indicate that some resources may not have
been released. Note that unlikef i nal i ze(), renove() isguaranteed to be called when
the persistent object is removed. The remove method signatureis as follows:

\ private void renove();

10.2 Kinds of Persistent State

10.2.1 Existence

The existence state of a persistent object is a durable record of the object. This stateis
handled by the infrastructure and is invisible to the persistent object. When a persistent
object isremotely instantiated (the only permissible means of instantiation for persistent
objects) arecord of its existence is noted. A persistent element exists until its persistent
image is removed and is not subject to distributed garbage collection.

10.2.2 Implicit

Theimplicit state is that portion of a persistent object’s state that is handled by the station
on behalf of the object. The implicit state of a persistent object is captured by serializing
the object directly. Thus, the transitive closure of the non-transient fields of a persistent
object comprisesitsimplicit state. The object output stream used for serialization shall be

110 Federatad Manegamant Ardhitsdire Soadification

Persistent Objects

tagged with thej avax. f ma. ser ver . Per si st enceSt r eaminterface to provide a
means by which an object can discern if it is being serialized for the purpose of
persistence.

10.2.3 Explicit

Persistent objects can also explicitly control state internal or external to the object. To do
so, the object must implement the

net.jini.core.transaction.server. Transacti onParti ci pant interface. The
persistent object will write explicit state during the prepare or commit operations.

10.3 Reading State

The state of a persistent object is read when the object is activated and when a transaction
in which the object isinvolved is aborted.

10.3.1 Activation

A persistent object is activated as a side effect of reference faulting while attempting a
remote operation on the object as areferent. The object is stored as a serialized byte array
and unserialized when activated. If the persistent object needs to acquire other state when
activated, it must providea readObj ect () or r eadExt er nal () method as provided
for in the Java serialization specification.

When persistent objects are activated, they assume the latest deployed versions of the
needed classes. This was detailed previously in Class Loading During Activation, page
63.

10.3.2 Transaction Abort

If a persistent object isinvolved with a transaction and the transaction is aborted, the
object isimmediately deactivated. Operationsin progress during the abort will continue
with the now stale object. Note that methods synchronized with respect to transactions
will be blocked during the abort operation. If these operations have not timed out by the
time the object isrolled back, they will continue by activating the object with the last
committed state. Thus, the transaction abort reduces to a throw away followed by
activation with the last committed state.

10.4 Writing State

The state of a persistent object is written when the object is remotely (using a Proxy)
instantiated and when a transaction in which the object isinvolved is committed.

104.1 Instantiation

The state of the persistent object, when instantiated, is supplied as constructor arguments.
Additional state may be acquired by the object in its constructor. The state, including the
existence of the object, is not considered durable until the transaction under which the

Federatlad Manegament ArchitediLre Spadification Page 111

Persistent Objects

112

object was instantiated is committed. Constructors of persistent objects are always treated
as synchronized with respect to transactions. Thus, if the client does not provide a
transaction, the station will create and commit a transaction bracketing the constructor
invocation. If the constructor throws an exception, the transaction is aborted.

In response to the constructor transaction preparing, the station serializes the persistent
object and prepares to store the resulting byte stream. Any errorsin serialization cause
the transaction to abort. On commit, the station is responsible for making the serialized
state of the object durable.

If the persistent object implements Tr ansact i onParti ci pant , then the station will
invokethe prepare(), conmit (), andabort () operations after the station has
performed its transaction duties, as previously outlined.

Transaction Commits

When atransaction is committed in which the persistent object isinvolved, the object
may be serialized and persisted. The pattern follows that of instantiation: serialization
during prepare, object transaction operations invoked after station transaction duties, etc.

If the transaction aborts, the station immediately deactivates the object. Subsequent
communications with the object as areferent (the only valid way of communicating with
the object) resultsin activation of the previously committed version.

Dirty Optimization

Stations are only required to persists dirty persistent objects as an optimization that
avoids persisting objects that have not been mutated. The station assumes that mutator
methods modify state and all other methods do not. To be considered a mutator, the
method must follow the JavaBeans setter pattern. If other methods modify state such that
the persistent object needs to be persisted, they must call the

j avax. f ma. conmon. Per si st ent Cont ext . set Di rty() method. The

Per si st ent Cont ext isavailable as the context for all persistent objects.

Federatad Manegamant Ardhitsdire Soadification

Persistent Objects

package javax. fma. server;
i nport javax.fma.services.controller.Controller;
import net.jini.core.transaction.server. ServerTransacti on;
/:*Speci al i zed Contextual for persistent object.
pué)l i ¢ class Persistent Context extends Context
static final long serial VersionU D = -7628337970388961833L;

/** Construct a new Context object.
* @aramcontroller controller context to associate

* with current thread

* @aramtransaction transaction to associate with
* current thread

*/

publ i ¢ Persi stent Cont ext (
Controller controller,
Server Transacti on transaction

);

/** Return a clone of this context with the | ogical
* thread ID set to null.

* @eturn Context - Context clone

*/

publ i c Cont ext cl oneCont ext () ;

[** Return true if the specified object conpares as
* equal to this Context. The objects are equal if

* they are both Context objects and have equal

* controller contexts, transactions, and | ogical

* threads.

* @ar am conpareCbj ect object with which to

* conpare this Context

* @eturn boolean - true, if the objects conpare

* as equal

*/

publ i c bool ean equal s(Obj ect conpareCbject);

/** Return a String representation of this Context.
Primarily used for debugging. The format should

* be human readable, but is otherw se |eft

* unspeci fied.

* @eturn String - string representation of

* Cont ext
*/
public String toString();

/** Inforns the station that this object has been
* mut at ed.
* @eturn boolean true if the object was al ready

* dirty.
*/
publ i ¢ bool ean setDirty();

Fedarated Manegemant Architeciure Spedification Page 113

Persistent Objects

10.5 Access of Persistent Objects Using Proxies

Aswith all referent objects, persistent object must only be instantiated and accessed
through an appropriate Proxy. Only when the object is accessed by proxy is the station
able to apply the semantics associated with the aspects and persistence.

10.6 Concurrent Operations

There may be operations in progress while a transaction is being prepared, committed, or
aborted. From the time the prepare operation begins until the commit or abort ends, the
station will react as follows to remote operation attempts.

10.6.1 Operation in Progress on Methods Not Synchronized/Transaction

These methods are assumed not to be involved with state (logic methods) and are allowed
to continue uninterrupted.

10.6.2 Operation in Progress on Methods Synchronized/Transaction

These operations are allowed to complete before the prepare operation is handled by the
station.

10.6.3 Operation Initiated on Methods Not Synchronized/Transaction

These methods are assumed not to be involved with state (logic methods) and are allowed
to initiate without interruption.

10.6.4 Operation Initiated with New Transaction on Methods Synchronized/Transaction

Station throws aj avax. f ma. conmon. Concur r ent Tr ansact i onExcept i on asthe
persistent object is still considered involved with the transaction in progress.

10.6.5 Operation Initiated with Old Transaction on Methods Synchronized/Transaction

Station throwsannet . j i ni . core. transacti on. UnknownTr ansact i onExcepti on
asthe transaction in progress is considered closed to participants after the prepare
operation has been initiated.

114 Federatad Manegamant Ardhitsdire Soadification

11 Registered

Dynamic Services

Dynamic services must be registered with the lookup service for the management domain
to which they belong. The hosting station handles the registration of the service with the
lookup service as well as maintenance (lease renewal and removal) of the lookup service
entry on behalf of the service.

11.1.1 Specifying the Service Entry

Each dynamic service has one single proxy registered with the lookup services serving
the management domain to which the service belongs. Unlike static services, the proxy of
adynamic serviceisrequired to be a Proxy in the sense of the dynamic services model.
The referent of this Proxy is the primordial point object of the service; thus, the
primordial point object must be proxied and the Proxy available to the station in the same
package as the point object. Each dynamic service must have a single primordial point
object that implements the following method.

private net.jini.core.entry. Entry[] getLookupEntries(); H

This method provides alist of entries (possibly empty or null) under which the elements
service be registered. The set of registration entries is considered immutable for the life
of the service. When the primordial point object is remotely instantiated, the only
allowable method of instantiation, the station will invoke get LookupEnt ri es() after
the constructor has completed. Thisis coincident with the time that the station begins to
register the point object, and, therefore, the service itself, with the appropriate lookup
services. Aslookup services are dynamic in existence and the registration process
asynchronous, there is no guarantee as to when the service will be successfully registered
with any particular lookup service.

In addition to the entries provide by the service’s primordial point object, the station will
add an additional Ser vi cel nf o entry, if aSer vi cel nf o entry isnot already present in
the entry list. The Ser vi cel nf o entry must be populated using the package information
associated with the primordia point object according to the following table.

‘ Servicelnfo Property java.lang.Package Property

Federatlad Manegament ArchitediLre Spadification Page 115

Registered Dynamics Services

manufacturer I mplementationV endor

model full class name of primordial point object
name toString() of primordial point object
serial Number 0

vendor I mplementationV endor

version ImplementationVersion

If the primordial point object providesthe Ser vi cel nf o itself, it may provide
specialized values for model, name, serialNumber and manufacturer. Other fields should
be taken from the package level information. Note that this information is specified in the
manifest of the JAR file in which the service classes are resources are deployed.

The dynamic service will be registered with all lookups services for a particular
management domain. The management domain is determined by the management
domain to which the station hosting the service belongs. Thus, all servicesin agiven
station belong to the same management domain as the station itself. The station also
oversees the maintenance of registrations and re-registrations in the case of lookup
service or station restarts such that dynamic services are considered ‘good’ Jini
technology citizens as outlined in the Jini technology specification.

11.1.2 Leases
Stations are responsible for maintaining the registration leases of all hosted dynamic
services, including those that are persistent but not currently active.

11.1.3 Response to Lease Renewal Failure
Upon failure to renew a registration lease, the station will periodically attempt to
reregister the associated service point object with any available lookup services. The
reregistration strategy is implementation specific.

11.1.4 Service IDs
In the case of persistent service (services with a persistent primordial point object),
stations shall persist the service ID, issued when the service was first registered with a
lookup service, such that the service will always be registered under the same service 1D
across restarts of both the station and the lookup services.

116 Federatad Manegamant Ardhitsdire Soadification

12 Internationalization and Localization

Internationalization is the steps taken to make a program easier to localize. Localization
is the process of having a program work in terms of the conventions appropriate to a
particular locale. One of these conventions is the language appropriate for the locale. In
fact, alocalized program needs to have changes other than just language: often there must
be changes in the recognition of time zone, the formatting of dates, currency, and other
similar trandations.

Internationalization must be done in a consistent manner throughout a system. To
encourage the use of a single standard of internationalization, a method for
internationalization and a class for localization are included as part of this specification.
The defined method is an extension to the internationalization support provided by the
JDK and usesthej ava. util. Local e,java. util.Properties,

java. util.ResourceBundl e, andj ava. t ext . MessageFor mat JDK classes, with
which the reader should be familiar.

12.1 Overview

Internationalization is performed by always referring to user viewable messages
indirectly through resource bundles. Each class can have one or more associated resource
bundles containing lists of key-message pairs, both of which are strings. The key isa
simple string and the message is a string suitable for constructing a

j ava. t ext . MessageFor mat object. Thus, the message string can contain substitution
placeholders. A particular message is specified by providing:

1) acontext class (to be used to locate the resource bundle),
2) amessage key (to identify a single message within the resource bundle), and
3) apossibly empty list of objects for substitution into the message.

In adistributed environment, the context class and the classes of parameter objects must
be internally represented as a class name and code base par, as is done with
java.rm . Marshal | edObj ect, so that localization resources can be network loaded
according to RMI network class loading semantics.

The substitution objects can be strings or more complex objects, such asa
java. util . Dat e object. In the latter case, the substitution operation, which is done

Federatlad Manegament ArchitediLre Spadification Page 117

Internationalization and Localization

during localization, performs format conversion as defined by
j ava. t ext. MessageFor mat .

The localization process uses the context class, combined with a specified locale, to
locate the appropriate resource bundle. Once the bundle is loaded, localization can select
the correct message using the message key. This message is converted into a

j ava. t ext . MessageFor mat object that can provide the fully localized message given
the list of substitution objects.

12.2 Internationalization

12.2.1 LocalizableMessage

LocalizableM essage encapsul ates the concept of an internationalized message that can be
localized.

package javax.fma.util;

i nport java.io.Serializable;
import java.util.Locale;

/**Encapsul ation of a |ocalizable nmessage. Localizable

* messages should be treated as immutable. To this
end, the constructor clones the substitution object
array. Callers should ensure that the individual
objects of the array are thenmselves imutable. In
addition, it is recommended that these objects be

of JDK cl asses, such as Nunber and String, which are
i mut abl e. An exception is the use of java.util.Date,
whi ch is mutable. Such objects should be cloned with
the array containing the only reference to the clone.

* % X X X X X

*
*/
public final class Localizabl eMessage
i mpl enents Serializable, Coneable

118 Fedarated Manegamant Ardhiteciure Soedification

Internationalization and Localization

/**Create a | ocalizabl e nessage object.
* @aram context The class used as a root in order

to load | ocalization resources. If null, an
I'I'l egal Argument Exception will be thrown.

@ar am key The nessage key to |l ocate an
i ndi vi dual nmessage in a properties file. If
null or an enpty string, an
I'I'l egal Argument Exception will be thrown.

@ar am par ans Parameter (substitution) objects
may be null. It is reconmended that only
java.* class objects be used to avoid the
need to network | oad other classes in support
of the localization process

@aram | ocal e The | ocale to be considered as the
originating locale. If null, the default
locale will be used. This locale is used to
create the fall back text for this nmessage

@eturn The newly created nessage object. The
fall back nessage will have already been
creat ed.

@hrows |11 egal Argunent Exception if any argunent
except parans is null, parans contains a null, or
key 1s an enpty string.

F % X F X X X X X X X X X X X X X X X X

*

*

/

public Local i zabl eMessage(
Cl ass cont ext,
String key,
Serializabl e[] parans,
Local e I ocal e

);

/** Get the |ocalized text for this nessage

* |f the localization fails (for exanple if the

resources needed to performlocalization are

currently not available on the network) and

useFal | back is set to true, then

the fall back text is returned. The fall back

text was forned when the nmessage was created

using the locale provided to the constructor.

