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Project Amber

▪ Most OpenJDK projects (e.g., Panama, Valhalla, Loom) aim towards a 

fixed set of deliverables, and the project eventually “finishes”

▪ Project Amber is ongoing, is an umbrella for multiple feature streams 

– Marketing slogan: “Right-sizing language ceremony”

▪ Most Amber features are standalone improvements that make code 

clearer, more concise, or less error-prone

– Some are bigger features arcs that are delivered over time
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Amber features

▪ (JDK 10) Local variable type inference (“var”)

▪ (JDK 12) Switch expressions

▪ (JDK 13) Text blocks (two-dimensional string literals)

▪ (JDK 14) Records (nominal product types)

▪ (JDK 15) Sealed types (sum types)

▪ (JDK 14, 17, 19, more in progress) Pattern matching

▪ (in progress) String templates

▪ (in progress) “Paving the on ramp”
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Records

▪ Records appeal to the desire to model data with less boilerplate

record Name(String firstName, String lastName) { }

▪ Shallowly immutable class with API and implementation derived from the state 
description

– Fields, constructors, getters, equals, hashCode, toString, deconstruction patterns

– User can explicitly declare members if they want a different implementation

– They are classes, so can have supertypes, methods, etc

– Constructors can perform validation, argument normalization

– Can use a streamlined form for explicit default constructor

record Range(int lo, int hi) { 
Range { 

if (lo > hi) 
throw new IllegalArgumentException();

}
}

Delivered in JDK 14
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Records

▪ Many people thought (or still think) they wanted structural tuples

– But Java has a strong commitment to nominality

▪ Because names matter

▪ NameAndScore is more descriptive (and safer) than (String, int)

– And, nominal and structural types mix poorly

▪ Records are “nominal product types”

– We played a similar trick as with functional interfaces in Lambda

▪ Functional interfaces are “nominal function types”, defined with ordinary 

interfaces
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Records

▪ Most developers will think of records as being a “syntax generator”

– Akin to code generators like Lombok, AutoValue, etc

▪ Records are actually a semantic feature

– “The data, the whole data, and nothing but the data”

– API cannot diverge from that implied by state description

– Can’t have extraneous state

– Strong state contract: new R(r.c0(), r.c1(), ...) must be equal to r

▪ A record forms an embedding-projection pair with its product space

– Frameworks can therefore manipulate records with confidence

▪ Serialization already treats records specially and more safely
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Sealed Classes

▪ Classes and interfaces that limit which classes can extend them

sealed interface Shape
permits Circle, Rectangle { ... }

– Permits clause can be inferred if all subclasses are co-declared

– Subclasses can be explicitly unsealed to enable controlled extension

– Sealed classes are nominal sum types

▪ Good for security – you can use interfaces to cleanly define and evolve 

APIs and be confident you won’t get malicious subtypes

▪ Provides language with better exhaustiveness information

– Better type checking for exhaustive switches, can omit default clause

Delivered in JDK 15
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Pattern matching

▪ Pattern matching is a natural fit for algebraic data types

– Delivered separately from records + sealed types, but designed to work 

together

▪ Has rolled out in phases

– Type patterns in instanceof (JDK 14)

– Type patterns in switch (JDK 17)

– Record patterns and nested patterns (JDK 19)

– More to come…

▪ Each of these has had to drag big updates to some other feature(s) 

along with it

– Variable scoping, switch, exhaustiveness checking
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Pattern matching

▪ A type pattern looks like a variable declaration

if (x instanceof String) { 
String s = (String) x;
// use s

}

▪ Becomes

if (x instanceof String s) { 
// use s

}

▪ Users’ first impression is probably “casts go away”

– Removing casts is removing places for bugs to hide

– There’s way more to it, but you have to start somewhere

Type patterns (JDK 14)
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Pattern matching

▪ Because it was copied too literally from C, the switch statement in Java 

is both weak and complex

– Can only switch over a limited set of types, can only compare for equality 

with constants, statement-only (no expressions)

– Generalized switch to accept patterns as case labels, support all types, 

use exhaustiveness information from sealed types, add switch expressions

String formatted = 
switch (constant) {

case Integer i -> String.format("int %d", i);
case Byte b    -> String.format(“byte %d", b);
case Long l    -> String.format(“long %d", l);
case Double d  -> String.format(“double %f", d);
case String s  -> String.format("String %s", s);
default -> "unknown";

}        

Patterns in switch (JDK 17)
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Pattern matching

