
Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, California 95054
U.S.A.
1-800-555-9SUN or 1-650-960-1300

Java™ Technology Compatibility Kit
User’s Guide Template

For Technology Licensees

Release [VersionNumber]

May, 2003

Sun Microsystems, Inc.
901 San Antonio Road
Palo Alto, CA 94303
U.S.A.
1-800-555-9SUN or 1-650-960-1300

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, California 95054
U.S.A.
1-800-555-9SUN or 1-650-960-1300

<NOTE this copyright page states Sun’s copyrights regarding this TCK User’s
Guide Template. It is not intended for use as a template or model for TCK
User’s Guide copyright statements.>

COPYRIGHT © 2003 SUN MICROSYSTEMS, INC. ALL RIGHTS RESERVED.

SUN MICROSYSTEMS, INC. HEREBY GRANTS A NON-EXCLUSIVE, NON-TRANSFERABLE, WORLDWIDE LICENSE TO JAVA
COMMUNITY PROCESS (JCP) MEMBERS TO USE, REPRODUCE, AND CREATE DERIVATIVE WORKS FROM THIS DOCUMENT, SOLELY
FOR THE PURPOSE OF CREATING THEIR OWN JAVA TECHNOLOGY COMPATIBILITY KIT USER GUIDES, AND TO DISTRIBUTE,
PUBLICLY PERFORM, OR PUBLICLY DISPLAY SUCH USER GUIDES, IN WHOLE OR IN PART, AND IN ANY MEDIA OR FORMAT.
LICENSEE AGREES THAT IT MAY NOT MODIFY OR CLAIM ANY LEGAL RIGHTS IN ANY SUN TRADEMARK OR LOGO. LICENSEE
MAY NOT USE ANY SUN TRADEMARK OR LOGO EXCEPT IN CONFORMANCE WITH SUN’S TRADEMARK AND LOGO USAGE
REQUIREMENTS (WWW.SUN.COM/POLICIES/TRADEMARKS/). THIS LICENSE IS SUBJECT TO AND CONDITIONED UPON LICENSEE’S
COMPLIANCE WITH THE TERMS AND CONDITIONS OF THIS LICENSE, AND LICENSEE’S RETENTION, ON ALL REDISTRIBUTIONS,
IN WHOLE OR IN PART, OF THE ABOVE COPYRIGHT NOTICE, THIS PERMISSION NOTICE, AND ALL DISCLAIMERS. THE TERMS OF
LICENSEE’S USE ARE GOVERNED BY CALIFORNIA LAW, EXCLUDING THAT BODY OF LAW RELATING TO CONFLICTS OF LAWS,
AND APPLICABLE FEDERAL LAW, AND MAY ONLY BE AMENDED THROUGH A WRITING SIGNED BY SUN AND LICENSEE.

SUN, SUN MICROSYSTEMS, THE SUN LOGO, JAVA, JAVATEST, JAVA COMMUNITY PROCESS, JCP, J2SE, J2ME, AND JVM ARE
TRADEMARKS, REGISTERED TRADEMARKS, OR SERVICE MARKS OF SUN MICROSYSTEMS, INC. IN THE U.S. AND OTHER
COUNTRIES. ALL TRADEMARKS ARE USED UNDER LICENSE AND ARE TRADEMARKS REGISTERED IN THE U.S. AND OTHER
COUNTRIES.

US GOVERNMENT RIGHTS

Use, duplication, or disclosure by the U.S. Government is subject to restrictions set forth in the Sun Microsystems, Inc. licenses and as provided
in DFARS 227.7202-1(a) and 227.7202-3(a) (1995), DFARS 252.227-7013(c)(ii) (OCT 1988), FAR 12.212(a)(1995), FAR 52.227-19, or FAR 52.227-14
(ALT III), as applicable. Sun Microsystems, Inc.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS, AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, ACCURACY, OR NON-
INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID. IN
NO EVENT SHALL SUN MICROSYSTEMS, INC. BE LIABLE FOR ANY DIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, LOSS OF
USE, DATA OR PROFITS, OR BUSINESS INTERRUPTION), HOWEVER CAUSED AND UNDER ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, NEGLIGENCE, STRICT LIABILITY, OR TORT, ARISING IN ANY WAY OUT OF THE USE OF THIS DOCUMENT, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. SUN FURTHER DISCLAIMS ANY AND ALL WARRANTIES ARISING FROM
COURSE OF DEALING, USAGE OR TRADE. NO ADVICE OR INFORMATION, WHETHER ORAL OR WRITTEN, OBTAINED FROM SUN
OR ELSEWHERE SHALL CREATE ANY WARRANTY NOT EXPRESSLY STATED IN THIS AGREEMENT. Licensee assumes all risk and
liability with respect to use of this document and agrees to indemnify Sun Microsystems, Inc. against any loss, damages, or liability that result
from licensee's exercise of these license rights. Sun's rights of indemnification shall survive the termination of this license. Sun may terminate
this license at any time if licensee exceeds the scope of the license.
Please

Please

Contents

How to Use This Template xiii

Example Preface xxiii

1. Introduction 1

Compatibility Testing 1

Why Compatibility Testing is Important 2

TCK Compatibility Rules 2

TCK Overview 2

Java Community Process (JCP) Program and Compatibility Testing 3

The [NAME TCK] 3

{[NAME TCK]—New in This Release} 3

[NAME TCK] Specifications and Requirements 4

[NAME TCK] Components 5

JavaTest Harness 5

TCK Compatibility Rules 6

TCK Compatibility Test Suite 6

Signature Testing 7

{Test Agents} 7

Exclude Lists 8

Result Files 9

Signature Test 9
vii

{Components Provided by User} 10

[NAME TCK]—Configuration 10

{Underlying Software Implementation} 10

{Application Management Software (AMS)} 11

{Other Testing Components} 12

How the [NAME TCK] Works 12

About [NAME TCK] Tests 13

{Types of Tests} 14

{Interactive Tests} 14

[NAME TCK]—Getting Started 14

2. Procedure for [NAME] [N.N] Certification 17

Certification Overview 17

Compatibility Requirements 17

Definitions 18

Rules for [NAME] Products 20

[NAME] Test Appeals Process 21

Specifications for [NAME] 24

Libraries for [NAME] 24

3. Installing the [NAME TCK] 25

Obtaining the Software 25

Installing the Software 25

[NAME TCK] Contents 26

Installing the Agent 28

{Installing the Reference Implementation} 29

4. Starting and Configuring the JavaTest Harness 31

{Setting System Variables} 31

Executing the JavaTest Harness Software 32

{Executing the JavaTest Harness—Scripts} 32

JavaTest Harness Configuration 33
viii [NAME] Technology Compatibility Kit User’s Guide • May, 2003

JavaTest Harness Configuration Overview 33

JavaTest Harness Configuration Editor 34

{Special Set-Up Instructions} 35

5. Verifying the [NAME TCK] 37

[NAME TCK] Operating Assumptions 37

{Using an Agent} 38

Verifying Installation and Setup 39

Verifying JavaTest Harness Configuration {and Connection} 39

{Verifying Other Required Components} 40

{RI Configuration Editor Questions} 41

6. Testing Your Implementation 45

Operating Assumptions—Testing a Product 45

Test Selection 46

Test Selection Criteria 46

{Multiple Test Runs With Different Test Sets} 48

{Making Sure All Necessary Tests Have Been Run} 48

Using the [NAME TCK] to Test a Product 49

Running [NAME TCK] Tests—Basic Steps 50

{[Optional] Running Interactive Tests} 51

{Running Distributed TCK Tests} 53

Port Number for Passive Agent 53

{Pre-installing Agent and Client Classes} 54

Pre-installing the [AgentName] 54

Pre-installing the <client> 54

Monitoring Test Results 55

{Test Export} 55

Exporting Tests in [NAME TCK] 55

Tests That Cannot be Exported 56

Running Exported Tests 56
Contents ix

Producing Test Reports 57

7. {Testing API Signatures} 59

Overview 59

Running Signature Test 60

8. {Test-Specific Information} 61

{Extra-Attribute Tests} 61

{Configuration} 62

{Setup} 62

{Execution} 62

9. Debugging Test Problems 63

Overview 63

Test Tree 64

Folder Information 64

Test Information 64

Agent Monitor 65

Debugging Option 65

Report Files 65

Configuration Failures 65

Hostnames and DHPC 66

10. {Product-Specific Chapter Template} 67

A. {Implementing the Test Framework} 69

Testware Components 70

When to Plug In Your Own Implementation and What to Plug In 71

Communication Channel Components 71

Client 72

Server 72

AMS 74

The Default Implementation of the Communication Channel 75
x [NAME] Technology Compatibility Kit User’s Guide • May, 2003

Client 75

Server 75

AMS 76

Plugging In Other Implementations of Server, Client, and AMS 77

B. Configuration Editor and Environment Variables 79

C. Exclusion Lists and Result Files 87

Exclude List Files 87

Exclude File Format 88

Result File Format 89

D. Frequently Asked Questions 91

Configuration 91

JavaTest Harness 92

Testing an Implementation 93

E. Release Notes 95

Release Notes Template—ASCII 95

Release Notes Template—HTML 98
Contents xi

xii [NAME] Technology Compatibility Kit User’s Guide • May, 2003

How to Use This Template

<NOTE: This Preface describes how to use this template. It is not part
of the template itself, and should be removed from the book file
before creating a document that your customers will see.>

This template is provided for your convenience. Its purpose is to help you create a
Technology Compatibility Kit (TCK) Users Guide for your product. Using this
template is optional, you are free to write and design your TCK User Guide
however you want. You can use all of this template, some of it, or none of it as you
wish.

This template assumes that you are basing your TCK on JavaTest™ harness version
3.x. If you are basing your TCK on an earlier version of the JavaTest harness or
some other underlying software then some or many portions of this template will
not be relevant.

This preface contains the following sections:

■ User Guide Template Formats.
■ Template Style Conventions.
■ Template Variables.
■ Working With Fonts, Variables, and Conditional Text.
■ Section 508 Compliance.
■ Special Appendices.
■ Indexes.

User Guide Template Formats
This template is provided in the following formats. Note that some of the features
provided in the FrameMaker format may not be available in the other formats.

■ FrameMaker. All of the FrameMaker files that make up the template, including
the FrameMaker book file (tck.book) are included in this distribution for your
use. The FrameMaker version was created and maintained using Adobe
FrameMaker version 6 from Adobe Systems Inc. (www.adobe.com).
xiii

■ Adobe Acrobat PDF format (compatible with Acrobat version 4.0 and later).
This provides the entire Technology Compatibility Kit User’s Guide Template in a
single PDF file for reference purposes. Text cut and paste operations are
supported in this version.

■ ASCII text. The template is provided in plain ASCII text files that most word
processing and desktop publishing applications can load. However, all font and
color distinctions are lost in this format. Note the following:

■ In text format each chapter is contained in a separate file. The file
tck_ug_template.txt lists the files in order with corresponding chapter
titles.

■ These text files were created using the FrameMaker “Save As > Text Only”
option. ASCII encoding was used (not ANSI).

Template Style Conventions
The following style conventions apply to this template:

Color Codes
The FrameMaker and PDF formats allow text to be displayed in color. (Naturally
there are no color codes in the ASCII text version of this template.)

This template uses color as follows:

■ Blue. Notes and comments addressed to you the author are displayed in blue (if
format allows). They are intended to be removed from the template by you. In
FrameMaker format these notes are in conditional text that can be hidden or
displayed using the Special > Conditional Text menu item as described in
“Working With Conditional Text” on page xviii.

■ Red. Optional or example text that you may, or may not, want to include
depending on your specific needs are displayed in red (if format allows). Red is
also used to describe information that you need to write or include in your
manual.

Paragraph Styles
This template uses the following special paragraph styles. The style-name in bold
face is the name of the FrameMaker paragraph tag.

<Comment paragraph.> These are notes or comments intended for you the
author. They are enclosed in <angle brackets>. If the format allows,
these paragraphs are displayed in blue color using courier font. These
xiv [NAME] Technology Compatibility Kit User’s Guide • May, 2003

paragraphs should all be removed in the final version of your book.
Comment paragraphs are also in FrameMaker conditional text so that
they can be hidden from view if you wish. This allows you to keep them
in the file, but not print out or display them.

<2b-added paragraph.> This paragraph style is used to describe the content of information
that needs to be written and included by you. For example, specific information describing your
product. They are enclosed in <angle brackets>. If the format allows, these paragraphs are
displayed blue color and sans-serif italic font. These paragraphs should all be removed in the
final version of your book and replaced with the appropriate text.

Character Styles
This template uses the following special character styles. The style-name in bold
face is the name of the FrameMaker character tag.

<WriterNote character tag>. This character style is for explanatory in-
paragraph notes or comments addressed to you the author. They are enclosed in
<angle brackets> to distinguish them from normal text. If the format allows, they
are displayed in blue color and sans-serif font. These comments should all be
removed in the final version of your book.

<2b-added character tag>. This character style indicates in-paragraph information
that must be added by you. For example, the <name> of a particular directory. You
must replace what is shown in this style with information appropriate for your
book. They are enclosed in <angle brackets> to distinguish them from normal text.
If the format permits, this information is displayed in blue color, and italic sans-
serif font.

{Optional or Example}. This character style is for optional or example text that you
may, or may not, want to include according to your needs. This material is
{enclosed in braces} to distinguish it from normal text. If the format allows, they are
displayed in magenta color.

If you include the optional or example material, the character format should be
reset to the default color. If you do not wish to include this material, it should be
removed.

■ Command lines: Optional command lines are not enclosed in braces because
they could be confusing, and that in some cases bullet lines are not enclosed for
the same reason.

■ Optional sections: Where an entire section is optional, only the section title uses
the {optional} character format.

Conditional Text
This section applies to the FrameMaker format files only.
How to Use This Template xv

The FrameMaker files in this template use FrameMaker conditional text that you
can include or exclude from a display, printout, or conversion using the Special >
Conditional text menu item. (See “Working With Conditional Text” on page xviii
for information on working with conditional text.) The FrameMaker files contain a
number of different condition tags:

■ Comment. Notes and comments addressed to you the author are displayed in
“Comment” conditional text. They are not intended for customers, and you need
to either delete them or hide them before producing a document that will be
seen by customers. Comments are the only conditional text actually used in
these template files.

■ Other tags. The template frame files also contain other conditional tags that
have not been used. For example, “Reviewer,” “Placeholder,” “Deleted,” and so
on. You can use these as you wish, or create new ones as needed.

Template Variables
This template uses variables for information specific to your product (such as the
product or directory names). These variables appear in the template enclosed in
[brackets]. You must change the content of these variables to values appropriate for
your product. For example, if you are writing a users guide for the ABCP TCK you
might change the [NAME TCK] variable to “ABCP TCK”.

Depending on the template format you are working with, there are two ways to
change the values of these variables:

■ FrameMaker format. The variables can be edited using the Special > Variable
menu item and applied globally to all chapters using the book file as described
in your FrameMaker documentation.

■ Other formats. Globally search and replace the variables on a file by file basis.

The table below lists the special variables used in this template. Note that for
FrameMaker users most of the variable names begin with a period so that they sort
together in the variables list for convenience in selecting them when editing.
xvi [NAME] Technology Compatibility Kit User’s Guide • May, 2003

Template Variables

Value
FrameMaker
Variable Name Description

[AgentName] .agentname The name of the JavaTest agent used by
your product. For example ABCAgent.

[Maintenance Lead] .company The name of the technology Maintenance
Lead. (Or the name of your company if
appropriate.)

[N.N] .techver The version number of the technology
specification. For example 1.1 (Note that
this is different than the [VersionNumber]
variable which is for the version of the user
guide, as opposed to the technology.

This allows you to have a user guide with a
version number different from the
technology version number. For example,
the technology version might be 1.1 while
user guide version number might be 1.1a.

[name] .lowercase A lower case product name or acronym for
use in file and directory names. For
example, if your TCK is for the ABCP
specification, you might have filenames like
abcp-tck.jtx.

[NAME] .technology The acronym of the specification the TCK is
intended to test. For example ABCP.

[NAME TCK] .tckname The name of the TCK. For example ABCP
TCK.

[Support Name] .supportgroup The name of the expert group supporting
the technology.

TCK_DIRECTORY .TCK_dir The top-most TCK directory. This is the
directory into which the TCK software is
installed. Most TCK-related paths are
relative to this directory.
How to Use This Template xvii

In addition to these template-specific variables, Frame users have available a
number of standard documentation-oriented variables such as Book Title, Part
Number, Version (of the book), and so forth. These can be viewed with the Special
> Variable menu item.

Working With Fonts, Variables, and
Conditional Text
This section is for those who use FrameMaker.

Working With Conditional Text
If conditional text is displayed on your screen, it will be printed to paper and also
included when the document is converted to HTML or PDF format. However,
conditional text that has been hidden will not be printed or included when a
document is converted. You can hide or display conditional text or change it to
regular text as described below.

Hiding Conditional Text

To hide conditional text:

[Technology Name] .techfullname The full name of the specification (as
opposed to an acronym). For example,
Absolutely Best Computing Profile.

Note that there is a separate variable [N.N]
for the technology version number. If you
want the version number to appear after
every instance of the technology name,
simply add the version number to the
definition of the [Technology Name]
variable. (This will require deleting the
[N.N] variable in the few places it is used in
this template.)

[version] .harnessver The version number of the test harness.

[Web URL] .weburl A web site where users can find additional
information, specifications, and support.

Template Variables

Value
FrameMaker
Variable Name Description
xviii [NAME] Technology Compatibility Kit User’s Guide • May, 2003

1. Click Special > Conditional Text in the menu bar.

2. Click the Show/Hide button at the bottom right of the Conditional Text dialog
box.

3. Click the Show radio button.

4. Use the arrow buttons to move that conditional tags that you want to hide from
the Show box to the Hide box.

5. Click the Set button.

6. Close the Conditional Text dialog box.

Displaying Conditional Text

To display conditional text, follow these steps:

1. Click Special > Conditional Text in the menu bar.

2. Click the Show/Hide button.

3. Choose which conditional text tags to display:

■ Choose the Show All radio button to display all conditional text.

■ Chose the Show radio button and use the arrow buttons to select the conditional
text tags to be displayed or hidden.

4. Click the Set button.

5. Click the Apply button.

Converting Conditional Text to Regular Text

To change some text from conditional to regular text in the document follow these
steps:

1. Select (highlight) the Conditional Text that is to be converted to regular text.

2. Click Special > Conditional Text in the menu bar.

3. Click the Unconditional radio button in the Conditional Text dialog box.

4. Click the Apply button.

Replacing Variables
To replace variables with your technology-specific text, follow these steps:

1. Click Special > Variable in the menu bar.
How to Use This Template xix

2. Select (highlight) the variable name in the list of variables.

For example, .technology.

3. Click the Edit Definition button.

4. Replace the text in the Definition field with the appropriate text.

For example, the default definition of the .technology variable is [NAME]. You
would change that to the name of your technology (without brackets).

5. Click the Change button to save your change.

6. Click the Done button to close the dialog box.

7. Close the Conditional Text dialog box.

Changing Colored Fonts to Black
To change colored text to black:

1. Select (highlight) the Text that is to changed to regular text.

2. If the text is conditional, change it to unconditional.

See “Converting Conditional Text to Regular Text” on page xix.

3. Re-tag the paragraph.

If the entire paragraph is in a colored font, you need to re-tag the paragraph. For
example, if an entire Bullet1 paragraph is in magenta, you need to open the
paragraph catalog and select Bullet1. (This step is not necessary if only a portion of
the paragraph is in a colored font.)

4. Choose Format > Characters > Default Paragraph Font.

Updating the Document Footer
To update the document footer:

1. Change the BookTitle variable to the title of your book.

“Replacing Variables” on page xix describes how to edit variables. For example,
you might change “[Generic Chapter 2 Template]” with “ABCP TCK User Guide.”

2. Change the ReleaseDate variable to the correct release date.

For example, you might change “[ReleaseDate]” with “January 2003.”
xx [NAME] Technology Compatibility Kit User’s Guide • May, 2003

Updating Cross-References
This template contains internal cross references that must be updated after editing
for a specific technology. If this document is one chapter of a book, the cross-
references are updated each time the book is updated. If this is a stand-alone
document, update the internal cross-references as follows:

1. Click Edit > Update References...in the menu bar.

2. Check the All Cross-References box.

3. Click the Update button.

Section 508 Compliance
Section 508 of the federal Rehabilitation Act of 1973 requires that software and
documentation be accessible to people with disabilities. Different companies meet
the 508 requirements in different ways.

At Sun, the requirements for 508-compliant documentation are met by producing
508-compliant HTML documents. For documents that are written and maintained
using FrameMaker, 508-compliant HTML documents are generated from the
FrameMaker source files using conversion software tools.

The FrameMaker files for this template include the following features that can be
used by a conversion software tool to assist you in producing 508-compliant HTML
documents if you wish to do so:

■ First and last list elements. Special “first” and “last” paragraph tags have been
used to identify the first and last paragraphs in bulleted, numbered, step, and
table lists. This allows conversion software to identify when a particular list
begins and ends. All of these tags are included in the template's catalog.

