
Java for Education

and “Small Java”

Ron Pressler

April 2024

2

• Java excels for writing large, “serious” applications; it is wildly popular at that

• Java must remain a “first language” to remain popular and grow

• Accommodating beginners is the essence of investment in sustained growth

Copyright © 2024 Oracle and/or its affiliates

3

• “Activation Energy” is too high (the effort to get something up and running).

• “Hello World” is too complex.

• Many high school students use Chromebooks and can’t install Java.

• The ecosystem of libraries and tools is complex to navigate but necessary to use.

• Examples of creative, relevant, fun, modern Java projects are not easily discovered.

• Java is perceived as the language of legacy software, not of newer trends (AI, VisRec, Data).

What Educators Tell Us (about the Java experience and perception)

Copyright © 2024 Oracle and/or its affiliates

4

• Python’s technical challenge scaling up

• Disruption comes from below: easier languages that grab developers early

• Java’s technical challenge is scaling down

Copyright © 2024 Oracle and/or its affiliates

5

• Scale down to less experienced users and to smaller projects/early stages

• Affordances for beginners serve veterans for tinkering and smaller programs

• Spans both language and tooling

• No separate mode, language dialect, or toolchain, 
rather an “on-ramp” for bigger, more advanced things

Scaling Down: Small Java

Copyright © 2024 Oracle and/or its affiliates

6

• JEP 222: jshell: The Java Shell (Read-Eval-Print Loop) — JDK 9

• JEP 330: Launch Single-File Source-Code Programs — JDK 11

Small Java

Copyright © 2024 Oracle and/or its affiliates

https://openjdk.org/jeps/222
https://openjdk.org/jeps/330

7

public class HelloWorld {

 public static void main(String[] args) {

 System.out.println("Hello, World!");

 }

}

Hello, World?

Copyright © 2024 Oracle and/or its affiliates

8

 void main() {

 System.out.println("Hello, World!");

 }

JEP 463: Implicit Classes

Copyright © 2024 Oracle and/or its affiliates

9

 void main() {

 println("Hello, World!");

 }

Upcoming:

Copyright © 2024 Oracle and/or its affiliates

10

java.io.Console.Basic:

public static void println(Object obj) ...

public static void print(Object obj) ...

public static String input(String prompt) ...

Upcoming:

Copyright © 2024 Oracle and/or its affiliates

11

void main() {

 var authors = List.of("James", "Bill", "Guy", "Alex", "Dan", "Gavin");

 for (var name : authors) {

 println(name + ": " + name.length());

 }

}

Upcoming:

Copyright © 2024 Oracle and/or its affiliates

12

import module java.base;

Upcoming:

Copyright © 2024 Oracle and/or its affiliates

13

0 files: jshell

1 file: source-code launcher

2 files: 1. Pick a build tool. 2. Learn the build tool. 3. Use the build tool.

Growing from tinkering, exploration, & small programs to large ones

Copyright © 2024 Oracle and/or its affiliates

14

• Makes the transition from small programs to large ones gradual

• Developer chooses whether and when to configure a build tool.

JEP 458: Launch Multi-File Source-Code Programs (22)

stage2/

 Main.java

 ComponentA.java

 ComponentB.java

stage3/

 Main.java

 component.a/

 :

 component.b/

 :

stage1/

 Main.java

Run ’em all with:

$ java Main.java

Copyright © 2024 Oracle and/or its affiliates

Integrity by Default
Ron Pressler 

April 2024

16

• Evolution/Migration

• Security

• Performance

The Importance of Integrity to Java

Copyright © 2024 Oracle and/or its affiliates

17

• Integrity by Default

• JEP 403: Strongly Encapsulate JDK Internals (17)

• JEP 451: Prepare to Disallow the Dynamic Loading of Agents (21)

• JEP 454: Foreign Function & Memory API (22)

• Prepare to Restrict the Use of JNI

• Deprecate the Memory-Access Methods in sun.misc.Unsafe for Removal

• Final means Final

JEPs

Copyright © 2024 Oracle and/or its affiliates

https://openjdk.org/jeps/8305968
https://openjdk.org/jeps/403
https://openjdk.org/jeps/451
https://openjdk.org/jeps/454
https://openjdk.org/jeps/8307341
https://openjdk.org/jeps/8323072

18 Copyright © 2024 Oracle and/or its affiliates

• Parity with FFM

• The first time a module loads a native library (System.loadLibrary
etc.) or a native method it defines is called — warning

• --enable-native-access=M1,M2… (ALL-UNNAMED)

Prepare to Restrict the Use of JNI

19

• Vast majority of Unsafe methods deprecated for removal

• Followed by a process of runtime warnings, errors, removal

Deprecate the Memory-Access Methods in
sun.misc.Unsafe for Removal

Copyright © 2024 Oracle and/or its affiliates

20

• Require additional flag to allow setting finals with setAccessible

• Allows performance improvements even for code on the classpath

Final Means Final

Copyright © 2024 Oracle and/or its affiliates

21 Copyright © 2023 Oracle and/or its affiliates

• The JDK is changing more quickly

• Reaching for internals can no longer work (the tech debt collector
has come)

• But it is also no longer needed as new standard APIs are added

• More of the runtime is written in Java

What Changed? (Internal)

22 Copyright © 2023 Oracle and/or its affiliates

• Java applications primarily run on the server with wide and deep
dependency trees.