▪ Because we can derive the API of records from their state description, 

records can provide destructuring for free as well as aggregation

record Circle(Point center, int radius) { }

if (shape instanceof Circle(var center, var radius)) {
// use center, radius

}

▪ And patterns can be composed by nesting

if (shape instanceof Circle(Point(var x, var y), var radius)) 
{

// use x, y, radius
}

Record patterns (JDK 19)
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Putting it together

data Expr = 
SumExpr Expr Expr
| ProdExpr Expr Expr
| NegExpr Expr
| ConstExpr Integer

eval :: Expr -> Integer

eval SumExpr a b = (eval a) + (eval b)
eval ProdExpr a b = (eval a) * (eval b)
eval NegExpr a = - (eval a)
eval ConstExpr i = i

Did you get some Haskell in my Java?
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Putting it together

sealed interface Expr { 
record SumExpr(Expr left, Expr right)  implements Expr { }
record ProdExpr(Expr left, Expr right) implements Expr { }
record NegExpr(Expr e)                 implements Expr { }
record ConstExpr(int c)                implements Expr { }

}

static int eval(Expr e) { 
return switch (e) {

case SumExpr(var a, var b) -> eval(a) + eval(b);
case ProdExpr(var a, var b) -> eval(a) * eval(b);
case NegExpr(var a) -> -eval(a);
case ConstExpr(var i) -> i;

}

}

Did you get some Haskell in my Java?

Inferred permits 

clause

Record pattern 

with type 

inference

No default 

needed

Switch 

expression 

(Java 12)
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Digression: JSON

▪ If you read the JSON spec, you’ll see JSON is really just an ADT too

– Normally we think of API design as a highly creative activity, but sometimes 

we should let the data do the designing

– ADTs have a normalizing effect on API design

sealed interface JsonValue { 
record JsonString(String s)                      implements JsonValue { }
record JsonNumber(double d)                      implements JsonValue { }
record JsonNull()                                implements JsonValue { }
record JsonBoolean(boolean b)                    implements JsonValue { }
record JsonArray(List<JsonValue> values)         implements JsonValue { }
record JsonObject(Map<String, JsonValue> pairs)  implements JsonValue { }

}
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Digression: JSON

▪ If we modeled JSON as an ADT with records and sealed types (not 

actually suggesting this), we could match

{ "name": "John", "age": 30, "city": "New York" }

with
if (j instanceof JsonObject(var pairs)

&& pairs.get("name") instanceof JsonString(String name)
&& pairs.get("age") instanceof JsonNumber(double age)
&& pairs.get("city") instanceof JsonString(String city)) { 

// use name, age, city
}

▪ Takes a messy, untyped blob of data, expresses constraints we need 

extracts the bits we want in the form we needed, all in one go
– Without a million error-handling paths
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Data Oriented Programming

▪ Why did we pick these features (records, sealed types, pattern 

matching)?

– Sure, they solve common pain points

– Sure, developers love them (developers REALLY love records)

▪ But, they also move us towards an approach that is better suited to 

today’s application development: data-oriented programming
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Towards Data Oriented Programming

▪ OOP is well suited to modeling complex entities and processes

– Encapsulation separates implementation from interface

– Encourages polymorphism

– Behavior travels with state

– Supports modular reasoning

▪ At its best when defining and defending boundaries (internal or 
external)

– Maintenance, versioning, compilation, security, encapsulation 
boundaries…

▪ Modeling pure data with OOP is cumbersome

– We tolerated this when data was just “the degenerate form of objects”



Copyright © 2022, Oracle and/or its affiliates. All rights reserved.19

Towards Data Oriented Programming

▪ Program units are getting smaller

– Smaller services can be maintained by a single team or developer, so don’t 
need internal boundaries for managing complexity

▪ And coupled via less strongly typed schema

– Boundaries between services defined by JSON, not Java objects

– Much of what is exchanged is pure data

▪ Java should be good at this as well! 

– Untyped data is the new boundary

▪ Pattern matching is a great fit for defining the “new boundaries”

– Where untyped data enters the service and becomes Java data

– Concise specification of what input you expect and how to extract the parts you 
want, at the boundary of your program

– Inside the boundary, it’s all just (immutable) Java objects

Shifting practices in application development
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Data Oriented Programming

▪ Data Oriented Programming encourages us to model data as data

– Data should be immutable

– Data should be strongly typed

– Data should be consistent (Ideally, invalid states are unrepresentable)

– Data should be easily convertible to and from the wire / file system

– Data should be separate from nontrivial behavior on that data

– These conspire to reduce the need for internal boundaries

▪ But still using natural idioms for the language

– A service may take its input as JSON, but we want to quickly convert to data types that 
make more sense for Java

– No “stringly typed” programming

▪ As a bonus, generally renders programs more testable

– Specifically, more amenable to generative testing (testing with randomly generated 
domain-conformant test data)
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Next steps in pattern matching

▪ Records got deconstruction for free because their API and 
implementation are automatically derived from the state description

– How will regular classes express deconstruction?

