
Project Amber Update

Brian Goetz (@briangoetz)

Java Language Architect, Oracle

Copyright © 2022, Oracle and/or its affiliates. All rights reserved.2

Project Amber

▪ Most OpenJDK projects (e.g., Panama, Valhalla, Loom) aim towards a

fixed set of deliverables, and the project eventually “finishes”

▪ Project Amber is ongoing, is an umbrella for multiple feature streams

– Marketing slogan: “Right-sizing language ceremony”

▪ Most Amber features are standalone improvements that make code

clearer, more concise, or less error-prone

– Some are bigger features arcs that are delivered over time

Copyright © 2022, Oracle and/or its affiliates. All rights reserved.3

Amber features

▪ (JDK 10) Local variable type inference (“var”)

▪ (JDK 12) Switch expressions

▪ (JDK 13) Text blocks (two-dimensional string literals)

▪ (JDK 14) Records (nominal product types)

▪ (JDK 15) Sealed types (sum types)

▪ (JDK 14, 17, 19, more in progress) Pattern matching

▪ (in progress) String templates

▪ (in progress) “Paving the on ramp”

Copyright © 2022, Oracle and/or its affiliates. All rights reserved.4

Records

▪ Records appeal to the desire to model data with less boilerplate

record Name(String firstName, String lastName) { }

▪ Shallowly immutable class with API and implementation derived from the state
description

– Fields, constructors, getters, equals, hashCode, toString, deconstruction patterns

– User can explicitly declare members if they want a different implementation

– They are classes, so can have supertypes, methods, etc

– Constructors can perform validation, argument normalization

– Can use a streamlined form for explicit default constructor

record Range(int lo, int hi) {
Range {

if (lo > hi)
throw new IllegalArgumentException();

}
}

Delivered in JDK 14

Copyright © 2022, Oracle and/or its affiliates. All rights reserved.5

Records

▪ Many people thought (or still think) they wanted structural tuples

– But Java has a strong commitment to nominality

▪ Because names matter

▪ NameAndScore is more descriptive (and safer) than (String, int)

– And, nominal and structural types mix poorly

▪ Records are “nominal product types”

– We played a similar trick as with functional interfaces in Lambda

▪ Functional interfaces are “nominal function types”, defined with ordinary

interfaces

Copyright © 2022, Oracle and/or its affiliates. All rights reserved.6

Records

▪ Most developers will think of records as being a “syntax generator”

– Akin to code generators like Lombok, AutoValue, etc

▪ Records are actually a semantic feature

– “The data, the whole data, and nothing but the data”

– API cannot diverge from that implied by state description

– Can’t have extraneous state

– Strong state contract: new R(r.c0(), r.c1(), ...) must be equal to r

▪ A record forms an embedding-projection pair with its product space

– Frameworks can therefore manipulate records with confidence

▪ Serialization already treats records specially and more safely

Copyright © 2022, Oracle and/or its affiliates. All rights reserved.7

Sealed Classes

▪ Classes and interfaces that limit which classes can extend them

sealed interface Shape
permits Circle, Rectangle { ... }

– Permits clause can be inferred if all subclasses are co-declared

– Subclasses can be explicitly unsealed to enable controlled extension

– Sealed classes are nominal sum types

▪ Good for security – you can use interfaces to cleanly define and evolve

APIs and be confident you won’t get malicious subtypes

▪ Provides language with better exhaustiveness information

– Better type checking for exhaustive switches, can omit default clause

Delivered in JDK 15

Copyright © 2022, Oracle and/or its affiliates. All rights reserved.8

Pattern matching

▪ Pattern matching is a natural fit for algebraic data types

– Delivered separately from records + sealed types, but designed to work

together

▪ Has rolled out in phases

– Type patterns in instanceof (JDK 14)

– Type patterns in switch (JDK 17)

– Record patterns and nested patterns (JDK 19)

