
Safety-Critical Java Technology Specification

JSR-302

Version 0.109
27 January 2017

Draft

Every effort has been made to ensure that all statements and information contained herein are
accurate. The Open Group, however, accepts no liability for any error or omission.

c©Copyright 2006-2017 The Open Group

Safety-Critical Java Technology Specification

Expert Group Membership

Each Expert Group member is listed with the organization represented, if any.

Core Group

Doug Locke (LC Systems Services Inc., representing The Open Group -
Specification Lead)

B. Scott Andersen (Self - employed by Verocel)
Ben Brosgol (Self - employed by AdaCore)

Mike Fulton (IBM)
Thomas Henties (Siemens AG)

James J. Hunt (aicas GmbH)
Johan Olmütz Nielsen (DDC-I, Inc.)

Kelvin Nilsen (Atego)
Anders Ravn (Self - employed by Aalborg University)

Martin Schoeberl (Self - employed by T.U. Copenhagen)
Jan Vitek (Self - employed by Purdue U.)

Andy Wellings (Self - employed by U. of York)

Consulting Group

Robert Allen (Boeing)
Greg Bollella (Oracle)

Arthur Cook (Self - employed by Alion Science & Technology)
Allen Goldberg (Self - employed by UC Santa Cruz)

David Hardin (Rockwell Collins, Inc.)
Joyce Tokar (Self - employed by Pyrrhusoft)

ii Version 0.109
Confidentiality: Public Distribution

27 January 2017

Contents

1 Introduction 1

1.1 Definitions, Background, and Scope 2

1.2 Additional Constraints on Java Technology 5

1.3 Key Specification Terms . 7

1.4 Specification Context . 8

1.5 Overview of the Remainder of the Document 8

2 Programming Model 11

2.1 The Mission Concept . 12

2.2 Compliance Levels . 13

2.2.1 Level 0 . 14

2.2.2 Level 1 . 15

2.2.3 Level 2 . 16

2.3 SCJ Annotations . 17

2.4 Use of Asynchronous Event Handlers 19

2.5 Development vs. Deployment Compliance 19

2.6 Verification of Safety Properties 20

3 Mission Life Cycle 21

3.1 Overview . 21

3.1.1 Application Initialization 22

3.1.2 Mission Initialization . 23

3.1.3 Mission Execution . 23

3.1.4 Mission Clean Up . 24

iii

Safety-Critical Java Technology Specification

3.2 Semantics and Requirements . 24

3.2.1 Class Initialization . 24

3.2.2 Safelet Initialization . 26

3.2.3 MissionSequencer Execution 27

3.2.4 Mission Execution . 28

3.3 Level Considerations . 30

3.3.1 Level 0 . 30

3.3.2 Level 1 . 31

3.3.3 Level 2 . 31

3.4 API . 31

3.4.1 javax.safetycritical.Safelet 31

3.4.2 javax.safetycritical.MissionSequencer 35

3.4.3 javax.safetycritical.Mission 38

3.4.4 javax.safetycritical.Frame 42

3.4.5 javax.safetycritical.CyclicSchedule 43

3.4.6 Class javax.safetycritical.CyclicExecutive 44

3.4.7 LinearMissionSequencer 45

3.5 Application Initialization Sequence Diagram 48

3.6 Rationale . 48

3.6.1 Loading and Initialization of Classes 48

3.6.2 MissionSequencer as a ManagedEventHandler 52

3.6.3 Sizing of Mission Memories 52

3.6.4 Hierachical Decomposition of Memory Resources 53

3.6.5 Some Style Recommendations Regarding Design of Missions 54

3.6.6 Comments on Termination of Missions 55

3.6.7 Special Considerations for Level 0 Missions 55

3.6.8 Implementation of MissionSequencers and Missions 56

3.6.9 Example of a Static Level 0 Application 57

3.6.10 SimpleCyclicExecutive.java 57

3.6.11 MyPEH.java . 59

3.6.12 VendorCyclicSchedule.java 59

iv Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

3.6.13 Example of a Dynamic Level 0 Application 61

3.6.14 MyLevel0App.java . 61

3.6.15 MyLevel0Sequencer.java 62

3.6.16 Example of a Level 1 Application 63

3.6.17 MyLevel1App.java . 63

3.6.18 Example of a Level 2 Application 64

3.6.19 MyLevel2App.java . 64

3.6.20 MainMissionSequencer.java 66

3.6.21 PrimaryMission.java . 67

3.6.22 CleanupMission.java . 68

3.6.23 SubMissionSequencer.java 68

3.6.24 StageOneMission.java . 69

3.6.25 StageTwoMission.java . 70

3.6.26 MyPeriodicEventHandler.java 70

3.6.27 MyCleanupThread.java . 71

4 Concurrency and Scheduling Models 73
4.1 Overview . 73

4.2 Semantics and Requirements . 75

4.3 Level Considerations . 77

4.3.1 Level 0 . 77

4.3.2 Level 1 . 77

4.3.3 Level 2 . 78

4.4 The Parameter Classes . 79

4.4.1 Class javax.realtime.ReleaseParameters 80

4.4.2 Class javax.realtime.PeriodicParameters 80

4.4.3 Class javax.realtime.AperiodicParameters 82

4.4.4 Class javax.realtime.SchedulingParameters 83

4.4.5 Class javax.realtime.PriorityParameters 84

4.4.6 Class javax.realtime.MemoryParameters 85

4.4.7 Class javax.realtime.ConfigurationParameters 86

4.4.8 Class javax.realtime.memory.ScopeParameters 87

27 January 2017 Version 0.109
Confidentiality: Public Distribution

v

Safety-Critical Java Technology Specification

4.5 Asynchronous Event Handlers . 89

4.5.1 Interface javax.realtime.Timable 91

4.5.2 Interface javax.realtime.AsyncTimable 91

4.5.3 Interface javax.realtime.Schedulable 91

4.5.4 Interface javax.realtime.BoundRealtimeExecutor 92

4.5.5 Interface javax.realtime.BoundSchedulable 93

4.5.6 Interface javax.safetycritical.ManagedSchedulable 93

4.5.7 Class javax.realtime.AsyncBaseEventHandler 95

4.5.8 Class javax.realtime.AsyncEventHandler 95

4.5.9 Class javax.realtime.AsyncLongEventHandler 96

4.5.10 Interface javax.realtime.BoundAsyncBaseEventHandler . . 97

4.5.11 Class javax.realtime.BoundAsyncEventHandler 97

4.5.12 Class javax.realtime.BoundAsyncLongEventHandler 98

4.5.13 Class javax.safetycritical.ManagedEventHandler 99

4.5.14 Class javax.safetycritical.ManagedLongEventHandler . . . 101

4.5.15 Class javax.safetycritical.PeriodicEventHandler 102

4.5.16 Class javax.safetycritical.OneShotEventHandler 106

4.5.17 Class javax.safetycritical.AperiodicEventHandler 109

4.5.18 Class javax.safetycritical.AperiodicLongEventHandler . . . 110

4.6 Threads and Real-Time Threads 112

4.6.1 Class java.lang.Thread . 112

4.6.2 Class javax.realtime.RealtimeThread 116

4.6.3 Class javax.safetycritical.ManagedThread 119

4.7 Scheduling and Related Activities 121

4.7.1 Class javax.safetycritical.CyclicSchedule 121

4.7.2 Class javax.safetycritical.CyclicExecutive 122

4.7.3 Class javax.realtime.Scheduler 122

4.7.4 Class javax.realtime.PriorityScheduler 122

4.7.5 Class javax.realtime.FirstInFirstOutScheduler 123

4.7.6 Class javax.realtime.Affinity 125

4.7.7 Class jaxax.safetycritical.Services 130

vi Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

4.8 Rationale for the SCJ Concurrency Model 131

4.8.1 Scheduling and Synchronization Issues 132

4.8.2 Multiprocessors . 133

4.8.3 Schedulability Analysis and MultiProcessors 134

4.8.4 Impact of Clock Granularity 135

4.8.5 Deadline Miss Detection 135

4.9 Compatibility . 137

5 Interaction with Devices and External Events 139
5.1 Overview . 139

5.2 Interaction with Input and Output Devices 139

5.2.1 Semantics and Requirements 140

5.2.2 Level Considerations . 145

5.2.3 API . 146

5.2.4 javax.realtime.device.RawByteReader 146

5.2.5 javax.realtime.device.RawByteWriter 149

5.2.6 javax.realtime.device.RawByte 151

5.2.7 javax.realtime.device.RawShortReader 152

5.2.8 javax.realtime.device.RawShortWriter 154

5.2.9 javax.realtime.device.RawShort 157

5.2.10 javax.realtime.device.RawIntReader 158

5.2.11 javax.realtime.device.RawIntWriter 160

5.2.12 javax.realtime.device.RawInt 163

5.2.13 javax.realtime.device.RawLongReader 163

5.2.14 javax.realtime.device.RawLongWriter 166

5.2.15 javax.realtime.device.RawLong 169

5.2.16 javax.realtime.device.RawMemoryRegion 169

5.2.17 javax.realtime.device.RawMemoryRegionFactory 171

5.2.18 javax.realtime.device.RawMemoryFactory 190

5.2.19 javax.realtime.device.InterruptServiceRoutine 213

5.2.20 javax.safetycritical.ManagedInterruptServiceRoutine 215

5.3 POSIX Signal Handlers . 217

27 January 2017 Version 0.109
Confidentiality: Public Distribution

vii

Safety-Critical Java Technology Specification

5.3.1 Semantics and Requirements 217

5.3.2 Level Considerations . 218

5.3.3 javax.safetycritical.POSIXSignalHandler 218

5.3.4 javax.safetycritical.POSIXRealtimeSignalHandler 220

5.4 Rationale . 222

5.4.1 Stride . 223

5.4.2 Interrupt Handling Rationale 223

5.5 Compatibility . 224

6 Input and Output Model 225

6.1 Overview . 225

6.2 Semantics and Requirements . 225

6.3 Level Considerations . 227

6.4 API . 227

6.4.1 javax.microedition.io.Connector 227

6.4.2 javax.microedition.io.Connection 232

6.4.3 javax.microedition.io.InputConnection 233

6.4.4 javax.microedition.io.OutputConnection 234

6.4.5 javax.microedition.io.StreamConnection 235

6.4.6 javax.microedition.io.ConnectionNotFoundException 235

6.4.7 javax.safetycritical.io.ConsoleConnection 236

6.4.8 javax.safetycritical.io.ConnectionFactory 237

6.4.9 java.io.PrintStream . 240

6.5 Rationale . 249

6.6 Compatibility . 249

7 Memory Management 251

7.1 Overview . 251

7.2 Semantics and Requirements . 252

7.2.1 Memory Model . 252

7.3 Level Considerations . 253

7.3.1 Level 0 . 254

viii Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

7.3.2 Level 1 . 254

7.3.3 Level 2 . 255

7.4 Memory-Related APIs . 255

7.4.1 Class javax.realtime.MemoryParameters 255

7.4.2 Class javax.realtime.MemoryArea 255

7.4.3 Class javax.realtime.ImmortalMemory 258

7.4.4 Class javax.realtime.memory.ScopedMemory 258

7.4.5 Class javax.realtime.memory.ScopeParamters 259

7.4.6 Class javax.realtime.memory.StackedMemory 262

7.4.7 Class javax.safetycritical.ManagedMemory 262

7.4.8 Class javax.realtime.SizeEstimator 264

7.5 Rationale . 268

7.5.1 Nesting Scopes . 269

7.5.2 Finalizers . 270

7.6 Compatibility . 270

8 Clocks, Timers, and Time 271
8.1 Overview . 271

8.2 Semantics and Requirements . 271

8.2.1 Chronographs and Clocks 272

8.2.2 Time . 272

8.2.3 Application-defined Chronographs and Clocks 272

8.2.4 RTSJ Constraints . 275

8.3 Level Considerations . 275

8.4 API . 275

8.4.1 Class javax.realtime.Chronograph 275

8.4.2 Class javax.realtime.Clock 279

8.4.3 Class javax.realtime.HighResolutionTime 284

8.4.4 Class javax.realtime.AbsoluteTime 289

8.4.5 Class javax.realtime.RelativeTime 297

8.5 Rationale . 303

8.6 Compatibility . 303

27 January 2017 Version 0.109
Confidentiality: Public Distribution

ix

Safety-Critical Java Technology Specification

9 Java Metadata Annotations 305
9.1 Overview . 305

9.2 Semantics and Requirements . 305

9.3 Annotations for Enforcing Compliance Levels 306

9.3.1 Compliance Level Reasoning 307

9.3.2 Class Constructor Rules 308

9.3.3 Other Rules . 308

9.4 Annotations for Restricting Behavior 308

9.4.1 @SCJMayAllocate . 308

9.4.2 @SCJMaySelfSuspend . 309

9.4.3 @SCJPhase . 309

9.4.4 Inheritance Considerations 309

9.5 Level Considerations . 310

9.6 API . 310

9.6.1 Class javax.safetycritical.annotate.SCJPhase 310

9.6.2 Class javax.safetycritical.annotate.SCJMayAllocate 311

9.6.3 Class javax.safetycritical.annotate.SCJMaySelfSuspend . . 311

9.6.4 Class javax.safetycritical.annotate.SCJAllowed 311

9.6.5 Class javax.safetycritical.annotate.Level 312

9.6.6 Class javax.safetycritical.annotate.Phase 313

9.6.7 Class javax.safetycritical.annotate.AllocationContext 313

9.7 Rationale and Examples . 314

9.7.1 Compliance Level Annotation Example 314

9.7.2 Memory Safety Annotations 315

10 Java Native Interface 317
10.1 Overview . 317

10.2 Semantics and Requirements . 317

10.3 Level Considerations . 317

10.4 API . 318

10.4.1 Version Information . 318

10.4.2 Class Operations . 318

x Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

10.4.3 Exceptions . 318

10.4.4 Global and Local References 318

10.4.5 Weak Global References 319

10.4.6 Object Operations . 319

10.4.7 Accessing Fields of Objects 319

10.4.8 Calling Instance Methods 319

10.4.9 Accessing Static Fields . 319

10.4.10 Calling Static Methods . 320

10.4.11 String Operations . 320

10.4.12 Array Operations . 320

10.4.13 Registering Native Methods 320

10.4.14 Monitor Operations . 321

10.4.15 NIO Support . 321

10.4.16 Reflection Support . 321

10.4.17 Java VM Interface . 321

10.5 Annotations . 321

10.6 Rationale . 322

10.7 Example . 322

10.8 Compatibility . 322

10.8.1 RTSJ Compatibility Issues 322

10.8.2 General Java Compatibility Issues 323

11 Exceptions 325
11.1 Overview . 325

11.2 Semantics and Requirements . 325

11.2.1 SCJ-Specific Functionality 326

11.3 Level Considerations . 327

11.4 API . 327

11.4.1 Class java.lang.Throwable 327

11.4.2 Class javax.realtime.StaticThrowable 331

11.4.3 Class javax.realtime.StaticThrowableStorage 335

11.4.4 Class java.lang.Exception 339

27 January 2017 Version 0.109
Confidentiality: Public Distribution

xi

Safety-Critical Java Technology Specification

11.4.5 Class javax.realtime.StaticRuntimeException 340

11.4.6 Class javax.realtime.StaticCheckedException 345

11.4.7 Class jaxax.realtime.ThrowBoundaryError 345

11.4.8 Class java.lang.Error . 345

11.5 Rationale . 347

11.6 Compatibility . 349

11.6.1 RTSJ Compatibility Issues 349

11.6.2 General Java Compatibility Issues 349

12 Class Libraries for Safety-Critical Applications 351

12.1 Minimal JDK 1.8 java.lang package Capabilities Required in SCJ
Implementations . 352

12.1.1 Modifications to java.lang.Character 354

12.1.2 Modifications to java.lang.Class 357

12.1.3 Modifications to java.lang.Object 359

12.1.4 Modifications to java.lang.String 359

12.1.5 Modifications to java.lang.StringBuilder 360

12.1.6 Modifications to java.lang.System 361

12.1.7 Modifications to java.lang.Thread 362

12.1.8 Modifications to java.lang.Throwable 363

12.2 Minimal JDK 1.8 java.lang.annotation Capabilities Required in SCJ
Implementations . 366

12.3 Minimal JDK 1.8 java.io Capabilities Required in SCJ Implementa-
tions . 367

12.4 Minimal JDK 1.8 java.util Capabilities Required in SCJ Implemen-
tations . 367

A Javadoc Description of Package java.io 369

A.1 Classes . 371

A.2 Interfaces . 371

A.2.1 INTERFACE Closeable . 371

A.2.2 INTERFACE DataInput 371

A.2.3 INTERFACE DataOutput 379

xii Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

A.2.4 INTERFACE Flushable . 384

A.2.5 INTERFACE Serializable 384

A.3 Classes . 385

A.3.1 CLASS DataInputStream 385

A.3.2 CLASS DataOutputStream 395

A.3.3 CLASS EOFException . 401

A.3.4 CLASS FilterOutputStream 402

A.3.5 CLASS IOException . 404

A.3.6 CLASS InputStream . 405

A.3.7 CLASS OutputStream . 408

A.3.8 CLASS PrintStream . 410

A.3.9 CLASS UTFDataFormatException 420

B Javadoc Description of Package java.lang 421
B.1 Classes . 426

B.1.1 CLASS Deprecated . 426

B.1.2 CLASS Override . 426

B.1.3 CLASS SuppressWarnings 426

B.2 Interfaces . 427

B.2.1 INTERFACE Appendable 427

B.2.2 INTERFACE CharSequence 427

B.2.3 INTERFACE Cloneable . 429

B.2.4 INTERFACE Comparable 429

B.2.5 INTERFACE Runnable . 430

B.2.6 INTERFACE Thread.UncaughtExceptionHandler 431

B.2.7 INTERFACE UncaughtExceptionHandler 431

B.3 Classes . 432

B.3.1 CLASS ArithmeticException 432

B.3.2 CLASS ArrayIndexOutOfBoundsException 433

B.3.3 CLASS ArrayStoreException 434

B.3.4 CLASS AssertionError 435

B.3.5 CLASS Boolean . 438

27 January 2017 Version 0.109
Confidentiality: Public Distribution

xiii

Safety-Critical Java Technology Specification

B.3.6 CLASS Byte . 442

B.3.7 CLASS Character . 448

B.3.8 CLASS Class . 456

B.3.9 CLASS ClassCastException 460

B.3.10 CLASS ClassNotFoundException 461

B.3.11 CLASS CloneNotSupportedException 462

B.3.12 CLASS Double . 463

B.3.13 CLASS Enum . 470

B.3.14 CLASS Error . 473

B.3.15 CLASS Exception . 475

B.3.16 CLASS ExceptionInInitializerError 476

B.3.17 CLASS Float . 478

B.3.18 CLASS IllegalArgumentException 486

B.3.19 CLASS IllegalMonitorStateException 488

B.3.20 CLASS IllegalStateException 489

B.3.21 CLASS IncompatibleClassChangeError 490

B.3.22 CLASS IndexOutOfBoundsException 491

B.3.23 CLASS InstantiationException 492

B.3.24 CLASS Integer . 493

B.3.25 CLASS InternalError . 504

B.3.26 CLASS InterruptedException 505

B.3.27 CLASS Long . 506

B.3.28 CLASS Math . 517

B.3.29 CLASS NegativeArraySizeException 531

B.3.30 CLASS NullPointerException 532

B.3.31 CLASS Number . 533

B.3.32 CLASS NumberFormatException 535

B.3.33 CLASS Object . 536

B.3.34 CLASS OutOfMemoryError 539

B.3.35 CLASS RuntimeException 540

B.3.36 CLASS Short . 542

xiv Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

B.3.37 CLASS StackOverflowError 549

B.3.38 CLASS StackTraceElement 550

B.3.39 CLASS StrictMath . 553

B.3.40 CLASS String . 567

B.3.41 CLASS StringBuilder . 582

B.3.42 CLASS StringIndexOutOfBoundsException 591

B.3.43 CLASS System . 593

B.3.44 CLASS Thread . 595

B.3.45 CLASS Throwable . 599

B.3.46 CLASS UnsatisfiedLinkError 602

B.3.47 CLASS UnsupportedOperationException 603

B.3.48 CLASS VirtualMachineError 605

B.3.49 CLASS Void . 606

C Javadoc Description of Package javax.microedition.io 607

C.1 Classes . 608

C.2 Interfaces . 608

C.2.1 INTERFACE Connection 608

C.2.2 INTERFACE InputConnection 609

C.2.3 INTERFACE OutputConnection 610

C.2.4 INTERFACE StreamConnection 611

C.3 Classes . 611

C.3.1 CLASS ConnectionNotFoundException 611

C.3.2 CLASS Connector . 612

D Javadoc Description of Package javax.realtime 617

D.1 Classes . 621

D.2 Interfaces . 621

D.2.1 INTERFACE AsyncTimable 621

D.2.2 INTERFACE BoundAsyncBaseEventHandler 621

D.2.3 INTERFACE BoundRealtimeExecutor 621

D.2.4 INTERFACE BoundSchedulable 622

27 January 2017 Version 0.109
Confidentiality: Public Distribution

xv

Safety-Critical Java Technology Specification

D.2.5 INTERFACE Chronograph 622

D.2.6 INTERFACE Schedulable 625

D.2.7 INTERFACE StaticThrowable 626

D.2.8 INTERFACE Timable . 630

D.3 Classes . 630

D.3.1 CLASS AbsoluteTime . 630

D.3.2 CLASS Affinity . 638

D.3.3 CLASS AperiodicParameters 642

D.3.4 CLASS AsyncBaseEventHandler 644

D.3.5 CLASS AsyncEventHandler 644

D.3.6 CLASS AsyncLongEventHandler 645

D.3.7 CLASS BoundAsyncEventHandler 646

D.3.8 CLASS BoundAsyncLongEventHandler 647

D.3.9 CLASS Clock . 648

D.3.10 CLASS ConfigurationParameters 652

D.3.11 CLASS DeregistrationException 653

D.3.12 CLASS EnclosedType . 654

D.3.13 CLASS FirstInFirstOutScheduler 654

D.3.14 CLASS HighResolutionTime 656

D.3.15 CLASS IllegalAssignmentError 661

D.3.16 CLASS IllegalSchedulableStateException 662

D.3.17 CLASS ImmortalMemory 667

D.3.18 CLASS InaccessibleAreaException 667

D.3.19 CLASS MemoryAccessError 667

D.3.20 CLASS MemoryArea . 668

D.3.21 CLASS MemoryInUseException 670

D.3.22 CLASS MemoryParameters 671

D.3.23 CLASS MemoryTypeConflictException 672

D.3.24 CLASS OffsetOutOfBoundsException 672

D.3.25 CLASS PeriodicParameters 673

D.3.26 CLASS PriorityParameters 674

xvi Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

D.3.27 CLASS PriorityScheduler 675

D.3.28 CLASS ProcessorAffinityException 677

D.3.29 CLASS RealtimeThread 677

D.3.30 CLASS RegistrationException 680

D.3.31 CLASS RelativeTime . 681

D.3.32 CLASS ReleaseParameters 687

D.3.33 CLASS Scheduler . 687

D.3.34 CLASS SchedulingParameters 688

D.3.35 CLASS SizeEstimator . 689

D.3.36 CLASS SizeOutOfBoundsException 693

D.3.37 CLASS StaticError . 693

D.3.38 CLASS StaticRuntimeException 697

D.3.39 CLASS StaticThrowableStorage 702

D.3.40 CLASS ThrowBoundaryError 706

E Javadoc Description of Package javax.realtime.device 707
E.1 Classes . 709

E.2 Interfaces . 709

E.2.1 INTERFACE RawByte . 709

E.2.2 INTERFACE RawByteReader 709

E.2.3 INTERFACE RawByteWriter 712

E.2.4 INTERFACE RawDouble 714

E.2.5 INTERFACE RawDoubleReader 715

E.2.6 INTERFACE RawDoubleWriter 717

E.2.7 INTERFACE RawFloat . 720

E.2.8 INTERFACE RawFloatReader 721

E.2.9 INTERFACE RawFloatWriter 723

E.2.10 INTERFACE RawInt . 726

E.2.11 INTERFACE RawIntReader 726

E.2.12 INTERFACE RawIntWriter 729

E.2.13 INTERFACE RawLong . 732

E.2.14 INTERFACE RawLongReader 732

27 January 2017 Version 0.109
Confidentiality: Public Distribution

xvii

Safety-Critical Java Technology Specification

E.2.15 INTERFACE RawLongWriter 735

E.2.16 INTERFACE RawMemoryRegionFactory 738

E.2.17 INTERFACE RawShort . 756

E.2.18 INTERFACE RawShortReader 757

E.2.19 INTERFACE RawShortWriter 759

E.3 Classes . 762

E.3.1 CLASS InterruptServiceRoutine 762

E.3.2 CLASS RawMemoryFactory 764

E.3.3 CLASS RawMemoryRegion 787

F Javadoc Description of Package javax.realtime.memory 789

F.1 Classes . 790

F.2 Interfaces . 790

F.3 Classes . 790

F.3.1 CLASS ScopeParameters 790

F.3.2 CLASS ScopedCycleException 792

F.3.3 CLASS ScopedMemory 793

F.3.4 CLASS StackedMemory 794

G Javadoc Description of Package javax.safetycritical 795

G.1 Classes . 798

G.2 Interfaces . 798

G.2.1 INTERFACE ManagedSchedulable 798

G.2.2 INTERFACE Safelet . 799

G.3 Classes . 801

G.3.1 CLASS AperiodicEventHandler 801

G.3.2 CLASS AperiodicLongEventHandler 803

G.3.3 CLASS CyclicExecutive 804

G.3.4 CLASS CyclicSchedule 805

G.3.5 CLASS CyclicSchedule.Frame 806

G.3.6 CLASS Frame . 806

G.3.7 CLASS LinearMissionSequencer 807

xviii Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

G.3.8 CLASS ManagedEventHandler 810

G.3.9 CLASS ManagedInterruptServiceRoutine 811

G.3.10 CLASS ManagedLongEventHandler 813

G.3.11 CLASS ManagedMemory 815

G.3.12 CLASS ManagedThread 817

G.3.13 CLASS Mission . 819

G.3.14 CLASS MissionMemory 823

G.3.15 CLASS MissionSequencer 824

G.3.16 CLASS OneShotEventHandler 826

G.3.17 CLASS POSIXRealtimeSignalHandler 829

G.3.18 CLASS POSIXSignalHandler 830

G.3.19 CLASS PeriodicEventHandler 831

G.3.20 CLASS PrivateMemory 835

G.3.21 CLASS Services . 836

G.3.22 CLASS SingleMissionSequencer 837

H Javadoc Description of Package javax.safetycritical.annotate 839

H.1 Classes . 840

H.1.1 CLASS SCJAllowed . 840

H.1.2 CLASS SCJMayAllocate 840

H.1.3 CLASS SCJMaySelfSuspend 841

H.1.4 CLASS SCJPhase . 841

H.2 Interfaces . 842

H.3 Classes . 842

H.3.1 CLASS AllocationContext 842

H.3.2 CLASS Level . 842

H.3.3 CLASS Phase . 843

I Javadoc Description of Package javax.safetycritical.io 845

I.1 Classes . 846

I.2 Interfaces . 846

I.3 Classes . 846

27 January 2017 Version 0.109
Confidentiality: Public Distribution

xix

Safety-Critical Java Technology Specification

I.3.1 CLASS ConnectionFactory 846

I.3.2 CLASS ConsoleConnection 848

I.3.3 CLASS SimplePrintStream 849

xx Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Document Control

Version Status Date
0.1 Draft Uncontrolled draft
0.2 Draft Uncontrolled draft
0.3 Draft Uncontrolled draft
0.4 Draft 25 July 2008
0.5 Draft Work-in-progress
0.6 Draft Work-in-progress
0.65 Draft San Diego Feb 2009
0.66 Draft London May 2009
0.67 Draft Pre-Toronto July 2009
0.68 Draft Toronto July 2009
0.69 Draft Pre-Madrid Oct 2009
0.73 Draft Pre-Karlsruhe Apr 2010
0.75 Draft Karlsruhe May 2010
0.77 Draft Boston July 2010
0.78 First Release JCP October 2010
0.79 Draft May 2011
0.80 Draft November 2011
0.94 Second Release 25 June 2013
0.95 Draft 26 January 2014
0.96 Draft 9 October 2014
0.100 Draft 27 December 2014
0.101 Draft 21 April 2015
0.105 Draft 14 December 2015
0.106 Draft 10 June 2016
0.107 Draft 24 September 2016
0.108 Draft 6 January 2017
0.109 Third Early Draft

Review
27 January 2017

27 January 2017 Version 0.109
Confidentiality: Public Distribution

xxi

Safety-Critical Java Technology Specification

Executive Summary

This Safety-Critical Java Specification (JSR-302), based on the Real-Time Specifica-
tion for Java (JSR-1), defines a set of Java services that are designed to be usable by
applications requiring some level of safety certification. The specification is targeted
to a wide variety of very demanding certification paradigms such as the safety-critical
requirements of DO-178C, Level A.

This specification presents a set of Java classes providing for safety-critical applica-
tion start up, concurrency, scheduling, synchronization, input/output, memory man-
agement, timer management, interrupt processing, native interfaces, and exceptions.
To enhance the certifiability of applications constructed to conform to this specifi-
cation, this specification also presents a set of annotations that can be used to per-
mit static checking for applications to guarantee that the application exhibits certain
safety properties.

To enhance the portability of safety-critical applications across different implemen-
tations of this specification, this specification also lists a minimal set of Java libraries
that must be provided by conforming implementations.

xxii Version 0.109
Confidentiality: Public Distribution

27 January 2017

Chapter 1

Introduction

Safety-Critical Java (SCJ) technology, based on the Real-Time Specification for Java
(RTSJ) [2] has been designed to address the general needs of adapting Java tech-
nology for use in safety-critical applications. As Java has matured, it has become
increasingly desirable to leverage Java technology within applications that require
not only predictable performance and behavior, but also high reliability. When such
performance and reliability are required to protect property and human life, such
systems are said to be safety-critical. This document specifies a Java technology
appropriate for safety-critical systems called Safety-Critical Java (SCJ).

Safety-critical systems can be defined as systems in which an incorrect response or
an incorrectly timed response can result in significant loss to its users; in the most
extreme case, loss of life may result from such failures. For this reason, safety-
critical applications require an exceedingly rigorous validation and certification pro-
cess. Such certification processes are often required by legal statute or by certification
authorities. For example, in the United States, the Federal Aviation Administration
requires that safety-critical software be certified using the Software Considerations
in Airborne Systems and Equipment Certification (DO-178C [6] or in Europe, the
ED-12C [7]) standard controlled by an independent organization.

The development of certification evidence for a software work-product used within
a safety-critical software system is extremely time-consuming and expensive. Most
safety-critical software development projects are carefully designed to reduce the ap-
plication size and scope to its most minimal form to help manage the costs associated
with the development of certification evidence. Examples of the resulting restrictions
may include the elimination or severe limitations on recursion and the rigorous use
of memory, especially heap space, to ensure that out-of-memory conditions are pre-
cluded.

In the context of Java technology, as compared to other Java application paradigms,
this requires a smaller and highly predictable set of Java virtual machines and li-

1

Safety-Critical Java Technology Specification

braries. They must be smaller and highly predictable both to enhance their certifi-
ability and to permit meeting tight safety-critical application performance require-
ments when running with Java run-time environments and libraries. Additionally,
safety-critical applications must exhibit freedom from any exceptions that cannot be
successfully handled. This requires, for example, that there be no memory access
errors at run-time.

This safety-critical specification is designed to enable the creation of safety-critical
applications, built using safety-critical Java infrastructures, and using safety-critical
libraries, amenable to certification under DO-178C, Level A, as well as other safety-
critical standards.

1.1 Definitions, Background, and Scope

The field of safety-critical software development makes use of a number of special-
ized terms. Though definitions for these terms may vary throughout safety-critical
systems literature, there are some concepts key to this discussion that can be crisply
defined. Below is a set of specific terms and the associated definitions that provide
important background information for understanding this standard:

Storey [8] provides several useful definitions:

• Safety is a property of a system that a failure in the operation of the system will
not endanger human life or its environment.

• The term safety-critical system refers to a system of high criticality (e.g. in
DEF STAN 00-55[9] it relates to Safety Integrity Level 4) in which the safety of
the related equipment and its environment is assured. A safety-critical system
is generally one which carries an extremely high level of assurance of its safety.

• Safety integrity refers to the likelihood of a safety-critical system satisfactorily
performing its required safety functions under all stated conditions within a
stated period of time.

Some additional definitions from Burns and Wellings [1] are useful as well:

• Hard real-time components are those where it is imperative that output re-
sponses to input stimuli occur within a specified deadline.

• Soft real-time components are those where meeting output response time re-
quirements is important, but where the system will still function correctly if
the responses are occasionally late.

In many safety-critical contexts, multiple levels of safety-critical certification are
defined. For example, in the aviation industry, the DO-178C and ED-12C standards
define the following software levels

2 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

• Level A: Software whose anomalous behavior would cause or contribute to a
failure of system function resulting in a catastrophic failure condition for the
aircraft. A catastrophic failure is one which would prevent continued safe flight
and landing.

• Level B: Software whose anomalous behavior would cause or contribute to a
failure of system function resulting in a hazardous/severe major failure con-
dition for the aircraft. A hazardous/severe major failure is one which would
reduce the capability of the aircraft or the ability of the crew to cope with ad-
verse operating conditions to the extent that there would be, for example, a
large reduction in safety margins or potentially fatal injuries to a small number
of the aircrafts’ occupants.

• Level C: Software whose anomalous behavior would cause or contribute to a
failure of system function resulting in a major failure condition for the aircraft.
A major failure is one which would reduce the capability of the aircraft or
the ability of the crew to cope with adverse operating conditions to the extent
that there would be, for example, a significant reduction in safety margins or
discomfort to occupants, possibly including injuries.

• Level D: Software whose anomalous behavior would cause or contribute to a
failure of system function resulting in a minor failure condition for the aircraft.
A minor failure is one which would not significantly reduce aircraft safety or
functionality.

• Level E: Software whose anomalous behavior would cause or contribute to a
failure of system function with no effect on aircraft operational capability.

Note that Level D and Level E systems have been successfully constructed using
standard Java technology without the aid of this specification. This specification is
oriented toward the higher levels of certification, although this standard does not, by
itself, assure that a conforming application will meet any level of certification.

Other standards have similarly defined levels and also add a probability of such a
failure occurring. For example, in IEC 61508 [4], the maximum probability of a
catastrophic failure (for Level A) is defined to be between 10−5 and 10−4 per year
per system. In DEF STANDARD 00-56 [10], Safety Integrity Levels (SILs) are
defined in terms of the predicted frequency of failures and the resulting severity of
any resulting accident (see Figure 1).

The type of verification techniques that must be used to show that a software com-
ponent meets its specification will depend on the SIL that has been assigned to that
component. For example, Level A and B software might be constrained so it can be
subjected to various static analysis techniques (such as control flow analysis).

Evidence may also be demanded for structural coverage analysis, an analysis of the
execution flows for the software that determines that all paths through the software
have been tested or analyzed, and that there is an absence of unintended function

27 January 2017 Version 0.109
Confidentiality: Public Distribution

3

Safety-Critical Java Technology Specification

Critical Marginal Negligible

Accident Severity

Failure Probability

Frequent

Probable

Occasional

Remote

Improbable

4

4 3 3

3

2

2

2 2

1

1

24

2

33

3 2

2 1

Catastrophic

Figure 1.1: DEF STANDARD 00-56 Safety Integrity Levels

within the code. Additionally, decisions affecting control flow may also need to
be examined and evidence produced to show that all decisions, and perhaps even
conditions within those decisions, have been exercised though testing or analysis.
Specific techniques such as Modified Condition Decision Coverage (MCDC) [6] may
be mandated as part of this analysis.

The type and level of structural coverage analysis (within a requirements-based test-
ing framework) might be different for different certification levels. For example in
DO-178C MCDC is compulsory at Level A but optional at Level B; only statement
level coverage is required at Level C. Also, whether or not the analysis and testing
must be performed independently (a requirement that the developer of an artifact
must not also be its reviewer) may vary among levels.

It is important to understand that this specification can not, and will not attempt
to ensure that a conforming application or implementation will meet the demands
of certification under any safety-critical standard, including DO-178C. Rather, this
specification is intended to enable a conforming application and implementation to
be certifiable when all conditions defined by a safety-critical standard (such as DO-
178C) are also met. It is the responsibility of the developer to understand and fulfill
the specific requirements of the applicable standards. By implication, it remains the
responsibility of application and implementation developers to create the “certifica-
tion artifacts”, i.e., the required documentation for a certification authority that will
be needed to complete the application’s safety certification.

The requirements imposed by safety-critical standards such as DO-178C have been
used to identify the capabilities and limitations likely needed by a safety-critical ap-
plication developer using Java technology. Additionally, the objectives identified
within DO-178C for Level A software have been used to guide key decisions within

4 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

this Safety-Critical Java framework because Level A represents one of the most strin-
gent standards in use today. Systems amenable to certification under DO-178C Level
A are also likely to able to attain certification under similar safety standards.

The use of five levels in the DO-178C reflects the fact that the safety requirements
of any system, including its software, occupy a place on a wide spectrum of safety
properties. At one end of this spectrum are systems whose failure could potentially
cause the loss of human life, such as those covered by DO-178C, Level A. At the
other end of the spectrum are systems with no safety responsibilities, such as an
in-flight entertainment system.

The next major position on this spectrum below safety-critical is that of mission-
critical software. Mission-critical software consists of software whose failure would
result in the loss of key capabilities needed to successfully carry out the purpose
of the software such that a failure could cause considerable financial loss, loss of
prestige, or loss of some other value. An example of a mission-critical system would
be a Mars rover.

Unfortunately, there is no fully accepted definition of mission-critical real-time soft-
ware, although there is broad agreement that mission-critical software is deemed
vital for the success of the enterprise using that software, and any failure will have a
significant negative impact on the enterprise (possibly even its continuing existence).
Safety-critical software is clearly also mission-critical software in the sense that fail-
ure of safety-critical software is likely to result in a mission failure. In general how-
ever, mission-critical software may not (directly) cause loss of life and therefore will
probably not be subject to as rigorous a development and assessment/certification
process as safety-critical software. The authors of this specification have consid-
erable interest in mission-critical systems, and consider it likely that a similar (but
broader) specification may be created addressing mission-critical systems, but a Java
specification for mission-critical systems is explicitly beyond the scope of this effort.

1.2 Additional Constraints on Java Technology

There are many issues associated with the use of Java technology in a safety-critical
system but the two largest issues are related to the management of memory and con-
currency. This specification addresses both of these architectural issues and defines a
model based on the one described in the RTSJ. Six major additional constraints are
imposed on the RTSJ model as described below.

1. The safety-critical software community is conservative in adopting new tech-
nologies, approaches, and architectures. This safety-critical Java software
specification is constrained to respect both the traditions of the Java technology

27 January 2017 Version 0.109
Confidentiality: Public Distribution

5

Safety-Critical Java Technology Specification

community and the safety-critical systems community. The Ada Ravenscar
profile is an example of a language and technology that has been constrained
to meet the needs of the safety-critical software community, but it was ac-
cepted only after the definition was stringently defined and simplified from its
pure Ada roots, especially in regards to the models of concurrency that were
provided. Constraints on the usage of dynamic memory allocation, and es-
pecially reallocation, are also imposed to mitigate out-of-memory conditions
and simplify analysis of memory usage during development of certification
evidence. Severe constraints on concurrency and heap usage, not typical of
traditional Java technology-based applications, are commonplace within the
safety-critical software community.

2. The safety-critical Java technology memory management and concurrency spec-
ified here is based on the technology within the RTSJ (version 2.0) and Java
technology version 8.0. With very minor exceptions delineated later in this
specification (See Chapter 2), a safety-critical Java application constructed in
accordance to this specification will execute correctly (although not with the
same performance) on an RTSJ compliant platform when the Safety-Critical
Java libraries specified herein are provided.

3. New classes are defined in this specification, but these classes are designed
to be implementable using the facilities of the RTSJ. New classes are gener-
ally introduced when the use of the native RTSJ facilities would obfuscate or
add complexity to a conforming application or implementation, or when it is
necessary to increase the safety of an interface.

4. Annotations have been defined to provide a means of documenting a few of
the critical memory management and concurrency assumptions made by the
application programmer to facilitate off-line tools in identifying certain errors
prior to run-time.

5. Some widely used Java capabilities are omitted from this specification to en-
able the certifiability of conforming applications and implementations. Dy-
namic class loading is not required. Finalizers will not be executed. Many
Java and RTSJ classes and methods are omitted. The procedure for starting an
application differs from other Java platforms such as that defined in the RTSJ.
Unlike the RTSJ, synchronization is required to support priority ceiling emu-
lation, and a conforming implementation need not support priority inheritance.
Further, the RTSJ requires that a ThrowBoundaryError exception be created in
a parent scoped memory if an exception is thrown but unhandled while exe-
cuting in a child scoped memory. This specification defines the same behavior
except that the ThrowBoundaryError exception behaves as if it had been preal-
located on a per-schedulable object basis.

6 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

6. This specification takes no position on whether a safety-critical conforming
application is interpreted or is compiled to object code and executed using a
run-time environment.

1.3 Key Specification Terms

A number of specific terms are used in this specification to identify the mandatory be-
havior of compliant implementations and applications, and also to identify behavior
which is not mandatory for implementations and applications. These terms are:

1. Implementation Defined — When the phrase “implementation defined” is used
in this specification, it means that the antecedent can be designed and imple-
mented in any way that the implementation’s designers wish, but that the de-
tails of its functionality must be documented and made available to users and
prospective users of the implementation.

2. Unspecified — When the phrase “unspecified” is used in this specification, it
means that the antecedent can be designed and implemented in any way that
the implementation’s designers wish, and that the application must tolerate any
behavior.

3. Shall — When the word “shall” is used in this specification, it means that a re-
quirement is stated that is mandatory for the implementation or the application
as determined by the context.

4. May — When the word “may” is used in this specification, it means that a
preference or possible action is stated, but that it is not mandatory for the im-
plementation or the application as determined by the context.

5. Implementation — An SCJ implementation is a vendor-supplied infrastructure
providing all the tools needed for developing and executing a safety-critical
application program. For example, a safety-critical implementation would in-
clude a Java virtual machine or run-time environment and analysis tools for
use by a safety-critical application.

6. Application — An SCJ application is a specific safety-critical program to per-
form a safety-critical task. For example, a flight control system is a safety-
critical application.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

7

Safety-Critical Java Technology Specification

1.4 Specification Context

This specification defines the requirements for SCJ conformant applications and im-
plementations and is accompanied by two other components: a Reference Implemen-
taion (RI) and a Technology Compatibility Kit (TCK).

The RI is an actual implementation of the mandatory interfaces of this specifica-
tion that satisfies these requirements and thus permits users and implementers of this
specification to fully understand the specification in the context of an executing pro-
gram, as well as providing a platform for experimenting with application designs that
conform to this specfication. The RI is available under an open source license.

The TCK consists of Java application code that conforms with this specification and
serves to test whether an implementation is conformant to this specification. Con-
forming implementations must correctly execute the entire TCK in order to claim
SCJ conformance. The TCK source code for SCJ is publicly available under an
open source license, but it must be understood that an implementation must correctly
execute the official TCK with no changes in order to claim SCJ conformance.

Conforming implementations of this specification must not only provide the Java
infrastructure needed to provide the SCJ classes and methods of this specification to
conforming SCJ applications, but they must also provide a Checker utility to check
that the application’s annotations correctly define the application’s associated safety
properties.

The specification contains “normative” and “non-normative” content. Normative
content defines the syntax and semantics of an SCJ compliant implementation or
application. Non-normative content is provided only for clarity or to assist in un-
derstanding the normative content of the specification. Chapters 1 and 2 are non-
normative. For each of the remaining chapters of this specification, the chapter’s
Introduction section states which sections of that chapter are normative.