If localization fails and useFal |l back is set

to false, a LocalizationError is thrown.

@aram | ocal e Locale to be used for |ocalization
A 1l egal Argunent Exception is thrown if
| ocale is null

@ar am useFal | back if true, on a localization
failure, use the fall back text. if false, on
a localization failure throw an
Local i zati onExcepti on.

@hrows Throws |11 egal Argunent Exception if |ocale
is null.

@hrows Throws LocalizationError if |ocalization
fails and useFal | back is fal se

@eturn Localized text of the nessage.

O X O O O X F X F X X X X X X X X X F F
~

public String getLocalizedText (
Local e | ocal e,
bool ean useFal | back

);

/** Get the localized text for this nmessage using the

Fedarated Manegemant Architeciure Spedification Page 119

Internationalization and Localization

default locale as returned by Local e.getDefault().
If the localization fails (for exanple if the
resources needed to performlocalization are
currently not avail able on the network) and
useFal | back is set to true, then
the fall back text is returned. The fall back
text was forned when the nmessage was created
using the locale provided to constructor.
If localization fails and
useFal | back is set to false, an
I'I'l egal Argument Exception is thrown.
@ar am useFal | back If true, on a localization
failure, use the fall back text. If false, on
a localization failure throw a
Local i zati onError.
@hrows LocalizationError if |ocalization
fails and useFal | back is false.
@eturn Localized text of the nessage.

F % X O X F X X X X X X X X X X X F F
~

public String getlLocalizedText(bool ean useFal |l back);

/**Get the locale used to create this nessage. This
* will also be locale that was used to generate the
* fall back text.

* @eturn The locale used to create this nmessage.
*/
public Local e get Fal | backLocal e();

public static final class LocalizationError
extends Error inplenents ConpositeThrowabl e

/** Construct a LocalizationError using default nessage.
* @aramdetail Detail as to why localization failed.

* May be null.
* @ar am cont ext Cl assNane Nanme of context class for
* which localization failed. My be null.
* @aram key Nane of key for which localization failed.
* May be nul | .
* @aramlocal e Locale for which localization fail ed.
* May be nul | .
* @aram reason Throwabl e indi cating why |ocalization
* failed. May be null.
*
/
public LocalizationError(
String detail,
String contextd assNane,
String key,

Local e | ocal e,
Thr owabl e reason);

/** Returns the nested exception.
*/
public Throwabl e get Tar get Excepti on()

A Local i zabl eMessage encapsulates a context class, message key, substitution objects
(possibly none), fall back locale, and afall back text. During the localization process,

120 Fedarated Manegamant Ardhiteciure Soedification

Internationalization and Localization

described fully in section 12.3, a properties files containing the texts for agiven locale
must be loaded. Resource loading is always relative to a given class: in this case the
context class. Thus, the context, locale, and key are used to load and select a single text
for the message. Then the parameter objects, if any, are substituted into the text to arrive
at alocalized text for the message. Note that |ocalization may involve the network
loading of property files and classesif they are not available locally.

12.2.2 Providing Resource Files

The resources for a class of package a. b. ¢ are located in the package

a.b. c.resources. Asdescribed by j ava. uti | . Resour ceBundl e, the default
resource file will have a base name identical to the unqualified class name. Resource files
containing messages particular to alocale are named as specified by

java. util.ResourceBundl e. For example, the French resource file for the class A
would beA fr. properti es, if itisapropertiesfile, and stored in the resource
directory below A. cl ass. The JDK allows resources to be class files or property files. In
either case, the result is akey-value pair in which, for the purposes of localization, both
the key (message key) and value (text) must be strings. For simplicity, the examples use
property files with the understanding that equivalent behavior can be had with classfiles.

12.3 Localization

Localization of a given message happens first when the message is created, to create the
fall back text, and subsequently whenever the get Local i zedText () isinvoked.

12.3.1 Finding Text

Givenalocal e and class A, aresource bundle islocated using the

java. util.ResourceBundl e class. The search for a particular property or classfile
defining the resource bundle for a given locale is described by the

java. util.ResourceBundl e documentation. If the resource bundleis found and
contains the desired message key, the resulting text is used for localization. If not, the
search continues up the inheritance tree using a breadth first search with preference given
to classes over interfaces at the same depth. No ordering is specified with respect to
interfaces at the same depth. The search will not include classes that are rooted at java
packages. If no message is found using this search, the fall back text will be used.

12.3.2 Localization Implementation

Localizable messages must use the localization facilities of the local station as provided
by thej avax. fma. util . Local i zabl eMessage. | ocal i ze() method. This method
delegates to an implementation as described in section 4.2.

12.4 Serialization of Messages

Messages must be serializable for the purposes of marshaling during remote operations
and for persistence of messages. The serialization shall follow RMI marshaling

Federatlad Manegament ArchitediLre Spadification Page 121

Internationalization and Localization

12.4.1

12.4.2

12.4.3

12.4.4

122

semantics: classes shall be annotated with their code bases. An implementation of

Local i zabl eMessage might, for example, encapsulate the context and substitution
parametersin aj ava. rmi . Mar shal | edObj ect object. Deserialization of the context
class and the substitution objects could involve network class loading of the annotated
classes: ahigh risk activity. Asthe localizable message isintended to be a highly reliable
class, it must obey the following rules with respect to serialization failures.

Failure to Serialize

If any portion of aLocal i zabl eMessage, except the fall back text, failsto serialize
thenthe Local i zabl eMessage must recover and still serialize at least the fall back
text. Localization attempts on the resulting deserialized message shall return the fall back
text.

Failure to Serialize

If any portion of aLocal i zabl eMessage, except the fall back text, failsto serialize
thentheLocal i zabl eMessage must recover and still serialize at least the fall back
text. Localization attempts on the resulting deserialized message shall return the fall back
text.

Low Risk Substitution Objects

To reduce network resource loading and, therefore, increase the reliability of localizing
messages, it is strongly encourage to use only substitution objects of classesin the java.
packages, such asj ava. | ang. String andj ava. util . Date.

Messages as Public Interfaces

Messages issued by a service are part of the public interface of that service. As such, all
of the localization resources needed to localize the messages must be include in the
dynamic ("-dI") JAR of the deployment group for the service.

Federatad Manegamant Ardhitsdire Soadification

13 Composite Exceptions and Errors

Much like internationalization, exception and error handling benefits from
standardization and so are included in this specification as strong recommendations for
dynamic service developers. In Java, error conditions are uniformly indicated by
throwing throwabl es, which includes exceptions and errors of various sorts. Checked
throwables are those that must be declared. Unchecked throwables are those that need not
be declared.

Two distinct problems are being addressed by the proposed throwable extensions: nested
throwables and internationalized throwables. At points of abstraction in an object
oriented design, often indicated by interfaces, one wishes to decouple the implementation
from the abstraction. Abstract throwables, particularly exceptions, must be defined in
addition to the interface in order to achieve sufficient decoupling. Indeed the JDK has
several examples of this pattern, including

java.lang.refl ection. | nvocati onTar get Excepti on and

java.rm . Renot eExcept i on. These abstract exceptions each have encapsul ated target
exceptions. In this specification, the mechanism is unified by providing a standard
method of nesting one or more throwables within another throwable.

The messages of the JDK throwables are not internationalized and, therefore, not suitable
for user viewing. It is essential that sophisticated users are able to view throwable
messages to diagnose the cause of the failure.

The interface defined to handle these problemsis

javax. fma. util . Conposi t eThr owabl e. All throwables that could possibly be
viewed by the user or considered abstract, in the sense that they can be thrown in
response to another exception, should implement this interface. A delegate implemtation
class, j avax. f ma. uti | . Conposi t eDel egat e, isprovided to aid in such
implementations and two classes, j avax. f ma. uti | . Conposi t eExcept i on and
javax.fra. util. ConpositeError, areaso provided as base implementations of
javax. fma. util. ConpositeThrowabl e.

13.1 Nested Throwables

An abstract throwable is one that is thrown in response to another thrown throwable. For
example, consider avirtual volume component with a method si zeVol ume(| ong
si ze) to change the size of avirtual volume. The operation could fail for any number

Federatlad Manegament ArchitediLre Spadification Page 123

Composite Exceptions and Errors

13.2

of reasons and many of those reasons would be specific to a particular implementation of
the component. Therefore, it would be appropriate to have the method throw an abstract
Resi zeFai | edExcept i on in response to an error condition during the operation
attempt. If the implementation caught an | OExcept i on, for example, during the
execution of the si zeVol unme() method, it should create aResi zeFai | edExcepti on
with thel OExcept i on asanested child exception. The method can throw the

Resi zeFai | edExcept i on without losing the information contained in the

| CExcept i on. Thisisthe basic nesting pattern.

The nesting of throwables is not necessarily linear. Particularly when alternate strategies
and retries are involved in attempting to complete an operation, there can be more than
one nested child throwable. Thus, aj avax. f ma. uti | . Conposi t eThr owabl e can
represent atree of throwables containing information pertinent to the failure of the
attempted operation.

javax.fra. util. ConpositeThrowabl e supports multiple nested child throwables.
One can navigate from the parent throwable to child throwables, but not from child to
parent. All throwables are considered immutable objects; therefore, the list of child
throwables is established during the instantiation of the parent and cannot be changed.

Internationalization and Localization of Throwables

Many exceptions are ultimately destined for informing the user, even if simply because
the application has no other idea what to do with them. Exceptions usually carry message
information for user viewing, whether in a graphical alert box or on the command line.

javax. fma. util . Conposi t eThr owabl e implementations require a

javax.fma. util. Local i zabl eMessage object, or the arguments needed to construct
alocal i zabl eMessage object, as argumentsto all constructors. The localizable
message may also be retrieved using the get Message() method.

13.3 Stack Traces and Throwable Serialization

124

When athrowable is serialized, such as when thrown during a remote operation, the stack
traceislost, as stack information is considered transient by the JDK. This behavior
resultsin the loss of valuable diagnostic information. To compensate for this
shortcoming, j avax. f ma. uti | . Conposit eExcepti on and

javax.fma. util.ConpositeError, whenfirst serialized, build text versions of
the stack traces associated with each nested throwable. Stack trace information is
maintained and can be retrieved. Because not all throwables subclass

javax. fma. util . ConpositeExceptionorjavax.fnma. util.ConpositeError,
the root throwable must be responsible for the stack traces of all its descendents, not just
for itsimmediate children.

For remote method calls, the logical stack trace for an exception spans VMs. To assist in
exception diagnosis, Proxy implementations shall append stack trace information for the
local VM when an exception thrown by a remote method is being rethrown in the local
VM.

Federatad Manegamant Ardhitsdire Soadification

Composite Exceptions and Errors

13.4 Rules for Handling Throwables

1) Never discard one throwable and throw another throwable. The original
throwable can contain valuable information needed to diagnose the problem.

2) Never concatenate messages as away of nesting throwables. This primitive
nesting is not consistent, cannot be reliably traversed, and cannot be localized.

3) Provide as much context information, in the form of localizable messages, as
reasonable. Throwing afile permission exception without including the file
name, for example, does little to help the user diagnose the problem.

13.5 Composite Throwable Interface

Conposi t eExcept i on and Conposi t eEr r or both implement the
Conposi t eThr owabl e interface. This interface provides operations for getting
messages and nested exceptions.

package javax.fma.util;
i nport java.util.Locale;

/** Abstraction for Throwabl es with | ocalizabl e nessage,

nested exceptions, and renote stack tracing.

<pP>

Conposi t eThr owabl e provi des met hods for

 getting a localized nessage for the Throwabl e,

<Ll > getting nested (casual) exceptions for the Throwable, and
 getting stack trace information for nested exceptions.

</ UL>

Conposi teThrowabl e al so provi des the necessary hook for
correctly handling remote stack trace information.

The { @i nk ConpositeDel egate} class provides an inplenentation
of ConpositeThrowabl e which correctly handles |ocalization,
nested exceptions, and renote stack tracing.

F % X F X F X X X X X X X X X F X

@ee javax.fma. util.ConpositeException
@ee javax.frma. util. ConpositeError

*

*/
public interface ConpositeThrowabl e

/** Returns a localized description of this
* ConpositeThrowabl e using the default |ocale.
* @eturn Returns the localized nessage.
*/

String get Local i zedMessage() ;

Federatlad Manegament ArchitediLre Spadification Page 125

Composite Exceptions and Errors

126

/** Returns a |l ocalized description of this

* ConpositeThrowabl e using the given |ocale.

* @aram | ocale Locale in which to performthe |ocalization.
* An ||l egal Argunment Exception is thrown if |ocale

* is null.

* @eturn Returns the |ocalized nessage.

* @hrows |11 egal Argurment Exception if locale is null.

*/

String get Local i zedMessage(Local e | ocale);

/** Returns the array of (causal) nested exceptions
* included in the ConpositeThrowabl e.

* @eturn Returns an array containing the causal
* nest ed exceptions.

*

/

Thr owabl e[] get Nest edExceptions();

/** Returns a stack trace for a nested exception.

* @aram nest edExcepti on Nested exception for which

* a stack is being requested.

* @eturn Returns stack trace for indicated nested throwable.
*/

String get Nest edSt ackTrace(Throwabl e nest edException);

/** Facilitates saving of renpte stack trace information.

* This method is called by the FMA station before a
ConpositeThrowabl e is thrown to a Proxy to indicate that
the renpote station should concatenate its stack
information with the current stack information for this
Conposi t eThr owabl e.
<p>

* This method does not need to be called explicitly.

*

/
voi d saveRenot eSt ackTrace() ;

EE I

Federatad Manegamant Ardhitsdire Soadification

Composite Exceptions and Errors

13.6 Composite Delegate Class

package javax.fma. util;

import java.util.Locale;
i nport java.io.Serializable;

/** Del egate object for ConpositeThrowabl e i npl enenati ons.

* <pP>

* ConpositeDel egate provides an inpl enentation of

* ConpositeThrowabl e which correctly handl es |ocalization,
* nested exceptions, and renpote stack tracing.

* <pP>

* |In addition to providing a reusable inplenmentation of

* ConpositeThrowabl e, ConpositeDel egate provides a

* conveni ence class nmethod, {@ink #get NestedExceptions()
* get Nest edExceptions()}, for retrieving nested exceptions
* from any Throwabl e.