– More to come…

▪ Each of these has had to drag big updates to some other feature(s)

along with it

– Variable scoping, switch, exhaustiveness checking

Copyright © 2022, Oracle and/or its affiliates. All rights reserved.9

Pattern matching

▪ A type pattern looks like a variable declaration

if (x instanceof String) {
String s = (String) x;
// use s

}

▪ Becomes

if (x instanceof String s) {
// use s

}

▪ Users’ first impression is probably “casts go away”

– Removing casts is removing places for bugs to hide

– There’s way more to it, but you have to start somewhere

Type patterns (JDK 14)

Copyright © 2022, Oracle and/or its affiliates. All rights reserved.10

Pattern matching

▪ Because it was copied too literally from C, the switch statement in Java

is both weak and complex

– Can only switch over a limited set of types, can only compare for equality

with constants, statement-only (no expressions)

– Generalized switch to accept patterns as case labels, support all types,

use exhaustiveness information from sealed types, add switch expressions

String formatted =
switch (constant) {

case Integer i -> String.format("int %d", i);
case Byte b -> String.format(“byte %d", b);
case Long l -> String.format(“long %d", l);
case Double d -> String.format(“double %f", d);
case String s -> String.format("String %s", s);
default -> "unknown";

}

Patterns in switch (JDK 17)

Copyright © 2022, Oracle and/or its affiliates. All rights reserved.11

Pattern matching

▪ Because we can derive the API of records from their state description,

records can provide destructuring for free as well as aggregation

record Circle(Point center, int radius) { }

if (shape instanceof Circle(var center, var radius)) {
// use center, radius

}

▪ And patterns can be composed by nesting

if (shape instanceof Circle(Point(var x, var y), var radius))
{

// use x, y, radius
}

Record patterns (JDK 19)

Copyright © 2022, Oracle and/or its affiliates. All rights reserved.12

Putting it together

data Expr =
SumExpr Expr Expr
| ProdExpr Expr Expr
| NegExpr Expr
| ConstExpr Integer

eval :: Expr -> Integer

eval SumExpr a b = (eval a) + (eval b)
eval ProdExpr a b = (eval a) * (eval b)
eval NegExpr a = - (eval a)
eval ConstExpr i = i

Did you get some Haskell in my Java?

Copyright © 2022, Oracle and/or its affiliates. All rights reserved.13

Putting it together

sealed interface Expr {
record SumExpr(Expr left, Expr right) implements Expr { }
record ProdExpr(Expr left, Expr right) implements Expr { }
record NegExpr(Expr e) implements Expr { }
record ConstExpr(int c) implements Expr { }

}

static int eval(Expr e) {
return switch (e) {

case SumExpr(var a, var b) -> eval(a) + eval(b);
case ProdExpr(var a, var b) -> eval(a) * eval(b);
case NegExpr(var a) -> -eval(a);
case ConstExpr(var i) -> i;

}

}

Did you get some Haskell in my Java?

Inferred permits

clause

Record pattern

with type

inference

No default

needed

Switch

expression

(Java 12)

Copyright © 2022, Oracle and/or its affiliates. All rights reserved.14

Digression: JSON

▪ If you read the JSON spec, you’ll see JSON is really just an ADT too

– Normally we think of API design as a highly creative activity, but sometimes

we should let the data do the designing

– ADTs have a normalizing effect on API design

sealed interface JsonValue {
record JsonString(String s) implements JsonValue { }
record JsonNumber(double d) implements JsonValue { }
record JsonNull() implements JsonValue { }
record JsonBoolean(boolean b) implements JsonValue { }
record JsonArray(List<JsonValue> values) implements JsonValue { }
record JsonObject(Map<String, JsonValue> pairs) implements JsonValue { }

