
JSR 302 Review

Safety-Critical Java

January 13, 2014

Doug Locke, Ph.D. (Specification Lead)

The Open Group

2

Agenda

• Goals

• Information to be gathered

– Background

– Technical Scope

– Expert Group

– Deliverables: Specification, RI, TCK, IP

– Schedule

– Publicity, Collaboration, Participation, and Transparency

• Implementation notes

• Issues

• Questions, discussion, next steps

3

• What is a Safety-Critical System (SCS)?

– Any system that MUST have an extreme level of reliability

– An SCS failure may result in loss of life or property

– An SCS is subject to formal certification (e.g., DO-178C)

– Formal certification is very expensive (ca $40-50/SLOC)

Background – What is a Safety-Critical System?

4

• Originally, SCSs were rare, small, and simple

– E.g, aircraft autopilot (ca 1975)

– SCSs now found in increasing numbers and complexity

• Aircraft, spacecraft, air traffic control, automotive, rapid
transit, medical devices, power generation and
transmission, industrial controls, military vehicles,
UAVs, weapons, etc.

– Until about 1980, all SCSs written in Assembly

– 1980 – 1995, most SCSs written in C

– 1995 – present, subset of Ada used (Ravenscar profile or SPARK)

– No dynamic memory allocation in SCSs until recently

– No OO SCSs until 2012

Background – History of SCSs

5

• SCSs represent a new technology domain for Java

– Application code must be as simple as possible

– Certification required for both application and infrastructure

– Almost all SCSs have “hard real-time” characteristics

– Provably correct memory management is critical

• Around 2004, The Open Group (TOG) started a High Assurance

Software initiative

– TOG is a consortium of about 400 companies, government
agencies, and other consortia

– Members wanted a modern, robust language for use in such S/W

– Therefore, TOG started an effort for Safety-Critical Java

– JSR-302 was approved in 2006.

Background – JSR-302

6

• Why do this JSR?

– Permit SCSs to exploit major Java strengths for safety,
reliability, portability

• What's the need?

– Existing SCSs are overly expensive, and difficult to certify

– They tend to duplicate infrastructure capabilities (e.g.,
drivers, memory management, scheduling)

• How does it fit in to the Java ecosystem?

– Built upon RTSJ (JSR-1, JSR-282) to maintain compliance
with J2ME and J2EE – currently requires Java 7.

• Is the idea ready for standardization?

– Yes. Multiple organizations in TOG are looking for this.

Business/Marketing/Ecosystem Justification

7

• The EG consists of the following members:

– Industrial: aicas, IBM, Atego, Boeing, Rockwell Collins, Siemens,
DDC-I

– Academic: Andy Wellings, Martin Schoeberl, Anders Ravn

– Others: Ben Brosgol, Scott Anderson, Joyce Tokar

• The EG currently meets weekly by teleconference

• The EG communicates internally with e-mail, and via an SVN

repository

Expert Group

8

• Introduces three Compliance Levels (Level Zero, One, and Two)

– Higher levels permit more complex applications

– Higher levels require more expensive infrastructure

• Introduces Mission concept

– Application consists of one or more Missions

– Missions can be sequenced arbitrarily

– At Level Two, multiple Missions are possible simultaneously

• Mission consists of

– Non-GC memory area

– One or more Schedulable Objects (from RTSJ)

• RTSJ-subset memory management (e.g., can’t share private memory

across Schedulable Objects)

Brief Technical Overview (1)

9

• Simple I/O using JME Connectors and Connections

– No file management)

• Supports RTSJ Interrupt Service Routines

• Supports RTSJ Raw Memory (e.g., DMA, memory-mapped I/O)

• Supports RTSJ Clocks and Timers, including user-defined clocks

• Simple JNI support

– Limited reflection

– Specification defines supported JNI interfaces

• Exception support is subset of RTSJ

Brief Technical Overview (2)

10

• Specific Java SCJ Annotations are required

– E.g., SCJAllowed(level) means that a method is allowed for an SCJ
application at Level “level” or below, and that it is executable on any SCJ
infrastructure supporting Level “level” or above.

• Specification defines all SCJ-supported Java library classes and

methods from

– java.io

– java.lang

– java.microedition.io

– javax.realtime

– javax.realtime.device

– javax.safetycritical

– javax.safetycritical.annotate

– javax.safetycritical.io

Brief Technical Overview (3)

11

History

• Initial work on SCJ started in The Open Group in 2003

• JSR-302 was approved in July 2006

• First Early Draft Review started 7 January, 2011

– Completed 7 April, 2011

• Second Early Draft Review started 28 June, 2013

– Completed 26 September, 2013

• Besides EDR releases, the EG has released many drafts

via TOG meetings and academic postings.