■ Table and figure description markers. Where the contents of a figure or table
has not been described in the immediately preceding text, special “image” and
“table” description markers are inserted in the figure and table captions.
Conversion software can be designed to capture the contents of these markers
for HTML output. These marker types are included in the FrameMaker file’s list
of available markers.

Note – Section 508 requirements are complex. You need to determine how best to
handle 508 issues for your product. Use of the paragraph tags and markers
supplied with these template FrameMaker files to produce HTML documents will
not necessarily meet all 508 requirements for your product documentation. Review
the 508 requirements and determine what additional features, if any, are needed.
You can review the Guide to the Section 508 Standards for Electronic and
Information Technology at http://www.access-board.gov/sec508/guide/.
How to Use This Template xxi

Special Appendices
At the end of this template are two special appendices that are not part of the
actual User Guide template.

Appendix D, “Release Notes” provides an optional set of templates that you can
use for creating a separate set of Release Notes.

Appendix E, “Parts Bin” contains standard parts such as table and figure templates
that you can use as needed.

Indexes
A User Guide of this length should have an index which needs to be created by you
using the index tools of your word-processing or desktop-publishing application.
xxii [NAME] Technology Compatibility Kit User’s Guide • May, 2003

Example Preface

This guide describes how to install, configure, and run the Technology
Compatibility Kit (TCK) that is used to test implementations of the
<full_technology_name> [N.N] specification.

The [NAME] TCK is designed as a portable, configurable automated test suite for
verifying the compliance of a licensee’s implementation of the [NAME]
Specification (hereafter referred to as a licensee implementation). The [NAME] TCK
uses the JavaTest harness version 3.x to run the test suite.

Note – All references to specific Web URLs are given for the sake of your
convenience in locating the resources quickly. These references are always subject
to changes that are in many cases beyond the control of the authors of this guide.

Refer to the [Support Name] web site ([Web URL]) for answers to frequently asked
questions and send questions you may have to your [Support Name] contact.

Note – The top-most [NAME TCK] installation directory is referred to as
TCK_DIRECTORY throughout the [NAME TCK] documentation. By default, the
TCK_DIRECTORY is base_directory/[directory_name].

Who Should Use This Book
This guide is for licensees of [Maintenance Lead]’s [NAME] technology to assist
them in running the test suite that verifies compliance of their implementation of
the [NAME] Specification.
xxiii

Before You Read This Book
Before reading this guide, you should familiarize yourself with the Java™
programming language and the [NAME] Specification. A good resource for the
Java programming language is the Sun Microsystems, Inc. web site, located at:
java.sun.com.

The [NAME] TCK <version> is based on the [NAME] Specification [N.N]. Links to
the specification and other product information can be found on the Web at: <web
URL>

[Maintenance Lead] recommends that before documenting your TCK you have
read and become familiar with the [NAME] Specification and also the JavaTest
User’s Guide describing the main JavaTest harness. It is located at:
TCK_DIRECTORY/doc/javatest/javatest.pdf in the [NAME] TCK
distribution.

<If your TCK supplies javatest.pdf in a different location, or you
supply some other JavaTest documentation, enter the appropriate
information above.>

How This Book Is Organized
If you are installing and using the [NAME] for the first time, [Maintenance Lead]
recommends that you read chapters 1 and 2 completely for the necessary
background information, and then perform the steps outlined in chapters 3, 4, 5,
and 6, while referring to the appendices as necessary.

Chapter 1, “Introduction” gives an overview of the principles that apply generally
to all Technology Compatibility Kits (TCKs) and describes the [NAME TCK]. It also
includes a listing of the basic steps needed to get up and running with the [NAME
TCK].

Chapter 2, “Procedure for [NAME] [N.N] Certification” describes the conformance
testing procedure and testing requirements.

Chapter 3, “Installing the [NAME TCK]” describes [NAME TCK] installation
procedures.

Chapter 4, “Starting and Configuring the JavaTest Harness” describes loading the
JavaTest harness software and basic [NAME TCK] set up and configuration.

Chapter 5, “Verifying the [NAME TCK]” describes how to start the [NAME TCK]
and verify that it is properly configured.
xxiv [NAME] Technology Compatibility Kit User’s Guide • May, 2003

Chapter 6, “Testing Your Implementation” describes how to use the [NAME TCK]
to test your implementation.

Chapter 7, “{Testing API Signatures}” describes how to use and run the signature
test.

Chapter 8, “{Test-Specific Information}” provides information about the
individual tests in the test suite.

Chapter 9, “Debugging Test Problems” describes some methods that can be used
to trouble-shoot tests that fail.

Chapter 10, “{Product-Specific Chapter Template}” {provides a template file for
any product-specific chapters you require.|

Appendix A, “{Implementing the Test Framework}” {describes the
communications channel and how to implement it.}

Appendix B, “Configuration Editor and Environment Variables” {provides one or
more tables showing the relationship between JavaTest harness configuration
editor questions and the variables they affect.}

Appendix D, “Frequently Asked Questions” provides answers to frequently
asked questions.

<There is an additional appendix at the end of this template:
Appendix E, “Release Notes” that contains templates for creating
release notes. This appendix is not part of an actual TCK User Guide.>

Related Books
■ JavaTest User’s Guide and JavaTest online help

(located at <location> in the [NAME TCK] distribution)
■ The [Technology Name] [N.N] specification
■ The Java Programming Language
■ The Java Language Specification Second Edition
■ The Java Virtual Machine Specification 2nd Edition, Java 2 Platform

Accessing Documentation Online
When unzipped and installed, the [NAME TCK] includes a /doc directory that
contains this manual and the JavaTest User’s Guide, both in Adobe Acrobat™ PDF
format.
Example Preface xxv

<The paragraph above assumes that you use a /doc directory containing
both your TCK User Guide and the JavaTest User’s Guide.>

The [Support Name] web site ([Web URL]) includes other test-related tools as well.
You may also access other Java technology related documentation online at:
java.sun.com.

Typographic Conventions Used in This
Book
The following table describes the typographic conventions used in this book.

Typeface Meaning Examples

AaBbCc123 The names of commands, files,
and directories; on-screen
computer output

Edit your .login file.
Use ls -a to list all files.
% You have mail.

AaBbCc123 What you type, when
contrasted with on-screen
computer output

% su
Password:

AaBbCc123 Book titles, new words or terms,
words to be emphasized

Command-line variable; replace
with a real name or value

Read Chapter 6 in the User’s Guide.
These are called class options.
You must be superuser to do this.

To delete a file, type rm filename.
xxvi [NAME] Technology Compatibility Kit User’s Guide • May, 2003

CHAPTER 1

Introduction

The [NAME TCK] tests implementations of the [Technology Name] which
<describe what it is or does>.

This chapter gives an overview of the principles that apply generally to all
Technology Compatibility Kits (TCKs) and describes the [NAME TCK]. It also
includes a listing of what is needed to get up and running with the [NAME TCK].
It contains the following sections:

■ <Z_Xref>Compatibility Testing
■ <Z_Xref>Java Community Process (JCP) Program and Compatibility Testing
■ <Z_Xref>The [NAME TCK]
■ <Z_Xref>[NAME TCK]—Configuration
■ <Z_Xref>{Underlying Software Implementation}
■ <Z_Xref>{Application Management Software (AMS)}
■ <Z_Xref>{Other Testing Components}
■ <Z_Xref>How the [NAME TCK] Works
■ <Z_Xref>{Application Management Software (AMS)}
■ <Z_Xref>[NAME TCK]—Getting Started

Compatibility Testing
Java technologies are “cross-platform,” meaning that they run on different hardware
platforms and operating systems. Compatibility testing is the process of testing a
technology implementation to make sure that it operates consistently with each
platform, operating system, and other implementations of the same Java
technology specification.

Therefore, compatibility testing differs from traditional product testing in a number
of ways because the focus of compatibility testing is to test those features and areas
of an implementation that are likely to differ across other implementations, such as
those features that:

■ Rely on hardware or operating system-specific behavior.
■ Are difficult to port.
■ Mask or abstract hardware or operating system behavior.
1

Compatibility test development for a given feature relies on a complete
specification and reference implementation for that feature. Compatibility testing is
not primarily concerned with robustness, performance, or ease of use.

Why Compatibility Testing is Important
Java platform compatibility is important to different groups involved with Java
technologies for different reasons:

■ Compatibility testing is the means by which [Maintenance Lead] ensures that
the Java platform does not become fragmented as it is ported to different
operating systems and hardware environments.

■ Compatibility testing benefits developers working in the Java programming
language, allowing them to write applications once and then to deploy them
across heterogeneous computing environments without porting.

■ Compatibility testing allows application users to obtain applications from
disparate sources and deploy them with confidence.

■ Compatibility testing benefits Java platform implementors by ensuring a level
playing field for all Java platform ports.

TCK Compatibility Rules
Compatibility criteria for all technology implementations are embodied in the TCK
Compatibility Rules that apply to a specified technology. Each TCK tests for
adherence to these Rules as described in Chapter 2, “Procedure for [NAME] [N.N]
Certification”.

TCK Overview
A TCK is a set of tools and tests used to verify that a licensee’s implementation of
[Maintenance Lead]’s technology conforms to the applicable specification. All tests
in the TCK are based on the written specifications for the Java platform. A TCK
tests compatibility of a licensee’s implementation of [Maintenance Lead]’s
technology to the applicable specification of the technology. Compatibility testing is
a means of ensuring correctness, completeness, and consistency across all
implementations developed by [Maintenance Lead] technology licensees.

The set of tests included with each TCK is called the “test suite.” Most tests in a
TCK’s test suite are self-checking, but some tests require tester interaction. Most
tests return either a Pass or Fail status. For a given platform to be certified, all of
the required tests must pass. The definition of required tests may change from
platform to platform.
2 [NAME] Technology Compatibility Kit User’s Guide • May, 2003

The definition of required tests will change over time. Before your final certification
test pass, be sure to download the latest Exclude List for the TCK you are using.

Java Community Process (JCP) Program
and Compatibility Testing
The Java Community ProcessSM (JCP) program is the formalization of the open
process that Sun Microsystems, Inc. has been using since 1995 to develop and
revise Java technology specifications in cooperation with the international Java
community. The JCPSM program specifies that the following three major
components must be included as deliverables in a final Java technology release
under the direction of the responsible Expert Group:

■ Technology Specification
■ Reference Implementation
■ Technology Compatibility Kit (TCK)

For further information on the JCP program see this URL: http://jcp.org.

The [NAME TCK]
The [NAME TCK] is designed as a portable, configurable, automated test suite for
verifying the compliance of a licensee’s implementation of [Maintenance Lead]’s
[NAME] Specification (JSR-NNN). The [Technology Name] specification can be
found at: [Web URL].

<You may want to give a more thorough description or overview of your
TCK here.>

This section describes the [NAME TCK] and covers the following topics:

■ <Z_Xref>“[NAME TCK] Specifications and Requirements” on page 4
■ <Z_Xref>“[NAME TCK] Components” on page 5
■ <Z_Xref>“Signature Test” on page 9
■ <Z_Xref>“{Components Provided by User}” on page 10
■ <Z_Xref>“[NAME TCK]—Configuration” on page 10

{[NAME TCK]—New in This Release}
<This optional section is for new releases of existing TCKs.>

Among the changes you will find in this version:
Chapter 1 Introduction 3

1. <First item in numbered list of new features and changes since the last
release>

2. <Next item.

3. <Last item.

[NAME TCK] Specifications and Requirements
This section lists the applicable requirements and specifications.

■ [NAME] Version. The [NAME TCK] <version> is based on the [NAME]
Specification version [N.N].

■ Specification Requirements. Hardware and software requirements for a
[NAME] implementation are described in detail in the [NAME] Specification.
Links to the [NAME] specification and other product information can be found
at <web or other location.>

■ {JavaTest harness. The [NAME TCK] requires version 3.x of the JavaTest
harness.}

■ Reference Implementation. The designated Reference Implementation for
conformance testing of implementations based upon [NAME] Specification
[N.N] is the [Maintenance Lead] Reference Implementation of the [NAME]
specification.

■ Platform requirements. The following requirements must be met in order to run
the [NAME TCK] on the host system:

■ Operating system. {You may use any hardware platform that supports Java.
[Maintenance Lead] recommends using Solaris, Windows NT, or Windows
98.}

■ Operating system. {A J2SE 1.4 compliant platform is required. Sun
recommends using J2SE JRE version 1.4 or later on Solaris or Windows 2000.
(The [NAME TCK] has been tested with JRE 1.4, other versions such as JRE
1.4.2 have not been tested.)}

<Two variations of the Operating System bullet are presented above as
examples of how you might want to approach this topic.>

■ Disk space. At least <number> Megabytes of free disk space available for
installation of the [NAME TCK], temporary files, and for the creation of
report files.

■ Memory. At least <number> Megabytes of RAM is recommended for running
the [NAME TCK] on Windows platforms.

■ {Heap memory. You must insure that your [NAME] implementation provides
enough heap memory to run the required tests. (The Sun Reference
Implementation proved to work correctly with 292KB of heap memory).}

■ {Speed. A minimum speed of 166MHz is required for running the [NAME
TCK] on Windows platforms.}
4 [NAME] Technology Compatibility Kit User’s Guide • May, 2003

<The bullets below are examples of additional requirements that may
(or may not) apply.>

<If additional software is required, list it here. For example, if
CLDC and a preverifier are required, you might write:>

■ {Connected Limited Device Configuration. CLDC version 1.0 for Windows 2000
is required for running the designated Reference Runtime.}

■ {Preverifier. The designated Reference Preverifier for the conformance testing of
implementations based upon [NAME] Specification [N.N] is the preverifier
included with the Reference Runtime.}

■ {Java Communications API 2.0 implementation. If the device under test
supports communication via serial ports using
javax.microedition.io.CommConnection functionality, a Java
Communications API 2.0 implementation capable of communicating with the
device must be available.}

■ {Network Control Interfaces (NCI) implementation. The WMA-related portion
of the TCK implements distributed tests with assistance from a component called the
Network Control Interfaces (NCI) implementation.}

[NAME TCK] Components
This section describes the main components that make up the [NAME TCK].

JavaTest Harness

The JavaTest™ harness version 3.x is a set of tools designed to run and manage test
suites on different Java platforms. The JavaTest harness can be described as both a
Java application and a set of compatibility testing tools. It can run tests on different
kinds of Java platforms and it allows the results to be browsed on-line within the
JavaTest GUI, or off-line in the HTML reports that the JavaTest harness generates.

The JavaTest harness includes the applications and tools that are used for test
execution and test suite management. It supports the following features:

■ Sequencing of tests, allowing them to be loaded and executed automatically.
■ Graphic user interface (GUI) for ease of use.
■ Automated reporting capability to minimize manual errors.
■ Failure analysis
■ Test result auditing and auditable test specification framework.
■ Distributed testing environment support.

To run tests using the JavaTest harness, you specify which tests in the test suite to
run, how to run them, and where to put the results as described in
<Z_Xref>Chapter 4, “Starting and Configuring the JavaTest Harness.
Chapter 1 Introduction 5

<Choose one of the two example paragraphs below as appropriate for
your TCK. The difference is that the second one allows for running TCK
tests against an implementation running on an emulated environment or
breadboard. The conformance rules may, or may not, allow this.>

<For some TCKs the compatibility rules allow running the TCK against
an emulation or breadboard equivalent. In other cases, the test must
be run against an actual device. The two sample paragraphs below
address these two cases.>

{The JavaTest harness runs tests on a [NAME] target device or the [NAME]
Reference Implementation running on a platform system.}

{The JavaTest harness runs tests on your target device or on an equivalent emulated
environment or a breadboard, or the [NAME] Reference Implementation running
on a platform system.}

TCK Compatibility Rules

Compatibility criteria for a technology implementation are identified in the TCK
Compatibility Rules. The TCK tests a technology implementation to make sure that
it adheres to those rules.

The compatibility rules that apply to [NAME] are described in <Z_Xref>Chapter 2,
“Procedure for [NAME] [N.N] Certification.”

TCK Compatibility Test Suite

The test suite is the collection of tests used by the JavaTest harness to test a
particular technology implementation. In this case, it is the collection of tests used
by the [NAME TCK] to test an implementation of the [NAME] implementation.
The tests are designed to verify that a licensee’s run-time implementation of the
technology complies with the appropriate specification. The individual tests
correspond to assertions of the specification.

The tests that make up the TCK compatibility test suite are precompiled and
indexed within the TCK test directory structure. When a test run is started, the
JavaTest harness scans through the set of tests that are located under the directories
that have been selected. While scanning, the JavaTest harness selects the
appropriate tests according to any matches with the filters you are using and
queues them up for execution.
6 [NAME] Technology Compatibility Kit User’s Guide • May, 2003

Signature Testing

The Static signature test verifies signatures of APIs which are in a .jar archive
format or the directory hierarchy. These APIs are regarded as identical or at least
equivalent to APIs which are available in the [NAME] implementation under test.
(See <Z_Xref>“Signature Test” on page 9 for a more detailed discussion of
signature tests.)

<The common practice is to now include the signature test as part of
the rest of the test suite. However, in some cases a TCK might be
designed in a way that requires running the Signature Test outside of
the test suite. For example, it might have to be run from the command
line. If this is the case, delete this section.>

{Test Agents}

<In many cases, the technology being tested and the JavaTest harness
are both running on the same system. In which case, no test agent is
needed and this section is not necessary.>

<But some TCKs allow (or require) the JavaTest harness and the
technology being tested to be run on different systems. In such cases
you use test agents. For some TCKs you can use the JavaTest Agent
provided with the JavaTest harness, or you can create your own custom
agents. This optional section is used to describe your test agent.>

If the JavaTest harness and the technology you are testing are being run on different
systems, you must install an agent on the system being tested.

A test agent is a small Java™ program that is used in conjunction with the JavaTest
harness to run tests on a Java™ platform on which it is not possible or desirable to
run the main JavaTest harness. The agent running on the test platform responds to
requests from the JavaTest harness running elsewhere.

<The optional paragraph below is for TCKs using the standard JavaTest
Agent.>

The [NAME TCK] uses the JavaTest Agent provided with the JavaTest harness.

<The optional paragraph below is for TCKs using a custom agent.>

The [NAME TCK] uses a custom agent called [AgentName].

To perform [NAME TCK] tests on a platform that is not running the JavaTest
harness, you:

■ Set up and run the JavaTest harness on one system.

■ Connect the system running the JavaTest harness to the system or device being
tested.

■ Install and run the agent on the device being tested.
Chapter 1 Introduction 7

Under this arrangement, the JavaTest harness running on a PC or workstation
performs the following functions:

1. Specifies the tests that are to be run.

2. Issues commands to the [AgentName] to run the tests on the device being tested.

3. Writes the results of those tests to the various report files on the PC or
workstation where the JavaTest harness resides.

Exclude Lists

Each version of a TCK includes an Exclude List contained in a .jtx file. This is a
list of test file URLs that identify tests which do not have to be run for the specific
version of the TCK being used. Whenever tests are run, the JavaTest harness
automatically excludes any test on the Exclude List from being executed.

A licensee is not required to pass any test—or even run any test—on the Exclude
List.

The Exclude List file included in the [NAME TCK] is located in the lib directory
and has a file name based on the corresponding [NAME TCK] version number. For
example, the Exclude List for version <1.0> of the [NAME TCK] is
TCK_DIRECTORY/lib/[name]-tck_<10>.jtx.

Note – From time to time, updates to the Exclude List are made available on the
<location> web site. You should always make sure you are using an up-to-date
copy of the Exclude List before running the [NAME TCK] to verify your
implementation.

A test might be included in an Exclude List for reasons such as:

■ An error in an underlying implementation API has been discovered which does
not allow the test to execute properly.

■ An error in the specification that was used as the basis of the test has been
discovered.

■ An error in the test itself has been discovered.

■ The test fails due to a bug in the tools (such as the JavaTest harness, for
example).

In addition, all tests are also tested against the [Maintenance Lead] Reference
Implementation (RI). Any tests that fail when run on a reference Java platform are
put on the Exclude List. Any test that is not specification-based, or for which the
specification is vague, may be excluded. Any test that is found to be
implementation dependent (based on a particular thread scheduling model, based
on a particular file system behavior, and so on) may be excluded.
8 [NAME] Technology Compatibility Kit User’s Guide • May, 2003

Note – Licensees are not permitted to alter or modify Exclude Lists. Changes to an
Exclude List can only be made by using the procedure described in
<Z_Xref>“[NAME] Test Appeals Process” on page 21

Result Files

<The example paragraph below assumes you are using JavaTest harness
3.x or later. If you are using something else, you need to describe
whatever result files (if any) are produced.>

The information that is presented in the JavaTest harness Test Summary Browser is
also written to files called JavaTest result files. These result files can be found in the
work directory that you specified as part of your test run. The JavaTest harness
creates a test result hierarchy similar to the test suite hierarchy that contains your
tests. Result files for the tests in your test run appear under the appropriate
directory within this result hierarchy.

