
1

Virtual Threads — Permanent in 21

Copyright © 2022, Oracle and/or its affiliates

• Delivered in JDK 19 last September

• Response has been enthusiastic and results are promising

• API is finalized

• Pinning — decided not to wait

• Structured Concurrency and Scoped Values — Preview

• JEP 444: Virtual Threads

https://openjdk.org/jeps/444

2

The legendary “sufficiently good GC” is here

Copyright © 2022, Oracle and/or its affiliates

• JEP 439: Generational ZGC

https://openjdk.org/jeps/439

Copyright © 2023, Oracle and/or its affiliates | Confidential

Starting Small

3

Ron Pressler

4

Starting Small

Copyright © 2022, Oracle and/or its affiliates

• Java is the leading language for big, long-lasting, server-side programs because it’s
great at scaling up

• Java has lost ground in education and in smaller software because it’s not so great at
scaling down

• Every large project starts out small

• Every expert starts out a beginner

• Incumbents are always disrupted from below

5

Starting Small

Copyright © 2022, Oracle and/or its affiliates

• Reduce effort to learning for beginners, as well as for starting a project for experts

• Do not introduce a separate “beginners’ dialect” of Java

• Do not introduce a special tooling workflow for beginners

• Changes must be a natural, consistent evolution of the Java language and tooling

• A series of independent JEPs covering the language, existing tools, and new tools

6 Copyright © 2022, Oracle and/or its affiliates

public class HelloWorld {
 public static void main(String[] args) {
 System.out.println("Hello!");
 }
}

Copyright © 2022, Oracle and/or its affiliates. All rights reserved.

Paving the on-ramp

public class HelloWorld {
 public static void main(String[] args) {
 System.out.println("Hello!");
 }
}

Making Java easier for beginners Access control
for encapsulation

Classes for
modeling and
organization

Static vs instance
behavior

Command line
interaction,

arrays

Access control,
again

Static fields

Magic method
name

8

Programming in the large and in the small

Copyright © 2022, Oracle and/or its affiliates

• Programming in the large composing encapsulated components with interfaces

• Programming in the small component internals

• What’s large and small is relative

• Module — an unnamed one is provided implicitly

• Package — an unnamed one is provided implicitly

• Class — an unnamed one will now be provided implicitly

• Access modifiers are a mechanism for programming in the large

9

Anonymous Main Classes

Copyright © 2022, Oracle and/or its affiliates

• Must declare a main method outside a class declaration

• Must be in the unnamed package

• Cannot declare a constructor

• Unnamed, so cannot be accessed directly from other classes; it can only be launched

• Body allows the same syntax with the same meaning as an anonymous class today

10 Copyright © 2022, Oracle and/or its affiliates

public static void main(String[] args) {
 System.out.println("Hello!");
}

11

static

Copyright © 2022, Oracle and/or its affiliates

• static is an OOP detail of classes and objects

• It is viral: for a static main to call foo, foo must either be static, or main must
construct an object.

• We allow an instance main method when the class has a non-private no-args
constructor.

• This automatic construction has a precedent in lambdas

12 Copyright © 2022, Oracle and/or its affiliates

public void main(String[] args) {
 System.out.println("Hello!");
}

13

Program Entry Point

Copyright © 2022, Oracle and/or its affiliates

• public void main(String[] args) is arbitrary;
may as well have been int entry(List<String> args)

• We will now allow void main()

14 Copyright © 2022, Oracle and/or its affiliates

void main() {
 System.out.println("Hello!");
}

15 Copyright © 2022, Oracle and/or its affiliates

void main() {
 System.out.println(greeting("World!"));
}

String prefix = "Hello, ";

String greeting(String who) {
 return prefix + who;
}

Even experts write simple programs; this change increases the signal/noise ratio

16

Anonymous Main Classes and Enhanced Main Methods

Copyright © 2022, Oracle and/or its affiliates

• The two features are orthogonal

• An ordinary class can use an instance main

• An anonymous class can use a static main

Copyright © 2022, Oracle and/or its affiliates. All rights reserved.17

Paving the on-ramp

void main() {
 println("Hello!");
}

Making Java easier for beginners

18

Starting Small

Copyright © 2022, Oracle and/or its affiliates

• Even big projects done by experts start small — tinkering and exploration

• JShell (JEP 222, integrated in JDK 9) — tinkering with statements

• Launch Single-File Source-Code Programs (JEP 330, JDK 11) — tinkering with one file

• Once we have more than one file we configure a build tool

19

Launch Multi-File Source-Code Programs

Copyright © 2022, Oracle and/or its affiliates

• Let programmers choose when they want to set up a build configuration

• We will allow launching multi-file source code programs, without a compilation step

// - Prog.java
class Prog {
 public static void main(String[] args) { Helper.run(); }
}

// - Helper.java
class Helper {
 static void run() { System.out.println("Hello!"); }
}

// - lib1.jar
// - lib2.jar

java -cp '*' Prog.java

20

Launch Multi-File Source-Code Programs

Copyright © 2022, Oracle and/or its affiliates

• Works when source files span multiple packages

• Works when source files span a single module

• Works even with dynamically-loaded classes (Class.forName)

• A custom class-loader compiles sources on-demand

21

Starting Small

Copyright © 2022, Oracle and/or its affiliates

• What about downloading and using libraries?

• What about choosing and learning a build tool?

22

How to follow this?

Copyright © 2022, Oracle and/or its affiliates

• JEP 445: Flexible Main Methods and Anonymous Main Classes (Preview)

• JEP draft: Launch Multi-File Source-Code Programs

https://openjdk.org/jeps/445
https://openjdk.org/jeps/8304400