1.5 Overview of the Remainder of the Document

This specification is focused on defining the constraints on the Java technology nec-
essary to facilitate the development of safety-critical applications. The organization
of this document is:

Chapter 2 presents the programming model and introduces the concept of a mission,
and the three compliance levels, Level 0, Level 1, and Level 2. These compliance
levels provide application developers with varying levels of sophistication in the pro-
gramming environment with Level 0 being the most simple (and limiting), and Level
2 offering the greatest number of facilities.

8 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Chapter 3 presents the mission life cycle and describes how a mission (an application
or portion of an application) is initialized, run, and terminated. This chapter also
describes how to sequence several missions, and how an application can create and
execute multiple missions under some circumstances.

Chapter 4 presents the concurrency and scheduling models including the types and
handling of events (periodic and aperiodic). Threads and schedulable objects are also
discussed, as well as multiprocessors.

Chapter 5 presents the external event handling model, including interrupts, and their
relationships.

Chapter 6 presents SCJ support for simple, low-complexity I/O.

Chapter 7 presents memory management, and specifically how memory handling dif-
fers from that in the RTSJ. Control mechanisms for memory area scope and lifetimes
are identified.

Chapter 8 presents clocks, timers, and time.

Chapter 9 presents the Java metadata annotation system and its use within the SCJ
class library.

Chapter 10 presents Java Native Interface (JNI) usage within SCJ applications.

Chapter 11 presents exceptions and the exception model for SCJ applications.

Chapter 12 presents class libraries for SCJ applications.

The required interfaces from standard Java, the RTSJ, and the SCJ library classes
are included in the Appendix.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

9

Safety-Critical Java Technology Specification

10 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Chapter 2

Programming Model

This Safety-Critical Java (SCJ) specification, in contrast to the Real-Time Specifica-
tion for Java (RTSJ), imposes significant limitations on how a developer structures
an application, and supports only a few relatively simple software models in terms
of concurrency, synchronization, memory, etc. This is appropriate because safety-
critical applications must generally conform to rigorous certification requirements,
so therefore they generally use much simpler programming models that are amenable
to certification than that permitted under standard Java technology or the RTSJ.

This specification is based on the Java 8.0 language reference and the RTSJ. Specif-
ically, this specification can be considered to define a subset of the Java environment
and the RTSJ (version 2.0) to support safety-critical systems. It is intended that
SCJ-compliant applications should be readily portable from an SCJ environment to
a RTSJ environment.

In this specification, a flexible programming model is defined that is intended to be
sufficiently limited to enable certification under such standards as DO-178C Level
A. This is accomplished by defining concepts such as a mission, limited start up
procedures, and specific levels of compliance. In addition, a set of special annotations
is described that are intended for use by vendor-supplied and/or third-party tools
to perform static off-line analysis that can ensure certain correctness properties for
safety-critical applications.

Because safety-critical systems are typically also hard real-time systems (i.e., they
have time constraints and deadlines that must be met predictably), methods imple-
mented according to this specification should have predictably bounded execution
behavior. Worst case execution time and other bounding behavior is dependent on
the application and its SCJ execution environment.

11

Safety-Critical Java Technology Specification

2.1 The Mission Concept

Under this specification, a compliant application will consist of one or more missions.
A mission consists of a set of schedulable objects. A schedulable object consists
of a sequence of code that is scheduled by a fixed-priority scheduler (or a cyclic
executive in a Level 0 SCJ implementation) included with the SCJ implementation.
Schedulable objects in this specification are derived from the schedulable objects
defined by the RTSJ.

For each mission, a specific block of memory is defined called mission memory. Ob-
jects created in mission memory persist, and their resources will not be reclaimed,
until the mission is terminated, If the application chooses to terminate a mission, this
specification provides for the application to select another mission to be executed,
erasing the current mission’s mission memory. If the application does not provide a
sequence of missions, it can either avoid terminating the mission, or stop all process-
ing.

Conforming implementations are not required to support dynamic class loading.
Classses visible within a mission are unexceptionally referenceable. Class initial-
ization must be completed before any part of any mission runs, including its initial-
ization phase (described below). There is no requirement that classes, once loaded,
must ever be removed, nor that their resources be reclaimed. A properly formed
SCJ program should not have cyclic dependencies within class initialization code.
For further details on the requirements for an SCJ application, see Section 3.2.1.

Each mission starts in an initialization phase during which objects may be allocated
in mission memory and immortal memory by an application. Immortal memory is
never reclaimed at all, while Mission memory is reclaimed at the termination of a
mission and before the start of the next mission. When a mission’s initialization has
completed, its execution phase is entered. During the execution phase an applica-
tion may access objects in mission memory and immortal memory, but will usually
not create new objects in mission memory or immortal memory. If the application
subsequently terminates a mission, a clean up phase is entered. During the clean
up phase, each schedulable object runs to completion or an explicit waiting point,
and thereafter an application-defined set of clean up methods is executed. Objects in
Immortal memory are not affected by sequencing to the next mission (if one exists),
but objects in Mission memory will be removed before the next mission is started.

When one of a mission’s schedulable objects is started, its initial memory area is
a private memory area that is entered when the schedulable object is released, and
is exited (i.e., emptied) before the schedulable object is released again. (See Sec-
tion 7.2.1 for details) This private memory area is not shared with other schedulable
objects.

12 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

2.2 Compliance Levels

Safety-critical software application complexity varies greatly. At one end of this
range, many safety-critical applications contain only a single thread, support only a
single function, and may have only simple timing constraints. At the other end of this
range, highly complex applications have multiple modes of operation, may contain
multiple (nested) missions, and must satisfy complex timing constraints. While a
single safety-critical Java implementation supporting this entire range could be con-
structed, it would likely be overly expensive and resource intensive.

Minimizing complexity is especially important in safety-critical applications because
both the application and the infrastructure, including the Java runtime environment,
must undergo certification. The cost of certification of both the application and the
infrastructure is highly sensitive to their complexity, so enabling the construction of
simpler applications and infrastructures is highly desirable.

For these reasons, this specification defines three compliance levels to which both
implementations and applications may conform. This specification refers to them as
Level 0, Level 1, and Level 2, where Level 0 supports the simplest applications and
Level 2 supports more complex ones. The cost and difficulty of achieving any given
certification level is expected to be higher at Level 2 than at Level 1 or Level 0.

These three compliance levels have no relationship with the safety levels defined by
standards such as DO-178C.

The requirements for each Level are designed to ensure that properly synchronized
SCJ missions at any Level will execute correctly on any compliant implementation
that is capable of supporting that Level or a higher Level. Thus, for example, a Level
1 application must be able to run correctly on an implementation supporting either
Level 1 or Level 2. Conversely, implementations at higher levels must be able to
correctly execute applications requiring support at that level or below. It must be
noted that while Level 0 applications execute under a cyclic executive structure in
a Level 0 implementation, a Level 0 application executing in a Level 1 or Level 2
implementation will not be executing under a cyclic executive. See Chapter 4 for a
detailed discussion of SCJ execution models.

At each Level, an application consists of a sequence of Missions. If a sequence
consists of more than one Mission, the next Mission is determined and run by an
application-defined mission sequencer.

The definition of each level includes the types of schedulable objects (e.g., Periodic-
EventHandler, AperiodicEventHandler) permitted at that level, the types of synchro-
nization that can be used, and other permitted capabilities.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

13

Safety-Critical Java Technology Specification

 Scheduler

private
memory

PEH PEH

Major frame

Release
event

Release
event

Release
event

Mission memory

Shared by all Periodic Event Handlers

Shared by all Periodic Event Handlers

Immortal memory

Time

(priority 1)

private
memory

PEH

private
memory

PEH
(priority 2)(priority 3)(priority 4)

Private memory

Private memory

idle idle idle

Figure 2.1: Level 0 [Cyclic Executive]

2.2.1 Level 0

A Level 0 application’s programming model is a familiar model often described as
a timeline model, a frame-based model, or a cyclic executive model. In this model,
a mission can be thought of as a set of computations, each of which is executed
periodically in a precise, clock-driven timeline, and processed repetitively throughout
the mission. This model assumes that the application is designed to ensure that the
execution of each frame is completed within that frame.

Figure 2.1 illustrates the execution of a simple Level 0 application, including its
memory allocation. It shows four periodic event handlers being released, each with
its own private memory that is erased after each release. Each periodic event handler
release is triggered by a timer under the control of a cyclic executive. The entire
schedule is repeated at a fixed period (i.e., a major cycle). The timer values and major
cycle period are defined in a schedule provided by the application. The priorities
shown are disregarded when running under a Level 0 implementation because the
cyclic schedule is specifically defined, but would be used if the Level 0 application
were run under a Level 1 or Level 2 implementation. The figure shows only a single
mission, but it is also possible to run multiple missions sequentially.

14 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

A Level 0 application’s schedulable objects consist only of PeriodicEventHandler
(PEH)objects that are derived from the ManagedSchedulable (See Chapter 4.5.6 for
details) class. Although they are not used if the Level 0 application is executed by
a Level 0 implementation, each PEH should have a period, priority, and start time
relative to its period. A schedule of all PEHs is constructed by either the application
designer or by an offline tool provided with the implementation.

Thus, in a Level 0 implementation, all PEHs execute sequentially as if they were
all executing within a single infrastructure thread. This enforces the sequentiality of
every PEH, so the implementation can safely ignore synchronization. The application
developer, however, is strongly encouraged to include the synchronization required
to safely support its shared objects so the application would maintains consistency
regardless of whether it is running on a Level 0, Level 1, or a Level 2 implementation.

The use of a single infrastructure thread to run all PEHs without synchronization
implies that a Level 0 application runs only on a single CPU. If more than one CPU
is present, it is necessary that the state managed by a Level 0 application not be
shared by any application running on another CPU. This specification describes the
semantics for a single application; interactions, if any, among multiple applications
running concurrently in a system are beyond the scope of this specification.

The methods Object.wait and Object.notify are not available to a Level 0 application.
Applications should also avoid blocking because all of the application’s PEHs are
executing in turn as if they were running in a single thread.

Each PEH has a private scoped memory area, an instance of private memory, created
for it before its first release, that will be entered and exited each time it is released.
A Level 0 application can create private memory areas directly nested within the
provided private memory area. It can enter and exit them, but it may not share them
with any other PEH.

2.2.2 Level 1

A Level 1 application uses a familiar multitasking programming model consisting
of a single mission sequence. Each mission contains a set of concurrent compu-
tations, each with a priority, running under control of a fixed-priority preemptive
scheduler. The computations are performed by a set of ManagedSchedulable objects
consisting only of PEHs and/or AperiodicEventHandler instances (APEHs). An ap-
plication shares objects in mission memory and immortal memory among its PEHs
and APEHs, using synchronized methods to maintain the integrity of these objects.
The methods Object.wait and Object.notify are not available.

Each PEH or APEH has a private scoped memory area, an instance of private mem-
ory, created for it before its first release that will be entered and exited at each release.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

15

Safety-Critical Java Technology Specification

private
memory

PEH

private
memory

PEH

Timer event

Shared by all Asynchronous Event Handlers

Shared by all Asynchronous Event Handlers
Immortal memory

SO
 1

S
O

 3
SO

 2

Mission memory

External
Event

External Event

Time

(priority 2)

private
memory

APEH
(priority 1)

Timer event

private
memory

APEH

Timer event

PE

Preempted

ate
ory

H

priv
mem

(priority 2) (pri ority 2)

(priority 7)

Figure 2.2: Level 1 [Single Mission]

During execution, the PEH or APEH may create, enter, and/or exit one or more other
private memory areas, but these memory areas may not be shared among them.

Figure 2.2 illustrates the execution of a simple application running on a single proces-
sor with a single mission, including its memory allocation. It shows three schedulable
objects, SO1, SO2, and SO3, each with a priority and a private memory area that is
emptied before each release. The fixed priority preemptible scheduler executes them
in priority order. When a higher priority schedulable object becomes ready to run,
it may preempt a lower priority object at any time as shown when SO3 at priority 7
preempts SO2 at priority 2.

2.2.3 Level 2

A Level 2 application starts with a single mission, but may create and execute ad-
ditional missions concurrently with the initial mission. Computations in Level 2
missions are performed by a set of ManagedSchedulable objects consisting of PEHs,
APEHs, and/or managed threads which are similar to RTSJ no-heap real-time threads.
Each child mission has its own mission memory.

Each Level 2 ManagedSchedulable object has a private scoped memory area created

16 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

before its first release. For PEHs and APEHs, the private scoped memory area will
be entered and exited at each release; this memory area will be cleared before its
next release. For no-heap real-time threads, the private scoped memory area will be
entered when it starts its run method and exited when the run method terminates.
During execution, each ManagedSchedulable object may create, enter, and/or exit
one or more other scoped memory areas, but these scoped memory areas may not be
shared among its schedulable objects. A Level 2 application may use Object.wait and
Object.notify.

Figure 2.3 illustrates the execution of a simple application with one nested mission,
including its memory allocation. Two missions are shown. Mission 1 starts first and
contains three ManagedSchedulable objects. Mission 2 starts later and contains two
schedulable objects. The priorities of each object determine the order of execution,
regardless of which mission contains each object. For example, a preemption situa-
tion is shown in which SO2 in Mission 1 becomes ready to run and preempts SO1
in Mission 2. Note that a Level 2 application is permitted to use a ManagedThread
object.

2.3 SCJ Annotations

To enable a level of static analyzability for safety-critical applications using this spec-
ification, a number of annotations following the rules of Java Metadata Annotations
are defined and used throughout this specification. A complete description of these
annotations is provided in Chapter 9.

One pervasive annotation in this specification is @SCJAllowed(level). It marks the
minimum Level at which any specific class, interface, method, or field may be refer-
enced in a safety-critical application. This means that an application at Level n will
be permitted only to use items labelled with @SCJAllowed(n) or lower. This also
means that an application at Level n can be executed only by an implementation at
Level n or higher.

Additionally, there are a number of annotations that restrict application code in sev-
eral ways that enable or enhance static analyzability. For example, only methods
that are annotated @SCJMayAllocate(CurrentContext) may contain expressions that
result in memory allocation in the current memory area, and such methods may not
contain expressions that result in memory allocation in any other memory area (e.g.,
Immortal memory, etc.). See Chapter 9 for details.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

17

Safety-Critical Java Technology Specification

Immortal memory
Shared by all Threads

M
IS

S
IO

N
 1

private
memory

APEH

S
O

 2
S

O
 1

Mission memory

priv
mem

AP

ate
ory

EH

Preempted

S
O

 1

private
memory

APEH

S
O

 2

Mission memory

S
O

 3

Private memory

M
IS

S
IO

N
 2

APEH

private memory

(priority 3)

(priority 4)

ority 2)

(priority 1)

Time

NHRT
(priority 5)

Created during Mission 1’s initialization phase

(pri

Figure 2.3: Level 2 [Nested Missions]

18 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

2.4 Use of Asynchronous Event Handlers

The RTSJ defines two mechanisms for real-time execution: the RealtimeThread
and NoHeapRealtimeThread classes, which embody a programming style similar to
java.lang.Thread for concurrent programming, and the AsynchronousEventHandler
class, which is event based. This specification does not require the presence of a
garbage-collected heap, thus the use of RealtimeThread is prohibited. To facilitate
analyzability, this specification supports the following at each level:

• Level 0: PeriodicEventHandlers.
• Level 1: PeriodicEventHandlers AperiodicEventHandlers, and OneShotEven-

tHanders.
• Level 2: PeriodicEventHandlers, AperiodicEventHandlers, OneShotEventHanders,

and ManagedThreads.

The classes PeriodicEventHandler and AperiodicEventHandler are defined by this
specification. The PeriodicEventHandler class is essentially the same as the Aperiodic-
EventHandler class except that the PeriodicEventHandler class is defined with dis-
patching parameters that result in a periodic execution based on a timer. The applica-
tion programmer establishes a periodic activity by extending the class PeriodicEvent-
Handler, overriding the handleAsyncEvent method to perform the processing needed
at each release, and constructing an instance with the desired priority and release
parameters. This is different from the semantics of the AsynchronousEventHandler
defined in the RTSJ, which requires associating an AsynchronousEventHandler ob-
ject with a periodic timer if periodic dispatching is desired.

Sporadic AsynchronousEventHandler objects are not provided because their man-
agement would require the implementation to monitor minimal interarrival times for
asynchronous events. It was determined that this would add excessive complexity
with a resulting impact on safety-critical certifiability. This means that the applica-
tion designer will need to carefully constrain its asynchronous event arrivals to avoid
unbounded computation that can severely compromise the ability of the application
to meet its time constraints.

2.5 Development vs. Deployment Compliance

As previously described in this specification, in a safety-critical application, certifica-
tion requirements impose very stringent constraints on both the Java implementation
and the application. This specification describes many syntactic and semantic limi-
tations intended to enable the development of certifiable implementations and appli-
cations with a maximum level of portability across both development and execution
platforms.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

19

Safety-Critical Java Technology Specification

This specification requires that a conforming implementation provide all of the inter-
faces, operating according to the specified semantics, to every conforming applica-
tion.

These requirements are to be strictly imposed on implementations that are capable
of deployment into safety-critical environments. In contrast, for implementations
usable only during development, while it is preferable for these requirements to be
imposed, a limited number of deviations from this specification are explicitly permit-
ted. These deviations are:

• Implementations running on an RTSJ-compliant JVM are permitted to support
RTSJ interfaces that are not enumerated by this specification. Applications
conforming to this specification are not permitted to make use of these inter-
faces.

• Implementations running on an RTSJ-compliant JVM must support the inter-
faces supporting Priority Ceiling Emulation (PCE), but are not required to
support the PCE semantics if the underlying RTSJ implementation does not
support PCE. Applications conforming to this specification may not execute
exactly as expected because of the use of Priority Inheritance semantics for
synchronization rather than Priority Ceiling Emulation as required by this spec-
ification.

2.6 Verification of Safety Properties

This specification omits a large number of RTSJ and other Java capabilities, such as
dynamic class loading, in its effort to create a subset of Java capabilities that can be
certified under a variety of safety standards such as DO-178C.

However, it is clear that no specification can, by itself, ensure the complete absence
of unsafe operations in a conforming application. As a result, a further recommen-
dation for an implementation is to provide a variety of pre-deployment analysis tools
that can ensure the absence of certain unsafe operations. While this specification
does not define particular analysis tools, it is extremely important that applications
be certifiably free of memory reference errors. When analysis tools provided with an
implementation are able to certify freedom of memory reference errors, the imple-
mentation need not provide run-time checking for such errors.

20 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Chapter 3

Mission Life Cycle

This chapter describes the Mission concept, how it works, how it starts and stops,
and how it is used in an SCJ application. In this chapter, the sections Semantics
and Requirements, Level Considerations, and API are normative. The Overview and
Rationale sections are not normative but are provided to improve understanding of
the normative sections.

3.1 Overview

The mission concept is central to the design of SCJ. Whereas conventional Java pro-
vides various mechanisms to enforce encapsulation of data and functional behavior,
SCJ’s mission concept adds the ability to encapsulate multiple threads of control,
identified as ManagedSchedulables, with accompanying data structures and func-
tional behavior within a mission.

Every SCJ application is comprised of a sequence of missions containing at least one
mission, with each mission representing a different operational phase. For example,
an airplane’s control software might be structured as a sequence of four missions
supporting the taxi, takeoff, cruise, and land phases of operation.

It is also possible to structure an SCJ application as multiple concurrently active
missions. Such a SCJ mission concept allows large and complex applications to be
divided into multiple active components that can be developed, certified, and main-
tained largely in isolation of each other. For example, an aircraft’s flight control
software might be hierarchically decomposed into missions that independently fo-
cus on radio communications, global positioning, navigation and routing, collision
avoidance, coordination with air traffic control, and automatic pilot operation.

An SCJ mission has three phases: an initialization phase, an execution phase, and a
clean up phase as illustrated in Figure 3.1. This supports a common design pattern

21

Safety-Critical Java Technology Specification

for safety-critical systems in which shared data structures are allocated during the
initialization phase before the system becomes active.

Every SCJ application runs under the direction of an application-provided mission
sequencer. The mission sequencer organizes a sequence of one or more application-
defined missions, each of which is an object of a class extending the Mission class.
Infrastructure invokes the mission sequencer’s getNextMission method both to select
the initial mission and to select which mission to run next when a running mission
terminates. This is illustrated in Figure 3.1.

Figure 3.1: Safety-Critical Application Phases

Because the initial mission sequencer does not belong to any mission, the corre-
sponding MissionSequencer object resides in the ImmortalMemory.

The mission sequencer is represented by a subclass of MissionSequencer, which ex-
tends ManagedEventHandler and implements ManagedSchedulable, both of which
are defined further in Chapter 4. While SCJ missions at all Levels are comprised
of ManagedSchedulables, one of the key differentiating features of Level 2 mis-
sions is their ability to run inner-nested mission sequencers concurrently with other
ManagedSchedulable objects within the same mission, permitting the application to
run multiple missions concurrently.

3.1.1 Application Initialization

An SCJ application is represented by an application-defined implementation of the
Safelet interface. The application class that implements Safelet provides defini-
tions of the immortalMemorySize, globalBackingStoreSize, handleStartupError, ini-
tializeApplication, and getSequencer methods.

The infrastructure invokes immortalMemorySize, globalBackingStoreSize, initializeAp-
plication, and getSequencer in this order with ImmortalMemory as the current alloca-

22 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

tion context. If the infrastructure’s call to immortalMemorySize and/or globalBack-
ingStoreSize results in a request for more memory than is available, the infrastructure
shall call handleStartupError to determine whether the application shall be imme-
diately halted, or whether these calls shall be repeated, making it possible for an
application to continue in a degraded configuration such as a partial memory failure.

The application may allocate objects in immortal memory within the initializeApplica-
tion method. The getSequencer method returns a reference to the MissionSequencer
that oversees execution of the application.

3.1.2 Mission Initialization

The infrastructure invokes the initialize method associated with each mission. The
initialize method, which is written by the application developer, instantiates all of
the ManagedSchedulable and ManagedInterruptServiceRoutine objects that are in-
tended to run as part of this mission. For each instantiated object, the application
code invokes its corresponding register method to make it active during the mis-
sion. Only those ManagedSchedulables and ManagedInterruptServiceRoutine ob-
jects registered during initialize() will be available for release. Furthermore, it allo-
cates and initializes objects that will be shared among these objects.

All ManagedSchedulable and ManagedInterruptServiceRoutine objects shall be al-
located in the mission memory area of the mission to which they belong. This shall
be checked at run time by the register method that shall throw an IllegalArgument-
Exception if it is violated.

3.1.3 Mission Execution

Upon return from the initialize method, the SCJ infrastructure activates the objects
that were registered during initialization.

For each managed schedulable object (and optionally for interrupt handlers), the SCJ
infrastructure provides a private memory area which serves as the default memory
area to hold temporary memory allocations. Each private memory area may hold
additional inner-nested private memory areas to hold temporary objects that have
shorter lifetimes than the duration of each release. During execution, objects may
also be allocated in outer memory areas such as ImmortalMemory or in outer-nested
mission memory areas.

Mission execution continues until each of the mission’s managed schedulable objects
terminates. A ManagedThread terminates by simply returning from its run() method.
The only way to terminate ManagedEventHandlers is to terminate the mission by in-

27 January 2017 Version 0.109
Confidentiality: Public Distribution

23

Safety-Critical Java Technology Specification

voking the mission’s requestTermination method. In this way, each ManagedEven-
tHandler object will terminate following completion of its current release.

3.1.4 Mission Clean Up

The application defines a cleanUp method for each mission. The SCJ infrastructure
invokes the mission cleanUp method after all of the managed schedulable objects
registered with this mission have terminated their execution and each of their cleanUp
methods have been invoked.

The cleanUp method can be used to free resources and to restore system state. For ex-
ample, an application-defined cleanUp method may close files that had been opened
during mission initialization or execution, and it might power down a device that was
being controlled by the mission.

The application’s mission cleanUp method determines whether it is appropriate for
the MissionSequencer to continue with the execution of its sequence of missions.
The cleanUp method returns true to indicate that the sequencer should continue or
false to indicate that the MissionSequencer itself should terminate.

3.2 Semantics and Requirements

An application consists of one or more missions executed sequentially or concur-
rently, as initiated by a application-defined implementation of the Safelet interface.
Each Mission has its own mission memory which holds objects representing the Mis-
sion state. The ManagedSchedulable objects that comprise the Mission generally
communicate with each other by modifying shared objects that reside within the
mission memory.

An application’s execution consists of several steps, as outlined below.

3.2.1 Class Initialization

Class initialization is performed by the infrastructure on all application classes which
shall have been placed in immortal memory by the implementation. The SCJ infras-
tructure shall initialize all of the classes that comprise the application in an order de-
termined by a topological sort of class interdependencies before performing Safelet
initialization. To ensure successful class initialization, an SCJ application shall have
no cyclic dependencies among its class initialization methods. For purposes of the
dependency analysis, it is strongly recommended that conforming implementations

24 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

should provide a Checker utility to enforce the following rules in a static analysis of
the application’s bytecodes:

• Virtual method invocations are prohibited from within a <clinit>1 method un-
less data-flow analysis of the <clinit> method alone (without any analysis of
code outside this <clinit> method) is able to prove the concrete type of the
virtual method invocation’s target object. Specifically, virtual method invoca-
tion is allowed only if every reaching definition of the invocation target object
is the result of a new object allocation for the same concrete type.

• If an instance of some other class is allocated from within this <clinit> method,
the class initialization for this class is considered to depend on class initializa-
tion of the allocated class.

• If an instance of a static field belonging to some other class is read or writ-
ten from within this <clinit> method, the class initialization for this class is
considered to depend on class initialization of that other class.

• If an instance or static method belonging to some other class is invoked from
within this <clinit> method, the class initialization for this class is considered
to depend on class initialization of that other class.

• The analysis of dependencies among class initialization methods shall not de-
pend on control-flow analysis. While, in general, the problem of determining
all class dependencies is intractable, a safe analysis can be successfully per-
formed using more or less sophisticated heuristic algorithms. For example,
a more sophisticated analysis might be able to prove that certain dependen-
cies of one class on other classes reside within code that is never executed
(i.e. “dead code”). Since a dependency analysis ignores control-flow consid-
erations, dead-code dependencies identifiable by control-flow analysis shall be
treated as if they were actual dependencies.

• The analysis of class initialization dependencies is performed on bytecode. If
a Java source compiler recognizes and removes dead code from the bytecode,
any dependencies in the eliminated dead code shall not be considered in the
dependency analysis.

• The analysis of cyclic dependencies for a class does not forbid dependencies
on self. It is common for <clinit> methods to make reference to the fields
and methods of the class being initialized. It is the application programmer’s
responsibility to avoid unresolved dependencies within the class that is being
initialized.

1The <clinit> method is a class initialization method created by the Java compiler when the class
is compiled

27 January 2017 Version 0.109
Confidentiality: Public Distribution

25

Safety-Critical Java Technology Specification

3.2.2 Safelet Initialization

An implementation-specific initialization thread running at an implementation-specific
thread priority takes responsibility for running Safelet specific code. An SCJ -
compliant implementation of this startup thread shall implement the semantics in
this stated order.

1. The Safelet object is allocated within the ImmortalMemory area.

2. The Safelet’s immortalMemorySize method is invoked to determine the desired
size of the ImmortalMemory. If the actual size of the remaining Immortal-
Memory is smaller than the value returned from immortalMemorySize, the in-
frastructure shall call the handleStartupError method to determine whether the
application should be immediately halted.

3. The Safelet’s globalBackingStoreSize method is invoked to determine the de-
sired size of the backing store required for all managed memory areas. If the
actual size of the remaining backing store is smaller than the value returned
from immortalMemorySize, the infrastructure shall call the handleStartupError
method to determine whether the application should be immediately halted.

4. Infrastructure invokes the Safelet’s initializeApplication method to allow the
application to allocate global data structures in the ImmortalMemory.

5. Infrastructure invokes the Safelet’s getSequencer method, with the Immortal-
Memory area as the current allocation context. The value returned represents
the MissionSequencer that runs this application. If null is returned, the appli-
cation immediately aborts.

The getSequencer method is not allowed to invoke ManagedMemory.enterPrivateMemory.
This is enforced with a run-time check. Any attempt to do so will abort by throwing
an IllegalStateException.

Exceptions generated by getSequencer that are not handled within its implementa-
tion shall follow the rules for propagation and handling described in Chapter 11 for
application methods.

It is implementation-defined how much total memory is available within the SCJ
run-time environment to satisfy the combined requests for immortal memory, scoped
memory areas, and stack memory generated by the application. Whether the memory
used to satisfy each scoped memory and stack memory request is subject to fragmen-
tation is also implementation defined.

26 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

3.2.3 MissionSequencer Execution

The SCJ infrastructure shall perform as if the following sequence were performed in
this stated order. At any point during this process, if the infrastructure determines that
(1) the MissionSequencer has been requested to terminate by an outer level mission,
and (2) a Mission’s initialize method has returned, and (3) the mission has not yet
been started, then the infrastructure shall abandon the mission immediately and its
cleanUp method shall be called.

1. Infrastructure code creates and starts up the MissionSequencer. The mem-
ory resources specified by the ScopeParameters argument to the Mission-
Sequencer’s constructor are set aside at the time that the infrastructure starts
the MissionSequencer.

2. Next, infrastructure code releases the MissionSequencer.

3. In the case that this is the outer-most MissionSequencer associated with a
Safelet, the implementation shall behave as if the Safelet initialization thread
blocks itself and does not run throughout execution of the SCJ application.2

4. In the case that a MissionSequencer nests within a Level 2 Mission, the Mission-
Sequencer must be registered during execution of that Mission’s initialize code.
Its memory resource requirements are specified by the ScopeParameters argu-
ment to its MissionSequencer constructor. These resources are reserved for ex-
ecution of the MissionSequencer at the time the MissionSequencer is started,
following return from the enclosing Mission’s initialize method.

5. When the MissionSequencer begins to execute, it instantiates a mission mem-
ory object to hold data corresponding to the missions that are to be executed
by this MissionSequencer. The backing store associated with this mission
memory object is initially sized to represent all of the remaining backing store
memory specified by the ScopeParameters of this MissionSequencer.

6. Next, the MissionSequencer enters the newly created mission memory area
and invokes its own getNextMission method to obtain a reference to the first
mission to be executed by this MissionSequencer. The getNextMission method,
which is written by the application developer, may allocate and return a new
Mission object in the mission memory area, or it may return a Mission object
that resides in some memory area in an outer scope.

2A possible implementation-dependent optimization may use the same thread to perform Safelet
initialization and the initial MissionSequencer’s event handling.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

27

Safety-Critical Java Technology Specification

7. When a Mission object is returned from getNextMission, the MissionSequencer
invokes its missionMemorySize method and truncates the current mission mem-
ory area to the size returned from the missionMemorySize method. If the value
returned is larger than the size of the current mission memory, the Mission-
Sequencer aborts the current mission, exits the current mission memory, re-
claiming the memory of all objects allocated within it, and endeavors to re-
place the current mission with a new mission by reinvoking its getNextMission
method.

8. When the size of mission memory is truncated, the surplus memory that had
previously been part of the current mission memory area’s backing store is
returned to the pool of backing store memory available for schedulable objects
of this mission or with its inner-nested missions.

9. After successfully resizing mission memory, the MissionSequencer invokes
the selected Mission object’s initialize method. If upon return from initialize,
the MissionSequencer has been requested to terminate, the MissionSequencer
shall abandon execution of the mission and shall call the mission cleanUp
method. It is the application’s responsibility to coordinate the initialize and
mission cleanUp code so that any state modified during a partial initialization
is properly restored.

10. If upon return from initialize, the MissionSequencer has not been requested
to terminate, the MissionSequencer starts all of the managed schedulable ob-
jects and interrupt handlers that were registered by the initialize method. The
MissionSequencer then awaits mission termination.

11. After the MissionSequencer terminates, the infrastructure shall call the Safelet’s
cleanUp method so the safelet can perform logging or another application-
defined operations.

In general, the management of memory to satisfy the ScopeParameters specified
by the arguments of a MissionSequencer’s constructor is implementation-defined.
The memory management technique used for the initial MissionSequencer’s Scope-
Parameters request may be different from the memory management technique used
for MissionSequencers nested within a Level 2 mission.

3.2.4 Mission Execution

Each mission shall execute as if the following detailed steps that comprise mission
execution are performed in this stated order:

28 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

1. With mission memory as the current allocation context, the MissionSequencer
invokes the Mission’s initialize method, which is written by the application
developer. Within the initialize method, application code registers all of the
ManagedSchedulable and ManagedInterruptServiceRoutine objects that will
run as part of this mission. A ScopeParameters object shall be associated with
each ManagedSchedulable at construction time. This ScopeParameters ob-
ject shall describe the resources required for execution of the corresponding
ManagedSchedulable. Reservation of the requested resources is made at the
time the ManagedSchedulable object is constructed. It is common, but not
necessary, for all of a mission’s ManagedSchedulable objects to be allocated
within mission memory by the initialize method. If a ManagedSchedulable
to be associated with this mission is not allocated in this mission’s mission
memory, then it must reside in an outer memory area.

2. The initialize method may also allocate mission-relevant data structures in mis-
sion memory. These data structures may be shared between the managed
schedulable objects of this mission. The initialize method may also use nested
private memory areas to hold temporary objects relevant to its computations.

3. In a Level 0 application, upon return from initialize, the infrastructure creates
an array in mission memory representing all of the ManagedSchedulable ob-
jects that were registered by the initialize method and passes this array to the
mission’s CyclicExecutive.getSchedule method. To provide predictable appli-
cation behavior, the entries within this array are sorted in the same order that
the initialize method registered the objects. This array is used by the infrastruc-
ture to define the sequence and timing of each ManagedSchedulable object in
its correct sequence during mission execution. If CyclicExecutive.getSchedule
returns null or aborts by throwing an exception, control proceeds directly to ex-
ecution of the Mission object’s cleanUp method without executing any of the
code associated with this mission’s registered ManagedSchedulables. Other-
wise, a cyclic executive is started that runs according to the schedule.

4. For each ManagedSchedulable object, the infrastructure reserves the mem-
ory resources requested by the corresponding ManagedSchedulable object’s
ScopeParameters object. The backing store for each memory resource is ob-
tained by setting aside portions of the backing store memory that had been
previously associated with the MissionSequencer. It is not required that the
backing store memories for each ManagedSchedulable be represented by con-
tiguous memory. However, it is required that the memory behave as if it were
contiguous memory. Subsequent instantiations of private memory areas shall
not fail due to fragmentation.

5. The MissionSequencer then blocks waiting for the Mission’s execution to ter-

27 January 2017 Version 0.109
Confidentiality: Public Distribution

29

Safety-Critical Java Technology Specification

minate. Once termination has been requested, the MissionSequencer shall
complete the Mission termination sequence. If this termination sequence re-
quires the use of implementation-defined resources, they must be accounted
for by the application to provide highly predictable timing behavior. The ter-
mination sequence shall include calling the signalTermination method of each
of the ManagedSchedulables associated with the current mission.

6. When the MissionSequencer detects that the Mission’s mission phase has ter-
minated, by confirming that all of the mission’s ManagedSchedulable objects
have terminated, it arranges to execute the cleanUp method of each of those
ManagedSchedulables.

7. When a cleanUp method is called, a private memory area shall be provided
for its use, and shall be the current allocation context. If desired, the cleanUp
method may also create one or more new private memory areas. All mem-
ory allocated to each of the ManagedSchedulables shall be available to be
freed when its cleanUp method returns. If an exception is thrown in a cleanUp
method and is not caught in the method, it shall be caught and ignored by the
MissionSequencer.

8. After the cleanUp methods for all of the mission’s ManagedSchedulable ob-
jects have been executed, the MissionSequencer invokes the Mission’s cleanUp
method.

9. After the mission finishes its cleanUp code, control exits its mission memory
area, releasing all of the objects that had been allocated within that mission
memory, including the Mission object itself if it was allocated within the mis-
sion memory area.

If an exception is propagated from a call to initialize or cleanUp, it is caught and
ignored. If the exception was propagated from initialize, the MissionSequencer shall
run the next mission.

3.3 Level Considerations

3.3.1 Level 0

A Level 0 application shall implement Safelet<CyclicExecutive>. The getSequencer
method of Safelet<CyclicExecutive> is declared to return a MissionSequencer<Cyclic-
Executive> object. The getNextMission method of MissionSequencer<Cyclic Executive>

is declared to return a CyclicExecutive object. Thus, the type system enforces that

30 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

a Level 0 application is comprised only of CyclicExecutive missions. This is impor-
tant because the SCJ infrastructure requires that a CyclicSchedule be associated with
each Mission in the Level 0 application.

The CyclicExecutive subclass must implement the CyclicExecutive.getSchedule method.
This method returns a reference to a CyclicSchedule object which represents the
static cyclic schedule for the periodic event handlers associated with this Cyclic-
Executive object.

3.3.2 Level 1

A Level 1 application shall implement Safelet<Mission>. In particular, the applica-
tion needs to provide a getSequencer method to return the mission sequencer of the
application.

3.3.3 Level 2

A Level 2 application shall implement Safelet<Mission>, similar to a Level 1 ap-
plication. An enhanced capability of Level 2 applications is the option to register
ManagedThread objects and inner-nested MissionSequencer objects during execu-
tion of a Mission object’s initialize method.

3.4 API

This section provides the detailed javadoc descriptions of relevant class APIs. The
UML class diagram shown in Figure 3.2 illustrates the relationships between the
classes described in this chapter.

3.4.1 javax.safetycritical.Safelet

Declaration

@SCJAllowed
public interface Safelet

Description

A safety-critical application consists of one or more missions, executed concur-
rently or in sequence. Every safety-critical application must implement Safelet

27 January 2017 Version 0.109
Confidentiality: Public Distribution

31

Safety-Critical Java Technology Specification

Figure 3.2: UML class diagram of classes related to mission life cycle

32 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

which identifies the outer-most MissionSequencer. This outer-most Mission-
Sequencer runs the sequence of missions that comprise this safety-critical ap-
plication.

The mechanism used to identify the Safelet to a particular SCJ environment is
implementation defined.

Fields

@SCJAllowed
public static final long INSUFFICIENT BACKING STORE

@SCJAllowed
public static final long INSUFFICIENT IMMORTAL MEMORY

Methods

@SCJAllowed(javax.safetycritical.annotate.Level.SUPPORT)
@SCJPhase({javax.safetycritical.annotate.Phase.CLEANUP})
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(false)
public void cleanUp()

Called by the infrastructure after termination of the MissionSequencer for this
Safelet.

@SCJAllowed(javax.safetycritical.annotate.Level.SUPPORT)
@SCJPhase({javax.safetycritical.annotate.Phase.STARTUP})
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(false)
public javax.safetycritical.MissionSequencer getSequencer()

The infrastructure invokes getSequencer to obtain the MissionSequencer ob-
ject that oversees execution of missions for this application. The returned Mis-
sionSequencer resides in immortal memory.

returns the MissionSequencer that oversees execution of missions for this appli-
cation.

@SCJAllowed(javax.safetycritical.annotate.Level.SUPPORT)
@SCJPhase({javax.safetycritical.annotate.Phase.STARTUP})
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
public long globalBackingStoreSize()

27 January 2017 Version 0.109
Confidentiality: Public Distribution

33

Safety-Critical Java Technology Specification

returns the amount of additional backing store memory that must be available
for managed memory areas. If the amount of remaining memory is less than this
requested size, the infrastructure shall call the handleStartupError() method to deter-
mine whether the application should be immediately halted.

@SCJAllowed(javax.safetycritical.annotate.Level.SUPPORT)
@SCJPhase({javax.safetycritical.annotate.Phase.STARTUP})
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(false)
public boolean handleStartupError(int cause, long val)

Called during startup by the infrastructure if the infrastructure detects the pres-
ence of a fatal startup error allocating memory or for any other implementation
defined reason. This method returns a boolean indication whether it intends for
the infrastructure to immediately halt execution, or whether it intends for the
infrastructure to retry the failed allocation request. This method makes it pos-
sible for an application to attempt to execute in a degraded mode in the event
of certain types of failures, such as a partial memory failure.

returns True if the infrastructure should immediately halt as a result of detecting
the fatal startup error. If False is returned, the infrastructure should repeat its calls to
immortalMemorySize() and globalBackingStoreSize(), providing the application the
ability to reconfigure itself, if possible, to work around the fatal startup error.

cause — Identifies the condition that caused the infrastructure to call this method.
If cause = INSUFFICIENT IMMORTAL MEMORY, the amount of available mem-
ory is insufficient for the immortal memory requested by the previous call to im-
mortalMemorySize(). If cause = INSUFFICIENT BACKING STORE, the amount of
available memory is insufficient for the backing store memory requested by the pre-
vious call to globalBackingStoreSize(). If cause has any other value, its meaning is
implementation defined.

val — If cause = INSUFFICIENT IMMORTAL MEMORY, val contains the short-
fall in available memory for the immortal memory requested by the previous call to
immortalMemorySize(). If cause = INSUFFICIENT BACKING STORE, val contains
the shortfall in available memory for the backing store memory requested by the pre-
vious call to globalBackingStoreSize(). If cause has any other value, the meaning of
val is implementation defined.

@SCJAllowed(javax.safetycritical.annotate.Level.SUPPORT)
@SCJPhase({javax.safetycritical.annotate.Phase.STARTUP})
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
public long immortalMemorySize()

34 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

returns the amount of additional immortal memory that must be available for
allocations to be performed by this application. If the amount of remaining memory
is less than this requested size, the infrastructure shall call the handleStartupError()
method to determine whether the application should be immediately halted.

@SCJAllowed(javax.safetycritical.annotate.Level.SUPPORT)
@SCJPhase({javax.safetycritical.annotate.Phase.STARTUP})
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(true)
public void initializeApplication()

The infrastructure shall invoke initializeApplication in the allocation context of
immortal memory. The application can use this method to allocate data struc-
tures in immortal memory. This method shall be called exactly once by the
infrastructure.

3.4.2 javax.safetycritical.MissionSequencer

Declaration

@SCJAllowed
public abstract class MissionSequencer extends

javax.safetycritical.ManagedEventHandler

Description
A MissionSequencer oversees a sequence of Mission executions. The sequence
may include interleaved execution of independent missions and repeated exe-
cutions of missions.

As a subclass of ManagedEventHandler, MissionSequencer’s execution prior-
ity and memory budget are specified by constructor parameters.

This MissionSequencer executes vendor-supplied infrastructure code which
invokes user-defined implementations of getNextMission, Mission.initialize, and
Mission.cleanUp. During execution of a mission, the MissionSequencer re-
mains blocked waiting for the mission to terminate. An invocation of signal-
Termination will unblock it to invoke the running mission’s requestTermination
method.

Constructors

@SCJAllowed
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION})

@SCJMaySelfSuspend(false)

27 January 2017 Version 0.109
Confidentiality: Public Distribution

35

Safety-Critical Java Technology Specification

@SCJMayAllocate({
javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

public MissionSequencer(PriorityParameters priority,
ScopeParameters storage,
ConfigurationParameters config,
String name)
throws java.lang.IllegalStateException

Construct a MissionSequencer object to oversee a sequence of mission execu-
tions.

priority — The priority at which the MissionSequencer executes.

storage — specifies the ScopeParameters for this handler

config — specifies the ConfigurationParameters for this handler

name — The name by which this MissionSequencer will be identified.

Throws IllegalStateException if invoked in an inappropriate phase.

@SCJAllowed
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION})

@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

public MissionSequencer(PriorityParameters priority,
ScopeParameters storage,
ConfigurationParameters config)
throws java.lang.IllegalStateException

This constructor behaves the same as calling MissionSequencer(priority, stor-
age, config, null).

Methods

@SCJAllowed(javax.safetycritical.annotate.Level.SUPPORT)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMaySelfSuspend(false)
@SCJMayAllocate({

36 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

protected abstract javax.safetycritical.Mission getNextMission()

This method is called by infrastructure to select the initial mission to execute,
and subsequently, each time one mission terminates, to determine the next mis-
sion to execute.

Prior to each invocation of getNextMission, infrastructure initializes and enters
the mission memory allocation area. The getNextMission method may allo-
cate the returned mission within this mission memory area, or it may return a
reference to a Mission object that was allocated in some outer-nested mission
memory area or in the ImmortalMemory area.

returns the next mission to run, or null if no further missions are to run under the
control of this MissionSequencer.

