ava Tor Egucation

and “Small Java”

Ron Pressler
April 2024

ORACLE



. Java excels for writing large, “serious” applications; it is wildly popular at that

. Java must remain a “first language” to remain popular and grow

) O

. Accommodating beginners is the essence of investment in sustained growth

O

2 Copyright © 2024 Oracle and/or its affiliates



What Educators Tell Us (about the Java experience and perception)

“Activation Energy” is too high (the effort to get something up and running).
“Hello World" 1s too complex.
Many high school students use Chromebooks and can't install Java.

The ecosystem of libraries and tools is complex to navigate but necessary to use.

-xamples of creative, relevant, fun, modern Java projects are not easily discovered.

Java is perceived as the language of legacy software, not of newer trends (al, VisRec, Data).

3 Copyright © 2024 Oracle and/or its affiliates E



. Python's technical challenge scaling up

-, )

. Disruption comes from below: easier languages that grab developers early

. Java's technical challenge is scaling down

O

4 Copyright © 2024 Oracle and/or its affiliates



Scaling pown: Small Java

Scale down to less experienced users and to smaller projects/early stages

Affordances tfor beginners serve veterans for tinkering and smaller programs
Spans both language and tooling

()

NO separate mode, language dialect, or toolchain,
rather an “on-ramp” for bigger, more advanced things

5 Copyright © 2024 Oracle and/or its affiliates




Small Java

o« JEP 227:jshell: The Java Shell (Read-Eval-Print Loop) — JDK @
. JEP 330: Launch Single-File Source-Code Programs — JDK 11

6 Copyright © 2024 Oracle and/or its affiliates


https://openjdk.org/jeps/222
https://openjdk.org/jeps/330

Hello, World?

public class HelloWorld {
public static void main(String[] args) {
System.out.println("Hello, World!");

7 Copyright © 2024 Oracle and/or its affiliates



JEP 463: Implicit Classes

void main() {
System.out.println("Hello, World!");

8 Copyright © 2024 Oracle and/or its affiliates



Upcoming:

void main() {
println("Hello, World!");

9 Copyright © 2024 Oracle and/or its affiliates



Upcoming:

java.lo.Console.Basic:
public static void println(Object obj) ...

public static void print(Object obj) ...
public static String input(String prompt) ...

10 Copyright © 2024 Oracle and/or its affiliates




Upcoming:

void main() {
var authors = List.of("James", "Bill", "Guy", "Alex", "Dan", "Gavin");
for (var name : authors) {
println(name + ": " + name.length());

11 Copyright © 2024 Oracle and/or its affiliates



Upcoming:

import module java.base;

12 Copyright © 2024 Oracle and/or its affiliates



Growing from tinkering, exploration, & small programs to large ones

O files: jshell

1file: source-code launcher
2 files: 1. Pick a build tool. 2. Learn the build tool. 3. Use the build tool.

13 Copyright © 2024 Oracle and/or its affiliates



JEP 458: Launch Multi-File Source-Code Programs (22)

stagel/ stage2/ stage3/
Main. java Main. java Main.java
ComponentA. java component.a/
ComponentB. java :
component.b/

Run 'em all with:

$ java Main.java

. Makes the transition from small programs to large ones gradual
. Developer chooses whether and when to configure a build tool.

14 Copyright © 2024 Oracle and/or its affiliates



INntegrity by Default

Ron Pressler
April 2024

ORACLE



The Importance of Integrity to Java

. Evolution/Migration

e« Security

. Performance

16 Copyright © 2024 Oracle and/or its affiliates



JEPS

. Integrity by Default
. JEP 403: Strongly Encapsulate JDK Internals (17)

. JEP 451: Prepare to Disallow the Dynamic | oading of Agents (217)
- JEP 454: Foreign Function & Memory APl (22)

. Prepare to Restrict the Use of JNI
. Deprecate the Memorv-Access Methods In sun.misc.Unsafe for Removal

. Final means Final

17 Copyright © 2024 Oracle and/or its affiliates E


https://openjdk.org/jeps/8305968
https://openjdk.org/jeps/403
https://openjdk.org/jeps/451
https://openjdk.org/jeps/454
https://openjdk.org/jeps/8307341
https://openjdk.org/jeps/8323072

Prepare to Restrict the Use of JN|

. Panty with FFM

. The first time a module loads a native library (System.loadLibrary
etc.) or a native method it defines is called — warning

« --enable-native-access=M1,M2.. (ALL-UNNAMED)

18 Copyright © 2024 Oracle and/or its affiliates



Deprecate the Memory-Access Methods In
sun.misc.Unsafre for Removal

. Vast majority of Unsafe methods deprecated for removal

. Followed by a process of runtime warnings, errors, removal

19 Copyright © 2024 Oracle and/or its affiliates



-1nal Means Final

. Require additional flag to allow setting finals with setAccessible

. Allows performance improvements even for code on the classpath

20 Copyright © 2024 Oracle and/or its affiliates



What Changed? (Internal)
- The JDK s changing more quickly

. Reaching for internals can no longer work (the tech debt collector
has come)

. Butitis also no longer needed as new standard APIs are added

. More of the runtime is written in Java

21 Copyright © 2023 Oracle and/or its affiliates



What Changed? (External)

. Java applications primarily run on the server with wide and deep
dependency trees.