See <Z_Xref>“Exclude File Format” on page 88 for more information about these
files.

Signature Test
<In most TCKs the signature test is automatically included in a normal
test run. In other TCKs the signature test has to be run separately
from the command line. This example section is for cases where the
signature test is run automatically along with all the other tests.
<Z_Xref>Chapter 7, “{Testing API Signatures},’ is for cases where the
signature test is run separately. The assumption is that you would use
either this section, or Chapter 7, as appropriate, but not both. If
the Signature Test is not included as part of the test suite and has
to be run separately, edit the paragraphs below as needed and make a
cross-reference to <Z_Xref>Chapter 7, “{Testing API Signatures}.>

It is physically impossible to verify API signatures using the [Technology Name]
implementation on the target device in the absence of reflection capabilities.
However, API libraries which are burned into ROM or placed into device in some
other way, typically have prototypes that follow the standard class file format. In
this case it is possible to explore the class files of the prototype to gain confidence
that the API libraries that are actually present on the target device comply with the
specification.

The [NAME TCK] contains a Static signature test exactly for this purpose. This test
is executed by the JavaTest harness as part of a standard test run. (It is also possible
to run this test separately from the command line.)
Chapter 1 Introduction 9

The Static signature test verifies signatures of APIs which are in a .jar archive
format or the directory hierarchy. These APIs are regarded as identical or at least
equivalent to APIs which are available in the [NAME] implementation under test.

{Components Provided by User}
<User-provided components will vary. Use this optional section to
describe the user-provided components required by the [NAME TCK]. The
bullets below are examples taken from various TCKs that may, or may
not, be relevant to your TCK.>

{You must provide the following TCK components:}

■ {Communications channel. As defined by the MIDP 2.0 specification, your
implementation must provide Application Management Software (AMS) as
described in <cross-reference to appendix>.}

■ {Network Control Interfaces. The WMA-related portion of the TCK implements
distributed tests with assistance from a component called the Network Control
Interfaces (NCI) implementation. The NCI has to be implemented by you as
described in <cross-reference to appendix>.”}

■ {Preverifier script. If you run your preverifier on a remote host you need to
write a script that handles the preverifier files as described in <cross-reference
to section>.}

[NAME TCK]—Configuration
You use the JavaTest harness Graphic User Interface (GUI) to configure test runs. as
described in <Z_Xref>Chapter 4, “Starting and Configuring the JavaTest Harness."

{Underlying Software Implementation}
<Some specifications require that some underlying software
implementation also be present on the device. If that is the case,
then include this optional section.>

An implementation of the [NAME] [VersionNumber] specification requires some
underlying software that conforms to other Java specifications as follows:

<The bullets below are examples that may, or may not, apply to your
TCK. Use or adapt them as appropriate.>
10 [NAME] Technology Compatibility Kit User’s Guide • May, 2003

■ MIDP plus CLDC. Conformance to the Mobile Independent Device Profile
(MIDP) 1.0 or 2.0 plus CLDC 1.0 or 1.1 specifications as appropriate. In this case,
the [NAME TCK] assumes that your MMAPI implementation includes valid
implementations of both the MIDP and CLDC specifications that have been
tested by the appropriate MIDP TCK.

■ CLDC plus IllegalStateException. Conformance to the Connected Limited
Device Configuration (CLDC) 1.0 or 1.1 specifications plus a profile that
includes the IllegalStateException. In this case, the [NAME TCK] assumes that
your MMAPI implementation includes a valid implementations of the CLDC
specification plus some kind of profile the provides the IllegalStateException as
tested by the appropriate CLDC TCK. (In this case you may need to provide
some additional software as described in <Z_Xref>Appendix A,
“{Implementing the Test Framework}.)

The [NAME] Reference Implementation (RI) supplied by Sun Microsystems uses
<whatever> as its underlying technology. This [NAME] Technology Compatibility Kit
User’s Guide describes how to configure and run the [NAME TCK] against the
[NAME] RI as an example, or model, of how you would set it up and use it to test
your implementation.

{Application Management Software
(AMS)}

<Some TCKs that run tests on small devices make use of Application
Management Software (AMS). This optional section is for these cases.>

Some application management code is required to be present on the target device
in order for it to receive the [AgentName] and test bundles from the JavaTest
harness. This is called Application Management Software (AMS). In some contexts
AMS is referred to as Java Application Manager (JAM).

The AMS component must be supplied by you for your implementation.

The AMS component is typically written in native code. Due to significant
variations and feature differences among potential [NAME] devices, the details of
application management are highly device-specific and implementation-dependent.

See <Z_Xref>Appendix A, “{Implementing the Test Framework},” for information
about what you need to supply for [NAME] implementations.
Chapter 1 Introduction 11

{Other Testing Components}
<This optional section is for describing any additional software
components required by your TCK but not supplied as part of the TCK.>

How the [NAME TCK] Works
<This section is for providing an narrative overview of how your TCK
works. The example provided below is taken from a TCK running on a
workstation and conducting tests on a J2ME device using a custom
agent. Your description may be quite different.>

When using the [NAME TCK] to test a [NAME] implementation, the [NAME]
implementation is normally run on a target device that is connected in some
manner to a PC or a workstation running the JavaTest harness. Under this
arrangement, the [NAME] is said to run in a “JavaTest-Agent” set up.

The JavaTest harness is run on the PC or workstation using a certified Java 2
Standard Edition Runtime. Its responsibility is to package groups of tests into JAR
files (test bundles) and make them available to the target device running the
implementation being tested.

The JavaTest harness performs the following functions:

■ Downloads the ([AgentName]) to the target device.
■ Sends test bundles to the target device.
■ Converts them to the application format of the target device, if necessary.}
■ Dispatches tests for execution to the target device.
■ Receives test results back from the target device.

The agent [AgentName] is pre-packaged with each test bundle. It runs on the target
device. Its task is to execute tests from this bundle on the target device and to
report results back to the JavaTest harness. The agent acts as a client to
communicate with JavaTest harness.

The server and the client are Java technology implementations of the interfaces
defined in the [NAME TCK].

Test results are displayed by the JavaTest harness.
12 [NAME] Technology Compatibility Kit User’s Guide • May, 2003

About [NAME TCK] Tests
<Use this section to provide a brief overview of the [NAME TCK] tests.
For example, your test suite might include both interactive tests that
require some user intervention and automated tests that require no
user intervention.>

<The sample text below is adapted from the MIDP case, and is provided
here as an example of one way of approaching this section. This
example section assumes that you are using the JavaTest harness, if
you are using some other harness you will have to modify the
descriptions as appropriate.>

This section provides general information about running [NAME TCK] tests. It
contains the following sub-sections:

■ <Z_Xref>“{Types of Tests}” on page 14
■ <Z_Xref>“{Interactive Tests}” on page 14
■ <Z_Xref>“Signature Testing” on page 7

[NAME TCK] tests are designed to verify that a licensee’s runtime implementation
of the technology complies with the appropriate specifications. The individual tests
correspond to assertions of the specification.

A test is a collection of related classes and resources. Each test executes one or more
test cases. A test case exercises a component of the implementation in order to verify
that the component’s behavior is complaint with the spec. Each test case returns a
status indicating success or failure. The tests are combined into a test suite. In other
words, the [NAME] test suite is simply the collection of [NAME TCK] tests.

The tests are intended to be independent of any particular licensee’s
implementation of the [NAME] technology specifications. Most tests are self-
checking, self-contained, and self-sufficient. This means that the tests provide their
own pass/fail result, are not dependent on other tests (all of the code resides in the
same file), and do not rely on external classes except for the [NAME] and [NAME
TCK] framework classes.

The tests use standard status returns. The [NAME TCK] tests are launched from
JavaTest harness.

The tests that make up the TCK compatibility test suite are precompiled and
indexed within the TCK test directory structure to form the test suite. Before a test
run is started, the JavaTest harness scans through the set of tests that are located
under the directory that has been selected. While scanning, the JavaTest harness
selects the appropriate tests according to any matches with the filters you are using
and queues them up for execution.
Chapter 1 Introduction 13

Note – Multiple test runs with different test selection criteria may be required to
completely and correctly test an implementation.

{Types of Tests}
<Some TCKs include both automatic and interactive tests, others do
not. Use this optional section to describe the kind of tests in your
TCK.>

[NAME TCK] tests are either automated or interactive:

■ Automated tests: Do not require user interaction to run. Automated tests can be
specified by choosing the Automated radio button in the JavaTest harness 3.x
Configuration Editor’s Test Subset question.

■ Interactive tests: Require some user input or other kind of interaction. The
[NAME TCK] contains two kinds of interactive test that use different methods to
report test results:

■ Tests that require users to view the results on the device screen and judge a
pass/fail result.

■ Tests where the test itself reports a pass/fail result, but still require user
interaction.

Interactive tests can be specified by choosing the Interactive radio button in
the JavaTest harness 3.x Configuration Editor’s Test Subset question.

See for detailed information on how to select which tests to run.

{Interactive Tests}
Interactive tests are tests of a graphic user interface (GUI), or other elements that
require user-participation or user-judgement of pass/fail results. These tests utilize
the distributed framework to separate the test instructions and controls from the
test running on the device (or equivalent).

See <Z_Xref>“{[Optional] Running Interactive Tests}” on page 51 for more
information.

[NAME TCK]—Getting Started
This section provides an general overview of what needs to be done to install, set
up, test, and use the [NAME TCK]:
14 [NAME] Technology Compatibility Kit User’s Guide • May, 2003

1. Make sure that a certified Java 2 Standard Edition Runtime environment has
been correctly installed on the system you want to host the JavaTest harness.

This should be the version described in the Release Notes. Consult the
corresponding J2SE Runtime environment documentation for installation
instructions.

2. Install the [NAME TCK] on the system that you want to use as the test harness
host system.

This system has to be able to access the device through the HTTP protocol.

<If you are using some other protocol or method of establishing
communication between the test harness and the device, edit the
paragraph above as appropriate.>

This system must have J2SE <version> or higher installed.

<In most cases installing the TCK as described in the next step also
installs the test harness. If so, use the bullet below. If not, omit
the bullet below and describe what needs to be done to install the
test harness.>

Installation of the [NAME TCK] includes installation of the JavaTest harness. See
<Z_Xref>Chapter 3, “Installing the [NAME TCK],” for more information.

3. {List installation of any other software as appropriate.>

{Consult the documentation for each of these software application for installation
instructions.}

4. Install the implementation of [NAME] [N.N] that is under test is on the
appropriate host platform that the test harness can access through the
appropriate protocol.

■ RI: Consult the [NAME] Reference Implementation documentation for
installation instructions.

■ Device: Consult your implementation documentation for installation
instructions.

5. Start up and configure the JavaTest harness.

Use the JavaTest harness configuration editor interview to enter the basic
configuration parameters it needs. (See <Z_Xref>Chapter 4, “Starting and
Configuring the JavaTest Harness.")

6. Verify the JavaTest harness Installation.

Test that the JavaTest harness is running correctly with a simple series of tests. (See
<Z_Xref>“Verifying Installation and Setup” on page 39.)

<Some technology implementations require additional software to be
loaded on the device being tested. For example, a TCK might require
the presence of Connected Limited Device Configuration (CLDC). The
next step instructs the user to load and test such software.>
Chapter 1 Introduction 15

7. {Install, set up, and test <any additional required software>}

{(See <Z_Xref>“{Verifying Other Required Components}” on page 40.)}

<The example shown below is for CLDC.>

This step requires that your CLDC implementation on the [NAME] device pass the
CLDC TCK compatibility tests before proceeding to the [NAME TCK] tests.

Note that if you make any changes to the CLDC implementation after running the
CLDC TCK, the CLDC TCK tests have to be run again.

8. Test the Full [NAME] Implementation on the target device

Test the full [NAME] implementation installation by running the entire test suite on
the target device. (See <Z_Xref>“Using the [NAME TCK] to Test a Product” on
page 49.)
16 [NAME] Technology Compatibility Kit User’s Guide • May, 2003

CHAPTER 2

Procedure for [NAME] [N.N]
Certification

<JCP Expert Groups can use this template in the preparation of Chapter
2 for TCK User’s Guides. The contents of this chapter are provided as
examples only and can be modified as required to support your
technology.>

This chapter describes the compatibility testing procedure and compatibility
requirements.

Certification Overview
■ Install the appropriate version of the Technology Compatibility Kit (TCK) and

execute it in accordance with the instructions in this User’s Guide.

■ Ensure that you meet the requirements outlined in “Compatibility
Requirements,” below.

Compatibility Requirements
This section described the compatibility rules and defines the terms used in those
rules.

<When modifying, adding, or removing rules in “Rules for [NAME]
Products” on page 20,” review the following definitions for required
additions, deletions, or modifications.>
17

Definitions
These definitions are for use only with these compatibility requirements and are
not intended for any other purpose.

TABLE 1 Definitions

Term Definition

Computational
Resource

A piece of hardware or software that may vary in quantity,
existence, or version, which may be required to exist in a
minimum quantity and/or at a specific or minimum revision level
so as to satisfy the requirements of the Test Suite.

Examples of computational resources that may vary in quantity
are RAM and file descriptors.

Examples of computational resources that may vary in existence
(that is, may or may not exist) are graphics cards and device
drivers.

Examples of computational resources that may vary in version are
operating systems and device drivers.

Conformance Tests All tests in the Test Suite for an indicated Technology Under Test,
as distributed by the Maintenance Lead, excluding those tests on
the Exclude List for the Technology Under Test.

Documented Made technically accessible and made known to users, typically
by means such as marketing materials, product documentation,
usage messages, or developer support programs.

Exclude List The most current list of tests, distributed by the Maintenance
Lead, that are not required to be passed to certify conformance.
The Maintenance Lead may add to the Exclude List for that Test
Suite as needed at any time, in which case the updated Exclude
List supplants any previous Exclude Lists for that Test Suite.

Libraries The class libraries, as specified through the Java Community
ProcessSM (JCPSM), for the Technology Under Test.

The Libraries for [NAME] are listed at the end of this chapter.

Location Resource A location of classes or native libraries that are components of the
test tools or tests, such that these classes or libraries may be
required to exist in a certain location in order to satisfy the
requirements of the test suite.

For example, classes may be required to exist in directories named
in a CLASSPATH variable, or native libraries may be required to
exist in directories named in a PATH variable.

Maintenance Lead The JCP member responsible for maintaining the Specification,
reference implementation, and TCK for the Technology.
[Maintenance Lead] is the Maintenance Lead for [NAME].
18 [NAME] Technology Compatibility Kit User’s Guide • May, 2003

Operating Mode Any Documented option of a Product that can be changed by a
user in order to modify the behavior of the Product.

<Modify the following example for your
technology:>
{For example, an Operating Mode of a Runtime can be binary
(enable/disable optimization), an enumeration (select from a list
of localizations), or a range (set the initial Runtime heap size).}

Product A licensee product in which a Runtime is implemented or
incorporated, and that is subject to compatibility testing.

Product
Configuration

A specific setting or instantiation of an Operating Mode.

<Modify the following example for your technology:>
{For example, a Runtime supporting an Operating Mode that
permits selection of an initial heap size might have a Product
Configuration that sets the initial heap size to 1 Mb.}

Resource A Computational Resource, a Location Resource, or a Security
Resource.

Rules These definitions and rules in this Compatibility Requirements
section of this User’s Guide.

Security Resource A security privilege or policy necessary for the proper execution
of the Test Suite.

For example, the user executing the Test Suite will need the
privilege to access the files and network resources necessary for
use of the Product.

Specifications The documents produced through the JCP that define a particular
Version of a Technology.

The Specifications for the Technology Under Test can be found
later in this chapter.

Technology Specifications and a reference implementation produced through
the JCP.

Technology Under
Test

<If appropriate, add the number after the [NAME].>
Specifications and the reference implementation for [NAME].

Test Suite The requirements, tests, and testing tools distributed by the
Maintenance Lead as applicable to a given Version of the
Technology.

Version A release of the Technology, as produced through the JCP.

TABLE 1 Definitions

Term Definition
Chapter 2 Procedure for [NAME] [N.N] Certification 19

Rules for [NAME] Products
For each version of an operating system, software component, and hardware
platform Documented as supporting the Product:

<The following rules are numbered using the character “T” to designate
that they are Template rules. In technology specific documents, the
applicable rules should be sequentially numbered for that document and
preceded by one or more unique character designator(s) for that
technology; such as MIDP for MIDP rules. Use the Paragraph Designer to
change the character designator(s) in the numbering properties field
for the appropriate paragraph tag.>

<Note to Maintenance Leads: All exception rules should require
documentation of any operating mode invoking the exception.>

<Note to Maintenance Leads: All exception rules should require that at
least one mode pass all the tests.>

T1. {The Product must be able to satisfy all applicable compatibility requirements,
including passing all Conformance Tests, in every Product Configuration and in
every combination of Product Configurations, except only as specifically exempted
by these Rules.}

{For example, if a Product provides distinct Operating Modes to optimize
performance, then that Product must satisfy all applicable compatibility
requirements for a Product in each Product Configuration, and combination of
Product Configurations, of those Operating Modes.}

T1.1 {If an Operating Mode controls a Resource necessary for the basic execution of the
Test Suite, testing may always use a Product Configuration of that Operating Mode
providing that Resource, even if other Product Configurations do not provide that
Resource. Notwithstanding such exceptions, each Product must have at least one
set of Product Configurations of such Operating Modes that is able to pass all the
Conformance Tests.}

{For example, a Product with an Operating Mode that controls a security policy
(i.e., Security Resource) which has one or more Product Configurations that cause
Conformance Tests to fail may be tested using a Product Configuration that allows
all Conformance Tests to pass.}

T1.2 {A Product Configuration of an Operating Mode that causes the Product to report
only version, usage, or diagnostic information is exempted from these
compatibility rules.}

T1.3 {A Product may contain an Operating Mode that selects the Edition with which it is
compatible. The Product must meet the compatibility requirements for the
corresponding Edition for all Product Configurations of this Operating Mode. This
Operating Mode must affect no smaller unit of execution than an entire
Application.}
20 [NAME] Technology Compatibility Kit User’s Guide • May, 2003

T2. {Some Conformance Tests may have properties that may be changed. Apart from
changing such properties no source or binary code for a Conformance Test may be
altered in any way without prior written permission. Any such allowed alterations
to the Conformance Tests would be posted to the [Support Name]web site and
apply to all licensees.}

T3. {The testing tools supplied as part of the Test Suite or as updated by the
Maintenance Lead must be used to certify compliance.}

T4. {The Exclude List associated with the Test Suite cannot be modified.}

T5. {The Maintenance Lead can define exceptions to these Rules. Such exceptions
would be made available to and apply to all licensees.}

T6. {All hardware and software component additions, deletions, and modifications to a
Documented supporting hardware/software platform, that are not part of the
Product but required for the Product to satisfy the compatibility requirements,
must be Documented and available to users of the Product.}

{For example, if a patch to a particular version of a supporting operating system is
required for the Product to pass the Conformance Tests, that patch must be
Documented and available to users of the Product.}

T7. {The Product must contain the full set of public and protected classes and interfaces
for all the Libraries. Those classes and interfaces must contain exactly the set of
public and protected methods, constructors, and fields defined in the Specifications
for those Libraries. No subsetting, supersetting, or modifications of the public and
protected API of the Libraries are allowed except only as specifically exempted by
these Rules.}

T7.1 {If a Product includes Technologies in addition to the Technology Under Test, then
it must contain the full set of combined public and protected classes and interfaces.
The API of the Product must contain the union of the included Technologies. No
further subsetting, supersetting, or modifications to the APIs of the included
Technologies are allowed.}

T8. {Except for tests specifically required by this TCK to be recompiled (if any), the
binary Conformance Tests supplied as part of the Test Suite or as updated by the
Maintenance Lead must be used to certify compliance.}

T9. {The functional programmatic behavior of any binary class or interface must be
that defined by the Specifications.}

[NAME] Test Appeals Process
<This is an example of an appeals process which can be modified as
necessary.>
Chapter 2 Procedure for [NAME] [N.N] Certification 21

The Maintenance Lead will be the point of contact for all test challenges to the Test
Suite for the [NAME].

If a test is determined to be invalid in function or if its basis in the specification is
suspect, the test may be challenged by any licensee of the [NAME TCK]. Each test
validity issue must be covered by a separate test challenge. Test validity or
invalidity will be determined based on its technical correctness such as:

1. Test has bugs (i.e., program logic errors)

2. Specification item covered by the test is ambiguous

3. Test does not match the specification

4. Test assumes unreasonable hardware and/or software requirements

5. Test is biased to a particular implementation

Challenges based upon issues unrelated to technical correctness as defined by the
specification will normally be rejected.

Test challenges must be made in writing to [Support Name] and include all
relevant information as described in the Test Challenge form below. The process
used to determine the validity or invalidity of a test (or related group of tests) is
described in “[NAME] TCK Test Appeals Steps” on page 22.”

