State of Java on RISC-V

JCP - April 2024

About

Software Engineer & Team Lead at (Ri)vos

Managed Runtimes, System Libraries, Profiling

Contributor to Open DK

Windows-AArch64, macOS-AArch64, Linux-RISC-V ports

Language Runtimes WG at A RISE

- "collaborative effort [...] to accelerate the development of open source software for the RISC-V architecture"
- OpenJDK, Go, Python, .NET, ART, V8
- Compilers, Runtimes, and Ecosystem (libraries, tools)

Adoptium WG ADOPTIUM

Distributing LTS versions (11, 17, 21, 22)

What is RISC-V

- Open Standard ISA, introduced in 2014
 - Royalty free, open source licenses
 - Anyone can implement a RISC-V compliant processor
 - Community-led development, on <u>GitHub</u>
 - Billions of chips shipped annually, and growing rapidly
- RISC-V International
 - Foundation, not for profit
- Healthy ecosystem of Hardware and Software providers
 - Working together to define the specification
 - Targeting wide set of workloads: from microcontrollers to servers
 - Based on extensions (ex: V, C, Zba, etc.); simplified with <u>profiles</u>

What is RISC-V

- From embedded to servers
 - Companies announcing server-class hardware
 - Alibaba, Ventana, Rivos, SiFive
 - Mostly announcements, expecting some deliveries by late-2024 mid-2025
 - Vendor-specific extensions
- Targeting AI workloads
 - Rivos with a Data Parallel Accelerator
 - Tenstorent with an Inference PCIe card
- International Hardware Market
 - Not tied to 1-3 companies for IP
 - More openly accessible market

Compilers / Runtimes / Libraries

- Support in many compilers/runtimes
 - GCC, LLVM, OpenJDK, Go, Python, .NET, V8, ART, and many more
 - Various degrees of quality and support
 - Rapidly evolving
 - Importance of latest and greatest
- Support in more and more libraries
 - Most of the upcoming work

Compilers / Runtimes / Libraries

https://landscape.riscv.org

MySQL **Nginx OpenBLAS PyTorch Android** Linux Redis Docker Go FreeBSD

. .

OpenJDK: versions supported

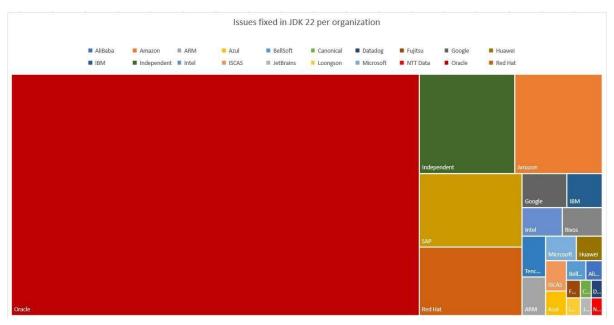
- JEP 422: Linux/RISC-V Port
- Integrated in Java 19
- Backported to Java <u>11</u> and <u>17</u>

Vendors

- Eclipse Temurin: 21, 22, tip
 - 11 and 17 are work in progress
- o Bellsoft Liberica: 21 and 22
- Ubuntu/Fedora: 11*, 17, 21, tip

OpenJDK: features supported

- Everything
 - Code Generation: Interpreter, C1, C2
 - o Garbage Collectors: Epsilon, Serial, Parallel, G1, ZGC, Shenandoah
 - Serviceability: JVMTI, JFR, etc.
 - Desktop: AWT, Swing
 - And many more


TCK is passing on RISC-V on Java 17, 21, 22 and 23

OpenJDK: features supported

- Lots of work to accelerate OpenJDK
 - o Intrinsics:
 - Cryptography: AES, SHA, MD5, etc.
 - Memory copy/zeroing
 - Math: montgomery multiply, rounding, etc.
 - Vector API
 - Code lowering
 - Bitmanip extensions
 - Floating points
 - Compiler optimizations
 - Memory allocation/zeroing
 - Autovectorization
- Taking advantage of all the hardware offers
 - Specifying new extensions (ex: for Garbage Collection)

OpenJDK: contributors

- Original port from Huawei; Reviewed by Red Hat
- Regular contributions from: Huawei, Alibaba, Rivos, ISCAS, Syntacore

Ecosystem

- Maven Central: more than 2M packages
 - Many are platform-agnostic, but some have platform-specific code
 - Some examples
 - Netty: networking library
 - RocksDB: embeddable, persistent key-value store
 - Apache Commons Crypto
 - Snappy: compression algorithm
- Many transitive dependencies; what to prioritize?
 - We need the community's input

Ecosystem: contributors

RISE

- Accelerate the development of open source software for the RISC-V architecture
- https://wiki.riseproject.dev/display/HOME/LR 00%3A+Java
- Members are Google, Red Hat, Rivos, Alibaba/T-HEAD, Intel, Canonical, ISCAS, and more
- o RISC-V Optimization Guide

Adoptium

- https://adoptium.net/blog/2024/04/eclipse-temurin-21-and-22-available-on-riscv/
- RISC-V International
 - J-extension WG, Managed Runtimes SIG
 - Specify RISC-V extensions to accelerate Runtimes like OpenJDK, Go, and more

Challenges

- Lack of high-performance hardware
 - Developer boards are available: <u>VisionFive 2</u>, <u>LicheePi 4</u>, <u>HiFive Unmatched</u>
 - Risk of over-optimizing for Raspberry-Pi-sized hardware
 - Some performance accurate models, but all are closed-source
- Need to rely on emulation for most testing
 - Easily accessible, great for most testing, but not fast
- Need for more documentation
 - O How to run emulation on your CI?
 - Which compilers/runtimes to use?
 - Which libraries/packages support RISC-V?
 - Looking for feedback and contributions

What's next?

- Continue investing in OpenJDK
 - More optimizations, more features
- Continue porting ecosystem libraries to RISC-V
 - Identify and Prioritize
 - Document, Support, and Sponsor
 - Machines
 - Contributions

Questions

Contact

<u>ludovic@rivosinc.com</u> <u>https://github.com/luhenry</u> https://mastodon.social/@ludovic_dev

OpenJDK

https://mail.openjdk.org/pipermail/riscv-port-dev/

Rivos

https://www.rivosinc.com/

https://www.linkedin.com/company/rivos-inc/

RISE

https://riseproject.dev/

https://www.linkedin.com/company/risc-v-software-ecosystem-rise/