}

Copyright © 2022, Oracle and/or its affiliates. All rights reserved.15

Digression: JSON

▪ If you read the JSON spec, you’ll see JSON is really just an ADT

– Normally we think of API design as a highly creative activity, but sometimes

we should let the data do the designing

– ADTs have a normalizing effect on API design

sealed interface JsonValue {
record JsonString(String s) implements JsonValue { }
record JsonNumber(double d) implements JsonValue { }
record JsonNull() implements JsonValue { }
record JsonBoolean(boolean b) implements JsonValue { }
record JsonArray(List<JsonValue> values) implements JsonValue { }
record JsonObject(Map<String, JsonValue> pairs) implements JsonValue { }

}

Copyright © 2022, Oracle and/or its affiliates. All rights reserved.16

Digression: JSON

▪ If we modeled JSON as an ADT with records and sealed types (not

actually suggesting this), we could match

{ "name": "John", "age": 30, "city": "New York" }

with
if (j instanceof JsonObject(var pairs)

&& pairs.get("name") instanceof JsonString(String name)
&& pairs.get("age") instanceof JsonNumber(double age)
&& pairs.get("city") instanceof JsonString(String city)) {

// use name, age, city
}

▪ Takes a messy, untyped blob of data, expresses constraints we need

extracts the bits we want in the form we needed, all in one go
– Without a million error-handling paths

Copyright © 2022, Oracle and/or its affiliates. All rights reserved.17

Data Oriented Programming

▪ Why did we pick these features (records, sealed types, pattern

matching)?

– Sure, they solve common pain points

– Sure, developers love them (developers REALLY love records)

▪ But, they also move us towards an approach that is better suited to

today’s application development: data-oriented programming

Copyright © 2022, Oracle and/or its affiliates. All rights reserved.18

Towards Data Oriented Programming

▪ OOP is well suited to modeling complex entities and processes

– Encapsulation separates implementation from interface

– Encourages polymorphism

– Behavior travels with state

– Supports modular reasoning

▪ At its best when defining and defending boundaries (internal or
external)

– Maintenance, versioning, compilation, security, encapsulation
boundaries…

▪ Modeling pure data with OOP is cumbersome

– We tolerated this when data was just “the degenerate form of objects”

Copyright © 2022, Oracle and/or its affiliates. All rights reserved.19

Towards Data Oriented Programming

▪ Program units are getting smaller

– Smaller services can be maintained by a single team or developer, so don’t
need internal boundaries for managing complexity

▪ And coupled via less strongly typed schema

– Boundaries between services defined by JSON, not Java objects

– Much of what is exchanged is pure data

▪ Java should be good at this as well!

– Untyped data is the new boundary

▪ Pattern matching is a great fit for defining the “new boundaries”

– Where untyped data enters the service and becomes Java data

– Concise specification of what input you expect and how to extract the parts you
want, at the boundary of your program

– Inside the boundary, it’s all just (immutable) Java objects

Shifting practices in application development

Copyright © 2022, Oracle and/or its affiliates. All rights reserved.20

Data Oriented Programming

▪ Data Oriented Programming encourages us to model data as data

– Data should be immutable

– Data should be strongly typed

– Data should be consistent (Ideally, invalid states are unrepresentable)

– Data should be easily convertible to and from the wire / file system

– Data should be separate from nontrivial behavior on that data

– These conspire to reduce the need for internal boundaries

▪ But still using natural idioms for the language

– A service may take its input as JSON, but we want to quickly convert to data types that
make more sense for Java

– No “stringly typed” programming

▪ As a bonus, generally renders programs more testable

– Specifically, more amenable to generative testing (testing with randomly generated
domain-conformant test data)

Copyright © 2022, Oracle and/or its affiliates. All rights reserved.21

Next steps in pattern matching

▪ Records got deconstruction for free because their API and
implementation are automatically derived from the state description

– How will regular classes express deconstruction?

