Java Update —
Java 23 <

Georges Saab
Senior Vice President, Development, Java | Chair, OpenJDK Governing Board

@gsaab
Chad Arimura At
Vice President, Java Developer Relations i e \\
@chadarimura SN
Oct 16, 2024 i Dnd 3 *\ 7

JDK 23

12 JDK Enhancement Proposals (JEPs) delivered

4

7

E 455: Primitive Types in Patterns, instanceof, and switch Preview
3 476: Module Import Declarations Preview : :
5 ; 466: Class-File AP| Second Preview
E 477: Implicitly Declared Classes and Instance Main Methods Third
8 Preview 469: Vector AP| Eighth incubator
: 5
€ 482 Flexible Constructor Bodies SecondPreview 473: Stream Gatherers Second Preview o
- (]
480: Structured Concurrency Third Preview
g 481: Scoped Values Third Preview
S5 474 ZGC: Generational Mode by Default
s
wn
[]
K : 2 i =
S 467 e R Dl e G 471: Depre(_:ate the Memory-Access Methods in g
sun.misc.unsafe for Removal g
©
openjdk.org/projects/jdk /23
o

Copyright © 2024, Oracle and/or its affiliates

Thoughtful evolution and stewardship

String Templates Intended Goals Summary

+ ...for expressions that combine strings with run-time values: * The process is working; end-user feedback allows Java to evolve

Noren® : {d through thoughtful ecosystem involvement and evaluation.

* Simplify and improve readability

AT T * Collective end-user feedback helped determine to end and explore new
P y approaches to achieve String Template intentions in future feature(s)

o el L s O O 2 * Firstintroduced as a preview feature in Java 21 (JEP 430)

* Allowextension outside of JOK » Introduced as a second preview in Java 22 (JEP 459)

Details:
https://inside.java/2024/06/20/newscast-71/

Experimental Features Incubator Modules Preview Features
A test-bed mechanism used to gather feedback on Enables the inclusion of JDK APIs and JDK tools that A new feature of the Java language, Java Virtual
nontrivial HotSpot enhancements. might one day, after improvements and stabilizations, Machine, or Java SE API that is fully specified, fully
be included and supported in the Java SE platform or implemented, and yet impermanent. It is available in a
in the JDK. JDK feature release to provoke developer feedback

based on real world use; this may lead to it becoming
permanent in a future Java SE Platform.

Copyright © 2024, Oracle and/or its affiliates o

Java and Al

Copyright © 2024, Oracle and/or its affiliates

S,

Oracle Java Al Three-Pronged Strategy = lM

Integration with Making the Java Connecting Business
Enterprise Data and Platform even better Logic to Native Al
Cloud Services for Native Al Libraries

Copyright © 2024, Oracle and/or its affiliates O

Oracle Java Al triple-play advantage

6

OCI Al Services and
OCI SDK For Java

Copyright © 2024, Oracle and/or its affiliates

Native Java
Frameworks such as
Tribuo, LangChain4j,

CoreNLP

G
= Java

Integrate services with
business logic using
Panama & GraalPy

Data-centric World

=)JdVd -
<_ Continuously improve developer Create a scalable low-latency

productivity through evolution of the garbage collector capable of
Java language. handling terabyte heaps.

We continuously Cloud-powered World

evolve Java to meet Loom Leyden
Massively scale lightweight threads, Improve the start-up time and time

yo u r fut u re a p p making concurrency simple again. to peak performance of cloud

applications.

development needs
Al-driven World

Babylon Panama Valhalla
Java has 30 years of
. . . Extend the reach of Java || Safe and efficient Unify primitives and
experience evolvi Nng with the including to machine interoperation with classes to improve
learning models and native libraries and productivity and
]ateSt teCh trends GPUs native Java. performance.

7 Copyright © 2024, Oracle and/or its affiliates O)

3 JavaOne

March 17-20, 2025 | Redwood Shores, CA

javaone.com

8 Copyright © 2024, Oracle and/or its affiliates f | o

Some of the prep: Integrity by default

JEP draft: Integrity by Default

Authors Ron Pressler, Alex Buckley, & Mark Reinhold
Owner Ron Pressler
Type Informational
Scope SE
Status Draft
Relates to JEP 261: Module System
: Encapsulate Most Internal APls
: Strongly Encapsulate |DK Internals by Default
JEP Process : Strongly Encapsulate |DK Internals
Source code : Prepare to Disallow the Dynamic Loading of Agents
3 : Deprecate the Memory-Access Methods in
sun.misc.Unsafe for Removal
JEP 472: Prepare to Restrict the Use of JNI
Created 2023/04/13 16:06
Updated 2024/08/23 10:25
Issue 8305968

Census

Summary

Developers expect that their code and data is protected against use that is
unwanted or unwise. The Java Platform, however, contains unsafe APIs that can
undermine this expectation, thereby damaging the correctness, maintainability,
scalability, security, and performance of applications. Going forward, we will
IDE Toolin t restrict the unsafe APIs so that, by default, libraries, frameworks, and tools cannot
InemAtin use them. Application authors will have the ability to override this default.