*

* @ee ConpositeError

*/ @ee ConpositeException

*

public final class ConpositeDel egate
i npl ements ConpositeThrowabl e, Serializable

static final long serial VersionUD = 7917115786927613507L;

/** Construct ConpositeDel egate with provided nessage

* and nested exception.

* @aram nessage Informative failure nessage.

* @ar am nest edExcepti ons Throwabl es which are a cause
* of this exception. May be null. Null entries in
* the array are ignored.

*

public Conposi t eDel egat e(
Conposi teThrowabl e throwabl e,
Local i zabl eMessage nessage,
Thr owabl e[] nest edExcepti ons

);

/** Returns array of nested Throwables for a given Throwabl e.
* @aramt Throwable to retrieve nested exceptions from

* @eturn Returns an array of Throwabl es, zero length if

* no nested throwabl es exi st.

*/

static public Throwabl e[] get NestedExceptions(Throwable t);

/** Returns a localized description of this
* ConpositeThrowabl e using the default |ocale.
* @eturn Returns the localized nessage.
*/

public String get Local i zedMessage() ;

/** Returns a |localized description of this
* Conposi teThrowabl e using the given | ocale.

* @aramlocale in which to performthe |ocalization.
* An 111 egal Argunment Exception is throwmn if |ocale
* is null.

*

@eturn Returns the |ocalized nmessage.

Fedarated Manegemant Architeciure Spedification Page 127

Composite Exceptions and Errors

* @hrows |l egal Argunment Exception if locale is null.
*/
public String get Local i zedMessage(Local e locale);

/** Returns the array of (causal) nested exceptions
* included in the ConpositeThrowabl e.

* @eturn Returns an array containing the causal
* nest ed exceptions.

*/

public Throwabl e[] getNestedExceptions();

/** Returns a stack trace for a nested excepetion.
* @aram nest edExcepti on Nested exception for which

* a stack is being requested.

* @eturn Returns stack trace for indicated nested throwable.
*/

public String get Nest edSt ackTrace(Throwable t);

/** Facilitates saving of renpte stack trace information.
* This method is called by the FMA station before a

* ConpositeThrowable is thrown to a Proxy to indicate that
* the renpote station should concatenate its stack
* information with the current stack information for this
* ConpositeThr owabl e.
* <pP>
* This method does not need to be called explicitly.
*
/
public void saveRenot eSt ackTrace() ;

/** Returns fallback nessage. To be used in
* Throwabl e. get Message() .
*/

public String get Fal | backMessage() ;

13.7 Composite Exception Class

package javax.fma.util;

/** Exception i npl enentation of ConpositeThrowabl e.
* @ee ConpositeException
* @ee ConpositeThrowabl e
*/
public class ConpositeException
ext ends Exception inplenments ConpositeThrowabl e

static final long serial VersionU D = -8311358440368993358L;

128 Fedarated Manegamant Ardhiteciure Soedification

Composite Exceptions and Errors

*
*
*
*
*

*/

*

* X X X X X

*

*/

*
*

*/

*

*
*
*

*/

/**
*
*
*
*

*/

[** Construct ConpositeException with provi ded nmessage

and nested exception.

@ar am nessage Informative failure nessage.

@ar am nest edExcepti ons Throwabl es which are a
cause of this exception. May be null. Null
array entries are ignored.

public Conposi t eExcepti on(

Local i zabl eMessage nessage,
Thr owabl e[] nest edExcepti ons

)

/** Construct ConpositeException using its own class

for the Local i zabl eMessage context.

@aram key ldentifies nmessage within the resource bundl e.

@ar am parans Local i zation substitution paraneteres.

@ar am nest edExcepti ons Throwabl es which are a cause of
this exception. May be null. Null array entries in the
are ignored.

@hrows |11 egal Argument Exception if nessageKey is null or if
nmessageParans array contains nulls.

public Conposi t eExcept i on(

String nmessagekey,
Seriali zabl e[] nessagePar ans,
Thr owabl e[] nest edExcepti ons

)

/** Returns a |localized description of this

Conposi t eThrowabl e using the default |ocale.
@eturn Returns the |ocalized nessage.

public String get Local i zedMessage() ;

/** Returns a |localized description of this

Conposi t eThrowabl e usi ng the given |ocal e.

* @aramlocale Locale in which to performthe |ocalization.
* An 111 egal Argument Exception is throw if |ocale

* is null.

* @eturn Returns the |ocalized nessage.

* @hrows |l egal Argunment Exception if locale is null.

*

public String get Local i zedMessage(Locale |l ocale);
/** Returns the array of (causal) nested exceptions

included in the ConpositeThrowabl e.
@eturn Returns an array containing the causal
nested exceptions.

public Throwabl e[] getNestedExceptions();

Returns a stack trace for a nested exception.

@ar am nest edExcepti on Nested exception for which
a stack is being requested.

@eturn Returns stack trace for indicated nested
t hr owabl e.

public String get Nest edSt ackTrace(Throwable t);

Fedarated Manegemant Architeciure Spedification Page 129

Composite Exceptions and Errors

/** Facilitates saving of renpte stack trace information.
* This method is called by the FMA station before a

* ConpositeThrowable is thrown to a Proxy to indicate that
* the renote station should concatenate its stack information
* with the current stack information for this
* ConpositeThr owabl e.
* <pP>
* This method does not need to be called explicitly.
*
/
public void saveRenot eSt ackTrace() ;

/** Return a nmessage describing this throwable.
*/

public String get Message() ;

/** Returns a short description of the

* ConpositeException object.
* @eturn Returns a string representation of

* this ConpositeException.
*

/
public String toString();

13.8 Composite Error Class

130

package javax.fma. util;

/** Error inplementation of ConpositeThrowabl e.
* @ee ConpositeException
* @ee ConpositeThrowabl e
*/
public class ConpositeError
extends Error inplenents ConpositeThrowabl e

static final long serial VersionU D = -8311358440368993358L;

/** Construct ConpositeError with provi ded nessage
* and nested exception.
* @aram nessage Informative failure nessage.
* @ar am nest edExcepti ons Throwabl es which are a

* cause of this exception. May be null. Null
* array entries are ignored.
*/

public Conposi t eError (
Local i zabl eMessage nessage,
Thr owabl e[] nest edExcepti ons

Federatad Manegamant Ardhitsdire Soadification

Composite Exceptions and Errors

/** Construct ConpositeError using using its own class
* for the Localizabl eMessage context.

* @aramkey ldentifies nmessage within the resource bundle.
* (@aram parans Localization substitution paraneters.
* @ar am nest edExcepti ons Throwabl es which are a cause of
* this exception. May be null. Null array entries are
* i gnor ed.
* @hrows |11 egal Argurment Exception if messageKey is null or if
* nmessageParans array contains nulls.
*
/
public Conposi teError (
String nmessagekey,
Seriali zabl e[] nessagePar ans,
) Thr owabl e[] nest edExcepti ons

/** Returns a |localized description of this
* ConpositeThrowabl e using the default |ocale.
* @eturn Returns the |ocalized nessage.
*/

public String get Local i zedMessage() ;

/** Returns a |localized description of this
* Conposi teThrowabl e using the given | ocale.

* @aramlocale Locale in which to performthe |ocalization.
* An 111 egal Argument Exception is throw if |ocale

* is null.

* @eturn Returns the |ocalized nessage.

* @hrows |l egal Argunment Exception if locale is null.

*

public String get Local i zedMessage(Locale |l ocale);

/** Returns the array of (causal) nested exceptions
* included in the ConpositeThrowabl e.
* @eturn Returns an array contai ning the causal
* nested excepti ons.
*/
public Throwabl e[] get NestedExceptions();

/** Returns a stack trace for a nested exception.

* @aram nest edExcepti on Nested exception for which

* a stack is being requested.

* @eturn Returns stack trace for indicated nested

* t hr owabl e.

*/

public String get Nest edSt ackTrace(Throwable t);

/** Facilitates saving of renpte stack trace information.
* This method is called by the FMA station before a
ConpositeThrowabl e is thrown to a Proxy to indicate that
the renpote station should concatenate its stack infornation
with the current stack information for this
Conposi t eThr owabl e.
<p>
* This method does not need to be called explicitly.
*
/
public void saveRenot eSt ackTrace() ;

EE I

Fedarated Manegemant Architeciure Spedification Page 131

Composite Exceptions and Errors

/** Returns a nessage describing this throwable.
*/

public String get Message() ;

/** Returns a short description of the

* ConpositeError object.
* @eturn Returns a string representation of

* thi s ConpositeError.
*/
public String toString();

13.9 Exception Debugging

To facilitate the debugging of exceptions, this specification defines an abstract static
method, javax.fma. util.Debug. debugExcepti on(), which can be called when
an exception is caught. The specific behavior of this method is|eft up to the
implementation provider, but the method should usually store the exception somewhere
external to the VM such that it can be retrieved and analyzed by a developer at alater
occasion. Debug. debugExcept i on() must never throw a throwable under any
condition, return reasonably quickly, and not in any way impair the further functioning of
astation.

The information passed to debugExcept i on() isintended for debugging use only.

For example, an implementation of Debug. debugExcept i on() might serialize
exceptions and stack trace information into afile for later retrieval and viewing by a
developer.

package javax.fma. util;
/:* Debug utility class.
pu/bl ic final class Debug
/**Does sonething to facilitate debuggi ng of an excepti on.

* This method wll not throw an exception.
* @aramclue String giving a clue as to what happened.

* May be nul | .
* @aram excepti on Exception which happened.
*
/
public static void debugExcepti on(

String clue,
Thr owabl e exception
)

132 Federatad Manegamant Ardhitsdire Soadification

Section 3: Static (Base) Services

Base services are a guaranteed part of the environment in a management domain. The
base services include transaction, controller, logging, events, and scheduling. They are
available for use by the clients and services belonging to a management domain and do
not depend on the dynamic services model. In other words, the services are standalone
and good Jini technology citizens in their own right. There must only be one of each type
of service available in each management domain. If a given service features replication
for the purposes of high availability, the replication is not visible to the service client and
the service appears logically as asingle service. In particular, the service registers a
single service proxy in the lookup services for the domain.

Services must be registered with a populated BaseSer vi cel nf o entry. Services must
register their proxies with all lookup services that belong totharfagenent domai n
name>" group. To do so, services must continually listen for the arrival of lookup
services belonging to the management domain. Within a lookup service, the individual
service types are distinguished by interface.

package j avax. fnma. common;
i mport net.jini.lookup.entry. Servicelnfo;

/**Used to | ocate a base (static) managenent service in
* a particul ar managenent donmin. Fields other than the
* domai n name can be left null. These fields are treated
* as wildcards by the | ookup service. The domain field
* MUST be provided (i.e. cannot be null). Failure to
* specify this field will result in an
* 111 egal Argunent Excepti on.
*
/
public final class BaseServicelnfo extends Servicelnfo

/**Name of managenent domain to which the service
* bel ongs.

*/

public String domai n;

Federatlad Manegament ArchitediLre Spadification Page 133

Static Services Model

134

/**Create a station address matching tenpl ate.
* @aram domai n - managenent domain to which the

* servi ce bel ongs
* @aram nane servi ce nane
* @aram manuf acturer service manufacturer
* @ar am vendor service vendor
* (@aram version service version
* @aram nodel service nodel nanme or nunber
* @aram serial Nunber service serial number
* @hrows |l egal Argunment Exception if domain is null.
*
/

publ i c BaseServicelnfo (
String donain,
String nane,
String manuf acturer,
String vendor,
String version,
String nodel,
String serial Number

Federatad Manegamant Ardhitsdire Soadification

14 Static Services Model

Whileit is permissible to directly contact alookup service and retrieve a proxy for a
particular management service, stations are required to provide local convenience access
to the base services using the abstract classj avax. f ma. servi ces. Ser vi ceFi nder,
asfollows.

package javax. fnm. servi ces;

i mport javax.fma. util.ConpositeException

i nport javax.fma.util.Localizabl eMessage

i mport javax.fma.services.controller.ControllerService
i nport javax.fnma.services.log.LogService

i mport javax.fnma. services. event. Event Servi ce

i nport javax.fma. services. schedul i ng. Schedul i ngServi ce

i mport net.jini.core.transaction.server.*;

/ ** Conveni ence access to static (base) services.

* | nplementati ons may cache service proxies that
have been retrieved. |nplenmentations may al so
place limts on howlong they will wait for
a | ookup service to respond before failing.

Before providing a service proxy, the inplenentation
nmust verify that the service is reachabl e using

the proxy. If not and the proxy was froma cache

the cache nmust be invalidated and the service

proxy refetched froma | ookup service. If not and
the service was not cached, the nethod must throw

a Servi ceNot FoundExcepti on

* % X X X X X X F

*

*/
public final class ServiceFi nder

/** Returns transaction service for |ocal managenent donmain
* @eturn TransactionManager for |ocal nanagement domain
* @hrows ServiceNot FoundException if service is not found.
*/
public static Transacti onManager getTransacti onService()
t hrows Servi ceNot FoundExcepti on;

Federatlad Manegament ArchitediLre Spadification Page 135

Static Services Model

136

/** Returns controller service for |ocal managenent donain.
* @eturn ControllerService for |ocal managenent donmai n.
* @hrows ServiceNot FoundException if service is not found.
*/
public static ControllerService getControllerService()
t hr ows Servi ceNot FoundExcepti on;

/** Returns | og service for |ocal managenent domai n.
* @eturn LogService for |ocal nanagement domain.
* @hrows ServiceNot FoundException if service is not found.
*/
public static LogService getlLogService()
t hrows Servi ceNot FoundExcepti on;

/** Returns event service for |ocal management domain.
* @eturn EventService for |ocal managenent donain.
* @hrows ServiceNot FoundException if service is not found.
*/
public static EventService get Event Service()
t hr ows Servi ceNot FoundExcepti on;

/** Returns scheduling service for |ocal nmanagenent donain.
* @eturn Schedul i ngService for |ocal managenent donain.
* @hrows ServiceNot FoundException if service is not found.
*/
public static SchedulingService getSchedul i ngService()
t hrows Servi ceNot FoundExcepti on;

/** Returns transaction service for specified managenent donain.
* @aram donmai n Managenent dommi n of desired service.
* @eturn TransactionManager for specified managenment domain.
* @hrows ServiceNot FoundException if service is not found.
*
/
public static Transacti onVManager getTransacti onServi ce(
String domain)
t hrows Servi ceNot FoundExcepti on;

/** Returns controller service for specified nmanagenent donain.
* @aram domai n Managenent donmai n of desired service.
* @eturn ControllerService for specified nmanagenent domai n.
* @hrows ServiceNot FoundException if service is not found.
*
/
public static ControllerService getControllerService(
String domain)
t hrows Servi ceNot FoundExcepti on;

/** Returns | og service for specified managenent donain.

