
Deprecation Overview 
 


Stuart W. Marks aka “Dr Deprecator”

Project Lead, JDK Core Libraries

August 10, 2021




Deprecation: What and Why?


•  Deprecation is a late stage in the life cycle of a feature

•  at some point a feature might become old, obsolescent, and disused

•  if features were added and not removed, the size and complexity of a system would grow without 

bound

•  Old, obsolete features don’t just sit there, bothering no one


•  they impose costs on the ongoing development and maintenance of a system

•  more code, docs, tests to be kept up to date

•  time to build, run tests, diagnose test failures, fix and maintain tests

•  surface area for security vulnerabilities


•  Purposes of deprecation

•  notify developers of a future change (removal) and alert need for migration

•  collect feedback from community about migration, alternatives, etc.


•  Deprecation can, but does not necessarily imply that the feature will be removed at some point



2
 Copyright © 2021, Oracle and/or its affiliates
 2021-08-10




History of Deprecation in Java SE


•  JDK 1.1 – 1997

•  javadoc tag @deprecated (“little-d deprecated”)

•  unusual: javac parses the contents of a comment and emits a classfile attribute

•  classfile attribute used for issuing warnings to consumers of the class

•  an early form of annotation


•  Java SE 5.0 – 2004

•  annotations feature added to the Java language, along with several defined annotations

•  the @Deprecated annotation (“big-D deprecated”)

•  annotation written to class file, available at runtime via reflection

•  some overlap with javadoc’s @deprecated tag, but they serve distinct purposes


3
 Copyright © 2021, Oracle and/or its affiliates
 2021-08-10




/** 

 * The {@code Compiler} class is provided to support Java-to-native-code 

 * compilers and related services. By design, the {@code Compiler} class does 

 * nothing; it serves as a placeholder for a JIT compiler implementation. 

 * If no compiler is available, these methods do nothing. 

 * 

 * @deprecated JIT compilers and their technologies vary too widely to 

 * be controlled effectively by a standardized interface. As such, many 

 * JIT compiler implementations ignore this interface, and are instead 

 * controllable by implementation-specific mechanisms such as command-line 

 * options. This class is subject to removal in a future version of Java SE. 

 * 

 * @author  Frank Yellin 

 * @since   1.0 

 */ 

@Deprecated(since="9", forRemoval=true) 

public final class Compiler  { 

 
4
 Copyright © 2021, Oracle and/or its affiliates
 2021-08-10




History of Deprecation in Java SE


•  Unclear, contradictory definition and usage in Java SE

•  deprecation is for dangerous features that should not be used (Thread.suspend)

•  deprecation is for API cleanup (AWT Component hide/show/setVisible)

•  there was no official documents, clarification, or discussion on this topic


•  Nothing much happened for about 13 years...

•  This resulted in confusion in the Java developer community


•  “Don’t use that API; it’s deprecated so it might be removed in the future.”

•  “Don’t worry, (Sun|Oracle) has never removed anything from Java and never will.”


•  Problem: lack of clarity over how developers should respond when encountering a deprecated API


5
 Copyright © 2021, Oracle and/or its affiliates
 2021-08-10




JEP 277 – Enhanced Deprecation


•  Delivered in Java 9 – 2017

•  authored by your speaker

•  added two annotation methods (attributes)

 

  @Deprecated(forRemoval=true, since="9") 

•  Most work in JEP 277 is conceptual

•  filled in holes, clarified, strengthened existing concepts

•  added a new JLS mandatory warning: removal warning

•  vocabulary: “ordinary” versus “terminal” deprecation

•  message: certain things indeed will be removed from Java SE


6
 Copyright © 2021, Oracle and/or its affiliates
 2021-08-10


“Yes, we really intend 
to remove this.”
 just informational




Effects of Deprecation


•  Compile-time warning

•  ordinary deprecations generate “deprecation” warnings

•  terminal deprecations generate “removal” warnings (new in Java 9)

•  warnings can be controlled from the javac command line or with the @SuppressWarnings 

annotation at the point of use

•  Highlighted text emitted in javadoc

•  API maintainers should provide additional information in the @deprecated javadoc tag


•  replacements (if any); rationale; references

•  Annotation recorded in class file


•  available for static analysis (jdeprscan tool)

•  also available at runtime, via reflection


7
 Copyright © 2021, Oracle and/or its affiliates
 2021-08-10




8
 Copyright © 2021, Oracle and/or its affiliates
 2021-08-10




Deprecation is a Java SE Specification Change


•  Annotations are part of class, method, field declarations

•  they are as much a part of the specification as class name, method name, parameter types, 

return types, etc.