@SCJAllowed(javax.safetycritical.annotate.Level.SUPPORT)
@Override
@SCJMaySelfSuspend(true)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public final void handleAsyncEvent()

This method is used in the implementation of SCJ infrastructure. The method
is not to be invoked by application code and it is not to be overridden by appli-
cation code.

@SCJAllowed(javax.safetycritical.annotate.Level.SUPPORT)
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public final void signalTermination()

27 January 2017 Version 0.109
Confidentiality: Public Distribution

37

Safety-Critical Java Technology Specification

Called by the infrastructure to indicate that the enclosing mission has been
instructed to terminate.

The sole responsibility of this method is to call requestTermination on the cur-
rently running mission.

signalTermination will never be called by a Level 0 or Level 1 infrastructure.

3.4.3 javax.safetycritical.Mission

Declaration

@SCJAllowed
public abstract class Mission extends java.lang.Object

Description
A Safety Critical Java application is comprised of one or more missions. Each
mission is implemented as a subclass of this abstract Mission class. A mis-
sion is comprised of one or more ManagedSchedulable objects, conceptually
running as independent threads of control, and the data that is shared between
them.

Constructors

@SCJAllowed
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN})

@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

public Mission(AbsoluteTime start)

Allocate and initialize data structures associated with a Mission implementa-
tion.

The constructor may allocate additional infrastructure objects within the same
MemoryArea that holds the implicit this argument.

The amount of data allocated in the same MemoryArea as this by the Mission
constructor is implementation-defined. Application code will need to know the
amount of this data to properly size the containing scope.

start — an absolute time value at which the Mission’s ManagedSchedulable objects
will be released for the first time after mission initialization has been completed

38 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

unless they are delayed by their own start times. If start is null, or if start has already
passed when the Mission’s ManagedSchedulable objects become ready for release,
they shall be released immediately.

@SCJAllowed
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN})

@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

public Mission()

This constructor is equivalent to Mission(null).

Methods

@SCJAllowed(javax.safetycritical.annotate.Level.SUPPORT)
@SCJPhase({javax.safetycritical.annotate.Phase.CLEANUP})
@SCJMaySelfSuspend(true)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

protected boolean cleanUp()

Cleans data structures and machine state upon termination of this Mission’s
run phase. Infrastructure running the controlling MissionSequencer invokes
cleanUp after all ManagedSchedulables registered with this Mission have ter-
minated, but before control leaves the corresponding mission memory area.

returns True to indicate that the mission sequencer shall continue with its sequence
of missions, False to indicate that the mission sequence should be terminated and no
further missions started. The default implementation of cleanUp returns True.

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static javax.safetycritical.Mission getMission()

27 January 2017 Version 0.109
Confidentiality: Public Distribution

39

Safety-Critical Java Technology Specification

Obtain the current mission.

returns the instance of the Mission that is currently active.

If called during the initialization or clean up phase, getMission() returns the mission
that is currently being initialized or cleaned up. If called during the run phase, get-
Mission() returns the mission in which the currently executing ManagedSchedulable
was registered. If called during the start up phase, getMission() returns null.

@SCJAllowed
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
public javax.safetycritical.MissionSequencer getSequencer()

returns the MissionSequencer that is overseeing execution of this mission.

@SCJAllowed(javax.safetycritical.annotate.Level.SUPPORT)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION})

@SCJMaySelfSuspend(true)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

protected abstract void initialize()

Perform initialization of this Mission. The SCJ infrastructure calls initialize
after the mission memory has been resized to match the size returned by Mis-
sion.missionMemorySize. Upon entry into initialize, the current allocation con-
text is the mission memory area dedicated to this particular Mission.

A typical implementation of initialize instantiates and registers all Managed-
Schedulable objects that constitute this Mission. The infrastructure enforces
that ManagedSchedulables can only be instantiated and registered if the cur-
rently executing ManagedSchedulable is running a Mission.initialize method.
The infrastructure arranges to begin executing the registered ManagedSchedulable
objects associated with a particular Mission upon return from its initialize method.

Besides initiating the associated ManagedSchedulable objects, this method
may also instantiate and/or initialize mission-level data structures. Objects
shared between ManagedSchedulables typically reside within the correspond-
ing mission memory scope, but may alternatively reside in outer-nested mission

40 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

memory or ImmortalMemory areas. Individual ManagedSchedulables can gain
access to these objects either by supplying their references to the Managed-
Schedulable constructors or by obtaining a reference to the currently running
mission (from Mission.getMission), and accessing the fields or methods of this
subclass.

@SCJAllowed(javax.safetycritical.annotate.Level.SUPPORT)
@SCJMayAllocate({})
@SCJPhase({javax.safetycritical.annotate.Phase.INITIALIZATION})
@SCJMaySelfSuspend(false)
public abstract long missionMemorySize()

This method must be implemented by a safety-critical application. It is invoked
by the SCJ infrastructure to determine the desired size of this Mission’s mis-
sion memory area. When this method receives control, the mission memory
area will include all of the backing store memory to be used for all memory
areas. Therefore this method will not be able to create or call any methods that
create any private memory areas. After this method returns, the SCJ infras-
tructure shall shrink the mission memory to a size based on the memory size
returned by this method. This will make backing store memory available for
the backing stores of the ManagedSchedulable objects that comprise this mis-
sion. Any attempt to introduce a new private memory area within this method
will result in an OutOfMemoryError exception.

returns the required mission memory size.

@SCJAllowed
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN})

@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
public final boolean requestTermination()

This method requests termination of a mission. When this method is called,
the infrastructure shall invoke signalTermination on each ManagedSchedulable
object that is registered within this mission. Additionally, this method triggers
the infrastructure to (1) disable all periodic event handlers associated with this
Mission so that they will experience no further releases, (2) disable all Ape-
riodicEventHandlers so that no further releases will be honored, (3) clear the
pending event (if any) for each event handler (including any OneShotEven-
tHandlers) so that the event handler can be effectively shut down following
completion of any event handling that is currently active, (4) wait for all of the

27 January 2017 Version 0.109
Confidentiality: Public Distribution

41

Safety-Critical Java Technology Specification

ManagedSchedulable objects associated with this mission to terminate their
execution, (5) invoke the ManagedSchedulable.cleanUp methods for each of
the ManagedSchedulable objects associated with this mission, and (6) invoke
the cleanUp method associated with this mission.

While many of these activities may be carried out asynchronously after re-
turning from the requestTermination method, the implementation of request-
Termination shall not return until all of the ManagedEventHandler objects reg-
istered with this Mission have been disassociated from this Mission so they will
receive no further releases. Before returning, or at least before initialize for this
same mission is called in the case that it is subsequently started, the implemen-
tation shall clear all mission state.

The first time this method is called during Mission execution, it shall return
false to indicate that termination of this mission is not already in progress.
Subsequent invocations of this method shall return true, and shall have no other
effect.

returns false if the mission has not been requested to terminate already; otherwise
returns true.

@SCJAllowed
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
public final boolean terminationPending()

Check whether the current mission is trying to terminate.

returns true if and only if this Mission’s requestTermination method has been
previously invoked.

3.4.4 javax.safetycritical.Frame

Declaration

@SCJAllowed
public final class Frame extends java.lang.Object

Constructors

42 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJPhase({javax.safetycritical.annotate.Phase.INITIALIZATION})
@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

public Frame(RelativeTime duration, PeriodicEventHandler [] handlers)

Allocates and retains private shallow copies of the duration and handlers array
within the same memory area as this. The elements within the copy of the
handlers array are the exact same elements as in the handlers array. Thus,
it is essential that the elements of the handlers array reside in memory areas
that enclose this. Usually, this Frame object is instantiated within the mission
memory area that corresponds to the Level 0 mission that is to be scheduled.

Within each execution frame of the CyclicSchedule, the PeriodicEventHandler
objects represented by the handlers array will be released in the same order as
they appear within this array.

3.4.5 javax.safetycritical.CyclicSchedule

Declaration

@SCJAllowed
public final class CyclicSchedule extends java.lang.Object

Description
A CyclicSchedule object represents a time-driven sequence of firings for de-
terministic scheduling of periodic event handlers. The static cyclic scheduler
repeatedly executes the firing sequence.

Constructors

@SCJAllowed
@SCJPhase({javax.safetycritical.annotate.Phase.INITIALIZATION})
@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

public CyclicSchedule(CyclicSchedule.Frame [] frames)
throws java.lang.IllegalArgumentException, java.lang.IllegalStateException

Construct a cyclic schedule by copying the frames array into a private array
within the same memory area as this newly constructed CyclicSchedule object.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

43

Safety-Critical Java Technology Specification

The frames array represents the order in which event handlers are to be sched-
uled. Note that some Frame entries within this array may have zero Peri-
odicEventHandlers associated with them. This would represent a period of
time during which the CyclicExecutive is idle.

Throws IllegalArgumentException if any element of the frames array equals null or
if the frames array is empty,

Throws IllegalStateException if invoked by a Level 1 a Level 2 application.

3.4.6 Class javax.safetycritical.CyclicExecutive

Declaration

@SCJAllowed
public abstract class CyclicExecutive extends javax.safetycritical.Mission

Description
A CyclicExecutive represents a Level 0 mission. Every mission in a Level 0
application must be a subclass of CyclicExecutive.

Constructors

@SCJAllowed
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION})

@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

public CyclicExecutive()

Construct a CyclicExecutive object.

Methods

@SCJAllowed(javax.safetycritical.annotate.Level.SUPPORT)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION})

@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

public abstract javax.safetycritical.CyclicSchedule getSchedule(
PeriodicEventHandler [] handlers)

44 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Every CyclicExecutive shall provide its own cyclic schedule, which is repre-
sented by an instance of the CyclicSchedule class. Application programmers
are expected to implement this method to provide a schedule that is appropriate
for the mission.

Level 0 infrastructure code invokes the getSchedule method on the mission
returned from MissionSequencer.getNextMission after invoking the mission’s
initialize method in order to obtain the desired cyclic schedule. Upon entry
into the getSchedule method, this mission’s mission memory area shall be the
active allocation context. The value returned from getSchedule shall reside in
the current mission’s mission memory area area or in some enclosing scope.

Infrastructure code shall check that all of the PeriodicEventHandler objects ref-
erenced from within the returned CyclicSchedule object have been registered
for execution with this Mission. If not, the infrastructure shall immediately
terminate execution of this mission without executing any event handlers.

handlers — represents all of the handlers that have been registered with this Mis-
sion. The entries in the handlers array are sorted in the same order in which they
were registered by the corresponding CyclicExecutive’s initialize method. The infras-
tructure shall copy the information in the handlers array into its private memory, so
subsequent application changes to the handlers array will have no effect.

returns the schedule to be used by the CyclicExecutive.

3.4.7 LinearMissionSequencer

Declaration

@SCJAllowed
public class LinearMissionSequencer extends

javax.safetycritical.MissionSequencer

Description
A LinearMissionSequencer is a MissionSequencer that serves the needs of a
common design pattern in which the sequence of Mission executions is known
prior to execution and all missions can be preallocated within an outer-nested
memory area.

The parameter <M> allows application code to differentiate between Lin-
earMissionSequencers that are designed for use in Level 0 vs. other environ-
ments. For example, a LinearMissionSequencer<CyclicExecutive> is known
to only run missions that are suitable for execution within a Level 0 run-time
environment.

Constructors

27 January 2017 Version 0.109
Confidentiality: Public Distribution

45

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJPhase({javax.safetycritical.annotate.Phase.INITIALIZATION})
@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

public LinearMissionSequencer(PriorityParameters priority,
ScopeParameters storage,
ConfigurationParameters config,
Mission mission,
boolean repeat,
String name)
throws java.lang.IllegalArgumentException, java.lang.IllegalStateException

Construct a LinearMissionSequencer object to oversee execution of a single
mission m.

priority — The priority at which the MissionSequencer’s bound thread executes.

storage — The memory resources to be dedicated to execution of this MissionSe-
quencer’s bound thread.

config — The configuration parameters to be dedicated to execution of this Mis-
sionSequencer’s bound thread.

mission — The single mission that runs under the oversight of this LinearMission-
Sequencer.

repeat — When repeat is true, the specified mission shall be repeated indefinitely.

name — The name by which this LinearMissionSequencer will be identified in
traces for use in debug or in toString.

Throws IllegalArgumentException if any of the arguments equals null.

@SCJAllowed
@SCJPhase({javax.safetycritical.annotate.Phase.INITIALIZATION})
@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

public LinearMissionSequencer(PriorityParameters priority,
ScopeParameters storage,
ConfigurationParameters config,
Mission mission,
boolean repeat)
throws java.lang.IllegalArgumentException, java.lang.IllegalStateException

46 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

This constructor behaves the same as calling LinearMissionSequencer(PriorityParameters,
ConfigurationParameters, boolean, M, String) with the arguments (priority, stor-
age, repeat, mission, null).

@SCJAllowed
@SCJPhase({javax.safetycritical.annotate.Phase.INITIALIZATION})
@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

public LinearMissionSequencer(PriorityParameters priority,
ScopeParameters storage,
ConfigurationParameters config,
Mission [] missions,
boolean repeat,
String name)
throws java.lang.IllegalArgumentException, java.lang.IllegalStateException

Construct a LinearMissionSequencer object to oversee execution of the se-
quence of missions represented by the missions parameter. The LinearMission-
Sequencer runs the sequence of missions identified in its missions array ex-
actly once, from low to high index position within the array. The constructor
allocates a copy of its missions array argument within the current scope, so
changes to .the missions array following construction will have no effect.

priority — The priority at which the MissionSequencer’s bound thread executes.

storage — The memory resources to be dedicated to execution of this MissionSe-
quencer’s bound thread.

repeat — When repeat is true, the specified list of missions shall be repeated
indefinitely.

missions — An array representing the sequence of missions to be executed under
the oversight of this LinearMissionSequencer. Requires that the elements of the
missions array reside in a scope that encloses the scope of this. The missions array
itself may reside in a more inner-nested temporary scope.

name — The name by which this LinearMissionSequencer will be identified in
traces for use in debug or in toString.

Throws IllegalArgumentException if any of the arguments equals null.

@SCJAllowed
@SCJPhase({javax.safetycritical.annotate.Phase.INITIALIZATION})
@SCJMaySelfSuspend(false)

27 January 2017 Version 0.109
Confidentiality: Public Distribution

47

Safety-Critical Java Technology Specification

@SCJMayAllocate({
javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

public LinearMissionSequencer(PriorityParameters priority,
ScopeParameters storage,
ConfigurationParameters config,
Mission [] missions,
boolean repeat)
throws java.lang.IllegalArgumentException, java.lang.IllegalStateException

Same as LinearMissionSequencer(PriorityParameters, ConfigurationParame-
ters, M[], boolean, String) with the arguments (priority, storage, missions, re-
peat, null).

Methods

@SCJAllowed(javax.safetycritical.annotate.Level.SUPPORT)
@SCJPhase({javax.safetycritical.annotate.Phase.INITIALIZATION})
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@Override
protected final javax.safetycritical.Mission getNextMission()

Returns a reference to the next Mission in the sequence of missions that was
specified by the m or missions argument to this object’s constructor.

See javax.safetycritical.MissionSequencer. getNextMission()

3.5 Application Initialization Sequence Diagram

A traditional standard edition Java application begins with execution of the static
main method. The start up sequence for an SCJ application is a bit more compli-
cated. Figure 3.3 uses a sample Level 1 application to provide an illustration of the
interactions between the infrastructure and application code during the execution of
an SCJ application.

3.6 Rationale

3.6.1 Loading and Initialization of Classes

With a traditional Java virtual machine, classes are generally loaded dynamically
upon first access to the data or methods of the class. This implementation tech-
nique allows the Java virtual machine to start up more quickly, because it can begin

48 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Figure 3.3: Sample Level 1 Lifecycle Sequence Diagram

27 January 2017 Version 0.109
Confidentiality: Public Distribution

49

Safety-Critical Java Technology Specification

executing application code before the entire application has been loaded. It also al-
lows application programs to run with unresolved references, as long as the path that
makes use of the unresolved reference is never exercised. This capability is useful
during prototyping and incremental developmenet, as it allows experimentation with
particular designs and planned features even before the complete system has been
implemented.

The Java virtual machine (JVM) specification is intentionally vague regarding the
time at which classes are loaded, in order to enable deferred class loading as de-
scribed above. At the same time, the JVM specification is very precise in its charac-
terization of when classes get initialized. In particular, the JVM specification requires
that classes be initialized immediately before first use. In compiled implementations
of Java, this generally manifests as several extra instructions and a conditional branch
in the code that is generated for every access (field or method invocation) to a class.

Deferred class loading and class initialization presents several problems to develop-
ers of safety-critical code. Specifically,

• Many safety-critical applications have hard real-time constraints, requiring
programmers to accurately derive tight upper bounds on the time required to
execute each critical piece of code. When the typical path through a body
of code does not involve class loading or class initialization, but every path
through the code has to test whether class loading or class initialization is nec-
essary and on rare occassion, the path through this code may require loading
and initialization of multiple classes, there is too much variation in the path’s
execution time.

• The extra code that is generated to force class initialization immediately before
first use and code that may be present to enable deferred class loading repre-
sents extra code that must be tested at certification time. DO-178C Level A
guidelines require ”Modified Condition/Decision Coverage” (MC/DC) testing
of all conditional branches. It is generally not possible to perform MC/DC
testing of each class initialization conditional branch because each class is ini-
tialized only once, whereas a typical safety critical application may have thou-
sands of access points to a class, each of which has a conditional branch to test
whether this particular access point is required to perform the corresponding
class initialization.

• In the presence of circular dependencies between class initialization methods,
the uninitialized static data associated with one or more classes may be exposed
beyond the boundaries of the class. For example, consider the following simple
program, which approximately half of the time initializes A.constant to 8 and
B.constant to 11, and the other half of the time initializes A.constant to 11 and
B.constant to 3. Depending on which path is taken through the main method’s
if statement, either class A or class B is seen by the other class in its uninitialized
state. Traditional Java issues no error messages or warnings either at compile

50 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

or run time. Because of the circular dependencies, this program as written is
actually a bit non-sensical.

import java.util.Date;
import java.util.Random;

public class Circularity {

public static class A {
public final static int constant = B.constant + 8;

}

public static class B {
public final static int constant = A.constant + 3;

}

public static void main(String[] args) {
Date d = new Date();
Random r = new Random(d.getTime());
final int a, b;

if (r.nextFloat() > 0.5) {
a = A.constant;
b = B.constant;

}
else {

b = B.constant;
a = A.constant;

}
System.out.println(”Constant A equals ” + a);
System.out.println(”Constant B equals ” + b);

}
}

For these reasons, the SCJ specification requires the absence of circular dependen-
cies among the initialization code that corresponds to each of the classes that com-
prise an SCJ application. Furthermore, the SCJ specification requires that all classes
be loaded and initialized prior to instantiation of the SCJ application’s Safelet class.

Note that the requirement to load and initialize all classes prior to the start of an SCJ
application is fully compatible with existing Java virtual machines provided that a
main Java program includes code that accesses each of the classes that is part of the
SCJ application before the main program arranges to instantiate the SCJ applica-
tion’s Safelet object. In the absence of cycles, the underlying JVM implementation
will arrange to initialize all classes in a topological sort order according to class ini-
tialization dependencies, regardless of the order in which the individual classes are
accessed.

If a particular vendor desires to provide enhanced capabilities to support dynamic

27 January 2017 Version 0.109
Confidentiality: Public Distribution

51

Safety-Critical Java Technology Specification

class loading, such capabilities are strictly outside the specification for SCJ.

3.6.2 MissionSequencer as a ManagedEventHandler

Mission sequencers appears in two contexts. A MissionSequencer object is included
to oversee execution of the SCJ application. And each Level 2 mission may include
among its ManagedSchedulables one or more mission sequencers which oversee the
execution of inner-nested missions. In both cases, the mission sequencer depends on
an associated bound thread to perform certain actions, such as selection of the next
mission to run, initialization of that mission before it enters its execution phase, and
cleaning up the mission’s shared data structures after it finishes its execution phase.

Since mission sequencers play a critical role in all three SCJ levels, it was decided
to structure the MissionSequencer type as a subclass of ManagedEventHandler even
though it might have been more natural to treat it as a subclass of ManagedThread.
This is because SCJ levels zero and one do not support the ManagedThread class.

To enable reliable and consistent operation of the MissionSequencer, it is impor-
tant that the MissionSequencer constructors allow specification of its corresponding
ScopeParameters. In the case that the ScopeParameters specified for a Safelet’s
outermost MissionSequencer are consistent with the resources already available to
the Safelet’s initialization thread, it is intended that a compliant SCJ implementation
may use the same thread to perform Safelet initialization and mission sequencing.

3.6.3 Sizing of Mission Memories

Multiple perspectives and programming styles were considered in the design of the
mission sequencing and mission APIs. Among perspectives was a desire to allow
simple programs to be implemented with minimal effort. In contrast, there was a
competing desire to enable strong separation of concerns, encapsulation, and abstrac-
tion capabilities for the implementation of large and complex safety-critical systems.

In order to support both perspectives, the resulting API allows programmers to choose
where Mission objects reside in relation to the corresponding mission memory. For
simpler applications, it may be desirable for the Mission object to reside in memory
external to the corresponding mission memory area. Note, for example, that the API
for the LinearMissionSequencer requires that all of the missions to be executed be
passed in as constructor arguments. Thus, these missions must reside in a memory
area that is external to the mission memory area that will correspond to the mission
itself.

In more complex systems, it may be preferable to allocate the mission object within
its own mission memory area. This has the following benefits. First, the mission

52 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

is guaranteed to begin executing in its virgin newly constructed state. When pro-
grammers allocate missions in outer-nested memory areas, the programmer needs to
provide additional code to restore that mission to an appropriate state before the same
mission is restarted. Also, programmers must manage the additional complexity that
might arise if the same mission is allowed to run simultaneously under the direction
of multiple nested mission sequencers. Second, this mission object is allowed to re-
fer directly to the objects that are allocated within mission memory by the mission’s
initialize method, including the various ManagedSchedulable objects that comprise
this mission.

To support encapsulation, it was decided that the required size of mission memory
should be represented by an instance method of the corresponding Mission object. To
support the programming style in which the Mission is allocated within the mission
memory area, the mission memory area is allocated and initialized before the Mission
object is allocated. Thus, at the time mission memory is initialized, the infrastructure
does not know how big to make the associated backing store. It was therefore de-
cided that immediately before invocation of the MissionSequencer’s getNextMission
method, the infrastructure will size the mission memory area to include all available
backing store memory associated with the MissionSequencer. Upon return from the
getNextMission method, the infrastructure invokes the returned Mission object’s mis-
sionMemorySize method and then truncates the mission memory area’s size to the
requested size before invoking the mission’s initialize method. A consequence of this
API design choice is that the implementation of getNextMission may not introduce
private memory areas to perform temporary allocations.

3.6.4 Hierachical Decomposition of Memory Resources

One of the design goals of the SCJ specification has been to enable the development
of SCJ applications that are not vulnerable to reliability failures due to memory
fragmentation. Earlier drafts of this SCJ specification described a hierarchical de-
composition of all memory such that all of the memory dedicated to a mission could
be divided into smaller portions, each dedicated to the reliable execution of one of
the mission’s managed schedulable objects. It was then thought that associating three
contiguous regions of memory for the dedicated use of each SCJ schedulable object
is sufficient to assure reliable operation of the thread. Conceptually, the three regions
of memory correspond to reservations for scoped memory area backing stores, the
Java stack as required for interpretation of Java bytecodes, and a native stack for
implementation of bytecodes and native methods. The earlier draft specification al-
lowed applications to specify the memory requirements for each schedulable object,
and described the decomposition of the memory associated with a mission sequencer
into independent memory segments to represent the needs of each of the currently
running mission’s managed schedulables.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

53

Safety-Critical Java Technology Specification

However, that earlier API memory design was abandoned in the final draft because of
concerns that it would be too difficult to support that API on certain of the platforms
being considered to be relevant for execution of SCJ applications. In particular,
when running on top of certain real-time operating systems, it is not possible to force
a newly spawned thread to use a particular portion of an existing thread’s run-time
stack as its run-time stack.

In the current specification, the ScopeParameters object associated with every man-
aged schedulable object addresses only the hierarchical decomposition of its backing
store memory. The ConfigurationParameters provide additional information. The
sizes array provides an opportunity for individual vendors to provide mechanisms
that assure the absence of fragmentation of stack memory on particular platforms.
For example, a vendor might specify that sizes[0] represents the Java stack memory
budget for the newly created thread, which is always to be satisfied by taking a con-
tiguous portion from the Java stack memory budget for the corresponding mission
sequencer’s thread. Likewise, sizes[1] might be defined to represent the native stack
memory budget for the newly created thread, which is always to be satisfied by tak-
ing a contiguous portion of the native stack memory budget for the corresponding
mission sequencer’s thread.

Besides eliminating memory fragmentation risks, a second design goal of the SCJ
specification is to eliminate out-of-memory conditions for every scope and to prevent
stack overflow conditions for every thread. After reviewing proposals for standard-
izing solutions to these problems no single approach achieved a sufficient level of
consensus to be included in the standard. Thus, the SCJ specification leaves it to
individual developers and vendors of SCJ implementations to develop proprietary
techniques for analyzing the size requirements of each scope, as well as the cumula-
tive stack memory requirements for each thread.

3.6.5 Some Style Recommendations Regarding Design of Mis-
sions

When sharing mission data between the multiple schedulable objects that comprise
a particular mission, the programmer must decide between several alternative mech-
anisms for providing the individual schedulable objects with references to the shared
data structures.

• The individual schedulable objects may invoke Mission.getMission, coerce the
result to the known Mission subclass, and directly access the fields and methods
of this Mission subclass to obtain access to the shared mission data.

• Alternatively, references to the shared data objects may be passed in as argu-
ments to the constructors of each of the relevant managed schedulable objects.

54 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Though the software engineering tradeoffs must be assessed by developers in each
specific context, it is generally considered that the latter approach constitutes a bet-
ter style. There are several reasons for this. First, the flow of information is clearly
delineated by the constructor’s parameterization. Second, the mission itself is able to
more easily restrict access to its shared data by declaring the relevant fields and meth-
ods to be private. This makes it easier to enforce sharing information only among
components that truly need access to that information. Third, the implementation of
individual schedulable objects can be made more independent of the mission within
which they run. Since the schedulable object doesn’t need to know the type of the
mission that hosts its execution, an application component may be more easily reused
in different contexts, under the oversight of a different Mission subtype.

3.6.6 Comments on Termination of Missions

With simple missions comprised entirely of AperiodicEventHandler and Periodic-
EventHandler schedulable objects, termination of the mission is fairly automatic.
When application code invokes the mission’s requestTermination method, the infras-
tructure arranges to disable all further releases of the corresponding event handlers.
All of the managed schedulable objects associated with the mission will terminate
upon completion of any currently released event handlers.

Termination of Level 2 missions that include the execution of ManagedThread schedu-
lables is a bit more complex. This is because there’s no natural stopping point for
a running thread. Instead, the thread must stop itself at an appropriate application-
specific time. In order to coordinate with running threads, the SCJ API provides
the signalTermination method in the ManagedSchedulable interface. Termination
protocols can be supported by overriding the signalTermination method in the SCJ
classes that implement the ManagedSchedulable interface. The overridden method
might invoke, for example, Thread.interrupt if the thread could be blocked in the
Object.wait method.

Potentially, every mission includes some application-specific termination code. Thus,
it is generally good practice for every application-specific overriding of the signal-
Termination method to include an invocation of the super class’s method.

Finally, with all code that manipulates shared state, if synchronized code is used
during the implementation of any application-level termination protocols, issues of
potential deadlocks and race conditions need to be considered.

3.6.7 Special Considerations for Level 0 Missions

Within a Level 0 execution environment, periodic event handlers are scheduled by a
static cyclic executive. Within this environment, the PeriodicParameters and Priori-

27 January 2017 Version 0.109
Confidentiality: Public Distribution

55

Safety-Critical Java Technology Specification

tyParameters arguments to the PeriodicEventHandler constructors are ignored at run
time.

It was decided that SCJ would keep the same parameterization of PeriodicEvent-
Handler constructors for all SCJ levels for consistency reasons. The presence of
these arguments even in a Level 0 application helps document the intent of the code.
Presumably, the static cyclic schedule that governs execution of periodic event han-
dlers is consistent with the behavior of a dynamic scheduler based on the values of
the PeriodicParameters and PriorityParameters arguments.

Every CyclicExecutive object is required to provide an implementation of the Cyclic-
Executive.getSchedule method. This method returns the CyclicSchedule object which
represents the static cyclic schedule that governs execution of the mission’s Periodic-
EventHandler activities. The SCJ specification does not concern itself with how this
schedule is generated, though it expects that vendors who provide compliant imple-
mentations of the SCJ specification and third party tool vendors are likely to provide
tools to automate the creation of these schedules.

One benefit of using the same constructor parameterization of PeriodicEventHandler
objects in all levels is that a Level 0 mission can run within a Level 1 or Level 2 run-
time environment. If a CyclicExecutive mission is selected for execution by a Level 1
or Level 2 mission sequencer, the periodic event handlers will be scheduled dynam-
ically in that context, based on the values of the constructor’s PeriodicParameters
and PriorityParameters arguments, and the mission’s CyclicExecutive.getSchedule
method will not be invoked by infrastructure.

Given this generality, which allows CyclicExecutive missions to run within Level 1
and Level 2 execution environments, it is evident that only Level 0 missions that use
Java synchronized methods to access all data and other resources shared among mul-
tiple periodic event handlers will execute correctly in a Level 1 or Level 2 execution
environment,

3.6.8 Implementation of MissionSequencers and Missions

From the application programmer’s perspective, ManagedSchedulable objects are
nested within the Mission object with which they are associated, and each Mission
is nested within a MissionSequencer object’s context. This hierarchy represents a
logical decomposition that matches recommended software engineering practices to
break large and complex problems into smaller parts that can be independently man-
aged more easily than tackling the entire system as a monolithic body of code.

The implementation of this abstraction is made somewhat more complex by the
scoped memory rules of the RTSJ. In particular, a mission sequencer is expected
to keep track of the mission that is running within it, because an invocation of the se-

56 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

quencer’s signalTermination must result in an invocation of the currently running mis-
sion’s requestTermination method. Likewise, a mission is expected to keep track of
all its associated ManagedSchedulable objects because an invocation of its request-
Termination method is expected to send shut-down requests to each of the corre-
sponding threads and then wait for each of them to terminate.

Since missions may reside in scopes that nest internal to the mission that holds a
mission sequencer, and since each managed schedulable object may reside in a scope
that nests within the scope that holds the corresponding mission object, it is not
generally possible for mission sequencer objects to refer directly to the mission object
that represents the currently running mission. For the same reasons, it is not possible
for missions to, in general, hold direct references to the managed schedulable objects
associated with the mission.

An implementation technique that is used in the official SCJ reference implemen-
tation is to use the MissionSequencer thread’s local variables to hold references to
inner-nested objects. This thread can, for example, store a reference to the currently
running mission in a local variable and can store each of the mission’s associated
managed schedulable objects within a local array. The thread then blocks itself on
a condition associated with this mission and its sequencer. When the condition is
notified, the thread becomes unblocked so that it can perform services on behalf of
the thread that was responsible for notification. Notification would occur, for exam-
ple, if the MissionSequencer is part of a nested mission and that mission has been
requested to terminate.

3.6.9 Example of a Static Level 0 Application

This section provides an example of a simple Level 0 application. Note that the Sim-
pleCyclicExecutive class both extends CyclicExecutive and implements Safelet<CyclicExecutive>.
The application begins with instantiation of this class.

3.6.10 SimpleCyclicExecutive.java

package samples.staticlevel0;

import javax.realtime.PriorityParameters;
import javax.realtime.RelativeTime;
import javax.realtime.memory.ScopeParameters;

import javax.safetycritical.CyclicExecutive;
import javax.safetycritical.CyclicSchedule;
import javax.safetycritical.LinearMissionSequencer;
import javax.safetycritical.MissionSequencer;

27 January 2017 Version 0.109
Confidentiality: Public Distribution

57

Safety-Critical Java Technology Specification

import javax.safetycritical.PeriodicEventHandler;
import javax.safetycritical.Safelet;

import javax.safetycritical.annotate.SCJAllowed;
import static javax.safetycritical.annotate.Level.SUPPORT;

@SCJAllowed(members=true)
public class SimpleCyclicExecutive

extends CyclicExecutive
implements Safelet<CyclicExecutive>

{
final int MISSION MEMORY SIZE = 10000;
final int IMMORTAL MEMORY SIZE = 10000;
final int SEQUENCER PRIORITY = 10;

public void initializeApplication() {
;

}

public long missionMemorySize()
{

return MISSION MEMORY SIZE;
}

public void initialize() {
(new MyPEH(”A”,new RelativeTime(0,0),new RelativeTime(500,0))).register();
(new MyPEH(”B”,new RelativeTime(0,0),new RelativeTime(1000,0))).register();
(new MyPEH(”C”,new RelativeTime(0,0),new RelativeTime(500,0))).register();

}

@SCJAllowed(SUPPORT)
public CyclicSchedule
getSchedule(PeriodicEventHandler[] pehs) {

return VendorCyclicSchedule.generate(pehs, this);
}

// Safelet methods

@SCJAllowed(SUPPORT)
public MissionSequencer<CyclicExecutive> getSequencer()
{

// The returned LinearMissionSequencer is allocated in ImmortalMemory
return new LinearMissionSequencer<CyclicExecutive>(

new PriorityParameters(SEQUENCER PRIORITY),
new ScopeParameters(10000, 100,0,0),
this);

}

public long immortalMemorySize()
{

58 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

return IMMORTAL MEMORY SIZE;
}

}

3.6.11 MyPEH.java

package samples.staticlevel0;

import javax.realtime.PeriodicParameters;
import javax.realtime.PriorityParameters;
import javax.realtime.memory.ScopeParameters;
import javax.realtime.RelativeTime;
import javax.safetycritical.PeriodicEventHandler;
import javax.safetycritical.annotate.SCJAllowed;

import static javax.safetycritical.annotate.Level.SUPPORT;

@SCJAllowed(members=true)
public class MyPEH extends PeriodicEventHandler {

static final int priority = 13, mSize = 10000;
int eventCounter;
String my name;

public MyPEH(String nm, RelativeTime start, RelativeTime period) {
super(new PriorityParameters(priority),

new PeriodicParameters(start, period),
new ScopeParameters(10000, 0,100,0), null);

my name = nm;
}

@SCJAllowed(SUPPORT)
public void handleAsyncEvent() {

++eventCounter;
}

}

3.6.12 VendorCyclicSchedule.java

package samples.staticlevel0;

import javax.realtime.RelativeTime;

import javax.safetycritical.CyclicExecutive;
import javax.safetycritical.CyclicSchedule;
import javax.safetycritical.PeriodicEventHandler;
import javax.safetycritical.annotate.SCJAllowed;

@SCJAllowed(members=true)

27 January 2017 Version 0.109
Confidentiality: Public Distribution

59

Safety-Critical Java Technology Specification

class VendorCyclicSchedule {

static CyclicExecutive cache key;
static CyclicSchedule cache schedule;

private PeriodicEventHandler[] peh;

/∗
∗ Instantiate a vendor−specific cyclic schedule and return it.
∗ Note that in normal usage, this executes in mission memory.
∗
∗ This sample implementation of a CyclicSchedule generator presents
∗ the code that might be automatically generated by a vendor−specific
∗ tool.
∗
∗ In this example, the generated schedule is for an application
∗ that has three asynchronous event handlers to be dispatched.
∗ There are two frames for the application. The first frame has an
∗ offset of 0 from the start time and runs PEH A followed by PEH B,
∗ in order. The second frame has an offset of 500ms from the start
∗ time and runs PEH A followed by PEH C, in order.
∗/

static CyclicSchedule generate(PeriodicEventHandler[] peh,
CyclicExecutive m) {

if (m == cache key)
return cache schedule;

else {
//
// For simplicity of presentation, the following five
// allocations are taken from mission memory. A more frugal
// implementation would allocate these objects in private memory.
//
CyclicSchedule.Frame frames[] = new CyclicSchedule.Frame[2];
PeriodicEventHandler frame1 handlers[] = new PeriodicEventHandler[3];
PeriodicEventHandler frame2 handlers[] = new PeriodicEventHandler[2];
RelativeTime frame1 duration = new RelativeTime(500, 0);
RelativeTime frame2 duration = new RelativeTime(500, 0);

frame1 handlers[0] = peh[0]; // A
frame1 handlers[1] = peh[2]; // C scheduled before B due to RMA
frame1 handlers[2] = peh[1]; // B

frame2 handlers[0] = peh[0]; // A
frame2 handlers[1] = peh[2]; // C

frames[0] = new CyclicSchedule.Frame(frame1 duration, frame1 handlers);
frames[1] = new CyclicSchedule.Frame(frame2 duration, frame2 handlers);

cache schedule = new CyclicSchedule(frames);
cache key = m;

60 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

return cache schedule;
}

}
}

3.6.13 Example of a Dynamic Level 0 Application

The example above allocates the SimpleCyclicExecutive application in Immortal-
Memory. The example described in this section allocates the same SimpleCyclicEx-
ecutive object in mission memory. For illustrative purposes, this example repeatedly
executes the SimpleCyclicExecutive mission. Each time the SimpleCyclicExecutive
mission terminates, the mission memory area is exited and all of the objects allocated
within it, including the SimpleCylicExecutive object are reclaimed. In this example,
a new SimpleCyclicExecutive object is allocated for each new execution by the get-
NextMission method.

For simplicity of presentation, we are reusing the existing SimpleCyclicExecutive
object even though it is more general than we need for this particular example. In
this example, we ignore the fact that SimpleCyclicExecutive implements the Safelet
interface.

The implementation of LinearMissionSequencer requires that the sequenced mis-
sions reside external to the mission memory area. In order to arrange for Mission
objects to be newly allocated within the mission memory area immediately before
each mission execution, it is necessary for the developer to implement a subclass of
MissionSequencer.

3.6.14 MyLevel0App.java

package samples.dynamiclevel0;

import javax.realtime.PriorityParameters;

import javax.safetycritical.CyclicExecutive;
import javax.safetycritical.MissionSequencer;
import javax.safetycritical.Safelet;
import javax.realtime.memory.ScopeParameters;

import javax.safetycritical.annotate.SCJAllowed;
import javax.safetycritical.annotate.SCJPhase;

import static javax.safetycritical.annotate.Level.LEVEL 0;
import static javax.safetycritical.annotate.Level.SUPPORT;
import static javax.safetycritical.annotate.Phase.INITIALIZATION;

27 January 2017 Version 0.109
Confidentiality: Public Distribution

61

Safety-Critical Java Technology Specification

@SCJAllowed
class MyLevel0App implements Safelet<CyclicExecutive> {

@SCJAllowed(LEVEL 0)
public MyLevel0App() {
}

@SCJAllowed(LEVEL 0)
public void intializeApplication() {

; // do nothing
}

@SCJAllowed(SUPPORT)
@SCJPhase({INITIALIZATION})
public MissionSequencer<CyclicExecutive> getSequencer() {

PriorityParameters p = new PriorityParameters(18);
ScopeParameters s = new ScopeParameters(100000, null, 80, 512);
return new MyLevel0Sequencer(p, s);

}

public long immortalMemorySize() {
return 10000l;

}
}

3.6.15 MyLevel0Sequencer.java

package samples.dynamiclevel0;

import javax.realtime.PriorityParameters;
import javax.realtime.memory.ScopeParameters;

import javax.safetycritical.CyclicExecutive;
import javax.safetycritical.MissionSequencer;

import javax.safetycritical.annotate.SCJAllowed;
import javax.safetycritical.annotate.SCJPhase;

import static javax.safetycritical.annotate.Level.LEVEL 0;
import static javax.safetycritical.annotate.Level.SUPPORT;
import static javax.safetycritical.annotate.Phase.INITIALIZATION;

import samples.staticlevel0.SimpleCyclicExecutive;

@SCJAllowed
class MyLevel0Sequencer extends MissionSequencer<CyclicExecutive> {

@SCJAllowed(LEVEL 0)
public MyLevel0Sequencer(PriorityParameters p, ScopeParameters s) {

super(p, s);

62 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

}

@SCJAllowed(SUPPORT)
@SCJPhase({INITIALIZATION})
protected CyclicExecutive getNextMission() {

return new SimpleCyclicExecutive();
}

}

3.6.16 Example of a Level 1 Application

The simple Level 1 application presented in this section reuses the MyPEH im-
plementation from the static Level 0 application. As with that example, note that
MyLevel1App both extends Mission and implements Safelet<Mission>.

3.6.17 MyLevel1App.java

package samples.level1;

import javax.realtime.PriorityParameters;
import javax.realtime.RelativeTime;
import javax.safetycritical.LinearMissionSequencer;
import javax.safetycritical.Mission;
import javax.safetycritical.MissionSequencer;
import javax.safetycritical.Safelet;
import javax.realtime.memory.ScopeParameters;
import javax.safetycritical.annotate.SCJAllowed;

import static javax.safetycritical.annotate.Level.SUPPORT;

import samples.staticlevel0.MyPEH;

@SCJAllowed(members=true)
public class MyLevel1App

extends Mission
implements Safelet<Mission>

{
final int MISSION MEMORY SIZE = 10000;
final int SEQUENCER PRIORITY = 10;

public void intializeApplication()
{

; // do nothing
}

public long missionMemorySize()
{

return MISSION MEMORY SIZE;

27 January 2017 Version 0.109
Confidentiality: Public Distribution

63

Safety-Critical Java Technology Specification

}

public void initialize() {
// Note that MyPEH, imported from samples.staticlevel0,
// generalizes to execution in a level−1 environment. When
// running in level−0, the start and period arguments were
// ignored because the level−0 dispatcher simply runs the computed
// static cyclic schedule.
(new MyPEH(”A”,new RelativeTime(0,0),new RelativeTime(500,0))).register();
(new MyPEH(”B”,new RelativeTime(0,0),new RelativeTime(1000,0))).register();
(new MyPEH(”C”,new RelativeTime(0,0),new RelativeTime(500,0))).register();

}

// Safelet methods

public MissionSequencer<Mission> getSequencer()
{

// The returned LinearMissionSequencer is allocated in ImmortalMemory
return new LinearMissionSequencer<Mission>(

new PriorityParameters(SEQUENCER PRIORITY),
new ScopeParameters(10000, null),
this);

}

public long immortalMemorySize() {
return 10000;

}
}

3.6.18 Example of a Level 2 Application

The following code illustrates how a simple Level 2 application could be written
with nested missions. Figure 3.4 illustrates the sequence of activities that comprise
execution of this Level 2 example.