* @aram donmai n Managenent dommi n of desired service.

* @eturn LogService for specified managenent donain.

* @hrows ServiceNot FoundException if service is not found.
*

/
public static LogService getLogService(

String domain)
t hr ows Servi ceNot FoundExcepti on;

Federatad Manegamant Ardhitsdire Soadification

Static Services Model

/** Returns event service for specified nanagenent donain.

* @aram domai n Managenent donai n of desired service.

* @eturn EventService for specified nanagenent donmin.

* @hrows ServiceNot FoundException if service is not found.
*

/
public static EventService get Event Servi ce(

String domain)
t hrows Servi ceNot FoundExcepti on;

/** Returns scheduling service for specified nanagenent domai n.
* @aram donmai n Managenent domai n of desired service.
* @eturn Schedul i ngService for specified managenent donmain.
* @hrows ServiceNot FoundException if service is not found.
*
/
public static Schedul i ngService get Schedul i ngServi ce(
String domain)
t hrows Servi ceNot FoundExcepti on;

/** Exception indicating that a service was not found. */
public static final class ServiceNot FoundException
ext ends Conposit eException

/** Construct a Servi ceNot FoundExcepti on.
* @aram servi ceType Interface of service which was not

* f ound.

* @aramreasons Nested throwabl es indicating why service
* was not found.

*/

public Ser vi ceNot FoundExcept i on(
Cl ass servi ceType,
String domain,
Thr owabl e[] reasons

)

/** Construct a Servi ceNot FoundExcepti on.
* @aram nmessage Message indicating failure reason.
* @aramreasons Nested throwabl es indicating why service
* was not found.
*/
public Ser vi ceNot FoundExcept i on(
Local i zabl eMessage nessage,
Thr owabl e[] reasons

Ser vi ceFi nder isan application interface class that uses implementation delegation;
however, only the methods taking a management domain name are delegated directly to
the implementation. The methods that do not take a management domain name are
delegated to the previous methods while usingjthe&x. f ma. domai n” system
property to supply the management domain. This property is dynamic and must be
refetched each timeget <name>Ser vi ce() method is called.

Fedarated Manegemant Architeciure Spedification Page 137

15 Transaction Service

The well-known transaction service is a Jini technology transaction manager serving a
particular management domain.

15.1 No Transaction Service

If no transaction serviceis present, transaction activity cannot be initiated, but previously
completed transactions are not affected. Sources of activity, principally clients, the event
service, and the scheduler service, will need to wait until a transaction serviceis available
before initiating activity. Failure to do so results in thrown exceptions when an attempt is
made to create a new transaction, directly or indirectly.

15.2 Failed Transaction Service

Transactions are not considered long-lived and will be lost if the transaction service fails
while atransaction isin progress. A transaction in progress when the transaction manager
fails will generally fail when the transaction initiator aborts or commits the transaction.
Asthe transaction initiator does not have knowledge of all the transaction participants,
participants should consider verifying that the transaction in which they are participating
isdtill valid if areasonable length of time, such as five minutes, has passed without a
commit or abort. If the transaction is no longer valid, participants should behave asif the
transaction had been aborted. As any exceptions encountered during the abort will not be
thrown to the transaction initiator, as would normally be the case, the exceptions should
usually be logged and possibly result in a notification event.

15.3 Recovered Transaction Service

A transaction manager is not required to recover any state, other than its service ID, when
restarted after failure as al transactions in progress are assumed to have been lost.

Federatlad Manegament ArchitediLre Spadification Page 138

16 Controller Service

The controller serviceisresponsible for issuing controllersto both clients and stations
acting on behalf of controller objects. It maintains a centralized view of all the controllers
in the system; however, thisview is considered slave, not master, state. The master state
is maintained internally by the clients and stations. Leases are in place such that when is
lease failsto renew, it is an indication that state synchronization may have been lost and
the state of the controller service should be rebuilt. The state rebuilding is done by
stations informing the controller service about the controllers for which the station is
responsible. Client controllers may be lost when the controller service fails or becomes
unreachable. Thus, clients may have to restarted if the controller service fails.

Objects never need to contact the controller service or invoke methods on a controller or
lock object directly. These duties are handle by the station on behalf of controller objects.
Controller objects may cancel locks held by a controller by caling

j avax. f ma. common. Cont ext . r el easeLocks().

16.1 Controller and Controller Generations

In the course of remotely invoking methods synchronized with respect to controllers,
object level locks may be acquire and assigned to the calling controller based on the
semantics of the controller aspect. These locks belong forever to a specific controller and
generation. A single controller can undergo a change in generation after which it isthe
same controller, but of a different generation. To effectively release locks held by a
controller (Control | er.rel easeLocks()), the generation is changed, a matter of
internal bookkeeping. As the previous generation of controller no longer exists,
previously issued lock become irrelevant, effectively releasing them to be acquired by
another controller.

16.2 Controller Service Interface

Federatlad Manegament ArchitediLre Spadification Page 139

Controller Service

package javax.fma. services.controller;

import java.io.Serializable;

i nport java.rm . Mrshal |l edOoj ect;

i mport java.rm .RenoteException;

i nport javax.fma.util.ConpositeException;
i mport net.jini.core. Lease;

i nport net.jini.core.lookup. ServicelD

/**Interface to the controller service. Only station
* inplenmentations and clients should contact the
* controller service directly. Even then, clients
* should only invoke the newClientController()
* operation.
*/
public interface ControllerService

Qperations for clients. These are the only
operations that may be invoked by a client.

~—— —
~ I~

~

EEEE R I I I R T R B I B L I R R S R

*Create a new controller that will live in a
client. The duration of the returned Lease,
enbedded in the returned CientController, shall
be between 1 minute and 5 minutes. Lease
termnation will release all |ocks belonging to
the client controller.

@eturn ClientController containingg a controller
and a lease of 1 to 5 minute duration to be
be nmaintai ned by the station. Cancellation or
expiration of the lease may result in the
controller service rel easing the resources,

i ncluding controller |ocks, assigned to this
client

@ hrows RenoteException Error conmunicating with
the controller service.

@hrows ControllerServi ceException Wapper exception
thrown when a new | ease is denied, a proxy is
uni nstanti able, a Marshall edObject fails to marshall

) or unmarshall for any reason, etc.

ClientController newCientController(

| ong | easeDuration

t hr ows Renot eExcepti on, Controll erServi ceExcepti on;

Operations for stations. These are the only
operations that may be invoked by a station.

~—— —
~ I~

140 Fedarated Manegamant Ardhiteciure Soedification

Controller Service

/**Create a new controller that will live in the
* station identified by the provided service ID.

* @aramservicelD Station identifier of the station
* requesting a new controller. Mist not be null.
* @hrows UnknownSt ati onException The service |ID
* is not known by the service.
* @hrows |1l egal Argment Exception stationlD was null.
* @hrows RenoteException Unable to communicate with
* the controller service.
* @hrows ControllerServiceException Wapper exception
* thrown when a new | ease is denied, a proxy is
* uni nstanti able, a Marshall edObject fails to marshall
* or unmarshall for any reason, etc.
*
/
Controller newControl |l er(ServicelD stationlD)
t hr ows Renot eExcepti on,
UnknownSt at i onExcepti on,
Control | er Servi ceExcepti on;
I
/1 Callback operations for controllers and
Il locks. Only controllers and | ocks are all owed
/1 to invoke these callback nethods and then only on
/1 the controller service that issued the controller
/'l or |ock.
I
/**Del ete an existing controller.
* @ar am handBack Handback enbedded in a controller
* i ssued by this service.
* @hrows UnknownControl |l erException the hand back
* does not correspond to controller known by this
* servi ce.
* @hrows RenoteException Unable to communicate with
* the controller service.
* @hrows ControllerServiceException Wapper exception
* thrown when a new | ease is denied, a proxy is
* uni nstanti able, a Marshall edObject fails to marshall
* or unmarshall for any reason, etc.
*
/
voi d del eteControl l er(

Mar shal | edObj ect handBack

t hr ows Renot eExcepti on,
UnknownControl | er Excepti on,
Control | er Servi ceExcepti on;

Fedarated Manegemant Architeciure Spedification Page 141

Controller Service

142

/**Rel ease the |l ocks held by this controller. This
* met hod changes the generation of this controller.

* Locks held by the previous generation are no

* Jonger valid. This nethod returns a new hand back

* representing the new generation of the controller.

* @ar am handBack Handback enbedded in a controller

* i ssued by this service.

* @eturn New handBack object for the controller.

* @hrows UnknownControl | er Exception the hand back

* does not correspond to controller known by this

* servi ce.

* @hrows RenoteException Unable to communicate with

* the controller service.

* @hrows ControllerServi ceException Wapper exception
* thrown when a new | ease is denied, a proxy is

* uni nstanti able, a Marshall edObject fails to marshall
*/ or unmarshall for any reason, etc.

*

Mar shal | edObj ect rel easeLocks(
Mar shal | edObj ect handBack

t hr ows Renot eExcepti on,
UnknownCont rol | er Excepti on,
Control | er Servi ceExcepti on;

/**Returns true if the lock IDis still relevant,
* false otherwise. Alock ID becones irrel evant

* if the issuing controller was cancell ed
* or if the issuing controller rel eased
* its |ocks.
* @ar am handBack The owner field of the |ock
* bei ng verified.
* @hrows RenoteException Unable to communicate with
* the controller service.
* @hrows ControllerServiceException Wapper exception
* thrown when a new | ease is denied, a proxy is
* uni nstanti able, a Marshall edObject fails to marshall
* or unmarshall for any reason, etc.
*
/
bool ean i sRel evant (

Mar shal | edObj ect handBack

t hr ows Renot eExcepti on,
Control | er Servi ceExcepti on;

Federatad Manegamant Ardhitsdire Soadification

Controller Service

/** Snchronize a station’s state (list of controllers) with the
* cntroller service. The station’s state is considered the
mast er and overrides any state the service has for that
particular station. Stations are uniquely identified by
their service IDs, which are issued when the station
registers with a | ookup service. Controllers are the only
objects that should call this nethod. Stations MJST call
the corresponding static method on javax.fma. Controller
@aram handBacks list of controller handbacks issued to

the station. Must not be null or contain null entries.
@aram stationlD Station identifier. Mist not be null.
@aram | easeDuration A suggested | ease duration.
@eturn Alease of 5 to 30 mnutes duration to be

mai ntai ned by the station. Cancellation or expiration

of the lease may result in the controller service

rel easing the resources, including controller |ocks,

assigned to the controllers of this station.

@hrows |11 egal Argunent Exception |If the controllers is
null or contains a null elenent, or if stationIDis
nul | .

@hrows RenpteException Unable to comunicate with the
control |l er service.

@hrows ControllerServiceException Wapper exception
thrown when a new | ease is denied, a proxy is
uni nstanti able, a Marshall edObject fails to marshall
or unmarshall for any reason, etc.

EE B R B SR T B B R I R B R I R S R R I

*

*/
Lease synchroni zeWthSt ati on(
Mar shal | edObj ect[] handBacks,
Servicel D stationl D,
| ong | easeDuration
t hr ows Renot eExcepti on,

Control | er Servi ceExcepti on;

/**Interface representing objects returned froma
* controller registration.
*/
public final static class CientController
i mpl ements Serializable

/**Shoul d only be called by the controller

* service.

* @hrows |11 egal Argurment Exception If either
* argunent is null.

*/

public ClientController(
Controller controller,
Lease | ease

/**Return the | ease that a client nust

* maintain to sustain the controller |ocks
* held by the client.

*/

Lease get Lease();

Federatlad Manegament ArchitediLre Spadification Page 143

Controller Service

144

/**Return the controller itself.

*/

Controller getController();
}s

/** Thrown when an operation is requested on a controller to
* which the Service no | onger has any reference, either
* because it never existed, its |lease may have expired, or
*/ after a recovery, but before stations have re-sync’d.
*
public final static class UnknownControll erException

ext ends Conposit eException

/** Construct a new UnknownControl | er Excepti on.
*/
publi ¢ UnknownControl | er Exception ();

/** Thrown when a newController is requested froma station
* that has not previously identified itself with the Service
* via the synchroni zeWthStation() mnethod.
*/
public final static class UnknownStati onException
ext ends Conposit eException

/** Construct a new UnknownSt ati onException with
* the given stationlD.
* @aramstationlD ID of station which was unknown.

* May not be null.

* @hrows Il egal Argunent Exception if stationlDis
* nul | .

*/

public UnknownSt ati onException(Servicel D stationlD);

Federatad Manegamant Ardhitsdire Soadification

Controller Service

/** Base exception for any inplenentation dependent
* exceptions such as when a new | ease is denied, a proxy is
* uninstantiable, a Marshall edObject fails to marshall or
*/ unmar shal | for any reason, etc.
*
cl ass Controll erServiceException

ext ends Conposit eException

/** Constructor which passes a trinket and a throwable to
* ConpositeException’s constructor
* @ee javax.fma. util. ConpositeException
*
/
public Control | er Servi ceExcepti on(
String trinket,
Seriali zabl e[] parans,
Thr owabl e caught Thr owabl e

)

/** Constructor which passes a trinket to
* ConpositeException’s constructor
* @aramtrinket A localization trinket.
* @ee javax.frma. util. ConpositeException
*/
public ControllerServiceException(String trinket);

16.3 Controller Class

Federatlad Manegament ArchitediLre Spadification Page 145

Controller Service

146

package javax.fma. services.controller;

import java.io.Serializable;
i nport java.rm . Mrshal |l edOoj ect;
i mport java.rm .RenoteException;

/**Interface representing objects returned froma
* controller registration.

