
Java* at Twitter 
Chris Aniszczyk (@cra) 
https://aniszczyk.org

https://aniszczyk.org


Twitter Runs on Open Source



Twitter Runs on Java/Scala



Twistory
History of the Twitter Stack



2006: A simple idea...



Routing Presentation Logic Storage

Monorail (Ruby on Rails)
MySQL



2008: Growing Pains



Routing Presentation Logic Storage

Monorail (Ruby on Rails)
MySQL

Tweet Store

Flock

Redis

Memcache
d

Cache



2009+: Crazy Growth

201320132013201320132010 20132006 2010

2006 2009 2013 

250M 

500M 

2010 



2010: World Cup Woes

https://blog.twitter.com/2010/2010-world-cup-global-conversation 
http://bits.blogs.nytimes.com/2010/06/15/twitter-suffers-from-a-number-of-technical-glitches

https://blog.twitter.com/2010/2010-world-cup-global-conversation


What was wrong?
Fragile monolithic Rails code base: managing raw 
database and memcache connections to rendering the 

site and presenting the public APIs 
!

Throwing machines at the problem: instead of 
engineering solutions 

!

Trapped in an optimization corner: trade off readability 
and flexibility for performance 

!



Re-envision the system?
We wanted big infra wins: in performance, reliability and 

efficiency (reduce machines to run Twitter by 10x) 
!

Failure is inevitable in distributed systems: we 
wanted to isolate failures across our infrastructure 

!

Cleaner boundaries with related logic in one place: 
desire for a loosely coupled services oriented model at the 

systems level 
!



Ruby VM Reflection
Started to evaluate our front end server tier:  

CPU, RAM and network  
!

Rails machines were being pushed to the limit: CPU 
and RAM maxed but not network (200-300 requests/host) 

!

Twitter’s usage was growing: it was going to take a lot 
of machines to keep up with the growth curve 

!



JVM Experimentation
We started to experiment with the JVM... 

!

Search (Java via Lucene) 
http://engineering.twitter.com/2010/10/twitters-new-search-architecture.html 

!

FlockDB: Social Graph (Scala) 
https://blog.twitter.com/2010/introducing-flockdb 

https://github.com/twitter/flockdb 

!

...and we liked it, enamored by JVM performance! 
!

We weren’t the only ones either: http://www.slideshare.net/pcalcado/from-a-monolithic-ruby-on-rails-app-to-the-jvm 

http://engineering.twitter.com/2010/10/twitters-new-search-architecture.html
https://blog.twitter.com/2010/introducing-flockdb
http://www.slideshare.net/pcalcado/from-a-monolithic-ruby-on-rails-app-to-the-jvm


The JVM Solution
Level of trust with the JVM with previous experience 

!

JVM is a mature and world class platform 
!

Huge mature ecosystem of libraries  
!

Polyglot possibilities (Java, Scala, Clojure, etc)



Java at Twitter
JVM Team at Twitter 

Own OpenJDK fork development 
Supports JVM performance tuning for teams 

GC development and optimization 
C2 development and optimization 

!

See this presentation for more information: 
https://www.youtube.com/watch?v=szvHghWyuoQ 

https://www.youtube.com/watch?v=szvHghWyuoQ


OpenJDK at Twitter
Fork OpenJDK (v1.7.0 60b2+) 

Maintain a crazy setup via hg-git; release monthly 
Hope to develop our fork in the open one day 



OpenJDK at Twitter Additions
A perf agent library for exporting symbol info 

Heapster (google-perftools): github.com/mariuseriksen/heapster 
Complete Heat Profiling solution in production 

perf / hotspot vm diagnostic runtime: 
global, dynamic context kernel/user mode instrumentation 

low overhead/scalable mechanism for aggregating event data 
ability to execute arbitrary actions when data matches state 

!

Future work: 
Low latency GC (immediate gen / thread-local GC) 

Targeted performance optimizations for Scala 
!

http://github.com/mariuseriksen/heapster


Decomposing the Monolith
Created services based on our core nouns: 

!

Tweet service 
User service 

Timeline service 
DM service 

Social Graph service 
.... 
!