All tests found to be invalid will either be placed on the Exclude List for that
version of the [NAME] TCK or have an alternate test made available as follows:

■ Tests that are placed on the Exclude List will be placed on the Exclude List
within one business day after the determination of test validity. The new
Exclude List will be made available to all [NAME] TCK licensees on the [NAME]
TCK web site.

■ The Maintenance Lead has the option of creating alternative tests to address any
challenge. Alternative tests (and criteria for their use) will be made available on
the [NAME] TCK web site.

Note – Passing an alternative test is deemed equivalent to passing the original test.

▼ [NAME] TCK Test Appeals Steps

1. [NAME] licensee writes a test challenge to the Maintenance Lead contesting the
validity of one or a related set of [NAME] tests.

A detailed justification for why each test should be invalidated must be included
with the challenge as described by the Test Challenge form below.

2. The Maintenance Lead evaluates the challenge.

If the appeal is incomplete or unclear, it is returned to the submitting licensee for
correction. If all is in order, the Maintenance Lead will check with the test
developers to review the purpose and validity of the test before writing a response.
The Maintenance Lead will attempt to complete the response within 5 business
22 [NAME] Technology Compatibility Kit User’s Guide • May, 2003

days. If the challenge is similar to a previously rejected test challenge (i.e., same
test and justification), the Maintenance Lead will send the previous response to the
licensee.

3. The challenge and any supporting materials from test developers is sent to the
specification engineers for evaluation.

A decision of test validity or invalidity is normally made within 15 working days
of receipt of the challenge. All decisions will be documented with an explanation of
why test validity was maintained or rejected.

4. The licensee is informed of the decision and proceeds accordingly.

If the test challenge is approved and one or more tests are invalidated, the
Maintenance Lead places the tests on the Exclude List for that version of the
[NAME] (effectively removing the test(s) from the Test Suite). All tests placed on the
Exclude List will have a bug report written to document the decision and made
available to all licensees through the bug reporting database on the [Support
Name] web site. If the test is valid but difficult to pass due to hardware or
operating system limitations, the Maintenance Lead may choose to provide an
alternate test to use in place of the original test (all alternate tests are made
available to the licensee community).

5. If the test challenge is rejected, the licensee may choose to escalate the decision
to the Executive Committee (EC), however, it is expected that the licensee would
continue to work with the Maintenance Lead to resolve the issue and only
involve the EC as a last resort.

TABLE 2 Test Challenge Form

Test Challenger Name and Company
Specification Name(s) and Version(s)
Test Suite Name and Version
Exclude List Version
Test Name
Complaint (argument for why test is invalid)

TABLE 3 Test Challenge Response Form

Test Defender Name and Company
Test Defender Role in Defense (e.g., test developer, Maintenance Lead, etc.)
Specification Name(s) and Version(s)
Test Suite Name and Version
Test Name
Defense (argument for why test is valid)
-can be iterative-
Implications of test invalidity (e.g., other affected tests and test framework code, creation
or exposure of ambiguities in spec (due to unspecified requirements), invalidation of the
reference implementation, creation of serious holes in test suite)
Alternatives (e.g., are alternate test appropriate?)
Chapter 2 Procedure for [NAME] [N.N] Certification 23

Specifications for [NAME]
The Specifications for [NAME] are found on the JCP web site.

Libraries for [NAME]
<The following is a format example only and must be replaced with the
complete, current Libraries listed for your Technology:>

■ java.applet
■ java.awt
■ java.awt.color
■ java.awt.datatransfer
■ java.awt.dnd
■ java.awt.dnd.peer
■ java.awt.event
24 [NAME] Technology Compatibility Kit User’s Guide • May, 2003

CHAPTER 3

Installing the [NAME TCK]

This chapter describes [NAME TCK] installation procedures. It contains the
following sections:

■ Obtaining the Software
■ [NAME TCK] Contents
■ Installing the Agent
■ {Installing the Reference Implementation}

Obtaining the Software
<Use this section to describe how and where to obtain the TCK
software. At a minimum, you should answer the following questions:
1. Where and how the software is obtained. CD? Web?
2. Where are installation instructions are obtained?>

Installing the Software
<Use this section to describe the TCK installation procedure. For
example, unzipping an archive, un-tarring a tar file, running an
executable script or program, or whatever. It should include step by
step instructions.>
25

[NAME TCK] Contents
<The example text below assumes a typical post-installation directory
structure.>

The top most [NAME TCK] installation directory, is referred to as
TCK_DIRECTORY throughout the [NAME TCK] documentation. You can name this
directory whatever you want.

Once the [NAME TCK] is installed, several directories will be created under the
TCK_DIRECTORY/. The contents of these directories are as follows (on Win32
platforms assume backslashes in directory paths, instead of forward slashes used
here). The JavaTest documentation is also available in PDF format, for easy online
viewing or for printing. This file is named javatest.pdf and it resides in the
TCK_DIRECTORY/doc/javatest/ directory

<The sample table below is taken from an example TCK that includes
both CLDC and a preverifier. These sample directories and files must
be edited to match your installation.>

TABLE 4 [NAME TCK] directory contents

File or Directory Contents

javatest.jar JAR style archive for JavaTest software and
JavaTest libraries. This file must be specified in
the CLASSPATH shell environment variable in
order to start the JavaTest software.

testsuite.jtt File that contains information required by the
JavaTest harness about the test suite.

agent.jar Contains class and resource files for
[AgentName] and for [NAME] test framework
libraries.

httpsrvr.jar
httpclnt.jar

J2ME only. Contains class files for
implementations of the server and client.

<other JAR files as needed> <Description>

classes/ Contains class files for the [NAME TCK].

classes/preverified/ Contains test classes that are preverified using
the reference preverifier

classes/shared/testClasses.lst This file contains the list of tests with their
associated auxiliary files and classes needed for
test bundling. It is required for running the tests
and should not be modified.
26 [NAME] Technology Compatibility Kit User’s Guide • May, 2003

doc/ This directory and its subdirectories contain all of
the documentation for the following: [NAME
TCK], JavaTest, test APIs, (with the exception of
index.html and releaseNote.txt files which
are directly under the TCK_DIRECTORY).

doc/[name]-tck/ Contains the [NAME TCK] User’s Guide
([name]-tck.pdf)

doc/javatest/ Contains JavaTest-specific documentation:
javatest.pdf: JavaTest User’s Guide and
Reference
tutorial.pdf: JavaTest Tutorial
tutorial/index.html: HTML version of the
JavaTest Tutorial

lib/ Contains the following JavaTest files:
environment files (.jte), parameter (.jtp) file,
Exclude List (.jtx).

<source files> <Descriptions and locations of source files.>

src/share/classes/com/sun/
cldc/communication/

J2ME only. Contains source files for [NAME
TCK] Test Framework interfaces and the HTTP
implementation of these interfaces. See
Appendix A, “{Implementing the Test
Framework}” for details.

tests/ Contains all of the test program sources (.java)
and test descriptions (.html) for the [NAME
TCK]. The test hierarchy begins with the
testsuite.html file in this directory (the
JavaTest software refers to this file as the
RootURL for the [NAME TCK]).

tests/api/ Contains all of the test program sources for the
application programming interface (API) tests.

solaris/bin/
win32/bin/
linux/bin/

OS related directories containing startup scripts
for the JavaTest software (each script named
javatest)

<Other directories as needed> <Description>

TABLE 4 [NAME TCK] directory contents (Continued)

File or Directory Contents
Chapter 3 Installing the [NAME TCK] 27

There may be additional directories related to the JavaTest harness that are not
found under the TCK_DIRECTORY. These are listed in the table below.

Installing the Agent
<The following example paragraphs assume that your TCK uses the
standard JavaTest agent supplied with the JavaTest harness.>

The JavaTest Agent provided with the JavaTest harness is a lightweight program
that uses a bidirectional serial connection supporting both TCP/IP and RS-232
protocols to communicate between the test system and the JavaTest harness. Other
types of serial connections such as infrared, parallel, USB, and firewire connections
can be added through the JavaTest API and modeled on the existing serial system.

The JavaTest harness includes an Agent Monitor window in the graphical user
interface that you can use to control and monitor agents.

Installation of the JavaTest Agent is described in the JavaTest User’s Guide and
JavaTest online help.

<If your TCK uses a custom agent (named [AgentName] you must describe
how it is installed on the system running the technology that is being
tested. The example paragraph below is for a TCK which automatically
downloads the agent.>

When running the [NAME TCK], the [AgentName] software is run on a target
device where the [NAME] implementation under test is running. Its responsibility
is to run the tests collected by the JavaTest harness and return the results of these
tests via the particular communications route for the test setup.

The JavaTest harness includes an Agent Monitor window [p 64] in the graphical
user interface that you can use to control and monitor agents.

The ([AgentName]) is automatically downloaded to the device being tested when
the [NAME TCK] is run. (Assuming, of course, the device is properly connected to
the system running the [NAME TCK].)

TABLE 5 User-defined [NAME TCK] directory contents

File or Directory Contents

user_defined_work_dir Work directories are user definable and are used to
store test result files (.jtr).

user_defined_report_dir The report directory is user-definable and is used to
store the harness.trace file.
28 [NAME] Technology Compatibility Kit User’s Guide • May, 2003

<If the custom agent is not automatically downloaded, or some user
intervention is required to install it, the paragraph above should be
replaced by a description of the agent installation steps.>

{Installing the Reference
Implementation}

<Use this section for optional instructions on how to install the
reference implementation. This could be full instructions or it could
simply refer the reader to some other documentation source.>
Chapter 3 Installing the [NAME TCK] 29

30 [NAME] Technology Compatibility Kit User’s Guide • May, 2003

CHAPTER 4

Starting and Configuring the
JavaTest Harness

<This example chapter assumes that your TCK uses JavaTest harness
version 3.x.>

This chapter describes basic [NAME TCK] execution and configuration. It contains
the following sections:

■ {Setting System Variables}
■ Executing the JavaTest Harness Software
■ JavaTest Harness Configuration
■ {Special Set-Up Instructions}

In order for the [NAME TCK] to run, both system and JavaTest harness variables
have to be properly set.

In essence, configuring the [NAME TCK] is a two part process:

1. Set your system variables as described in “{Setting System Variables}” below.

2. Set your JavaTest harness environment variables through the configuration
interview as described in “JavaTest Harness Configuration” on page 33.

{Setting System Variables}
<If necessary, use this section to describe any system variables that
need to be set.>

<Note that different engineers and QA people may personally use or
prefer different system variable settings. If different people use
different system variables, their command line syntaxes are going to
be different. You need to determine which variables and syntaxes to
document.>
31

Executing the JavaTest Harness
Software
Before executing the JavaTest harness software, you must have a valid test suite
and J2SE SDK 1.3 or greater installed on your system.

When executing the JavaTest harness, you can include arguments at the end of the
command string that specify how it starts. These command-line options are
described in your JavaTest documentation that is located at <location>.

Make sure that the correct java is in the execution path.

When you execute the JavaTest harness software for the first time, the JavaTest
harness displays a Welcome dialog box that guides you through the initial startup
configuration.

You can start the JavaTest harness in the following ways:

■ {Run a Startup Script. You can use one of the startup scripts provided with the
[NAME TCK] as described in “{Executing the JavaTest Harness—Scripts}” on
page 32.}

■ Execute the JAR File. If you have access to a command line, you can execute the
harness from the top-level directory of your test suite by directly executing the
JAR file at the command prompt: java -jar lib/javatest.jar options.

■ Double-Click the Icon (Windows platforms only). If you are using a GUI, your
system may support double clicking the javatest.jar file icon to launch the
harness.

When you execute the JavaTest harness for the first time it displays a Welcome to
JavaTest dialog box.

■ If it is able to open a test suite, the JavaTest harness displays a Welcome to
JavaTest dialog box that guides you through the process of either opening an
existing work directory or creating a new work directory as described in the
JavaTest online help.

■ If the JavaTest harness is unable to open a test suite, it displays a Welcome to
JavaTest dialog box that guides you through the process of opening both a test
suite and a work directory as described in the JavaTest documentation.

After you specify a work directory, you can use the Test Manager to configure and
run tests as described in Chapter 6, “Testing Your Implementation."

{Executing the JavaTest Harness—Scripts}
<This sample section describes using optional platform-specific start-
up scripts that may (or may not) be supplied with your TCK.>
32 [NAME] Technology Compatibility Kit User’s Guide • May, 2003

The [NAME TCK] provides <N> platform-specific startup scripts that can be used
to execute the JavaTest harness (Solaris, Windows, and Linux) from the
TCK_DIRECTORY. Each script is named javatest and is self-documented. They
are found in their respective directories, as follows:

solaris/bin/javatest
win32/bin/javatest
linux/bin/javatest

JavaTest Harness Configuration
<This section assumes that your TCK is designed to provide JavaTest
harness configuration information through a configuration editor
interview. If you do not use an interview, or if for some reason you
use the old JavaTest 2.x .jtp and .jte files rather than the
configuration editor, you must write a different section to describe
the process you use.>

In order for the JavaTest harness to execute the test suite, it requires information
about how your computing environment is configured.

JavaTest Harness Configuration Overview
When you use the JavaTest harness, it checks for the configuration information that
it needs. If configuration data is incorrect or missing, it prompts you to enter what
is needed. This process is sometimes referred to as a “configuration interview” and
the mechanism is called the “Configuration Editor.”

Once the JavaTest harness GUI is displayed, you can run the Configuration Editor
to change the configuration, or you can choose Run Tests > Start to begin a test run.
When you start a test run, the JavaTest harness determines whether all of the
required configuration information has been supplied:

■ If the test configuration is complete, the test run starts immediately.

■ If any required configuration information is missing, the JavaTest harness starts
the Configuration Editor which displays a series of questions asking you for the
necessary information. When you have finished entering the configuration data,
you are asked if you wish to proceed with running the test.

At any point in the interview you can use the File > Save As menu item to save
your test configuration to a .jti file. As explained in the JavaTest harness
documentation, you can load a previously saved .jti file from the command line
when you execute the JavaTest harness software. In that case, the JavaTest harness
starts with the configuration settings specified in the .jti file.
Chapter 4 Starting and Configuring the JavaTest Harness 33

Note – JavaTest harness configuration files (.jti) cannot be directly edited with a
text editor. While the normal method of modifying a .jti file is to change settings
in the JavaTest harness GUI and then saving the file, you can also use the set
command in batch mode or the editJTI utility. Both are documented in the
JavaTest harness help.

JavaTest Harness Configuration Editor
The JavaTest harness needs configuration information describing such things as the
JavaTest harness host, the test device, and test options (such as which tests to run).
To specify this information, you use the JavaTest Configuration Editor. The JavaTest
User’s Guide describes the Configuration Editor in detail.

To invoke the Configuration Editor, choose Configure > Edit Configuration in the
Test Manager window. FIGURE 1 shows a typical Configuration Editor window.

FIGURE 1 Typical Configuration Editor Window

The Configuration Editor asks you a series of questions, collectively called an
“interview.” It stores the answers in a configuration file (.jti).

You can have multiple configuration files, representing, for example, different test
device configurations or option selections. You can load a configuration file by
choosing Configure > Load Configuration in the Test Manager window or by
specifying the configuration file name on the command line when you execute the
JavaTest harness software. You can save the current configuration by choosing File
> Save or Save As in the Configuration Editor window.

The Configuration Editor uses the answers in the current configuration to create
the test environment. The test environment is a collection of environment entries
that describe attributes of the test device, the JavaTest harness host, test options
you have selected and so on. These entries control the execution of the test run that

Index Pane More Info PaneQuestion Pane
34 [NAME] Technology Compatibility Kit User’s Guide • May, 2003

commences when you choose Run Tests > Start in the Test Manager window. You
can view the test environment by choosing Configure > Show Test Environment in
the Test Manager window.

To use the Configuration Editor to create a new configuration, you proceed
sequentially through the questions answering one, and then clicking the Next >
button to see the next question. The following describes some important
Configuration Editor features and behaviors:

■ The More Info pane gives help for answering complex questions.

■ When you have answered all questions in the interview, the Configuration
Editor displays a message to that effect.

■ The list of questions in the Index pane may change as you answer questions. For
example, if you answer No to a question that asks if an optional test device
feature is present, the interview will not ask you about attributes of that feature.

■ The Configuration Editor hides some questions.

■ The Configuration Editor validates some answers during the interview; if an
answer is unacceptable, it will beep when you click Next >.

■ You can return to a previously answered question by clicking its name in the
Index pane.

For additional information, see:

■ Appendix B, “Configuration Editor and Environment Variables,” for a list of
Configuration Editor questions and the environment variables they affect.

■ “Configuration Failures” on page 65 for information on debugging test failures
caused by incorrect environment values.

<If your TCK requires any additional specific configuration, add that
information below. Keep in mind that the “More Information” feature of
the interview should provide the necessary information.>

<If your TCK provides any default or template configuration files,
describe them here and explain what site-specific parameters (such as
hostname) have to be entered or changed.>

{Special Set-Up Instructions}
<Description of any other TCK-specific set up requirements or
instructions required by your TCK. For example, starting a server for
tests to communicate with.>
Chapter 4 Starting and Configuring the JavaTest Harness 35

36 [NAME] Technology Compatibility Kit User’s Guide • May, 2003

CHAPTER 5

Verifying the [NAME TCK]

This chapter describes how to start the [NAME TCK] and verify that it is properly
configured. It contains the following sections:

■ [NAME TCK] Operating Assumptions
■ {Using an Agent}
■ Verifying Installation and Setup
■ {RI Configuration Editor Questions}

Once the [NAME TCK] has been installed, Sun recommends that you set up and
verify your test configurations in incremental steps in order to simplify any
necessary troubleshooting. To do this, you first set up the JavaTest harness and the
[AgentName] and pass a small series of tests.

[NAME TCK] Operating Assumptions
The following is assumed:

■ J2SE SDK version 1.3 or later is installed on the system hosting the JavaTest
harness.

■ You are using JavaTest harness version 3.x.

■ An implementation of [NAME] [N.N] is installed on the system hosting the
JavaTest harness or on a system or device that the JavaTest host can access.

■ <Any other required software (CLDC, for example) is installed.>

■ {The device being tested meets the criteria listed in “{Components Provided by
User}” on page 10. (The [NAME] Reference Implementation version 1.0.3 meets
these requirements.)}

■ <Any other assumptions or requirements>
37

{Using an Agent}
<Some TCK’s use the standard JavaTest Agent supplied with the JavaTest
harness, others use a custom agent. This optional section is for any
instructions needed to run the agent.>

<For example, if your TCK uses the standard JavaTest Agent supplied
with the JavaTest harness you could include the following:>

If the JavaTest Agent is used to run the tests for your product, you must start the
agent before you begin the test run. Instructions on installing and starting the
JavaTest Agent are provided in the JavaTest User’s Guide and JavaTest online help.

If the JavaTest harness issues a request before the passive agent is started, the
harness waits for an available agent until its timeout period ends. If the timeout
period ends before an agent is available, the JavaTest harness reports an error for
the test.

<If your TCK uses a custom agent (named [AgentName]) you must give the
necessary instructions on how to start it. The instructions will, of
course, be different for different agents. The example shown below is
taken from a Sun TCK used to test the J2ME MIDP technology, your
custom agent may require different instructions.>

Because the JavaTest agent will try to connect to a [AgentName] port when it is
started, you should first choose Run Tests > Start from the JavaTest harness menu
to start the built-in HTTP server before invoking the [AgentName].

The [AgentName] is run on the system or device running the [NAME]
implementation that you wish to test. The method of starting the [AgentName] on
a target device is implementation-specific. For example, for the Sun Reference
Implementation, start the [AgentName] by running the following command. (The
location of [name] must be set in the PATH variable.)

[name] -autotest http://JAVATEST_HOST:8000/test getNextApp.jad

Where:

■ [name] starts [name]
■ -autotest repeats after execution of the first JAR application.
■ JavaTest_Host is the host on which the JavaTest harness is running.
■ 8000 is the port on the host on which the JavaTest harness is running.

{See Appendix A, “{Implementing the Test Framework}” for further details.}
38 [NAME] Technology Compatibility Kit User’s Guide • May, 2003

Verifying Installation and Setup
Once the [NAME TCK] has been installed, [Maintenance Lead] recommends that
you set up and verify test configurations in incremental steps in order to simplify
any necessary troubleshooting. [Maintenance Lead] recommends that you first set
up the JavaTest harness {and the [AgentName]} and pass a small test to make sure
that you have the correct JavaTest harness configuration and that the JavaTest
harness {and agent} are running correctly.

The following general steps summarize this procedure:

1. Set up and verify the JavaTest application installation.

Described in “Verifying JavaTest Harness Configuration {and Connection}” on
page 39.

2. Verify any other required components.

Described in “{Verifying Other Required Components}” on page 40.