– With deconstruction patterns, which are the dual of constructors

▪ Deconstruction patterns will be declarable as class members

– Can “return” multiple values, and some patterns will be conditional

– Language’s flow analysis tracks pattern success or failure

▪ In general, for every object creation idiom, there should be a
corresponding pattern dual, with similar syntax

– Static patterns are the dual of static factories

– Because this is how we make destructuring as composable as creation

Deconstruction patterns for all classes

Copyright © 2022, Oracle and/or its affiliates. All rights reserved.22

Deconstruction patterns

▪ Classes can declare deconstruction patterns (which are unconditional)

– Look like a constructor in reverse (precise syntax TBD)

public class Point {
int x, y;

public Point(int x, int y) {
this.x = x;
this.y = y;

}

public matcher Point(int x, int y) {
x = this.x;
y = this.y;

}
}

Coming soon!

Matched Pair

Copyright © 2022, Oracle and/or its affiliates. All rights reserved.23

String templates

▪ Most common feature request: “string interpolation, please”

▪ String interpolation is convenient but dangerous

– Breeding ground for SQL/HTML injection attacks

▪ The alternatives we give users today aren’t great, though

– String concatenation – just as unsafe, and less readable

– String::format – harder to read, more error-prone

– StringBuilder – yuck

▪ Most languages treat this as another form of string literal

– Convenient shortcut, but limited in power

– May lead to combinatorial explosion of string literal forms

Coming soon!

Copyright © 2022, Oracle and/or its affiliates. All rights reserved.24

String templates

▪ We solved this with “another level of indirection”

▪ A string template expression is a combination of literal text and

embedded expressions

– Plus a template processor

String greeting = STR."Hello \{name}"

▪ Template processor takes a template and produces something

– STR is a predefined processor that does interpolation

– But, processors can also perform arbitrary validation and transformation

▪ Don’t even have to result in a String

– Templates work with both single-line string literals and text blocks

https://openjdk.org/jeps/430

Copyright © 2022, Oracle and/or its affiliates. All rights reserved.25

String templates

▪ Writing more sophisticated template processors is easy

String line = FMT."Name: %-12s\{name}; size: %7.2f\{size}"

– Formats using traditional String::format specifiers, preceding the embedded
expressions

TemplateProcessor<ResultSet> db = new QueryProcessor(connection);
ResultSet rs

= db."SELECT * FROM Person p WHERE p.last_name = \{name}";

– DB processor validates SQL string for quote hygiene, escapes embedded
expressions, creates prepared statement, and executes query

▪ Other applications include message localization, creating JSON objects
without transiting through intermediate String format, etc

▪ Subversion: we snuck in validation and transformation when users thought
they were just getting interpolation

Copyright © 2022, Oracle and/or its affiliates. All rights reserved.26

Paving the on-ramp

▪ Our first program is often “Hello World”

public class HelloWorld {
public static void main(String[] args) {

System.out.println("Hello world");
}

}

▪ This is full of boilerplate that makes people think “Java is hard”

▪ Worse, it is full of object-oriented concepts students are not ready for

– Requires a lot of “you’ll understand that later”