Routing Presentation Logic Storage

MySQL

Tweet Store

Flock

Redis

Memcached

Cache

TFE

(reverse proxy)

Monorail

Tweet Service

User Service

Timeline 
Service

SocialGraph 
Service

DM Service

User Store

API

Web

Search

Feature X

Feature Y

HTTP THRIFT THRIFT*



Twitter Stack
A peak at some of our technology 

Finagle, Zipkin, Scalding and Mesos



Services: Concurrency is Hard
Decomposing the monolith: each team took slightly 

different approaches to concurrency 
!

Different failure semantics across teams: no 
consistent back pressure mechanism 

!

Failure domains informed us of the importance of 
having a unified client/server library: deal with failure 

strategies and load balancing 
!



Hello Finagle!
http://twitter.github.io/finagle 

Used by Twitter, Apple, Nest, Soundcloud, Foursquare and more!

http://twitter.github.io/effectivescala/#Concurrency


Finagle Programming Model
Takes care of: service discovery, load balancing, retrying, 

connection pooling, stats collection, distributed tracing 
!

Future[T]: modular, composable, async, non-blocking 
I/O 
!

http://twitter.github.io/effectivescala/#Concurrency 

http://twitter.github.io/effectivescala/#Concurrency


Tracing with Zipkin
Zipkin hooks into the transmission logic of Finagle 

and times each service operation; gives you a visual 
representation where most of the time to fulfill a 

request went. 
!

https://github.com/twitter/zipkin 
!

!

!

https://github.com/twitter/zipkin


Hadoop with Scalding
Services receive a ton of traffic and generate a ton 

of use log and debugging entries. 
!

@Scalding is a open source Scala library that makes 
it easy to specify MapReduce jobs with the benefits 

of functional programming! 
!

                               https://github.com/twitter/scalding 
!

!

https://github.com/twitter/scalding


Counting Words with Java*



Counting Words with Scalding

https://github.com/twitter/scalding/wiki/Rosetta-Code

https://github.com/twitter/scalding/wiki/Rosetta-Code


Data Center Evils
The evils of single tenancy and static partitioning 

Different jobs... different utilization profiles...  
Can we do better? 

STATIC PARTITIONINGDATACENTER

0%

33%

0%

33%

0%

33%



Borg and The Birth of Mesos
Google was generations ahead with Borg/Omega 

“The Datacenter as a Computer” 
http://research.google.com/pubs/pub35290.html (2009) 

engineers focus on resources needed; mixed workloads possible 

!

Learn from Google and work w/ university research! 
http://wired.com/wiredenterprise/2013/03/google-borg-twitter-mesos

DATACENTER

http://research.google.com/pubs/pub35290.html
http://www.wired.com/wiredenterprise/2013/03/google-borg-twitter-mesos


Mesos, Linux and cgroups
Apache Mesos: kernel of the data center 
obviates the need for virtual machines* 

isolation via Linux cgroups (CPU, RAM, network, FS) 
reshape clusters dynamically based on resources 

multiple frameworks; scalability to 10,000s of nodes 



Data Center Computing
Reduce CapEx/OpEx via efficient utilization of HW  

http://mesos.apache.org 

0%

33%

0%

33%

0%

33% 0%

25%

50%

75%

100%

reduces latency!

reduces CapEx and OpEx!

http://mesos.apache.org


Resources

https://github.com/twitter/finagle 
https://github.com/twitter/zipkin 

https://github.com/twitter/scalding 
http://mesos.apache.org 

http://wired.com/wiredenterprise/2013/03/google-borg-twitter-mesos 
http://mesosphere.io/2013/09/26/docker-on-mesos/ 

http://typesafe.com/blog/play-framework-grid-deployment-with-mesos 
http://strata.oreilly.com/2013/09/how-twitter-monitors-millions-of-time-series.html 

http://research.google.com/pubs/pub35290.html 
http://nerds.airbnb.com/hadoop-on-mesos/ 

http://www.youtube.com/watch?v=0ZFMlO98Jk 

https://github.com/twitter/finagle
https://github.com/twitter/zipkin
https://github.com/twitter/scalding
http://mesos.apache.org
http://www.wired.com/wiredenterprise/2013/03/google-borg-twitter-mesos
http://mesosphere.io/2013/09/26/docker-on-mesos/
http://research.google.com/pubs/pub35290.html
http://nerds.airbnb.com/hadoop-on-mesos/
http://www.youtube.com/watch?v=0ZFMlO98Jk


Q & A
Thank you! 

zx@twitter.com 
https://aniszczyk.org 

mailto:zx@twitter.com
https://aniszczyk.org