• Security focus has shifted from defending against malicious code
to the greater challenge of defending against vulnerabilities in
benevolent code

• (One notable exception: Supply-chain attacks)

• Server applications run in containers; want to “scale to zero”

What Changed? (External)

23

• Java is (largely) backward-compatible — through the SE spec

• Most compatibility issues due to libraries bypassing the spec

• Forward looking: Integrity makes applications aware of portability
risks imposed by dependencies (avoid most future compatibility pain)

• Backward looking: What about libraries that are still not portable?

Focus: Compatibility

Copyright © 2024 Oracle and/or its affiliates

Tip & Tail

For library development

Ron Pressler

April 2024

25

• How to address the different needs of my library’s consumers?

• ⇒ What JDK baseline to choose?

The question(s)

Copyright © 2024 Oracle and/or its affiliates

26

• One-size-fits-all — a single release train for everyone

• ⇒ One codebase baselined on an old JDK

The old answer

Copyright © 2024 Oracle and/or its affiliates

27

• Multiple release trains targeting different JDK versions costs more

Why?

Copyright © 2024 Oracle and/or its affiliates

28

• Maintaining old release trains is costly

But why?

Copyright © 2024 Oracle and/or its affiliates

29

• We need to backport a lot — costly

But why?

Copyright © 2024 Oracle and/or its affiliates

30

• Legacy:

• Application (or a component of an application) isn’t changing much

• Value stability

• Evolving:

• Application (or a component of an application) is adapting to new requirements

• Value added value: new features/capabilities/performance

The Two Classes of Consumers

Copyright © 2024 Oracle and/or its affiliates

31

• Applications that want to avoid new JDKs do so because they want stability

• They usually want to avoid new library features, too

• Giving them new features hurts everyone:

The dichotomy

Copyright © 2024 Oracle and/or its affiliates

32

• Legacy users get less stability

• Evolving users can’t get all the features they need

• At the very least, exploiting new JDK capabilities based on runtime queries
increases development cost (and still doesn’t allow them in the APIs)

• Baselining on an old JDK is less fun for the library developer

The cost of one-size-fits-all

Copyright © 2024 Oracle and/or its affiliates

33

• New features and enhancements (incl. performance) go into a tip release train

• Can target a recent JDK

• The lion share of effort is made easier because it’s easy to add capabilities when
targeting a new JDK without resorting to clever tricks

• Security patches + fixes to catastrophic bugs are backported to tail release trains

• Otherwise they are largely left alone

• Their cost is very low

Tip & Tail

Copyright © 2024 Oracle and/or its affiliates

34

• In the tip train, baseline each tip release on the JDK version that best supports
the library's new features and enhancements.

• In a tail train, keep the JDK baseline as constant as possible over the life of the
train.

Tip & Tail

Copyright © 2024 Oracle and/or its affiliates

TIP: 1.0 -- 2.0 -- 2.1 -- 3.0 -- 3.1 -- 4.0 -- 4.1 -- 4.2 -- 5.0 ...

 (11) (17) (17) (19) (21) (22) (24) (26) (28)

 \ \

 \ \

TAIL 1: \- 2.1.1 -------- 2.1.2 -- 2.1.3 -- 2.1.4 -- 2.1.5 EOL

 (17) \ (17) (17) (17) (17)

 \

 \

TAIL 2: \- 3.1.1 -- 3.1.2 -- 3.1.3 -- ...

 (21) (21) (21)

35

• Costs less for everyone

• Added process cost but lower cost overall (most effort in enhancements)

• Delivers more to everyone

• Evolving users get more features (added value) quicker

• Legacy users get more stability

• Library maintainers get more fun — more motivation

• BUT — requires a shift in mindset and resources

Tip & Tail is the rare free lunch

Copyright © 2024 Oracle and/or its affiliates

36

• Please backport no-pinning-on-synchronized to 21

• Why won’t you upgrade to a new JDK?

• Because we certified the application on 21

• But if we backport such a change to 21 it won’t be the same 21

• (… but as long as you give the version the same name the process can remain)

A real conversation

Copyright © 2024 Oracle and/or its affiliates

37

• Stability and new features are contradictory requirements

• Consumers must choose one or the other — not both

• Consumers must honestly accept this and change their process

• This requires a shift in mindset but doesn’t introduce a new dilemma

• Merely makes us honest about an inescapable tradeoff

The Choice

Copyright © 2024 Oracle and/or its affiliates

38

• Problem: FFM was made permanent in 22 and Unsafe is being removed — can’t
be used in the same codebase

• Solution: Start new release train baselined on a new JDK and migrate to FFM.
Keep old release train baselined on an old JDK and leave it alone.

A concrete example

Copyright © 2024 Oracle and/or its affiliates

