Java* at Twitter

Chris Aniszczyk (@cra)
https://aniszczyk.org

https://aniszczyk.org

Twitter Runs on Open Source

maven /\ PUPPEL & ¢, 9"
@Jenkms Jm @

Drupal

MQSQL @ @I\Iettg @ python

zepto.ss O p en l D K Cassandra

B5R mr || |||"

COMPONENTS

Twitter Runs on Java/Scala

¥ Netty

Twistory
History of the Twitter Stack

2006: A simple idea...

Routing

Presentation

Logic

Monorail (Ruby on Rails)

Storage

MySQL '

FAIL WHALE

Twitter: Failure is an option. At least once a day, or whenever you need it.

Routing Presentation Logic

Monorail (Ruby on Rails)
gy «‘
| ¥3)

Storage

MySQL

‘Tweet Store'

Flock

-
Memcache

Redis

il

500M

250M

2006 2009 2010 2013

< 3283 TPS (record)
= v D

Group Stage

Knockout Rounds

https://blog.twitter.com/2010/2010-world-cup-global-conversation
http://bits.blogs.nytimes.com/2010/06/15/twitter-suffers-from-a-number-of-technical-glitches

https://blog.twitter.com/2010/2010-world-cup-global-conversation

Fragile monolithic Rails code base: managing raw
database and memcache connections to rendering the
site and presenting the public APIs

Throwing machines at the problem: instead of
engineering solutions

Trapped In an optimization corner: trade off readability
and flexibllity for performance

We wanted big infra wins: in performance, reliability and
efficiency (reduce machines to run Twitter by 10x)

Failure iIs inevitable in distributed systems: we
wanted to isolate fallures across our infrastructure

Cleaner boundaries with related logic in one place:
desire for a loosely coupled services oriented model at the
systems level

Started to evaluate our front end server
CPU, RAM and network

tier:

Rails machines were being pushed to the limit: CPU
and RAM maxed but not network (200-300 requests/host)

Twitter’s usage was growing: it was going to-

ake a lot

of machines to keep up with the growth cu

e

We started to experiment with the JVM...

Search (Java via Lucene)
http://engineering.twitter.com/2010/10/twitters-new-search-architecture.html

FlockDB: Social Graph (Scala)

https://blog.twitter.com/2010/introducing-flockdb
https://github.com/twitter/flockdb

...and we liked it, enamored by JVM performance!

We weren’t the only ones either: http://www.slideshare.net/pcalcado/from-a-monolithic-ruby-on-rails-app-to-the-jvm

http://engineering.twitter.com/2010/10/twitters-new-search-architecture.html
https://blog.twitter.com/2010/introducing-flockdb
http://www.slideshare.net/pcalcado/from-a-monolithic-ruby-on-rails-app-to-the-jvm

Level of trust with the JVM with previous experience
JVM is a mature and world class platform
Huge mature ecosystem of libraries
Polyglot possibilities (Java, Scala, Clojure, etc)

. ;l DK ! Sca I d

JVM Team at Twitter

Own OpendJDK fork development
Supports JVM performance tuning for teams
GC development and optimization
C2 development and optimization

See this presentation for more information:
https://www.youtube.com/watch?v=szvHghWyuoQ

https://www.youtube.com/watch?v=szvHghWyuoQ

OpendDK at Twitter

Fork OpenJDK (v1.7.0 60b2+)

Maintain a crazy setup via hg-git; release monthly
Hope to develop our fork in the open one day

hg.openjdijava.net Local Machine (Twitter)

corba
paxp
ows
openydk
yik
NOtsHOL
langtoos

A perf agent library for exporting symbol info

Heapster (google-perftools): github.com/mariuseriksen/heapster
Complete Heat Profiling solution in production
perf / hotspot vm diagnostic runtime:

global, dynamic context kernel/user mode instrumentation
low overhead/scalable mechanism for aggregating event data
ability to execute arbitrary actions when data matches state

Future work:
Low latency GC (immediate gen / thread-local GC)
Targeted performance optimizations for Scala

http://github.com/mariuseriksen/heapster

Decomposing the Monolith

Created services based on our core nouns:

Tweet service
User service
Timeline service
DM service
Social Graph service

Routing Presentation

Logic Storage

MySQL
Monoralil

(

Tweet Store

API Tweet Service

~N

- Flock
Web User Service '

- User Store

TFE

(reverse proxy

)
’V Netty

Timeline
Service

dat

Search

Cache

(

SocialGraph
Service

Feature X

Memcached

(

Feature Y DM Service

Redis

it
il

Twitter Stack

- A peak at some of our technology
Finagle, Zipkin, Scalding and Mesos

Decomposing the monolith: each team took slightly
different approaches to concurrency

Different failure semantics across teams: no
consistent back pressure mechanism

Failure domains informed us of the importance of
having a unified client/server library: deal with failure
strategies and load balancing

Hello Finagle!

http://twitter.github.io/finagle
Used by Twitter, Apple, Nest, Soundcloud, Foursquare and more!

000 Finagle &

Finagle

Finagle is an extensible RPC system for the JVM, used to construct
high-concurrency servers. Finagle implements uniform client and
server APIs for several protocols, and is designed for high
performance and concurrency. Most of Finagle’s code is protocol
agnostic, simplifying the implementation of new protocols.

Finagle is written in Scala, but provides both Scala and Java
idiomatic APIs.