*/

public final class Controller inplenents Serializable

/**Called only by a controller service.

*

* 0% X X X X X

*

*/

@aram service Arenmpte reference (RM Stub,
proxy, ...) back to the controller service
issuing this controller. service nust be
useabl e across restarts of the controller
service and novenent of the service from one
host to anot her.

@ar am handBack Cl osure object that uniquely
identifies this controller inits first
generati on.

public Control ler(

Controll erService service,
Mar shal | edObj ect handBack

)

/** Synchroni ze a station’s state (list of controllers) with

*

EE R R R S I R I S R

the controller service. The station’s state is considered

the master and overrides any state the service has for

that particular station. Stations are uniquely identified

by their service IDs, which are issued when the station
registers with a | ookup service. Stations MJST call this
nmet hod before any controllers are created in the station
even if the station does not currently have any controllers.

In that specific case, controllers should be a zero-length

array. Regardless of the requested | ease duration, the

returned | ease shall have a duration between 5 m nutes and

30 minutes. Shorter |ease durations nean |ocks are

rel eased sooner when the controller holding the | ocks

becomes unreachable. The controller service will need to

bl ock certain operations while synchronizing to ensure
proper state mirroring.

@aram controllers I|ist of controllers issued to the
station. Mist not be null or contain null entries.
@aram service Proxy to the relevant controller service.

Must not be null.

@aram stationlD Station identifier. Mist not be null.

@aram | easeDuration A suggested |ease duration.

@eturn A lease of 5 to 30 mnutes duration to be
mai ntai ned by the station. Cancellation or expiration
of the lease may result in the controller service
rel easing the resources, including controller |ocks,
assigned to the controllers of this station.

@hrows |11 egal Argunent Exception |If controllers is null
or contains a null elenment, or if either stationlD or
service is null.

@hrows RenpteException Unable to comunicate with the
control |l er service.

@hrows ControllerServiceException Wapper exception

Federatad Manegamant Ardhitsdire Soadification

Controller Service

* thrown when a new | ease is denied, a proxy is
* uni nstanti able, etc.
*/

public static Lease synchronizeWthStation(
Controller[] controllers,
Control | erServi ce servi ce,
Servicel D stationl D,
| ong | easeDuration)
t hrows Renot eException, ControllerServi ceException;

/**Return a proxy to the controller service that
* owns this controller.

*/

public ControllerService get Control | er Service();

[** Cancel a controller as irrelevant. The controller will no
* | onger issue locks and all |ocks issued by the controller
* becone rel eased.

* @hrows RenoteException Error communicating with the
* control |l er service.

* @hrows ControllerServi ceException Wapper exception

* thrown when a new | ease is denied, a proxy is

* uni nstanti able, a Marshall edObject fails to marshall
* or unmarshall for any reason, etc.

*/

public void del ete()

t hrows Renot eException, ControllerServi ceException;

/**Invalidate all previously issued |ocks. This effectively

*

* releases locks held by this controller by incrementing

* the generation of the controller.

* @hrows RenoteException Error comunicating with the

* control |l er service.

* @hrows UnknownControllerException the handback does

* not correspond to controller known by this service.

* @hrows ControllerServiceException Wapper exception

* thrown when a new | ease is denied, a proxy is

* uni nstanti able, a Marshall edObject fails to marshall

* or unmarshall for any reason, etc.
*/
public void rel easelLocks()
t hr ows

Renot eExcepti on,
Control | er Servi ce. UnknownControl | er Excepti on,
Control | er Servi ceExcepti on;

/**| ssue a new | ock.
* @eturn Lock A new | ock object.
*/
public Lock newLock();

Fedarated Manegemant Architeciure Spedification Page 147

Controller Service

148

/** Abstract type representing a | ock. Locks

* may be conpared for equality or used as keys

* in hash tables and the like.

*/

public final static class Lock extends Serializable

/** The handback object of the Controller this Lock is
* for.

*/

final Marshal |l edObj ect owner;

/** The service proxy that created the Controller this
* Lock is for.

*/

final ControllerService service;

/** Create a new Lock.
* Only called by Controller.
* @aram owner The handback object of the Controller

* this Lock is for.

* (@aram service The service proxy that created the
* Controller this Lock is for.

*/

Lock(

Mar shal | edObj ect owner,
Controll erService service

);

/**Return true if this | ock was issued by the
* given controller/generation. This is true

* iff the owner field of this lock is equal
* to the handBack field of the controller.
* @aramcontroller The controller to check this |ock
* agai nst.
* @eturn boolean true if the given controller is the
* owner of this |ock.
*
/
publ i ¢ bool ean i sOwner (

Controller controller

)

Fedarated Manegamant Ardhiteciure Soedification

Controller Service

*

*

* X X X X X

*

*/

*

*/

/**Returns true if the lock is still valid. If

a renote exception is thrown, it is unknown

* whether the lock is valid or not. On a renpte
* exception, the lock should usually be considered
* relevant if it was ever known to have been
* rel evant.
* @hrows RenoteException Conmmunication error
* with the controller service
* @eturn boolean true if the given controller is the
* owner of this |ock.
*
/
public bool ean i sRel evant ()

t hrows Renot eException, ControllerServi ceException;

/** Checks two locks to determine if they are Locks for

t he same

generation of the sane controller. (The service proxies

equality check returns true if they refer to the sane

obj ect).

@ar am ot her The object to check against this Lock for
equality.

@eturn boolean true if the other object is a Loca
object equal to this one

publi ¢ bool ean equal s(Object other);

/** Returns hash code to match val ue based equality.

@eturn hash code to natch val ue based equality.

public int hashCode();

16.4 No Controller Service

If no controller serviceis present, any attempt to initiate an operation on a component
method synchronized with respect to the controller aspect will fail with an exception.
Attempting to start, or restart, a station may fail or block depending on the
implementation of the station, until the controller service for the management domainis
again operational.

16.5 Failed Controller Service

Unlike transactions, controllers are considered long-lived and are bound to the service
with which they are registered. The failure of a particular controller service affects those
components that are locked, for the purposes of controller concurrency control, by a
controller registered with the failed service. Operations on these components will not be
able to proceed until the failed controller service has recovered.

16.6 Controller Service Recovery

A controller need only persist its servicel D. Additional persistence capabilities are
considered optimizations to reduce the network flooding while stations resynchronize

Federatlad Manegament ArchitediLre Spadification

Page 149

Controller Service

with arestarted controller service. In order to station sufficient time to resynchronize, a
restarted controller service should not respond to any requests other than
resynchronization for a period of time greater than the longest issued lease duration.

16.7 Breaking Controller Service Locks

There may be conditions under which it becomes necessary to break controller service
locks and controller service implementations may provide administrative interfaces to do
so; however, this specification does not standardize administrative interfaces of any kind.

150 Federatad Manegamant Ardhitsdire Soadification

17 Log Service

Whether or not an object is acting autonomously (on its own accord or thread), it may
wish to log certain decisions that have been made, operations that have been requested, or
any other information deemed interesting by the object. Log messages can be very
important for auditing, and certain guarantees must be given that alog message is posted
and will not belost. It isalso important that the information contained in alog message is
internationalized so that the message can be viewed by any particular locale.

17.1 Log Service Interfaces

17.1.1 Log Messages

Log messages contain alocalizable message, a category, and possibly athrowable, if the
log message isin response to an error condition manifested as a throwable. The category
isadot (".") delimited string that must begin with one of the major categories enumerated
in the LogMessage class.

Federatlad Manegament ArchitediLre Spadification Page 151

Log Service

152

package javax.fnma. services. | og;

i mport javax.fma.util.Localizabl eMessage;

i nport java.io.Serializable;

/**A | og nessage.
* mutabl e objects,

Log nmessages are inmutabl e.
such as Date objects,

Thus,
are cl oned

* at the LogMessage interface to preserve imutability

* of the LogMessage.
* the assunption that all
*/

public final

/lconstants for
/** Audit nmessage category. */

Throwabl e are not cl oned under
t hrowabl es are i nmut abl e.

cl ass LogMessage inmplenents Serializable

maj or categories

static public final String AUDIT = "audit";
/** Debug nmessage category. */
static public final String DEBUG = "debug";
/** Wrni ng message category. */
static public final String WARNING = "warni ng";
/** Infornational nessage category. */
static public final String I NFO = "info";
[** Error message category. */
static public final String ERROR = "error";
[** Trace nmessage category. */
static public final String TRACE = "trace";
/**Construct a | og nmessage object. The constructor
* adds the time stanp.

* @hrows Il egal Argument Exception If nessage or
* category is null, or if the category does not
* begin with one of the mmjor categories

* defined in this class.

*

/

publ i ¢ LogMessage(

Local i zabl eMessage nessage,

String category,

Thr owabl e excepti onObj ect

);

/**Returns the |ocalizable nmessage for this

* | og nessage.
*/

public Local i zabl eMessage get Message();

/**Returns category of

| og nessage,

a dot delimted

* string beginning with one of the major

* categories.
*/
public String

/**Return the throwabl e object,
*/
publi ¢ Throwabl e

get Category();

if one exists

get Thr owabl e() ;

Federatad Manegamant Ardhitsdire Soadification

Log Service

/**Return posting date and tine in UTC
*
public Date get Ti meSt anp() ;

/**Speci al exception indicating that the throwable

* failed to serialize when this | og message was

* posted.

*/

public static final class SerializationFail ureException
(ext ends Exception

}
}

17.1.2 The Log Service Interface
Log service implementations must implement the
j avax. f ma. servi ces. | og. LogSer vi ce interface. The interface includes one method
for posting log messages and another for retrieving log messages based on search criteria.

package javax. fma. services. | og;
i nport java.rm . Renot eException;
/** Interface for posting to and searching the LogService.
*/
public interface LogService
{
/**Log a nessage. This nethod shall not, under
* any condition, throw a throwable. The | og
* service proxy is responsible for dealing with
* all error conditions.
*/
voi d | og(LogMessage nessage);
/**Performa synchronous search for |og records
* matching the provided criteria, which nust not be
* null. The search can be cancelled by canceling or
* not mmintaining the Search | ease.
* @aram predicate Predicate to deternmine interesting
* | og messages to be matched.
* @aram batchSi ze target size of a batch of
* delivered | og nessages to the iterator.
* @aram | easeVal ue | eas duration in nmilliseconds.
* @eturn Search used to enunerate the result set.
*/
Sear ch sear ch(
Predi cat e predicate,
int batchSi ze,
| ong | easeVal ue
t hrows Renot eExcepti on;
}

Federatlad Manegament ArchitediLre Spadification Page 153

Log Service

154

17.1.3

Retrieving Log Messages

17.1.3.1 Predicates

Log messages are logically retrieved, for enumeration or removal, by invoking the
LogSer vi ce. sear ch() method. The most significant argument is the predicate object.
The predicate, which is passed to the log service by value, selects which log messages are
returned as part of the search.

package javax. fma. services. | og;
i nport java.io.Serializable;

/**Unary predicate used to select |og nessages during
* a query operation.

*/

public interface Predicate extends Serializable

/** Execute the predicate. Iff true, the | og nessage
* is selected for the search.

* @aram nmessage Log nessage to eval uate. May not
* be nul I .

*/

bool ean execut e(LogMessage nessage);

Since the predicate object is passed by value, the log service will need to network load
the class of the predicate object according to RMI semantics. Some clients may not be
able to provide a predicate class through a class server to support such an operation.
These clients, and others, can use the well known

j avax. f ma. servi ces. | og. LogSear chCri t eri a classto create predicate objects
that support a fixed selection criteria. Because the LogSear chCriteri a issupplied as
part of the infrastructure, it does not need to be loaded over the network.

Federatad Manegamant Ardhitsdire Soadification

Log Service

package javax. fma. services. | og;

/**Conveni ence | og searching predicate that searches
* based on posting date, category, and nessage.
*/
public final class LogSearchCriteria
i npl ements Predicate

/** Construct a search criteria object.

* Dates are conpared directly with the posting Date
of the | og nmessages wi thout | ocalizing.

@ar am begi nDat e Begi nning date, inclusive, or no
begi nning date, if null.

@ar am endDat e Endi ng date, inclusive, or no ending
date, if null.

@aram category Dot-delimted category (i.e.,
"error.severe.disk failure"). Mst significant
word nust be one of predefined constants
in LogMessage. Search failes if nmessage category
does not begin with specified search catetory.

@ar am searchLocal e Local e in which nessage are
| ocal i zed before conparison to nmessagePattern.

A null value indicates that the nessage’s
fall back Local e shoul d be used.

@ar am nessagePattern Localized pattern to search
for. For exanple, "disk" would match any | og
nmessage whose | ocalized nessage contains "disk".

% X X X X X X X X X X X X X X

*

*
/
public LogSearchCriteria(
Dat e begi nDat e,
Dat e endDat e,
String category,
Local e searchLocal e,
String messagePattern

)

/** Execute the predicate. Iff true, the | og nessage

* |s selected for the search.

* @aram nmessage Log nessage to evaluate. May not be null.
*/

publ i ¢ bool ean execute(LogMessage nessage);

17.1.3.2 Searches

A search operation on alog service return aj avax. f ma. servi ces. | og. Sear ch
object, which isakind of iterator. The log service must maintain the results of a
particular search, which consumes significant resources. These resources are reserved by
the search using the lease returned as part of the search result. If thislease is cancelled or
expires, the log service may discard resources associated with search and any further
attempts to access the Sear ch object may throw athrowable.

Federatlad Manegament ArchitediLre Spadification Page 155

Log Service

156

17.1.4

package javax.fnma. services. | og;

i mport java.rm .RenoteException;
inmport java.util.lterator;
import net.jini.core.lease. Lease;

/**Speci alized iterator that also supports polling to
* retrieve | og nessages and renove them Search does
* not support the Iterator.renove() operation.

*/

public interface Search extends Iterator

/**Return the | ease used to maintain the
* resources associated with this search.
*/

Lease get Lease();

/**Returns an array (batch) of nmessages. The target
* size of the batch was specified when initiated
* the search.

