
Alex Belokrylov

Contributing to OpenJDK
is a competitive advantage

bell-sw.com | 2023

CEO

@gigabel

λεπτόν

http://www.bell-sw.com


About BellSoft

BellSoft was founded in 2017 by Java and 
Linux experts with 15+ years of experience 
working in Sun/Oracle. 
Headquarters in San Jose, California. 

Members of:

● JCP Executive Committee 
● OpenJDK Vulnerability Group
● GraalVM Advisory Board
● Linux Foundation
● Cloud Native Computing Foundation





● Among top contributors to JDK 11 & 17
● Developed and integrated JEP 315 (aarch64 

optimization) and JEP 386 (Alpine Linux port)
● Maintain the upstream Arm port
● Another important project is musl support in 

GraalVM

Since 2018, BellSoft focuses on Java in 
containers.

BellSoft’s contributions 
to OpenJDK



2017 2021 2022

Why BellSoft
contributes to OpenJDK?

● Contribute to a better Java future
● Improve platform well-being, security, and performance
● Help maintain company products

Liberica Native Image Kit is a 
GraalVM-based tool for creating 
performant native images.

Alpaquita Linux is 100% Alpine 
compatible, secure, and optimized 
for Java.

Liberica JDK is a 100% open source 
Java 8, 11, and 17 implementation.

Release schedule for all products conforms to the LTS roadmap.
All products are available for a large number of platforms.



Companies Java project and framework maintainers

Independent contributors Regular Java developers

- Develop new language and platform features
- Maintain dependent products and HW/OS
- Fix issues, improve OpenJDK security

- Propose platform changes
- Test Early Access builds, adopt new features 
- Ensure Java ecosystem integrity

- Develop OpenJDK in their area of expertise
- Fix issues, debugging them in their projects
- Study code

- Try new language features
- Ask questions (tough one!)
- Provide feedback on new features and ideas

OpenJDK development ecosystem
Moving Java forward — together

JCP, JCP EC, JSR process, Java in Education



Step 1: Decide what to contribute
- Does it really solve a problem?

- Does it really benefit a sufficient number of users in the ecosystem, 

not just me?

Step 2: Decide how to contribute
- Project? JEP? Enhancement? Bug? Infrastructure improvement? 

Process improvement? Question? 

Step 3: Implement
- Is your code well placed, written, and tested?

- Is it easy to review it?

- Is it easy to maintain it?

Step 4: Integrate
Step 5: Maintain the code

- Not just OpenJDK/JDK, LTS releases!

Step 6: Deprecate and retire code



... is a security-oriented, 
lightweight Linux 
distribution based on 
musl libc and busybox.

Alpine

Alpine Linux
Step 1: decide what to contribute



OpenJDK development ecosystem

• Bullet 1
• Bullet 1
• Bullet 1



● Built on top of Linux syscall API (C bindings for the OS 
interfaces)

● Base language standard (ISO C)
● POSIX + widely-agreed extensions
● Lightweight (size), fast, simple, free (MIT)
● Strives to be correct in the sense of standards 

conformance and safety

● musl.libc.org

Musl libc. At a glance

http://musl.libc.org


Step 2: decide how to contribute

Project Portola

● JDK port to the Alpine Linux distribution, in 
particular, the musl C library

● Started by Mikael Vidstedt from Oracle in 2017
● Used for Alpine musl containers with JDK 9+
● Integrated into mainline in 2020 with JEP 386

– Delivered by BellSoft
– JDK 16

● openjdk.java.net/projects/portola

http://openjdk.java.net/projects/portola


Step 3: Implement

Musl port
● A new port

– Determine and distinguish C libraries
– Conditional compilation

● Native build
● Cross-toolchain for glibc environment
● Implement missing functions or make them compatible
● Testing environment
● Documentation

https://github.com/openjdk/jdk/blob/master/do
c/building.md#building-for-musl

https://github.com/openjdk/jdk/blob/master/doc/building.md


1● Glibc resolves libs not like musl (or AIX libc)
● jpackage and other launchers were fixed to still use proper JDK libs

● Attempt to execute JIT code shut down the JVM
● Added Memory protection check on startup

● Initialization was made more careful

● There’s SIGSYNCCALL during JVM init
● Debug with -XX:-MaxFDLimit

LD_PRELOAD is not the same on different platforms

Alpine used to have PaX/grsecurity in kernel by default

JDWP (Debug) sometimes had troubles with IPv4/IPv6 config

Debugging (gdb)