What is integrity?

The Oxford English Dictionary defines “integrity” as “the state of being whole and
undivided; the condition of being sound in construction.”

Copyright © 2024, Oracle and/or its affiliates O

10

And now, JEP 14: Tip and Tail

JEP 14: The Tip & Tail Model of Library Development

Copyright © 2024, Oracle and/or its affiliates

JEP Process
Source code

Authors
Owner

Type

Scope
Status
Discussion
Reviewed by
Created
Updated
Issue

Summary

Alex Buckley, Brian Goetz, & Ron Pressler
Alex Buckley

Informational

JDK

Active

jdk dash dev at openjdk dot org

Alan Bateman, Mark Reinhold, Paul Sandoz
2024/09/30 23:14

2024/10/07 17:47

8341287

Tip & tail Is a release model for software libraries that gives application developers
a better experience while helping library developers innovate faster. The tip
release of a library contains new features and bug fixes, while tail releases contain
only critical bug fixes. As little as possible is backported from the tip to the tails.
The JDK has used tip & tail since 2018 to deliver new features at a faster pace, as
well as to provide reliable and predictable updates for users focused on stability.

Goals

= Help the Java ecosystem maintain the balance between innovating rapidly
for new development and ensuring stability for long-term depleyments.

= Recognize that application developers have diverse views about the kinds
of changes that make it necessary to update libraries and the JDK.

= Ensure that library developers do not have to choose between supporting
users of older |DKs and embracing new features (virtual threads, patterns,
etc.) that excite users of newer JDKs.

= Do not constrain library release cycles, version schemes, or toel choices.

Thank you

https://openjdk.org
https://dev.java
https://inside.java
https://youtube.com/java

https://github.com/java

% @Java | @Open]DK

il Copyright © 2024, Oracle and/or its affiliates

Appendix

12 Copyright © 2024, Oracle and/or its affiliates

A look back at the “bad old days”

* Previously had a coarse-grained, feature-boxed release model

« 2-4 years between releases, frequent delays, no predictability
* Expensive, heavyweight release management process

* Irresistible temptation to integrate features “under the wire”
(And also to backport many improvements)

* This wasn't working for anyone
* Developers were frustrated by latency and delays to get new features
* Late integrations reduced stability of GA release

* Excessive backports risked stability of older trains
(and perversely, discouraged adoption of newer releases)

13 Copyright © 2024, Oracle and/or its affiliates o

Turning the ship

* We first asked: what does the ecosystem really need?
* Developers: want access to the latest features

* Enterprises: want stability for deployment
* Old model made no one happy

* New model: “tip and tail”, with six-month tip release cadence
* Features are integrated into the tip only when ready
* |f you miss the train, no problem, another is coming soon
* Offer long-term commercial support (LTS) on select older releases (the “tail”)

* These get security updates and critical fixes only, ensuring stability

14 Copyright © 2024, Oracle and/or its affiliates o

Skepticism at first...

* The internal reaction was ... skeptical

* “We can't possibly run a release every six months, we'd
get eaten by process overhead”

* “We might not have anything to ship”
* “We're going to get overwhelmed with backports”
e “We fear change”

* The ecosystem was even more skeptical...
* “Java 8is all we'll ever need”
* “We'll get overwhelmed with releases”
* “You can't possibly maintain quality at that pace”
* “We fear change”

15 Copyright © 2024, Oracle and/or its affiliates

S lan Brown
igb

After careful deliberation, having consulted with many JVM experts, | can
confidently say that the new Java release cadence is bullshit.

12:05 AM - Dec 8, 2017 from San Francisco, CA

Replying

If a JVM is released every 6 months, but everyone is still using Java 8, did
it actually release?

5:10 PM - May 9, 2018

Stephen Colebourne
tephen

| want to highlight this tweet. We now have Amazon, Red Hat, IBM,
Spring and more only focussed on Java LTS releases - 8, 11, then
(probably) 17. As per my last blog, it looks like the 6 month release cycle
will be of limited value to most Java dev: b

@ Arun Gupta @ pta - Nov 14, 2018
Replyingto derrcraft

Atthis time, we're planning Corretto 8 and 11 only.

9:21AM - Nov 15, 2018

o Mario Fusco @™ @mariofusco@jvm.social

@mariofusco

Java's 6 months release cadence is

1. Very good, is exciting to see Java moving fast

2. Good in theory, useless in practice. Pro users are on Java 11 at best, all
libraries has to support Java 8 at least

3. Harmful for enterprises
4. Just a desperate attempt to monetize Java
1. Very good
2. Useless in practice
3. Harmful
4. Just to make money
2,315 votes - Final results

10:02 AM - Jan 19, 2020

There were some technical challenges

* The repo structure designed in the late nineties made changes
across components take weeks

* The tests were managed separately from implementation code

* Lots of code complexity from trying to support multiple Java
versions with the JDK held back progress

* Build system needed an overhaul
* Dependency management was too ad hoc (pets rather than cattle)

* Improvements to infrastructure to support self service automated
build and test

16 Copyright © 2024, Oracle and/or its affiliates o

Cultural Change was required

* More than switching methodologies, it was switching mindsets
* Unlearning decades of experience and muscle memory
* Learning to NOT panic about missing the train

* Don't backport what doesn't need to be backported
* The tail is for stability, not for shiny features

* Learn to break features down into smaller deliverables

* Right size the release management processes

17 Copyright © 2024, Oracle and/or its affiliates o

The payoff

* This worked out better than we could have hoped!