– E.g., https://github.com/scj-devel/doc which is maintained
by researchers at the Technical University of Denmark

https://github.com/scj-devel/doc
https://github.com/scj-devel/doc
https://github.com/scj-devel/doc
https://github.com/scj-devel/doc

12

Other Deliverables

• Other than the Specification, RI, and TCK, the EG does

not currently plan other deliverables

• However, the SCJ Specification (currently at 344 pages

not counting Javadoc Appendices) provides

– Detailed semantics descriptions

– Computational model descriptions

– Sample application code

– Rationale for key capabilities and limitations

13

Publicity

• Open Group Real-Time and Embedded Forum

– regular updates presented

– E.g., http://www.opengroup.org/sanfrancisco2014/rtes

• Java Technology for Real-time and Embedded

Systems (JTRES)

– Annual conference dedicated to RTSJ and SCJ issues

– Has met every year since 2003

– More than 100 papers published and presented on SCJ
topics

– See jtres2014.compute.dtu.dk/ for 2014 Niagara Falls
conference information

http://www.opengroup.org/sanfrancisco2014/rtes

14

Collaboration with other community groups

• We are collaborating with JSR-282 to ensure

maximal compatibility between the specifications.

– Issues forwarded to JSR-282 EG

– JSR-282 updates then returned to the EG

– Accommodations regularly made to ensure that
SCJ is implementable on an RTSJ base

• Three EG members are also JSR-282 members

• We also collaborate with the Open Group Realtime

and Embedded Forum.

15

Implementations

• The RI is being developed by aicas, GmbH

• An SCJ implementation is currently available from

– Aalborg University and VIA University College,
Denmark

– http://www.icelab.dk/index.html

• Another SCJ implementation is being created at the

Technical University of Denmark

– http://cj4es.imm.dtu.dk/

16

Schedule

Milestone Date

Specification Draft Complete 1 Mar. 2015

Final Draft Review Start 1 Apr. 2015

First RI Release 1 May. 2015

First TCK Release 1 Jun. 2015

17

IP flow

• The SCJ Specification uses an open license:

– https://www.jcp.org/aboutJava/communityprocess/license
s/jsr302/JSR-302SpecificationLicense.txt

• The SCJ RI and TCK use an open source license:

– https://www.jcp.org/aboutJava/communityprocess/license
s/jsr302/302RILicense.txt

• We have received a number of comments and

contributions from outside the JCP. The EG reviews all

contributions and incorporates them when possible.

• All collaboration tools are open source

• We do not currently have a contributor agreement

• We are not aware of any legal concerns

https://www.jcp.org/aboutJava/communityprocess/licenses/jsr302/JSR-302SpecificationLicense.txt

18

RI and TCK development

• The JSR-302 RI is being developed by aicas GmbH

• The JSR-302 TCK is being developed by Aalborg

University and VIA University College, Denmark (from

SCJ formal semantics)

• Neither of these are from the spec-lead organization.

• The RI and TCK will be available for public download

• We plan to provide a public source code repository for the

RI and TCK
– We will plan for this before completion of JSR-302

19

Participation and transparency

• JSR-302 is managed by The Open Group

– TOG manages many open standards

– E.g., TOG manages the POSIX standard

• The JCP page is https://www.jcp.org/en/jsr/detail?id=302

• The SCJ project website is http://douglocke.com/SCJ

20

Adopt-a-JSR

• This is a new requirement that we have not been

tracking.

• What do we have to do?

21

Mailing lists or forums

• This is a new capability for us

• Twitter hashtag: #SCJava

• Spec lead has tweeted several messages on SCJ

• We expect increased message traffic as we near

completion

• Pointers to twitter and project website added to SCJ-302

page on jcp.org as well as in twitter messages.

• JTRES community regularly updated on SCJ progress

22

Issue tracker

• This project is nearly complete

• The project started with 17 major issues

• All major issues have been closed

• At present, 8 minor issues are open, expected to be closed in

January

• On average ca 12 issues opened and closed each month.

• Spec Lead keeps issues list, sends to EG list regularly

• Non-EG issues become EG issues immediately, are then

reported back to originator by Spec Lead

23

Document archive

• Public documents consist of public presentations and

draft specifications

– Presentations made at TOG meetings quarterly

– Draft specifications published on GitHub

– GitHub also used by community researchers

• Private repository (SVN) used for EG document archives

– Specification using LaTex, with Javadoc tools

– Any EG member can build the spec

24

Other transparency and participation metrics

• The Safety-Critical Java community is an active subset

of the real-time Java community

• This community consists of practitioners and researchers

involved in safety-critical and Java technology

• There have been over 100 papers published on SCJ

25

Implementation notes

• Methodologies for creating certifiable infrastructures for

safety-critical systems are known

– Very expensive

– Each mechanism must be certifiably correct

– Large number of documented “artifacts” must be created for
certification

– Both implementation and application must be certifiable

– Rigorous development methodologies and testing must be
followed

26

Questions, discussion, next steps

Thank You!

http://jcp.org

Thank you!

http://jcp.org

