W "2 AW/ /" 7/, A TINA

N

B B

ORACLE

Java SE Update

Georges Saab

Senior Vice President, Oracle Java Platform Group
Chair, OpenJDK Governing Board
April 12, 2023

éj Javas

ORACLE

Retrospective: New Release Cadence

2 Copyright © 2023, Oracle and/or its affiliates. All rights reserved.

History

e Started in 2017/18 with JDK 10

* Have now delivered 11 of these (5 years)

e JCP EC was involved in making this possible

e Market view has moved from skepticism to enthusiasm

 What can we learn, what is next? If possible, be provocative!

Oracle JDK Releases

2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033

- Free Java License

Why did we do these again?

Developer perception of Java as having a “glacial pace of development”
e This was largely because of latency rather than throughput
* Developers wished they could get access to new features more quickly
Enterprises said they preferred stability to new features — but sometimes would
choose differently when it came to new projects...
* Indicating that they placed a higher value on innovation than confessed
e LTS offering was an important step
We wanted better predictability
* Internal planning and replanning cycles were very expensive
e The track record of ‘delivering on time’ was not good when the priority of
‘ensuring we didn’t make mistakes the world would have to live with for
decades’ was (and should be!) a higher priority

There was also a business reason — that changes driving revenue once every few
years tend to be bad in a global industry with “faster cycles”

A lot of work was needed

* Much of it was done before even proposing the cadence change
e Much of it was not ‘visible’

like improvements to infrastructure and testing to ensure quality of features
on branches prior to integration in mainline]

Some rode on work being done for other reasons as well, such as the Java
Module system, and Skara

* Very much of it was cultural rather than technical

Like helping people grok that it was preferable to take the next train if you
weren’t going to make this one smoothly

Like moving to “tip development with LTS” rather than “express model” or
“backporting all the things” (more on this in a minute!!!)

Sometimes unlearning decades of experience and muscle memory

Tip Development vs Express model

* JVM development in 2010 was largely done based on the express model

Separate development of JVM and “rest of JDK”
Latest JVM packaged with “latest version of each JDK under support”
This was done by, for instance, JRockit, J9, and yes, Hotspot

* Advantages

New cool shiny JVM for everyone all the time!

* Drawbacks

Held back JVM development
Increased complexity and slowed down overall progress
Made it super hard/slow to deliver features that spanned both areas
Tended to encourage a desire to “backport all the things!” which
* Increased complexity and cost of backporting
e Contributed to even slower pace of adoption of new versions

Tip Development vs Express model

e Key insights

Customers never asked for express model — in fact it meant you were
delivering a new and potentially risky VM to people who had intended to
choose stability

Effectively it was a developer conceit driven by the bad aspects of the multi-
year, big bang release cadence

If we moved from express to tip+LTS, we could move Java as a whole
forward far faster
We should exercise restraint in doing backports

* Security of course, stability and perf sometimes
For new features, we should make it easier to move forward and expect
people really needing these to be willing to do so

Encouraging people to use modern versions of Java extends the viability of the
technology and its ecosystem in the face of healthy competition

Initial reception was skeptical

* From everyone!

* Some wanted to view these as Betas

 Many were sure that we would lose interest after a few of these

* No one knew whether these would actually bring about better predictability
* Or how throughput of feature delivery would be affected

* Quotes at the time included “no one will ever need anything past JDK 8!!
* And no one was more skeptical than “people on the inside”!

: lan Brown
@igb

After careful deliberation, having consulted with many JVM experts, | can
confidently say that the new Java release cadence is bullshit.

12:05 AM - Dec 8, 2017 from San Francisco, CA

10 Likes

/ Nitsan "Yak" Wakart
@nitsanw

Replying to @snazy and @normanmaurer

If a JVM is released every 6 months, but everyone is still using Java 8, did
it actually release?