Verifying JavaTest Harness Configuration {and
Connection}

<The following example section assumes that your TCK is testing
technology on a connected device using a custom agent named
[AgentName]. This section is provided as an example, your situation
may be quite different.>

To set up and verify correct JavaTest installation, perform steps below. These steps
assume that the [Maintenance Lead] [NAME] <version NNN> has been installed
on a device connected to the host running the JavaTest harness.

1. Execute the JavaTest harness software.

“Executing the JavaTest Harness Software” on page 32.

2. Choose Configure > Edit Configuration to open the Configuration Editor.

Provide configuration information appropriate for the [Maintenance Lead] [NAME]
<version NNN> RI.

See “{RI Configuration Editor Questions}” on page 41 for a list of Configuration
Editor questions and appropriate answers.

3. Establish your communications link to the RI.

If the RI is running on a different system other than the one running the JavaTest
harness, make sure that both systems can communicate over the network using the
HTTP protocol.
Chapter 5 Verifying the [NAME TCK] 39

4. Start the test run.

Choose Run Tests > Start to begin the test. If configuration information is
incomplete, you will be asked to supply the missing data.

Should you encounter any errors after clicking Start, refer to the JavaTest harness
online help or the JavaTest User's Guide and Reference (located at
<directory_name> in the [NAME TCK] distribution) for troubleshooting
information.

Note – {When running the [NAME TCK], always start the JavaTest harness before
starting the [AgentName] which occurs when you start the RI. For subsequent test
runs, first exit the RI to release all used resources then invoke it again.}

5. Start the Reference Implementation (RI).

On the system hosting the RI, issue the following command from the top-level RI
home directory:

<command line to start RI>

Where:

<Describe the command line elements.>

{Once the RI is started, it queries the JavaTest harness which then downloads and
installs the [AgentName] on the system running the RI.}

The JavaTest harness status bar grows while the JavaTest harness tracks statistics to
record test progress.

6. Check the results.

Check the test results as displayed by the JavaTest harness to make sure that
everything is functioning correctly. Consult the JavaTest online help for information
on test results.

7. {(Optional) Terminate the [AgentName].}

{If necessary, provide instructions on how to terminate [AgentName]. For example,
a reset or CTRL-C> or whatever other method is used.}

{Verifying Other Required Components}
<Some technology implementations require additional software to be
loaded on the device being tested. For example, a TCK might require
the presence of Connected Limited Device Configuration (CLDC). This
example section instructs the user to load and test such software.>

A [NAME] implementation requires that a valid implementation of the Connected
Limited Device Configuration (CLDC) be present on the [NAME] device.
40 [NAME] Technology Compatibility Kit User’s Guide • May, 2003

■ Before testing your [NAME] implementation on the target device, you must first
install, set up, and test CLDC on the device. This mean that the CLDC
implementation must pass the CLDC TCK tests.

■ If you later make any changes to the CLDC implementation, you must re-run the
CLDC TCK to confirm that the CLDC implementation on the device still passes
all the required compatibility tests.

<Describe how to run the TCK that tests the required component. This might require referring
the reader to the User Guide that describes the TCK used to test that component, or it might
be that your TCK provides an internal method of invoking the needed tests in which case you
should describe the necessary steps.>

{RI Configuration Editor Questions}
<If you think it useful, you can use a table like the one below to
step the user through all of the Configuration Editor questions and
answers appropriate for verifying the JavaTest harness configuration.
The example shown below in TABLE 6 is taken from the MIDP User’s
Guide. Your questions and answers will be different.>

TABLE 6 lists the Configuration Editor questions and appropriate answers for
verifying your configuration with the RI.

TABLE 6 Configuration Editor Questions for the RI

Item Name Question Answer/Action

Configuration Name Please provide a short identifier for this
configuration.

SampleConfiguration

Configuration Description Please provide a short description of this
configuration.

Sampleconfiguration

Trusted MIDlets? Do you want to test untrusted or trusted MIDlet
behavior in this run?

Select “Untrusted”

Custom MIDlet permissions Which permissions will the test device/user grant
to untrusted MIDlets?

Select nothing

Test subset Which tests do you want to execute with this
configuration?

Select “Automated”

Debugging options Which MIDP TCK components would you like to
have display debugging/verbose output?

Select all

Javatest host name Please specify the name of the system on which you
run the JavaTest Harness:

JAVATEST_HOST

Test Server Port Please specify a port on the JavaTest host that the
MIDP TCK's HTTP test server can use:

JAVATEST_PORT
Chapter 5 Verifying the [NAME TCK] 41

Jar Source Directory Please specify a directory to hold Jar files: Any temp directory:
C:\TEMP or /tmp

Tests in Bundle How many tests should the MIDP TCK attempt to
pack into a Jar file?

Point to 1

Jar File Size Limit Please specify a maximum size for Jar files: 60000

Distributed test port Which JavaTest host port can the MIDP TCK use for
coordinating distributed tests?

1908

Midp classes Are the test device MIDP implementation class files
in a directory or a Jar file?

Select “Directory”

Midp classes dir Please specify the directory containing the MIDP
implementation class files:

MIDP_RI_DIR\
classes

Color display Does the test device display color or grayscale? Select “Color”

Number of Colors How many different colors can the test device
display simultaneously?

256

Canvas Pointer Events Does the test device support canvas pointer press/
release events?

Select “Yes”

Canvas Pointer Motion
Events

Does the test device support canvas pointer motion
events?

Select “Yes”

Canvas Repeat Events Does the test device generate repeated canvas
events while a key is held down?

Select “No”

Double buffered Canvas Are canvas graphics double buffered? Select “Yes”

Text Box Capacity What is the maximum number of characters that a
text box can hold?

0

Text Field Capacity What is the maximum number of characters that a
text field can hold?

0

Foreground Color Value Which color can the MIDP TCK use as a foreground
color?

0

Foreground Color Name What is the name of the foreground color? Select “Black”

Background Color Value Which color can the MIDP TCK use as a
background color?

16777215

Background Color Name What is the name of the background color? Select “White”

Does the test device have a
serial port?

Does the test device have a serial port? Select “No”

Media Timeout How long (in milliseconds) should tests wait for
media connections?

30000

Volume Support For Tone Does the test device's tone player support the
VolumeControl interface?

Select “Yes”

TABLE 6 Configuration Editor Questions for the RI

Item Name Question Answer/Action
42 [NAME] Technology Compatibility Kit User’s Guide • May, 2003

Sampled Sound Support Does the test device support sampled audio
playback?

Select “Yes”

Volume Support For Sampled
Audio

Does the test device's sampled audio player support
the VolumeControl interface?

Select “Yes”

Synthetic Sound Support Does the test device support synthetic sound
(MIDI)?

Select “No”

SecureSocketStreamSupport Does the test device implement secure socket stream
connections?

Select “Yes”

Secure Socket Type Which protocol does the test device's
SecureConnection implementation support?

Select “SSL”

Built-in Certificate? Do you want the MIDP TCK to use its built-in
certificate?

Select “Yes”

HTTP Server Port Which JavaTest host port can TCK's HTTP server
use?

8089

HTTPS Server Port Which JavaTest host port can TCK's HTTPS server
use?

7070

HTTPS Secure Protocol Which protocol does the secure HTTP connection
use?

Select “SSL”

Server Certificate File Please generate a server certificate and specify the
file it is located in:

your certificate

Server Certificate Alias Enter the server certificate's alias: your certificate's alias

Keystore Password Enter the keystore's password: keystore's password

Private Key Password Enter the certificate's private key password: your certificates'
private key password

Secure Server Port Which JavaTest host port can the TCK use to test
secure connections?

8090

Socket Stream Support Does the test device support socket stream
connections?

Select “Yes”

ServerSocket Connection
Support

Does the test device support incoming socket
connections?

Select “Yes”

Outgoing Datagram Support Does the test device support datagram
transmission?

Select “Yes”

Incoming Datagram Support Does the test device support incoming
datagrams?

Select “Yes”

Free Device Port Which test device port can the TCK use for optional
connection testing?

50000

Push Registry Support Does the test device support the push registry? Select “Yes”

TABLE 6 Configuration Editor Questions for the RI

Item Name Question Answer/Action
Chapter 5 Verifying the [NAME TCK] 43

Do you wish to run only
selected sections of the test
suite?

Do you wish to run only selected sections of the test
suite?

Select “Yes”

Tests to Run Specify the sections of the test suite you wish to run: Select tree item:
api
javax_microedition
lcdui
gauge

Specify an Exclude List Do you wish to specify an exclude list? Select “Yes”

Which Exclude List Which exclude list do you wish to use? Select “Initial”

Specify Keywords? Do you wish to specify a keyword expression to
select/reject tests based on keywords contained in
each test description?

Select “No”

Specify Status? Do you wish to select tests to run based on their
result in a previous run?

Select “No”

Time Factor Specify a time factor that is applied to each test's
default timeout. For example, specifying “2”
doubles the time for each test (the default is 1):

1.0

TABLE 6 Configuration Editor Questions for the RI

Item Name Question Answer/Action
44 [NAME] Technology Compatibility Kit User’s Guide • May, 2003

CHAPTER 6

Testing Your Implementation

This chapter describes how to use the [NAME TCK] to test your implementation. It
contains the following sections:

■ Operating Assumptions—Testing a Product
■ Test Selection
■ Using the [NAME TCK] to Test a Product
■ Monitoring Test Results
■ {Test Export}
■ Producing Test Reports

This chapter assumes that you have verified that your TCK is properly configured
as described in Chapter 5, “Verifying the [NAME TCK].

Operating Assumptions—Testing a
Product

<This section assumes that you are using JavaTest harness. Some of the
example bullets below may not apply to your TCK, and your TCK may have
assumptions not listed here.>

The following is assumed:

■ That the JavaTest harness and the device being tested meet the criteria listed in
“[NAME TCK] Specifications and Requirements” on page 4.

■ J2SE JRE version <x.x> or later is installed on the system hosting the JavaTest
harness.

■ You are using JavaTest harness version <x.x> or later.

■ That your [NAME] implementation has been installed on a target device,
platform, or computational equivalent, which is accessible to the JavaTest
harness host using the HTTP protocol.

■ {Other required elements (CLDC, for example) are properly installed and
configured.}
45

■ {Any other requirements.}

Test Selection
Tests are selected for a given test run according to selection criteria that you specify.
This section describes the different kinds of selection criteria you can use.

<This section assumes that your TCK uses JavaTest harness 3.x. If you
are using some other test harness or version, the test-selection
methods will vary.>

Test Selection Criteria
The selection criteria you specify can be thought of as a series of test filters that
restricts which tests are run. At any given time, only tests that pass all of your
selection criteria (all of your filters) are run.

There are different methods of specifying test-selection criteria:

Configuration Editor test-selection criteria. Some of the answers you give to
Configuration Editor questions act as test-selection filters. The final standard value
questions in the interview concern values related to test selection for the JavaTest
harness. Those that affect test selection are:

<Describe the JavaTest harness 3.x test-selection standard value
questions that apply to your TCK. The example bullets below are taken
from the MIDP User Guide and are specific to MIDP 2.0. Since it is
unlikely that they would apply to your TCK, they should be seen as
examples only.>

■ Trusted versus Untrusted: Answering “Trusted” or “Untrusted” to the
Configuration Editor support for trusted MIDLets question, selects a subset of
the [NAME TCK] tests.

■ If you answer “Untrusted” tests that contain the trusted keyword are filtered
out and not run. (In other words, tests containing the keyword untrusted
are run, and tests that contain neither trusted nor untrusted keywords are
also run.)

■ If you answer “Trusted” no tests are filtered out. In essence, the trusted and
untrusted keywords are ignored in terms of test selection. Tests are run
regardless of whether or not they contain either keyword.

■ Permission set: If you answer “Untrusted” to the Configuration Editor support
trusted MIDLets question, you are asked to specify the permissions to be
granted to the MIDlet suites. The permissions you grant act as a filter to select a
subset of tests because a test will not run unless it has been granted (or denied)
the appropriate permissions. In other words, a test may require that certain
46 [NAME] Technology Compatibility Kit User’s Guide • May, 2003

permissions be granted, or it may require that certain permissions be denied;
and the test will be run, or not run, according to which permissions you have
granted or denied.

■ Test subset radio buttons: The Configuration Editor asks you to select one of
four radio-button keywords: automated, interactive, OTA, or all. The button you
choose selects certain tests as follows:

■ automated: Tests that do not contain either the interactive or OTA keywords
are selected.

■ interactive: Only tests containing the interactive keyword are selected.

■ OTA: Only tests containing the OTA keyword are selected.

■ all: Tests are selected regardless of whether or not they contain the
interactive or OTA keywords.

■ Specify keywords: The Configuration Editor allows you to specify a keyword
expression. This is functionally equivalent to the JavaTest harness key word
pane which is discussed in detail below. (Do not use this feature unless you fully
understand its implications.)

■ Prior status: The Configuration Editor allows you to select tests based on test
status from a previous test run. This is functionally equivalent to the Prior Status
tabbed pane which discussed below. Prior status selections chosen with this
question replace any prior status selection specified through the tabbed pane,
and vice versa. Note also that all previous criteria (restrictions) specified by the
Configuration Editor and JavaTest harness GUI are applied to the tests you
select by prior status. For example, if you chose the OTA radio button in the
Configuration Editor and tests that failed with the Prior Status pane, only OTA
tests that failed will be run.

■ Optional features: The Configuration Editor asks you if various optional
features are supported. Your answers act as a filter to select certain tests
according to what is contained in a test’s selectif field in the test’s
description.

JavaTest harness: You can also use the JavaTest harness GUI to specify test-
selection criteria as follows:

■ JavaTest harness keyword field: Additional test keywords can be entered in
GUI’s Keyword pane (standard view). Keywords that you enter here further
restrict which tests are run. In other words, keywords entered in the Keyword
pane are in addition to the filters set through the Configuration Editor except that
keywords entered in this field replace any keywords specified through the
Configuration Editor Specify Keywords question, and vice versa.

Note – Do not use the Keyword field unless you thoroughly understand how the
keywords you enter will affect test selection and how keywords interact with test-
selection criteria established with the Configuration Editor.
Chapter 6 Testing Your Implementation 47

■ JavaTest harness Tests to Run: You can use the Tests to Run pane in Standard
Values view to select a subset of tests to run. Note, however, that all previous
criteria (restrictions) specified by the Configuration Editor and JavaTest harness
are applied to the tests you select by this method.

■ JavaTest harness prior status: You can select tests using the Prior Status tabbed
pane to select tests. You can select only those tests that failed, had an error, were
not run, or passed in the previous test run. This is functionally equivalent to the
Prior Status Configuration Editor question discussed above. Prior status
selections chosen in this pane replace any prior status selection specified
through the Configuration Editor Prior Status question, and vice versa.

Exclude List: Tests listed in the Exclude List are not run.

Note that you can ensure consistent test selection criteria for subsequent test runs
by saving a particular combination of selection criteria in a JavaTest harness .jti
file, and then loading that file from the command line when starting the JavaTest
harness.

{Multiple Test Runs With Different Test Sets}
<Some TCKs are able to run all tests in a single test-run. Others
require multiple test-runs with different test-selection criteria in
order to correctly run all tests. This example section is for TCKs
that require multiple test-runs. The example bullets below are taken
from MIDP and may not apply to your TCK.>

As a general rule of thumb, in most cases it is not practical to run all necessary TCK
tests in a single test-run.

■ Different security policies. If the security policy of your device is configurable
(different permissions can be granted or denied) then you should do multiple
test runs. At a minimum, you should do one “trusted” run, and two “untrusted”
runs (one with the device set to grant the maximum set of permissions and
another run with the device set to grant the minimum permission set.)

■ Automated vs interactive. Some tests run automatically while others require
user intervention. If you try to run both automated and interactive tests in the
same run, you will have to wait while automated tests are run in order to be
present for those tests that require user intervention when they occur. This could
be very time-consuming.

{Making Sure All Necessary Tests Have Been
Run}

<This optional section is a companion section to ‘{Multiple Test Runs
With Different Test Sets}’ above. It is intended for TCKs that require
multiple test-runs with different test selection criteria.>
48 [NAME] Technology Compatibility Kit User’s Guide • May, 2003

Because multiple test runs with different test-selection criteria are usually needed
to completely test an implementation, it is important that care be taken to ensure
that all necessary tests have been run. In other words, if you cannot run all
necessary tests in a single run, you have to make sure that your combination of
different test runs with different test selection criteria have covered all the required
tests.

The JavaTest harness GUI’s test-name color codes can be used to determine
whether all needed tests have been run. The Test Tree Pane of the JavaTest harness
GUI lists the [NAME TCK] tests by name. The test names are color-coded as
follows:

■ White: Test has not been run
■ Grey: Test is excluded by test-selection criteria (including the Exclude List)
■ Green: Test has been run and passed
■ Red: Test has been run and failed
■ Blue: There was an error in running the test

One method of ensuring that all tests have been run is to create different work
directories based on primary test-selection criteria. In this context Primary test-
selection criteria are the answers you provided to the Configuration Editor’s
Support trusted MIDlets and Permissions questions. (You can save your
configuration in a .jti file that you can then use to set identical criteria in
subsequent test runs.)

For each of these work directories you could:

■ Do a single TCK run for that selection criteria (that is, a run that included all test
subsets)

■ Do several TCK runs with different secondary test-selection criteria such as
keywords or Tests to Run folders. In this case after completing the different test
runs you need to cancel the secondary test-selection criteria to see if any tests
show up in white color (not-run).

The end goal is to make sure that at the end of your test cycle all required TCK
tests are shown in green (run and passed) when all secondary test selection filters
are turned off.

Using the [NAME TCK] to Test a
Product
This section describes how to use the [NAME TCK] to test a [NAME]
implementation. It contains the following sub-sections:

■ “Running [NAME TCK] Tests—Basic Steps” on page 50
■ “{[Optional] Running Interactive Tests}” on page 51
■ “{Running Distributed TCK Tests}” on page 53
■ “{Pre-installing Agent and Client Classes}” on page 54
Chapter 6 Testing Your Implementation 49

Running [NAME TCK] Tests—Basic Steps
To perform full testing of the [NAME] implementation on the target platform,
device, or emulation, follow the steps listed below.

1. Make sure that your test environment meets the basic requirements.

(See “Operating Assumptions—Testing a Product” on page 45 for details.)

2. Make sure that your test environment configurations are correct.

(See Chapter 4, “Starting and Configuring the JavaTest Harness,” and Chapter 5,
“Verifying the [NAME TCK]” for details.)

3. Provide a connection between your device, platform, or emulation and your PC
or Workstation COM ports, if necessary.

<Describe necessary details as appropriate.>

<The following two steps are examples that might (or might not) apply
to implementations that have security-related aspects.>

4. {Set the device’s security mode, if necessary.}

{If the device’s security mode has to be pre-set before a test run, do what is
required to accomplish that.}

5. {Set up your certificates.}

{Make sure that the necessary certificates are properly installed.}

6. Launch the JavaTest harness software.

(See “Executing the JavaTest Harness Software” on page 32 for details.)

Note – {When running the [NAME TCK], always start the JavaTest harness before
starting the implementation on your device which starts the [AgentName]. For
subsequent test runs, first exit the [AgentName] to release all used resources and
then invoke it again.}

7. Select the tests to be run.

<This example step assumes that you are using JavaTest harness 3.x.>

Test selection is done through the JavaTest harness Configuration Editor and GUI
as described in “Test Selection” on page 46.

8. Start the test run.

Choose Run Tests > Start to begin the test run. If configuration information is
incomplete, you are asked to supply the missing data. This also starts the Server
which will now wait for the [AgentName] to request tests.

The JavaTest harness tracks statistics relative to the files done, tests found, and tests
done.
50 [NAME] Technology Compatibility Kit User’s Guide • May, 2003

9. Start the implementation on the target device under test in the manner
appropriate for your platform.

The commands to start the implementation are device-specific. {(You may need to
take security mode considerations into account when starting the device.)
Depending on the tests you are running, you may need to start the [AgentName] in
the manner appropriate for your implementation.}

10. Check the results.

Test progress and results are displayed by the JavaTest harness. (See “Monitoring
Test Results” on page 55 for details.)

<Some TCKs require that test suites be cleared from the implementation
under test before starting a new test-run. Or the user may have to
take steps to clear the agent. If so, describe them here.>

11. {Completion step}

<If necessary, provide instructions on how to terminate the test-run. For example, a
reset, or CTRL-C>, or whatever other method is used.>

{[Optional] Running Interactive Tests}
<Some TCKs have different kinds of tests. For example, interactive and
non-interactive. If your TCK provides more than one kind of test,
describe how to run them here. The example below describes how to run
the interactive tests as used by the MIDP TCK. Your TCK may use
different procedures.>

The [NAME] test suite consists of two kinds of tests:

■ Non-interactive, which do not require user interaction to run.

■ Interactive, which require some user input or other kind of interaction. The
[NAME TCK] contains different kinds of interactive test that use different
methods to report test results:

■ Tests that require users to perform some activity, such as viewing the results
on the device screen, and judge a pass/fail result.

■ Tests where the test itself reports a pass/fail result, but still require user
interaction.