– With deconstruction patterns, which are the dual of constructors

▪ Deconstruction patterns will be declarable as class members

– Can “return” multiple values, and some patterns will be conditional

– Language’s flow analysis tracks pattern success or failure

▪ In general, for every object creation idiom, there should be a 
corresponding pattern dual, with similar syntax

– Static patterns are the dual of static factories

– Because this is how we make destructuring as composable as creation

Deconstruction patterns for all classes
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Deconstruction patterns

▪ Classes can declare deconstruction patterns (which are unconditional)

– Look like a constructor in reverse (precise syntax TBD)

public class Point {
int x, y;

public Point(int x, int y) {
this.x = x;
this.y = y;

}

public matcher Point(int x, int y) {
x = this.x;
y = this.y;

}
}

Coming soon!

Matched Pair
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String templates

▪ Most common feature request: “string interpolation, please”

▪ String interpolation is convenient but dangerous

– Breeding ground for SQL/HTML injection attacks

▪ The alternatives we give users today aren’t great, though

– String concatenation – just as unsafe, and less readable

– String::format – harder to read, more error-prone

– StringBuilder – yuck

▪ Most languages treat this as another form of string literal

– Convenient shortcut, but limited in power

– May lead to combinatorial explosion of string literal forms

Coming soon!
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String templates

▪ We solved this with “another level of indirection”

▪ A string template expression is a combination of literal text and 

embedded expressions

– Plus a template processor

String greeting = STR."Hello \{name}"

▪ Template processor takes a template and produces something

– STR is a predefined processor that does interpolation

– But, processors can also perform arbitrary validation and transformation

▪ Don’t even have to result in a String

– Templates work with both single-line string literals and text blocks

https://openjdk.org/jeps/430
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String templates

▪ Writing more sophisticated template processors is easy

String line = FMT."Name: %-12s\{name}; size: %7.2f\{size}"

– Formats using traditional String::format specifiers, preceding the embedded 
expressions

TemplateProcessor<ResultSet> db = new QueryProcessor(connection);
ResultSet rs

= db."SELECT * FROM Person p WHERE p.last_name = \{name}";

– DB processor validates SQL string for quote hygiene, escapes embedded 
expressions, creates prepared statement, and executes query

▪ Other applications include message localization, creating JSON objects 
without transiting through intermediate String format, etc

▪ Subversion: we snuck in validation and transformation when users thought 
they were just getting interpolation
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Paving the on-ramp

▪ Our first program is often “Hello World”

public class HelloWorld { 
public static void main(String[] args) { 

System.out.println("Hello world");
}

}

▪ This is full of boilerplate that makes people think “Java is hard”

▪ Worse, it is full of object-oriented concepts students are not ready for

– Requires a lot of “you’ll understand that later”

– Forces distortions in how we teach Java

▪ Value of these things comes much later, in organizing larger programs

Making Java easier for beginners
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Paving the on-ramp

public class HelloWorld { 
public static void main(String[] args) { 

System.out.println(“Hello!”);
}

}

Making Java easier for beginners

Access control for 

encapsulation

Classes for 

modeling and 

organization

Static vs instance 

behavior

Command line 

interaction, arrays

Access control, 

again

Static fields

Magic method 

name
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Making Java easier for beginners
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Paving the on-ramp

public class HelloWorld { 
public static void main(String[] args) { 

System.out.println(“Hello!”);
}

}

Making Java easier for beginners
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Making Java easier for beginners
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Making Java easier for beginners
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Paving the on-ramp

void main() { 
println(“Hello!”);

}

Making Java easier for beginners
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Paving the on-ramp

▪ This may appear to be merely syntax and boilerplate, but isn’t really

– Simple programs should be simple

– Start with simple methods, build up to classes at your own rate

– Also useful for writing scripts in Java

▪ More importantly, this removes the last linchpin supporting a 
suboptimal education approach – “early objects”

– OO makes more sense after you’ve written some bad imperative programs

▪ Educators can now teach Java the way they teach Python, without guilt

– OO concepts can be added in later, when they directly add value

▪ See “Paving the On Ramp”

– https://openjdk.org/projects/amber/design-notes/on-ramp

Making Java easier for beginners

https://openjdk.org/projects/amber/design-notes/on-ramp
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Summary

▪ Externally, Amber means steady improvement in the language, and the 
“small”, “productivity-oriented” features developers crave

– New language features in most JDK releases

▪ Internally, Amber represents a new way of evolving the language

– Break big features down into smaller pieces, but connect the pieces so they 
are part of a larger story arc

– Some deceptively big things can emerge from seemingly “small” features!

▪ E.g., safer serialization and withers emerging from deconstruction

▪ There’s a reason we have picked these features in this order

▪ These features are not “mere syntax”!

– Making data-oriented programming more natural

– Enabling new ways for educators to teach Java
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