3.6.19 MyLevel2App.java

package samples.level2;

import javax.realtime.PriorityParameters;
import javax.realtime.PriorityScheduler;
import javax.realtime.memory.ScopeParameters;

import javax.safetycritical.Mission;
import javax.safetycritical.MissionSequencer;
import javax.safetycritical.Safelet;
import javax.safetycritical.annotate.SCJAllowed;

64 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

:M
yL

e
ve

l2
A

p
p

L
e

ve
l

2
 E

xa
m

p
le

:M
a

in
M

is
si

o
n

S
e

q
u

e
n

ce
r

g
e

tS
e

q
u

e
n

ce
r

:P
ri

m
a

ry
M

is
si

o
n

n
e

w

n
e

w

re
le

a
se h

a
n

d
le

A
sy

n
cE

ve
n

t
in

it
ia

li
ze

:S
u

b
m

is
si

o
n

S
e

q
u

e
n

ce
r

n
e

w

re
g

is
te

r
cr

e
a

te
 a

n
d

re
g

is
te

r
h

a
n

d
le

rs
(n

o
t

sh
o

w
n

)

g
e

tN
e

x
t

M
is

si
o

n

re
le

a
se

 a
ll

h
a

n
d

le
rs

h
a

n
d

le
A

sy
n

cE
ve

n
t

:S
ta

g
e

O
n

e
M

is
si

o
n

g
e

tn
e

x
t

M
is

si
o

n
n

e
w

in
it

ia
li

ze
cr

e
a

te
 a

n
d

re
g

is
te

r
h

a
n

d
le

rs
(n

o
t

sh
o

w
n

)

re

le
a

se
 a

ll
h

a
n

d
le

rs

 (
re

le
a

se
s

n
o

t
sh

o
w

n
)

a
t

e
n

d
 o

f
m

is
si

o
n

:S
ta

g
e

T
w

o
M

is
si

o
n

n
e

w
g

e
tn

e
x

t
M

is
si

o
n

in
it

ia
li

ze

a
t

e
n

d
 o

f
m

is
si

o
n

a
t

e
n

d
 o

f
C

le
a

n
U

p

m
is

si
o

n

g
e

tN
e

x
t

M
is

si
o

n

:C
le

a
n

U
p

M
is

si
o

n

n
e

w

in
it

ia
lz

e

cr
e

a
te

s
a

n
d

re
g

is
te

rs
h

a
n

d
le

rs
(n

o
t

sh
o

w
n

)

 (

re
a

le
a

se
s

n
o

t
sh

o
w

n
)

re
le

a
se

 a
ll

h
a

n
d

le
rs

a
t

e
n

d
 o

f
P

ri
m

a
ry

m

is
si

o
n

cl
e

a
n

U
p

re

le
a

se
 a

ll
h

a
n

d
le

rs

 (
re

le
a

se
s

n
o

t
sh

o
w

n
)

cl
e

a
n

U
p

cl
e

a
n

U
p

cl
e

a
n

U
p

cr
e

a
te

s
a

n
d

re
g

is
te

rs
h

a
n

d
le

rs
(n

o
t

sh
o

w
n

)

 r

e
a

le
a

se

w
a

it
 F

o
r

M
is

si
o

n
 t

o
 t

e
rm

in
a

te

w
a

it
 F

o
r

M
is

si
o

n
 t

o
 t

e
rm

in
a

te

w
a

it
 F

o
r

M
is

si
o

n
 t

o
 t

e
rm

in
a

te

w
a

it
 F

o
r

M
is

si
o

n
 t

o
 t

e
rm

in
a

te

g
e

tn
e

x
t

M
is

si
o

n

n
u

ll

g
e

tN
e

x
t

M
is

si
o

n

n
u

ll

S
C

J
In

fr
a

st
ru

ct
u

re

W
a

it
 f

o
r

M
a

in
 M

is
si

o
n

 S
e

q
u

e
n

ce
r

to
 T

e
rm

in
a

te

te
rm

in
a

t
M

a
in

 M
is

si
o

n
 S

e
q

u
e

n
ce

r

Figure 3.4: UML sequence diagram for Level 2 example

27 January 2017 Version 0.109
Confidentiality: Public Distribution

65

Safety-Critical Java Technology Specification

import static javax.safetycritical.annotate.Level.LEVEL 2;

@SCJAllowed(members=true, value=LEVEL 2)
public class MyLevel2App implements Safelet<Mission> {

static final private int PRIORITY =
PriorityScheduler.instance().getNormPriority();

public void initializeApplication() {
; // do nothing

}

public MissionSequencer<Mission> getSequencer() {
ScopeParameters sp =

new ScopeParameters(100000L, null);
return new MainMissionSequencer(new PriorityParameters(PRIORITY), sp);

}

public long immortalMemorySize() {
return 10000;

}

}

3.6.20 MainMissionSequencer.java

package samples.level2;

import javax.realtime.PriorityParameters;
import javax.realtime.memory.ScopeParameters;

import javax.safetycritical.Mission;
import javax.safetycritical.MissionSequencer;

import javax.safetycritical.annotate.SCJAllowed;

import static javax.safetycritical.annotate.Level.LEVEL 2;
import static javax.safetycritical.annotate.Level.SUPPORT;

@SCJAllowed(members=true, value=LEVEL 2)
public class MainMissionSequencer extends MissionSequencer<Mission> {

private boolean initialized, finalized;

MainMissionSequencer(PriorityParameters priorityParameters,
ScopeParameters storageParameters) {

super(priorityParameters, storageParameters);
initialized = finalized = false;

}

66 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJAllowed(SUPPORT)
protected Mission getNextMission() {

if (finalized)
return null;

else if (initialized) {
finalized = true;
return new CleanupMission();

}
else {

initialized = true;
return new PrimaryMission();

}
}

}

3.6.21 PrimaryMission.java

package samples.level2;

import javax.realtime.PriorityParameters;
import javax.realtime.PriorityScheduler;
import javax.realtime.RelativeTime;
import javax.realtime.memory.ScopeParameters;

import javax.safetycritical.Mission;

import javax.safetycritical.annotate.SCJAllowed;

import static javax.safetycritical.annotate.Level.LEVEL 2;

@SCJAllowed(members=true, value=LEVEL 2)
public class PrimaryMission extends Mission {

final private int MISSION MEMORY SIZE = 10000;

static final private int PRIORITY =
PriorityScheduler.instance().getNormPriority();

public long missionMemorySize() {
return MISSION MEMORY SIZE;

}

public void initialize() {
PriorityParameters pp = new PriorityParameters(PRIORITY);
ScopeParameters sp =

new ScopeParameters(100000L, null);
SubMissionSequencer sms = new SubMissionSequencer(pp, sp);
sms.register();
(new MyPeriodicEventHandler(”AEH A”, new RelativeTime(0, 0),

new RelativeTime(500, 0))).register();

27 January 2017 Version 0.109
Confidentiality: Public Distribution

67

Safety-Critical Java Technology Specification

(new MyPeriodicEventHandler(”AEH B”, new RelativeTime(0, 0),
new RelativeTime(1000, 0))).register();

(new MyPeriodicEventHandler(”AEH C”, new RelativeTime(500, 0),
new RelativeTime(500, 0))).register();

}
}

3.6.22 CleanupMission.java

package samples.level2;

import javax.realtime.PriorityParameters;
import javax.realtime.PriorityScheduler;

import javax.safetycritical.Mission;
import javax.realtime.memory.ScopeParameters;

import javax.safetycritical.annotate.SCJAllowed;

import static javax.safetycritical.annotate.Level.LEVEL 2;

@SCJAllowed(members=true, value=LEVEL 2)
public class CleanupMission extends Mission {

static final private int MISSION MEMORY SIZE = 10000;
static final private int PRIORITY =

PriorityScheduler.instance().getNormPriority();

public long missionMemorySize() {
return MISSION MEMORY SIZE;

}

public void initialize() {
PriorityParameters pp = new PriorityParameters(PRIORITY);
ScopeParameters sp =

new ScopeParameters(100000L, null);
MyCleanupThread t = new MyCleanupThread(pp, sp);

}
}

3.6.23 SubMissionSequencer.java

package samples.level2;

import javax.realtime.PriorityParameters;
import javax.realtime.memory.ScopeParameters;

import javax.safetycritical.Mission;
import javax.safetycritical.MissionSequencer;

import javax.safetycritical.annotate.SCJAllowed;

68 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

import static javax.safetycritical.annotate.Level.LEVEL 2;

@SCJAllowed(members=true, value=LEVEL 2)
public class SubMissionSequencer extends MissionSequencer<Mission> {

private boolean initialized, finalized;

SubMissionSequencer(PriorityParameters priorityParameters,
ScopeParameters storageParameters) {

super(priorityParameters, storageParameters);
initialized = finalized = false;

}

protected Mission getNextMission() {
if (finalized)

return null;
else if (initialized) {

finalized = true;
return new StageTwoMission();

}
else {

initialized = true;
return new StageOneMission();

}
}

}

3.6.24 StageOneMission.java

package samples.level2;

import javax.realtime.RelativeTime;

import javax.safetycritical.Mission;

import javax.safetycritical.annotate.SCJAllowed;

import static javax.safetycritical.annotate.Level.LEVEL 2;

@SCJAllowed(members=true, value=LEVEL 2)
public class StageOneMission extends Mission {

private static final int MISSION MEMORY SIZE = 10000;

public long missionMemorySize() {
return MISSION MEMORY SIZE;

}

public void initialize() {

27 January 2017 Version 0.109
Confidentiality: Public Distribution

69

Safety-Critical Java Technology Specification

(new MyPeriodicEventHandler(”stage1.eh1”,
new RelativeTime(0, 0),
new RelativeTime(1000, 0))).register();

}
}

3.6.25 StageTwoMission.java

package samples.level2;

import javax.realtime.RelativeTime;

import javax.safetycritical.Mission;

import javax.safetycritical.annotate.SCJAllowed;

import static javax.safetycritical.annotate.Level.LEVEL 2;

@SCJAllowed(members=true, value=LEVEL 2)
public class StageTwoMission extends Mission {

private static final int MISSION MEMORY SIZE = 10000;

public long missionMemorySize() {
return MISSION MEMORY SIZE;

}

public void initialize() {
(new MyPeriodicEventHandler(”stage2.eh1”,

new RelativeTime(0, 0),
new RelativeTime(500, 0))).register();

}
}

3.6.26 MyPeriodicEventHandler.java

package samples.level2;

import javax.realtime.PeriodicParameters;
import javax.realtime.PriorityParameters;
import javax.realtime.RelativeTime;
import javax.realtime.memory.ScopeParameters;

import javax.safetycritical.PeriodicEventHandler;

import javax.safetycritical.annotate.SCJAllowed;

import static javax.safetycritical.annotate.Level.LEVEL 2;

@SCJAllowed(members=true, value=LEVEL 2)

70 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

class MyPeriodicEventHandler extends PeriodicEventHandler {
private static final int priority = 17;
private static final int memSize = 5000;
private int eventCounter;

public MyPeriodicEventHandler(String aehName,
RelativeTime startTime,
RelativeTime period) {

super(new PriorityParameters(priority),
new PeriodicParameters(startTime, period),
new ScopeParameters(10000, null),
0, aehName);

}

public void handleAsyncEvent() {
++ eventCounter;

}

public void cleanUp() {}
}

3.6.27 MyCleanupThread.java

package samples.level2;

import javax.realtime.PriorityParameters;
import javax.realtime.memory.ScopeParameters;

import javax.safetycritical.ManagedThread;

import javax.safetycritical.annotate.SCJAllowed;

import static javax.safetycritical.annotate.Level.LEVEL 2;
import static javax.safetycritical.annotate.Level.SUPPORT;

@SCJAllowed(members=true, value=LEVEL 2)
class MyCleanupThread extends ManagedThread {

public MyCleanupThread(PriorityParameters pp, ScopeParameters sp) {
super(pp, sp, 0);

}

@SCJAllowed(SUPPORT)
public void run() {

cleanupThis();
cleanupThat();

}

@SCJAllowed
void cleanupThis() {

27 January 2017 Version 0.109
Confidentiality: Public Distribution

71

Safety-Critical Java Technology Specification

// code not shown
}

@SCJAllowed
void cleanupThat() {

// code not shown
}

}

72 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Chapter 4

Concurrency and Scheduling Models

This chapter describes how concurrency is provided and managed for SCJ applica-
tions. The Overview and Rationale sections are not normative but are provided to
improve understanding of the normative sections. All of the other sections of this
chapter are normative.

4.1 Overview

Many safety-critical systems are small and sequential, relying on cyclic executive
scheduling to manually interleave the execution of all activities within their time con-
straints, but without introducing concurrency. For larger and more complex safety-
critical systems, there has been a gradual migration to programming models that
support simple concurrent activities (including threads, tasks, event handlers etc)
that share an address space with each other.

For this reason, the SCJ defines three compliance levels that reflect various levels of
complexity that can occur in a safety-critical application. As a consequence, the SCJ
support provided for concurrent programming and scheduling is more comprehensive
at the higher compliance levels. This Chapter presents the facilities defined by SCJ
at each of its compliance levels.

In general, there are two models for creating concurrent programs. The first is a
thread-based model in which each concurrent entity is represented by a thread of
control. The second is an event-based model, where an event handler executes in di-
rect response to each event. The RTSJ, upon which this SCJ specification is based,
supports a rich concurrency model allowing real-time threads (both heap-using and
no-heap) and asynchronous events (also both heap-using and no-heap, and their event
handlers). The SCJ concurrency model simplifies this and relies, almost exclusively,

73

Safety-Critical Java Technology Specification

on asynchronous event handling. The reasons for this are pragmatic rather than dog-
matic:

1. Real-time threads do not have an easily identifiable section of code that repre-
sents an individual release, also called a job, in the real-time scheduling com-
munity’s terminology. In the thread context, a job is the area of code inside
a loop that is delimited by a call to the waitForNextPeriod or waitForNex-
tRelease methods. In contrast, an event handler has the handleAsyncEvent
method which exactly represents the notion of a job. Hence the creation of
static analysis tools to support safety-critical program development is facili-
tated.

2. As described in the RTSJ, an asynchronous event handler must execute under
control of a thread. The RTSJ permits asynchronous event handlers to be ei-
ther unbound, which means that the asynchronous event handler need only to
be bound to a thread before it executes, or bound, which means that the asyn-
chronous event handler is permanently bound to a thread when it is created. In
terms of execution, a bound asynchronous event handler is equivalent to a real-
time thread in functionality and its impact on scheduling. Hence little is lost
by using bound asynchronous event handlers instead of real-time threads. Us-
ing bound handlers (rather than non-bound handlers) removes any additional
latency due to thread binding when a handler is released. They are, therefore,
more predictable.

Therefore, the SCJ permits applications to execute only bound asynchronous event
handlers at Level 0 and Level 1. At Level 2, both bound asynchronous event han-
dlers and a restricted form of no-heap real-time threads are supported. While this
specification uses the term schedulable object to refer to code in all levels, in Level 1
and Level 2 implementations, SCJ uses the term schedulable object to refer to code
that is subject to execution by a preemptible scheduler; hence in these implemen-
tations, it refers exclusively to either an object derived from a bound asynchronous
event handler or a no-heap real-time thread (called a ManagedThread in the SCJ).
In Level 0 implementations, the term schedulable object simply refers to a Periodic-
EventHandler.

An SCJ asynchronous event handler executes in response to invocation requests
(known as release requests or release events), with the resulting execution of the
associated logic referred to as a release (or a job). Release requests are usually cate-
gorized as follows:1

• periodic—usually time-triggered,
• sporadic—usually event-triggered, or

1Please refer to the RTSJ specification [3] for a more rigorous definition.

74 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

• aperiodic— event-triggered or time-triggered.

The SCJ supports communication between SCJ schedulable objects using shared
variables and other resources and therefore requires support for synchronization and
priority inversion management protocols. On multiprocessor platforms2, it is as-
sumed that all processors can access all shared data and shared resources, although
not necessarily with uniform access times.

SCJ specifies a set of constraints placed on the RTSJ concurrency and scheduling
models. SCJ supports this constrained model by defining a new set of classes, all
of which are implementable using the concurrency constructs defined by the RTSJ.
SCJ requires implementations to support priority ceiling emulation (PCE). It should
be noted that this is a departure from the RTSJ standard, as in the RTSJ, priority
inheritance is the default priority inversion management protocol.

Scheduling in SCJ is performed in the context of a scheduling allocation domain.
A scheduling allocation domain of any schedulable object consists of the set of pro-
cessors on which that schedulable object may be executed. Each schedulable ob-
ject can be scheduled for execution in only one scheduling allocation domain. At
Level 0, only one allocation domain is supported for all schedulable objects; this
allocation domain consists of one processor. At Level 1, multiple allocation do-
mains may be supported, but each domain must consist of a single processor. Hence,
from a scheduling perspective, a Level 1 system is a fully partitioned system. At
Level 2, scheduling domains may consists of one or more processors. By default, all
schedulable objects are globally scheduled within an allocation domain. However,
a schedulable object can also be constrained to be executed on a single processor in
a scheduling allocation domain. Scheduling allocation domains are implemented in
terms of affinity sets as defined in the RTSJ. A processor shall not be a member of
more than one scheduling allocation domain.

SCJ further extends the RTSJ to support the following:

• Missions – all schedulable objects execute in the context of a mission (see
Chapter 2).

4.2 Semantics and Requirements

The SCJ concurrency model is designed to facilitate schedulability analysis tech-
niques that are acceptable to certification authorities, and to aid the construction and

2The term processor is used in this specification to indicate a Central Processing Unit (CPU) that
is capable of physically executing a single thread of control at any point in time. Hence, multicore
platforms constitute multiprocessors; platforms that support hyperthreading also constitute multipro-
cessors. It is assumed that all processors are capable of executing all schedulable objects in whose
affinity sets they appear.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

75

Safety-Critical Java Technology Specification

deployment of small and efficient Java runtime systems. SCJ also supports cyclic
scheduling to provide a familiar execution model for developers of traditional safety-
critical systems. This allows them to use Java as well as to facilitate a later migration
from traditional architectures to more robust concurrent architectures.

The following requirements apply across all conformance levels.

• The number of processors allocated to the Java platform shall be immutable.
• The number of scheduling allocation domains shall be fixed.
• Only no-heap and non-daemon RTSJ schedulable objects shall be supported

(e.g., Java threads are not supported).
• All schedulable objects shall have periodic or aperiodic release parameters –

schedulable objects with sporadic release parameters are not supported. Schedu-
lable objects without release parameters are considered to be aperiodic. There
is no support for CPU-time monitoring and processing group parameters.

• The default ceiling for locks used by the application and the infrastructure shall
be javax.realtime.FirstInFirstOutScheduler.instance().getMaxPriority() (that is,
the maximum value for local ceilings – see Section 4.7.5).

• Each schedulable object shall be managed by its enclosing mission.
• The infrastructure shall not synchronize on any instances of classes that are

part of the public API.

The following lists the main requirements on application designers.

• Shared objects are represented by classes with synchronized methods. No use
of the synchronized statement is allowed. Alternatively, the sharing of vari-
ables of primitive data types may use the volatile modifier.

• Use of the Object.wait, Object.notify, and Object.notifyAll methods in Level 2
code shall be invoked only on this.

• Nested calls from one synchronized method to another are allowed. The ceiling
priority associated with a nested synchronized method call shall be greater than
or equal to the ceiling priority associated with the outer call.

• At all levels, synchronized code shall not self-suspend while holding its mon-
itor lock (for example as a result of an I/O request or the sleep method call).
An IllegalMonitorStateException shall be thrown if this constraint is violated
and detected by the implementation. Requesting a lock (via a synchronized
method) is not considered to be self-suspension.

• Each miss handler that is associated with an application event handler shall
extend only AperiodicEventHandler, it shall not extend any other SCJ event
handler.

Unless indicated otherwise, the classes defined in this section are thread safe

76 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

4.3 Level Considerations

Specific semantics apply at each of the different compliance levels.

4.3.1 Level 0

The following requirements are placed on Level 0 compliance.

• The number of processors allocated to a Level 0 application shall be one.
• Only periodic bound asynchronous event handlers (i.e., PeriodicEventHandler)

shall be supported.
• Calls to the Object.wait, Object.notify and Object.notifyAll methods are not al-

lowed.
• Scheduling shall be based on the cyclic executive scheduling approach. Exe-

cution of the PeriodicEventHandlers shall be performed as if the infrastructure
has provided only a single thread of control that is used for all PeriodicEvent-
Handlers. The PeriodicEventHandlers shall be executed non preemptively. A
table-driven approach is acceptable, with the schedule being computed stati-
cally off-line in an implementation-defined manner prior to executing the mis-
sion.

• An implementation is not required to perform locking for synchronized meth-
ods. However, it is strongly recommended that applications use synchronized
methods or the volatile modifier to support portability of code between lev-
els so the application can be successfully executed on a Level 1 or a Level 2
implementation.

• There shall be no deadline miss detection facility.

4.3.2 Level 1

The following requirements are placed on Level 1 compliance. Unless explicitly
stated, these are in addition to Level 0 requirements.

• Aperiodic and one-shot asynchronous event handlers shall be supported.
• Each eventHandler shall be permanently bound to a thread of control not bound

to any other event handler. Further, each such thread of control shall be bound
to only a single event handler handler.

• The number of predefined scheduling allocation domains (each represented by
an affinity set) shall be equal to the number of processors available to the JVM,
each of which contains only a single processor. No dynamic creation of affinity
sets is allowed.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

77

Safety-Critical Java Technology Specification

• Communication between event handlers running on different processors shall
be supported.

• Calls to the Object.wait, Object.notify and Object.notifyAll methods are not al-
lowed.

• The scheduling approach shall be full preemptive priority-based scheduling
with at least 28 (software and hardware) priorities, with priority ceiling emu-
lation. A portable application should set priorities using javax.realtime.Prior-
ityScheduler.instance().getMinPriority() and javax.realtime.PriorityScheduler.-
instance().getMaxPriority() to determine the smallest and largest priorities sup-
ported by an SCJ infrastructure. Increasing numeric priority values shall re-
flect higher priorities. If application portability is a primary concern, the appli-
cation should use no more than 28 priorities. There shall be no support in SCJ
for changing application base priorities.

• The releases of a PeriodicEventHandler shall be triggered using absolute time
values.

• The releases of a OneShotEventHandler shall be triggered using absolute or
relative time values.

• Deadline miss detection shall be supported. The deadline miss shall be released
no earlier than the deadline of the associated event handler whose deadline
is being monitored. The deadline miss handler executes at its own priority
which shall determine whether it preempts the event handler with which it is
associated. An implementation is required to document the time granularity at
which missed deadlines are detected (see Section 4.8.5).

• A preempted schedulable object shall be executed as if it were placed at the
front of the ready queue for its active priority level. This is a recommendation
in the RTSJ but is a requirement for SCJ.

4.3.3 Level 2

The following requirements are placed on Level 2 compliance. Unless explicitly
stated, these are in addition to Level 1 requirements.

• No-heap real-time threads shall be supported but shall be managed (the Managed-
Thread class).

• There shall be a fixed number of implementation-defined scheduling allocation
domains (each represented by an affinity set). Each affinity set may contain
one or more processors. However, no processor shall appear in more than one
domain.

• Dynamic creation of affinity sets is permitted during the mission initialization
phase, but each affinity set shall only contain a single processor. The proces-
sor identified in the affinity set shall be a member of one of the predefined
scheduling allocation domains.

78 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Figure 4.1: Parameter classes

• Calls to the Object.wait, Object.notify and Object.notifyAll methods are allowed.
However, calling Object.wait from nested synchronized methods is illegal and
shall result in raising an exeception if it is detected by the implementation.

4.4 The Parameter Classes

The run-time behaviors of SCJ schedulable objects are controlled by their associated
parameter classes (see Figure 4.1):

• The ReleaseParameters class hierarchy — these enable the release character-
istics of a schedulable object to be specified, for example whether it is periodic
or aperiodic.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

79

Safety-Critical Java Technology Specification

• The SchedulingParameters class hierarchy — these enable the priorities of the
schedulable objects to be set.

• The MemoryParameters class hierarchy — these enable the amount of memory
a schedulable object uses to be defined, including the amount of backing store
needed for a schedulable object’s private memories to be specified.

• The Configuration class — these enable the amount of memory that shall be
allocated to the Java stack and for preallocated exceptions to be specified.

• ScopeParameters – this permits, among other things, the storage used by a
schedulable object’s scoped memory areas to be specified.

4.4.1 Class javax.realtime.ReleaseParameters

Declaration

@SCJAllowed
public abstract class ReleaseParameters implements java.lang.Cloneable,

java.io.Serializable extends java.lang.Object

Description

This is the base class for the release parameters hierarchy. All schedulability
analysis of safety critical software is performed by the application developers
offline. Although the RTSJ allows on-line schedulability analysis, SCJ as-
sumes any such analysis is performed off line and that the on-line environment
is predictable. Consequently, the assumption is that deadlines are not missed.
However, to facilitate fault-tolerant applications, SCJ does support a deadline
miss detection facility at Level 1 and Level 2. SCJ provides no direct mecha-
nisms for coping with cost overruns.

The ReleaseParameters class hierarchy is restricted so that the parameters can
be set, but not changed or queried.

4.4.2 Class javax.realtime.PeriodicParameters

Declaration

@SCJAllowed
public class PeriodicParameters extends javax.realtime.ReleaseParameters

Description

This RTSJ class is restricted so that it allows the start time and the period to
be set but not to be subsequently changed or queried.

Constructors

80 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public PeriodicParameters(RelativeTime start,
RelativeTime period,
RelativeTime deadline,
AsyncEventHandler missHandler)

Construct a new PeriodicParameters object within the current memory area.

start — is time of the first release of the associated schedulable object relative to
the start of the mission. A null value defaults to an offset of zero milliseconds.

period — is the time between each release of the associated schedulable object.

deadline — is an offset from the release time by which the release should finish.
A null deadline indicates the same value as the period.

missHandler — is the AperiodicEventHandler to be released if the associated
schedulable object misses its deadline. A null parameter indicates that no handler
should be released.

Throws IllegalArgumentException if the period is null or its time value is not
greater than zero, or if the time value of deadline is not greater than zero, or if the
clock associated with the start, period and deadline parameters is not the same.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public PeriodicParameters(RelativeTime start, RelativeTime period)

This constructor behaves the same as calling PeriodicParameters(start, period,
null, null).

Methods

@SCJAllowed
@Override

27 January 2017 Version 0.109
Confidentiality: Public Distribution

81

Safety-Critical Java Technology Specification

@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.Object clone()

Create a clone of this PeriodicParameters object.

4.4.3 Class javax.realtime.AperiodicParameters

Declaration

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public class AperiodicParameters extends javax.realtime.ReleaseParameters

Description
SCJ supports no detection of minimum inter-arrival time violations, therefore
only aperiodic parameters are needed. Hence the RTSJ SporadicParameters
class is absent. Deadline miss detection is supported.

The RTSJ supports a queue for storing the arrival of release events is order to
enable bursts of events to be handled. This queue is of length 1 in SCJ. The
RTSJ also enables different responses to the queue overflowing. In SCJ the
overflow behavior is to overwrite the pending release event if there is one.

Constructors

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public AperiodicParameters(RelativeTime deadline, AsyncEventHandler missHandler)

Construct a new AperiodicParameters object within the current memory area.

deadline — is an offset from the release time by which the release should finish.
A null deadline indicates that there is no deadline.

missHandler — is the AsynchronousEventHandler to be released if the associated
schedulable object misses its deadline. A null parameter indicates that no handler
should be released.

82 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public AperiodicParameters()

This constructor behaves the same as calling AperiodicParameters(null, null).

Methods

@SCJAllowed
@Override
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.Object clone()

Create a clone of this AperiodicParameters object.

4.4.4 Class javax.realtime.SchedulingParameters

Declaration

@SCJAllowed
public abstract class SchedulingParameters implements java.lang.Cloneable,

java.io.Serializable extends java.lang.Object

Description

The RTSJ potentially allows different schedulers to be supported and defines
this class as the root class for all scheduling parameters. In SCJ this class is
empty; only priority parameters are supported.

There is no ImportanceParameters subclass in SCJ.

Methods

27 January 2017 Version 0.109
Confidentiality: Public Distribution

83

Safety-Critical Java Technology Specification

@SCJAllowed
@Override
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.Object clone()

Create a clone of this SchedulingParameters object.

4.4.5 Class javax.realtime.PriorityParameters

Declaration

@SCJAllowed
public class PriorityParameters extends javax.realtime.SchedulingParameters

Description
This class is restricted relative to the RTSJ so that it allows the priority to be
created and queried, but not changed.

In SCJ the range of priorities is separated into software priorities and hardware
priorities (see Section 4.7.5). Hardware priorities have higher values than soft-
ware priorities. Schedulable objects can be assigned only software priorities.
Ceiling priorities can be either software or hardware priorities.

Constructors

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public PriorityParameters(int priority)

Create a PriorityParameters object specifying the given priority.

priority — is the integer value of the specified priority.

Throws IllegalArgumentException if priority is not in the range of supported prior-
ities.

Methods

84 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int getPriority()

returns the integer priority value that was specified at construction time.

4.4.6 Class javax.realtime.MemoryParameters

Declaration

@SCJAllowed
public class MemoryParameters implements java.lang.Cloneable,

java.io.Serializable extends java.lang.Object

Description

This class is used to define the maximum amount of memory that a schedu-
lable object requires in its default memory area (its per-release private scope
memory) and in immortal memory. The SCJ restricts this class relative to the
RTSJ such that values can be created but not queried or changed.

Fields

@SCJAllowed
public static final long UNLIMITED

@SCJAllowed
public static final long UNREFERENCED

Constructors

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public MemoryParameters(long maxInitialArea, long maxImmortal)

Create a MemoryParameters object with the given maximum values.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

85

Safety-Critical Java Technology Specification

maxInitialArea — is the maximum amount of memory in the per-release private
memory area.

maxImmortal — is the maximum amount of memory in the immortal memory area
required by the associated schedulable object.

Throws IllegalArgumentException if any value is negative, or if NO MAX is passed
as the value of maxMemoryArea or maxImmortal.

Methods

@SCJAllowed
@Override
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.Object clone()

Create a clone of this MemoryParameters object.

4.4.7 Class javax.realtime.ConfigurationParameters

Declaration

@SCJAllowed
public class ConfigurationParameters extends java.lang.Object

Description
Schedulable sizing parameters a way to specify various implementation-dependent
parameters such as Java and native stack sizes, and to configure the statically
allocated ThrowBoundaryError associated with a Schedulable.

Note that these parameters are immutable.
Constructors

@SCJAllowed
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
public ConfigurationParameters(int messageLength,

int stackTraceLength,
long [] sizes)

86 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Creates a parameter object for initializing the state of a Schedulable. The pa-
rameters provide the data for this initialization.

messageLength — Memory space in bytes dedicated to the message associated
with Schedulable objects created with these parameters’ preallocated exceptions,
plus references to the method names/identifiers in the stack trace. The value 0 in-
dicates that no message should be stored. The value of -1 uses the system default.

stackTraceLength — Length of the stack trace buffer dedicated to Schedulable ob-
jects created with these parameters’ preallocated exceptions, in frames. The amount
of space this requires is implementation-specific. The value 0 indicates that no stack
trace should be stored. The value of -1 uses the system default.

sizes — An array of implementation-specific values dictating memory parameters
for Schedulable objects created with these parameters, such as maximum Java and
native stack sizes. The sizes array will not be stored in the constructed object.

Throws IllegalArgumentException if messageLength or stackTraceLength is less
than -1.

4.4.8 Class javax.realtime.memory.ScopeParameters

Declaration

@SCJAllowed
public class ScopeParameters extends javax.realtime.MemoryParameters

See Also: javax.realtime.MemoryParameters

Description
Extend memory parameters to provide limits for scoped memory.

Constructors

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public ScopeParameters(long maxInitialArea,
long maxImmortal,
long maxContainingArea,
long maxInitialBackingStore)
throws java.lang.IllegalArgumentException

27 January 2017 Version 0.109
Confidentiality: Public Distribution

87

Safety-Critical Java Technology Specification

Create a ScopeParameters instance with the given values.

maxInitialArea — a limit on the amount of memory the schedulable may allo-
cate in its initial scoped memory area. Units are in bytes. When zero, no allocation
is allowed in the memory area. When the initial memory area is not a Scoped-
Memory , this parameter has no effect. To specify no limit, use MemoryParame-
ters.UNLIMITED .

maxImmortal — A limit on the amount of memory the schedulable may allocate in
the immortal area. Units are in bytes. When zero, no allocation allowed in immortal.
To specify no limit, use MemoryParameters.UNLIMITED .

maxContainingArea — a limit on the amount of memory the schedulable may
allocate in memory area where it was created. Units are in bytes. When zero, no
allocation is allowed in the memory area. When the containing memory area is not
a ScopedMemory , this parameter has no effect. To specify no limit, use Memory-
Parameters.UNLIMITED . For schedulables created within a mission, the containing
memory area is Mission memory. For the initial MissionSequencer, the initial mem-
ory area is Immortal memory.

maxInitialBackingStore — A limit on the amount of backing store this task may
allocate from backing store of its inital area, when that is a stacked memory. Units
are in bytes. When zero, no allocation is allowed in that memory area. Backing store
that is returned to the global backing store is subtracted from the limit. To specify no
limit, use MemoryParameters.UNLIMITED .

Throws IllegalArgumentException when any value other than positive, zero, or
javax.realtime.MemoryParametersUNREFERENCED is passed as the value of max-
InitialArea , maxImmortal , maxParentBackingStore , or maxContainingArea.

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public ScopeParameters(long maxInitialArea,
long maxImmortal,
long maxInitialBackingStore)
throws java.lang.IllegalArgumentException

Same as ScopeParameters(maxInitialArea, maxImmortal, maxParentBacking-
Store, MemoryParameters.UNLIMITED).

88 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Methods

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMayAllocate({})
public long getMaxBackingStore()

Determine the limit on backing store for this task.

returns the limit on backing store.

@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMayAllocate({})
@SCJAllowed
public long getMaxContainingArea()

Determine the limit on allocation in the area where the task was created.

returns the limit on allocation in the area where the task was created.

4.5 Asynchronous Event Handlers

The event based programming paradigm in SCJ (see Figure 4.2) may be imple-
mented using the RTSJ asynchronous event handling mechanisms. The types of
event handlers are very constrained in SCJ relative to the corresponding classes
in the RTSJ. Consequently, SCJ defines a set of new subclasses to support them.
Therefore, direct use of the RTSJ classes by the application is disallowed.

In SCJ all explicit application use of asynchronous events is hidden by the SCJ in-
frastructure. The SCJ API provides only handler definitions. Where the handlers are
time-triggered, the SCJ classes allow the timing requirements to be passed through
the constructors and, where appropriate, to be queried and reset etc. Where the han-
dlers are event triggered, the SCJ classes provide a release mechanism.

The class hierarchy that supports the SCJ model is given in the remainder of this
section and illustrated in Figure 4.2. Discussion of the integration of this model with
POSIX signal handling is deferred until the next Chapter.

Unless indicated otherwise, the classes defined in this section are thread safe

27 January 2017 Version 0.109
Confidentiality: Public Distribution

89

Safety-Critical Java Technology Specification

Figure 4.2: Abridged Handler classes

90 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

4.5.1 Interface javax.realtime.Timable

Declaration

@SCJAllowed
public interface Timable extends javax.realtime.Releasable

Description

An interface for RealtimeThread to indicate that it can be associated with a
clock and be suspended waiting for timing events based on that clock. This
interface make use of some interfaces and classes in the RTSJ that are not
visible to the SCJ. They are, therefore, not presented in this specification.

4.5.2 Interface javax.realtime.AsyncTimable

Declaration

@SCJAllowed
public interface AsyncTimable extends javax.realtime.Timable

Description

An interface to indicate it they can be associated with a Clock and be suspended
waiting for time events based on that clock.

4.5.3 Interface javax.realtime.Schedulable

Declaration

@SCJAllowed
public interface Schedulable extends java.lang.Runnable, javax.realtime.Timable

Description

In keeping with the RTSJ, SCJ event handlers are schedulable objects. How-
ever, the Schedulable interface in the RTSJ is mainly concerned with the get-
ting and setting of the parameter classes. On the contrary, in SCJ, these facili-
ties are not provided. All that is supported in the methods that allow schedula-
ble objects to be interrupted.

Methods

@SCJAllowed
@SCJPhase({javax.safetycritical.annotate.Phase.RUN})
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
public void interrupt()

27 January 2017 Version 0.109
Confidentiality: Public Distribution

91

Safety-Critical Java Technology Specification

Behaves as if {@code Thread.interrupt()} were called on the implementation
thread underlying this Schedulable. throws IllegalSchedulableStateException
when {@code this} is not currently releasable, i.e., its start method has not
been called, or it has terminated.

@SCJAllowed
@SCJPhase({javax.safetycritical.annotate.Phase.RUN})
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
public boolean isInterrupted()

Determines whether or not any interrupt is pending.

returns {@code true} when and only when the interrupt is pending.

4.5.4 Interface javax.realtime.BoundRealtimeExecutor

Declaration

@SCJAllowed
public interface BoundRealtimeExecutor

Description

This interface denotes all RTSJ and SCJ objects that encapsulate execution. In
SCJ, this type includes Schedulable and InterruptServiceRoutine objects. It is
used by Affinity to remove the need to have a reference into the javax.realtime.device
package.

Methods

@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMayAllocate({})
@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public javax.realtime.Affinity getAffinity()

Determine the affinity set instance associated with {@code task}.

returns The associated affinity.

92 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION})

@SCJMayAllocate({})
@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public void setAffinity(Affinity set)

throws java.lang.IllegalArgumentException,
javax.realtime.ProcessorAffinityException, java.lang.NullPointerException

Set the processor affinity of a {@code task} to {@code set} with immediate
effect.

set — is the processor affinity

Throws IllegalArgumentException when the intersection of {@code set} the affin-
ity of any {@code ThreadGroup} instance containing {@code task} is empty.

Throws ProcessorAffinityException is thrown when the runtime fails to set the
affinity for platform-specific reasons.

Throws NullPointerException when {@code set} is {@code null}.

4.5.5 Interface javax.realtime.BoundSchedulable

Declaration

@SCJAllowed
public interface BoundSchedulable extends javax.realtime.Schedulable,

javax.realtime.BoundRealtimeExecutor

Description
A marker interface to provide a type safe reference to all schedulables that are
bound to a single underlying thread.

4.5.6 Interface javax.safetycritical.ManagedSchedulable

Declaration

@SCJAllowed
public interface ManagedSchedulable extends javax.realtime.BoundSchedulable

Description
In SCJ, all schedulable objects are managed by a mission.

This interface is implemented by all SCJ Schedulable classes. It defines the
mechanism by which the ManagedSchedulable is registered with the mission
for its management. This interface is used by SCJ classes. It is not intended
for direct use by application classes.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

93

Safety-Critical Java Technology Specification

Methods

@SCJAllowed(javax.safetycritical.annotate.Level.SUPPORT)
@SCJPhase({javax.safetycritical.annotate.Phase.CLEANUP})
@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

public void cleanUp()

Runs any end-of-mission clean up code associated with this schedulable object.

Application developers implement this method with code to be executed when
this schedulable object’s execution is disabled (after termination has been re-
quested of the enclosing mission).

When the cleanUp method is called, the private memory area associated with
this schedulable object shall be the current memory area. If desired, the cleanUp
method may introduce new private memory areas. The memory allocated to
ManagedSchedulables shall be available to be reclaimed when its Mission’s
cleanUp method returns.

@SCJAllowed
@SCJPhase({javax.safetycritical.annotate.Phase.INITIALIZATION})
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
public void register()

Register this managed schedulable with the current mission.

@SCJAllowed(javax.safetycritical.annotate.Level.SUPPORT)
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

public void signalTermination()

Called by the infrastructure to indicate that the enclosing mission has been
instructed to terminate.

The application can override the default implementations of signalTermina-
tion() to facilitate termination of the ManagedSchedulable.

94 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

4.5.7 Class javax.realtime.AsyncBaseEventHandler

Declaration

@SCJAllowed
public abstract class AsyncBaseEventHandler implements

javax.realtime.Schedulable extends java.lang.Object

Description
This is the base class for all asynchronous event handlers. In SCJ, this is an
empty class.

Methods

@SCJAllowed
@SCJPhase({javax.safetycritical.annotate.Phase.RUN})
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
public void interrupt()

Behaves as if {@code Thread.interrupt()} were called on the implementation
thread underlying this Schedulable. throws IllegalSchedulableStateException
when {@code this} is not currently releasable, i.e., its start method has not
been called, or it has terminated.

@SCJAllowed
@SCJPhase({javax.safetycritical.annotate.Phase.RUN})
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
public boolean isInterrupted()

Determines whether or not any interrupt is pending.

returns {@code true} when and only when the interrupt is pending.

4.5.8 Class javax.realtime.AsyncEventHandler

Declaration

@SCJAllowed
public class AsyncEventHandler extends javax.realtime.AsyncBaseEventHandler

Description
In SCJ, all asynchronous events have their handlers bound to a thread when
they are created (during the initialization phase). The binding is permanent.
Thus, the AsyncEventHandler constructors are hidden from public view in the
SCJ specification.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

95

Safety-Critical Java Technology Specification

Methods

@SCJAllowed(javax.safetycritical.annotate.Level.SUPPORT)
@SCJPhase({javax.safetycritical.annotate.Phase.RUN})
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
public void handleAsyncEvent()

This method must be overridden by the application to provide the handling
code. Note that this method shall not self-suspend when called in a Level 0
mission.

@SCJAllowed(javax.safetycritical.annotate.Level.SUPPORT)
@SCJPhase({javax.safetycritical.annotate.Phase.RUN})
@Override
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
public final void run()

This method is used by the SCJ infrastructure. It should not be called by the
application.

4.5.9 Class javax.realtime.AsyncLongEventHandler

Declaration

@SCJAllowed
public class AsyncLongEventHandler extends javax.realtime.AsyncBaseEventHandler

Description

In SCJ, all asynchronous events must have their handlers bound when they
are created (during the initialization phase). The binding is permanent. Thus,
the AsyncLongEventHandler constructors are hidden from public view in the
SCJ specification. This class differs from AsyncEventHandler in that when it
is fired, a long integer is provided for use by the released event handler(s).

Methods

96 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJAllowed(javax.safetycritical.annotate.Level.SUPPORT)
@SCJPhase({javax.safetycritical.annotate.Phase.RUN})
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
public void handleAsyncEvent(long data)

This method must be overridden by the application to provide the handling
code. Note that this method shall not self-suspend when called in a Level 0
mission.

@SCJAllowed(javax.safetycritical.annotate.Level.SUPPORT)
@SCJPhase({javax.safetycritical.annotate.Phase.RUN})
@Override
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
public final void run()

This method is used by the SCJ infrastructure. It should not be called by the
application.

4.5.10 Interface javax.realtime.BoundAsyncBaseEventHandler

Declaration

@SCJAllowed
public interface BoundAsyncBaseEventHandler extends

javax.realtime.BoundSchedulable

Description
An empty interface. It is required in order to allow references to all bound
handlers.

4.5.11 Class javax.realtime.BoundAsyncEventHandler

Declaration

@SCJAllowed
public class BoundAsyncEventHandler implements

javax.realtime.BoundAsyncBaseEventHandler extends
javax.realtime.AsyncEventHandler

27 January 2017 Version 0.109
Confidentiality: Public Distribution

97

Safety-Critical Java Technology Specification

Description
The BoundAsyncEventHandler class is a base class inherited from RTSJ. None
of its methods or constructors are publicly available.

Methods

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMayAllocate({})
@Override
public javax.realtime.Affinity getAffinity()

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION})

@SCJMayAllocate({})
@Override
public void setAffinity(Affinity set)

throws java.lang.IllegalArgumentException,
javax.realtime.ProcessorAffinityException, java.lang.NullPointerException

4.5.12 Class javax.realtime.BoundAsyncLongEventHandler

Declaration

@SCJAllowed
public class BoundAsyncLongEventHandler implements

javax.realtime.BoundAsyncBaseEventHandler extends
javax.realtime.AsyncLongEventHandler

Description
The BoundAsyncLongEventHandler is a base class inherited from RTSJ. None
of its methods or constructors are publicly available. This class differs from
BoundAsyncEventHandler in that when it is released, a long integer is provided
for use by the released event handler(s).

Methods

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJMaySelfSuspend(false)

98 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION})

@SCJMayAllocate({})
@Override
public javax.realtime.Affinity getAffinity()

Note: since this is only used by infrastructure, we don’t specify the Memor-
yAreaEncloses relationships. public BoundAsyncLongEventHandler(SchedulingParameters
scheduling, ReleaseParameters release, MemoryParameters memory, Memo-
ryArea area, ProcessingGroupParameters group, boolean noheap, Runnable
logic) { super(scheduling, release, memory, area, group, noheap, logic); }

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMayAllocate({})
@Override
public void setAffinity(Affinity set)

throws java.lang.IllegalArgumentException,
javax.realtime.ProcessorAffinityException, java.lang.NullPointerException

4.5.13 Class javax.safetycritical.ManagedEventHandler

Declaration

@SCJAllowed
public abstract class ManagedEventHandler implements

javax.safetycritical.ManagedSchedulable extends
javax.realtime.BoundAsyncEventHandler

Description
In SCJ, all handlers must be registered with the enclosing mission, so SCJ
applications use classes that are based on the ManagedEventHandler and the
ManagedLongEventHandler class hierarchies. These class hierarchies allow
a mission to manage all the handlers that are created during its initialization
phase. The infrastructure sets up a private memory area for each managed
handler that is entered before a call to handleAsyncEvent and is left on return.