* @eturn Array of |og nessages (LogMessage[])
* @hrows NoSuchEl enent Excepti on no nore
* nmessages avail able that match the search
* predi cate or a renpte exception during
* comuni cation with the | og service.
*
/
oj ect next () ;

/**Strongly typed version of next().
*/

LogMessage[] next MessageBat ch()
t hr ows Renot eExcepti on;

/**Renove all nessages matching this search. |If the
* search has been enunerated, fully or partially,
* it is guaranteed that only the nessages that
*/ were enunerated will be renoved.

*
voi d removeAl | ()
t hr ows Renot eExcepti on;

Removing Log Messages
Log messages can be removed by invoking ther enoveAl | () operation on avalid
Sear ch object. If next () or next MessageBat ch() has never been called on the
Sear ch object, al log messages matching the search criteria, at some point in time after
the search was initiated, shall be removed. Otherwise, only the specific messages which
have been enumerated shall be removed.

Fedarated Manegamant Ardhiteciure Soedification

Log Service

17.2 Posting Failure Scenarios

17.2.1 Posting Reliability

TheLogSer vi ce. | og() method must not, under any circumstances, throw an exception
to the posting client. The log service proxy must handle any failure conditions to the best
of its ability. In some failure scenarios, this may imply that log messages are not posted.

17.2.2 Log Service Unavailable

If the log service is unavailable at the time of posting, the log service proxy may drop the
log message. More capable log services may provide proxies that queue postings until
such time as the log service again becomes reachable; however, thisis not required. Log
service unavailability means that the proxy was unable to post the log message to the log
service for areason other than a marshaling failure.

17.2.3 Marshaling Failure

A log message consists of alocalizable message, optional throwable, category (String),
and time stamp (Date). The localizable message, category, and time stamp are guaranteed
to always serialize. Thus, if one can guarantee that the throwable, if present, will
serialize, one can guarantee that the log message as a whole will serialize, avoiding
marshaling errors when posting. To this end, the LogMessage serialization method must
recover from a serialization error of the throwable object by replacing it with a
LogMessage. Seri al i zati onFai | ur eExcepti on.

17.2.4 Log Service Failure While Writing

If the log service terminates while in the process of writing alog message to its persistent
store (file, database, ...), it shall not corrupt any log messages already written nor the
durable log as awhole. Only the log message being posted at the time of the termination
isalowed to be lost.

Federatlad Manegament ArchitediLre Spadification Page 157

18 Event Service

An event serviceis acollection of topicsto which event sources may post events and
from which event subscribers may receive events. Each topic accepts events from event
sources and forward them to event subscribers that have indicated an interest in the topic
by subscribing to the topic. Each management domain has a single (possibly replicated)
centralized event service for the domain. This well-known event service is registered with
the lookup services for a particular management domain and implements the

j avax. f ma. servi ces. event . Event Ser vi ce interface.

The topics of the event service are organized into a hierarchy such that each topic has a
single parent topic and all topics ultimately descend from the root topic of the service.
Each topic has an associated unordered list of observing listeners that have subscribed to
the topic.

Each topic, in addition to its unordered event subscribers, may have an optional chain of
responsibility. The chain of responsibility (Chain of Responsibility pattern) supports an
ordered list of subscribers to support casesin which at most one subscriber should
respond to a particular event.

18.1 Use of the Jini Technology Event Mechanism

Events are based on the Jini event specification, which provides the basic mechanisms for
distributed event systems of many types. This specification specializes Jini events for the
specific purpose of supporting a transient publish/subscribe event service. By adhering to
the Jini specification, general purpose adapters, such as mailboxes and store/forward
delegates, that are developed for Jini technology can be used with the event service
specified herein.

Eventsall have aevent ID of j avax. f ma. servi ces. event . Event. | D. Theevents
are further discriminated by the topic (‘." delimited strings), available as a topic property,
to which the event was posted.

Event services must provide the minimal Jini specification guarantees with respect to

event sequence numbers. Details are available in the Jini event specification. In summary,
each event posted to the event service must be assigned a unique and increasing sequence
number. The conditions under which this guarantee holds, such as a minimum reboot

time, are implementation dependent.

Federatlad Manegament ArchitediLre Spadification Page 159

Event Service

18.2 The Event Object

18.2.1 Inherited Event Properties

The event object inherits the following event object properties from
net.jini.core.event.RenoteEvent.

18.2.1.1 EventID
Theevent ID isalways set toj avax. f ma. servi ces. event . Event . | D.

18.2.1.2 Handback

The handback is a closure object that is provided by alistener and passed back to the
listener as part of the event object delivered to that particular listener.

18.2.1.3 Sequence Number

A number such that each posted event is assigned a unique number that increases
monotonically in the order that events are posted to the event service in accordance with
the Jini event specification. The sequence number are only guaranteed to be increasing,
not necessarily increasing by increments of one.

18.2.1.4 Source

The event sourceis of typej ava. | ang.Obj ect . Topicsto which an event is posted may
further constrain the type of the source property as part of the contract between event
sources and listeners coupled through the topic. For example, the topic x.y.z may imply
that the source is of type Proxy. Verification that the event sourceis of an acceptable type
is not performed by the event service. In the presence of poorly behaved event sources,
listeners may receive events with invalid event sources. Note aso that if atopic X.y.z
specifies a source type of T, then all specialized topics of x.y.z (such as x.y.z.1) must
specify a source Ts such that Ts specializes (implements or extends, directly or

indirectly) T.

18.2.2 Declared Event Properties
In addition to the inherited properties, events add the following declared properties.

18.2.2.1 Topic

The topic property is a ‘.’ delimitest r i ng specifying the topic to which the event was
posted. Note that this is not necessarily the topic from which the event was delivered to a
given listener. Thus, a listener registered for topic x may receive events with topics such
as x.y, x.y.z, and the like.

160 Federatad Manegamant Ardhitsdire Soadification

Event Service

18.2.2.2 Base Event Object

An event object classis any classthat, directly or indirectly, extends

j avax. f ma. servi ces. event . Event . Event classes must be immutable, safely
serializable, and conform to JavaBeans coding conventionsin terms of exposing
properties as standard getter methods.

package javax. fnm. servi ces. event;

i mport net.jini.core.event.RenoteEvent
i nport java.rm . Mrshal |l edOoj ect;

/**Abstract event class. Subclasses nust override
* to add a type safe constructor for the events source.
* Each event class inplies a type for the source:

* Proxy, String, URL, ... All subclass nust also ensure
* that clone(...) operates correctly.
*/

public abstract class Event extends RenoteEvent
static final long serial VersionU D = -7900250700219109818L;
public static final long ID = -2479143000061671589L;

/** Create an event object w th popul ated source and topic

* fields. The sequence number is undefined and the event ID

will be set to Event.ID

@ar am source The event object’s source (user defined).

@aramtopic The topic the event is to be posted to
(can’t be null).

@hrows |11 egal Argunent Exception Thrown if the topic is
nul | .

* % X X X

*

*/
pr ot ect ed Event (Obj ect source, String topic);

/** Topic to which this event was or will be posted.
* This may not be the topic fromwhich the event is
* delivered, but nay be instead being delivered in a parent
* topic.

* @eturn String The topic nane.
*

public String get Topi c();

Fedarated Manegemant Architeciure Spedification Page 161

Event Service

162

18.2.3

/** C one this event object. Inplenented by the client.
* @aram Obj ect The clone of this event object.
*/

public abstract Cbject clone();

/** C one this event with a specific sequence nunber and
* handback fields. Used only by the event service to create
an event for each subscription during delivery.
@ar am sequenceNum The sequence nunber of this event as
given by the event service to which it posted
@ar am handback A registration object which is set to
mat ch the handback of the listener this event is
being sent to
* @eturn bject The clone.
*
/
public Event cl ong(
| ong sequenceNum
Mar shal | edObj ect handback

* X X X X X

);
}

Root Event Object

package javax. fma. servi ces. event;

/**The root event is the type of event issued by

* by the root topic. Cenerally, root events are passed
froma source event service to another |istener
event service, of different managenent donains.
In addition to the contained event, the root event
carries a flag indicating whether the event was
al ready handl ed by a responsible listener. In such
cases, the event nust not be passed to additiona

* responsible |listeners.

*

/
public final class RootEvent extends Event

* X X X X X

static final long serial VersionU D = 3762653442195963656L;

Federatad Manegamant Ardhitsdire Soadification

Event Service

/** Create a root event object containing a contained event

* which may or may not have been handl ed. The source is

set to the nane of the managenent donmin containing the

event service providing the event. The topic is the root

topic ('.’) EventService.ROOT_TOPIC. This constructor

shoul d only be called by the Event Service.

@ar am event The Event object to be contained in this
Root Event .

@ar am handl ed Flag to indicate whether any further
processing needs to be done with respect to responsible
subscri bers.

* % X X X X X X X X
~

publi ¢ Root Event(Event event, bool ean handl ed);

/** GCet the contained event.

* @eturn Event The contai ned event object.
*/

public Event get Contai nedEvent ();

/**Return if this event has been handl ed by a responsible
* |istener.
* @eturn boolean true if the Event was handl ed by a |istener
* inthis Event Service, false if it was not.
*
/

publ i ¢ bool ean i sHandl ed();

/** Clone this event.

* @eturn hject Returns a new RootEvent with the same field
* val ues as the current one.

*/

public Object clone();

18.3 EventService Interface

Federatlad Manegament ArchitediLre Spadification Page 163

Event Service

*
*
*
*
*

*

*/

package javax. fnm. servi ces. event;

i mport net.jini.core.event.RenoteEventLi stener;
i nport java.rm . Mrshal |l edOoj ect;

i mport java.rni.RenoteException;

i nport javax.fma.util.Localizabl eMessage;

/** The Event Service interface. This event service follows a

publish/subscribe pattern for its operation. Objects post to
specific topics and Renot eEventLi steners subscribe (or listen)
to topics. This enables a decoupling of the event sources from
the recipients. Event Services may al so be subscribed to other
event services in other donains allow ng one domain to
effectively "listen in" on another.

public interface EventService

i mpl ement s Renot eEvent Li st ener

[** Topic path for root topics
*/

String ROOT_TOPIC = (".");

/** Post an event to a topic.
* @aram event Event to be posted to the service.
* @hrows RenoteException Error comunicating with the
* servi ce.
*/
voi d post (Event event)
t hrows Renot eExcepti on;

/** Register as a subscriber of this event service.
* Al events posted to the service will be sent to
* the subscriber, regardl ess of the posting topic,
* after they have been fully processed by the |ocal
* event service. In particular, the service nust
* determ ne whether the event will be handl ed
* Jlocally by a responsible listener. Only a single
* listening event service may subscribe to a source
* event service. The event sent to the listening
* service is of type RootEvent.
* @aram subscri ber The event service to subscribe to this
* one.
* @aram | easeLength Length of the |ease desired for this
* subscri ption.
* @eturn Lease A | ease which keeps the subscription alive
* in the Event Service.
* @hrows TooManyLi stenersException Thrown if the event
* servi ce already has another service subscribed on it.
* @hrows RenoteException Error comunicating with the
* servi ce.
*/
Lease subscri beToEvent Ser vi ce(
Event Servi ce subscri ber,
| ong | easelLength

t hrows Renot eException, TooManyLi st ener sExcepti on;

164

Federatad Manegamant Ardhitsdire Soadification

Event Service

/** Subscribe as a observing listener to a topic. Al events
* posted to the topic, or a subtopic, will be sent to the

* subscri ber.
* @aramtopic The name of the topic which to subscribe this
* l'i stener.
* (@aram subscriber The |istener wishing to subscribe.
* @ar am handback An identifying object which is passed back
* to the listener with each event.
* @aram | easeLength Length of the | ease desired for this
* subscri ption.
* @eturn Lease A | ease which keeps the subscription alive
* in the Event Service.
* @hrows RenoteException Error comunicating with the
* servi ce.
*/
Lease subscri beCbser ver (
String topic,

Renot eEvent Li st ener subscri ber,
Mar shal | edObj ect handback,
I ong | easelLength

t hrows Renot eExcepti on;

/** Regi ster as a responsible listener in front of another
* |istener.

* @aramtopic The name of the topic which to subscribe this
* l'i stener.

* @aramindex Listener in front of which the new |istener

* nmust be inserted. If null, the new listener is added
* as the first in the list for the given topic.

* @aram subscriber The listener wi shing to subscribe.

* @aramdescription A description of this listener for

* sorting purposes.

* @aram handback An identifying object which is passed back
* to the listener with each event.

* @aram | easeLength Length of the | ease desired for this

* subscri ption.

* @eturn Lease A | ease which keeps the subscription alive

* in the Event Service.

* @hrows UnknownLi stener Exception Thrown if the |istener
* passed in the index paraneter is not currently a

* |istener of the topic. This happens if the topic and

* index are msmatched or if the listener’s | ease expired.
* @hrows RenoteException Error comunicating with the

* servi ce.

*/

Lease subscri beResponsi bl eBef or e(

String topic,

Responsi bl eLi st ener | nf o i ndex,
Renot eEvent Li st ener subscri ber,
String description,

Mar shal | edObj ect handback,

| ong | easelLength

t hrows Renot eException, UnknownLi st ener Excepti on;

Federatlad Manegament ArchitediLre Spadification Page 165

Event Service

/** Regi ster as a responsible |istener after another |istener.
* @aramtopic The name of the topic which to subscribe this

* |istener.
* @aramindex Listener after which the new |istener nust be
* inserted. If null, the new listener is added as the | ast
* inthe list for the given topic.
* @aram subscri ber The |listener wi shing to subscribe.
* @aram description A description of this listener for
* sorting purposes.
* @aram handback An identifying object which is passed back
* to the listener with each event.
* @aram | easeLength Length of the | ease desired for this
* subscri ption.
* @eturn Lease A | ease which keeps the subscription alive in
* the Event Service.
* @hrows UnknownLi stener Exception Thrown if the |istener
* passed in the index paraneter is not currently a
* |istener of the topic. This happens if the topic and
* index are msmatched or if the listener’s | ease expired.
* @hrows RenoteException Error comunicating with the
* servi ce.
*/
Lease subscri beResponsi bl eAfter (

Responsi bl eLi st ener | nf o i ndex,
Renot eEvent Li st ener subscri ber,
String description,

Mar shal | edObj ect handback,

I ong | easelLength

t hrows Renot eException, UnknownLi st ener Excepti on;

/** Return a list of responsible |isteners for a given topic.
* The results of this call can be used to deternine where in

* the responsible queue to insert a different |istener.