The [NAME TCK]’s interactive tests that require the user to judge the pass/fail
result differ according how the pass/fail judgement is made:

■ “YesNo” interface with reference screen shot images. These kind of tests
provide reference screen shot images to allow easy verification of the test result.
You use these images to compare the results and make the final pass/fail
judgement. FIGURE 2 shows a typical “YesNo” interface with reference images.
Chapter 6 Testing Your Implementation 51

FIGURE 2 Interactive Test With Reference Images

■ “YesNo” interface without reference screen shot images. These kind of tests do
not provide reference screen shot images. Instead, the tests instructs you to
perform some action, such as pressing a hardware key or tapping a touch screen,
to produce a result. You make the pass/fail judgement by comparing the actual
result to the expected result. FIGURE 3 presents a typical “YesNo” interface
without reference images.

FIGURE 3 Interactive Test Without Reference Images

■ “Done” interface. These tests are designed for verification of events generated
by the device when your interact with it. The pass/fail judgement is
automatically computed by the test. FIGURE 4 presents a typical “Done”
interface type of test.

FIGURE 4 Done Interface Interactive Test

To run interactive tests, follow these steps:

1. Read the test instructions.

The instructions are displayed in the top part of the window.

2. Press the corresponding Test button.

There could be few test cases within a single test. Pressing each Test Button will
execute the test code.

3. Verify produced result.

Each test case also has a small description of the parameters used and the expected
results. It is placed under each reference screen shot image.

Note that:

■ A small number of tests will perform automatic result checks based on the
generated events.

■ If the “No” button is pressed, a text field is presented which can be used to
provide test failure details.
52 [NAME] Technology Compatibility Kit User’s Guide • May, 2003

{Running Distributed TCK Tests}
<Some TCKs support distributed tests, others do not. This optional
section is an example for those that do. This needs to be edited (or
completely re-written) to meet the specifics of your TCK.>

The [NAME TCK] supports distributed tests for complicated APIs and for tests that
are heavily dependent on external resources or designed to run on devices with
constrained resources such as a small display. All data transfer is tested using
distributed tests.

All communications in a distributed test framework are HTTP-based, so it is
assumed that the default HTTP communication is properly implemented at this
point as described in this chapter and in more detail in Appendix A,
“{Implementing the Test Framework}.”

There are two kinds of distributed tests:

■ Interactive Tests: When your test environment is properly configured for
distributed tests, the active agent ([AgentName]) running on the device under
test executes the tests while the passive agent reacts to requests from you
according to test instructions. In other words, an operator must be present
during interactive tests to follow the testing prompts and instructions displayed
on the passive agent.

In this situation all test controls are moved to the passive agent. When you enter
a command to create an object or to change a state of an object the result will be
visible on the device’s screen. As a general rule, almost all interactive tests
utilize a “Yes/No” choice which you use to confirm a pass or fail condition.
(There are a few tests for events that have “Done” choice.)

■ Automated Tests: Automated distributed tests do not require any interaction
from an operator.

When executing distributed tests, an agent will be automatically started in passive
mode on the JavaTest harness host. The passive agent provides external resources
and services (communication and OTA tests) or displays test prompts and controls
for the user (interactive distributed tests).

Port Number for Passive Agent

By default, the passive agent uses port 1908.

To use a non-default passive agent port:

● Specify a non-default port in the Configuration Editor.

When asked “Which JavaTest host port can the [NAME TCK] use for
coordinating distributed tests?” in the Distributed Test Port question,
specify the port you wish to use.
Chapter 6 Testing Your Implementation 53

{Pre-installing Agent and Client Classes}
<Some TCKs support pre-installation of agent and client classes,
others do not. This optional section is an example for those that do.
This needs to be edited (or completely re-written) to meet the
specifics of your TCK.>

By default, the [NAME TCK] includes the [AgentName] and a <client>
implementation in each test bundle that is downloaded to the device being tested.
You can reduce communication overhead by pre-installing one or both of these
components on the test device and then directing the [NAME TCK] to not include
the component(s) in the test bundles it downloads to the device.

{CLDC TCK tests can also pre-install the agent and client classes. You may use the
same procedure for CLDC TCK that is described below for the [NAME TCK].}

Note – Sun’s [NAME] Reference Implementation (RI) supports ROMizing classes
into the KVM. In an example test case, ROMizing the [AgentName] and the
<client> implementation added <nn>KB to the static memory footprint.

Pre-installing the [AgentName]

To pre-install the [AgentName], follow these steps:

1. Install the classes into the test device.

The classes are contained in [directory_name]/lib/agent.jar. How you
install the classes into the test device is determined by your implementation.

2. Answer “Yes” to the “AdvancedFeatures -> Agent Preinstalled?” interview
question.

Pre-installing the <client>

To pre-install the default Client, follow these steps:

1. Install the classes into the test device.

The classes are contained in [directory_name]/lib/<filename>.jar. How you
install the classes into the test device is determined by your implementation.

2. Answer “Yes” to the “AdvancedFeatures - > Client Preinstalled?” interview
question.
54 [NAME] Technology Compatibility Kit User’s Guide • May, 2003

Monitoring Test Results
After the test run begins, you can track its progress using the test progress display
fields, Progress Monitor dialog box, test tree, and information tabbed panes in the
Test Manager window.

During and after a test-run, test names in the test tree are color-coded as follows:

■ White: Test has not been run
■ Grey: Test is excluded by test-selection criteria (including the Exclude List)
■ Green: Test has been run and passed
■ Red: Test has been run and failed
■ Blue: There was an error in running the test

{If you are using the JavaTest Agent to run the tests on your system, use the Agent
Monitor window to control and monitor the activity of the agent. Open the Agent
Monitor window either by clicking its button in the toolbar or by selecting it from
the Tools menu.}

{Test Export}
<Some TCKs support test export for running tests outside of the TCK,
others do not. This optional section is an example for those that do.>

The Test Export feature allows TCK tests to be “exported” into .jar files with test
classes and a minimal test framework for “stand-alone” execution. (Interactive,
OTA and distributed tests cannot be exported using this feature.)

Note – This mode can be used only for QA or debugging purposes. It cannot be
used for certification.

Exporting Tests in [NAME TCK]
To export tests, follow these steps:

1. Go to the “Advanced Features...” question in the Configuration Editor and select
“Yes”

2. The “Test export” question is displayed. Answer “Yes.”

3. Select Run tests->Start.
Chapter 6 Testing Your Implementation 55

The .jar files with exported tests are created in the directory that you specified in
answer to the “Jar Source Directory” question. These Java files have names in the
format testN.jar (were N is a number). For example, test1.jar, test2.jar,
test3.jar.

Older files will be overwritten with new ones.

An HTML index file is created with the name tcktests.html.

Tests that are successfully exported are marked Status.passed.

Tests That Cannot be Exported
Tests that include “remote” components running on the JavaTest harness side
cannot be exported for stand-alone execution. Attempts to export such tests will
result in Status.failed.

Tests that cannot be exported include:

■ Distributed Network tests
■ Signature test
■ Distributed Interactive tests
■ {Other kinds of tests that cannot be exported}

Running Exported Tests
<This example is taken from MIDP. It will need to be re-written for
your TCK.>

Exported Jar files can be used to run tests as follows (using the RI as an example):

bin\midp -classpath jar_file
com.sun.tck.midp.javatest.agent.MIDletAgent

When run in the manner, tests print output and report their results to the console.

Note that the [NAME] [N.N] RI does not support relative URLs in HTML files.
Therefore tcktests.html cannot be used for interactive browsing and running
exported tests with the RI.

CLDC tests can also be exported. Note, however, that running “negative” CLDC
tests should result in a failure (or abnormal VM termination). If a negative test
results in Status.passed, that should be considered as a test failure. In this
context, “negative” tests are those with the keyword negative in the CLDC TCK
1.0, and cldc_typechecker_specific in CLDC TCK 1.1
56 [NAME] Technology Compatibility Kit User’s Guide • May, 2003

Producing Test Reports
After the test run is completed, you can use the JavaTest harness to create HTML
reports for the test run. When you generate reports, you can specify the directory in
which they are to be stored.

You can then open and view (or print) these report files with a web browser:

■ The results are viewed with the JavaTest harness Test Browser.

■ You can view the test results by going to the appropriate directory where the
reports are stored and opening the test report contents list file report.html
with any web browser.

Test result reports include the following kinds of information:

■ Environment information—tester login, working directories, and other
identification information

■ Date and time for each event

■ A log of the configuration interview questions and answers.

■ List of tests or symbolic names that can be expanded to the exact list of the tests

■ The list of excluded tests as specified by the Exclude List.

■ A pass/fail report, including any return status, return values, or return message

■ Any system messages, including exceptions and errors, generated by the tests.

In addition to test reports, the following report files are also generated:

■ A summary.txt file in the /report directory that you can open in any text
editor. The summary.txt file contains a list of all tests that were run, their test
results, and their status messages.

■ passed.html and failed.html: each lists test files by name, and in the case
of failures, the reason for the failure.

■ error.html: lists tests that neither pass nor fail but that have configuration
problems, such as those which prohibit tests from launching.

■ env.html: lists environment file variables fully evaluated.

■ excluded.html: lists files excluded from the run.

■ config.html: contains the configuration interview questions and answers.

■ report.html: tallies the number of files passed or failed.

Individual test result files (*.jtr) are located in a hierarchical tree structure
similar to the test suite itself. This means that individual result files are only
overwritten when a given test is rerun. In other words, when one test is rerun only
its test result file is overwritten, all other test result files are left unchanged. In this
manner, you may change your test selection criteria and run groups of test at a
finer granularity without affecting the test results of tests that are not being run.
Chapter 6 Testing Your Implementation 57

58 [NAME] Technology Compatibility Kit User’s Guide • May, 2003

CHAPTER 7

{Testing API Signatures}

<If your signature test is included in the test suite and run from
within the test harness the same as other tests, you do not need to
include this chapter. This chapter is only for situations in which the
signature test needs to be run separately from the other tests.>

This chapter describes how to run a diagnostic test to compare the signatures of the
public and protected methods, constructors, and fields in the jar file containing
classes for the RI against an exact list of signatures from the API Specification. It
contains the following sections:

■ Overview
■ Running Signature Test

Running the Static Signature test is required.

Overview
It is physically impossible to verify API signatures using the [Technology Name]
implementation on the target device in the absence of reflection capabilities.
However, API libraries which are burned into ROM or placed into the device in
some other way, typically have prototypes that follow the standard class file
format. In this case it is possible to explore the class files of the prototype to gain
confidence that the API libraries that are actually present on the target device
comply with the specification. The [NAME TCK] contains a tool called Static
Signature test exactly for this purpose.
59

Running Signature Test
<Describe how to run the signature test provided with your TCK. Or,
alternatively, refer readers to the appropriate Signature Test
documentation. If there are configuration issues that need to be
addressed, describe them here.>
60 [NAME] Technology Compatibility Kit User’s Guide • May, 2003

CHAPTER 8

{Test-Specific Information}

<In many cases using the configuration editor interview is all the
configuration a TCK needs. However, it may be that your TCK requires
additional set up information for certain tests or classes of tests.
This optional chapter is for describing that information. The sample
material below is meant as an example of one approach, you will need
to determine the best way to cover the necessary material.>

This chapter provides information required to configure, set up, and run specific
[NAME TCK] tests.

This chapter is organized alphabetically according to major test categories. Each
test section has three sections that describe information specific to the different
types of tests:

■ Configuration. The test configuration values required by each type of test.

■ Setup. Special steps (if any) required to set up specific tests prior to running
them.

■ Execution. Special instructions (if any) required to execute specific tests.

<The example section below is intended as an illustration of one way
to approach documenting specific test requirements. It is taken from
the JCK User Guide.>

{Extra-Attribute Tests}
The table below shows one way to present area tested and attribute information.

TABLE 7 Example Area Tested-Attribute Table

Area tested Additional attributes in class files

Test URL vm/classfmt/atr
61

{Configuration}
The table below shows one way to present test configuration information.

{Setup}
Because these tests use C code, it is not possible to define their compilation in a
platform-independent way. Therefore, you must compile these tests before running
them. These files must be compiled into a library named jckatr for loading using
the method System.loadLibrary(“jckatr”). To build the jckatr library,
compile the file jck/src/share/lib/atr/jckatr.c, which contains a list of
#include statements that refer to other files in the jck/tests directory.

When building the jckatr library, if the library is linked dynamically, you must
set up a platform-dependent system environment variable such as
LD_LIBRARY_PATH on Solaris, or PATH on Windows 95/98/NT in order to load
the jckatr libraries.

The following instructions show how to build the jckatr library on Windows 95/
98/NT and Solaris:

<The platform-specific descriptions are omitted from this example.
They can be found in the JCK Users Guide.>

{Execution}
No special requirements.

TABLE 8 Example Configuration Information Table

Test Configuration Value Description

platform.nativeCodeSupported If your system supports native code, set this value
to “true”. This value signifies that the JVM under
test provides support for loading native code. If
your system does not provide support for loading
native code, set this value to “false”.

PATH
LD_LIBRARY_PATH

The jck-runtime.jte file must include any
necessary platform-specific variables to identify
the path to the library file. On Windows 95/98/
NT set the PATH variable, on Solaris set the
LD_LIBRARY_PATH variable.
62 [NAME] Technology Compatibility Kit User’s Guide • May, 2003

CHAPTER 9

Debugging Test Problems

There are a number of reasons that tests can fail to execute properly. This chapter
provides some approaches for dealing with these failures. It contains the following
sections:

■ Overview
■ Test Tree
■ Folder Information
■ Test Information
■ Agent Monitor
■ Debugging Option
■ Report Files
■ Configuration Failures

Overview
The goal of a test run is for all tests in the test suite that are not filtered out to have
passing results. If the root test suite folder contains tests with errors or failing
results, you must troubleshoot and correct the cause to satisfactorily complete the
test run.

■ Errors. Tests with errors could not be executed by the JavaTest harness. These
errors usually occur because the test environment is not properly configured.

■ Failures. Tests that fail were executed but had failing results.

The Test Manager window provides you with a number of tools for effectively
troubleshooting a test run.

Consult JavaTest User’s Guide and JavaTest online help for detailed descriptions of
the tools described in this chapter.
63

Test Tree
Use the test tree to identify specific folders and tests that had errors or failing
results. Color codes are used to indicate status as follows:

■ Green—Passed.
■ Blue—Test Error.
■ Red—Failed to pass test.
■ White—Test not run
■ Gray—Test filtered out (not run)

Folder Information
Click a folder in the test tree to display its tabbed pane.

Choose the Error and the Failed panes to view the lists of all tests in and under a
folder that were not successfully run. You can double-click a test in the lists to view
its test information.

Test Information
To display information about a test, click its icon in the test tree or double-click its
name in a folder status pane. The tabbed pane contains detailed information about
the test run and, at the bottom of the pane, a brief status message identifying the
type of failure or error. This message may be sufficient for you to identify the cause
of the error or failure.

If you need more information to identify the cause of the error or failure, use the
following panes listed in order of importance:

■ Test Run Messages contains a Message list and a Message pane that display the
messages produced during the test run.

■ Test Run Details contains a two column table of name/value pairs recorded
when the test was run.

■ Configuration contains a two column table of the test environment name/value
pairs derived from the configuration data actually used to run the test.
64 [NAME] Technology Compatibility Kit User’s Guide • May, 2003

Agent Monitor
The JavaTest harness includes an Agent Monitor window in the graphical user
interface that you can use to control and monitor agents. This tool can be used to
see if you have made a connection to a JavaTest Agent(s). You can start the Agent
Pool (for Active Agents) using the listening checkbox.

Debugging Option
You can turn on or off the debugging output for TCK components by answering the
“Debugging Options” question in the Configuration Editor. Turning on debugging
produces extensive debugging information in the implementation’s standard
output.

Report Files
Report files are another good source of troubleshooting information. You may view
the individual test results of a batch run in the JavaTest Summary window.

Another important resource for debugging test failures is the work directory report
called failed.html.

Configuration Failures
In some cases, configuration failures are easily recognized because many tests fail
the same way. If all your tests begin to fail, you may want to stop the run
immediately and start viewing individual test output to determine which
environment variable is incorrect. (Note, however, that in the case of full-scale
launching problems where no tests are actually processed, report files are usually
not created.)

In other cases, a single test, or small set of tests, may fail because of an incorrect
environment setting. In other words, a test failed because an incorrect environment
value was passed to it. You can sometimes determine the name of the environment
entry from the test description or the test run messages. To do this, select the test in
the JavaTest test tree, then click the Test Description or Test Run Messages tab.
Chapter 9 Debugging Test Problems 65

TABLE 9 on page 80 shows the source of environment most value settings. Most
values come from Configuration Editor interview answers. After correcting an
incorrect Configuration Editor answer, the test then runs properly with the right
environment settings.

<The example below is taken from MIDP, you may want to provide a
similar example from your TCK.>

For example, suppose the test
api/javax_microedition/lcdui/Canvas/index.html#IsDoubleBuffered
fails. The Test Description’s executeArgs field shows that the test takes an
argument named CanvasisDoubleBuffered. Choosing JavaTest Configure >
Show Test Environment reveals that the value of CanvasisDoubleBuffered is
false. However, that is an error; the value should be true. Looking up
CanvasisDoubleBuffered in TABLE 9 on page 80 shows that value can be
changed by changing the answer to the Double Buffered Canvas interview
question.

TABLE 9 on page 80 also gives the JavaTest interview question tag of each entry
whose value comes from an interview question. You can use this name to
temporarily set the value of an entry from the command line with the -set option.
For example, you can set the httpPort entry to 9999 as follows:

java com.sun.javatest.tool.Main -batch -open ../default.jti
-set midptck.vm.httpPort 9999 -runtests

Hostnames and DHPC
<This section may not apply to all TCKs. Check with your engineers to
see if it is applicable.?

For machines that use DHPC, you must use the correct DNS name for the
Computer Name. Error messages such as:
javax.microedition.io.ConnectionNotFoundException: TCP open may
indicate an incorrect DNS name.

For example, on a Windows 2000 machine under Settings > Control Panel > System
> Network Identification > Properties you can enter a “Computer name.” Not any
name can be entered, it must be the proper DNS name.

You should be able to access this machine over the network using this DNS name.
This DNS name should be used in the Configuration Editor to answer the “JavaTest
Host Name” question.
66 [NAME] Technology Compatibility Kit User’s Guide • May, 2003

CHAPTER10

{Product-Specific Chapter
Template}

<This chapter template file can be used for any additional product-
specific chapters that you require. For FrameMaker users, it already
contains the variables and conditional text definitions used in other
chapters.>
67

68 [NAME] Technology Compatibility Kit User’s Guide • May, 2003

APPENDIX A

{Implementing the Test
Framework}

<Many TCKs require the user to provide necessary software components
that the TCK requires in order to function. For example, a user might
need to create a communications channel, or Application Management
Software (AMS). Use this appendix to provide users with the
information they need to create whatever they have to provide. The
example content below is adapted from the MMA 1.1 TCK. Your TCK may
have quite different requirements.>

This appendix describes the test framework design and user-created components
required by your TCK. It contains the following sections:

■ Testware Components
■ When to Plug In Your Own Implementation and What to Plug In
■ Communication Channel Components
■ The Default Implementation of the Communication Channel
■ Plugging In Other Implementations of Server, Client, and AMS

The [NAME TCK] allows implementation of platforms for a wide range of devices
with different types of communication capabilities and different internal
representation formats for applications.

An implementation of the [NAME] [VersionNumber] specification requires some
underlying software that conforms to other Java specifications as follows:

■ MIDP plus CLDC. Conformance to the Mobile Independent Device Profile
(MIDP) 1.0 or 2.0 plus CLDC 1.0 or 1.1 specifications as appropriate. In this case,
the [NAME TCK] assumes that your MMAPI implementation includes valid
implementations of both the MIDP and CLDC specifications that have been
tested by the appropriate MIDP TCK.

Note—Since the MIDP implementation provides an HTTP communications
protocol, the communications channel implementation described in this
appendix is not necessary. In other words, if your [NAME] implementation
conforms to the MIDP specification this Appendix does not apply and can be
ignored.
69

■ CLDC plus IllegalStateException. Connected Limited Device Configuration
(CLDC) 1.0 or 1.1 plus a profile that includes the IllegalStateException. In this
case, the [NAME TCK] assumes that your MMAPI implementation includes a
valid implementations of the CLDC specification plus some kind of profile the
provides the IllegalStateException as tested by the appropriate CLDC TCK.

In this case, you may have to implement the test framework as described in this
Appendix.

Testware Components
The JavaTest harness runs on a PC/Workstation. Its responsibility is to package
groups of tests into jar files (test bundles) and make them available to the target
device running the implementation under test.

JavaTest harness uses its server to perform the following functions:

■ To send test bundles to the target device (including the test [AgentName]).
■ To convert them to the application format of the target device, if necessary.
■ To dispatch tests for execution and receive test results.