5:10 PM - May 9, 2018
d Stephen Colebourne
@jodastephen
I want to highlight this tweet. We now have Amazon, Red Hat, IBM,
Spring and more only focussed on Java LTS releases - 8, 11, then

(probably) 17. As per my last blog, it looks like the 6 month release cycle
will be of limited value to most Java devs: blog.joda.org/2018/10/adopt-

‘ Arun Gupta £ @arungupta - Nov 14, 2018
Replying to @jodastephen and @errcraft
At this time, we’re planning Corretto 8 and 11 only.

9:21 AM - Nov 15, 2018

@mariofusco

o Mario Fusco B@™® @mariofusco@jvm.social

Java's 6 months release cadence is

1. Very good, is exciting to see Java moving fast

2. Good in theory, useless in practice. Pro users are on Java 11 at best, all

libraries has to support Java 8 at least
3. Harmful for enterprises
4. Just a desperate attempt to monetize Java
1. Very good
2. Useless in practice
3. Harmful
4. Just to make money
2,315 votes - Final results

10:02 AM - Jan 19, 2020

, ight © 2023, Oracle and/or its affiliates. All rights

reserved.

30.8%

49.3%

6.3%

13.7%

10

Gradual acceptance over time

As time went by, the mood started to shift...

11 LTS saw relatively modest uptake
| was quoted as saying “JDK 11 is the new JDK 7”

We kept plugging away, delivering these one after another

We found that the infrastructure changes made things smooth

We found that the regularity and time-boundedness of the releases vastly
reduced the complexity of our planning cycles

We found that the cultural shift of “not running down the icy stairs for the train”
vasty reduced our stabilization cycles

We found that the smaller increments allowed broader ‘introduction testing’ via
incubator and preview

The new cadence helped fuel shifts in the business model which resulted in more
customers than ever before

More vendors saw an opportunity to produce their own downstream distros and
support offerings

Developer confidence in the predictability and quality of 6 month releases grew
Developers started liking having “always something new at the Java corral”

Videos Definitions Webinars More v

Th e S erve rS I d e Core Java DevOps Development Frameworks @ Dan Vega Q

Your Enterprise Java Community ' [d
@therealdanvega

- FEATURE

“Java really hit its stride with Java 9 and the increased release cadence
around 2018,” he says. “The smaller but much more frequent releases

No doubt now about Java release cycle are really working well.” #java

At the Oracle Code One keynote, the recent track record of on-time releases and ﬁﬁ
feature enhancements is a topic to boast about.

‘ By Cameron McKenzie, TechTarget Published: 17 Sep 2019
SAN FRANCISCO -- Given a five-year wait for the release of Java 11, and three-year spans Don’T Call iT
between the releases of Java 8 and Java 9, it's easy to understand why the Java community .
raised a collective brow when Oracle announced a switch to a six-month Java release cycle. \aN%OnJebaqk°
avals
stillchamp

Gunnar Morling & _
@gunnarmorling github.com

. . Don’t call it a comeback: Why Java is still champ
LOOk'ng atthe planned release contents of #Java 19 (e'g' preview of Java has been declared dead many times—and yet, it’s still going strong,

virtual threads + foreign function/memory API), | think the 6 months undergoing what some might call a renaissance from both a technology and ...
release cadence is the best thing that ever has happened to Java. The

constant influx of fundamental improvements is nothing butimpressive. 9.1 py. aug 9, 2022

5:51 PM - May 24, 2022

Copyright © 2023, Oracle and/or its affiliates. All rights

12
reserved.

Current view

When Java 20 came out last month, | had a quick look around social media etc to
gauge customer temperature (as usual).

By new the mood has completely flipped from skepticism to enthusiasm:

The six month releases are the best thing that ever happened to Java

Java is firing on all cylinders

New Java renaissance, Java not perceived as having a ‘glacial pace’.

In many respects ahead of others, where not, catching up and overtaking quickly
Etc Etc.

JPG and OpenlJDK developers love it and can’t imagine going back to how things
were done before [Our sales/finance/executives love it too!]

Other vendors/distros love it too

People who develop in Java love it — huge sense of optimism in the roadmap
Enterprises simply choose their vendor, use the LTS, and plan their upgrades when
convenient. They also are choosing Java more than ever for new projects

So..... What’s next?