* Release process could be slashed because release risk was so reduced

Backports could be slashed because many fewer were needed

Reduced backports meant more stability for LTS releases

All this meant more time for development

More features, faster!

* Everyoneis happy
* Developers get features delivered earlier, more rapid progress, predictability
* Enterprises get commercially supported stable releases
* JDK developers spend more time developing, less in meetings

* Predictable, repeatable process reduced stress for everyone

18 Copyright © 2024, Oracle and/or its affiliates o

i Amazing-Cicada5536 - vor 21 Tagen . henk53 - vor 21 Tagen

The new release model is probably the best thing that happened to Java on the Why don't we backport everything to the supported LTS releases? Then those supported
management side — instead of the usual churn of “this feature has to be done till this LTS releases will be virtually identical to Java 20 each ;)
deadline”, which might work for that boring CRUD feature but is absolutely terrible for
such a complex program like the JVM, it allows for each new development to take as much G 1 @ D Antworten Teilen ==*
time as necessary. If it didn't get ready for release N, just continue to work on it and 6
months later it can be delivered. It is especially important as many of these features have
non-trivial interactions with each others. i pakeVhartonRvRliEu sy

That's just called updating to the latest. The best LTS release remains and will remain

simply tracking the latest version.

StoneOfTriumph - vor 21 Tagen

Wh.at some people forget is that the]DK is advarwcir.wg at a faster pace with smaller % MyFavouriteNick - vor 20 Tagen
deliverables more frequency than before, so while it seems that they released a
buttload of versions, the releases themselves include a smaller delta, so the jump to For all the in-house projects that I maintain the upgrade from Open]DK 17 to 19

8 to 17 isn't that bad in terms of breaking changes, not near as difficult to perform (and now 20) has been a simple version bump too.

as6to8.

In my opinion, 12/13/14/15/16 can and should be used in production. But you
don't use just 12 or 16 and leave it there, you always depend on the latest
release, and plan accordingly. 6 months of support is absolutely fine if an
adequately set up Clis in place and you have good end-to-end test coverage.

@ Joram2 - vor 21 Tagen ﬁ TheCountRushmore - vor 21 Tagen

Java 20 is basically a patch release on Java 19. But it's important + necessary. This contains lots of other bug fixes and improvements. It's a full production quality release.

When you take the time to actually look at the changelog, when you take the time
to actually upgrade your project's java version source/targets to a higher version as
part of a proof of concept/spike/timebox, there's much less than you may think.

Copyright © 2024, Oracle and/or its affiliates

20

And now, JEP 14: Tip and Tail

JEP 14: The Tip & Tail Model of Library Development

Copyright © 2024, Oracle and/or its affiliates

JEP Process
Source code

Authors
Owner

Type

Scope
Status
Discussion
Reviewed by
Created
Updated
Issue

Summary

Alex Buckley, Brian Goetz, & Ron Pressler
Alex Buckley

Informational

JDK

Active

jdk dash dev at openjdk dot org

Alan Bateman, Mark Reinhold, Paul Sandoz
2024/09/30 23:14

2024/10/07 17:47

8341287

Tip & tail Is a release model for software libraries that gives application developers
a better experience while helping library developers innovate faster. The tip
release of a library contains new features and bug fixes, while tail releases contain
only critical bug fixes. As little as possible is backported from the tip to the tails.
The JDK has used tip & tail since 2018 to deliver new features at a faster pace, as
well as to provide reliable and predictable updates for users focused on stability.

Goals

= Help the Java ecosystem maintain the balance between innovating rapidly
for new development and ensuring stability for long-term depleyments.

= Recognize that application developers have diverse views about the kinds
of changes that make it necessary to update libraries and the JDK.

= Ensure that library developers do not have to choose between supporting
users of older |DKs and embracing new features (virtual threads, patterns,
etc.) that excite users of newer JDKs.

= Do not constrain library release cycles, version schemes, or toel choices.

	Slide 1
	JDK 23
	Slide 3
	Java and AI
	Slide 5
	Slide 6
	Slide 7
	March 17-20, 2025 | Redwood Shores, CA javaone.com
	Some of the prep: Integrity by default
	And now, JEP 14: Tip and Tail
	Slide 11
	Appendix
	A look back at the “bad old days”
	Turning the ship
	Skepticism at first…
	There were some technical challenges
	Cultural Change was required
	The payoff
	Slide 19
	And now, JEP 14: Tip and Tail