– Forces distortions in how we teach Java

▪ Value of these things comes much later, in organizing larger programs

Making Java easier for beginners

Copyright © 2022, Oracle and/or its affiliates. All rights reserved.27

Paving the on-ramp

public class HelloWorld {
public static void main(String[] args) {

System.out.println(“Hello!”);
}

}

Making Java easier for beginners

Access control for

encapsulation

Classes for

modeling and

organization

Static vs instance

behavior

Command line

interaction, arrays

Access control,

again

Static fields

Magic method

name

Copyright © 2022, Oracle and/or its affiliates. All rights reserved.28

Paving the on-ramp

public class HelloWorld {
public static void main(String[] args) {

System.out.println(“Hello!”);
}

}

Making Java easier for beginners

Copyright © 2022, Oracle and/or its affiliates. All rights reserved.29

Paving the on-ramp

public class HelloWorld {
public static void main(String[] args) {

System.out.println(“Hello!”);
}

}

Making Java easier for beginners

Copyright © 2022, Oracle and/or its affiliates. All rights reserved.30

Paving the on-ramp

public class HelloWorld {
public static void main(String[] args) {

System.out.println(“Hello!”);
}

}

Making Java easier for beginners

Copyright © 2022, Oracle and/or its affiliates. All rights reserved.31

Paving the on-ramp

public class HelloWorld {
public static void main(String[] args) {

System.out.println(“Hello!”);
}

}

Making Java easier for beginners

Copyright © 2022, Oracle and/or its affiliates. All rights reserved.32

Paving the on-ramp

public class HelloWorld {
public static void main(String[] args) {

System.out.println(“Hello!”);
}

}

Making Java easier for beginners

Copyright © 2022, Oracle and/or its affiliates. All rights reserved.33

Paving the on-ramp

public class HelloWorld {
public static void main(String[] args) {

System.out.println(“Hello!”);
}

}

Making Java easier for beginners

Copyright © 2022, Oracle and/or its affiliates. All rights reserved.34

Paving the on-ramp

void main() {
println(“Hello!”);

}

Making Java easier for beginners

Copyright © 2022, Oracle and/or its affiliates. All rights reserved.35

Paving the on-ramp

▪ This may appear to be merely syntax and boilerplate, but isn’t really

– Simple programs should be simple

– Start with simple methods, build up to classes at your own rate

– Also useful for writing scripts in Java

▪ More importantly, this removes the last linchpin supporting a
suboptimal education approach – “early objects”

– OO makes more sense after you’ve written some bad imperative programs

▪ Educators can now teach Java the way they teach Python, without guilt

– OO concepts can be added in later, when they directly add value

▪ See “Paving the On Ramp”

– https://openjdk.org/projects/amber/design-notes/on-ramp

Making Java easier for beginners

https://openjdk.org/projects/amber/design-notes/on-ramp

Copyright © 2022, Oracle and/or its affiliates. All rights reserved.36

Summary

▪ Externally, Amber means steady improvement in the language, and the
“small”, “productivity-oriented” features developers crave

– New language features in most JDK releases

▪ Internally, Amber represents a new way of evolving the language

– Break big features down into smaller pieces, but connect the pieces so they
are part of a larger story arc

– Some deceptively big things can emerge from seemingly “small” features!

▪ E.g., safer serialization and withers emerging from deconstruction

▪ There’s a reason we have picked these features in this order

▪ These features are not “mere syntax”!

– Making data-oriented programming more natural

– Enabling new ways for educators to teach Java

	Slide 1: Project Amber Update
	Slide 2: Project Amber
	Slide 3: Amber features
	Slide 4: Records
	Slide 5: Records
	Slide 6: Records
	Slide 7: Sealed Classes
	Slide 8: Pattern matching
	Slide 9: Pattern matching
	Slide 10: Pattern matching
	Slide 11: Pattern matching
	Slide 12: Putting it together
	Slide 13: Putting it together
	Slide 14: Digression: JSON
	Slide 15: Digression: JSON
	Slide 16: Digression: JSON
	Slide 17: Data Oriented Programming
	Slide 18: Towards Data Oriented Programming
	Slide 19: Towards Data Oriented Programming
	Slide 20: Data Oriented Programming
	Slide 21: Next steps in pattern matching
	Slide 22: Deconstruction patterns
	Slide 23: String templates
	Slide 24: String templates
	Slide 25: String templates
	Slide 26: Paving the on-ramp
	Slide 27: Paving the on-ramp
	Slide 28: Paving the on-ramp
	Slide 29: Paving the on-ramp
	Slide 30: Paving the on-ramp
	Slide 31: Paving the on-ramp
	Slide 32: Paving the on-ramp
	Slide 33: Paving the on-ramp
	Slide 34: Paving the on-ramp
	Slide 35: Paving the on-ramp
	Slide 36: Summary