* @aramtopic The nane of the topic for which to get the
* info list.

* @eturn ResponsiblelListenerinfo[] An array of infornational
* obj ect s which contains a handback object and a

* description for each of the responsible |isteners of
* this topic.

* @hrows RenoteException Error comunicating with the
* servi ce.

*/

Responsi bl eLi stenerlI nfo[] |istResponsi bl eLi steners(

String topic
t hr ows Renot eExcepti on;

/** I nformation object which may be used to determine a
* priority ordering for responsible subscriptions.
*/
public static final class ResponsiblelListenerlnfo
i npl erents Serializable

static final long serial VersionUD = -7411239350117183596L;
/** Description of the responsible listener to which this

* object refers.
*/

166

Federatad Manegamant Ardhitsdire Soadification

Event Service

public final String descri pti on;

/** Handback of the responsible listener to which the
* object refers.
*/

public final Mrshall edObject cookie;

[** Constructor used only by an Event Service
* inplenmentation.
* @aram description The description of this |istener
* given to the Event Service by the subscriber.
* @aram handback The handback object of given to the
* Event Service by the subscriber.
*

public Responsi bl eLi stener | nf o
String description,
Mar shal | edObj ect cooki e
)

package javax. fma. services. event;
i nport javax.fma.util.ConpositeException;

/** Exception thrown by the Event Service by the two
* subscri beResponsi bl e methods. This will happen when there

* is a request to place a new subscription in front of or after
* anot her subscription that the Event Service can not find. A
* possible cause for this exception could be that the old

* subscription s | ease expired between the

* "listResponsibleListeners()" and the "subscri beResponsible()"
*/ net hods.

*

public class UnknownLi stener Excepti on extends ConpositeException
static final long serial VersionU D = -3619356673049442353L;

[** Default constructor.
* @ee javax.fma. util. ConpositeException
*/

publ i ¢ UnknownLi st ener Exception();

/** Constructor which passes a trinket to
* ConpositeException’s constructor
* @aramtrinket A localization trinket.
*/ @ee javax.fma. util.ConpositeException
*

publ i c UnknownLi st ener Exception(String trinket)

18.4 Topics

Thetopic spaceisatree of individual topics. Each topic is uniquely identified by
appending the name of the topic to the name of its parent topic, usinga’.’ (period) asa

Fedarated Manegemant Architeciure Spedification Page 167

Event Service

delimiter, to aform atopic path. The root topic is special. It is denoted by . and the topic
path for a child of the root topic is the topic name with a single prepended '.". For
example, the topic path of the top level topic of error would be ".error".

Each topic implies a specific class of event that it will accept and deliver. Thereisno
runtime maintenance or checking of this mapping, but is rather part of the contract
between event sources and listeners. The topic operates as an ignorant decoupling
between the source and listener without enforcing any aspects of such a contract. Thus, it
is possible that listeners receive an event object of an unexpected class. Listeners should
be written defensively to ignore such occurrences.

18.5 Chain of Responsibility

The event service features an implementation of the Chain of Responsibility pattern to
support events that warrant at most one response, such as a corrective action, to the event.
In addition to the unordered list of listeners, observing listeners, associated with atopic,
each topic also has an ordered list of responsible listeners. The topic will deliver agiven
event to responsible subscribers synchronously in their order of registration. Delivery to
responsible subscribers may be done before, after, or concurrently with delivery to
observer subscribers. Events are first delivered to the most specialized chain of
responsibility and then, if not consumed by a responsible listener, to the chain of
responsibility of the next more general topic.

A responsible subscriber is considered to have handled an event if it returns from its post
operation without throwing an exception, checked or unchecked. If the exception is of
class Event Not Handl edExcept i on, an unchecked exception, then the event service
must simply continue with the remaining responsible subscribers. Otherwise, the event
service may choose to log the exception as an indication of afaulty listener.

package javax. fnm. servi ces. event;
i mport java.rm .RenoteException;

[** Exception thrown by responsible Event Service Subscribers to
* signal that the event passed to themwas not handl ed for sone
* reason.

*/
public class Event Not Handl edExcepti on extends Renot eException

static final long serial VersionUD = -1147286052615567143L;

/**Construct a new Event Not Handl edException. */
publ i ¢ Event Not Handl edExcepti on();

18.6 Subscribing

Listeners subscribe as observing or responsible listeners to a particular topic. In either
case, alLease isreturned that must be maintained.

168 Federatad Manegamant Ardhitsdire Soadification

Event Service

18.6.1 Observing Listeners

Observing listeners are an unordered set of listeners for aparticular topic. Listenersfor a
topic will also receive events from all descendent topics. Thereis no order of delivery
implied with respect to listeners of atopic versus listeners of a subtopic.

18.6.2 Responsible Listeners

Responsible listeners are ordered both within a topic and between child and parent topics.
Given an event posting to a particular topic T, the ordered set of responsible listenersis
formed by taking the responsible listeners of T and appending the responsible listeners of
the parent of T and so on recursively. Thus, events are delivered first to the responsible
listeners of the most specific topic.

Because responsible listeners are ordered, the subscription methods include variants to
control where aresponsible listener is placed within the list of responsible listeners.

18.6.3 Event Service as Listeners

When one event service subscribes as a listener to another event service, special listener
semantics apply in order to ensure that only one responsible listener handles a particular
event, even across event services. Thefirst of these is that an event service supports only
asingle listener to the service itself. Secondly, the event must by fully processed in the
source event service, with respect to responsible listeners, before passing it to the
listening event service. This allows the source event service to inform the listening event
service as to whether the event must be propagated to additional responsible listeners.

The event object passed from a source event service to alistening event serviceis of type
Root Event . These objects contain an the posted event as well as a handled flag. An
event service receiving a handled event must not passit on to any responsible listeners
under its control. In addition, it must make sure the handled flag is set if it passes the
event to another listening event service.

18.6.4 Listeners as Good Citizens

Events delivered to listeners are done so in threads granted to the listener by the event
service. Listeners must only perform simple, low risk operations in the event delivery
thread and decouple more complex tasks to a thread owned by the subscriber. The event
service can detect a hung or unresponsive listener and cease to deliver eventsto the
listener in order to conserve resources within the event service. A subscription may be
cancelled autonomously by the event service only in response to the following
conditions.

1) Thelistener failsto return the event delivery thread within a reasonable time limit,
not shorter than 15 seconds, as perceived by the event service.

2) TheLease associated with the subscription is not renewed.
The events service must cancel a subscription in response to the following conditions.

Federatlad Manegament ArchitediLre Spadification Page 169

Event Service

1) Eventdelivery resultsinaj ava. rmi . Renot eExcept i on that isnot a
java. rm . Unexpcet edExcept i on. Thiswould indicate acommunication error or
that the listener has otherwise become unreachable.

2) Event delivery throwsa
java. f ma. servi ces. event . Renoveli st ener Excepti on.

3) TheLease associated with the subscription is cancelled.
Listeners should only throw

j ava. f ma. servi ces. event . Event Not Handl edExcepti on,
java. f ma. servi ces. event . Renoveli st ener Excepti on, and
net.jini.core.event.UnknownEvent Excepti on.

A listener can cancel its own subscription explicitly by canceling the associated Lease.
Regardless of how the subscription is terminated, the event service must ensure that any
attempt to renew or otherwise access the associated Lease associated with a terminated
subscription results in an UnknownLeaseExcept i on.

package javax. fma. services. event;
i nport java.rm . Renot eException;

/** Exception thrown by Event Service Subscribers to signal that
* they wish their subscription to be renoved fromthe Event

* Service.

*/

public class Renpveli stener Excepti on ext ends RenoteException

static final long serial VersionU D = -5813372277389410796L;

/** Construct a Renobveli stenerException object. */
publ i c RenovelLi st ener Exception();

18.6.5 Leases
Leases are used to reserve the resources associated with a subscription. Either the listener
(or another party, which has accessto the Lease) or the event service, may nullify the
Lease. Leaseswill also belost if an event service crashes and is restarted. The inability
to maintain aLease, indicated by an
net.jini.core. | ease. UnknownlLeaseExcept i on thrown during renewal, indicates
that the subscription is no longer intact, for whatever reason. In response, the listener can
choose to heal the situation by subscribing again and do any work that may be required
given the expected loss of events.

18.7 Event Ordering

For the purposes of event ordering, one can consider observing listeners and responsible
listeners independently as there is no ordering specified between the two groups.

170 Federatad Manegamant Ardhitsdire Soadification

Event Service

Ordering is specified with respect to event postings and subscriptions. An event posting
E, is said to be after an event posting E; if and only if the posting of E; returns before the
posting of E, isinitiated.

Each subscription to atopic resultsin asingle, unique subscription. If alistener
subscribes to N topics (or one topic N times), the result is N subscriptions. Ordering is
specified with respect to a subscription, not a listener. Subscriptions may be unordered
(observing listeners) or ordered (responsible listeners). Subscriptions also have
relationships based on the hierarchical relationships of their associated topics. A
subscription S; is superior to a subscription S, if and only if the topic associated with S;
isthe parent of the topic associated with S,.

One saysthat an event E; is delivered before E; to a subscription if and only if the
delivery method of the associated listener returns from delivering E; before the method is
invoked to deliver E,: non-overlapping deliveries.

One saysthat an event is delivered to a subscription S; before a subscription S, if and
only if the delivery associated with S; returns before the delivery associated with S is
invoked: non-overlapping deliveries.

18.7.1 Observing Listeners
The following subscriptions are with respect to observing listeners.

1) For agiven event posting, there is no specified order in which the event is
delivered to observing listener subscriptions.

2) If E,isposted after E;, then E, must be delivered after E;, with respect to any
one observing listener subscription. The effect is asif each subscription had an
associated queue to which events were posted synchronously and delivered
asynchronously.

18.7.2 Responsible Listeners
The following subscriptions are with respect to responsible listeners.

1) For agiven event posting, if asubscription S, is before S,, both of the same
topic, then the event must be delivered to the listener of S, before being
delivered to the listener of S,.

2) For agiven event posting, if a subscription S,is superior to a subscription Sy,
then the event must be delivered to the listener of S; before being delivered to
the listener of S,.

3) If E,isposted after E;, then E, must be delivered after E;, with respect to any
one responsible listener subscription with the exception that this ordering is no
longer pertinent if E; will never be delivered to the responsible listener
(presumably because is was handled).

18.7.3 Event Service Listeners
1) Anevent service may have at most one event service listener.

Federatlad Manegament ArchitediLre Spadification Page 171

Event Service

2) For agiven event, the event must have been delivered to al of the pertinent
responsible listeners or have been handled before delivering the event to the
event service listener.

3) If E,isposted after E;, then E, must be delivered to the event service listener
after E;.

18.7.4 Sequence Numbers

1) |If Eyisposted after E;, then E, must be assigned a sequence number that is
greater than the sequence number assigned to E;.

18.8 Transactions

Listener subscription and event dispatching ignore any transaction context that may exist.
If alistener registersinterest in atopic within the context of atransaction and the
transaction aborts, the listener will not be removed. If an even source delivers an event to
atopic, which forwards the events asynchronously to interested listeners, the listeners
will not receive the event in the transaction context in which it was sent.

18.9 Event Service Persistence

An event service persists only its service ID. The event service is otherwise statel ess and
must not persist subscriptions and associated information. When an event serviceis
shutdown and restarted, all subscription information islost. The subscriptions are rebuilt
over time as listeners respond to failed L eases by re-subscribing and performing any
actions associated with the possible loss of events while the event service was
inoperative.

18.10 Management Facades

A management facade, a group of objects acting on behalf of a managed resource,
directly handles events on behalf of its resource. This includes subscribing, generating
events, translating, filtering, correlating, and posting events from its resource.

18.10.1 Event Listening

The management facade subscribes for events that are relevant to its resource, and using
an appropriate message and its associated protocol, notifies the resource of the event.

18.10.2 Event Generation

The management fagade should generate events and post them to the event service on
behalf of its resource when the relevant conditions occur, but for which the resource itself
does not generate notifications. For example, the management fagade can generate events
to indicate:

1) Loss of contact, or restored contact with the resource.

172 Federatad Manegamant Ardhitsdire Soadification

Event Service

2)
3)
4)
5)

Unexpected or incorrect behavior by the resource.
Incorrect behavior by other objects interacting with the management fagade.
Inconsistent internal states inside the management facade itself.

Important incidents or changes of state in the managed resource that the management
facade detects by polling, rather than by notifications from the resource.

18.10.3 Event Translation and Posting

The management facade is responsible for receiving notifications from its resource,
translating them into management events and posting the event to the appropriate event
service.

18.10.4 Event Filtering

The management fagcade can choose not to post a notification from its resource to the
event service, if the notification is not relevant to other objects in the system. For

example, if the notification indicates a condition that can be handled completely by the
management facade itself, without intervention by the network operator or by other
components, the management facade may choose not to post that notification to the event
service.

18.10.5 Event Correlation

The management facade should correlate event notifications from its resource whenever
possible and consolidate multiple related events into a single post to the event service.

Federatlad Manegament ArchitediLre Spadification Page 173

19 Scheduling Service

The scheduling service allows autonomous tasks to be scheduled for performance at some
future time or times. Scheduled tasks are persistent and do not have to be rescheduled if
the scheduler server terminates and is restarted. The scheduling serviceis used to
schedule large-scale activities, not for small-scale activities or transient tasks, as the
scheduling and notification overhead (remote communication, security, transactions,
leases, etc.) is substantial. For scheduling small, rapid, or transient tasks, alocal facility is
recommended.

19.1 SchedulingService Interface

Scheduling services proxies must implement the

j avax. f ma. servi ces. schedul i ng. Schedul i ngSer vi ce interface.
Implementations must persist scheduled tasks to allow continued performance of tasksin
case of scheduling service failure and recovery. Scheduled tasks should be performed as
close as reasonabl e to the scheduled time, but timeliness guarantees are not required.

Tasks are scheduled using the schedul eTask() method, which returnsaTi cket object
representing the scheduling. If asingle task is scheduled multiple times with the
scheduling service (i.e., the schedul eTask() method is called more than once with the
same task), adifferent Ti cket isreturned for each schedule. A scheduling service does
not attempt to detect or disallow the duplicate scheduling of atask.