The scheduling allocation domain of all managed event handlers is set, by de-
fault, to the scheduling allocation domain from where the associated mission
initialization is being performed.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

99

Safety-Critical Java Technology Specification

Methods

@SCJAllowed(javax.safetycritical.annotate.Level.SUPPORT)
@SCJPhase({javax.safetycritical.annotate.Phase.CLEANUP})
@SCJMaySelfSuspend(false)
@Override
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

public void cleanUp()

Runs any end-of-mission clean up code associated with this schedulable object.
see ManagedSchedulable.cleanUp()

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.String getName()

returns a string name of this event handler. The actual object returned shall be the
same object that was passed to the event handler constructor.

@SCJPhase({javax.safetycritical.annotate.Phase.INITIALIZATION})
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@Override
@SCJAllowed
public void register()

Register this event handler with the current mission.

see javax.safetycritical.ManagedSchedulable.register()

@SCJAllowed(javax.safetycritical.annotate.Level.SUPPORT)
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

public void signalTermination()

Called by the infrastructure to indicate that the enclosing mission has been
instructed to terminate. The default behavior is no action.

100 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

4.5.14 Class javax.safetycritical.ManagedLongEventHandler

Declaration

@SCJAllowed
public abstract class ManagedLongEventHandler implements

javax.safetycritical.ManagedSchedulable extends
javax.realtime.BoundAsyncLongEventHandler

Description
In SCJ, all handlers must be registered with the enclosing mission, so SCJ
applications use classes that are based on the ManagedEventHandler and the
ManagedLongEventHandler class hierarchies. These class hierarchies allow
a mission to manage all the handlers that are created during its initialization
phase. The infrastructure sets up a private memory area for each managed
handler that is entered before a call to handleAsyncEvent and is left on return.
This class differs from ManagedEventHandler in that when it is released, a
long integer is provided for use by the released event handler(s).

The scheduling allocation domain of all managed long event handlers is set, by
default, to the scheduling allocation domain from where the associated mission
initialization is being performed.

Methods

@SCJAllowed(javax.safetycritical.annotate.Level.SUPPORT)
@SCJPhase({javax.safetycritical.annotate.Phase.CLEANUP})
@SCJMaySelfSuspend(false)
@Override
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

public void cleanUp()

Runs any end-of-mission clean up code associated with this schedulable object.
see ManagedSchedulable.cleanUp()

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.String getName()

27 January 2017 Version 0.109
Confidentiality: Public Distribution

101

Safety-Critical Java Technology Specification

returns a string name for this handler, including its priority and its level.

@SCJPhase({javax.safetycritical.annotate.Phase.INITIALIZATION})
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJAllowed
public void register()

Register this event handler with the current mission.

See javax.safetycritical.ManagedSchedulable.register()

Throws IllegalStateException if this is an instance of MissionSequencer and the
current execution environment does not support Level 2 capabilities.

@SCJAllowed(javax.safetycritical.annotate.Level.SUPPORT)
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

public void signalTermination()

Called by the infrastructure to indicate that the enclosing mission has been
instructed to terminate. The default behaviour is to perform no action.

4.5.15 Class javax.safetycritical.PeriodicEventHandler

Declaration

@SCJAllowed
public abstract class PeriodicEventHandler extends

javax.safetycritical.ManagedEventHandler

Description
This class permits the automatic periodic execution of code. The handleAsync-
Event method behaves as if the handler were attached to a periodic timer asyn-
chronous event. The handler will be executed once for every release time, even
in the presence of overruns.

This class is abstract; non-abstract sub-classes must override the method handle-
AsyncEvent and may override the default cleanUp method.

Note that the values in parameters passed to the constructors are those that will
be used by the infrastructure. Changing these values after construction will
have no impact on the created event handler.

Note: all time-triggered events are subject to release jitter. See section 4.8.4
for a discussion of the impact of this on application scheduling.

102 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Constructors

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJPhase({javax.safetycritical.annotate.Phase.INITIALIZATION})
@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

public PeriodicEventHandler(PriorityParameters priority,
PeriodicParameters release,
ScopeParameters storage,
ConfigurationParameters config,
String name)

Constructs a periodic event handler.

The values passed as constructor parameters are captured at construction time.
Any subsequent mutation of the parameter objects has no effect on the behavior
of the constructed object.

priority — specifies the priority parameters for this periodic event handler. Must
not be null.

release — specifies the periodic release parameters, in particular the start time,
period and deadline miss handler. Note that a relative start time is not relative to
NOW but relative to the point in time when initialization is finished and the timers
are started. If the start time is absolute and it is has passed, the handler is release
immediately. This argument must not be null.

storage — specifies the ScopeParameters for this periodic event handler

config — specifies the ConfigurationParameters for this periodic event handler

Throws IllegalArgumentException when priority, release, or storage is null or when
any deadline miss handler specified in release is not an AperiodicEventHandler.

@SCJAllowed
@SCJPhase({javax.safetycritical.annotate.Phase.INITIALIZATION})
@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

public PeriodicEventHandler(PriorityParameters priority,
PeriodicParameters release,
ScopeParameters storage,
ConfigurationParameters config)

27 January 2017 Version 0.109
Confidentiality: Public Distribution

103

Safety-Critical Java Technology Specification

This constructor behaves the same as a call to PeriodicEventHandler(Priori-
tyParameters, PeriodicParameters, ConfigurationParameters, String) with the
arguments (priority, release, storage, config, null).

Methods

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJPhase({

javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(false)
public <T extends javax.realtime.HighResolutionTime<T>> T getActualStartTime()

Get the actual start time of this handler. The actual execution start time of
the handler is different from the requested start time (passed at construction
time) when the requested start time is an absolute time that would occur before
the mission has been started. In this case, the actual start time is the time the
mission started execution. If the actual start time is equal to the effective start
time, then the method behaves as if getRequestedStartTime() method has been
called. If it is different, then a newly created time object is returned. The time
value is associated with the same clock as that used with the original start time
parameter.

returns a reference to the actual start time based on the clock used to start the
timer.

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJPhase({

javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(false)
public <T extends javax.realtime.HighResolutionTime<T>> T getEffectiveStartTime()

Get the effective start time of this handler. If the clock associated with the
start time parameter and the period parameter (that were passed at construction
time) are the same, then the method behaves as if getActualStartTime() has
been called. If the two clocks are different, then the method returns a newly
created object whose time is the current time of the clock associated with the
period parameter (passed at construction time) when the handler is actually
started.

returns a reference to a newly-created object containing the effective start time
based on the clock associated with the period parameter.

104 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJPhase({

javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(false)
public javax.realtime.AbsoluteTime getLastReleaseTime()

Get the last release time of this handler.

returns a reference to a newly-created object containing this handlers’s last release
time, based on the clock associated with the period parameter used at construction
time.

Throws IllegalStateException if this handler has not been released since it was
started.

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJPhase({

javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(false)
public javax.realtime.AbsoluteTime getNextReleaseTime()

Get the time at which this handler is next expected to be released.

returns The absolute time at which this handler is expected to be released in a
newly allocated AbsoluteTime object. The clock association of the returned time is
the clock on which the period parameter (passed at construction time) is based.

Throws IllegalStateException if this handler has not been started or has terminated.

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJPhase({

javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(false)
public javax.realtime.AbsoluteTime getNextReleaseTime(AbsoluteTime dest)

Get the time at which this handler is next expected to be released.

dest — The instance of AbsoluteTime which will be updated in place and returned.
The clock association of the dest parameter is ignored. When dest is null, a new
object is allocated for the result.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

105

Safety-Critical Java Technology Specification

returns The instance of AbsoluteTime passed as parameter, containing the absolute
time at which this handler is expected to be released. If the dest parameter is null the
result is returned in a newly allocated object. The clock association of the returned
time is the clock on which the period parameter (passed at construction time) is based.

Throws IllegalStateException if this handler has not been started or has terminated.

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public <T extends javax.realtime.HighResolutionTime<T>> T getRequestedStartTime()

Get the requested start time of this periodic handler. Note that the start time
uses copy semantics, so changes made to the value returned by this method will
not affect the start time of this handler if it has not already been started.

returns a reference to the start time parameter from the release parameters used
when constructing this handler.

4.5.16 Class javax.safetycritical.OneShotEventHandler

Declaration

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public abstract class OneShotEventHandler extends

javax.safetycritical.ManagedEventHandler

Description

This class permits the automatic execution of time-triggered code. The handle-
AsyncEvent method behaves as if the handler were attached to a one-shot timer
asynchronous event.

This class is abstract, non-abstract sub-classes must implement the method
handleAsyncEvent and may override the default cleanUp method.

Note that the values in parameters passed to the constructors are those that will
be used by the infrastructure. Changing these values after construction will
have no impact on the created event handler.

Note: all time-triggered events are subject to release jitter. See section 4.8.4
for a discussion of the impact of this on application scheduling.

106 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Constructors

@SCJAllowed
@SCJPhase({javax.safetycritical.annotate.Phase.INITIALIZATION})
@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

public OneShotEventHandler(PriorityParameters priority,
HighResolutionTime<?> time,
AperiodicParameters release,
ScopeParameters storage,
ConfigurationParameters config,
String name)

Constructs a one-shot event handler.

priority — specifies the priority parameters for this event handler. Must not be null.

time — specifies the time at which the handler should be released for execution. A
relative time is relative to the start of the associated mission. An absolute time that is
before the mission is started is equivalent to a relative time of 0.0. A null parameter
indicates that no release of the handler should be scheduled.

release — specifies the aperiodic release parameters, in particular the deadline
miss handler. A null parameter indicates that there is no deadline associated with this
handler.

storage — specifies the ScopeParameters for this handler

config — specifies the ConfigurationParameters for this handler

name — a name provided by the application to be attached to this handler.

Throws IllegalArgumentException if priority or storage is null; or if time is a
negative relative time; or when a deadline miss handler specfied in release is not an
AperiodicEventHandler.

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJPhase({javax.safetycritical.annotate.Phase.INITIALIZATION})
@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

public OneShotEventHandler(PriorityParameters priority,
HighResolutionTime<?> time,
AperiodicParameters release,
ScopeParameters storage,
ConfigurationParameters config)

27 January 2017 Version 0.109
Confidentiality: Public Distribution

107

Safety-Critical Java Technology Specification

This constructor behaves the same as a call to OneShotEventHandler(priority,
time, release, storage, config, null).

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJPhase({javax.safetycritical.annotate.Phase.INITIALIZATION})
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
public OneShotEventHandler(PriorityParameters priority,

AperiodicParameters release,
ScopeParameters storage,
ConfigurationParameters config)

This constructor behaves the same as a call to OneShotEventHandler(priority,
null, release, storage, null).

Methods

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJPhase({

javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
public boolean deschedule()

Deschedules the next release of the handler.

returns true if the handler was scheduled to be released false otherwise.

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJPhase({

javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
public javax.realtime.AbsoluteTime getNextReleaseTime(AbsoluteTime dest)

Get the time at which this handler is next expected to be released.

dest — The instance of AbsoluteTime which will be updated in place and returned.
The clock association of the dest parameter is ignored. When dest is null a new
object is allocated for the result.

returns An instance of an AbsoluteTime object containing the absolute time at
which this handler is expected to be released, or null if there is no currently scheduled
release. If the dest parameter is null the result is returned in a newly allocated object;
otherwise it is returned in the dest object.

108 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJPhase({

javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
public void scheduleNextReleaseTime(HighResolutionTime<?> time)

Changes the next scheduled release time for this handler. This method can take
either an AbsoluteTime or a RelativeTime for its argument, and the handler
will be released as if it was created using that type for its time parameter. An
absolute time in the past is equivalent to a relative time of 0.0. The rescheduling
value will be effective before the return of the method.

If there is no outstanding scheduled next release, this sets one.

If scheduleNextReleaseTime is invoked with a null parameter, any next release
time is descheduled.

Throws IllegalArgumentException if time is a negative RelativeTime value or clock
associated with time is not the same clock that was used during construction.

4.5.17 Class javax.safetycritical.AperiodicEventHandler

Declaration

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public abstract class AperiodicEventHandler extends

javax.safetycritical.ManagedEventHandler

Description

This class encapsulates an aperiodic event handler. Concrete subclasses must
implement the handleAsyncEvent method and may override the default cleanUp
method.

There is no application access to the RTSJ fireCount mechanisms, so the asso-
ciated methods are missing; see the AperiodicParameters class description for
additional information.

Note that the values in parameters passed to the constructors are those that will
be used by the infrastructure. Changing these values after construction will
have no impact on the created event handler.

Constructors

27 January 2017 Version 0.109
Confidentiality: Public Distribution

109

Safety-Critical Java Technology Specification

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJPhase({javax.safetycritical.annotate.Phase.INITIALIZATION})
@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

public AperiodicEventHandler(PriorityParameters priority,
AperiodicParameters release,
ScopeParameters storage,
ConfigurationParameters config)

Constructs an aperiodic event handler that can be explicitly released.

The values passed as constructor parameters are captured at construction time.
Any subsequent mutation of the parameter objects has no effect on the behavior
of the constructed object.

priority — specifies the priority parameters for this handler. Must not be null.

release — specifies the release parameters for this handler. A null parameter
indicates that there is no deadline associated with this handler.

storage — - it must not be null. specifies the ScopeParameters for this handler.

config — specifies the ConfigurationParameters for this handler.

Throws IllegalArgumentException if priority or storage is null; or when any dead-
line miss handler specified is not an AperiodicEventHandler.

Methods

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public final void release()

Release this aperiodic event handler.

4.5.18 Class javax.safetycritical.AperiodicLongEventHandler

Declaration

110 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public abstract class AperiodicLongEventHandler extends

javax.safetycritical.ManagedLongEventHandler

Description

This class encapsulates an aperiodic event handler that is passed a long value
when it is released. Concrete subclasses must implement the handleAsync-
Event method and may override the default cleanUp method.

There is no programmer access to the RTSJ fireCount mechanisms, so the
associated methods are missing; see the AperiodicParameters class description
for additional information.

Note that the values in parameters classes passed to the constructors are those
that will be used by the infrastructure. Changing these values after construction
will have no impact on the created event handler.

Constructors

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJPhase({javax.safetycritical.annotate.Phase.INITIALIZATION})
@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

public AperiodicLongEventHandler(PriorityParameters priority,
AperiodicParameters release,
ScopeParameters storage,
ConfigurationParameters config)

Constructs an aperiodic long event handler that can be released.

The values passed as constructor parameters are captured at construction time.
Any subsequent mutation of the parameter objects has no effect on the behavior
of the constructed object.

priority — specifies the priority parameters for this handler; it must not be null.

release — specifies the release parameters for this handler. A null parameter
indicates that there is no deadline associated with this handler.

storage — specifies the ScopeParameters for this handler; it must not be null.

config — specifies the ConfigurationParameters for this handler.

Throws IllegalArgumentException if priority or storge is null; or when any deadline
miss handler specified in release is not an AperiodicHandler.

Methods

27 January 2017 Version 0.109
Confidentiality: Public Distribution

111

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public final void release(long data)

Release this long aperiodic event handler.

data — is the value associated with the release.

4.6 Threads and Real-Time Threads

In keeping with the approach outlined above for events and their handlers, the thread
APIs are also significantly simplified relative to their counterparts in the RTSJ. They
are shown in Figure 4.3.

Unless indicated otherwise, the classes defined in this section are thread safe.

4.6.1 Class java.lang.Thread

Declaration

@SCJAllowed
public class Thread implements java.lang.Runnable extends java.lang.Object

Description
The Thread class is not directly available to the application in SCJ. However,
some of its static methods are used, and the infrastructure will extend from this
class and hence some of its methods are inherited.

Methods

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
public static java.lang.Thread.UncaughtExceptionHandler

getDefaultUncaughtExceptionHandler()

112 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Figure 4.3: Thread classes

27 January 2017 Version 0.109
Confidentiality: Public Distribution

113

Safety-Critical Java Technology Specification

Gets the current thread’s default uncaught exeption handler. Allocates no mem-
ory. Does not allow this to escape local variables. The result returned from this
method may reside in scoped memory in some scope that encloses this.

returns the default handler for uncaught exceptions.

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
public java.lang.Thread.UncaughtExceptionHandler getUncaughtExceptionHandler()

Get the thread’s uncaught exception handler.

returns the handler invoked when this thread abruptly terminates due to an un-
caught exception. Allocates no memory. Does not allow ”this” to escape local vari-
ables. The result returned from this method may reside in scoped memory in some
scope that encloses ”this”.

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
public void interrupt()

Interrupts the thread. Allocates no memory. Does not allow this to escape local
variables.

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMayAllocate({})
public static boolean interrupted()

Tests whether the thread has been interrupted. The interrupted status of the
thread is cleared by this method. Allocates no memory. Does not allow this to
escape local variables.

114 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

returns true if the current thread has been interrupted.

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
public final boolean isAlive()

Tests whether the thread is alive.

returns true if the current thread has not returned from run(). Allocates no memory.
Does not allow this to escape local variables.

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
public boolean isInterrupted()

Tests whether the thread has been interrupted. The interrupted status of the
thread is not affected by this method. Allocates no memory. Does not allow
this to escape local variables.

returns true if a thread has been interrupted.

@SCJAllowed(javax.safetycritical.annotate.Level.SUPPORT)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void run()

This method is overridden by the application to do the work desired for this
thread. This method should not be directly called by the application.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

115

Safety-Critical Java Technology Specification

@SCJPhase({
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJAllowed
public java.lang.String toString()

Gets the name and priority for the thread.

returns a string representation of this thread, including the thread’s name and pri-
ority. Does not allow this to escape local variables. Allocates a String and associated
internal “structure” (e.g. char[]) in caller’s scope.

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
public static void yield()

Causes the thread to yield to other threads that may be ready to run. Causes the
currently executing thread object to temporary pause and allow other threads
to execute.

4.6.2 Class javax.realtime.RealtimeThread

Declaration

@SCJAllowed
public class RealtimeThread implements javax.realtime.BoundSchedulable,

javax.realtime.AsyncTimable extends java.lang.Thread

Description

Real-time threads cannot be directly created by an SCJ application. However,
they are needed by the infrastructure to support ManagedThreads.

The class declares some static methods that can be used by all managed schedu-
lables. For example, the spin method can be used at Level 0, hence the class is
visible at Level 0.

Methods

116 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJAllowed(javax.safetycritical.annotate.Level.SUPPORT)
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@Override
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public final void fire()

Used by the SCJ infrastructure to support the time release of real-time threads
and timers with user-defined clocks. Should not be called by the application.

@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMayAllocate({})
@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@Override
public javax.realtime.Affinity getAffinity()

@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION})

@SCJMayAllocate({})
@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@Override
public void setAffinity(Affinity set)

throws java.lang.IllegalArgumentException,
javax.realtime.ProcessorAffinityException, java.lang.NullPointerException

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)
@SCJMaySelfSuspend(true)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

public static void sleep(HighResolutionTime<?> time)
throws java.lang.InterruptedException

Removes the currently execution schedulable object from the set of runnable
schedulable objects until time.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

117

Safety-Critical Java Technology Specification

Throws InterruptedException when the thread is interrupted by interrupt() during
the time between calling this method and returning from it. This exception cannot be
thrown if the method is called from a managed event handler.

Throws IllegalArgumentException when time is null, when time is a relative time
less than zero, or when the Chronograph of time is not a Clock.

@SCJAllowed
@SCJMaySelfSuspend(true)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static void spin(int nanos)
throws java.lang.InterruptedException,

java.lang.ClassCastException, java.lang.IllegalArgumentException

The same as calling spin(HighResolutionTime) with a relative time on the de-
fault real-time clock,of zero milliseconds, and nanos.

nanos — the number of nanoseconds to wait.

Throws InterruptedException when the thread is interrupted by interrupt() during
the time between calling this method and returning from it. This exception cannot be
thrown if the method is called from a managed event handler.

Throws IllegalArgumentException when nanos is less than zero.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static void spin(HighResolutionTime<?> time)
throws java.lang.InterruptedException,

java.lang.ClassCastException, java.lang.IllegalArgumentException

Similar to sleep(HighResolutionTime) except it performs a busy wait by polling
the Chronograph for the duration of time.

time — an absolute or relative time at which to stop spinning.

118 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Throws InterruptedException when the thread is interrupted by interrupt() during
the time between calling this method and returning from it. This exception cannot be
thrown if the method is called from a managed event handler.

Throws IllegalArgumentException when time is null , or when time is a relative
time less than zero.

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)
@SCJMaySelfSuspend(true)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

public static void suspend(HighResolutionTime<?> time)

The same as sleep(HighResolutionTime) except that it is not interruptible.

time — an absolute or relative time until which to suspend.

Throws IllegalArgumentException when time is null, when time is a relative time
less than zero, or when the Chronograph of time is not a Clock.

4.6.3 Class javax.safetycritical.ManagedThread

Declaration

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)
public abstract class ManagedThread implements

javax.safetycritical.ManagedSchedulable extends javax.realtime.RealtimeThread

Description
This class enables a mission to keep track of all the no-heap realtime threads
that are created during the mission’s initialization phase.

Note that the values in parameters classes passed to the constructors are those
that will be used by the infrastructure. Changing these values after construction
will have no impact on the created no-heap real-time thread. Managed threads
have no release parameters.

Constructors

@SCJPhase({javax.safetycritical.annotate.Phase.INITIALIZATION})
@SCJMaySelfSuspend(false)
@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,

27 January 2017 Version 0.109
Confidentiality: Public Distribution

119

Safety-Critical Java Technology Specification

javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

public ManagedThread(PriorityParameters priority,
ReleaseParameters release,
ScopeParameters scope,
ConfigurationParameters storage,
Runnable logic)

Creates a thread that is managed by the enclosing mission.

The priority represented by PriorityParameters is consulted only once, at con-
struction time.

priority — specifies the priority parameters for this managed thread; it must not be
null.

storage — specifies the memory parameters for this thread. May not be null.

logic — the code for this managed thread.

Throws IllegalArgumentException if priority or storage is null.

Methods

@SCJAllowed(javax.safetycritical.annotate.Level.SUPPORT)
@SCJPhase({javax.safetycritical.annotate.Phase.CLEANUP})
@SCJMaySelfSuspend(false)
@Override
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

public void cleanUp()

Runs any end-of-mission clean up code associated with this schedulable object.
see ManagedSchedulable.cleanUp()

@SCJPhase({javax.safetycritical.annotate.Phase.INITIALIZATION})
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@Override
@SCJAllowed
public void register()

Register this managed thread with the current mission.

see javax.safetycritical.ManagedSchedulable.register().

120 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJPhase({javax.safetycritical.annotate.Phase.INITIALIZATION})
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)
public static void setDefaultUncaughtExceptionHandler(

Thread.UncaughtExceptionHandler eh)

This method is used by the application to define an exception handler that will
handle uncaught exceptions.

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)
@SCJPhase({javax.safetycritical.annotate.Phase.INITIALIZATION})
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
public void setUncaughtExceptionHandler(Thread.UncaughtExceptionHandler eh)

Set the current uncaught exception handler.

eh — the UncaughtExceptionHandler to be set for this managed thread. The eh
argument must reside in a scope that encloses the scope of this.

@SCJAllowed(javax.safetycritical.annotate.Level.SUPPORT)
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

public void signalTermination()

Called by the infrastructure to indicate that the enclosing mission has been
instructed to terminate. The default behaviour is no action.

4.7 Scheduling and Related Activities

Level 0 applications are scheduled by a cyclic executive where the schedule is created
manually or by static analysis tools offline. Level 1 and Level 2 applications are
assumed to be scheduled by a FIFO preemptive priority scheduler.

Unless indicated otherwise, the classes defined in this section are thread safe

4.7.1 Class javax.safetycritical.CyclicSchedule

See Section 3.4.5.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

121

Safety-Critical Java Technology Specification

4.7.2 Class javax.safetycritical.CyclicExecutive

See Section 3.4.6.

4.7.3 Class javax.realtime.Scheduler

Declaration

@SCJAllowed
public abstract class Scheduler extends java.lang.Object

Description
The RTSJ supported generic on-line feasibility analysis via the Scheduler class
prior to RTSJ version 2.0, but this is now deprecated in version 2.0. SCJ
supports only off-line schedulability analysis; hence all of the methods in this
class are omitted.

Methods

@SCJAllowed
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
public static javax.realtime.Schedulable currentSchedulable()

Gets the current schedulable.

returns a reference to the calling Schedulable.

Throws UnsupportedOperationException if called from an interrupt handler.

4.7.4 Class javax.realtime.PriorityScheduler

Declaration

@SCJAllowed
public abstract class PriorityScheduler extends javax.realtime.Scheduler

Description
Priority-based dispatching is supported at Level 1 and Level 2. The only access
to the priority scheduler is for obtaining the minimum and maximum priority.

Methods

122 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public abstract int getMaxPriority()

Gets the maximum software real-time priority supported by this scheduler.

returns the maximum priority supported by this scheduler.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public abstract int getMinPriority()

Gets the minimum software real-time priority supported by this scheduler.

returns the minimum priority supported by this scheduler.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public abstract int getNormPriority()

returns the normal software real-time priority supported by this scheduler.

4.7.5 Class javax.realtime.FirstInFirstOutScheduler

Declaration

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public class FirstInFirstOutScheduler extends javax.realtime.PriorityScheduler

Description

27 January 2017 Version 0.109
Confidentiality: Public Distribution

123

Safety-Critical Java Technology Specification

A version of javax.realtime.PriorityScheduler where once a thread is sched-
uled at a given priority, it runs until it is blocked or is preempted by a higher
priority thread. When preempted, it remains the next thread ready for its prior-
ity. This is the default scheduler for realtime tasks. It represents the required
(by the RTSJ) priority-based scheduler. The default instance is the base sched-
uler which does fixed priority, preemptive scheduling.

Methods

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@Override
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int getMaxPriority()

Obtain the maximum priority available for a schedulable managed by this
scheduler.

returns The value of the maximum priority.

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@Override
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int getMinPriority()

Obtain the minimum priority available for a schedulable managed by this sched-
uler.

returns The minimum priority used by this scheduler.

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@Override
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,

124 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int getNormPriority()

Obtain the normal priority available for a schedulable managed by this sched-
uler.

returns The value of the normal priority.

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static javax.realtime.FirstInFirstOutScheduler instance()

Obtain a reference to the distinguished instance of {@code PriorityScheduler}
which is the system’s base scheduler.

returns A reference to the distinguished instance {@code PriorityScheduler}.

4.7.6 Class javax.realtime.Affinity

Declaration

@SCJAllowed
public final class Affinity extends java.lang.Object

Description
This class is the API for all processor-affinity-related aspects of the RTSJ that
are relevant to the SCJ. It includes a factory that generates Affinity objects. The
explicit setting of the affinity of SCJ managed schedulables is performed dur-
ing its mission initialisation phase when the managed schedulable is registered.
If no affinity is set, the managed schedulable inherits the affinity of its mission
sequencer.

An affinity set is a set of processors that can be associated with a real-time
thread or async event handler. For SCJ, an affinity set is associated to a man-
aged schedulable. Each implementation supports an array of predefined affinity
sets. They can be used either to reflect the scheduling arrangement of the un-
derlying OS or they can be used by the system designer to impose defaults for,

27 January 2017 Version 0.109
Confidentiality: Public Distribution

125

Safety-Critical Java Technology Specification

schedulable objects. An application is only allowed to dynamically create new
affinity sets with cardinality of one. This restriction reflects the concern that
not all operating systems will support multiprocessor affinity sets.

The processor membership of an affinity set is immutable. The schedulable
object associations to an affinity set are mutable.

The internal representation of an affinity set in an Affinity instance is not spec-
ified, but the representation that is used to communicate with this class is a
BitSet where each bit corresponds to a logical processor ID. The relationship
between logical and physical processors is implementation defined, and may
differ from one implementation to another.

The affinity set factory may be used to create affinity sets with a single proces-
sor member at any time, though this operation only supports processor mem-
bers that are valid as the processor affinity for a schedulable object (at the time
of the affinity set’s creation.) The factory cannot create an affinity set with
more than one processor member, but such affinity sets are supported. They
may be internally created by the SCJ infrastructure, probably at start up time.

The set of affinity sets created by the infrastructure at start up (the prede-
fined set) is visible through the getPredefinedAffinities(Affinity[]) method. In
SCJ the initial mission sequencer has an affinity equal to getPredefinedAffini-
ties(Affinity[])[0]; that is the first element of the returned array

External changes to the set of processors available to the SCJ infrastructure is
likely to cause serious trouble ranging from violation of assumptions underly-
ing schedulability analysis to freezing the entire SCJ program, so if a system
is capable of such manipulation it should not exercise it on SCJ processes.

There is no public constructor for this class. All instances must be generated
by the factory method (generate).

Methods

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static final javax.realtime.Affinity generate(BitSet bitSet)

Returns an Affinity set with the affinity bitSet and no associations.

Platforms that support specific affinity sets will register those Affinity instances
with Affinity. They appear in the arrays returned bygetPredefinedAffinities() and
getPredefinedAffinities(Affinity[]).

126 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

bitSet — The set of processors associated with the generated Affinity.

returns The resulting Affinity.

Throws NullPointerException when bitSet is null.

Throws IllegalArgumentException when bitSet does not refer to a valid set of pro-
cessors, where “valid” is defined as the bitset from a pre-defined affinity set, or a
bitset of cardinality one containing a processor from the set returned by getAvail-
ableProcessors(). The definition of “valid set of processors” is system dependent;
however, every set consisting of one valid processor makes up a valid bit set, and
every bit set corresponding to a pre-defined affinity set is valid.

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static final java.util.BitSet getAvailableProcessors(BitSet dest)

In systems where the set of processors available to a process is dynamic (e.g.,
because of system management operations or because of fault tolerance capa-
bilities), the result of this operation shall reflect the processsors that are cur-
rently allocated to the SCJ infrastructure and are currently available to execute
tasks.

dest — If dest is non-null, use dest for the returned value. If it is null, create a new
BitSet.

returns the set of processors representing the set of processors currently valid for
the bitset argument to generate(BitSet).

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static final java.util.BitSet getAvailableProcessors()

This method is equivalent to getAvailableProcessors(null).

returns the set of processors available to the application.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

127

Safety-Critical Java Technology Specification

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static final javax.realtime.Affinity[] getPredefinedAffinities()

Equivalent to invoking getPredefinedAffinitySets(null).

returns an array of the pre-defined affinity sets.

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static final javax.realtime.Affinity[] getPredefinedAffinities(
Affinity [] dest)

Return an array containing all affinity sets that were predefined by the infras-
tructure.

dest — The destination array, or null.

returns dest or a newly created array if dest was null, populated with references to
the pre-defined affinity sets.

If dest has excess entries, they are filled with null.

Throws IllegalArgumentException when dest is not large enough.

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static final int getPredefinedAffinitiesCount()

Return the minimum array size required to store references to all the predefined
processor affinity sets.

128 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

returns the minimum array size required to store references to all the predefined
affinity sets.

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public final java.util.BitSet getProcessors(BitSet dest)

Return a BitSet representing the processor affinity set of this Affinity.

dest — Set dest to the BitSet value. If dest is null, create a new BitSet in the current
allocation context.

returns a BitSet representing the processor affinity set of this Affinity.

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public final java.util.BitSet getProcessors()

Return a BitSet representing the processor affinity set for this Affinity.

returns a newly created BitSet representing this Affinity.

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public final boolean isProcessorInSet(int processorNumber)

Ask whether a processor is included in this affinity set.

processorNumber — is a logical processor number

returns true if and only if processorNumber is a member of this affinity set.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

129

Safety-Critical Java Technology Specification

4.7.7 Class jaxax.safetycritical.Services

Declaration

@SCJAllowed
public class Services extends java.lang.Object

Description
This class provides a collection of static helper methods.

Methods

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static javax.safetycritical.annotate.Level getComplianceLevel()

Get the current compliance level of the SCJ implementation.

returns the compliance level

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static int getDefaultCeiling()

Get the default ceiling priority for objects. By default, it is PrioritySched-
uler.getMaxPriority. It is assumed that this can be changed using an imple-
mentation configuration option.

returns the default ceiling priority.

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJPhase({javax.safetycritical.annotate.Phase.INITIALIZATION})
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
public static void setCeiling(Object obj, int pri)

130 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Sets the ceiling priority of object obj The priority pri can be in the software or
hardware priority range. Ceiling priorities are immutable.

obj — the object who ceiling is to be set.

pri — the ceiling value.

Throws IllegalSchedulableStateException if called outside the initialization phase
of a mission.

4.8 Rationale for the SCJ Concurrency Model

Traditionally, most safety-critical systems were small and sequential, relying on
cyclic executive scheduling to manually interleave the execution of any activities
within time constraints. Demonstration that timeliness requirements have been met
has been through construction and testing. The limitations of this approach are well
known[5].

As safety-critical systems have become larger and more complex, there has been a
gradual migration to programming models that support simple concurrent activities
(threads, tasks, event handlers, etc.) that share an address space with each other.
Whereas testing may have been adequate to prove reliable operations of sequential
programs, it is not sufficient to demonstrate that timing constraints are met in a con-
current program. This is because of the large number of computational states possible
in a concurrent program.

The transition from sequential to concurrent safety-critical systems has been accom-
panied by a shift from deterministic scheduling to predictable scheduling. Verifi-
cation of timing requirements relies on schedulability analysis (called “feasibility
analysis” in the RTSJ). Many of these techniques are now mature for single pro-
cessor systems, with a firm mathematical foundation, and are accepted by many cer-
tification authorities (e.g., simple utilization-based or response-time analysis using
rate-monotonic or deadline-monotonic priority ordering of threads). They rely on
the ability to determine the worst-case execution time of threads and the amount of
time they are blocked when accessing resources. The techniques for schedulability
analysis, worst-case execution time analysis and blocking time analysis are beyond
the scope of this specification. However, it is expected that schedulability analy-
sis will be performed by most, if not all, safety-critical systems implementers, and
their results will be included as evidence in any certification process for applications
written according to this specification.

Specifying subsets of languages for use in safety-critical systems is accepted practice,
as is constraining the way the subset is used. The Ada programming language, for
example, has led the way in using concurrent activities (which it refers to as tasks) for

27 January 2017 Version 0.109
Confidentiality: Public Distribution

131

Safety-Critical Java Technology Specification

real-time, embedded programs, and as of the 2005 version of the language standard
includes an explicit subset of Ada tasking constructs called the Ravenscar Profile that
are amenable to formal certification against standards such as DO-178C.

The SCJ concurrency model aims to ease the migration from sequential to concur-
rent safety-critical systems. Level 0 is effectively a static cyclic scheduler, whereas
Level 1 and Level 2 offer more dynamic, flexible scheduling.

4.8.1 Scheduling and Synchronization Issues

For schedulability analysis, all non-periodic activities must have bounded minimum
interarrival times. In the RTSJ, the use of sporadic release parameters provides a
mechanism with which the implementation can enforce these minimum arrival times.
However, the SCJ specification does not provide for enforcing minimum inter-arrival
times. Therefore, the SCJ specification uses the aperiodic parameter class and does
not support sporadic release parameters, leaving the enforcement of minimum inter-
arrival times to the application designer.

The priority ceiling emulation (PCE) protocol for bounding thread blocking during
synchronized methods was originally optional in the RTSJ because many real-time
operating systems support only priority inheritance. However, the priority ceiling
protocol has emerged in recent years as a preferred approach on a single processor
(under the assumption that schedulable objects do not self-suspend while holding
a lock) because it has an efficient implementation and under some conditions, has
the potential to guarantee that the program is deadlock free. It also ensures that
a schedulable object is blocked at most once in a single release (at the start of its
execution request).

Unlike the RTSJ, SCJ supports only the priority ceiling emulation protocol. Con-
sequently, SCJ defines its own interface. It simply provides a static method in the
javax.safetycritical.Services class that permits the ceiling of an object to be set.

The application of the priority ceiling emulation protocol to Java synchronized meth-
ods is not straightforward. Java allows lock retaining self-suspending operations such
as, for example, the sleep and join methods when called from synchronized code.
Furthermore, nested synchronized method calls that invoke the Object.waitmethod
can release only one of the locks being held. For these reasons, the SCJ does not
permit self-suspension while holding a lock at any compliance Level. At Level 2
where the use of the wait method is allowed; the following approaches are possible:

1. Prohibit all nested synchronized method calls. This seems draconian.

2. (Approach chosen for SCJ) Prohibit the call of the wait method from nested
synchronized methods. This would probably be difficult to test statically and

132 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

would require a run-time exception to be raised (presumably IllegalMonitorSta-
teException).

3. Allow all nested synchronized method calls with the standard Java semantics.
On a single processor system, the PCE protocol would have to degrade to prior-
ity inheritance in this case (unfortunately then multiple possible blocking and
the potential for deadlock). For multiprocessor systems, spinning for a lock
would no longer be bounded.

4. Allow all nested synchronized method calls, but provide an annotation to indi-
cate when synchronized code is suspension free.

SCJ prohibits the use of the wait() method in nested monitor calls and requires that
methods indicate via annotations when they do not self-suspend. This means that
a synchronized method can only call methods that will not self-suspend. Analysis
tools can then check this condition and avoid the need for runtime checks.

It is expected that a call to a synchronized method will always behave as if the priority
is raised during the method execution, even if there is no sharing of the object during
execution.

Finally, SCJ does not support the Java synchronized statement. The reason for this is
to simplify the static analysis techniques that are needed to determine which schedu-
lable objects use which locks. This is required to determine ceiling priorities.

4.8.2 Multiprocessors

Although the techniques for analyzing the timing properties of multiprocessor sys-
tems are still relatively in their infancy, there is general agreement on the growing
importance of multicore platforms for real-time and embedded systems, including
safety-critical systems. For this reason, this specification provides support for pro-
gramming multiprocessor platforms.

On a single processor, the priority ceiling emulation protocol has the following prop-
erties if a schedulable object does not self-suspend while holding a lock:

• no deadlocks can occur from the use of Java monitors, and
• each schedulable object can be blocked at most once during its release as a

result of sharing two or more Java monitors with other schedulable objects.

The ceiling of each shared object must be at least the maximum priority of all the
schedulable objects that access that shared object.

On a multiprocessor system (including multicore systems), the above properties still
hold as long as Java monitors are not shared between schedulable objects executing
on separate processors.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

133

Safety-Critical Java Technology Specification

If schedulable objects on separate processors are sharing objects and they do not
self-suspend while holding the monitor lock, then blocking can be bounded but the
absence of deadlock cannot be assured by the PCE protocol alone.

The usual approach to waiting for a lock that is held by a schedulable object on a
different processor is to spin (busy-wait). There are different approaches that can be
used by an implementation such as, for example, maintaining a FIFO/Priority queue
of spinning processors, and ensuring that the processors spin non-preemptively. SCJ
does not mandate any particular approach but requires an implementation to docu-
ment its approach (i.e., implementation-defined).

To avoid unbounded priority inversion, it is necessary to carefully set the ceiling
values.

On a Level 1 system, the schedulable objects are fully partitioned among the proces-
sors using the scheduling allocation domain concept. The ceiling of every synchro-
nized object that is accessible by more than one processor has to be set so that its
synchronized methods execute in a non-preemptive manner. This is because there is
no relationship between the priorities in one allocation domain and those in another.

On a Level 2 system, within a scheduling allocation domain, the value of the ceiling
priorities must be higher than all the schedulable objects on all the processors in
that scheduling allocation domain that can access the shared object. For monitors
shared between scheduling allocation domains, the monitor methods must run in a
non-preemptive manner.

Nested calls of synchronized methods, where the inner call blocks by calling the
wait method, results in the outer lock being held throughout the wait period. In mul-
tiprocessor systems, this should generally be avoided if spinning is used for lock
acquisition.

A lock is always required; using the priority model for locking is not sustainable with
multiprocessors.

4.8.3 Schedulability Analysis and MultiProcessors

While schedulability analysis (also sometimes called feasibility analysis) techniques
are mature for single processor systems, they are less mature for multiprocessor sys-
tems. Consequently, SCJ takes a very conservative approach. SCJ introduces the
notion of a scheduling allocation domain.

At Level 0, a single processor scheduling allocation domain is supported that is im-
plemented as a cyclic scheduler.

At Level 1, each scheduling allocation domain is a single processor and each pro-
cessor is scheduled using fixed priority preemptive scheduling. The schedulability

134 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

analysis is equivalent to the well-known single processor schedulability analysis, but
would be carried out for each scheduling allocation domain. Of course, the calcula-
tion of the blocking times will be different than they would be on a single processor
system due to the potential for remote blocking.

At Level 2, each scheduling allocation domain may be more than one processor.
Schedulable objects are globally scheduled according to fixed priority preemptive
scheduling. The schedulability analysis for these systems is emerging and expected
to mature over the next few years.

In all cases, the implementation-predefined affinity sets of the RTSJ are the schedul-
ing allocation domains. Only Level 2 allows a new affinity set to be created. This is
used to enable a schedulable object to fix its execution to a single processor. There
are several reasons why this might be needed. These include: the schedulable ob-
jects use a device attached to a specific processor, or the schedulable object is CPU
intensive, and to improve global utilization it needs to be run only on that processor,
but can also share that CPU with other globally scheduled objects.

4.8.4 Impact of Clock Granularity

All time-triggered computation can suffer from release jitter. This is defined to be the
variation in the actual time the computation becomes available for execution relative
to its scheduled release time. The amount of release jitter depends on two factors.
The first is the granularity of the clock/timer used to trigger the release. For example,
a periodic event handler that is due to be released at absolute time T will actually
be released at time T + ∆. ∆ is the difference between T and the first time the
timer clock advances to T ′, where T ′ ≥ T . The upper bound of ∆ is the value
returned from calling the getDrivePrecision method of the associated clock. It is for
this reason that the implementation of release times for periodic activities must use
absolute rather than relative time values, in order to avoid accumulating the drift.

The second contribution to release jitter is also related to the clock/timer. It is the
time interval between T ′ being signaled by the clock/timer and the time this event
is noticed by the underlying operating system or platform (e.g., perhaps because
interrupts have been disabled). Figure 4.4 taken from [1] illustrates the delays that
can occur.

4.8.5 Deadline Miss Detection

Although SCJ supports deadline miss detection, it is important to understand the
intrinsic limitations of the facility. The SCJ supports deadline miss detection only
for event handlers at levels 1 and 2. As explained in Section 4.8.4, all time-triggered

27 January 2017 Version 0.109
Confidentiality: Public Distribution

135

Safety-Critical Java Technology Specification

Thread

Time specified by program

Granularity

difference

between

and delay

disabled

interrupts
executing

clock

but not executing

Time

Thread runnable here

Figure 4.4: Granularity of delays

computations can suffer from release jitter, and this may result in a shifting of the
time from which the time span representing the deadline is measured. If a deadline
is not an integral multiple of the clock’s tick size, the infrastructure must round the
requested deadline up to the nearest multiple of the tick size. For example, if the
clock tick is 10 microseconds, it is not possible to detect a deadline miss when the
deadline is, say, 1 microsecond. Hence, an event handler whose release coincides
with a clock tick at absolute time T , which has a deadline of T + 1 microsecond,
will not have its deadline miss handler release until T + 10. It further follows, that
a deadline can be missed but not detected. Consider an absolute deadline of D.
Suppose that the next absolute time that the timer can recognize is D + ∆. If the
associated thread finishes after D but before D + ∆, it will have missed its deadline,
but this miss will have been undetected. Using the above example, the event handler
can complete anytime before T + 10 and be deemed to meet its deadline.

Another limitation is due to the inherent race condition that is present when checking
for deadline misses. A deadline miss is defined to occur if a managed event handler
has not completed the computation associated with its release before its deadline.
This completion event is signalled in the application code by return from the handle-
AsyncEvent method. When this method returns, the infrastructure cancels the timing
event that signals the miss of a deadline. This is clearly a race condition. The timer
event handler could be released to execute between the last executable statement
within the handleAsyncEvent method and the canceling of the timer event. Hence
a deadline miss could occasionally be signalled when arguably the application had
performed all of its computation.