Contributing

Finagle is actively maintained by Twitter’s infrastructure team, but we
have many external contributors as well. Before endeavoring on large
changes, please discuss them with the Google groups to receive
feedback and suggestions.

Other resources

http://twitter.github.io/effectivescala/#Concurrency

Takes care of: service discovery, load balancing, retrying,
connection pooling, stats collection, distributed tracing

Future [T]: modular, composable, async, non-blocking
/0O

http://twitter.github.io/effectivescala/#Concurrency

http://twitter.github.io/effectivescala/#Concurrency

Zipkin hooks into the transmission logic of Finagle
and times each service operation; gives you a visual
representation where most of the time to fulfill a
request went.

https://github.com/twitter/zipkin

© g 3131482 ms

https://github.com/twitter/zipkin

Services receive a ton of traffic and generate a ton
of use log and debugging entries.

@Scalding is a open source Scala library that makes
It easy to specify MapReduce jobs with the benefits
of functional programming!

w https://github.com/twitter/scalding

https://github.com/twitter/scalding

pu

}

blic class WordCount {

public static class Map extends Mapper<LongWritable, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(l);
private Text word = new Text();

public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String line = value.toString();
StringTokenizer tokenizer = new StringTokenizer(line);
while (tokenizer.hasMoreTokens()) {
word.set(tokenizer.nextToken());
context.write(word, one);

Split lines into words

Turn each word into a Pair(word, 1)

Group by word (?)

public static class Reduce extends Reducer<Text, IntWritable, Text, IntWritable> {
public void reduce(Text key, Iterable<IntWritable> values, Context context)
throws I0Exception, InterruptedException {
int sum = 9;

for (IntWritable val : values) { For each word, sum the 1s to get the total
sum += val.get();
}

context.write(key, new IntWritable(sum));

public static void main(Stringl] args) throws Exception {
Configuration conf = new Configuration();

Job job = new Job(conf, “wordcount™);

job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);

job.setMapperClass(Map.class);
job.setReducerClass(Reduce.class);

job.setInputFormatClass(TextInputFormat.class);
job.setOutputFormatClass(TextOutputFormat.class);

FilelnputFormat.addInputPath(job, new Path(argsi®]));
FileOutputFormat.setOutputPath(job, new Path(argsil]));

job.waitForCompletion(true);
}

import com.twitter.scalding._

class WordCountJob(args : Args) extends Job(args) {
TextLine(args("input")).read

.flatMap('line —> 'word) { _.split("\\s+") }
.groupBy('word) { _.size }
.write(Tsv(args("output")))

https://qithub.com/twitter/scalding/wiki/Rosetta-Code

https://github.com/twitter/scalding/wiki/Rosetta-Code

The evils of single tenancy and static partitioning
Different jobs... different utilization profiles...
Can we do better?

DATACENTER o STATIC PARTITIONING

@ Spark

33% \ \ 33% 33%

Google was generations ahead with Borg/Omega

“The Datacenter as a Computer”

http://research.google.com/pubs/pub35290.html (2009)
engineers focus on resources needed; mixed workloads possible

Learn from Google and work w/ university research!
htip://wired.com/wiredenterprise/2013/03/google-borg-twitter-mesos

DATACENTER - ;E MESOS
ab =z=== J—
o= = e -

http://research.google.com/pubs/pub35290.html
http://www.wired.com/wiredenterprise/2013/03/google-borg-twitter-mesos

Apache Mesos: kernel of the data center
obviates the need for virtual machines*
isolation via Linux cgroups (CPU, RAM, network, FS)
reshape clusters dynamically based on resources
multiple frameworks; scalablllty to 10, OOOs of nodes

batch <= ervices Workloads

COOJICCCOL,

Frameworks

am A erne

LD

distributed resources: CPU, RAM, I/0, FS, rack localily, etc. Cluster

Data Center Computing

Reduce CapEx/OpEXx via efficient utilization of HW
http://mesos.apache.org

33%
|
i “ reduces CapEx and OpEx!
100%
0% —
75% :

33%
Rk
0% B 25%
33%
Sporiz \ reduces latency!
0%

http://mesos.apache.org

Resources

httos.//qgithub.com/twitter/finagle
https.//qithub.com/twitter/zipkin
https.//qgithub.com/twitter/scalding

http.//mesos.apache.org

http.//wired.com/wiredenterprise/2013/03/google-borg-twitter-mesos
http://mesosphere.io/2013/09/26/docker-on-mesos/
http.//typesate.com/blog/play-framework-grid-deployment-with-mesos

http.//strata.oreilly.com/2013/09/how-twitter-monitors-millions-or-time-series. htm/

http.//research.google.com/pubs/pub35290.html

http.://nerds.airbnb.com/hadoop-on-mesos/
htto.//www.youtube.com/watch ?v=0ZFMIO98Jk

https://github.com/twitter/finagle
https://github.com/twitter/zipkin
https://github.com/twitter/scalding
http://mesos.apache.org
http://www.wired.com/wiredenterprise/2013/03/google-borg-twitter-mesos
http://mesosphere.io/2013/09/26/docker-on-mesos/
http://research.google.com/pubs/pub35290.html
http://nerds.airbnb.com/hadoop-on-mesos/
http://www.youtube.com/watch?v=0ZFMlO98Jk

Q&A

Thank you!
zX@twitter.com
https.//aniszczyk.orq

mailto:zx@twitter.com
https://aniszczyk.org

