
JSR 302 Public Review
Safety-Critical Java

April 13, 2021

Doug Locke, Ph.D. (Specification Lead)
representing The Open Group

2

Agenda

• Background
• Expert Group
• Brief Technical Overview
• Publicity, Collaboration, Participation, and

Transparency
• Intellectual Property

3

• What is a Safety-Critical System (SCS)?
– Any system that MUST have an extreme level of reliability
– An SCS failure may result in loss of life or property
– An SCS is subject to formal certification (e.g., DO-178C)
– Formal certification is very expensive (ca $60-80/SLOC)

Background – What is a Safety-Critical System?

4

• Originally, SCSs were rare, small, and simple
– E.g, aircraft autopilot (ca 1975)
– SCSs now found in increasing numbers and complexity
• Aircraft, spacecraft, air traffic control, automotive, rapid

transit, medical devices, power generation and
transmission, industrial controls, military vehicles,
UAVs, weapons, etc.

– Until about 1980, all SCSs written in Assembly
– 1980 – present, most SCSs written in C
– 1995 – present, subset of Ada also used (Ravenscar profile or

SPARK)
– No dynamic memory allocation in SCSs until recently
– No OO SCSs until 2012

Background – History of SCSs

5

• SCSs represent a new technology domain for Java
– Application code must be as simple as possible
– Certification required for both application and infrastructure
– Almost all SCSs have “hard real-time” characteristics
– Provably correct memory management is critical

• Around 2004, The Open Group (TOG) started a High Assurance
Software initiative
– TOG is a consortium of about 400 companies, government

agencies, and other consortia creating open standards
• For example, TOG manages the Single Unix Specification

(SUS) that governs all UNIX implementations
– Members wanted a modern, robust language for use in such S/W
– Therefore, TOG started an effort for Safety-Critical Java
– JSR 302 was approved in 2006.

Background – JSR-302

6

• Why do this JSR?
– Permit SCSs to exploit major Java strengths for safety,

reliability, portability
• What's the need?

– Existing SCSs are overly expensive, and difficult to certify
– They tend to duplicate infrastructure capabilities (e.g.,

drivers, memory management, scheduling)
• How does it fit in to the Java ecosystem?

– Built upon the RTSJ (JSR 1, JSR 282) to maintain
compliance with J2SE – currently requires Java 8.

• Is the idea ready for standardization?
– Yes. Multiple organizations in TOG are looking for this.

Business/Marketing/Ecosystem Justification

7

• The EG has consisted of the following members:
– Industrial: aicas, IBM, Boeing, Rockwell Collins, Siemens, DDC-I
– Academic: Andy Wellings, Martin Schoeberl
– Others: Ben Brosgol, Scott Anderson, Joyce Tokar

• The EG has met weekly over it’s lifetime by teleconference (currently
uses Zoom)

• The EG communicates internally using e-mail, and via a shared
SVN repository

Expert Group

8

• Introduces three Compliance Levels (Level Zero, One, and Two)
– Higher levels permit more complex applications
– Higher levels require more expensive infrastructure

• Introduces Mission concept
– Application consists of one or more Missions
– Missions can be sequenced arbitrarily
– At Level Two, multiple Missions are possible simultaneously

• Mission consists of
– Non-GC memory area (however, GC not prohibited)
– One or more Schedulable Objects (from RTSJ)

• RTSJ-subset memory management (e.g., can’t share private memory
across Schedulable Objects)

Brief Technical Overview (1 of 3)

9

• Simple I/O using JME Connectors and Connections
– No file management)

• Supports RTSJ Interrupt Service Routines
• Supports RTSJ Raw Memory (e.g., DMA, memory-mapped I/O)
• Supports RTSJ Clocks and Timers, including user-defined clocks
• Simple JNI support

– Limited reflection
– Specification defines supported JNI interfaces

• Exception support is a subset of RTSJ

Brief Technical Overview (2 of 3)

10

• Specific Java SCJ Annotations are required
– E.g., SCJAllowed(level) means that a method is allowed for an SCJ

application at Level “level” or below, and that it is executable on any SCJ
infrastructure supporting Level “level” or above.

• Specification defines SCJ-supported Java library classes and
methods from
– java.io
– java.lang
– java.microedition.io
– javax.realtime
– javax.realtime.memory
– javax.realtime.device
– javax.safetycritical
– javax.safetycritical.annotate
– javax.safetycritical.io

Brief Technical Overview (3 of 3)

11

Publicity

• Open Group Real-Time and Embedded Forum
– regular updates have been presented at TOG meetings

• Java Technology for Real-time and Embedded
Systems (JTRES)
– More than 100 papers have been peer-reviewed,

published, and presented on SCJ topics
• SCJ Presented at the 2nd International Workshop on

the Certification of Safety-Critical Software
Controlled Systems
– Java for Safety-Critical Applications, Proceedings of

SafeCert 2009, York, UK, 2009

12

Collaboration with other community groups

• We have been continuously collaborating with JSR
282 to ensure compatibility between the
specifications.
– Issues forwarded to JSR 282 EG
– JSR 282 updates then returned to the JSR 302 EG
– Accommodations regularly made to ensure that

SCJ is implementable on an RTSJ (JSR 302) base
• Several EG members are also JSR 282 members
• We also collaborate with the Open Group Realtime

and Embedded Forum.

13

IP flow

• The SCJ Specification uses an open license:
– https://www.jcp.org/aboutJava/communityprocess/licenses/j

sr302/JSR-302SpecificationLicense.txt
• The SCJ RI and TCK use an open source license:

– https://www.jcp.org/aboutJava/communityprocess/licenses/j
sr302/302RILicense.txt

• We have received a number of comments and contributions
from outside the JCP. The EG has reviewed all
contributions and incorporated them when possible.
• All collaboration tools are open source
• We do not currently have a contributor agreement
• We are not aware of any legal concerns

https://www.jcp.org/aboutJava/communityprocess/licenses/jsr302/JSR-302SpecificationLicense.txt

Thank You!

http://jcp.org
Thank you!