•  applies to addition or removal of the annotation

•  applies to a change in an attribute (e.g., change forRemoval from false to true)


•  Deprecations go through the same process as other APIs

•  specification changes are code, so they go through code review

•  all specification changes go through CSR process

•  significant changes have JEPs filed for them


•  All spec changes (with or without JEPs) are fed into the Java SE JSR specification


9
 Copyright © 2021, Oracle and/or its affiliates
 2021-08-10




Deprecation Policy


•  Some policy covered in JEP 277

•  terminal deprecation must appear in a Java SE release before the API element is removed from 

Java SE

•  Typically, we’ve followed an “at least one year” (two six-month Java SE releases) policy

•  Small, safe things can have a shorter notice period


•  no-arg constructors of java.lang.reflect.Modifier and java.lang.invoke.ConstantBootstraps

•  CSR JDK-8230724 terminal deprecation (Java 14)

•  CSR JDK-8235548 removal (Java 15)


•  More-significant things benefit from a longer notice period and JEPs

•  CMS GC terminally deprecated in Java 9 (JEP 291), removed in Java 14 (JEP 363)

•  Nashorn terminally deprecated in Java 11 (JEP 335), removed in Java 15 (JEP 372)


10
 Copyright © 2021, Oracle and/or its affiliates
 2021-08-10




Deprecation Policy Questions


•  Who decides...

•  whether a feature should be deprecated?

•  when a feature should be deprecated?

•  when a feature should be removed?

•  whether there should be some kind of replacement for the deprecated feature?

•  etc.


•  Answer: the feature’s maintainer

•  most decisions are aspects of API design, which is also up to the maintainer of the feature

•  the right decision depends highly on context

•  deprecation/removal occurs infrequently across diverse features of different granularity

•  difficult to generalize any policies

•  community comments and customer feedback are a big part of deprecation decisions

•  Dr Deprecator does not make all deprecation decisions (though he is often consulted)


11
 Copyright © 2021, Oracle and/or its affiliates
 2021-08-10




JCP Notification


•  All specification changes tracked by CSRs

•  CSR = Compatibility and Specification Review

•  Java 17 Dashboard: https://bugs.openjdk.java.net/secure/Dashboard.jspa?selectPageId=19801


•  Significant specification changes also have JEPs

•  JSR Expert Group + EC notified of JEP status changes

•  JEP 411 (Security Manager) => Candidate, April 2021 email

•  JEP 411 (Security Manager) => Proposed To Target, May 2021 email


•  Published draft JSR specifications include terminal deprecations and removals

•  http://cr.openjdk.java.net/~iris/se/17/latestSpec/


12
 Copyright © 2021, Oracle and/or its affiliates
 2021-08-10




CSR Dashboard


13
 Copyright © 2021, Oracle and/or its affiliates
 2021-08-10




Java SE 17 Specification Draft


14
 Copyright © 2021, Oracle and/or its affiliates
 2021-08-10




15
 Copyright © 2021, Oracle and/or its affiliates
 2021-08-10




Public Notification


•  JEP publication (for significant deprecations or removals)

•  mailing list announcement, CSR, code review

•  Twitter

•  blog posts

•  podcast episodes

•  conferences and user group talks

•  EA builds

•  direct contact with library and tool maintainers

•  Quality Outreach Program

•  full-page ad in New York Times


Notification is never good enough, since some people are always surprised....




16
 Copyright © 2021, Oracle and/or its affiliates
 2021-08-10




Conclusion


•  Summary

•  keeping the platform healthy

•  new features introduced, obsolete features retired

•  most of this isn’t about technology; it’s communication with developers


•  Links

•  Java 17 CSR dashboard


•   https://bugs.openjdk.java.net/secure/Dashboard.jspa?selectPageId=19801


•  JSR spec drafts, sections 7 and 8

•  http://cr.openjdk.java.net/~iris/se/17/latestSpec/


•  JEP 277 Enhanced Deprecation

•  https://openjdk.java.net/jeps/277


•  JEP index (JEP 0) – search on page for “deprecate” or “remove”

•  https://openjdk.java.net/jeps/0





17
 Copyright © 2021, Oracle and/or its affiliates
 2021-08-10




Thank you! 

Stuart Marks (aka Dr Deprecator)

stuart.marks@oracle.com


18
 Copyright © 2021, Oracle and/or its affiliates
 2021-08-10





