
JCPEC24
Daniel Kec

Java Developer
Oracle

Helidon 4 on Virtual Threads

Agenda

• Quick Helidon introduction
• Optimizing server concurrency
• Remember reactive code?
• Virtual Threads
• Helidon 4 - blocking code is cool again!
• Pinning the carrier thread

2 Java Day Copyright © 2024, Oracle and/or its affiliates

Quick introduction

Helidon

3 Java Day Copyright © 2024, Oracle and/or its affiliates

What is Helidon

• Framework for developing cloud-native Java (micro)services
• K8s friendly
• Helidon is 100% Open Source, available on GitHub
• Open source Support: GitHub, Slack, Stack Overflow
• Commercial Support through Oracle Support for customers of WLS,

Coherence

4 Java Day Copyright © 2024, Oracle and/or its affiliates

Helidon provides 2 programming models

• Micro-framework
• Pure performance
• No Magic

• MicroProfile
• Declarative (IOC)
• CDI, JAXRS
• Jakarta APIs
• Helidon SE under the hood

Helidon flavors

5 Java Day Copyright © 2024, Oracle and/or its affiliates

Helidon SE Helidon MP

Imperative vs. Declarative style

Helidon flavors

6 Java Day Copyright © 2024, Oracle and/or its affiliates

Helidon SE Helidon MP

WebServer.builder()
 .addRouting(HttpRouting.builder()
 .get("/greet", (req, res)
 -> res.send("Hello World!")))
 .build()
 .start();

@Path("/greet")
public class GreetService {

 @GET
 public String getMsg() {
 return "Hello World!";
 }

}

Helidon MP is under the hood powered by Helidon SE

Helidon flavors

7 Java Day Copyright © 2024, Oracle and/or its affiliates

Helidon SE Helidon MP

• Server's challenges

Optimizing server concurrency

Java Day Copyright © 2024, Oracle and/or its affiliates8

What problem do we solve?

• Heavily concurrent environment, usual for HTTP server
• Requirement to handle calls to other systems (database, messaging, other

services [HTTP, grpc…])
• Requirement to return with low latency – requests are not designed to be

long running
• Limited memory, CPU → limited number of platform threads
• Optimize, optimize, optimize …

9 Java Day Copyright © 2024, Oracle and/or its affiliates

Look at the bill from your cloud provider!

Why is optimization so
important?

10 Java Day Copyright © 2024, Oracle and/or its affiliates

• CPU cycles ….$$$

•Memory ….... $$$

• Storage …..... $$$

Expensive Concurrency

• Java platform-threads are mapped one-to-one to the kernel threads
• Each kernel thread created by JVM needs megabytes of memory
• Kernel threads are scheduled by OS
• Starting new kernel thread is expensive!
• Context switching is expensive!

What can we do about it?
• Reusing threads - thread pools
• “Don’t block the thread!” - Keep one thread busy, rather than multiple

threads waiting

11 Java Day Copyright © 2024, Oracle and/or its affiliates

• Do you like reactive code?

Reactive programming

Java Day Copyright © 2024, Oracle and/or its affiliates12

Reactive programming

• Asynchronous - we don’t wait for something to happen
• Just provide function to be called when it happens - callback function
• We have lost a flow control by giving up blocking, we need a means for

backpressure control
• Callback hell!
• Reactive Streams API for callback orchestration

13 Java Day Copyright © 2024, Oracle and/or its affiliates

Reactive operators

Reactive Streams provides API for non-blocking back pressure
control(request(1), request(5)...)
• Part of JDK since Java 9(Flow API)
• It’s hard to implement right
• Reactive Streams spec rules are ridiculously complicated
• Even IntelliJ warns you off!

14 Java Day Copyright © 2024, Oracle and/or its affiliates

Reactive Streams implementations

Composable reactive operators
• RxJava
• Reactor
• Akka-Streams
• Service-Talk
• Helidon
• Mutiny

So reactive operators are nice?

15 Java Day Copyright © 2024, Oracle and/or its affiliates

Is it confusing at the start? It doesn’t get
much better later.

Reactive Operators

16 Java Day Copyright © 2024, Oracle and/or its affiliates

Reactive programming

• Steep learning curve
• Hard to get right™
• Troubleshooting
• No useful stack traces
• More than one task in parallel is tough

• Using blocking code requires
offloading

• “Callback Hell”

17 Java Day Copyright © 2024, Oracle and/or its affiliates

Reactive API

18 Java Day Copyright © 2024, Oracle and/or its affiliates

• Project Loom

Virtual Threads

Java Day Copyright © 2024, Oracle and/or its affiliates19

Better Solution?