136 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

4.9 Compatibility

The following incompatibilities exist with the RTSJ:

• PCE is the default monitor control policy in SCJ whereas priority inheritance
is the default in the RTSJ

27 January 2017 Version 0.109
Confidentiality: Public Distribution

137

Safety-Critical Java Technology Specification

138 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Chapter 5

Interaction with Devices and External
Events

5.1 Overview

Interactions between application programs and their environments can take several
forms. They can be via

1. device interfaces and interrupt handling

2. operating system signals or other asynchronous notification mechanisms, and

3. high-level input and output capabilities such as files, sockets or some other
connection-oriented mechanism.

This chapter describes the first two items of this list; namely the facilities that support
interaction with input and output devices and interrupt handling, followed by the
SCJ requirements for the specialized managed event handlers that are available for
handling operating system signals. Chapter 6 discusses the SCJ support for the third
item on this list.

The Overview and Rationale sections are not normative but are provided to improve
understanding of the normative sections. All of the other sections of this chapter are
normative.

5.2 Interaction with Input and Output Devices

In general, interfacing to input and output devices requires the programmer to be
able to access the devices’ control, status and data transfer registers, and to be able

139

Safety-Critical Java Technology Specification

to handle interrupts. The former is achieved by allowing the programmer to have
controlled access to the physical device registers using a subset of the RTSJ raw
memory access facilities. Optionally, SCJ supports first level interrupt handling
when this can be provided by the underlying execution environment. These optional
features are defined in the InterruptServiceRoutine class.

5.2.1 Semantics and Requirements

The RTSJ standardizes two means of accessing memory with specific properties:
physical memory and raw memory. Physical memory provides a way of ensuring that
specific objects get specific properties tied to particular areas of physical memory
(e.g. non-cached memory areas). Raw Memory provides a means for accessing
particular physical memory addresses as variables of Java’s primitive data types, and
thereby allows the application direct access to, for example, memory-mapped I/O
registers. Java objects or their references cannot be stored in raw memory.

SCJ restricts the RTSJ API by not requiring any of the classes related to physical
memory. The following specifies the SCJ’s facilities for raw memory access:

• Each type of raw memory access is identified by a tagging class called RawMem-
oryRegion

• The raw memory region MEMORY MAPPED REGION facilitates access
to memory locations that are outside the main memory used by the JVM.
It is used to to access input and output device registers when such registers
are memory mapped.

• The raw memory region IO PORT MAPPED REGION facilitates access
to locations that are outside the main memory used by the JVM. It is
used to access input and output device registers when such registers are
port-based and can only be accessed by special hardware instructions.

• The application developer can define and register additional regions to
support things like emulated access to devices or access to a bus over a
bus controller.

• Access to raw memory is policed by implementation-defined objects, called
accessor objects. These implement specification-defined interfaces (e.g., Raw-
Byte) and are created by implementation-defined factory objects.

• The RawMemoryRegionFactory interface defines the interface that all factories
must support for creating accessor objects.

• Only Java integral types are supported.
• The RawMemoryFactory class defines the application programmer’s interface

to the raw memory facilities.

140 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

An overview of the supported classes and interfaces is shown in Figure: 5.1. Figure:
5.2 illustrates how they may be used.

1. Typically the SCJ infrastructure will create a factory to allow access to the
raw memory areas it supports. As shown in 5.2, it creates a class for memory
mapped IO.

2. The created factory is then registered with the raw memory factory manager.

3. The manager gets the name from the factory and checks that no factory has
already been registered with that name.

4. The application, during one of the mission phases, is then able to request (from
the raw memory factory manager) access to a particular type of raw memory.

5. The manager finds the appropriate factory and requests that it create an acces-
sor object.

6. This object is then returned to the mission.

SCJ supports interaction with the external world by providing mechanism for in-
terrupt handling and POSIX signal handling. The SCJ distinguishes between first-
level support mechanisms and second-level support mechanisms. A first-level sup-
port mechanism implements the minimum platform-specific handling of the interrupt
or operating system signal. In response to an interrupt or signal, there is a proces-
sor context switch, and the code for the first-level support mechanism is executed.
A second-level support mechanism completes longer interrupt or signal processing
tasks usually in the context of a managed event handler.

For operating system signals targeted at an SCJ program, the first-level support is
provided by the SCJ infrastructure. The second-level support is provided by the
program in the form of specialized SCJ managed event handlers (see Section 5.3).
For device interrupts, SCJ optionally allows the program to provide first-level in-
terrupt service routines as well as second-level application-defined managed event
handlers (or managed threads). One exception is that the first-level interrupt service
routine for the real-time clock is provided by the infrastructure. It is implementation-
defined whether one or more additional device interrupts must be handled by an
infrastructure-provided first-level interrupt service routine rather than an application-
provided first-level interrupt service routine.

The primary goal of the first-level support code is to handle any immediate interac-
tion with the external environment. For interrupt handling, this might include the
storing of platform-specific information that is only available at the time of the in-
terrupt and masking interrupts from the same source. Where appropriate, it may be
necessary to establish an environment in which a second-level Java event handler can

27 January 2017 Version 0.109
Confidentiality: Public Distribution

141

Safety-Critical Java Technology Specification

«interface»
RawByteReader

getByte() : byte
getByte(offset : int) : byte
get(offset : int, values : byte[])
get(offset : int, values : byte[], start : int, count : int)

Similarly for int, short and long

RawMemoryRegion

RawMemoryFactory

«static fields»
MEMORY_MAPPED_REGION: RawMemoryRegion
IO_PORT_MAPPED_REGION: RawMemoryRegion

«static methods»
+registerRawMemoryRegionFactory (factory:RawMemoryRegionFactory)
+deregisterRawMemoryRegionFactory (factory:RawMemoryRegionFactory)

+createRawByteReader(category:RawMemoryRegion, base:long, count : int, stride : int): RawByteReader
+createRawByteWriter(category:RawMemoryRegion, base:long, count : int, stride : int): RawByteWriter
+createRawByte(category:RawMemoryRegion, base:long, count : int, stride : int): RawByte
...

«interface»
RawByteWriter

setByte(value : byte)
setByte(offset : int, value : byte)
set(offset : int, values : byte[])
set(offset : int, values : byte[], start : int, count : int)

«interface»
RawByte

«interface»
RawMemoryRegionFactory

createRawByteReader(category:RawMemoryRegion, base:long, count : int, stride : int): RawByteReader
createRawByteWriter(category:RawMemoryRegion, base:long, count : int, stride : int): RawByteWriter
createRawByte(category:RawMemoryRegion, base:long, count : int, stride : int): RawByte
...

«interface»
RawMemory

getAddress() : long
getSize() : int

Figure 5.1: Raw memory classes and interfaces

142 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

:Mission :RawMemoryFactory :RawMemoryRegionFactory

RawMemory

1. new(...)

2. registerRawMemoryRegionFactoryFactory(
memoryMappedIO)

memoryMappedIO

4. createRawByte(
MEMORY_MAPPED_REGION, addr) 5. createRawByteAccess

(addr)
RawByte

6. RawByte

3. getname

MEMORY_MAPPED_REGION

:Infrastructure

Figure 5.2: Raw memory classes interactions

be released. Similarly, for signal handling, the goal is to record the information asso-
ciated with the signal and to establish an environment in which a second-level signal
handler can be released. Typically, first-level support code executes at a high priority
(often a hardware interrupt priority). It is, therefore, essential to keep this code to
a minimum. One particular concern is that, for large systems, a significant number
of event handlers may need to be released by the first-level support. For example,
consider the first-level support for the real-time clock that, when a critical instance
occurs, must release all waiting event handlers. This code can cause priority inver-
sion as it may be releasing many low-priority handlers at an interrupt priority thereby
delaying the execution of high priority handlers.

Like the RTSJ, SCJ fully defines its underlying model of interrupts. The following
semantic model shall be supported by SCJ:

• An occurrence of an interrupt consists of its generation and delivery.
• Generation of the interrupt is the mechanism in the underlying hardware or

system that makes the interrupt available to the Java infrastructure.
• Delivery is the action that invokes a registered interrupt service routine (ISR) in

response to the generation of the interrupt. This may be performed by the JVM
or application native code linked with the JVM, or directly by the hardware
interrupt mechanism.

• Between generation and delivery, the interrupt is pending.
• Some or all interrupt generations may be inhibited. While an interrupt gener-

ation is inhibited, all deliveries of that interrupt shall be prevented. Whether
such occurrences remain pending or are lost is implementation defined, but it
is expected that the implementation shall make a best effort to avoid losing

27 January 2017 Version 0.109
Confidentiality: Public Distribution

143

Safety-Critical Java Technology Specification

pending interrupts.
• Certain implementation-defined interrupts are reserved. Reserved interrupts

are either interrupts for which user-defined ISRs are not supported, or those
that already have registered ISRs by some other implementation-defined means.
For example, a clock interrupt, which is used for internal timekeeping by the
infrastructure, is a reserved interrupt.

• An application-defined ISR can be registered to one or more non-reserved in-
terrupts. Registering an ISR for an interrupt shall implicitly deregister any
already registered ISR for that interrupt.

• While an ISR is registered to an interrupt, the handle method shall be called
once for each delivery of that interrupt. The handle method should be synchro-
nized. While the handle method executes, the corresponding interrupt (and all
lower priority interrupts) shall be inhibited. The default allocation context of
the handle method is a private implementation-provided memory area.

• The registration of an ISR shall be performed only during the initialization
phase of a mission. Any ISR registered during the initialization phase of a
mission shall be automatically deregistered by the infrastructure when the mis-
sion completes.

• An exception propagated from the handle method shall be caught by the SCJ
infrastructure and result in the uncaughtException method being called in the
associated managed ISR.

The implementation shall document the following items:

1. For each interrupt, its identifying integer value, whether it can be inhibited or
not, and the effects of registering ISRs to non inhibitable interrupts (if this is
permitted)

2. Which run-time stack the handle method uses when it executes.

3. Any implementation- or hardware-specific activity that happens before the
handle method is invoked (e.g., reading device registers, acknowledging de-
vices).

4. The state (inhibited/uninhibited) of the non-reserved interrupts when the pro-
gram starts. If some interrupts are uninhibited, a mechanism shall be provided
that a program can use to protect itself before it can register the corresponding
ISR.

5. The treatment of interrupt occurrences that are generated while the interrupt is
inhibited; i.e., whether one or more occurrences are held for later delivery, or
all are lost.

144 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

6. Whether predefined or implementation-defined exceptions are raised as a re-
sult of the occurrence of any interrupt (for example, a hardware trap resulting
from a segmentation error), and the mapping between the interrupt and the
predefined exceptions.

7. On a multi-processor, the rules governing the delivery of an interrupt occur-
rence to a particular processor. For example, whether execution of the handle
method may spin if the lock of the associated object is held by another proces-
sor.

SCJ requires that all code called from any method declared within an ISR class that
is synchronized on the lock of the ISR object shall not self-suspend. Furthermore,
the application should refrain from memory allocations in an outer-nested immortal
or mission memory area during the execution of an ISR.

SCJ does not require any further specific restrictions on ISRs. However it requires
that the following methods be callable from within an ISR, and therefore these meth-
ods shall not self suspend:

• Object.notify and Object.notifyAll,
• all methods of classes that implement the set of raw memory accessor inter-

faces,
• AperiodicEventHandler.release().

SCJ requires that all methods that can be called from an ISR object shall be annotated
with @SCJMaySelfSuspend(false) and shall not be annotated with @SCJMayAllo-
cate({OuterContext}).

SCJ defines the notion of interrupt priorities (see Section 4.7.5). Interrupt priorities
shall only be used to define ceiling priorities. All instances of the ManagedInterrupt-
ServiceRoutine class should be assigned a ceiling priority that is equal to or higher
than the hardware interrupt priority, when it is registered. The normal rules for nested
synchronized method calls apply; that is, the ceiling of any object that has a synchro-
nized method that is called from a synchronized method in another object must have
a ceiling greater than or equal to the object from which the nested call is made.

The handle method, if not synchronized, shall execute at the hardware interrupt pri-
ority.

5.2.2 Level Considerations

.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

145

Safety-Critical Java Technology Specification

Level 0

Non-reserved ISRs of any kind are prohibited at Level 0. All interaction with the
external embedded environment must be performed in a synchronous manner.

5.2.3 API

Unless indicated otherwise, the classes defined in this section are thread safe

5.2.4 javax.realtime.device.RawByteReader

Declaration

@SCJAllowed
public interface RawByteReader extends javax.realtime.device.RawMemory

Since
RTSJ 2.0

Description
A marker for a byte accessor object encapsulating the protocol for reading
bytes from raw memory. A byte accessor can always access at least one byte.
Each byte is transfered in a single atomic operation. Groups of bytes may be
transfered together; however, this is not required.

Objects of this type are created with the method javax.realtime.device.Raw-
MemoryFactorycreateRawByteReader and javax.realtime.device.RawMemory-
FactorycreateRawByte . Each object references a range of elements in the
javax.realtime.device.RawMemoryRegion starting at the base address pro-
vided to the factory method. The size provided to the factor method determines
the number of elements accessable.

Caching of the memory access is controlled by the factory that created this
object. If the memory is not cached, this method guarantees serialized access.
In other words, the memory access at the memory occurs in the same order as
in the program. Multiple writes to the same location may not be coalesced.

Methods

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,

146 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int get(int offset, byte [] values)
throws javax.realtime.OffsetOutOfBoundsException,

java.lang.NullPointerException

Fill values with elements from this instance, where the nth element is at the
address: base address + (offset+n) x stride x element size in bytes. Only the
bytes in the intersection of the start and end of values and the base address and
the end of the memory region are transfered. When an exception is thrown, no
data is transfered.

offset — of the first byte in the memory region to transfere

values — the array to receive the bytes

returns the number of elements actuall transferred to values

Throws OffsetOutOfBoundsException when offset is negative or greater than or
equal to the number of elements in the raw memory region.

Throws NullPointerException when values is null.

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int get(int offset, byte [] values, int start, int count)
throws javax.realtime.OffsetOutOfBoundsException,

java.lang.ArrayIndexOutOfBoundsException, java.lang.NullPointerException

Fill values from index start with elements from this instance, where the nth
element is at the address: base address + (offset+n) x stride x element size in
bytes. The number of bytes transfered is the minimum of count, the size of
the memory region minus offset, and length of values minus start. When an
exception is thrown, no data is transfered.

offset — of the first byte in the memory region to transfere

values — the array to receive the bytes

start — the first index in array to fill

count — the maximum number of bytes to copy

27 January 2017 Version 0.109
Confidentiality: Public Distribution

147

Safety-Critical Java Technology Specification

returns the number of bytes actually transfered.

Throws OffsetOutOfBoundsException when offset is negative or either offset or
offset + count is greater than or equal to the size of this raw memory area.

Throws ArrayIndexOutOfBoundsException when start is negative or either start or
start + count is greater than or equal to the size of values.

Throws NullPointerException when values is null or count is negative.

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public byte getByte(int offset)
throws javax.realtime.OffsetOutOfBoundsException

Get the value at the address: base address + offset x stride x element size in
bytes. When an exception is thrown, no data is transfered.

offset — of byte in the memory region starting from the address specified in the
associated factory method.

returns the value at the address specified.

Throws OffsetOutOfBoundsException when offset is negative or greater than or
equal to the number of elements in the raw memory region.

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public byte getByte()

Get the value at the first position referenced by this instance, i.e., the value at
its start address. This operation must be atomic with respect to all other raw
memory accesses to the address.

returns the value at the base address.

148 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

5.2.5 javax.realtime.device.RawByteWriter

Declaration

@SCJAllowed
public interface RawByteWriter extends javax.realtime.device.RawMemory

Since
RTSJ 2.0

Description

A marker for a byte accessor object encapsulating the protocol for writing bytes
to raw memory. A byte accessor can always access at least one byte. Each byte
is transfered in a single atomic operation. Groups of bytes may be transfered
together; however, this is not required.

Objects of this type are created with the method javax.realtime.device.Raw-
MemoryFactorycreateRawByteWriter and javax.realtime.device.RawMemory-
FactorycreateRawByte . Each object references a range of elements in the
javax.realtime.device.RawMemoryRegion starting at the base address pro-
vided to the factory method. The size provided to the factor method determines
the number of elements accessable.

Caching of the memory access is controlled by the factory that created this
object. If the memory is not cached, this method guarantees serialized access.
In other words, the memory access at the memory occurs in the same order as
in the program. Multiple writes to the same location may not be coalesced.

Methods

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int set(int offset, byte [] values)
throws javax.realtime.OffsetOutOfBoundsException,

java.lang.NullPointerException

Copy from values to the memory region from index start,to elements where the
nth element is at the address: base address + (offset+n) x stride x element size
in bytes. Only the bytes in the intersection of values and the end of the memory
region are transfered. When an exception is thrown, no data is transfered.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

149

Safety-Critical Java Technology Specification

offset — of first byte in the memory region to be set.

values — is the source of the data to write.

returns the number of elements actually transferred to values

Throws OffsetOutOfBoundsException when offset is negative or greater than or
equal to the number of elements in the raw memory region.

Throws NullPointerException when values is null.

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int set(int offset, byte [] values, int start, int count)
throws javax.realtime.OffsetOutOfBoundsException,

java.lang.ArrayIndexOutOfBoundsException, java.lang.NullPointerException

Copy values to the memory region, where offset is first byte in the memory
region to write and start is the first index in values from which to read. The
number of bytes transfered is the minimum of count, the size of the memory
region minus offset, and length of values minus start. When an exception is
thrown, no data is transfered.

offset — of the first byte in the memory region to set

values — the array from which to retrieve the bytes

start — the first index in array to copy

count — the maximum number of bytes to copy

returns the number of bytes actually transfered.

Throws OffsetOutOfBoundsException when offset is negative or either offset or
offset + count is greater than or equal to the size of this raw memory area.

Throws ArrayIndexOutOfBoundsException when start is negative or either start or
start + count is greater than or equal to the size of values.

Throws NullPointerException when values is null.

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

150 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void setByte(int offset, byte value)
throws javax.realtime.OffsetOutOfBoundsException

Set the value of the nth element referenced by this instance, where n is offset
and the address is base address + offset x size of Byte. This operation must be
atomic with respect to all other raw memory accesses to the address. When an
exception is thrown, no data is transfered.

offset — of byte in the memory region.

value — is the new value for the element.

Throws OffsetOutOfBoundsException when offset is negative or greater than or
equal to the number of elements in the raw memory region.

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void setByte(byte value)

Set the value at the first position referenced by this instance, i.e., the value at
its start address. This operation must be atomic with respect to all other raw
memory accesses to the address.

value — is the new value for the element.

5.2.6 javax.realtime.device.RawByte

Declaration

@SCJAllowed
public interface RawByte extends javax.realtime.device.RawByteReader,

javax.realtime.device.RawByteWriter

Since
RTSJ 2.0

Description

27 January 2017 Version 0.109
Confidentiality: Public Distribution

151

Safety-Critical Java Technology Specification

A marker for an object that can be used to access to a single byte. Read and
write access to that byte is checked by the factory that creates the instance;
therefore, no access checking is provided by this interface, only bounds check-
ing.

5.2.7 javax.realtime.device.RawShortReader

Declaration

@SCJAllowed
public interface RawShortReader extends javax.realtime.device.RawMemory

Since
RTSJ 2.0

Description
A marker for a short accessor object encapsulating the protocol for reading
shorts from raw memory. A short accessor can always access at least one short.
Each short is transfered in a single atomic operation. Groups of shorts may be
transfered together; however, this is not required.

Objects of this type are created with the method javax.realtime.device.Raw-
MemoryFactorycreateRawShortReader and javax.realtime.device.RawMemory-
FactorycreateRawShort . Each object references a range of elements in the
javax.realtime.device.RawMemoryRegion starting at the base address pro-
vided to the factory method. The size provided to the factor method determines
the number of elements accessable.

Caching of the memory access is controlled by the factory that created this
object. If the memory is not cached, this method guarantees serialized access.
In other words, the memory access at the memory occurs in the same order as
in the program. Multiple writes to the same location may not be coalesced.

Methods

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int get(int offset, short [] values)
throws javax.realtime.OffsetOutOfBoundsException,

java.lang.NullPointerException

152 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Fill values with elements from this instance, where the nth element is at the
address: base address + (offset+n) x stride x element size in bytes. Only the
shorts in the intersection of the start and end of values and the base address and
the end of the memory region are transfered. When an exception is thrown, no
data is transfered.

offset — of the first short in the memory region to transfere

values — the array to receive the shorts

returns the number of elements actuall transferred to values

Throws OffsetOutOfBoundsException when offset is negative or greater than or
equal to the number of elements in the raw memory region.

Throws NullPointerException when values is null.

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int get(int offset, short [] values, int start, int count)
throws javax.realtime.OffsetOutOfBoundsException,

java.lang.ArrayIndexOutOfBoundsException, java.lang.NullPointerException

Fill values from index start with elements from this instance, where the nth
element is at the address: base address + (offset+n) x stride x element size in
bytes. The number of bytes transfered is the minimum of count, the size of
the memory region minus offset, and length of values minus start. When an
exception is thrown, no data is transfered.

offset — of the first short in the memory region to transfere

values — the array to receive the shorts

start — the first index in array to fill

count — the maximum number of shorts to copy

returns the number of shorts actually transfered.

Throws OffsetOutOfBoundsException when offset is negative or either offset or
offset + count is greater than or equal to the size of this raw memory area.

Throws ArrayIndexOutOfBoundsException when start is negative or either start or
start + count is greater than or equal to the size of values.

Throws NullPointerException when values is null or count is negative.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

153

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public short getShort(int offset)
throws javax.realtime.OffsetOutOfBoundsException

Get the value at the address: base address + offset x stride x element size in
bytes. When an exception is thrown, no data is transfered.

offset — of short in the memory region starting from the address specified in the
associated factory method.

returns the value at the address specified.

Throws OffsetOutOfBoundsException when offset is negative or greater than or
equal to the number of elements in the raw memory region.

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public short getShort()

Get the value at the first position referenced by this instance, i.e., the value at
its start address. This operation must be atomic with respect to all other raw
memory accesses to the address.

returns the value at the base address.

5.2.8 javax.realtime.device.RawShortWriter

Declaration

@SCJAllowed
public interface RawShortWriter extends javax.realtime.device.RawMemory

154 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Since
RTSJ 2.0

Description
A marker for a short accessor object encapsulating the protocol for writing
shorts to raw memory. A short accessor can always access at least one short.
Each short is transfered in a single atomic operation. Groups of shorts may be
transfered together; however, this is not required.

Objects of this type are created with the method javax.realtime.device.Raw-
MemoryFactorycreateRawShortWriter and javax.realtime.device.RawMemory-
FactorycreateRawShort . Each object references a range of elements in the
javax.realtime.device.RawMemoryRegion starting at the base address pro-
vided to the factory method. The size provided to the factor method determines
the number of elements accessable.

Caching of the memory access is controlled by the factory that created this
object. If the memory is not cached, this method guarantees serialized access.
In other words, the memory access at the memory occurs in the same order as
in the program. Multiple writes to the same location may not be coalesced.

Methods

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int set(int offset, short [] values)
throws javax.realtime.OffsetOutOfBoundsException,

java.lang.NullPointerException

Copy from values to the memory region from index start,to elements where the
nth element is at the address: base address + (offset+n) x stride x element size
in bytes. Only the shorts in the intersection of values and the end of the memory
region are transfered. When an exception is thrown, no data is transfered.

offset — of first short in the memory region to be set.

values — is the source of the data to write.

returns the number of elements actually transferred to values

Throws OffsetOutOfBoundsException when offset is negative or greater than or
equal to the number of elements in the raw memory region.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

155

Safety-Critical Java Technology Specification

Throws NullPointerException when values is null.

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int set(int offset, short [] values, int start, int count)
throws javax.realtime.OffsetOutOfBoundsException,

java.lang.ArrayIndexOutOfBoundsException, java.lang.NullPointerException

Copy values to the memory region, where offset is first short in the memory
region to write and start is the first index in values from which to read. The
number of bytes transfered is the minimum of count, the size of the memory
region minus offset, and length of values minus start. When an exception is
thrown, no data is transfered.

offset — of the first short in the memory region to set

values — the array from which to retrieve the shorts

start — the first index in array to copy

count — the maximum number of shorts to copy

returns the number of shorts actually transfered.

Throws OffsetOutOfBoundsException when offset is negative or either offset or
offset + count is greater than or equal to the size of this raw memory area.

Throws ArrayIndexOutOfBoundsException when start is negative or either start or
start + count is greater than or equal to the size of values.

Throws NullPointerException when values is null.

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void setShort(int offset, short value)
throws javax.realtime.OffsetOutOfBoundsException

156 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Set the value of the nth element referenced by this instance, where n is offset
and the address is base address + offset x size of Short. This operation must be
atomic with respect to all other raw memory accesses to the address. When an
exception is thrown, no data is transfered.

offset — of short in the memory region.

value — is the new value for the element.

Throws OffsetOutOfBoundsException when offset is negative or greater than or
equal to the number of elements in the raw memory region.

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void setShort(short value)

Set the value at the first position referenced by this instance, i.e., the value at
its start address. This operation must be atomic with respect to all other raw
memory accesses to the address.

value — is the new value for the element.

5.2.9 javax.realtime.device.RawShort

Declaration

@SCJAllowed
public interface RawShort extends javax.realtime.device.RawShortReader,

javax.realtime.device.RawShortWriter

Since
RTSJ 2.0

Description

A marker for an object that can be used to access to a single short. Read and
write access to that short is checked by the factory that creates the instance;
therefore, no access checking is provided by this interface, only bounds check-
ing.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

157

Safety-Critical Java Technology Specification

5.2.10 javax.realtime.device.RawIntReader

Declaration

@SCJAllowed
public interface RawIntReader extends javax.realtime.device.RawMemory

Since
RTSJ 2.0

Description
A marker for a int accessor object encapsulating the protocol for reading ints
from raw memory. A int accessor can always access at least one int. Each int
is transfered in a single atomic operation. Groups of ints may be transfered
together; however, this is not required.

Objects of this type are created with the method javax.realtime.device.Raw-
MemoryFactorycreateRawIntReader and javax.realtime.device.RawMemory-
FactorycreateRawInt . Each object references a range of elements in the
javax.realtime.device.RawMemoryRegion starting at the base address pro-
vided to the factory method. The size provided to the factor method determines
the number of elements accessable.

Caching of the memory access is controlled by the factory that created this
object. If the memory is not cached, this method guarantees serialized access.
In other words, the memory access at the memory occurs in the same order as
in the program. Multiple writes to the same location may not be coalesced.

Methods

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int get(int offset, int [] values)
throws javax.realtime.OffsetOutOfBoundsException,

java.lang.NullPointerException

Fill values with elements from this instance, where the nth element is at the
address: base address + (offset+n) x stride x element size in bytes. Only the
ints in the intersection of the start and end of values and the base address and
the end of the memory region are transfered. When an exception is thrown, no
data is transfered.

158 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

offset — of the first int in the memory region to transfere

values — the array to receive the ints

returns the number of elements actuall transferred to values

Throws OffsetOutOfBoundsException when offset is negative or greater than or
equal to the number of elements in the raw memory region.

Throws NullPointerException when values is null.

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int get(int offset, int [] values, int start, int count)
throws javax.realtime.OffsetOutOfBoundsException,

java.lang.ArrayIndexOutOfBoundsException, java.lang.NullPointerException

Fill values from index start with elements from this instance, where the nth
element is at the address: base address + (offset+n) x stride x element size in
bytes. The number of bytes transfered is the minimum of count, the size of
the memory region minus offset, and length of values minus start. When an
exception is thrown, no data is transfered.

offset — of the first int in the memory region to transfere

values — the array to receive the ints

start — the first index in array to fill

count — the maximum number of ints to copy

returns the number of ints actually transfered.

Throws OffsetOutOfBoundsException when offset is negative or either offset or
offset + count is greater than or equal to the size of this raw memory area.

Throws ArrayIndexOutOfBoundsException when start is negative or either start or
start + count is greater than or equal to the size of values.

Throws NullPointerException when values is null or count is negative.

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

27 January 2017 Version 0.109
Confidentiality: Public Distribution

159

Safety-Critical Java Technology Specification

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int getInt(int offset)
throws javax.realtime.OffsetOutOfBoundsException

Get the value at the address: base address + offset x stride x element size in
bytes. When an exception is thrown, no data is transfered.

offset — of int in the memory region starting from the address specified in the
associated factory method.

returns the value at the address specified.

Throws OffsetOutOfBoundsException when offset is negative or greater than or
equal to the number of elements in the raw memory region.

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int getInt()

Get the value at the first position referenced by this instance, i.e., the value at
its start address. This operation must be atomic with respect to all other raw
memory accesses to the address.

returns the value at the base address.

5.2.11 javax.realtime.device.RawIntWriter

Declaration

@SCJAllowed
public interface RawIntWriter extends javax.realtime.device.RawMemory

Since
RTSJ 2.0

Description

160 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

A marker for a int accessor object encapsulating the protocol for writing ints
to raw memory. A int accessor can always access at least one int. Each int
is transfered in a single atomic operation. Groups of ints may be transfered
together; however, this is not required.

Objects of this type are created with the method javax.realtime.device.Raw-
MemoryFactorycreateRawIntWriter and javax.realtime.device.RawMemory-
FactorycreateRawInt . Each object references a range of elements in the
javax.realtime.device.RawMemoryRegion starting at the base address pro-
vided to the factory method. The size provided to the factor method determines
the number of elements accessable.

Caching of the memory access is controlled by the factory that created this
object. If the memory is not cached, this method guarantees serialized access.
In other words, the memory access at the memory occurs in the same order as
in the program. Multiple writes to the same location may not be coalesced.

Methods

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int set(int offset, int [] values)
throws javax.realtime.OffsetOutOfBoundsException,

java.lang.NullPointerException

Copy from values to the memory region from index start,to elements where the
nth element is at the address: base address + (offset+n) x stride x element size
in bytes. Only the ints in the intersection of values and the end of the memory
region are transfered. When an exception is thrown, no data is transfered.

offset — of first int in the memory region to be set.

values — is the source of the data to write.

returns the number of elements actually transferred to values

Throws OffsetOutOfBoundsException when offset is negative or greater than or
equal to the number of elements in the raw memory region.

Throws NullPointerException when values is null.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

161

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int set(int offset, int [] values, int start, int count)
throws javax.realtime.OffsetOutOfBoundsException,

java.lang.ArrayIndexOutOfBoundsException, java.lang.NullPointerException

Copy values to the memory region, where offset is first int in the memory
region to write and start is the first index in values from which to read. The
number of bytes transfered is the minimum of count, the size of the memory
region minus offset, and length of values minus start. When an exception is
thrown, no data is transfered.

offset — of the first int in the memory region to set

values — the array from which to retrieve the ints

start — the first index in array to copy

count — the maximum number of ints to copy

returns the number of ints actually transfered.

Throws OffsetOutOfBoundsException when offset is negative or either offset or
offset + count is greater than or equal to the size of this raw memory area.

Throws ArrayIndexOutOfBoundsException when start is negative or either start or
start + count is greater than or equal to the size of values.

Throws NullPointerException when values is null.

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void setInt(int offset, int value)
throws javax.realtime.OffsetOutOfBoundsException

Set the value of the nth element referenced by this instance, where n is offset
and the address is base address + offset x size of Int. This operation must be
atomic with respect to all other raw memory accesses to the address. When an
exception is thrown, no data is transfered.

162 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

offset — of int in the memory region.

value — is the new value for the element.

Throws OffsetOutOfBoundsException when offset is negative or greater than or
equal to the number of elements in the raw memory region.

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void setInt(int value)

Set the value at the first position referenced by this instance, i.e., the value at
its start address. This operation must be atomic with respect to all other raw
memory accesses to the address.

value — is the new value for the element.

5.2.12 javax.realtime.device.RawInt

Declaration

@SCJAllowed
public interface RawInt extends javax.realtime.device.RawIntReader,

javax.realtime.device.RawIntWriter

Since
RTSJ 2.0

Description
A marker for an object that can be used to access to a single int. Read and write
access to that int is checked by the factory that creates the instance; therefore,
no access checking is provided by this interface, only bounds checking.

5.2.13 javax.realtime.device.RawLongReader

Declaration

@SCJAllowed
public interface RawLongReader extends javax.realtime.device.RawMemory

27 January 2017 Version 0.109
Confidentiality: Public Distribution

163

Safety-Critical Java Technology Specification

Since
RTSJ 2.0

Description

A marker for a long accessor object encapsulating the protocol for reading
longs from raw memory. A long accessor can always access at least one long.
Each long is transfered in a single atomic operation. Groups of longs may be
transfered together; however, this is not required.

Objects of this type are created with the method javax.realtime.device.Raw-
MemoryFactorycreateRawLongReader and javax.realtime.device.RawMemory-
FactorycreateRawLong . Each object references a range of elements in the
javax.realtime.device.RawMemoryRegion starting at the base address pro-
vided to the factory method. The size provided to the factor method determines
the number of elements accessable.

Caching of the memory access is controlled by the factory that created this
object. If the memory is not cached, this method guarantees serialized access.
In other words, the memory access at the memory occurs in the same order as
in the program. Multiple writes to the same location may not be coalesced.

Methods

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int get(int offset, long [] values)
throws javax.realtime.OffsetOutOfBoundsException,

java.lang.NullPointerException

Fill values with elements from this instance, where the nth element is at the
address: base address + (offset+n) x stride x element size in bytes. Only the
longs in the intersection of the start and end of values and the base address and
the end of the memory region are transfered. When an exception is thrown, no
data is transfered.

offset — of the first long in the memory region to transfere

values — the array to receive the longs

returns the number of elements actuall transferred to values

164 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Throws OffsetOutOfBoundsException when offset is negative or greater than or
equal to the number of elements in the raw memory region.

Throws NullPointerException when values is null.

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int get(int offset, long [] values, int start, int count)
throws javax.realtime.OffsetOutOfBoundsException,

java.lang.ArrayIndexOutOfBoundsException, java.lang.NullPointerException

Fill values from index start with elements from this instance, where the nth
element is at the address: base address + (offset+n) x stride x element size in
bytes. The number of bytes transfered is the minimum of count, the size of
the memory region minus offset, and length of values minus start. When an
exception is thrown, no data is transfered.

offset — of the first long in the memory region to transfere

values — the array to receive the longs

start — the first index in array to fill

count — the maximum number of longs to copy

returns the number of longs actually transfered.

Throws OffsetOutOfBoundsException when offset is negative or either offset or
offset + count is greater than or equal to the size of this raw memory area.

Throws ArrayIndexOutOfBoundsException when start is negative or either start or
start + count is greater than or equal to the size of values.

Throws NullPointerException when values is null or count is negative.

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public long getLong(int offset)
throws javax.realtime.OffsetOutOfBoundsException

27 January 2017 Version 0.109
Confidentiality: Public Distribution

165

Safety-Critical Java Technology Specification

Get the value at the address: base address + offset x stride x element size in
bytes. When an exception is thrown, no data is transfered.

offset — of long in the memory region starting from the address specified in the
associated factory method.

returns the value at the address specified.

Throws OffsetOutOfBoundsException when offset is negative or greater than or
equal to the number of elements in the raw memory region.

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public long getLong()

Get the value at the first position referenced by this instance, i.e., the value at
its start address. This operation must be atomic with respect to all other raw
memory accesses to the address.

returns the value at the base address.

5.2.14 javax.realtime.device.RawLongWriter

Declaration

@SCJAllowed
public interface RawLongWriter extends javax.realtime.device.RawMemory

Since
RTSJ 2.0

Description
A marker for a long accessor object encapsulating the protocol for writing
longs to raw memory. A long accessor can always access at least one long.
Each long is transfered in a single atomic operation. Groups of longs may be
transfered together; however, this is not required.

Objects of this type are created with the method javax.realtime.device.Raw-
MemoryFactorycreateRawLongWriter and javax.realtime.device.RawMemory-
FactorycreateRawLong . Each object references a range of elements in the

166 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

javax.realtime.device.RawMemoryRegion starting at the base address pro-
vided to the factory method. The size provided to the factor method determines
the number of elements accessable.

Caching of the memory access is controlled by the factory that created this
object. If the memory is not cached, this method guarantees serialized access.
In other words, the memory access at the memory occurs in the same order as
in the program. Multiple writes to the same location may not be coalesced.

Methods

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int set(int offset, long [] values)
throws javax.realtime.OffsetOutOfBoundsException,

java.lang.NullPointerException

Copy from values to the memory region from index start,to elements where the
nth element is at the address: base address + (offset+n) x stride x element size
in bytes. Only the longs in the intersection of values and the end of the memory
region are transfered. When an exception is thrown, no data is transfered.

offset — of first long in the memory region to be set.

values — is the source of the data to write.

returns the number of elements actually transferred to values

Throws OffsetOutOfBoundsException when offset is negative or greater than or
equal to the number of elements in the raw memory region.

Throws NullPointerException when values is null.

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int set(int offset, long [] values, int start, int count)
throws javax.realtime.OffsetOutOfBoundsException,

java.lang.ArrayIndexOutOfBoundsException, java.lang.NullPointerException

27 January 2017 Version 0.109
Confidentiality: Public Distribution

167

Safety-Critical Java Technology Specification

Copy values to the memory region, where offset is first long in the memory
region to write and start is the first index in values from which to read. The
number of bytes transfered is the minimum of count, the size of the memory
region minus offset, and length of values minus start. When an exception is
thrown, no data is transfered.

offset — of the first long in the memory region to set

values — the array from which to retrieve the longs

start — the first index in array to copy

count — the maximum number of longs to copy

returns the number of longs actually transfered.

Throws OffsetOutOfBoundsException when offset is negative or either offset or
offset + count is greater than or equal to the size of this raw memory area.

Throws ArrayIndexOutOfBoundsException when start is negative or either start or
start + count is greater than or equal to the size of values.

Throws NullPointerException when values is null.

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void setLong(int offset, long value)
throws javax.realtime.OffsetOutOfBoundsException

Set the value of the nth element referenced by this instance, where n is offset
and the address is base address + offset x size of Long. This operation must be
atomic with respect to all other raw memory accesses to the address. When an
exception is thrown, no data is transfered.

offset — of long in the memory region.

value — is the new value for the element.

Throws OffsetOutOfBoundsException when offset is negative or greater than or
equal to the number of elements in the raw memory region.

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)

168 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void setLong(long value)

Set the value at the first position referenced by this instance, i.e., the value at
its start address. This operation must be atomic with respect to all other raw
memory accesses to the address.

value — is the new value for the element.

5.2.15 javax.realtime.device.RawLong

Declaration

@SCJAllowed
public interface RawLong extends javax.realtime.device.RawLongReader,

javax.realtime.device.RawLongWriter

Since
RTSJ 2.0

Description

A marker for an object that can be used to access to a single long. Read and
write access to that long is checked by the factory that creates the instance;
therefore, no access checking is provided by this interface, only bounds check-
ing.

5.2.16 javax.realtime.device.RawMemoryRegion

Declaration

@SCJAllowed
public class RawMemoryRegion extends java.lang.Object

Description

RawMemoryRegion is a class for typing raw memory regions. It is returned
by the RawMemoryRegionFactory.getRegion methods of the raw memory re-
gion factory classes, and it is used with methods such as RawMemoryFac-
tory.createRawByte(RawMemoryRegion, long, int, int) and RawMemoryFac-
tory.createRawDouble(RawMemoryRegion, long, int, int} methods to identify
the region from which the application wants to get an accessor instance.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

169

Safety-Critical Java Technology Specification

Constructors

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

public RawMemoryRegion(String name)

Methods

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

public final java.lang.String getName()

Obtains the name of this region type.

returns the region types name

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMayAllocate({
javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

public static javax.realtime.device.RawMemoryRegion getRegion(String name)

Get a region type when it already exists or creates a new one.

name — of the region

returns the region type object.

170 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

public static boolean isRawMemoryRegion(String name)

Ask whether or not there is a memory region type of a given name.

name — for which to search

returns true when there is one and false otherwise.

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

public final java.lang.String toString()

Gets a printable representation for a Region.

returns the name of this memory region type.

5.2.17 javax.realtime.device.RawMemoryRegionFactory

Declaration

@SCJAllowed
public interface RawMemoryRegionFactory

Since
RTSJ 2.0

Description
A class to give an application the ability to provide support for a javax.realtime-
.device.RawMemoryRegion that is not already provided by the standard. An
instance of this call can be registered with a javax.realtime.device.RawMemory-
Factory and provides the object that that factory should return for a given
RawMemoryRegion. It is responsible for checking all requests and throwing
the proper exception when a request is invalid or the requester is not authorized
to make the request.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

171

Safety-Critical Java Technology Specification

Methods

@SCJAllowed
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.device.RawByte createRawByte(long base,
int count,
int stride)
throws

java.lang.SecurityException, javax.realtime.OffsetOutOfBoundsException,
javax.realtime.SizeOutOfBoundsException,
javax.realtime.UnsupportedRawMemoryRegionException,
javax.realtime.MemoryTypeConflictException

Create an instance of a class that implements javax.realtime.device.RawByte
and accesses memory of javax.realtime.device.RawMemoryRegionFactoryget-
Region in the address range described by base, stride, and count. The actual
extent of the memory addressed by the object is stride x size of RawByte x
count. The object is allocated in the current memory area of the calling thread.

base — The starting physical address accessible through the returned instance.

count — The number of memory elements accessible through the returned instance.

stride — The distance to the next element in mulitple of element count, where a
value of 1 means the elements are adjacent in memory.

returns an object that implements javax.realtime.device.RawByte and supports
access to the specified range in the memory region.

Throws IllegalArgumentException when base is negative, count is not greater than
zero, or stride is not greater than zero.

Throws SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.

Throws OffsetOutOfBoundsException when base is invalid.

Throws SizeOutOfBoundsException when the memory addressed by the object
would extend into an invalid range of memory.

Throws MemoryTypeConflictException when base does not point to memory that
matches the type served by this factory.

Since
RTSJ 2.0

172 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.device.RawByteReader createRawByteReader(long base,
int count,
int stride)
throws

java.lang.SecurityException, javax.realtime.OffsetOutOfBoundsException,
javax.realtime.SizeOutOfBoundsException,
javax.realtime.UnsupportedRawMemoryRegionException,
javax.realtime.MemoryTypeConflictException

Create an instance of a class that implements javax.realtime.device.RawByte-
Reader and accesses memory of javax.realtime.device.RawMemoryRegion-
FactorygetRegion in the address range described by base, stride, and count.
The actual extent of the memory addressed by the object is stride x size of
RawByteReader x count. The object is allocated in the current memory area of
the calling thread.

base — The starting physical address accessible through the returned instance.

count — The number of memory elements accessible through the returned instance.

stride — The distance to the next element in mulitple of element count, where a
value of 1 means the elements are adjacent in memory.

returns an object that implements javax.realtime.device.RawByteReader and
supports access to the specified range in the memory region.

Throws IllegalArgumentException when base is negative, count is not greater than
zero, or stride is not greater than zero.

Throws SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.

Throws OffsetOutOfBoundsException when base is invalid.

Throws SizeOutOfBoundsException when the memory addressed by the object
would extend into an invalid range of memory.

Throws MemoryTypeConflictException when base does not point to memory that
matches the type served by this factory.

Since
RTSJ 2.0

27 January 2017 Version 0.109
Confidentiality: Public Distribution

173

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.device.RawByteWriter createRawByteWriter(long base,
int count,
int stride)
throws

java.lang.SecurityException, javax.realtime.OffsetOutOfBoundsException,
javax.realtime.SizeOutOfBoundsException,
javax.realtime.UnsupportedRawMemoryRegionException,
javax.realtime.MemoryTypeConflictException

Create an instance of a class that implements javax.realtime.device.RawByte-
Writer and accesses memory of javax.realtime.device.RawMemoryRegion-
FactorygetRegion in the address range described by base, stride, and count.
The actual extent of the memory addressed by the object is stride x size of
RawByteWriter x count. The object is allocated in the current memory area of
the calling thread.

base — The starting physical address accessible through the returned instance.

count — The number of memory elements accessible through the returned instance.

stride — The distance to the next element in mulitple of element count, where a
value of 1 means the elements are adjacent in memory.

returns an object that implements javax.realtime.device.RawByteWriter and sup-
ports access to the specified range in the memory region.

