
1

Georges Saab

Senior Vice President, Oracle Java Platform Group

Chair, OpenJDK Governing Board

April 12, 2023

Java SE Update

Retrospective: New Release Cadence

Copyright © 2023, Oracle and/or its affiliates. All rights reserved.2

History

Copyright © 2023, Oracle and/or its affiliates. All rights
reserved. 3

• Started in 2017/18 with JDK 10
• Have now delivered 11 of these (5 years)
• JCP EC was involved in making this possible
• Market view has moved from skepticism to enthusiasm

• What can we learn, what is next? If possible, be provocative!

Oracle JDK Releases

8

11 LTS

12

13

14

15

16

17 LTS

18

19

20

21 LTS

22

23

20202019 2021 2022 20242023 2026 2028 2029 2030 2031 2032 20332025 20272018

Free Java License

Copyright © 2023, Oracle and/or its affiliates. All rights reserved.4
Copyright © 2023, Oracle and/or its affiliates. All rights

reserved. 4

Why did we do these again?

Copyright © 2023, Oracle and/or its affiliates. All rights
reserved. 5

• Developer perception of Java as having a “glacial pace of development”
• This was largely because of latency rather than throughput
• Developers wished they could get access to new features more quickly

• Enterprises said they preferred stability to new features – but sometimes would
choose differently when it came to new projects…
• Indicating that they placed a higher value on innovation than confessed
• LTS offering was an important step

• We wanted better predictability
• Internal planning and replanning cycles were very expensive
• The track record of ‘delivering on time’ was not good when the priority of

‘ensuring we didn’t make mistakes the world would have to live with for
decades’ was (and should be!) a higher priority

• There was also a business reason – that changes driving revenue once every few
years tend to be bad in a global industry with “faster cycles”

A lot of work was needed

Copyright © 2023, Oracle and/or its affiliates. All rights
reserved. 6

• Much of it was done before even proposing the cadence change
• Much of it was not ‘visible’

• like improvements to infrastructure and testing to ensure quality of features
on branches prior to integration in mainline]

• Some rode on work being done for other reasons as well, such as the Java
Module system, and Skara

• Very much of it was cultural rather than technical
• Like helping people grok that it was preferable to take the next train if you

weren’t going to make this one smoothly
• Like moving to “tip development with LTS” rather than “express model” or

“backporting all the things” (more on this in a minute!!!)
• Sometimes unlearning decades of experience and muscle memory

Tip Development vs Express model

Copyright © 2023, Oracle and/or its affiliates. All rights
reserved. 7

• JVM development in 2010 was largely done based on the express model
• Separate development of JVM and “rest of JDK”
• Latest JVM packaged with “latest version of each JDK under support”
• This was done by, for instance, JRockit, J9, and yes, Hotspot

• Advantages
• New cool shiny JVM for everyone all the time!

• Drawbacks
• Held back JVM development
• Increased complexity and slowed down overall progress
• Made it super hard/slow to deliver features that spanned both areas
• Tended to encourage a desire to “backport all the things!” which

• Increased complexity and cost of backporting
• Contributed to even slower pace of adoption of new versions

Tip Development vs Express model

Copyright © 2023, Oracle and/or its affiliates. All rights
reserved. 8

• Key insights
• Customers never asked for express model – in fact it meant you were

delivering a new and potentially risky VM to people who had intended to
choose stability

• Effectively it was a developer conceit driven by the bad aspects of the multi-
year, big bang release cadence

• So
• If we moved from express to tip+LTS, we could move Java as a whole

forward far faster
• We should exercise restraint in doing backports

• Security of course, stability and perf sometimes
• For new features, we should make it easier to move forward and expect

people really needing these to be willing to do so

Encouraging people to use modern versions of Java extends the viability of the
technology and its ecosystem in the face of healthy competition

Initial reception was skeptical

Copyright © 2023, Oracle and/or its affiliates. All rights
reserved. 9

• From everyone!
• Some wanted to view these as Betas
• Many were sure that we would lose interest after a few of these
• No one knew whether these would actually bring about better predictability
• Or how throughput of feature delivery would be affected

• Quotes at the time included “no one will ever need anything past JDK 8!!
• And no one was more skeptical than “people on the inside”!

Copyright © 2023, Oracle and/or its affiliates. All rights
reserved. 10

Gradual acceptance over time

Copyright © 2023, Oracle and/or its affiliates. All rights
reserved. 11

As time went by, the mood started to shift…
• 11 LTS saw relatively modest uptake
• I was quoted as saying “JDK 11 is the new JDK 7”

• We kept plugging away, delivering these one after another
• We found that the infrastructure changes made things smooth
• We found that the regularity and time-boundedness of the releases vastly

reduced the complexity of our planning cycles
• We found that the cultural shift of “not running down the icy stairs for the train”

vasty reduced our stabilization cycles
• We found that the smaller increments allowed broader ‘introduction testing’ via

incubator and preview
• The new cadence helped fuel shifts in the business model which resulted in more

customers than ever before
• More vendors saw an opportunity to produce their own downstream distros and

support offerings

• Developer confidence in the predictability and quality of 6 month releases grew
• Developers started liking having “always something new at the Java corral”

Copyright © 2023, Oracle and/or its affiliates. All rights
reserved. 12

Current view

Copyright © 2023, Oracle and/or its affiliates. All rights
reserved. 13

When Java 20 came out last month, I had a quick look around social media etc to
gauge customer temperature (as usual).

By new the mood has completely flipped from skepticism to enthusiasm:
The six month releases are the best thing that ever happened to Java
Java is firing on all cylinders
New Java renaissance, Java not perceived as having a ‘glacial pace’.
In many respects ahead of others, where not, catching up and overtaking quickly
Etc Etc.

JPG and OpenJDK developers love it and can’t imagine going back to how things
were done before [Our sales/finance/executives love it too!]
Other vendors/distros love it too
People who develop in Java love it – huge sense of optimism in the roadmap
Enterprises simply choose their vendor, use the LTS, and plan their upgrades when
convenient. They also are choosing Java more than ever for new projects

So….. What’s next?

Copyright © 2023, Oracle and/or its affiliates. All rights
reserved. 14

Copyright © 2023, Oracle and/or its affiliates. All rights
reserved. 15

Where should we go from here

Copyright © 2023, Oracle and/or its affiliates. All rights
reserved. 16

We’ve gained a lot with the shift in delivery model for Java.
If there is one thing I hear people cite as holding them back from even more eager
use of new versions at this point, it is “3rd party library support”.

And what I hear from the authors of third party libraries is ”it is too
difficult/expensive to make our newest version support all these different Java
versions!!
• This is exactly the ”tip vs express” cultural change which I described before.

Ok, I promised to be provocative. Here goes!!
“The world is ready for the ecosystem of Java libraries, frameworks, and tools
to embrace a delivery model similar to that of the JDK. Tip development, with
LTS offerings. By making this shift, library vendors can realize exactly the same
kind of benefits that we have achieved for the Java platform itself. What’s
more, this will further strength and extend the viability of Java overall.”

Discuss!!