The [NAME TCK] provides the CLDCAgent for implementations the conform to a
CLDC specification plus a profile that provides the IllegalStateException. The agent
is pre-packaged with each test bundle. Its task is to execute tests from this bundle
and to report results to the JavaTest harness. The agent uses the client to
communicate with the JavaTest harness.

Additionally some Application Management Software (AMS) is required to be
present on the target device. Its task is to repeatedly download test bundles from
the JavaTest harness and to execute them. (This software is sometimes referred to as
a Java Application Manager or AMS.) Due to significant variations among potential
devices on which the [NAME] might run, the details of application management
are highly device-specific and implementation-dependent. A typical
implementation of this functionality is a native application used to download, store
and execute Java applications. For simplicity, the term “AMS” will be used
throughout this document to refer to this functionality.

The server and the client are Java implementations of the interfaces defined in the
[NAME TCK]. The AMS component is typically written in native code.
70 [NAME] Technology Compatibility Kit User’s Guide • May, 2003

When to Plug In Your Own
Implementation and What to Plug In
By default, implementations of the communication channel for CLDC are assumed
to meet the following criteria:

■ The server uses the HTTP protocol to communicate with the agent and the AMS.
It is implemented using the java.net socket API.

■ The client uses the HTTP protocol to communicate with the server. It is
implemented using the GenericConnection Framework APIs provided with the
Reference Implementation (RI).

■ Both the server and the AMS use application descriptor data to transfer
applications over HTTP. The format of the descriptor is defined in “The Default
Implementation of the Communication Channel” on page 75.

■ The target device uses the standard JAR file format to download and store
applications.

■ The CLDC-based runtime environment in the device uses the standard Java
application model with the main() method as an entry point.

Therefore, if your implementation does not support HTTP, you need to provide
at least your own implementation of the server and the client. However, even if
your implementation does support HTTP, in some cases you may have to provide
your own versions of them.

For example, if your [NAME] implementation uses other APIs to implement HTTP,
the client needs to be rewritten. Similarly, if your implementation of the AMS does
not understand the application descriptors generated by the HTTP server, or it uses
a format other than JAR to download and store applications, then the HTTP server
needs to be rewritten. It may also have to be rewritten to provide a Java wrapper
for CldcAgent to make it runnable on CLDC-based runtime environments with a
different application model. (Although there is another way around this, as follows:
the AMS may be modified to support the default descriptor format or JAR
application format.)

Details are discussed further in “The Default Implementation of the
Communication Channel” on page 75.

Communication Channel Components
The communication channel may be viewed from the perspective of three
components: the client, the server, and the AMS. These components are discussed
below.
Appendix A {Implementing the Test Framework} 71

Client
On the device/agent side, the following interface is used:

public interface Client {
/**
* Initialization
*/
void init(String[] args);
/**
* Reads next test.
* Returns null if all tests from this application have already
* been executed. In other words, null is an exit signal to the
* agent application.
*/
byte[] getNextTest();
/**
* Sends test result.
*/
void sendTestResult(byte[] res);
}

This interface allows for any test runner to receive execution requests and send
execution results in a form of a byte array. The implementation of this interface
should have a no-args constructor, and the actual initialization is performed in the
init() method.

The client may assume that it is accessed by only one thread at a time (agent
thread), so it doesn’t have to be thread safe.

Server
On the JavaTest harness PC/Workstation-side, in addition to the server, the concept
of the Test Provider is introduced. The Test Provider functions as a server to the
server itself. The server knows its Test Provider and calls its methods in order to
pass the data from the client to the Test Provider or vice versa.

Note that the server has no test related logic inside, all it does is just forward data.
It is as lightweight as possible.

The definition of the interfaces is as follows:

public interface server {
/**
* Initialization
*/
void init(String[] args);
/**
* Starting
*/
void start();
72 [NAME] Technology Compatibility Kit User’s Guide • May, 2003

/**
* Stopping
*/
void stop();
/**
* Set test provider. There is only one test provider
* per server. Next call to setTestProvider removes the previous
* one. Null argument causes removal of current test provider.
*/
void setTestProvider(TestProvider tp);
/**
* Returns current test provider.
*/
TestProvider getTestProvider();
}
public interface TestProvider {
/**
* Returns main application class for this test provider.
* The name is the same for all applications generated
* by this test provider.
*/
String getAppMainClass();
/**
* Returns the directory in which application jar files
* are stored.
*/
String getJarSourceDirectory();
/**
* Reads next test.
* Returns null if all tests from this application have already
* been executed. In other words, null is an exit signal to the
* test runner application.
*/
byte[] getNextTest();
/**
* Sends test result.
*/
void sendTestResult(byte[] res);
/**
* Returns next application to execute. This is a file name
* relative to the directory returned by getJarSourceDirectory().
*
* May return null if no application is currently available.
* In this case JAM is expected to repeat request some time later.
*/
String getNextApp();
}

The server is supposed to run in a separate thread. As with the agent, it should
have a no-args constructor, and the initialization is performed in the init()
method.
Appendix A {Implementing the Test Framework} 73

The server assumes that there are single instances of both the client and AMS
contacting it. Parallel test execution is not supported.

AMS
The communication between the server and the AMS is implementation specific.
On a high abstraction level, the device can send only one command to the server,
which is getNextApp.

On the other hand, the server should be able to respond in three different ways, as
follows:

■ OKAY + application descriptor: if TestProvider.getNextApp() returned non-
empty string

■ RETRY, possibly with delay time: if TestProvider.getNextApp() returned
empty string

■ DONE: if TestProvider.getNextApp() returned null.

For example, assume that the target device has an AMS that is augmented with the
required functionality, termed the test mode. When the AMS is running in test
mode, it performs the following steps:

1. Contacts the server with the getNextApp command.

2. The server response may be one of the following:

a. OKAY + application descriptor. AMS downloads and executes the application,
and then returns to Step 1.

b. RETRY command (if no application is currently available). The AMS waits for
some period of time and then returns to Step 1. The exact period of wait time
is either received from the server with this command or it may be a AMS
property.

c. DONE command (if no more applications are expected). AMS may either exit
the loop or behave similarly to 2b.

Note – In an optimized scenario, the AMS might cache the last downloaded
application and reuse it.
74 [NAME] Technology Compatibility Kit User’s Guide • May, 2003

The Default Implementation of the
Communication Channel
The HTTP protocol is used for communications. Both GET and POST requests must
be supported. There is some designated location, or system area, through which all
test requests/responses should go. The only requirement is that all
communications via this area should come through uncached.

Client
The client is initialized with a single String argument containing the URL of the
system area, for example:

http://server:8080/SYSTEM/

getNextTest() is implemented through HTTP GET, for example:

GET http://server:8080/SYSTEM/getNextTest HTTP/1.0

sendTestResult() is implemented through HTTP POST, for example:

POST http://server:8080/SYSTEM/sendTestResult HTTP/1.0

Server
Generally, HTTP implementation of the server should work as a regular HTTP
server. The directory returned by TestProvider.getJarSourceDirectory()
functions as the server root directory. Requests that are addressed to the system
Appendix A {Implementing the Test Framework} 75

area are handled in a special way. Specifically, the following actions are
implemented for each input. Also see “The Default Implementation of the
Communication Channel” on page 75 for additional details

getNextTest

The server calls TestProvider.getNextTest(). If it returns non-null value, the
server replies with Status 200 (OKAY) and sends the content of the returned
array as the body. Otherwise the server replies with Status 404 (Object Not
Found).

postTestResult

The server collects the data passed by the client into the byte array and passes it to
the Test Provider calling TestProvider.sendTestResult(). Also Status 200
(OKAY) is returned to the client.

getNextApp

The server calls TestProvider.getNextApp(). If it returns null, the server
replies with Status 404 (Object Not Found). If it returns an empty string,
the server replies with Status 503 (Object Unavailable) and adds the
following line to the response header:

Retry-After: #

where # is a number of seconds to wait before contacting the server again. If the
call to TestProvider.getNextApp() returns a non-empty string, the server
replies with Status 200 (OKAY), adds the following response header:

Content-Type: application/x-jam

It then sends the following application descriptor in the body:

Application-Name: Test Suite
JAR-File-URL: http://<httpHost>:<httpPort>/
<TestProvider.getNextApp()>
JAR-File-Size: <the size of the test bundle>
Main-Class: <TestProvider.getAppMainClass()>
Use-Once: yes

AMS
The AMS is able to send the getNextApp request to the server, for example:

GET http://server:8080/SYSTEM/getNextApp HTTP/1.0

Depending on the status code of the response, it either exits (if code 404 is
received) or retries after the specified time (if code 503 is received), or does the
following for response code 200:

■ Reads and parses the application descriptor
■ Sends a GET JAR-File-URL request to the server and downloads the test bundle
■ Executes the downloaded bundle using Main-Class as the main class
76 [NAME] Technology Compatibility Kit User’s Guide • May, 2003

Plugging In Other Implementations of
Server, Client, and AMS
The integration of the AMS with the implementation under test is highly device
specific and therefore out of the scope of this document. For the server and the
client, you need to answer the Configuration Editor questions so that they refer to
your implementations of them.

For the server you should specify the following:

■ <List the appropriate Configuration Editor questions and answers>

For the client, you should specify the following:

■ <List the appropriate Configuration Editor questions and answers>

Note that the implementation of the client must be packaged into a single JAR file.
On the other hand, the location of the server classes should follow the standard
Java CLASSPATH conventions.
Appendix A {Implementing the Test Framework} 77

78 [NAME] Technology Compatibility Kit User’s Guide • May, 2003

APPENDIX B

Configuration Editor and
Environment Variables

<Note that the tables below are those for the MIDP TCK. They are
provided here as one example of how you might choose to present this
information. Since most configuration interviews are created
separately for each TCK, most of your TCK Configuration Editor
questions and associated variables will be quite different than those
shown below. You need to have the TCK engineer responsible for
creating the interview provide you with the information that applies
to your TCK.>

This appendix describes the environment variables set by different Configuration
Editor questions.

■ TABLE 9 lists the environment variables and corresponding Configuration
Editor questions used in tests of a MIDP implementation.

■ {TABLE 10 lists the environment variables and corresponding Configuration
Editor questions used in tests of CLDC running on a MIDP device.}

Note that not all environment entry values can be changed:

■ An entry whose source is denoted as (constant) in TABLE 9 {or TABLE 10} is
determined by the [NAME TCK] and cannot be changed.
79

■ An entry value whose source is denoted as (computed) in TABLE 9 {or
TABLE 10} may change if you change the value of a related entry whose source
is an interview question.

TABLE 9 [NAME TCK] Environment Entry Sources

Environment Entry
Interview Question Name or Other Source
Interview Question Tag

agent (constant)
(none)

agentJar (constant)
(none)

badURL (constant)
(none)

badURL2 (constant)
(none)

badURL3 (constant)
(none)

CanvashasPointerEvents Canvas Pointer Events
midptck.toolkit.canvasPointer

CanvashasPointerMotionEvents Canvas Pointer Motion Events
midptck.toolkit.canvasMotion

CanvashasRepeat Canvas Repeat Events
midptck.toolkit.canvasRepeat

CanvasisDoubleBuffered Double Buffered Canvas
midptck.toolkit.canvasDb

classpath (constant)
(none)

CldcTCKAgent (constant)
(none)

CldcTCKCommand (constant)
(none)

client (constant)
(none)

clientJar (constant)
(none)

Color1 Foreground Color Value
midptck.toolkit.fgVal

Color1Name Foreground Color Name
midptck.toolkit.fgName

Color2 Background Color Value
midptck.toolkit.bgVal
80 [NAME] Technology Compatibility Kit User’s Guide • May, 2003

Color2Name Background Color Name
midptck.toolkit.bgName

command.testExecute (constant)
(none)

description Configuration Description
midptck.envDesc

httpHost JavaTest Host Name
midptck.vm.httpHost

httpPort Test Server Port
midptck.vm.httpPort

httpServerPort OTA Port
midptck.otaPort

isColor Color Display
midptck.toolkit.isColor

isURLS (constant), JavaTest Host Name, Test Server Port, (constant)
(none)

jarFileSizeLimit Jar File Size Limit
midptck.vm.jarFileSizeLimit

jarSourceDir Jar Source Directory
midptck.vm.jarSourceDir

jks.signer Custom Signing Class or (constant) if Custom Signing Class
= No
midptck.trusted.signerClass

jks.signer.args Built-in Certificate?
midptck.trusted.defaultPki

maxSizeTextBox Text Box Capacity
midptck.toolkit.tbSize

maxSizeTextField Text Field Capacity
midptck.toolkit.tfSize

media.WavOrMidi Sampled Sound Support
midptck.commmedia.wave

media.WavOrMidi Synthetic Sound Support
midptck.commmedia.midi

mediaTimeout Media Timeout
midptck.commmedia.timeout

midpClasses Midp Classes Dir or Midp Classes Jar
midptck.midpClassesDir or midptck.midpClassesJar

network.comm.baudRate Optional Baud Rate
midptck.serialport.baud

TABLE 9 [NAME TCK] Environment Entry Sources (Continued)

Environment Entry
Interview Question Name or Other Source
Interview Question Tag
Appendix B Configuration Editor and Environment Variables 81

network.comm.midCOM Test Device Serial Port
midptck.serialport.midPort

network.comm.remoteCOM JavaTest Host Serial Port
idptck.serialport.agentPort

network.datagram Outgoing Datagram Support
midptck.connection.datagOut

network.datagramreceiver Incoming Datagram Support
midptck.connection.datagIn

network.https.certFile Server Certificate File
midptck.connection.certFile

network.https.secureProtocol HTTPS Secure Protocol
midptck.connection.httpsProto

network.MIDHost Device Host
midptck.connection.devHost

network.MIDPort Free Device Port
midptck.connection.freePort

network.push Push Registry Support
midptck.connection.pushReg

network.push.alarmlaunch Push Alarms
midptck.connection.pushAlarm

network.push.datagramreceiver Push Transports
midptck.connection.pushProtos

network.push.serversocket Push Transports
midptck.connection.pushProtos

network.securesocket Secure Socket Stream Support
midptck.connection.secureSoc

network.securesocket.connProtocol Secure Socket Type
midptck.connection.secureProto

network.securesocket.keypass Private Key Password or (constant)
midptck.connection.keyPass

network.securesocket.keystore Keystore or (constant)
midptck.connection.keyStore

network.securesocket.port Secure Server Port
midptck.connection.securePort

network.securesocket.storepass Keystore Password or (constant)
midptck.connection.storePass

network.serversocket ServerSocketConnection Support
midptck.connection.socketIn

TABLE 9 [NAME TCK] Environment Entry Sources (Continued)

Environment Entry
Interview Question Name or Other Source
Interview Question Tag
82 [NAME] Technology Compatibility Kit User’s Guide • May, 2003

<The optional TABLE 10 below is for those TCKs that require CLDC.>

network.shutdownTime MIDlet Recycle Time
midptck.connection.MIDletRecycle

network.socket Socket Stream Support
midptck.connection.socketOut

numColors Number of Grays or Number of Colors
midptck.toolkit.numGrey or
midptck.toolkit.numColors

OTAHandlerArgs OTA Class Arguments or (constant) if Custom OTA Class =
No
midptck.otaa

OTAHandlerClass OTA Class (or constant if Custom OTA Class = No)
midptck.customOtah

passivePort Distributed Test Port
midptck.passivePort

platformPermissionRestrictions Custom Midlet Permissions
midptck.customPerms

product (constant)
(none)

remote.networkAgent (computed)
midptck.Parameters

remoteVerbose Debugging Options (Distributed Tests)
midptck.verbose

server (computed), Debugging Options (Test Server)
(none)

serverJar (constant)
(none)

serverURL JavaTest Host Name, Test Server Port
(none)

signerJar (constant)
(none)

SupportServer (constant), Debugging Options (HTTP Server), JavaTest Host
Name, HTTP Server Port
midptck.connection.httpPort

SupportServer1 (constant), Debugging Options (HTTPS Server), JavaTest
Host Name, HTTPS Server Port
midptck.connection.httpsPort

testURLS (constant), JavaTest Host Name, Test Server Port
midptck.commmedia.midiVolume

TABLE 9 [NAME TCK] Environment Entry Sources (Continued)

Environment Entry
Interview Question Name or Other Source
Interview Question Tag
Appendix B Configuration Editor and Environment Variables 83

{When you test a CLDC implementation with the [NAME TCK], the test
environment contains a subset of the [NAME TCK] entries and some additional
entries that the [NAME TCK] environment does not have. TABLE 10 lists the CLDC
environment entries, their question tags, and the sources of their values. }

TABLE 10 MIDP+CLDC TCK Environment Entry Sources

Environment Entry
Interview Question Name or Other Source
Interview Question Tag

agent (constant)
(none)

agentJar Agent Jar
midpcldctck.vm.advanced.agentJar

classpath (constant)
(none)

CldcTCKAgent (constant)
(none)

CldcTCKCommand (constant)
(none)

client Client Class or (constant) if Advanced Features = No
midpcldctck.vm.advanced.clientClass

clientJar Client Jar or (constant) if Advanced Features = No
midpcldctck.vm.advanced.clientJar

command.testExecute (constant)
(none)

description Configuration Description
midpcldctck.confDesc

httpHost JavaTest Host Name
midpcldctck.vm.httpHost

httpPort Test Server Port
midpcldctck.vm.httpPort

httpServerPort OTA Port
midptck.otaPort

jarFileSizeLimit Jar File Size Limit
midpcldctck.vm.jarFileSizeLimit

jarSourceDir Jar Source Directory
midpcldctck.vm.jarSourceDir

server (computed), Debugging Options (Test Server) or (constant)
if Advanced Features = No
midpcldctck.vm.advanced.serverClass

serverJar Server Jar or (constant) if Advanced Features = No
midpcldctck.vm.advanced.serverJar

serverURL JavaTest Host Name, Test Server Port
midpcldctck.vm.advanced.serverURL
84 [NAME] Technology Compatibility Kit User’s Guide • May, 2003

Appendix B Configuration Editor and Environment Variables 85

86 [NAME] Technology Compatibility Kit User’s Guide • May, 2003

APPENDIX C

Exclusion Lists and Result Files

<This example Appendix assumes you are using JavaTest harness 3.x or
later. If you are using some other test harness, re-write this
appendix as necessary.>

This appendix describes the JavaTest harness exclusion lists and result files. It
covers the following topics:

■ “Exclude List Files” on page 87
■ “Exclude File Format” on page 88
■ “Result File Format” on page 89

Exclude List Files
JavaTest harness exclude list files (.jtx) are used within theJavaTest harness to
omit one or more tests from being run.

Note – You should regularly check the Java Partner Engineering web site
(javapartner.sun.com) for updates to the exclude list.

The [NAME TCK] contains multiple exclude list files (.jtx) that specify those tests
that are known to be invalid; therefore, these tests are not required to be successful
or even to be run using a [NAME] system configuration. There are separate exclude
lists for each of the [NAME TCK] component test suites. In other words, there is
one exclude list for the MIDP test suite, and another exclude list for the [NAME]
test suite, and so on. Each exclude list is stored in the /lib directory of its
corresponding test suite.

Exclude list files have file names based on the corresponding test suite version
numbers. For example: [name]-tck_10.jtx for the [NAME TCK] 1.0 test suite.
87

Note – From time to time, updates to exclude lists are made available on the
javapartner.sun.com web site. You should always make sure you are using an
up-to-date copy of each exclude list before running the [NAME] to verify your
implementation.

A test might be added to the exclude list for reasons such as:

■ An error in a [Maintenance Lead] Reference Implementation that does not allow
the test to execute properly has been discovered.

■ An error in the specification that was used as the basis of the test has been
discovered.

■ An error in the test has been discovered.

Note – Exclusion lists are the proprietary property of [Maintenance Lead] and are
never to be modified by a Licensee.

The Exclude List you specify with the JavaTest harness Configuration Editor must
point to the exclude list file for your particular version of the [NAME TCK].

Exclude File Format
The exclude list is a text file, where each line represents a single entry. The general
format for a JavaTest exclude list file entry is as follows:

■ Relative Test URL
■ White space
■ Bug numbers separated by commas
■ White space
■ Platforms separated by commas
■ White space
■ Comments

■ Comments to the whole exclude list appear on lines starting with #
■ Comments to for a particular entry start with a # and end with a space

Note – The comments are used when JavaTest harness generates test run reports.

An example of this file format is as follows:

api/javax_microedition/lcdui/Font/index.html#CharsWidth[Font2007]
4370531 SPEC

api/javax_microedition/lcdui/interactive/DateField/
index.html#DateField 4478529 RI

api/javax_microedition/lcdui/interactive/ImageItem/
index.html#SetAltText[ImageItem2003] 4367759 SPEC
88 [NAME] Technology Compatibility Kit User’s Guide • May, 2003

api/java_util/TimerTask/index.html#ScheduledETime[TimerTask2008]
4501263 TCK

Result File Format
The information that is presented in the Test Summary Browser is also written to
JavaTest result files.