Throws IllegalArgumentException when base is negative, count is not greater than
zero, or stride is not greater than zero.

Throws SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.

Throws OffsetOutOfBoundsException when base is invalid.

Throws SizeOutOfBoundsException when the memory addressed by the object
would extend into an invalid range of memory.

Throws MemoryTypeConflictException when base does not point to memory that
matches the type served by this factory.

Since
RTSJ 2.0

174 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.device.RawDouble createRawDouble(long base,
int count,
int stride)
throws

java.lang.SecurityException, javax.realtime.OffsetOutOfBoundsException,
javax.realtime.SizeOutOfBoundsException,
javax.realtime.UnsupportedRawMemoryRegionException,
javax.realtime.MemoryTypeConflictException

Create an instance of a class that implements javax.realtime.device.RawDouble
and accesses memory of javax.realtime.device.RawMemoryRegionFactoryget-
Region in the address range described by base, stride, and count. The actual
extent of the memory addressed by the object is stride x size of RawDouble x
count. The object is allocated in the current memory area of the calling thread.

base — The starting physical address accessible through the returned instance.

count — The number of memory elements accessible through the returned instance.

stride — The distance to the next element in mulitple of element count, where a
value of 1 means the elements are adjacent in memory.

returns an object that implements javax.realtime.device.RawDouble and sup-
ports access to the specified range in the memory region.

Throws IllegalArgumentException when base is negative, count is not greater than
zero, or stride is not greater than zero.

Throws SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.

Throws OffsetOutOfBoundsException when base is invalid.

Throws SizeOutOfBoundsException when the memory addressed by the object
would extend into an invalid range of memory.

Throws MemoryTypeConflictException when base does not point to memory that
matches the type served by this factory.

Since
RTSJ 2.0

27 January 2017 Version 0.109
Confidentiality: Public Distribution

175

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.device.RawDoubleReader createRawDoubleReader(long base,
int count,
int stride)
throws

java.lang.SecurityException, javax.realtime.OffsetOutOfBoundsException,
javax.realtime.SizeOutOfBoundsException,
javax.realtime.UnsupportedRawMemoryRegionException,
javax.realtime.MemoryTypeConflictException

Create an instance of a class that implements javax.realtime.device.RawDouble-
Reader and accesses memory of javax.realtime.device.RawMemoryRegion-
FactorygetRegion in the address range described by base, stride, and count.
The actual extent of the memory addressed by the object is stride x size of Raw-
DoubleReader x count. The object is allocated in the current memory area of
the calling thread.

base — The starting physical address accessible through the returned instance.

count — The number of memory elements accessible through the returned instance.

stride — The distance to the next element in mulitple of element count, where a
value of 1 means the elements are adjacent in memory.

returns an object that implements javax.realtime.device.RawDoubleReader and
supports access to the specified range in the memory region.

Throws IllegalArgumentException when base is negative, count is not greater than
zero, or stride is not greater than zero.

Throws SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.

Throws OffsetOutOfBoundsException when base is invalid.

Throws SizeOutOfBoundsException when the memory addressed by the object
would extend into an invalid range of memory.

Throws MemoryTypeConflictException when base does not point to memory that
matches the type served by this factory.

Since
RTSJ 2.0

176 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.device.RawDoubleWriter createRawDoubleWriter(long base,
int count,
int stride)
throws

java.lang.SecurityException, javax.realtime.OffsetOutOfBoundsException,
javax.realtime.SizeOutOfBoundsException,
javax.realtime.UnsupportedRawMemoryRegionException,
javax.realtime.MemoryTypeConflictException

Create an instance of a class that implements javax.realtime.device.RawDouble-
Writer and accesses memory of javax.realtime.device.RawMemoryRegion-
FactorygetRegion in the address range described by base, stride, and count.
The actual extent of the memory addressed by the object is stride x size of Raw-
DoubleWriter x count. The object is allocated in the current memory area of
the calling thread.

base — The starting physical address accessible through the returned instance.

count — The number of memory elements accessible through the returned instance.

stride — The distance to the next element in mulitple of element count, where a
value of 1 means the elements are adjacent in memory.

returns an object that implements javax.realtime.device.RawDoubleWriter and
supports access to the specified range in the memory region.

Throws IllegalArgumentException when base is negative, count is not greater than
zero, or stride is not greater than zero.

Throws SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.

Throws OffsetOutOfBoundsException when base is invalid.

Throws SizeOutOfBoundsException when the memory addressed by the object
would extend into an invalid range of memory.

Throws MemoryTypeConflictException when base does not point to memory that
matches the type served by this factory.

Since
RTSJ 2.0

27 January 2017 Version 0.109
Confidentiality: Public Distribution

177

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.device.RawFloat createRawFloat(long base,
int count,
int stride)
throws

java.lang.SecurityException, javax.realtime.OffsetOutOfBoundsException,
javax.realtime.SizeOutOfBoundsException,
javax.realtime.UnsupportedRawMemoryRegionException,
javax.realtime.MemoryTypeConflictException

Create an instance of a class that implements javax.realtime.device.RawFloat
and accesses memory of javax.realtime.device.RawMemoryRegionFactoryget-
Region in the address range described by base, stride, and count. The actual
extent of the memory addressed by the object is stride x size of RawFloat x
count. The object is allocated in the current memory area of the calling thread.

base — The starting physical address accessible through the returned instance.

count — The number of memory elements accessible through the returned instance.

stride — The distance to the next element in mulitple of element count, where a
value of 1 means the elements are adjacent in memory.

returns an object that implements javax.realtime.device.RawFloat and supports
access to the specified range in the memory region.

Throws IllegalArgumentException when base is negative, count is not greater than
zero, or stride is not greater than zero.

Throws SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.

Throws OffsetOutOfBoundsException when base is invalid.

Throws SizeOutOfBoundsException when the memory addressed by the object
would extend into an invalid range of memory.

Throws MemoryTypeConflictException when base does not point to memory that
matches the type served by this factory.

Since
RTSJ 2.0

178 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.device.RawFloatReader createRawFloatReader(long base,
int count,
int stride)
throws

java.lang.SecurityException, javax.realtime.OffsetOutOfBoundsException,
javax.realtime.SizeOutOfBoundsException,
javax.realtime.UnsupportedRawMemoryRegionException,
javax.realtime.MemoryTypeConflictException

Create an instance of a class that implements javax.realtime.device.RawFloat-
Reader and accesses memory of javax.realtime.device.RawMemoryRegion-
FactorygetRegion in the address range described by base, stride, and count.
The actual extent of the memory addressed by the object is stride x size of
RawFloatReader x count. The object is allocated in the current memory area
of the calling thread.

base — The starting physical address accessible through the returned instance.

count — The number of memory elements accessible through the returned instance.

stride — The distance to the next element in mulitple of element count, where a
value of 1 means the elements are adjacent in memory.

returns an object that implements javax.realtime.device.RawFloatReader and
supports access to the specified range in the memory region.

Throws IllegalArgumentException when base is negative, count is not greater than
zero, or stride is not greater than zero.

Throws SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.

Throws OffsetOutOfBoundsException when base is invalid.

Throws SizeOutOfBoundsException when the memory addressed by the object
would extend into an invalid range of memory.

Throws MemoryTypeConflictException when base does not point to memory that
matches the type served by this factory.

Since
RTSJ 2.0

27 January 2017 Version 0.109
Confidentiality: Public Distribution

179

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.device.RawFloatWriter createRawFloatWriter(long base,
int count,
int stride)
throws

java.lang.SecurityException, javax.realtime.OffsetOutOfBoundsException,
javax.realtime.SizeOutOfBoundsException,
javax.realtime.UnsupportedRawMemoryRegionException,
javax.realtime.MemoryTypeConflictException

Create an instance of a class that implements javax.realtime.device.RawFloat-
Writer and accesses memory of javax.realtime.device.RawMemoryRegion-
FactorygetRegion in the address range described by base, stride, and count.
The actual extent of the memory addressed by the object is stride x size of
RawFloatWriter x count. The object is allocated in the current memory area of
the calling thread.

base — The starting physical address accessible through the returned instance.

count — The number of memory elements accessible through the returned instance.

stride — The distance to the next element in mulitple of element count, where a
value of 1 means the elements are adjacent in memory.

returns an object that implements javax.realtime.device.RawFloatWriter and
supports access to the specified range in the memory region.

Throws IllegalArgumentException when base is negative, count is not greater than
zero, or stride is not greater than zero.

Throws SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.

Throws OffsetOutOfBoundsException when base is invalid.

Throws SizeOutOfBoundsException when the memory addressed by the object
would extend into an invalid range of memory.

Throws MemoryTypeConflictException when base does not point to memory that
matches the type served by this factory.

Since
RTSJ 2.0

180 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.device.RawInt createRawInt(long base, int count, int stride)
throws

java.lang.SecurityException, javax.realtime.OffsetOutOfBoundsException,
javax.realtime.SizeOutOfBoundsException,
javax.realtime.UnsupportedRawMemoryRegionException,
javax.realtime.MemoryTypeConflictException

Create an instance of a class that implements javax.realtime.device.RawInt
and accesses memory of javax.realtime.device.RawMemoryRegionFactoryget-
Region in the address range described by base, stride, and count. The actual
extent of the memory addressed by the object is stride x size of RawInt x count.
The object is allocated in the current memory area of the calling thread.

base — The starting physical address accessible through the returned instance.

count — The number of memory elements accessible through the returned instance.

stride — The distance to the next element in mulitple of element count, where a
value of 1 means the elements are adjacent in memory.

returns an object that implements javax.realtime.device.RawInt and supports
access to the specified range in the memory region.

Throws IllegalArgumentException when base is negative, count is not greater than
zero, or stride is not greater than zero.

Throws SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.

Throws OffsetOutOfBoundsException when base is invalid.

Throws SizeOutOfBoundsException when the memory addressed by the object
would extend into an invalid range of memory.

Throws MemoryTypeConflictException when base does not point to memory that
matches the type served by this factory.

Since
RTSJ 2.0

27 January 2017 Version 0.109
Confidentiality: Public Distribution

181

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.device.RawIntReader createRawIntReader(long base,
int count,
int stride)
throws

java.lang.SecurityException, javax.realtime.OffsetOutOfBoundsException,
javax.realtime.SizeOutOfBoundsException,
javax.realtime.UnsupportedRawMemoryRegionException,
javax.realtime.MemoryTypeConflictException

Create an instance of a class that implements javax.realtime.device.RawInt-
Reader and accesses memory of javax.realtime.device.RawMemoryRegion-
FactorygetRegion in the address range described by base, stride, and count.
The actual extent of the memory addressed by the object is stride x size of
RawIntReader x count. The object is allocated in the current memory area of
the calling thread.

base — The starting physical address accessible through the returned instance.

count — The number of memory elements accessible through the returned instance.

stride — The distance to the next element in mulitple of element count, where a
value of 1 means the elements are adjacent in memory.

returns an object that implements javax.realtime.device.RawIntReader and sup-
ports access to the specified range in the memory region.

Throws IllegalArgumentException when base is negative, count is not greater than
zero, or stride is not greater than zero.

Throws SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.

Throws OffsetOutOfBoundsException when base is invalid.

Throws SizeOutOfBoundsException when the memory addressed by the object
would extend into an invalid range of memory.

Throws MemoryTypeConflictException when base does not point to memory that
matches the type served by this factory.

Since
RTSJ 2.0

182 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.device.RawIntWriter createRawIntWriter(long base,
int count,
int stride)
throws

java.lang.SecurityException, javax.realtime.OffsetOutOfBoundsException,
javax.realtime.SizeOutOfBoundsException,
javax.realtime.UnsupportedRawMemoryRegionException,
javax.realtime.MemoryTypeConflictException

Create an instance of a class that implements javax.realtime.device.RawInt-
Writer and accesses memory of javax.realtime.device.RawMemoryRegion-
FactorygetRegion in the address range described by base, stride, and count.
The actual extent of the memory addressed by the object is stride x size of
RawIntWriter x count. The object is allocated in the current memory area of
the calling thread.

base — The starting physical address accessible through the returned instance.

count — The number of memory elements accessible through the returned instance.

stride — The distance to the next element in mulitple of element count, where a
value of 1 means the elements are adjacent in memory.

returns an object that implements javax.realtime.device.RawIntWriter and sup-
ports access to the specified range in the memory region.

Throws IllegalArgumentException when base is negative, count is not greater than
zero, or stride is not greater than zero.

Throws SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.

Throws OffsetOutOfBoundsException when base is invalid.

Throws SizeOutOfBoundsException when the memory addressed by the object
would extend into an invalid range of memory.

Throws MemoryTypeConflictException when base does not point to memory that
matches the type served by this factory.

Since
RTSJ 2.0

27 January 2017 Version 0.109
Confidentiality: Public Distribution

183

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.device.RawLong createRawLong(long base,
int count,
int stride)
throws

java.lang.SecurityException, javax.realtime.OffsetOutOfBoundsException,
javax.realtime.SizeOutOfBoundsException,
javax.realtime.UnsupportedRawMemoryRegionException,
javax.realtime.MemoryTypeConflictException

Create an instance of a class that implements javax.realtime.device.RawLong
and accesses memory of javax.realtime.device.RawMemoryRegionFactoryget-
Region in the address range described by base, stride, and count. The actual
extent of the memory addressed by the object is stride x size of RawLong x
count. The object is allocated in the current memory area of the calling thread.

base — The starting physical address accessible through the returned instance.

count — The number of memory elements accessible through the returned instance.

stride — The distance to the next element in mulitple of element count, where a
value of 1 means the elements are adjacent in memory.

returns an object that implements javax.realtime.device.RawLong and supports
access to the specified range in the memory region.

Throws IllegalArgumentException when base is negative, count is not greater than
zero, or stride is not greater than zero.

Throws SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.

Throws OffsetOutOfBoundsException when base is invalid.

Throws SizeOutOfBoundsException when the memory addressed by the object
would extend into an invalid range of memory.

Throws MemoryTypeConflictException when base does not point to memory that
matches the type served by this factory.

Since
RTSJ 2.0

184 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.device.RawLongReader createRawLongReader(long base,
int count,
int stride)
throws

java.lang.SecurityException, javax.realtime.OffsetOutOfBoundsException,
javax.realtime.SizeOutOfBoundsException,
javax.realtime.UnsupportedRawMemoryRegionException,
javax.realtime.MemoryTypeConflictException

Create an instance of a class that implements javax.realtime.device.RawLong-
Reader and accesses memory of javax.realtime.device.RawMemoryRegion-
FactorygetRegion in the address range described by base, stride, and count.
The actual extent of the memory addressed by the object is stride x size of Raw-
LongReader x count. The object is allocated in the current memory area of the
calling thread.

base — The starting physical address accessible through the returned instance.

count — The number of memory elements accessible through the returned instance.

stride — The distance to the next element in mulitple of element count, where a
value of 1 means the elements are adjacent in memory.

returns an object that implements javax.realtime.device.RawLongReader and
supports access to the specified range in the memory region.

Throws IllegalArgumentException when base is negative, count is not greater than
zero, or stride is not greater than zero.

Throws SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.

Throws OffsetOutOfBoundsException when base is invalid.

Throws SizeOutOfBoundsException when the memory addressed by the object
would extend into an invalid range of memory.

Throws MemoryTypeConflictException when base does not point to memory that
matches the type served by this factory.

Since
RTSJ 2.0

27 January 2017 Version 0.109
Confidentiality: Public Distribution

185

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.device.RawLongWriter createRawLongWriter(long base,
int count,
int stride)
throws

java.lang.SecurityException, javax.realtime.OffsetOutOfBoundsException,
javax.realtime.SizeOutOfBoundsException,
javax.realtime.UnsupportedRawMemoryRegionException,
javax.realtime.MemoryTypeConflictException

Create an instance of a class that implements javax.realtime.device.RawLong-
Writer and accesses memory of javax.realtime.device.RawMemoryRegion-
FactorygetRegion in the address range described by base, stride, and count.
The actual extent of the memory addressed by the object is stride x size of Raw-
LongWriter x count. The object is allocated in the current memory area of the
calling thread.

base — The starting physical address accessible through the returned instance.

count — The number of memory elements accessible through the returned instance.

stride — The distance to the next element in mulitple of element count, where a
value of 1 means the elements are adjacent in memory.

returns an object that implements javax.realtime.device.RawLongWriter and
supports access to the specified range in the memory region.

Throws IllegalArgumentException when base is negative, count is not greater than
zero, or stride is not greater than zero.

Throws SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.

Throws OffsetOutOfBoundsException when base is invalid.

Throws SizeOutOfBoundsException when the memory addressed by the object
would extend into an invalid range of memory.

Throws MemoryTypeConflictException when base does not point to memory that
matches the type served by this factory.

Since
RTSJ 2.0

186 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.device.RawShort createRawShort(long base,
int count,
int stride)
throws

java.lang.SecurityException, javax.realtime.OffsetOutOfBoundsException,
javax.realtime.SizeOutOfBoundsException,
javax.realtime.UnsupportedRawMemoryRegionException,
javax.realtime.MemoryTypeConflictException

Create an instance of a class that implements javax.realtime.device.RawShort
and accesses memory of javax.realtime.device.RawMemoryRegionFactoryget-
Region in the address range described by base, stride, and count. The actual
extent of the memory addressed by the object is stride x size of RawShort x
count. The object is allocated in the current memory area of the calling thread.

base — The starting physical address accessible through the returned instance.

count — The number of memory elements accessible through the returned instance.

stride — The distance to the next element in mulitple of element count, where a
value of 1 means the elements are adjacent in memory.

returns an object that implements javax.realtime.device.RawShort and supports
access to the specified range in the memory region.

Throws IllegalArgumentException when base is negative, count is not greater than
zero, or stride is not greater than zero.

Throws SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.

Throws OffsetOutOfBoundsException when base is invalid.

Throws SizeOutOfBoundsException when the memory addressed by the object
would extend into an invalid range of memory.

Throws MemoryTypeConflictException when base does not point to memory that
matches the type served by this factory.

Since
RTSJ 2.0

27 January 2017 Version 0.109
Confidentiality: Public Distribution

187

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.device.RawShortReader createRawShortReader(long base,
int count,
int stride)
throws

java.lang.SecurityException, javax.realtime.OffsetOutOfBoundsException,
javax.realtime.SizeOutOfBoundsException,
javax.realtime.UnsupportedRawMemoryRegionException,
javax.realtime.MemoryTypeConflictException

Create an instance of a class that implements javax.realtime.device.RawShort-
Reader and accesses memory of javax.realtime.device.RawMemoryRegion-
FactorygetRegion in the address range described by base, stride, and count.
The actual extent of the memory addressed by the object is stride x size of Raw-
ShortReader x count. The object is allocated in the current memory area of the
calling thread.

base — The starting physical address accessible through the returned instance.

count — The number of memory elements accessible through the returned instance.

stride — The distance to the next element in mulitple of element count, where a
value of 1 means the elements are adjacent in memory.

returns an object that implements javax.realtime.device.RawShortReader and
supports access to the specified range in the memory region.

Throws IllegalArgumentException when base is negative, count is not greater than
zero, or stride is not greater than zero.

Throws SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.

Throws OffsetOutOfBoundsException when base is invalid.

Throws SizeOutOfBoundsException when the memory addressed by the object
would extend into an invalid range of memory.

Throws MemoryTypeConflictException when base does not point to memory that
matches the type served by this factory.

Since
RTSJ 2.0

188 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.device.RawShortWriter createRawShortWriter(long base,
int count,
int stride)
throws

java.lang.SecurityException, javax.realtime.OffsetOutOfBoundsException,
javax.realtime.SizeOutOfBoundsException,
javax.realtime.UnsupportedRawMemoryRegionException,
javax.realtime.MemoryTypeConflictException

Create an instance of a class that implements javax.realtime.device.RawShort-
Writer and accesses memory of javax.realtime.device.RawMemoryRegion-
FactorygetRegion in the address range described by base, stride, and count.
The actual extent of the memory addressed by the object is stride x size of Raw-
ShortWriter x count. The object is allocated in the current memory area of the
calling thread.

base — The starting physical address accessible through the returned instance.

count — The number of memory elements accessible through the returned instance.

stride — The distance to the next element in mulitple of element count, where a
value of 1 means the elements are adjacent in memory.

returns an object that implements javax.realtime.device.RawShortWriter and
supports access to the specified range in the memory region.

Throws IllegalArgumentException when base is negative, count is not greater than
zero, or stride is not greater than zero.

Throws SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.

Throws OffsetOutOfBoundsException when base is invalid.

Throws SizeOutOfBoundsException when the memory addressed by the object
would extend into an invalid range of memory.

Throws MemoryTypeConflictException when base does not point to memory that
matches the type served by this factory.

Since
RTSJ 2.0

27 January 2017 Version 0.109
Confidentiality: Public Distribution

189

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.String getName()

Determine the name of the region for which this factory creates raw memory
objects.

returns the name of the region of this factory.

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.device.RawMemoryRegion getRegion()

Determine for what region this factory creates raw memory objects.

returns the region of this factory.

5.2.18 javax.realtime.device.RawMemoryFactory

Declaration

@SCJAllowed
public class RawMemoryFactory extends java.lang.Object

Since
RTSJ 2.0

Description

This class is the hub of a system that constructs special purpose objects to
access particular types and ranges of raw memory. This facility is supported
by the RawMemoryRegionFactory methods. An application developer can use
this method to add support for additional memory regions.

190 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Each create method returns an object of the corresponding type, e.g., the creat-
eRawByte(RawMemoryRegion, long, int, int)} method returns a reference to
an object that implements the javax.realtime.device.RawByte interface and
supports access to the requested type of memory and address range. Each cre-
ate method is permitted to optimize error checking and access based on the
requested memory type and address range.

The usage pattern for raw memory, assuming the necessary factory has been
registered, is illustrated by this example.

// Get an accessor object that can access memory starting at
// baseAddress, for size bytes.
RawInt memory =

RawMemoryFactory.createRawInt(RawMemoryFactory.MEMORY MAPPED REGION,
address, count, stride, false);

// Use the accessor to load from and store to raw memory.
int loadedData = memory.getInt(someOffset);
memory.setInt(otherOffset, intVal);

When an application needs to access a class of memory that is not already sup-
ported by a registered factory, the developer must implement and register a fac-
tory that implements the javax.realtime.device.RawMemoryRegionFactory
) which can create objects to access memory in that region.

A raw memory region factory is identified by a javax.realtime.device.Raw-
MemoryRegion that is used by each create method, e.g., createRawByte(Raw-
MemoryRegion, long, int, int) , to locate the appropriate factory. The name is
provided to register(RawMemoryRegionFactory) through the factory’s javax-
.realtime.device.RawMemoryRegionFactorygetName method.

The register(RawMemoryRegionFactory) method is only used when by ap-
plication code when it needs to add support for a new type of raw memory.

Whether a give offset addresses a high-order or low-order byte of an aligned
short in memory is determined by the value of the javax.realtime.RealtimeSystem.BYTE ORDER
static byte variable in class javax.realtime.RealtimeSystem, the start address of
the object, and the offset given the stride of the object. Regardless of the byte
ordering, accessor methods continue to select bytes starting at offset from the
base address and continuing toward greater addresses.

A raw memory region cannot contain references to Java objects. Such a capa-
bility would be unsafe (since it could be used to defeat Java’s type checking)
and error prone (since it is sensitive to the specific representational choices
made by the Java compiler).

Atomic loads and stores on raw memory are defined in terms of physical mem-
ory. This memory may be accessible to threads outside the JVM and to non-
programmed access (e.g., DMA). Consequently, atomic access must be sup-

27 January 2017 Version 0.109
Confidentiality: Public Distribution

191

Safety-Critical Java Technology Specification

ported by hardware. This specification is written with the assumption that all
suitable hardware platforms support atomic loads from raw memory for aligned
bytes, shorts, and ints. Atomic access beyond the specified minimum may be
supported by the implementation.

Storing values into raw memory is more hardware-dependent than loading val-
ues. Many processor architectures do not support atomic stores of variables
except for aligned stores of the processor’s word size. For instance, storing
a byte into memory might require reading a 32-bit quantity into a processor
register, updating the register to reflect the new byte value, then restoring the
whole 32-bit quantity. Changes to other bytes in the 32-bit quantity that take
place between the load and the store are lost.

Some processors have mechanisms that can be used to implement an atomic
store of a byte, but those mechanisms are often slow and not universally sup-
ported.

This class need not support unaligned access to data; but if it does, it is not re-
quire the implementation to make such access atomic. Accesses to data aligned
on its natural boundary will be atomic if the processor implements atomic loads
and stores of that data size.

Except where noted, accesses to raw memory are not atomic with respect to the
memory or with respect to schedulable objects. A raw memory region could
be updated by another schedulable object, or even unmapped in the middle of
an access method, or even removed mid method.

The characteristics of raw-memory access are necessarily platform dependent.
This specification provides a minimum requirement for the SCJ platform, but
it also supports optional system properties that identify a platform’s level of
support for atomic raw put and get. The properties represent a four-dimensional
sparse array of access type, data type, alignment, and atomicity with boolean
values indicating whether that combination of access attributes is atomic. The
default value for array entries is false. The permissable values of these array
entries are:
• Access type - possible values are read and write.
• Data type - possible values are byte, short, int, long, float, and double.
• Alignment - possible values are 0 through 7, inclusive. For each data

type, the possible alignments range from:
• 0 means aligned
• 1 to (data size-1) means only the first byte of the data is alignment

bytes away from natural alignment
• Atomicity - possible values are processor, smp, and memory.

• processor means that access is atomic with respect to other schedu-
lable objects on that processor.

192 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

• smp means that access is processor atomic, and atomic across the
processors in an SMP.

• memory means that access is SMP atomic, and atomic with respect
to all access to the memory, including DMA hardware.

The true values in the table are represented by properties of the following form.
javax.realtime.atomicaccess <access> <type> <alignment> atomicity=true
for example,

javax.realtime.atomicaccess read byte 0 memory=true

Table entries with a value of false may be explicitly represented, but since false
is the default value, such properties are redundant.

All raw memory access is treated as volatile, and serialized. The infrastructure
must be forced to read memory or write to memory on each call to a raw mem-
ory objects’s getter or setter method, and to complete the reads and writes in
the order they appear in the program order.

Fields

@SCJAllowed
public static final javax.realtime.device.RawMemoryRegion IO PORT MAPPED REGION

This raw memory region is predefined for access to I/O device space imple-
mented by processor instructions, such as the x86 in and out instructions.

@SCJAllowed
public static final javax.realtime.device.RawMemoryRegion MEMORY MAPPED REGION

This raw memory region is predefined for request access to memory mapped
I/O devices.

Constructors

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION})

@SCJMayAllocate({
javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

public RawMemoryFactory()

Create an empty factory. For a factory with support for the platform defined re-
gions, use javax.realtime.device.RawMemoryFactorygetDefaultFactory in-
stead.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

193

Safety-Critical Java Technology Specification

Methods

@SCJAllowed
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.device.RawByte createRawByte(RawMemoryRegion region,
long base,
int count,
int stride)
throws

java.lang.SecurityException, javax.realtime.OffsetOutOfBoundsException,
javax.realtime.SizeOutOfBoundsException,
javax.realtime.MemoryTypeConflictException,
javax.realtime.UnsupportedRawMemoryRegionException

Create an instance of a class that implements javax.realtime.device.RawByte
and accesses memory of region in the address range described by base, stride,
and count. The actual extent of the memory addressed by the object is stride x
size of RawByte x count. The object is allocated in the current memory area of
the calling thread.

region — The address space from which the new instance should be taken.

base — The starting physical address accessible through the returned instance.

count — The number of memory elements accessible through the returned instance.

stride — The distance to the next element as a mulitple of element size, where 1
means the elements are adjacent in memory.

returns an object that implements javax.realtime.device.RawByte and supports
access to the specified range in the memory region.

Throws IllegalArgumentException when base is negative, count is not greater than
zero, or stride is less than one.

Throws SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.

Throws OffsetOutOfBoundsException when base is invalid.

Throws SizeOutOfBoundsException when the memory addressed by the object
would extend into an invalid range of memory.

Throws MemoryTypeConflictException when base does not point to a memory that
matches the type served by this factory.

194 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.device.RawByteReader createRawByteReader(
RawMemoryRegion region,
long base,
int count,
int stride)
throws

java.lang.SecurityException, javax.realtime.OffsetOutOfBoundsException,
javax.realtime.SizeOutOfBoundsException,
javax.realtime.MemoryTypeConflictException,
javax.realtime.UnsupportedRawMemoryRegionException

Create an instance of a class that implements javax.realtime.device.RawByte-
Reader and accesses memory of region in the address range described by base,
stride, and count. The actual extent of the memory addressed by the object is
stride x size of RawByteReader x count. The object is allocated in the current
memory area of the calling thread.

region — The address space from which the new instance should be taken.

base — The starting physical address accessible through the returned instance.

count — The number of memory elements accessible through the returned instance.

stride — The distance to the next element as a mulitple of element size, where 1
means the elements are adjacent in memory.

returns an object that implements javax.realtime.device.RawByteReader and
supports access to the specified range in the memory region.

Throws IllegalArgumentException when base is negative, count is not greater than
zero, or stride is less than one.

Throws SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.

Throws OffsetOutOfBoundsException when base is invalid.

Throws SizeOutOfBoundsException when the memory addressed by the object
would extend into an invalid range of memory.

Throws MemoryTypeConflictException when base does not point to a memory that
matches the type served by this factory.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

195

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.device.RawByteWriter createRawByteWriter(
RawMemoryRegion region,
long base,
int count,
int stride)
throws

java.lang.SecurityException, javax.realtime.OffsetOutOfBoundsException,
javax.realtime.SizeOutOfBoundsException,
javax.realtime.MemoryTypeConflictException,
javax.realtime.UnsupportedRawMemoryRegionException

Create an instance of a class that implements javax.realtime.device.RawByte-
Writer and accesses memory of region in the address range described by base,
stride, and count. The actual extent of the memory addressed by the object is
stride x size of RawByteWriter x count. The object is allocated in the current
memory area of the calling thread.

region — The address space from which the new instance should be taken.

base — The starting physical address accessible through the returned instance.

count — The number of memory elements accessible through the returned instance.

stride — The distance to the next element as a mulitple of element size, where 1
means the elements are adjacent in memory.

returns an object that implements javax.realtime.device.RawByteWriter and sup-
ports access to the specified range in the memory region.

Throws IllegalArgumentException when base is negative, count is not greater than
zero, or stride is less than one.

Throws SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.

Throws OffsetOutOfBoundsException when base is invalid.

Throws SizeOutOfBoundsException when the memory addressed by the object
would extend into an invalid range of memory.

Throws MemoryTypeConflictException when base does not point to a memory that
matches the type served by this factory.

196 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.device.RawDouble createRawDouble(RawMemoryRegion region,
long base,
int count,
int stride)
throws

java.lang.SecurityException, javax.realtime.OffsetOutOfBoundsException,
javax.realtime.SizeOutOfBoundsException,
javax.realtime.MemoryTypeConflictException,
javax.realtime.UnsupportedRawMemoryRegionException

Create an instance of a class that implements javax.realtime.device.RawDouble
and accesses memory of region in the address range described by base, stride,
and count. The actual extent of the memory addressed by the object is stride x
size of RawDouble x count. The object is allocated in the current memory area
of the calling thread.

region — The address space from which the new instance should be taken.

base — The starting physical address accessible through the returned instance.

count — The number of memory elements accessible through the returned instance.

stride — The distance to the next element as a mulitple of element size, where 1
means the elements are adjacent in memory.

returns an object that implements javax.realtime.device.RawDouble and sup-
ports access to the specified range in the memory region.

Throws IllegalArgumentException when base is negative, count is not greater than
zero, or stride is less than one.

Throws SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.

Throws OffsetOutOfBoundsException when base is invalid.

Throws SizeOutOfBoundsException when the memory addressed by the object
would extend into an invalid range of memory.

Throws MemoryTypeConflictException when base does not point to a memory that
matches the type served by this factory.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

197

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.device.RawDoubleReader createRawDoubleReader(
RawMemoryRegion region,
long base,
int count,
int stride)
throws

java.lang.SecurityException, javax.realtime.OffsetOutOfBoundsException,
javax.realtime.SizeOutOfBoundsException,
javax.realtime.MemoryTypeConflictException,
javax.realtime.UnsupportedRawMemoryRegionException

Create an instance of a class that implements javax.realtime.device.RawDouble-
Reader and accesses memory of region in the address range described by base,
stride, and count. The actual extent of the memory addressed by the object is
stride x size of RawDoubleReader x count. The object is allocated in the cur-
rent memory area of the calling thread.

region — The address space from which the new instance should be taken.

base — The starting physical address accessible through the returned instance.

count — The number of memory elements accessible through the returned instance.

stride — The distance to the next element as a mulitple of element size, where 1
means the elements are adjacent in memory.

returns an object that implements javax.realtime.device.RawDoubleReader and
supports access to the specified range in the memory region.

Throws IllegalArgumentException when base is negative, count is not greater than
zero, or stride is less than one.

Throws SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.

Throws OffsetOutOfBoundsException when base is invalid.

Throws SizeOutOfBoundsException when the memory addressed by the object
would extend into an invalid range of memory.

Throws MemoryTypeConflictException when base does not point to a memory that
matches the type served by this factory.

198 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.device.RawDoubleWriter createRawDoubleWriter(
RawMemoryRegion region,
long base,
int count,
int stride)
throws

java.lang.SecurityException, javax.realtime.OffsetOutOfBoundsException,
javax.realtime.SizeOutOfBoundsException,
javax.realtime.MemoryTypeConflictException,
javax.realtime.UnsupportedRawMemoryRegionException

Create an instance of a class that implements javax.realtime.device.RawDouble-
Writer and accesses memory of region in the address range described by base,
stride, and count. The actual extent of the memory addressed by the object is
stride x size of RawDoubleWriter x count. The object is allocated in the current
memory area of the calling thread.

region — The address space from which the new instance should be taken.

base — The starting physical address accessible through the returned instance.

count — The number of memory elements accessible through the returned instance.

stride — The distance to the next element as a mulitple of element size, where 1
means the elements are adjacent in memory.

returns an object that implements javax.realtime.device.RawDoubleWriter and
supports access to the specified range in the memory region.

Throws IllegalArgumentException when base is negative, count is not greater than
zero, or stride is less than one.

Throws SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.

Throws OffsetOutOfBoundsException when base is invalid.

Throws SizeOutOfBoundsException when the memory addressed by the object
would extend into an invalid range of memory.

Throws MemoryTypeConflictException when base does not point to a memory that
matches the type served by this factory.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

199

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.device.RawFloat createRawFloat(RawMemoryRegion region,
long base,
int count,
int stride)
throws

java.lang.SecurityException, javax.realtime.OffsetOutOfBoundsException,
javax.realtime.SizeOutOfBoundsException,
javax.realtime.MemoryTypeConflictException,
javax.realtime.UnsupportedRawMemoryRegionException

Create an instance of a class that implements javax.realtime.device.RawFloat
and accesses memory of region in the address range described by base, stride,
and count. The actual extent of the memory addressed by the object is stride x
size of RawFloat x count. The object is allocated in the current memory area
of the calling thread.

region — The address space from which the new instance should be taken.

base — The starting physical address accessible through the returned instance.

count — The number of memory elements accessible through the returned instance.

stride — The distance to the next element as a mulitple of element size, where 1
means the elements are adjacent in memory.

returns an object that implements javax.realtime.device.RawFloat and supports
access to the specified range in the memory region.

Throws IllegalArgumentException when base is negative, count is not greater than
zero, or stride is less than one.

Throws SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.

Throws OffsetOutOfBoundsException when base is invalid.

Throws SizeOutOfBoundsException when the memory addressed by the object
would extend into an invalid range of memory.

Throws MemoryTypeConflictException when base does not point to a memory that
matches the type served by this factory.

200 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.device.RawFloatReader createRawFloatReader(
RawMemoryRegion region,
long base,
int count,
int stride)
throws

java.lang.SecurityException, javax.realtime.OffsetOutOfBoundsException,
javax.realtime.SizeOutOfBoundsException,
javax.realtime.MemoryTypeConflictException,
javax.realtime.UnsupportedRawMemoryRegionException

Create an instance of a class that implements javax.realtime.device.RawFloat-
Reader and accesses memory of region in the address range described by base,
stride, and count. The actual extent of the memory addressed by the object is
stride x size of RawFloatReader x count. The object is allocated in the current
memory area of the calling thread.

region — The address space from which the new instance should be taken.

base — The starting physical address accessible through the returned instance.

count — The number of memory elements accessible through the returned instance.

stride — The distance to the next element as a mulitple of element size, where 1
means the elements are adjacent in memory.

returns an object that implements javax.realtime.device.RawFloatReader and
supports access to the specified range in the memory region.

Throws IllegalArgumentException when base is negative, count is not greater than
zero, or stride is less than one.

Throws SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.

Throws OffsetOutOfBoundsException when base is invalid.

Throws SizeOutOfBoundsException when the memory addressed by the object
would extend into an invalid range of memory.

Throws MemoryTypeConflictException when base does not point to a memory that
matches the type served by this factory.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

201

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.device.RawFloatWriter createRawFloatWriter(
RawMemoryRegion region,
long base,
int count,
int stride)
throws

java.lang.SecurityException, javax.realtime.OffsetOutOfBoundsException,
javax.realtime.SizeOutOfBoundsException,
javax.realtime.MemoryTypeConflictException,
javax.realtime.UnsupportedRawMemoryRegionException

Create an instance of a class that implements javax.realtime.device.RawFloat-
Writer and accesses memory of region in the address range described by base,
stride, and count. The actual extent of the memory addressed by the object is
stride x size of RawFloatWriter x count. The object is allocated in the current
memory area of the calling thread.

region — The address space from which the new instance should be taken.

base — The starting physical address accessible through the returned instance.

count — The number of memory elements accessible through the returned instance.

stride — The distance to the next element as a mulitple of element size, where 1
means the elements are adjacent in memory.

returns an object that implements javax.realtime.device.RawFloatWriter and
supports access to the specified range in the memory region.

Throws IllegalArgumentException when base is negative, count is not greater than
zero, or stride is less than one.

Throws SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.

Throws OffsetOutOfBoundsException when base is invalid.

Throws SizeOutOfBoundsException when the memory addressed by the object
would extend into an invalid range of memory.

Throws MemoryTypeConflictException when base does not point to a memory that
matches the type served by this factory.

202 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.device.RawInt createRawInt(RawMemoryRegion region,
long base,
int count,
int stride)
throws

java.lang.SecurityException, javax.realtime.OffsetOutOfBoundsException,
javax.realtime.SizeOutOfBoundsException,
javax.realtime.MemoryTypeConflictException,
javax.realtime.UnsupportedRawMemoryRegionException

Create an instance of a class that implements javax.realtime.device.RawInt
and accesses memory of region in the address range described by base, stride,
and count. The actual extent of the memory addressed by the object is stride x
size of RawInt x count. The object is allocated in the current memory area of
the calling thread.

region — The address space from which the new instance should be taken.

base — The starting physical address accessible through the returned instance.

count — The number of memory elements accessible through the returned instance.

stride — The distance to the next element as a mulitple of element size, where 1
means the elements are adjacent in memory.

returns an object that implements javax.realtime.device.RawInt and supports
access to the specified range in the memory region.

Throws IllegalArgumentException when base is negative, count is not greater than
zero, or stride is less than one.

Throws SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.

Throws OffsetOutOfBoundsException when base is invalid.

Throws SizeOutOfBoundsException when the memory addressed by the object
would extend into an invalid range of memory.

Throws MemoryTypeConflictException when base does not point to a memory that
matches the type served by this factory.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

203

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.device.RawIntReader createRawIntReader(
RawMemoryRegion region,
long base,
int count,
int stride)
throws

java.lang.SecurityException, javax.realtime.OffsetOutOfBoundsException,
javax.realtime.SizeOutOfBoundsException,
javax.realtime.MemoryTypeConflictException,
javax.realtime.UnsupportedRawMemoryRegionException

Create an instance of a class that implements javax.realtime.device.RawInt-
Reader and accesses memory of region in the address range described by base,
stride, and count. The actual extent of the memory addressed by the object is
stride x size of RawIntReader x count. The object is allocated in the current
memory area of the calling thread.

region — The address space from which the new instance should be taken.

base — The starting physical address accessible through the returned instance.

count — The number of memory elements accessible through the returned instance.

stride — The distance to the next element as a mulitple of element size, where 1
means the elements are adjacent in memory.

returns an object that implements javax.realtime.device.RawIntReader and sup-
ports access to the specified range in the memory region.

Throws IllegalArgumentException when base is negative, count is not greater than
zero, or stride is less than one.

Throws SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.

Throws OffsetOutOfBoundsException when base is invalid.

Throws SizeOutOfBoundsException when the memory addressed by the object
would extend into an invalid range of memory.

Throws MemoryTypeConflictException when base does not point to a memory that
matches the type served by this factory.

204 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.device.RawIntWriter createRawIntWriter(
RawMemoryRegion region,
long base,
int count,
int stride)
throws

java.lang.SecurityException, javax.realtime.OffsetOutOfBoundsException,
javax.realtime.SizeOutOfBoundsException,
javax.realtime.MemoryTypeConflictException,
javax.realtime.UnsupportedRawMemoryRegionException

Create an instance of a class that implements javax.realtime.device.RawInt-
Writer and accesses memory of region in the address range described by base,
stride, and count. The actual extent of the memory addressed by the object is
stride x size of RawIntWriter x count. The object is allocated in the current
memory area of the calling thread.

region — The address space from which the new instance should be taken.

base — The starting physical address accessible through the returned instance.

count — The number of memory elements accessible through the returned instance.

stride — The distance to the next element as a mulitple of element size, where 1
means the elements are adjacent in memory.

returns an object that implements javax.realtime.device.RawIntWriter and sup-
ports access to the specified range in the memory region.

Throws IllegalArgumentException when base is negative, count is not greater than
zero, or stride is less than one.

Throws SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.

Throws OffsetOutOfBoundsException when base is invalid.

Throws SizeOutOfBoundsException when the memory addressed by the object
would extend into an invalid range of memory.

Throws MemoryTypeConflictException when base does not point to a memory that
matches the type served by this factory.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

205

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.device.RawLong createRawLong(RawMemoryRegion region,
long base,
int count,
int stride)
throws

java.lang.SecurityException, javax.realtime.OffsetOutOfBoundsException,
javax.realtime.SizeOutOfBoundsException,
javax.realtime.MemoryTypeConflictException,
javax.realtime.UnsupportedRawMemoryRegionException

Create an instance of a class that implements javax.realtime.device.RawLong
and accesses memory of region in the address range described by base, stride,
and count. The actual extent of the memory addressed by the object is stride x
size of RawLong x count. The object is allocated in the current memory area of
the calling thread.

region — The address space from which the new instance should be taken.

base — The starting physical address accessible through the returned instance.

count — The number of memory elements accessible through the returned instance.

stride — The distance to the next element as a mulitple of element size, where 1
means the elements are adjacent in memory.

returns an object that implements javax.realtime.device.RawLong and supports
access to the specified range in the memory region.

Throws IllegalArgumentException when base is negative, count is not greater than
zero, or stride is less than one.

Throws SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.

Throws OffsetOutOfBoundsException when base is invalid.

Throws SizeOutOfBoundsException when the memory addressed by the object
would extend into an invalid range of memory.

Throws MemoryTypeConflictException when base does not point to a memory that
matches the type served by this factory.

206 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.device.RawLongReader createRawLongReader(
RawMemoryRegion region,
long base,
int count,
int stride)
throws

java.lang.SecurityException, javax.realtime.OffsetOutOfBoundsException,
javax.realtime.SizeOutOfBoundsException,
javax.realtime.MemoryTypeConflictException,
javax.realtime.UnsupportedRawMemoryRegionException

Create an instance of a class that implements javax.realtime.device.RawLong-
Reader and accesses memory of region in the address range described by base,
stride, and count. The actual extent of the memory addressed by the object is
stride x size of RawLongReader x count. The object is allocated in the current
memory area of the calling thread.

region — The address space from which the new instance should be taken.

base — The starting physical address accessible through the returned instance.

count — The number of memory elements accessible through the returned instance.

stride — The distance to the next element as a mulitple of element size, where 1
means the elements are adjacent in memory.

returns an object that implements javax.realtime.device.RawLongReader and
supports access to the specified range in the memory region.