. Security focus has shifted from defending against malicious code
to the greater challenge of defending against vulnerabilities in
benevolent code

- (One notable exception: Supply-chain attacks)

. Server applications run in containers; want to “scale to zero”

22 Copyright © 2023 Oracle and/or its affiliates



-ocus: Compatibility

. Javais (largely) backward-compatible — through the SE spec

.« Most compatibility 1ssues due to libraries bypassing the spec

. Forward looking: Integrity makes applications aware of portability
risks imposed by dependencies (avoid most future compatibility pain)

. Backward looking: What about libraries that are still not portable?

23 Copyright © 2024 Oracle and/or its affiliates E



Hp & [al

-Or library development

Ron Pressler
April 2024

ORACLE



The question(s)

- How to address the different needs of my library’s consumers?

. = \What JDK baseline to choose?

25 Copyright © 2024 Oracle and/or its affiliates



The old answer

.+ One-size-fits-all — a single release train for everyone

. = One codebase baselined on an old JDK

26 Copyright © 2024 Oracle and/or its affiliates



Why?

- Multiple release trains targeting different JDK versions costs more

27 Copyright © 2024 Oracle and/or its affiliates



But why?

- Maintaining old release trains is costly

28 Copyright © 2024 Oracle and/or its affiliates



But why?

- We need to backport a lot — costly

29 Copyright © 2024 Oracle and/or its affiliates



The Two Classes of Consumers

- Legacy:
. Application (or a component of an application) isn't changing much
. Value stability
. Evolving:
. Application (or a component of an application) is adapting to new requirements

. Value added value: new features/capabilities/performance

30 Copyright © 2024 Oracle and/or its affiliates



The dichotomy

. Applications that want to avoid new JDKs do so because they want stability
. They usually want to avoid new library features, too

. Giving them new features hurts everyone:

31 Copyright © 2024 Oracle and/or its affiliates



The cost of one-size-fits-all

. Legacy users get less stability

. Evolving users can't get all the features they need

. At the very least, ex

ploiting new J

INcreases developm

. Baselining on an old J

32 Copyright © 2024 Oracle and/or its affiliates

ent cost (ana

DK capabilities based on runtim

e gueries

still doesn't allow them 1n the A

DK is less tun for the library developer

P|s)




Tip & Tail

. New features and enhancements (incl. performance) go into a tip release train

- Can target a recent JDK

. [he lion share of effort is made easier because it's easy to add capabilities when
targeting a new JDK without resorting to clever tricks

. Security patches + fixes to catastrophic bugs are backported to tail release trains
. Otherwise they are largely left alone

. [heir costis very low

33 Copyright © 2024 Oracle and/or its affiliates



Tip & Tail

. [N the tip train, baseline each tip release on the JDK version that best supports
the library's new features and enhancements.

. |n atail train, keep the JDK baseline as constant as possible over the life of the
train.

TIP: 1.0 -- 2.0 -- 2.1 -- 3.0 -- 3.1 -- 4.0 -- 4.1 -- 4.2 -- 5.0 ...
(11) (17) (17) (19) (21) (22) (24) (26) (28)
\ \
\ \
TAIL 1: \- 2.1.1 -------- 2.1.2 -- 2.1.3 -- 2.1.4 -- 2.1.5 EOL
(17) \ @7y (17) (17) (17)
\
\
TAIL 2: \- 3.1.1 -- 3.1.2 -- 3.1.3 -- ...
(21) (21) (21)

34 Copyright © 2024 Oracle and/or its affiliates



Tip & Tail 1s the rare free lunch

. Costs less for everyone

. Added process cost but lower cost overall (most effort in enhancements)
. Delivers more to everyone

. Evolving users get more features (added value) quicker

. Legacy users get more stability

. Library maintainers get more fun — more motivation

. BUT — requires a shift in mindset and resources

35 Copyright © 2024 Oracle and/or its affiliates



A real conversation

Please backport no-pinning-on-synchronized to 21

Why won't you upgrade to a new JDK?

Because we certified the application on 21

But if we backport such a change to 211t won't be the same 21

(... but as long as you give the version the same name the process can remain)

36 Copyright © 2024 Oracle and/or its affiliates



The Choice

Stability and new features are contradictory requirements
Consumers must choose one or the other — not both

Consumers must honestly accept this and change their process
This requires a shift in mindset but doesn't introduce a new dilemma

. Merely makes us honest about an inescapable tradeoff

37 Copyright © 2024 Oracle and/or its affiliates



A concrete example

. Problem: FFM was made permanent in 22 and Unsafe is being removed — can't
be used In the same codebase

. Solution: Start new release train baselined on a new JDK and migrate to FFM.
Keep old release train baselined on an old JDK and leave it alone.

38 Copyright © 2024 Oracle and/or its affiliates