• Virtual Threads (Part of project Loom)
• JEP-425 Preview feature since Java 19
• JEP-444 Delivered in Java 21 (September 2023)

• Threads can now be either Platform or Virtual
• Blocking operations do not block a platform/carrier thread
• Can have a huge number of virtual threads
• Useful stack traces
• “Naive” approach to coding Java is back (and safe)

20 Java Day Copyright © 2024, Oracle and/or its affiliates

Virtual Threads

• We can block cheaply!
• Imperative code can achieve performance

comparable with reactive constructs
• Green threads again? - Not really!
• Yielding happens under the hood(sleep)

21 Java Day Copyright © 2024, Oracle and/or its affiliates

java.lang.Thread.sleep()

Java Day Copyright © 2024, Oracle and/or its affiliates22

java.lang.VirtualThread.sleepNanos(long nanos)

Java Day Copyright © 2024, Oracle and/or its affiliates23

java.lang.VirtualThread.parkNanos(long nanos)

Java Day Copyright © 2024, Oracle and/or its affiliates24

yieldContinuation();

Continuations in Java!

Java Day Copyright © 2024, Oracle and/or its affiliates25

Blocking is cool again

Helidon 4

Java Day Copyright © 2024, Oracle and/or its affiliates26

Helidon 4

• Requires - Java 21
• Netty replaced with custom Web Server (Project Níma)

• Designed for Virtual Threads
• Created in cooperation with the Java team
• Performance comparable to Netty
• Heart of Helidon 4 release

Java Day Copyright © 2024, Oracle and/or its affiliates27

Changes in Helidon 4

Architecture

28 Java Day Copyright © 2024, Oracle and/or its affiliates

Platform Threads

Netty

Helidon MP

Helidon SE
(reactive)

Config Security

CDI JAX-RS

Webserver

Platform Threads

Helidon MP

Helidon SE
(blocking)

Config Security

CDI JAX-RS

Virtual thread based Webserver (Níma)

Helidon 1.x, 2.x, 3.x Helidon 4.x

Helidon 1
• Feb 14, 2019

• Netty based Web Server

• JDK >8

• Javax based MP

• MicroProfile 3.2

• Java EE 8

Helidon 3
• Jul 26, 2022

• Netty based Web Server

• JDK >17

• Jakarta based MP

• MicroProfile 5.0

• Jakarta EE 9.1

Helidon 2
• Jun 25, 2020

• Netty based Web Server

• JDK >11

• Javax based MP

• MicroProfile 3.3

• Jakarta EE 8

Helidon 4
• Oct 24, 2023

• Virtual Thread based Web Server(Project Níma)

• JDK >21

• Jakarta based MP

• MicroProfile 6.0

• Jakarta EE 10

Helidon features timeline

29 Java Day Copyright © 2024, Oracle and/or its affiliates

Java 21
• Sep 19, 2023

• JEP 444 – Virtual Threads

Helidon 4 SE

Java Day Copyright © 2024, Oracle and/or its affiliates30

Helidon 3 (reactive) Helidon 4 (imperative)

• Switch to imperative code
• Easier to debug
• Easier to maintain
• Easier to understand

Helidon 4 MP is under the hood powered by Níma based Helidon 4 SE

Helidon 4 MP

31 Java Day Copyright © 2024, Oracle and/or its affiliates

Helidon 4 SE Helidon 4 MP

Helidon 4 MP

Java Day Copyright © 2024, Oracle and/or its affiliates32

Helidon 3 Helidon 4

• No change
• Just faster!

Helidon 4 Performance

Java Day Copyright © 2024, Oracle and/or its affiliates33

https://www.techempower.com/benchmarks/#hw=ph&test=composite§ion=data-r22&f=zijunz-zik0zj-zik0zj-zik0zj-zik0zj-zik0zj-zik0zj-v2qiv3-xamxa7-
zik0zj-zik0zj-zik0zj-zik0zj-zik0zj-1ekf

2023-10-17
Round 22

TechEmpower Web Framework Benchmark

https://www.techempower.com/benchmarks/
https://www.techempower.com/benchmarks/

Helidon Webserver

No Reactive layer

34 Java Day Copyright © 2024, Oracle and/or its affiliates

Netty Project Níma

No Netty!

35 Java Day Copyright © 2024, Oracle and/or its affiliates

• Got rid of numerous Netty CVEs

Helidon 4 – Why it is fundamentally different?

Java Day Copyright © 2024, Oracle and/or its affiliates36

• Fully embrace and commit to Java 21 and Virtual Threads

• Brings back synchronous programming.

• Features a blocking, imperative API

• Easier to write, understand, debug, maintain

• Completely new Web Server, not a retrofit

• Helidon 4 WebServer implementation built from scratch, designed for virtual
threads

• Virtual threads from the “socket up” (Project Níma)

• Worked in close collaboration with Project Loom JDK developers

• Other frameworks support virtual threads by retrofitting

Helidon 4 – Why it is fundamentally different?

Java Day Copyright © 2024, Oracle and/or its affiliates37

Reactive frameworks
offloading to VTs Helidon 4

Achilles' heel of Virtual Threads?