§ Amazing-Cicada5536 - vor 21 Tagen ‘ henk53 - vor 21 Tagen

The new release model is probably the best thing that happened to Java on the Why don't we backport everything to the supported LTS releases? Then those supported
management side — instead of the usual churn of “this feature has to be done till this LTS releases will be virtually identical to Java 20 each ;)
deadline”, which might work for that boring CRUD feature but is absolutely terrible for @ 1 @ D Antworten Teilen *°-

such a complex program like the JVM, it allows for each new development to take as mucl

time as necessary. If it didn't get ready for release N, just continue to work on it and 6

months later it can be delivered. It is especially important as many of these features have ‘ UL LR LR G R EE

non-trivial interactions with each others. That's just called updating to the latest. The best LTS release remains and will remain
simply tracking the latest version.

% StoneOfTriumph - vor 21 Tagen

What some people forget is that the JDK is advancing at a faster pace with smaller
deliverables more frequency than before, so while it seems that they released a
buttload of versions, the releases themselves include a smaller delta, so the jump to
8 to 17 isn't that bad in terms of breaking changes, not near as difficult to perform In my opinion, 12/13/14/15/16 can and should be used in production. But you
as6tos. don't use just 12 or 16 and leave it there, you always depend on the latest
release, and plan accordingly. 6 months of support is absolutely fine if an
adequately set up Clis in place and you have good end-to-end test coverage.

g MyFavouriteNick - vor 20 Tagen

For all the in-house projects that I maintain the upgrade from OpenJDK 17 to 19
(and now 20) has been a simple version bump too.

When you take the time to actually look at the changelog, when you take the time
to actually upgrade your project's java version source/targets to a higher version as
part of a proof of concept/spike/timebox, there's much less than you may think.

@ Joram2 - vor 21 Tagen

Java 20 is basically a patch release on Java 19. But it's important + necessary.

@ TheCountRushmore - vor 21 Tagen

This contains lots of other bug fixes and improvements. It's a full production quality release.

‘ CubsThisYear - vor 20 Tagen

Meh - wake me up when we get to Valhalla.

Copyright © 2023, Oracle and/or its affiliates. All rights

14
reserved.

THENEWSTACK @ =

A couple of years ago | was sceptical about the new release cadence of
@java every 6 months but it has been demonstrated that is working to

PODCASTS EBOOKS EVENTS NEWSLETTER move the ecosystem forward in a fast and predictable way

ARCHITECTURE ENGINEERING OPERATIONS #JavaOne

LTS Release Cadence

Meanwhile, Saab said Oracle has proposed that the next LTS release should be
Java 21 and made available in September 2023, which will change the ongoing
LTS release cadence from three years to two years.

Predictable Rock-solid Releases

“I think this is a pretty big step for Oracle and the Java community at large
because in moving LTS from three to two years, they're saving enterprises from
having to delay their adoption of new features,” said Brad Shimmin, an analyst
at Omdia. “This move in conjunction with their decision to include an offer to
run Oracle JDK for free without support with one year as an overlap with the
next release, lets users explore new features and build those into their long-
term deployment plans with greater freedom and frequency.”

10:39 PM - Oct 19, 2022

Copyright © 2023, Oracle and/or its affiliates. All rights

1
reserved. >

Where should we go from here

We’ve gained a lot with the shift in delivery model for Java.

If there is one thing | hear people cite as holding them back from even more eager
use of new versions at this point, it is “3rd party library support”.

And what | hear from the authors of third party libraries is it is too

difficult/expensive to make our newest version support all these different Java
versions!!

e This is exactly the "tip vs express” cultural change which | described before.

Ok, | promised to be provocative. Here goes!!
“The world is ready for the ecosystem of Java libraries, frameworks, and tools
to embrace a delivery model similar to that of the JDK. Tip development, with
LTS offerings. By making this shift, library vendors can realize exactly the same
kind of benefits that we have achieved for the Java platform itself. What’s
more, this will further strength and extend the viability of Java overall.”

Discuss!!