Project Portola. Issues



2● You may want to render images
● Install freetype and fonts

● For all real cases load awt lib before fontmanager

● Use latest Alpine (3.11+)

● apk add numactl

Running AWT in headless mode

Fontmanager

NMT

NUMA detection requires recent libnuma

Project Portola. Issues



3● Expect reduced output

● Write proper # headers in *.sh
● https://www.openwall.com/lists/musl/2020/02/13/4

lsof does not support ‘-p’ option on busybox

Musl does not execute scripts that do 
not have a proper shebang

Serviceability agent (private API) doesn’t work

Project Portola. Issues

https://www.openwall.com/lists/musl/2020/02/13/4


Alpine Linux Port
Step 4: Integrate

Port the JDK to Alpine 
Linux, and to other Linux 
distributions that use musl 
as their primary C library, 
on both the x64 and 
AArch64 architectures.

JEP 386



JEP 386: Alpine Linux Port

openjdk.java.net/jeps/386

JDK 16

Unifies platform support across community and 
distributions. Helps maintenance and port 
development for perfect small containers. Liberica JDK 
Alpine musl containers are tested and TCK-verified.

http://openjdk.java.net/jeps/386


PR & Review on Github

● JDK-8247589: Implementation of Alpine Linux/x64 Port

○ Ensure all tests pass

■ Not just your new tests, and not just on the 

new platform

■ On all platforms!

○ 48 review comments during integration

○ Work with the reviewers to address their feedback

https://github.com/openjdk/jdk



Ensure it continues to work
https://www.openwall.com/lists/musl/2022/09/26/1
Subject: Revisiting LFS64 removal

☝ OpenJDK build will need to be fixed

Step 5: Maintenance

https://www.openwall.com/lists/musl/2022/09/26/1


“We stay on Java 8.”
~45% of users
“We stay on Java 11.”
~48% of users

Make More Users Happy

● 11.0.16 (July 2022)
● Historical downports in Liberica 9+
● Liberica 11u on Dockerhub

● Liberica 8u on Dockerhub

JDK 11 LTS

JDK 8 LTS



...is the operating system 
optimized for Java 
deployment, emphasizing 
high performance, 
security, small size, and 
flexibility.

BellSoft



Enhanced security Optimized performance

Miniature size Liberica Lite and Liberica NIK

The lack of extra components means it is harder to break, and 
timely, frequent updates reliably remove the vulnerabilities. 
Additional security hardening is provided by userspace 
compilation options.

Alpaquita’s features include tuned kernel, optimized libc, and 
optimized malloc options to boost the performance of your 
applications without sacrificing stability.

With its 2.9 Mb base image size, Alpaquita offers the smallest 
performant docker images, JDK docker images, and native 
images, making the deployment faster and memory footprint 
smaller.

Liberica Lite, the optimized version of Liberica JDK, enhances 
the performance and minimizes memory footprint. Liberica NIK 
allows creating the native images that benefit the project even 
more with Alpaquita Linux as the foundation.

Top 4 features of Alpaquita 
Linux



Develop OpenJDK
$ git clone https://github.com/openjdk/jdk.git
$ cd jdk
$ ./configure
$ make images

JTREG
TCK
JCSTRESS
JMH
…

Create PRs
Use Skara automaton
Use bugs.openjdk.org
● Defects
● RFEs
● JEPS https://openjdk.org/jeps/0

Use mail.openjdk.org
Work on projects
Update projects differ

https://bugs.openjdk.org
https://openjdk.org/jeps/0
https://mail.openjdk.org/


All contributions matter

● Read the code in the area of interest of your daily job
● Read the mailing lists
● Ask questions
● Maybe you’ll find something that is not optimal, or a typo
● Suggest changes in a PR or discussion

Big, Small, Discussion, Feedback

Start with a small contribution

Try new features

● Does it improve developer productivity?
● Provide feedback



Conclusion

● Allocate resources
● Follow the process
● Collaborate
● Influence the most important platform

JDK releases are the most active JSRs

It is possible to contribute to OpenJDK

Make contributions a daily job

Contributions bring value and help to 
build products and services

● A part of business model
● Stay in touch
● Public visibility



bell-sw.com/blog

@gigabel

alexander.belokrylov@bell-sw.com

Thank you for
your attention!