Pinning

Java Day Copyright © 2024, Oracle and/or its affiliates38

Pinning

Java Day Copyright © 2024, Oracle and/or its affiliates39

Situation when carrier thread gets
blocked together with virtual thread

Pinning

Java Day Copyright © 2024, Oracle and/or its affiliates40

• Usual suspect is usage of synchronized
• Not always harmful
• Short-lived operations like in-memory operations are not harmful

• Carrier thread pool compensates by spinning up new carrier thread
• Leads to degraded performance in case it happens frequently

• Usage of ReentrantLock does NOT cause pinning
• ReentrantLock is VirtualThread friendly

Pinning example

Java Day Copyright © 2024, Oracle and/or its affiliates41

public class Main {
 public static void main(String[] args) throws InterruptedException {

 Thread.ofVirtual().start(() -> {
 synchronized (new Main()) {

 try {
 Thread.sleep(100);

 } catch (InterruptedException e) {}
 }

 }).join();
 }

}

Pinning Detection #1

Java Day Copyright © 2024, Oracle and/or its affiliates42

➜ java -Djdk.tracePinnedThreads Main.java
Thread[#29,ForkJoinPool-1-worker-1,5,CarrierThreads]

 java.base/java.lang.VirtualThread$VThreadContinuation.onPinned(VirtualThread.java:183)
 java.base/jdk.internal.vm.Continuation.onPinned0(Continuation.java:393)
 java.base/java.lang.VirtualThread.parkNanos(VirtualThread.java:621)
 java.base/java.lang.VirtualThread.sleepNanos(VirtualThread.java:793)
 java.base/java.lang.Thread.sleep(Thread.java:507)
 me.daniel.se.quickstart.Main.lambda$main$0(Main.java:8) <== monitors:1
 java.base/java.lang.VirtualThread.run(VirtualThread.java:309)

• jdk.tracePinnedThreads system property
• Easy to use
• -Djdk.tracePinnedThreads=short prints just problematic frame
• Not recommended for production use with Helidon

Pinning Detection #2

Java Day Copyright © 2024, Oracle and/or its affiliates43

➜ java -XX:StartFlightRecording:jdk.VirtualThreadPinned#enabled=true,filename=pinning.jfr Main.java

➜ jfr print --events jdk.VirtualThreadPinned pinning.jfr
jdk.VirtualThreadPinned {
 startTime = 15:28:37.594 (2024-03-01)
 duration = 99.1 ms
 eventThread = "" (javaThreadId = 32, virtual)
 stackTrace = [

 java.lang.VirtualThread.parkOnCarrierThread(boolean, long) line: 677
 java.lang.VirtualThread.parkNanos(long) line: 636
 java.lang.VirtualThread.sleepNanos(long) line: 793
 java.lang.Thread.sleep(long) line: 507
 me.daniel.se.quickstart.Main.lambda$main$0() line: 8
 ...

]
}

• JDK Flight Recorder (JFR) jdk.VirtualThreadPinned event
• Easy to use
• Enabled by default on when operation takes longer 20ms

Fixing pinning issue

Java Day Copyright © 2024, Oracle and/or its affiliates44

• Offloading to physical thread
• Universal solution for long running jobs, JNI with internal locking or legacy libraries

• Avoiding sychronized
• Use ReentrantLock instead

Offloading in Helidon MP

Java Day Copyright © 2024, Oracle and/or its affiliates45

org.glassfish.jersey.server.ManagedAsync

Offloading in Helidon SE

Java Day Copyright © 2024, Oracle and/or its affiliates46

Future of synchronized

Java Day Copyright © 2024, Oracle and/or its affiliates47

• Frameworks and libraries are replacing synchronized
• Pinning-less synchronize in Java is just around the corner

No pinning with synchronize!

Java Day Copyright © 2024, Oracle and/or its affiliates48

➜ /home/daniel/.sdkman/candidates/java/21.0.2-open/bin/java -Djdk.tracePinnedThreads=short Main.java
Thread[#29,ForkJoinPool-1-worker-1,5,CarrierThreads]

 Main.lambda$main$0(Main.java:6) <== monitors:1

➜ /opt/jdk/openjdk-23-loom+2-48/bin/java -Djdk.tracePinnedThreads=short Main.java

• Download EA build from https://jdk.java.net/loom and try it!

https://jdk.java.net/loom

Pinning vs. Blocking in Reactive code

Java Day Copyright © 2024, Oracle and/or its affiliates49

Pinning on Virtual Threads Blocking in Reactive Code

Annoying Destructive

More about Helidon ...

50 Java Day Copyright © 2024, Oracle and/or its affiliates

@helidon_project

helidon.io

medium.com/helidon

github.com/helidon-io/helidon

youtube.com/Helidon_Project

helidon.slack.com