Scheduled tasks are cancelled with thecancel () method of the Ti cket object.
Alternately, atask may throw a net.jini.core.event.UnknownEvent Except i on exception
from withinitsnot i f y() method. When all scheduled performances of atask are
completed, the task is automatically cancelled.

Federatlad Manegament ArchitediLre Spadification Page 175

Scheduling Service

176

package javax.fma. servi ces. schedul i ng;

i mport
i nport
i mport
i nport

i nport

i nmport
i mport

java.io. Serializabl e;
java. rm . Marshal | edoj ect ;
java. rm . Renot eExcepti on;
java. util . Date;

javax.fma. util.Localizabl eMessage;

net.jini.core.event. Renot eEvent;
net.jini.core.event.Renot eEventLi stener;

[** Schedul i ng service

*/

public interface SchedulingService

Il

Constants for |atePerfornmancesAl | owed paraneter

/**No | ate performances are al |l owed.
* Late performances will be ski pped.

*/

int NONE = O;

/**Only one late performance is allowed.
* Duplicate |ate performances will be skipped.

*/

int ONE = 1;

I[**Al Tate performances are all owed.
* Al schedul ed performances will occur.
*/

int ALL = I nteger. MAX_VALUE;

Federatad Manegamant Ardhitsdire Soadification

Scheduling Service

/**Schedul e task to be performed according to
* schedul e.

except handback is null or if
| at ePer f ormancesPolicy is not one of NONE, ONE,
or ALL.

* @aramtask Task to be perforned.

* (@aram description Description describing this

* task. May be used in adnministrative interfaces
* to the scheduling service.

* @aram schedul e Schedul e of task perfornances.

* @aram | at ePer f or mancesPol i cy Nunber of

* performances that should be initiated when

* performance tinmes have been missed. NONE, ONE,
* or ALL are the only allowabl e val ues.

* @ar am handback Cd osure handback object to be

* passed back to the Task when perforned. May be
* nul | .

* @eturn Returns Ticket object for canceling the

* t ask.

* @hrows Il egal Argunent Exception If an argunment

*

*

*

*

/

Ti cket schedul eTask(

Renot eEvent Li st ener t ask,

Local i zabl eMessage descri pti on,
Schedul e schedul e,

int | atePerformancesPolicy,

Mar shal | edObj ect handback

t hr ows Renot eExcepti on;

/**Cancel a scheduled task. Only called by
* the Ticket.cancel () nethod.

* @aram cooki e The cookie of a Ticket issued by this
* schedul i ng servi ce.
* @hrows |l egall Argunent Exception The cookie is
* null or was not issued by this service, the task
* was al ready cancelled, or the cookie is
* ot herwi se invalid.
*
/
voi d cancel (Marshal | edOhj ect cookie)

t hr ows Renot eExcepti on;

/** Create a schedule for specified dates.
* @aram perfornmanceDat es Dat eson which the task

* shoul d be perforned.

* @hrows |11 egal Argurment Exception If array is null

* or enpty.

*/

Schedul e newDat eSchedul e(Date[] perfornmanceDates);

Fedarated Manegemant Architeciure Spedification Page 177

Scheduling Service

* intervals between a start and end date.

* @aramstartDate Date first performance is
* schedul ed.
* @aram endDate Date after which no performances
* are schedul ed.
* @hrows |11 egal Argument Exception |If dates are null
* or intervalsMIlis is negative.
*
/
Schedul e newDur at i onSchedul e(

Dat e start Dat e,
Dat e endDat e,
long intervalsMIlis

are to be schedul ed.
to be schedul ed.

run (i.e., Cal endar. OCCTOBER).

daysOf Week is specified.
schedul ed (i.e., Cal endar. FRI DAY).

schedul ed.
are schedul ed.
are schedul ed.

are being schedul ed.

if nmonths, hours, or minutes are null

F % X F X F X

*

/

Schedul e newRepeat edDat eSchedul e(
Date startDate,
Dat e endDat e,
int[] nonths,
int[] daysOf Mont h,
int[] daysOf Week,
int[] hours,
int[] mnutes,
Ti meZone tineZone

/** Create a schedule for perform ng tasks on even

/** Create a Schedule which will repeatedly perform

* a task according to a calendar. Paraneters are
simlar to UNI X crontab scheduling. Day and nonth
constants are found in the Cal endar cl ass.

@aram startDate Date before which no perfornmances
@ar am endDate Date after which no performances are
@ar am nont hs Mont hs during which task shoul d be

@ar am daysOf Mont h Days of the nmonth perfornances
are schedul ed. May be null or enmpty if

@ar am daysOf Week Days of the week performances are

null or empty if daysOfMonth are specified.
@ar am hours Hours (0-23) at which performances are

@aram nminutes Mnutes (0-59) at which performances
@ar am seconds Seconds (0-59) at which performances
@aram timeZone The time zone in which performances

@hrows |11l egal Argunment Exception |If daysOf Month
and daysOf Week are both null or enpty arrays,

arrays, or if any array values are out of bounds.

178 Fedarated Manegamant Ardhiteciure Soedification

Scheduling Service

/**Return froma scheduling operation so that a
* schedul ed task may be cancel | ed.
*/
public static final class Ticket
i npl ements Serializable

private final Mrshall edObject cooki e;

/**Construct a Ticket. May only be called by a
* schedul i ng servi ce.
*/
public Ti cket (
Schedul i ngServi ce servi ce,
Mar shal | edObj ect cooki e

)

/**Cancel a previously schedul ed task. Invokes
* the cancel nmethod of the service with the
* provided cooki e.

*/

public void cancel ()

t hrows Renot eExcepti on;

}

/**The schedul e interface. Encapsul ates a

* schedul e.

*/

public interface Schedul e extends Serializable

/**Return the next schedul ed performance after the
* specified tine.
@ar am dat e Date beyond which to search for
t he next perfornmance.
@eturn Return Date at which the next
performance is scheduled to occur or null
if no nore performances are schedul ed.
@hrows |11 egal Argunent Exception If date is
nul | .

* % X X X X X

*/
Dat e get Next Performance(Date date);

19.2 Ticket

A Ti cket isevidence of the scheduling of atask. Ti cket objects are created exclusively
by the Schedul i ngSer vi ce. schedul eTask() method. Future scheduled
performances of atask may be cancelled using the cancel () operation on Ti cket . Note
that the cancel operation prevents further execution of the task under a particular
schedule. It does not abort a currently executing task. In general, it is considered unsafe
to interrupt executing tasks and no means are provided for doing so.

Fedarated Manegemant Architeciure Spedification Page 179

Scheduling Service

19.3 Tasks

Tasks must implement the net. jini.core. event. Renot eEvent Li st ener interface
and be serializable. The Renot eEvent Li st ener .not i f y() method provides the point
of initiation for atask. The event object shall be of

typenet . jini.core. event. Renot eEvent and contain the hand back object, if any,
provide when the task was scheduled. The event source shall be a String of the form:
"Management Scheduling Service". The event sequence number shall increase with each
task initiated by the service, but is not required to increment by one. If atask is
reinitiated, because of failure of the task or the scheduling service, the event shall retain
its original number. The event ID is not used and shall be set to OL.

Tasks must be seriaizable to allow the scheduling service to persist the scheduled task.
Implementations of the scheduling service must hold a hard reference to the task to
ensure that it is not garbage collected before all scheduled performances are completed.

19.4 Schedules

The Schedul e interface has three standard implementations: Dat eSchedul e,

Repeat edDat eSchedul e, and Dur at i onSchedul e. These standard schedules are
created using the factory methods on the Schedul i ngSer vi ce interface. Note that these
methods are local and do not throw a remote exception.

Other custom implementations are allowable by implementing the Schedul e interface.
Schedul e mplementations must be safely seriaizable as they are passed by value to the
service,

19.5 Task Performance

When the scheduled time for atask arrives, the task is performed by calling the
Renot eEvent Li st ener .not i f y() method. A task may indicate that no future
scheduled performances shall be performed by throwing a
net.jini.core.event. UnknownEvent Excepti on.

19.5.1 Thread

Threads are granted from the scheduling service to the task. Implementations of the
scheduling service may limit the number of threads available or otherwise limit the
resource consumption of the scheduling service.

19.6 Scheduling Conflicts

180

The Schedul i ngSer vi ce will not initiate concurrent performances of a scheduled task.
Thus, it is possible that one or more scheduled performance times may pass while the
service is waiting for the current performance to complete. When atask completes, if
scheduled performances have been missed, the scheduling service determines how many
(if any) of the missed performances will be performed. Thisis determined by the value of
thel at ePer f or mancesPol i cy parameter of the schedul eTask() method.

Federatad Manegamant Ardhitsdire Soadification

Scheduling Service

Acceptable values are Schedul i ngSer vi ce. NONE, Schedul i ngSer vi ce. ONE, and
Schedul i ngServi ce. ALL.

Concurrent performances of a single task can be achieved by scheduling a task with
multiple schedules (i.e., calling schedul eTask() multiple times).

19.7 Protection from Task Exceptions

The scheduling service must protect itself from throwables thrown from task execution.
These exceptions shall be caught and logged to the log service, but not propagated
further.

19.8 Scheduling Service Failure

If ascheduling service fails and is recovered, it must not lose scheduled tasks. Thus,
Schedul i ngSer vi ce implementations are responsible for persisting scheduled tasks.
Remote tasks in progress when the service fails will continue to run except that they will
be unable to renew their leases. If detected, the tasks should consider this an indication to
abort. When the scheduling service recovers, the running tasks will be considered
incomplete and will be restarted.

It is possible, depending on the timing of atask and the failure of the service, that a task
is executed more than once.

It isaso possible that copies of atask can be executed concurrently. For example, if a
task is running when the service fails, but the task doesn’t notice (failure to renew the
lease) the failure until some time after the service has recovered. The service, on
recovery, will attempt to restart the task, which could result in two copies of the task
running concurrently. Tasks, which are not idempotent, may protect themselves against
multiple execution runs using means specific to the task. None-the-less, the scheduling
service should minimize the possibility by, on recovery, waiting T seconds, where T is
twice the longest outstanding task lease duration, before restarting tasks. This delay
allows orphan tasks a reasonable chance to detect the failure of the service and react
accordingly. To be reasonable, the lease duration should be at least 60 seconds and as
high as 300 seconds.

Glossary

A

Federatlad Manegament ArchitediLre Spadification Page 181

access control
acceptor stubs
appliance

auditing

authentication

client

Common I nfor mation M odel
(CIM)

Common Infor mation M odel
Schema

confidentiality

F

Federation of Stations

implementation delegation

Interdomain federation

182

The security control of a particular thread of execution to a protected
resource.

Remote references to corresponding acceptors. The acceptor stub/acceptor
pair forms the RMI based outer interfaces to areferent object.

A managed resource with an embedded station capable of hosting dynamic
services.

The durable recording of the performance of certain operations, such as
authentication success or failure, for the purposes of respective analysis, often
in response to a suspected security breach.

A classification of security constraint that verifies that the operation is
executed on behalf of a certain Principal.

A client isan external source of activity: external in the sense of being
outside of the specified system whether it be a federation of station or a
middle tier. The term "client” is sensitive the context in which it being used.
For example, consider two-object communicating peer-to-peer. In the context
of asingle communication, the object initiating the communication (source of
activity) isthe client while the other is the server. In the context of another
communication, the roles may be reversed. Thus, one cannot label a particular
entity as aclient (or server) with specifying the context in which the labeling
applies, such as a particular communication.

A specification that is a description of an object model and of alanguagein
which to describe the classes and the instances of objects of that model.

A set of standardized default objects and associations for representing
computing systems.

The protection, or desire for protection, of information asto be
incomprehensible by unauthorized parties.

The set of authenticated JVMs, usually stations that are considered
completely secure.

A technique used to abstract static methods when separating implementation
from specification. Object methods may be abstracted for this purpose using
interfaces. However, constructors and class methods require some form of
implementation delegation.

A union of shared and private management servers within a single domain.

Federatad Manegamant Ardhitsdire Soadification

integrity

Intrinsic class servers

JAAS

L
logic method

M

management facade (MF)
management server
management server federation

O

observer subscribers

P

Principal

private management servers

proxy
Proxy binding

R

referents

The protection, or desire for protection, of information asto be unalterable,
without detection, by unauthorized parties.

Small HTTP class servers, which are embedded in clients or stations, for the
purpose of support RMI network class loading.

Java Authentication and Authorization Service

A method that is not directly responsible for state - stateless.

A dynamic service that provides access to a managed resource.
A station capable of supporting dynamic services.

The union of shared and private management servers with asingle
management domain. The domain maps to the Jini technology group with
which the servers are registered. From a practical standpoint, a federation
must generally be contained within a Local Area Network (LAN). Thus,
members of the federation are not expected to be separated by unreliable
networks or such constructs as firewalls.

Topic subscribers that are not "responsible subscribers'. Observer subscribers
may receive event notification but cannot consume an event.

A JAAS and Java concept that can be thought of as one possible name for a
subject.

A class of management server that is embedded in storage appliances.
A remote reference to areferent. The referent can be an object or class.

The process of associating a Proxy with its acceptor, whether initially or for
refreshing.

The object or class to which a particular Proxy refers.

Federatlad Manegament ArchitediLre Spadification Page 183

replication group

responsible subscriber

Roles

S

security domain
Security service
shar ed management server

station

station proxy
subject

sub topics

184

A group of stations that are considered to be asingle logical entity but
replicated for the purposes of redundancy. The members of areplication
group, therefore, must be interchangeable.

A subscriber that can consume (handle) and event and prevent propagation of
the event to other responsible subscribers.

A standard class of Principal in the security model.

A realm of trust against which Subjects are authorized and Roles defined.
A server that performs secure authentication and user/role management.

The server (or replicated set of servers) that belongs to and represents an
entire management domain.

A VM enabled to support dynamic services. Stations are themselves Jini
technology services.

A proxy, in the Jini technology sense, that refersto a station.

A JAAS concept that represents the source of an operation request, such that
aperson or service.

Topics that specialize, either directly or indirectly, a base topic.

Federatad Manegamant Ardhitsdire Soadification