These result files are stored in the work directory that you specified with the
Configuration Editor or the JavaTest harness GUI. JavaTest harness creates a test
result hierarchy similar to the test suite hierarchy that contains your tests. Result
files for the tests in your test run appear under the appropriate directory within
this result hierarchy.

An example of this file format is as follows:

#Test Results (version 2)
#Wed Sep 05 18:25:58 PDT 2001
#checksum:47294a2ccbd86a54
#-----testdescription-----
$file=your-tck-workdir/tests/api/javax_microedition/lcdui/Canvas/

index.html
$root=your-tck-workdir/tests
executeClass=javasoft.sqe.tests.api.javax.microedition.lcdui.Canva

s.GetGameActionTests
id=GetGameAction
keywords=positive runtime
source=GetGameActionTests.java CvGen.java
title=Tests for public int getGameAction(int keyCode)

#-----environment-----
CldcTCKCommand=com.sun.tck.cldc.javatest.CldcTCKCommand
command.testExecute=$CldcTCKCommand $testPath $testExecuteClass

$testExecuteArgs

#-----testresult-----
description=file:/your-tck-workdir/tests/api/javax_microedition/lcdui/

Canvas/i
ndex.html#GetGameAction
end=Wed Sep 05 18:25:58 PDT 2001
environment=[name]-tck
execStatus=Passed. tests:2; passed:2
javatestOS=SunOS 5.7 (sparc)
javatestVersion=2.1.6
script=com.sun.jck.lib.JCKScript
sections=script_messages testExecute
start=Wed Sep 05 18:25:52 PDT 2001
status=Passed. tests:2; passed:2
test=api/javax_microedition/lcdui/Canvas/index.html#GetGameAction
Appendix C Exclusion Lists and Result Files 89

timeoutSeconds=600
work=your-tck-workdir/api/javax_microedition/lcdui/Canvas

#section:script_messages
----------messages:(1/24)----------
Executing test class...

#section:testExecute
----------messages:(1/185)----------
command:com.sun.tck.cldc.javatest.CldcTCKCommand
api/javax_microedition/lcdui/Canvas/index.html#GetGameAction
javasoft.sqe.tests.api.javax.microedition.lcdui.Canvas.GetGameActi

onTests
----------ref:(2/50)----------

Canvas0001:Passed. OKAY
Canvas0002:Passed. OKAY
----------log:(0/0)----------
result:Passed. tests:2; passed:2

test result:Passed. tests:2; passed:2
90 [NAME] Technology Compatibility Kit User’s Guide • May, 2003

APPENDIX D

Frequently Asked Questions

<These example FAQs are based on the assumption that you are using
JavaTest harness version 3.x>

This appendix groups frequently asked question by the following topics:

■ Configuration
■ JavaTest Harness
■ Testing an Implementation

Configuration
<The following two optional questions are for situations in which
there was a previous version of your TCK that used JavaTest harness
version 2.x>

{Q: I don't see.jte or .jtp files anymore, so how do I configure tests?}

{A: When using JavaTest harness 3.x, test configuration is done through the
JavaTest harness Configuration Editor. The Configuration Editor prompts you to
enter the necessary parameters such as test environment, initial tests, exclude list,
keywords, previous tests to run, number of tests in bundle (concurrency), time
factor and so on. A test configuration that you create by answering these questions
can be saved as a name.jti file. When you execute the JavaTest harness software
from the command line, you can specify loading a .jti file in the same way that
.jtp files were loaded when using JavaTest harness 2.x.}

{Q: Is there an equivalent to the JavaTest harness 2.x .jtp file?}

{A: JavaTest harness 3.x replaces the JavaTest harness 2.x .jtp and .jte files with
a .jti file. A .jti file can be loaded with the JavaTest harness from the command
line like a .jtp file. You create and modify .jti files with the JavaTest harness
Configuration Editor or the editJTI utility. }
91

Q: Since .JTI files are checksummed, how can I use build scripts to
dynamically configure configuration settings for (automated) batch runs?

A: There are two ways to do this. The editJTI utility allows automated “offline”
modification of the interview file. The batch command allows you to modify the
interview answers when invoking the harness in batch mode.

Q: How can we avoid having to re-answer all the interview questions every
day?

A: You can save the interview in a .jti file and then reload that file when doing
the interview for the next build.

Q: Multiple people use similar settings for running the TCK. Do we all
need to answer the interview individually and keep track of our own .jti
files?

You can setup a central repository of .jti files, from which people can “prime”
their interview. (The files in this repository should be made read-only so that each
user does not alter the master copy.) Each user can load the shared master copy,
make alterations for their particular task and then save the interview in a new file.
This saves everyone from having to answer all the common questions.

JavaTest Harness
Q: Is there a JavaTest harness User's Guide available?

A: Online help is available for the JavaTest harness. You can select the “?” icon or
Help->User's Guide from the JavaTest harness menu. There is also a PDF format
version of the online help at TCK_DIRECTORY/doc/javatest/javatest.pdf
that can be viewed on-screen or printed out.

Q: How do you move a set of reports to a new location without breaking
the links?

A: The JavaTest harness 3.x provides the editlinks utility program to reconnect
the links after moving the reports.

Q: What factors affect how fast JavaTest runs?

There are many factors, but the key ones are:

■ Size of test suite.

■ GUI mode vs. batch mode. The GUI has more overhead, so it will be slower.

■ Size of work directory—empty or full.

■ Using, or not using, a binary test finder (see the top of the harness.trace file.
92 [NAME] Technology Compatibility Kit User’s Guide • May, 2003

<The following two optional questions are for situations in which
there was a previous version of your TCK that used JavaTest harness
version 2.x>

{Q: JavaTest does not automatically generate reports anymore, why?}

{A: Reports are now generated by request only. You can create them using the
Report menu in the GUI or by using the -writeReport option in batch mode.}

{Q: Where is the time-remaining and memory-usage information?}

{A: The Progress Monitor window provides this information. You can open this
window by selecting the “magnifying glass” icon in the lower right hand corner, or
by selecting Run Tests->Progress Monitor from the JavaTest harness menu.}

Testing an Implementation
Q: Where do I start to debug a test failure?

A: From the JavaTest GUI, you can view recently run tests using the Test Results
Summary (click the fourth icon), by selecting the red Failed tab or the blue Error
tab. You can also take a look at the raw testname.jtr file located in the Work
Directory. The .jtr file lists all the environment variables and echoes the
evaluated command strings. Taking these evaluated strings and running them
outside of JavaTest harness, on the command line, can often help to debug
problems in your environment. See Chapter 9, “Debugging Test Problems,” for
more information.

Q: How do I restart a crashed test run?

A: Refer to the Test Tree and the JavaTest User’s Guide for information. The
work_directory/jtdata/harness.trace file may provide additional information.

Q: What results should I expect when I execute the tests within the TCK?

A: When the TCK tests are run with the exclude file (.jtx), all tests should pass.
This means that from the JavaTest GUI, the Test Results Summary window will
show no tests listed on the Failed tab. Remember, to examine all test results,
particularly if you have run the [NAME TCK] in separate pieces, you will need to
run a final report so that all result files (.jtr) are examined. Simply select jck-
report for your environment selection.

Q: Why are there so many tests in the Exclude List?

A: The JavaTest exclude file (*.jtx) contains all tests that are not required to be
run. The following is a list of reasons for a test to be included in the Exclude List:

■ An error in a reference implementation that does not allow the test to execute
properly has been discovered.
Appendix D Frequently Asked Questions 93

■ An error in the specification that was used as the basis of the test has been
discovered.

■ An error in the test has been discovered.

Q: What to do if tests error status “Interrupted (timed out?)”

A: Try reducing the number of “Tests In Bundle” (concurrency) if it was set higher
than 1 or increase the “Time Factor”.

Q: The RI will not run, and returns the error: “Error installing
suite: storageOpen(): Permission denied”

A: Make sure that the directory where the RI is installed has Write permissions
enabled.
94 [NAME] Technology Compatibility Kit User’s Guide • May, 2003

APPENDIX E

Release Notes

<NOTE TO FRAMEMAKER USERS— Because Release Notes are separate from the
user guide, this Release Notes appendix should not be used as part of
the User Guide book template. Before using the template’s FrameMaker
book file to create your user guide you must remove this appendix file
(a-relnote.fm) from the book file.>

<Release Notes are normally provided in plain-text (ASCII) or HTML
files (or both), that are separate from the User Guide. This example
Release Notes template, in both ASCII and HTML, is provided here for
your convenience to use as you wish.>

Release Notes Template—ASCII
Release Notes

[NAME TCK]

Version [VersionNumber]
<Date>

===================
 Table of Contents
===================
1. Introduction
 i. Product Description
 ii. Specifications

iii. End of Support Notice
2. New Features
3. System Requirements
4. Release Contents
5. Installation
 i. Installation Instructions
 ii. Usage Notes
6. Accessibility Features
7. Known Bugs and Issues
95

 i. Installation Bugs
 ii. Documentation Issues
 iii. Software Limitations
 iv. Software Bugs

=================
 1. Introduction
=================

 Product Description

<Enter the who, what, why, etc. here.>

 Specifications

<Enter any specification information here.>

=================
 2. New Features
=================

<List features new in this version of the software:>

<- this is a description of a new feature>

<- this is another description of a new feature>

========================
 3. System Requirements
========================

<If the user needs to be aware of platform or memory restrictions, or needs to install additional
software packages, use this section.>

=====================
 4. Release Contents
=====================

<Describe any key sections of the release. Consider listing the top-level directory structure with a
description of each subdirectory, for example:>

<Unzip the distribution into any directory of your choice. It creates the directory
<distdir> with the following subdirectories:>

<- subdir1this directory contains this>
96 [NAME] Technology Compatibility Kit User’s Guide • May, 2003

<- subdir2this directory contains that>
<- subdir3this directory contains something else>

<Further details about the contents can be described here.>

==============================
 5. Installation Instructions
==============================

 Installation Instructions

<Insert any key installation instructions here, and refer the user to the installation / user’s guides
if appropriate.>

 Usage Notes

<If a piece of information is important and needs to be mentioned in order for the user to get the
application up and running, use this space.>

==========================
 6. Accessibility Features
==========================

<If your product is accessible, explain its accessibility features.>

==========================
7. Known Bugs and Issues
==========================

 Installation Bugs

<Insert descriptions of any installation bugs here.>

 Documentation Issues

<If there are any errors in documentation, detail those here.>

 Software Limitations
Appendix E Release Notes 97

<If your software has any limitations the user should be aware of, enter those here.>

 Software Bugs and Issues

<If your project provides bug numbers, you can use a table like
this:>

 <BUG ID DESCRIPTION>
<-->

 <123456 Here is bug #123456. It is a short bug.>

<123457 Bug #123457 is next. This is a particularly complicated bug
which requires a great deal of space in order to explain
properly.>

<This bug even requires a second paragraph. Talk
about complicated!>

<If your project does not use bug numbers, you can use a list like
this:>

<123456 - Here is bug 123456. It is a short bug.>

<123457- Bug 123457 is next. It is a particularly complicated bug
which requires a great deal of space in order to explain
properly.>

<This bug even requires a second paragraph. Talk about
complicated!>

Release Notes Template—HTML
<Some developers, such as Sun, use standardized company templates for
HTML-version Release Notes. If you do not already have a standard
template, you can use the sample below as an example starting place.>

<The sample template below includes some Section-508 compliant coding.
Use of this template should not be considered as complete 508-
compliance. You need to check your finished HTML Release Notes against
the 508-compliance standards that company requires.>
98 [NAME] Technology Compatibility Kit User’s Guide • May, 2003

<NOTE--In the example below, material you need to enter is set off
with [square brackets] rather than the <angle brackets> used elsewhere
in this template. This is because HTML uses <angle brackets> as tag
delimiters.

<html>

<head>

<title>Release Notes - [Name of TCK] - [Version X.x]
</title>

<If you are not using a stylesheet, delete the line below, and all of
the class=[class_name] tags. If you are using a stylesheet, substitute
the appropriate class names where you see [class_name].>

<link rel="stylesheet" href="[name].css" type="text/css">

</head>

<body>

<table width=100% cellspacing=0 cellpadding=0 border=0

 summary="This table is for formatting purposes only.">

 <tr>

 <td class=[class_name]> </td>

 </tr>

 <tr>

 <td class=[class_name]>

 <h1>Release Notes</h1>

 <h2>[Name of TCK]
[Version X.x]</h2>

 <h4>[Date]</h4>

 </td>

 </tr>

 <tr>

 <td class=[class_name]> </td>

 </tr>

</table>

<p class=[class_name]>[Skip TOC]</p>

<h2>Table of Contents</h2>

<dl>

 <dt>Introduction</dt>

 <dl>

<dt>Product Description</dt>
Appendix E Release Notes 99

 <dt>Specifications</dt>

 <dt>End of Support Notice</
a></dt>

 </dl>

<dt>New Features and Improvements</dt>

 <dt>System Requirements</dt>

 <dt>Release Contents</dt>

 <dt>Installation</dt>

 <dl>

 <dt>Installation
Instructions</dt>

 <dt>Usage Notes</dt>

 </dl>

 <dt>Accessibility Features</dt>

 <dt>Known Bugs and Issues</
dt>

 <dl>

 <dt>Installation Bugs</dt>

 <dt>Documentation Issues</
dt>

 <dt>Software Limitations</
dt>

 <dt>Software Bugs</dt>

 </dl>

</dl>

</
a><h2>Introduction</h2>

<p>This section covers the topics:</p>

Product Description

 Specifications

 End of Support Notice</
a>

<If you are not using the “Specifications” and “End of Support Notice”
subheads, omit the “Product Description” head below and the section's
jump list above, then describe the product directly under the main
“Introduction’” heading.>

<h3>Product Description</h3>
100 [NAME] Technology Compatibility Kit User’s Guide • May, 2003

<p>[Enter the who, what, why, etc. here.]</p>

<h3>Specifications</h3>

<p>[Enter any specification information here.]</p>

<h3>End of Support Notice</h3>

<p>[If support for a release is being stopped, use this section.]</p>

<p class=[class_name]>[Top]</p>
Appendix E Release Notes 101

<The “New Features” section for new releases of existing TCKs. If this
is the first release of a new TCK, this section is not needed.>

<h2>New Features and Improvements</h2>

<p>[List features new in this version of the software:]</p>

 [This is an example description of a new feature.]

 [This is another example description of a new feature]

<p class=[class_name]>[Top]</p>

<h2>System Requirements</h2>

<If the user needs to be aware of platform or memory restrictions, or
needs to install additional software packages, use this section.>

<p class=[class_name]>[Top]</p>

<h2>Release Contents</h2>

<Describe any key sections of the release. Consider listing the top-
level directory structure with a description of each subdirectory, for
example>

<p>Unzip the distribution into any directory of your choice. It

creates the directory <code>[distdir]</code> with the following

subdirectories:</p>

 <tt>[subdir1]</tt> - [Contains this.]

 <tt>[subdir2]</tt> - [Contains that.]

 <tt>[subdir3]</tt> - [Contains something else.]

<p>[Further details about the contents can be described here.]</p>

<p class=[class_name]>[Top]</p>

<h2>Installation</h2>

<p>This section covers the topics:</p>

 Installation
Instructions

 Usage Notes

<h3>Installation
102 [NAME] Technology Compatibility Kit User’s Guide • May, 2003

Instructions</h3>

<Insert any key installation instructions here, and refer the user to
the product documentation if appropriate.>

<h3>Usage Notes</h3>

<If a piece of information is important and needs to be mentioned for
the user to get the application up and running, use this space.>

<p class=[class_name]>[Top]</p>

<h2>Accessibility Features</h2>

<If your TCK Section 508 accessibility features, explain those
features (such as keyboard shortcuts) here.>

<p class=[class_name]>[Top]</p>

<h2>Known Bugs and Issues</h2>

<p>This section covers the topics:</p>

 Installation Bugs

 Documentation Issues</
li>

 Software Limitations</
li>

 Software Bugs

<If you only use the Software Bugs subheading, change the main heading
to “Known Bugs,” omitting all subheads and the section's jump list.>

<h3>Installation Bugs</h3>

<p>[Describe any installation bugs here.]</p>

<h3>Documentation Issues</h3>

<p>[Describe any errors in documentation here.]</p>

<h3>Software Limitations</h3>

<p>[Describe any software limitations the user should be aware of

here.]</p>

<h3>Software Bugs</h3>

<If your project provides bug numbers, use a table like the
Appendix E Release Notes 103

following:>

<table>

 <tr>

 <th class=[class_name] scope="col">BUG ID</th>

 <th class=[class_name] scope="col">DESCRIPTION</th>

 </tr>

 <tr>

 <td>[123456]</td>

<td>[This is a description of the bug. If it happens to take up more than one
line,
 this is what it will look like.]</td>

 </tr>

 <tr>

 <td>[123457]</td>

 <td>[Here is bug #123457. It is a short bug.]</td>

 </tr>

 <tr>

 <td>[123458]</td>

 <td>[This is a particularly complicated bug which requires a great deal of
space to explain properly.]

 <p>[This bug even requires a second paragraph. Talk about
complicated!]</p>

 </td>

 </tr>

</table>

<If your project does not provide bug numbers, use a list like the
following:>

[This is a description of a bug. If it happens to take up more than one line,
this is what it will look like.]

 [This bug is next. It is a particularly complicated bug that requires a great
deal of space in order to explain properly.]

 <p>[This bug even requires a second paragraph. Talk about

 complicated!] </p>

<p class=[class_name]>[Top]</p>

<hr class="[class_name]">

<End the Release Notes with the appropriate copyright notice.>
104 [NAME] Technology Compatibility Kit User’s Guide • May, 2003

Appendix E Release Notes 105

106 [NAME] Technology Compatibility Kit User’s Guide • May, 2003

	Java™ Technology Compatibility Kit User’s Guide Template
	Contents
	How to Use This Template
	User Guide Template Formats
	Template Style Conventions
	Color Codes
	Paragraph Styles
	Character Styles
	Conditional Text

	Template Variables
	Working With Fonts, Variables, and Conditional Text
	Working With Conditional Text
	Replacing Variables
	Changing Colored Fonts to Black
	Updating the Document Footer
	Updating Cross-References

	Section 508 Compliance
	Special Appendices
	Indexes

	Example Preface
	Who Should Use This Book
	Before You Read This Book
	How This Book Is Organized
	Related Books
	Accessing Documentation Online
	Typographic Conventions Used in This Book

	Procedure for [NAME] [N.N] Certification
	Certification Overview
	Compatibility Requirements
	Definitions
	Rules for [NAME] Products

	[NAME] Test Appeals Process
	Specifications for [NAME]
	Libraries for [NAME]

	Installing the [NAME TCK]
	Obtaining the Software
	Installing the Software
	[NAME TCK] Contents
	Installing the Agent
	{Installing the Reference Implementation}

	Starting and Configuring the JavaTest Harness
	{Setting System Variables}
	Executing the JavaTest Harness Software
	{Executing the JavaTest Harness—Scripts}

	JavaTest Harness Configuration
	JavaTest Harness Configuration Overview
	JavaTest Harness Configuration Editor

	{Special Set-Up Instructions}

	Verifying the [NAME TCK]
	[NAME TCK] Operating Assumptions
	{Using an Agent}
	Verifying Installation and Setup
	Verifying JavaTest Harness Configuration {and Connection}
	{Verifying Other Required Components}

	{RI Configuration Editor Questions}

	Testing Your Implementation
	Operating Assumptions—Testing a Product
	Test Selection
	Test Selection Criteria
	{Multiple Test Runs With Different Test Sets}
	{Making Sure All Necessary Tests Have Been Run}

	Using the [NAME TCK] to Test a Product
	Running [NAME TCK] Tests—Basic Steps
	{[Optional] Running Interactive Tests}
	{Running Distributed TCK Tests}
	{Pre-installing Agent and Client Classes}

	Monitoring Test Results
	{Test Export}
	Exporting Tests in [NAME TCK]
	Tests That Cannot be Exported
	Running Exported Tests

	Producing Test Reports

	{Testing API Signatures}
	Overview
	Running Signature Test

	{Test-Specific Information}
	{Extra-Attribute Tests}
	{Configuration}
	{Setup}
	{Execution}

	Debugging Test Problems
	Overview
	Test Tree
	Folder Information
	Test Information
	Agent Monitor
	Debugging Option
	Report Files
	Configuration Failures
	Hostnames and DHPC

	{Product-Specific Chapter Template}
	{Implementing the Test Framework}
	Testware Components
	When to Plug In Your Own Implementation and What to Plug In
	Communication Channel Components
	Client
	Server
	AMS

	The Default Implementation of the Communication Channel
	Client
	Server
	AMS

	Plugging In Other Implementations of Server, Client, and AMS

	Configuration Editor and Environment Variables
	Exclusion Lists and Result Files
	Exclude List Files
	Exclude File Format
	Result File Format

	Frequently Asked Questions
	Configuration
	JavaTest Harness
	Testing an Implementation

	Release Notes
	Release Notes Template—ASCII
	Release Notes Template—HTML