Throws IllegalArgumentException when base is negative, count is not greater than
zero, or stride is less than one.

Throws SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.

Throws OffsetOutOfBoundsException when base is invalid.

Throws SizeOutOfBoundsException when the memory addressed by the object
would extend into an invalid range of memory.

Throws MemoryTypeConflictException when base does not point to a memory that
matches the type served by this factory.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

207

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.device.RawLongWriter createRawLongWriter(
RawMemoryRegion region,
long base,
int count,
int stride)
throws

java.lang.SecurityException, javax.realtime.OffsetOutOfBoundsException,
javax.realtime.SizeOutOfBoundsException,
javax.realtime.MemoryTypeConflictException,
javax.realtime.UnsupportedRawMemoryRegionException

Create an instance of a class that implements javax.realtime.device.RawLong-
Writer and accesses memory of region in the address range described by base,
stride, and count. The actual extent of the memory addressed by the object is
stride x size of RawLongWriter x count. The object is allocated in the current
memory area of the calling thread.

region — The address space from which the new instance should be taken.

base — The starting physical address accessible through the returned instance.

count — The number of memory elements accessible through the returned instance.

stride — The distance to the next element as a mulitple of element size, where 1
means the elements are adjacent in memory.

returns an object that implements javax.realtime.device.RawLongWriter and
supports access to the specified range in the memory region.

Throws IllegalArgumentException when base is negative, count is not greater than
zero, or stride is less than one.

Throws SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.

Throws OffsetOutOfBoundsException when base is invalid.

Throws SizeOutOfBoundsException when the memory addressed by the object
would extend into an invalid range of memory.

Throws MemoryTypeConflictException when base does not point to a memory that
matches the type served by this factory.

208 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.device.RawShort createRawShort(RawMemoryRegion region,
long base,
int count,
int stride)
throws

java.lang.SecurityException, javax.realtime.OffsetOutOfBoundsException,
javax.realtime.SizeOutOfBoundsException,
javax.realtime.MemoryTypeConflictException,
javax.realtime.UnsupportedRawMemoryRegionException

Create an instance of a class that implements javax.realtime.device.RawShort
and accesses memory of region in the address range described by base, stride,
and count. The actual extent of the memory addressed by the object is stride x
size of RawShort x count. The object is allocated in the current memory area
of the calling thread.

region — The address space from which the new instance should be taken.

base — The starting physical address accessible through the returned instance.

count — The number of memory elements accessible through the returned instance.

stride — The distance to the next element as a mulitple of element size, where 1
means the elements are adjacent in memory.

returns an object that implements javax.realtime.device.RawShort and supports
access to the specified range in the memory region.

Throws IllegalArgumentException when base is negative, count is not greater than
zero, or stride is less than one.

Throws SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.

Throws OffsetOutOfBoundsException when base is invalid.

Throws SizeOutOfBoundsException when the memory addressed by the object
would extend into an invalid range of memory.

Throws MemoryTypeConflictException when base does not point to a memory that
matches the type served by this factory.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

209

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.device.RawShortReader createRawShortReader(
RawMemoryRegion region,
long base,
int count,
int stride)
throws

java.lang.SecurityException, javax.realtime.OffsetOutOfBoundsException,
javax.realtime.SizeOutOfBoundsException,
javax.realtime.MemoryTypeConflictException,
javax.realtime.UnsupportedRawMemoryRegionException

Create an instance of a class that implements javax.realtime.device.RawShort-
Reader and accesses memory of region in the address range described by base,
stride, and count. The actual extent of the memory addressed by the object is
stride x size of RawShortReader x count. The object is allocated in the current
memory area of the calling thread.

region — The address space from which the new instance should be taken.

base — The starting physical address accessible through the returned instance.

count — The number of memory elements accessible through the returned instance.

stride — The distance to the next element as a mulitple of element size, where 1
means the elements are adjacent in memory.

returns an object that implements javax.realtime.device.RawShortReader and
supports access to the specified range in the memory region.

Throws IllegalArgumentException when base is negative, count is not greater than
zero, or stride is less than one.

Throws SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.

Throws OffsetOutOfBoundsException when base is invalid.

Throws SizeOutOfBoundsException when the memory addressed by the object
would extend into an invalid range of memory.

Throws MemoryTypeConflictException when base does not point to a memory that
matches the type served by this factory.

210 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.device.RawShortWriter createRawShortWriter(
RawMemoryRegion region,
long base,
int count,
int stride)
throws

java.lang.SecurityException, javax.realtime.OffsetOutOfBoundsException,
javax.realtime.SizeOutOfBoundsException,
javax.realtime.MemoryTypeConflictException,
javax.realtime.UnsupportedRawMemoryRegionException

Create an instance of a class that implements javax.realtime.device.RawShort-
Writer and accesses memory of region in the address range described by base,
stride, and count. The actual extent of the memory addressed by the object is
stride x size of RawShortWriter x count. The object is allocated in the current
memory area of the calling thread.

region — The address space from which the new instance should be taken.

base — The starting physical address accessible through the returned instance.

count — The number of memory elements accessible through the returned instance.

stride — The distance to the next element as a mulitple of element size, where 1
means the elements are adjacent in memory.

returns an object that implements javax.realtime.device.RawShortWriter and
supports access to the specified range in the memory region.

Throws IllegalArgumentException when base is negative, count is not greater than
zero, or stride is less than one.

Throws SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.

Throws OffsetOutOfBoundsException when base is invalid.

Throws SizeOutOfBoundsException when the memory addressed by the object
would extend into an invalid range of memory.

Throws MemoryTypeConflictException when base does not point to a memory that
matches the type served by this factory.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

211

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void deregister(RawMemoryRegionFactory factory)
throws javax.realtime.DeregistrationException

Remove support for a new memory region

factory — is the javax.realtime.device.RawMemoryRegionFactory to make un-
available.

Throws RegistrationException when the factory is not registered.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMayAllocate({})
public static javax.realtime.device.RawMemoryFactory getDefaultFactory()

Get the factory with support for the platform defined regions.

returns the platform defined factory

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void register(RawMemoryRegionFactory factory)
throws javax.realtime.RegistrationException

Add support for a new memory region

factory — is the javax.realtime.device.RawMemoryRegionFactory to use for
creating javax.realtime.device.RawMemory objects for the javax.realtime.device-
.RawMemoryRegion s it makes available.

Throws RegistrationException when the factory already is already registered.

212 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

5.2.19 javax.realtime.device.InterruptServiceRoutine

This class is a restricted version of the class provided by the RTSJ specification.

Declaration

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public abstract class InterruptServiceRoutine implements

javax.realtime.BoundRealtimeExecutor extends java.lang.Object

Description
A first level interrupt handling mechanisms. Override the handle method to
provide the first level interrupt handler. The constructors for this class are
invoked by the infrastructure and are therefore not visible to the application.
The default affinity of an handler can be determined via calling getAffinity() .

Methods

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

public static javax.realtime.device.InterruptServiceRoutine getHandler(
int interrupt)

Find the InterruptServiceRoutine that is handling a given interrupt.

interrupt — for which to find the InterruptServiceRoutine

returns the InterruptServiceRoutine registered to the given interrupt. Null is re-
turned when nothing is registered for that interrupt.

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static int getInterruptPriority(int InterruptId)

Every interrupt has an implementation-defined integer id.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

213

Safety-Critical Java Technology Specification

returns The priority of the code that the first-level interrupts code executes. The
returned value is always greater than PriorityScheduler.getMaxPriority().

Throws IllegalArgumentException if unsupported InterruptId

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

public static int getMaximumInterruptPriority()

Retrieve the maximum interrupt priority. It must be greater than or equal to the
result of getMinimumInterruptPriority.

returns the maximum interrupt priority.

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

public static int getMinimumInterruptPriority()

Retrieve the minimum interrupt priority. It must be higher than all other prior-
ities provided by the system.

returns the minimum interrupt priority.

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
protected abstract void handle()

214 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

The code to execute for first level interrupt handling. A subclass defines this
to give the proper behavior. No code that could self-suspend may be called
here. The effects of unbound blocking and inducing a context switch here are
undefined and could result in deadlocking the machine. Unless the overridden
method is synchronized, the infrastructure shall provide no synchronization for
the execution of this method.

5.2.20 javax.safetycritical.ManagedInterruptServiceRoutine

This class integrates the RTSJ interrupt handling mechanisms with the SCJ mission
structure.

Declaration

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public abstract class ManagedInterruptServiceRoutine extends

javax.realtime.device.InterruptServiceRoutine

Constructors

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({javax.safetycritical.annotate.Phase.INITIALIZATION})
public ManagedInterruptServiceRoutine(long sizes)

Creates an interrupt service routine

sizes — defines the memory space required by the handle method.

Methods

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@Override
public javax.realtime.Affinity getAffinity()

Determine the affinity set instance associated with {@code task}.

returns The associated affinity.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

215

Safety-Critical Java Technology Specification

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@Override
@SCJPhase({javax.safetycritical.annotate.Phase.INITIALIZATION})
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
public final void register(int interrupt)

throws javax.realtime.RegistrationException

Equivalent to register(interrupt, prio) where prio is the highest InterruptCeil-
ingPriority defined.

Throws IllegalStateException if this method is not part of a Mission which is
currently being initialized

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJPhase({javax.safetycritical.annotate.Phase.INITIALIZATION})
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
public final void register(int interrupt, int ceiling)

throws javax.realtime.RegistrationException

Registers the ISR for the given interrupt with the current mission and sets the
ceiling priority of this. The filling of the associated interrupt vector is deferred
until the end of the initialisation phase.

interrupt — is the implementation-dependent id for the interrupt.

ceiling — is the required ceiling priority.

Throws IllegalArgumentException if the ceiling is lower than the interrupt priority.

Throws RegistrationException if this object is not part of a Mission which is
currently being initialized.

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJPhase({javax.safetycritical.annotate.Phase.INITIALIZATION})
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@Override
public void setAffinity(Affinity set)

throws java.lang.IllegalArgumentException,
javax.realtime.ProcessorAffinityException, java.lang.NullPointerException

Set the processor affinity of a {@code task} to {@code set} with immediate
effect.

set — is the processor affinity

216 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Throws IllegalArgumentException when the intersection of {@code set} the affin-
ity of any {@code ThreadGroup} instance containing {@code task} is empty.

Throws ProcessorAffinityException is thrown when the runtime fails to set the
affinity for platform-specific reasons.

Throws NullPointerException when {@code set} is {@code null}.

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJPhase({javax.safetycritical.annotate.Phase.RUN})
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
public void unhandledException(Exception except)

Called by the infrastructure if an exception propagates outside of the handle
method.

except — is the uncaught exception.

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJAllowed(javax.safetycritical.annotate.Level.SUPPORT)
@SCJPhase({javax.safetycritical.annotate.Phase.CLEANUP})
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@Override
public final void unregister()

Unregisters the ISR with the current mission.

5.3 POSIX Signal Handlers

In the RTSJ, all asynchronous external events are associated with active events. The
simpler SCJ specification does not support the full generality of the RTSJ active
event model. Instead, SCJ provides a specialized API that maps POSIX signals to
asynchronous event handlers.

5.3.1 Semantics and Requirements

POSIX signals, as defined in POSIX IEEE Std 1003.1-2008, provide a mechanism to
asynchronously notify particular processes or specific threads within particular pro-
cesses of events that deserve their attention. The POSIX standard defines the names
of standard signals, and allows each POSIX implementation to define a mapping
between the signal name and an integer signal identification number. Application

27 January 2017 Version 0.109
Confidentiality: Public Distribution

217

Safety-Critical Java Technology Specification

programs use the signal number to register handlers that execute whenever notifica-
tion of the associated signal is delivered to the application process. Since the POSIX
standard allows multiple signal names to map to the same signal number, it is not
always possible for applications to differentiate between the events that release a
particular signal handler.

The POSIX standard does not require every POSIX implementation to support all
of the standard signals. Furthermore, the standard allows platforms to support non-
standard signals, known by platform-specific names. As part of a POSIX platform’s
configuration, the platform implementer must define the names and numeric identi-
ties of all of the signals supported by that platform.

• An implementation shall define all the POSIX signals and real-time signals
that it supports.

• The SCJ specification does not require an implementation to allow external
POSIX processes to deliver POSIX signals to specific ManagedSchedulables.

• Each signal has an associated integer id and a string name. These values are
defined by the underlying platform, in accordance with the POSIX standard.

• For each signal, the default behavior of the handler is as specified by POSIX.
• For each signal, the application shall be able to set a single managed handler.
• Only one handler may be associated with each signal id.
• For POSIX signals, the parameter passed to the handleAsyncEvent shall be the

id of the signal that is being handled.
• For POSIX real-time signals, the parameter passed to the handleAsyncEvent

shall be the payload (siginfo t) associated with the signal that was generated.

5.3.2 Level Considerations

Level 0

Signal handlers of any kind are prohibited at Level 0.

Level 1

Signal handlers shall be supported.

5.3.3 javax.safetycritical.POSIXSignalHandler

Declaration

218 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public abstract class POSIXSignalHandler extends

javax.safetycritical.ManagedEventHandler

Description
This class enables the automatic execution of code that is bound to a real-
time POSIX signal. It is abstract. Concrete subclasses must implement the
handleAsyncEvent method and may override the default cleanUp method. The
parameter passed by the infrastructure to the handleAsyncEvent method is the
id of the caught signal.

Constructors

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJPhase({javax.safetycritical.annotate.Phase.INITIALIZATION})
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
public POSIXSignalHandler(PriorityParameters priority,

AperiodicParameters release,
ScopeParameters storage,
ConfigurationParameters config,
int signalId)

Constructs a real-time POSIX signal handler that will be released when the
signal is delivered.

The values passed as constructor parameters are captured at construction time.
Any subsequent mutation of the parameter objects has no effect on the behavior
of the constructed object.

priority — specifies the priority parameters for this handler; it must not be null.

release — specifies the release parameters for this handler. A null parameter
indicates that there is no deadline associated with this handler.

storage — specifies the ScopeParameters for this handler; it must not be null

config — specifies the ConfigurationParameters for this handler

signalId — specifies the signal that releases this handler.

Throws IllegalArgumentException when priority or storage is null; or when sig-
nalIds already has an attached handler or the signalId is outside the range of POSIX
signals.

Methods

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})

27 January 2017 Version 0.109
Confidentiality: Public Distribution

219

Safety-Critical Java Technology Specification

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static int getSignalId(String name)

Get the POSIX signal id represented by name.

name — The name of the POSIX signal.

returns The id of the POSIX signal whose name is name

Throws IllegalArgumentException if there is no POSIX signal with this name.

5.3.4 javax.safetycritical.POSIXRealtimeSignalHandler

Declaration

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public abstract class POSIXRealtimeSignalHandler extends

javax.safetycritical.ManagedLongEventHandler

Description
This class permits the automatic execution of code that is bound to a real-
time POSIX signal. It is abstract. Concrete subclasses must implement the
handleAsyncEvent method and may override the default cleanUp method. The
parameter passed by the infrastructure to the handleAsyncEvent method is the
id of the caught signal.

Constructors

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJPhase({javax.safetycritical.annotate.Phase.INITIALIZATION})
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
public POSIXRealtimeSignalHandler(PriorityParameters priority,

AperiodicParameters release,
ScopeParameters storage,
ConfigurationParameters config,
int signalId)

Constructs an real-time POSIX signalt handler that will be released when the
signal is delivered.

The values passed as constructor parameters are captured at construction time.
Any subsequent mutation of the parameter objects has no effect on the behavior
of the constructed object.

220 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

priority — specifies the priority parameters for this handle; it must not be null.

release — specifies the release parameters for this handler. A null parameter
indicates that there is no deadline associated with this handler.

storage — specifies the ScopeParameters for this handler; it must not be null

config — specifies the ConfigurationParameters for this handler

signalId — specifies the id of the POSIX real-time signal that releases this handler.

Throws IllegalArgumentException when priority or storage is null; or when the
signalId already has an attached handler or the signalId is outside the range of POSIX
real-time signals.

Methods

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static int getSignalId(String name)

Get the POSIX real-time signal id represented by name.

name — The name of the POSIX real-time signal.

returns The id of the POSIX real-time signal with this name

Throws IllegalArgumentException if there is no POSIX real-time signal with this
name.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

221

Safety-Critical Java Technology Specification

5.4 Rationale

Many safety-critical real-time systems must interact with the embedded environment.
This can be done either at a low level through device registers and interrupt handling,
or via some higher-level input and output mechanisms.

There are at least four execution (run-time) environments for SCJ:

1. On top of a high-integrity real-time operating system where the Java applica-
tion runs in user mode.

2. As part of an embedded device where the Java application runs stand-alone on
a hardware/software virtual machine.

3. As a “kernel module” incorporated into a high-integrity real-time kernel where
both kernel and application run in supervisor mode.

4. As a stand-alone cyclic executive with minimal operating system support.

In execution environment (1), interaction with the embedded environment will usu-
ally be via operating system calls using connection-oriented APIs. The Java program
will typically have no direct access to the IO devices (although some limited access
to physical memory may be provided, it is unlikely that interrupts can be directly
handled). Connection-oriented input output mechanisms are discussed in Chapter 6.

In execution environments (2), (3) and (4), the Java program may be able to directly
access devices and handle interrupts. Such low-level device access is the topic of this
chapter.

A device can be considered to be a processor performing a fixed task. Therefore, a
computer system can be considered to be a collection of parallel threads. There are
several models by which the device ‘thread’ can communicate and synchronize with
the tasks executing inside the main processor. All models must provide[1]:

1. A suitable representation of interrupts (if interrupts are to be handled), and

2. Facilities for representing, addressing and manipulating device registers.

In the RTSJ and SCJ, the former is provided by interrupt service routines The RTSJ
physical and raw memory access facilities allow broad support for accessing memory
with different characteristics. SCJ restricts these facilities to focus on those that can
be used for accessing registers that are both memory mapped and port mapped.

222 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

5.4.1 Stride

Since the word size of devices do not always match the word size of the memory or
I/O bus, the interface provides for the notion of stride. Stride defines the distance
between elements in a raw memory area. Normally elements of a memory area are
mapped sequentially, without any space between the elements. This is a stride of
one. A stride of two, means that every other element in physical memory is mapped
into the raw memory area.

For example, it is often easier to map a 16 bit device into a 32 bit system by mapping
the 16 bit registers at 32 bit intervals. This enables 16 bit accesses to the device to be
atomic on 32 bit addressed systems, even when the bus always does 32 bit transfers.
One can create a RawShort area with a stride of two. Then the area can be accessed
as if the registers where contiguous.

5.4.2 Interrupt Handling Rationale

The SCJ Interrupt Handling model is heavily influenced by the Ada interrupt han-
dling model, and borrows most of its semantics from that model. Interrupt handling
is necessarily machine dependent. However, SCJ tries to provide an abstract model
that can be implemented on top of all architectures. The model assumes that:

• The processor has a (logical) interrupt controller chip that monitors a number
of interrupt lines;

• Each interrupt line has an associated interrupt priority;
• Associated with the interrupt lines is a (logical) interrupt vector that contains

the addresses of the interrupt service routines;
• The processor has instructions that allow interrupts from a particular line to be

disabled/masked irrespective of the type of device attached;
• Disabling interrupts from a specific line may, or may not, disable the interrupts

from lines of lower priority;
• A device can be connected to an arbitrary interrupt line;
• When an interrupt is signalled on an interrupt line by a device, the handling

processor uses the identity of the interrupt line to index into the interrupt vector
and jump to the address of the interrupt service routine. The processor auto-
matically disables further interrupts (either of the same priority or, possibly, all
interrupts) on that processor).

• On return from the interrupt service routine, interrupts are automatically re-
enabled.

For each of the interrupt priorities, SCJ has an associated hardware priority that can
be used to set the ceiling of an ISR object. The SCJ infrastructure uses this to disable

27 January 2017 Version 0.109
Confidentiality: Public Distribution

223

Safety-Critical Java Technology Specification

the interrupts from the associated interrupt line, and lower priority interrupts, when
it is executing a synchronized method of the object. For the handle method, this
may be done automatically by the hardware interrupt handling mechanism or it may
require added support from the infrastructure. However, for clarity of the model, SCJ
recommends that the handle method should be defined as synchronized. Similarly,
although the unhandledException method, if called, will be called with interrupts
disabled, for clarity it should be defined as synchronized as well. The SCJ allows an
SCJ byte code verifier to flag an error if these methods are not synchronized.

SCJ indicates that the application should refrain from memory allocations in an
outer-nested immortal or mission memory area while it is executing in an ISR syn-
chronized method. This is because such allocations are likely to require a lock associ-
ated with these memory areas. The time taken to acquire that lock may be significant
compared to any latency requirement on interrupt handling. The infrastructure does
not guarantee the ceilings of the shared memory regions is in the interrupt priority
range, hence ceiling violation may occur.

5.5 Compatibility

The SCJ interrupt handling facility uses the same model as the RTSJ.

224 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Chapter 6

Input and Output Model

6.1 Overview

Safety-critical systems often have limited input and output capabilities. This makes
it difficult to provide a common set of I/O classes for safety-critical applications. The
standard file and socket classes are too heavy weight for many safety-critical systems.
However, the Java Micro Edition provides a basis for a flexible I/O mechanism that
is much leaner than that of other Java configurations, so SCJ. uses a subset of it as a
simple, extendable I/O capability.

The Overview and Rationale sections are not normative but are provided to improve
understanding of the normative sections. All of the other sections of this chapter are
normative.

6.2 Semantics and Requirements

Since there is no common I/O facility that can be found on every safety-critical sys-
tem, a flexible mechanism for I/O capabilities is needed. The Java Micro Edition
I/O Connector and Connection classes, with the StreamConnection, InputConnec-
tion, and OutputConnection interfaces, provide a good basis. Figure 6.1 gives an
overview of the I/O interfaces and classes provided by SCJ.

The Java Micro Edition’s Connector class does not directly support extensibility.
Therefore, SCJ provides an additional class, ConnectionFactory to provide the frame-
work for application-defined connection types, which can be registered with Connec-
tionFactory and instantiated by the standard Connector class.

A Connector maps a URL string to a factory for creating a Connection for the given
URL. The protocol part of a URL passed to Connector, e.g. http at the beginning of

225

Safety-Critical Java Technology Specification

Figure 6.1: Interfaces and classes supporting streaming I/O

a web address, is used to select the proper factory. The rest of the URL is used as
arguments to the factory to create a connection of the proper type.

Within SCJ, the protocol console defines the default console. The console can be
used to read from and send output to some implementation-defined data source or
sink external to the SCJ implementation. The console connection is represented by
the ConsoleConnection class.

An SCJ implementation shall support the console connection. In the simplest case
the console connection represents a serial line interface, but can also represent a
buffer in memory. The test harnesses within the SCJ Technology Compatibility Kit
(TCK) use console for the test output.

In addition to ConsoleConnection, a simplified version of java.io.PrintStream is pro-

226 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

vided by SCJ. With these classes, every safety-critical system has an I/O facility,
even if it is just to and from a memory buffer.

6.3 Level Considerations

The I/O classes are available for all SCJ compliance levels.

6.4 API

SCJ supports the connection framework of of the Java Micro Edition as defined in
package javax.microedition.io. Additional classes are provided in javax.safetycritical.io
for a console connection, a simple printer filter, and a factory to create user defined
connection types.

Unless indicated otherwise, the classes defined in this section are thread safe

6.4.1 javax.microedition.io.Connector

Declaration

@SCJAllowed
public class Connector extends java.lang.Object

Description

This class is a factory for use by applications to dynamically create Connection
objects. The application provides a specified name that this factory will use to
identify an appropriate connection to a device or interface. The specified name
conforms to the URL format defined in RFC 2396. The specified name uses
this format:

{scheme}:[{target}][{params}]

where {scheme} is the name of a protocol such as http .

The {target} is normally some kind of network address or other interface such
as a file designation.

Any {params} are formed as a series of equates of the form ”;x=y”. Example:
”;type=a”.

Within this format, the application may provide an optional second parameter
to the open function. This second parameter is a mode flag to indicate the
intentions of the calling code to the protocol handler. The options here specify

27 January 2017 Version 0.109
Confidentiality: Public Distribution

227

Safety-Critical Java Technology Specification

whether the connection will be used to read (READ), write (WRITE), or both
(READ WRITE). Each protocol specifies which flag settings are permitted.
For example, a printer would likely not permit read access, so it might throw
an IllegalArgumentException. If not specified, READ WRITE mode is used by
default. // *

// * In addition, a third parameter may be specified as a boolean flag // * indi-
cating that the application intends to handle timeout exceptions. // * If this flag
is true, the protocol implementation may throw an // * InterruptedIOException
if a timeout condition is detected. // * This flag may be ignored by the protocol
handler; the // * InterruptedIOException may not actually be thrown. // * If this
parameter is false, the protocol shall not throw // * the InterruptedIOException.

Fields

@SCJAllowed
public static final int READ

Access mode READ.

@SCJAllowed
public static final int READ WRITE

Access mode READ WRITE.

@SCJAllowed
public static final int WRITE

Access mode WRITE.

Methods

@SCJAllowed
@SCJMaySelfSuspend(true)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static javax.microedition.io.Connection open(String name)
throws java.io.IOException

, java.lang.SecurityException

228 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Create and open a Connection. This method is the same as calling open(name,
READ WRITE).

name — The URL for the connection.

returns a new Connection object.

Throws IllegalArgumentException if a parameter is invalid.

Throws ConnectionNotFoundException if the target of the name cannot be found,
or if the requested protocol type is not supported.

Throws IOException if some other kind of I/O error occurs.

Throws SecurityException if access to the protocol handler is prohibited.

@SCJAllowed
@SCJMaySelfSuspend(true)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static javax.microedition.io.Connection open(String name, int mode)
throws java.io.IOException

, java.lang.SecurityException

Create and open a Connection with a specified name and access mode.

name — The URL for the connection.

mode — The access mode (i.e., READ, WRITE, or READ WRITE.)

returns A new Connection object.

Throws IllegalArgumentException if a parameter is invalid.

Throws ConnectionNotFoundException if the target of the name cannot be found,
or if the requested protocol type is not supported.

Throws IOException if some other kind of I/O error occurs.

Throws SecurityException if access to the protocol handler is prohibited.

@SCJAllowed
@SCJMaySelfSuspend(true)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,

27 January 2017 Version 0.109
Confidentiality: Public Distribution

229

Safety-Critical Java Technology Specification

javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static java.io.DataInputStream openDataInputStream(String name)
throws

java.io.IOException, java.lang.SecurityException

Create and open a connection input stream.

name — The URL for the connection.

returns A DataInputStream.

Throws IllegalArgumentException if a parameter is invalid.

Throws ConnectionNotFoundException if the target of the name cannot be found,
or if the requested protocol type is not supported.

Throws IOException if some other kind of I/O error occurs.

Throws SecurityException if access to the protocol handler is prohibited.

@SCJAllowed
@SCJMaySelfSuspend(true)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static java.io.DataOutputStream openDataOutputStream(String name)
throws

java.io.IOException, java.lang.SecurityException

Create and open a connection output stream.

name — The URL for the connection.

returns A DataOutputStream.

Throws IllegalArgumentException if a parameter is invalid.

Throws ConnectionNotFoundException if the target of the name cannot be found,
or if the requested protocol type is not supported.

230 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Throws IOException if some other kind of I/O error occurs.

Throws SecurityException if access to the protocol handler is prohibited.

@SCJAllowed
@SCJMaySelfSuspend(true)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static java.io.InputStream openInputStream(String name)
throws java.io.IOException,

java.lang.SecurityException

Create and open a connection input stream.

name — The URL for the connection.

returns An InputStream.

Throws IllegalArgumentException if a parameter is invalid.

Throws ConnectionNotFoundException if the target of the name cannot be found,
or if the requested protocol type is not supported.

Throws IOException if some other kind of I/O error occurs.

Throws SecurityException if access to the protocol handler is prohibited.

@SCJAllowed
@SCJMaySelfSuspend(true)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static java.io.OutputStream openOutputStream(String name)
throws java.io.IOException

, java.lang.SecurityException

Create and open a connection output stream.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

231

Safety-Critical Java Technology Specification

name — The URL for the connection.

returns An OutputStream.

Throws IllegalArgumentException if a parameter is invalid.

Throws ConnectionNotFoundException if the target of the name cannot be found,
or if the requested protocol type is not supported.

Throws IOException if some other kind of I/O error occurs.

Throws SecurityException if access to the protocol handler is prohibited.

6.4.2 javax.microedition.io.Connection

Declaration

@SCJAllowed
public interface Connection

Description

This is the most basic type of generic connection. Only the close method is
defined. No open method is defined here because opening is always done using
the Connector.open() methods.

Methods

@SCJAllowed
@SCJMaySelfSuspend(true)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void close()

Close the connection.

When a connection has been closed, access to any of its methods that involve
an I/O operation will cause an IOException to be thrown. Closing an already
closed connection has no effect. Streams derived from the connection may be
open when the method is called. Any open streams will cause the connection
to be held open until they themselves are closed. In this latter case access to
the open streams is permitted, but access to the connection is not.

232 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Throws IOException if an I/O error occurs

Throws IllegalArgumentException

Throws ConnectionNotFoundException

6.4.3 javax.microedition.io.InputConnection

Declaration

@SCJAllowed
public interface InputConnection extends javax.microedition.io.Connection

Description
This interface defines the capabilities that an input stream connection must
have.

Methods

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.io.DataInputStream openDataInputStream()

Open and return a data input stream for a connection.

returns An input stream.

Throws IOException if an I/O error occurs.

@SCJAllowed
@SCJMaySelfSuspend(true)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.io.InputStream openInputStream()

27 January 2017 Version 0.109
Confidentiality: Public Distribution

233

Safety-Critical Java Technology Specification

Open and return an input stream for a connection.

returns An input stream.

Throws IOException if an I/O error occurs.

6.4.4 javax.microedition.io.OutputConnection

Declaration

@SCJAllowed
public interface OutputConnection extends javax.microedition.io.Connection

Description
This interface defines the capabilities that an output stream connection must
have.

Methods

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.io.DataOutputStream openDataOutputStream()

Open and return a data output stream for a connection.

returns An output stream.

Throws IOException if an I/O error occurs.

@SCJAllowed
@SCJMaySelfSuspend(true)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.io.OutputStream openOutputStream()

234 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Open and return an output stream for a connection.

returns An output stream.

Throws IOException if an I/O error occurs.

6.4.5 javax.microedition.io.StreamConnection

Declaration

@SCJAllowed
public interface StreamConnection extends javax.microedition.io.InputConnection,

javax.microedition.io.OutputConnection

Description
This interface defines the capabilities that a stream connection must have.

In a typical implementation of this interface, all StreamConnections have one
underlying InputStream and one OutputStream. Opening a DataInputStream
counts as opening an InputStream and opening a DataOutputStream counts
as opening an OutputStream. Trying to open another InputStream or Output-
Stream causes an IOException. Trying to open the InputStream or Output-
Stream after they have been closed causes an IOException.

The methods of StreamConnection are not synchronized. The only stream
method that can be called safely in another thread is close.

6.4.6 javax.microedition.io.ConnectionNotFoundException

Declaration

@SCJAllowed
public class ConnectionNotFoundException extends java.io.IOException

Description
This class is used to signal that a connection target cannot be found, or the
protocol type is not supported.

Constructors

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public ConnectionNotFoundException(String s)

27 January 2017 Version 0.109
Confidentiality: Public Distribution

235

Safety-Critical Java Technology Specification

Constructs a ConnectionNotFoundException with the specified detail message.
A detail message is a String that describes this particular exception.

s — the detail message. If s is null, no detail message is provided.

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public ConnectionNotFoundException()

This constructor behaves the same as calling ConnectionNotFoundException(String)
with the arguments (null).

6.4.7 javax.safetycritical.io.ConsoleConnection

Declaration

@SCJAllowed
public class ConsoleConnection implements

javax.microedition.io.StreamConnection extends java.lang.Object

Description
A connection for the default I/O device. The console connection can be ob-
tained by the javax.microedition.io.Connector class with the openOutputStream
method by providing ”console:” as the base url

Methods

@Override
@SCJAllowed
@SCJMaySelfSuspend(true)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void close()

236 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Closes this console connection.

@Override
@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.io.InputStream openInputStream()

returns the input stream for this console connection.

@Override
@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.io.OutputStream openOutputStream()

returns the output stream for this console connection.

6.4.8 javax.safetycritical.io.ConnectionFactory

Declaration

@SCJAllowed
public abstract class ConnectionFactory extends java.lang.Object

Description
A factory for creating user defined connections.

Constructors

@SCJAllowed
@SCJMayAllocate({})

27 January 2017 Version 0.109
Confidentiality: Public Distribution

237

Safety-Critical Java Technology Specification

@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

protected ConnectionFactory(String name)

Create a connection factory.

name — Connection name used for connection request in Connector.

Methods

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public abstract javax.microedition.io.Connection create(String url)
throws

java.io.IOException, javax.microedition.io.ConnectionNotFoundException

Create a connection for the URL type of this factory.

url — URL for which to create the connection.

returns a connection for the URL.

Throws IOException when some other I/O problem is encountered.

@SCJAllowed
@Override
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public boolean equals(Object other)

238 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static javax.safetycritical.io.ConnectionFactory getRegistered(String name)

Get a reference to the already registered factory for a given protocol.

name — The name of the connection type.

returns The ConnectionFactory associated with the name, or null if no Connec-
tionFactory is registered.

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public final java.lang.String getServiceName()

Return the service name for a connection factory.

returns service name.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static void register(ConnectionFactory factory)

Register an application-defined connection type in the connection framework.
The method getServiceName specifies the protocol a factory handles. When a
factory is already registered for a given protocol, the new factory replaces the
old one.

factory — the connection factory.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

239

Safety-Critical Java Technology Specification

6.4.9 java.io.PrintStream

SCJ includes a simple print stream facility for use by the TCK or an application.
This facility is derived from the CLDC version of a simple PrintStream to avoid
introducing a special SCJ facility.

Declaration

@SCJAllowed
public class PrintStream extends java.io.OutputStream

Description

A PrintStream adds functionality to an output stream, namely the ability to
print representations of various data values conveniently. A PrintStream never
throws an IOException; instead, exceptional situations merely set an internal
flag that can be tested via the checkError method. Optionally, a PrintStream
can be created to flush automatically; this means that the flush method is au-
tomatically invoked after a byte array is written, one of the println methods is
invoked, or a newline character or byte (’\n’) is written.

All characters printed by a PrintStream are converted into bytes using the plat-
form’s default character encoding.

Constructors

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public PrintStream(OutputStream out)

Create a new print stream. This stream will not flush automatically.

out — The output stream to which values and objects will be printed.

Methods

@SCJAllowed
@SCJMaySelfSuspend(true)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({

240 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public boolean checkError()

Flush the stream and check its error state. The internal error state is set to
true when the underlying output stream throws an IOException, and when the
setError method is invoked.

returns true if and only if this stream has encountered an IOException, or the
setError method has been invoked.

@SCJAllowed
@SCJMaySelfSuspend(true)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void close()

Close the stream. This is done by flushing the stream and then closing the
underlying output stream.

See Also: java.io.OutputStream.close()

@SCJAllowed
@SCJMaySelfSuspend(true)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void flush()

Flush the stream. This is done by writing any buffered output bytes to the
underlying output stream and then flushing that stream.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

241

Safety-Critical Java Technology Specification

See Also: java.io.OutputStream.flush()

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void print(int i)

Print an integer. The string produced by java.lang.String.valueOf(i) is translated
into bytes according to the platform’s default character encoding, and these
bytes are written in exactly the manner of the write() method.

i — The int to be printed.

See Also: java.lang.Integer.toString(int)

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void print(char [] s)

Print an array of characters. The characters are converted into bytes according
to the platform’s default character encoding, and these bytes are written in
exactly the manner of the write() method.

s — The array of chars to be printed.

Throws NullPointerException If s is null

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({

242 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void print(Object obj)

Print an object. The string produced by the java.lang.String.valueOf(obj) method
is translated into bytes according to the platform’s default character encoding,
and these bytes are written in exactly the manner of the write() method.

obj — The Object to be printed.

See Also: java.lang.Object.toString()

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void print(String s)

Print a string. If the argument is null then the string ”null” is printed. Otherwise,
the string’s characters are converted into bytes according to the platform’s de-
fault character encoding, and these bytes are written in exactly the manner of
the write() method.

s — The String to be printed.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,

27 January 2017 Version 0.109
Confidentiality: Public Distribution

243

Safety-Critical Java Technology Specification

javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void print(long l)

Print a long integer. The string produced by java.lang.String.valueOf(l) is trans-
lated into bytes according to the platform’s default character encoding, and
these bytes are written in exactly the manner of the write() method.

l — The long to be printed.

See Also: java.lang.Long.toString(long)

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void print(char c)

Print a character. The character is translated into one or more bytes according
to the platform’s default character encoding, and these bytes are written in
exactly the manner of the write() method.

c — The char to be printed.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void print(boolean b)

Print a boolean value. The string produced by java.lang.String.valueOf(b) is
translated into bytes according to the platform’s default character encoding,
and these bytes are written in exactly the manner of the write() method.

244 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

b — The boolean to be printed.

@SCJAllowed
@SCJMaySelfSuspend(true)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void println(boolean x)

Print a boolean and then terminate the line. This method behaves as though it
invokes print(x) and then println().

x — The boolean to be printed.

@SCJAllowed
@SCJMaySelfSuspend(true)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void println(char x)

Print a character and then terminate the line. This method behaves as though it
invokes print(x) and then println().

x — The char to be printed.

@SCJAllowed
@SCJMaySelfSuspend(true)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,

27 January 2017 Version 0.109
Confidentiality: Public Distribution

245

Safety-Critical Java Technology Specification

javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void println(int x)

Print an integer and then terminate the line. This method behaves as though it
invokes print(x) and then println().

x — The int to be printed.

@SCJAllowed
@SCJMaySelfSuspend(true)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void println(char [] x)

Print an array of characters and then terminate the line. This method behaves
as though it invokes print(x) and then println().

x — an array of chars to print.

@SCJAllowed
@SCJMaySelfSuspend(true)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void println(String x)

Print a String and then terminate the line. This method behaves as though it
invokes print(x) and then println().

x — The String to be printed.

246 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMaySelfSuspend(true)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void println(Object x)

Print an Object and then terminate the line. This method behaves as though it
invokes print(x) and then println().

x — The Object to be printed.

@SCJAllowed
@SCJMaySelfSuspend(true)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void println(long x)

Print a long and then terminate the line. This method behaves as though it
invokes print(x) and then println().

x — a The long to be printed.

@SCJAllowed
@SCJMaySelfSuspend(true)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void println()

27 January 2017 Version 0.109
Confidentiality: Public Distribution

247

Safety-Critical Java Technology Specification

Terminate the current line by writing the line separator string. The line separa-
tor string is defined by the system property line.separator, and is not necessarily
a single newline character (’\n’).

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

protected void setError()

Set the error state of the stream to true.

Since
JDK1.1

@SCJAllowed
@SCJMaySelfSuspend(true)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void write(byte [] buf, int off, int len)

Write len bytes from the specified byte array starting at offset off to this stream.
If automatic flushing is enabled then the flush method will be invoked.

Note that the bytes will be written as given; to write characters that will be
translated according to the platform’s default character encoding, use the print()
or println() methods.

buf — A byte array.

off — Offset from which to start taking bytes.

len — Number of bytes to write.

248 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMaySelfSuspend(true)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void write(int b)

Write the specified byte to this stream. If the byte is a newline and automatic
flushing is enabled then the flush method will be invoked.

Note that the byte is written as given; to write a character that will be trans-
lated according to the platform’s default character encoding, use the print() or
println() methods.

b — The byte to be written.

See Also: java.io.PrintStream.print(char), java.io.PrintStream.println(char)

6.5 Rationale

In the creation of SCJ, it was determined that the standard Java I/O classes (e.g., in
packages java.io, java.net, java.file, and java.nio) would require too many classes that
are not compatible with a safety-critical application. In contrast, the basic mechanism
of the connection classes, as defined by Java Micro Edition, provides a lightweight
framework for stream based I/O.

To provide a minimal, standard way to communicate simple text messages, the Java
Micro Edition console connection is subsetted. This connection provides the ability
to report the test results of the TCK on all compliant SCJ implementations.

To simplify the conversion between Java strings, which are based on Unicode, and
the binary based connection classes, a simplified version of the CLDC’s PrintStream
is provided.

6.6 Compatibility

These SCJ I/O classes use the Java Micro Edition connection framework. A SCJ
implementation shall support the console connection. All other Micro Edition con-

27 January 2017 Version 0.109
Confidentiality: Public Distribution

249

Safety-Critical Java Technology Specification

nection types are optional. Application-provided connections can be registered with
a factory class provided by SCJ.

The Java Micro Edition (J2ME) connection framework is compatible with RTSJ,
which itself is based on the CLDC specification of J2ME. The factory for user im-
plemented connections is not available in the RTSJ.

250 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Chapter 7

Memory Management

7.1 Overview

As with the RTSJ, every object allocation performed by an SCJ application is as-
sociated with a particular allocation context. Each allocation context represents a
finite amount of allocatable memory. In both the SCJ and RTSJ, application code
explicitly controls which allocation context is current for each schedulable object.
Application programs change the current allocation context by invoking special in-
frastructure methods (e.g. ManagedMemory.enterPrivateMemory or ManagedMem-
ory.executeInAreaOf with the SCJ), passing a Runnable argument for which the in-
frastructure will invoke the run method after arranging for the newly selected alloca-
tion context to be treated as the current allocation context.

As long as any active call chain includes methods associated with a particular allo-
cation context, that allocation context is considered to be live, and all of the objects
it contains are retained. When no schedulable objects are executing methods asso-
ciated with a particular allocation context, all of the memory for objects contained
within that allocation context is reclaimed before any schedulable object is allowed
to enter (or re-enter) that allocation context. One difference between the RTSJ and
SCJ is that the latter prohibits object finalizers. Thus, an SCJ infrastructure is able
to reclaim all of the memory associated with an unused allocation area in constant
time.

The RTSJ defines a variety of allocation contexts, including HeapMemory, Immortal-
Memory, and various kinds of ScopedMemory. SCJ is much more restrictive. It sup-
ports only three concrete allocation area types: ImmortalMemory, MissionMemory,
and PrivateMemory. To abstract common functionality, both MissionMemory and
PrivateMemory extend ManagedMemory, an abstract subclass of the RTSJ’s Stacked-
Memory class.

251

Safety-Critical Java Technology Specification

The Overview and Rationale sections are not normative but are provided to improve
understanding of the normative sections. All of the other sections of this chapter are
normative.

7.2 Semantics and Requirements

As discussed in Chapter 3, SCJ supports the notion of a mission and a mission life
cycle. An SCJ mission has four phases as shown in Figure 3.1: start up, initializa-
tion, execution, and clean up.

Objects needed for a given mission are allocated in a special allocation context called
mission memory. Mission memory remains active for the duration of the mission
and acts like an immortal memory for that mission. Normally, allocation of objects
in mission memory takes place in the initialization phase and those objects persist
throughout the life of the mission. Temporary objects may be allocated in memory
areas private to a schedulable object during the execution phase. These areas are
instances of PrivateMemory. Nested missions are supported, so an application may
have more than one active mission memory.

Both MissionMemory and PrivateMemory are direct subclasses of ManagedMemory
that provide a means for the infrastructure to track its scoped memory areas. General
memory management static methods can be found in ManagedMemory as well.

In SCJ, each schedulable object can allocate objects in its own private scoped mem-
ory areas. As with the RTSJ, the term backing store is used to represent the location
in memory where the space for objects allocated in these memory areas is taken.

7.2.1 Memory Model

The following defines the requirements for the SCJ memory model that enables ob-
ject creation without requiring garbage collection, avoiding memory fragmentation,
and without a need to explicitly free memory:

• Only linear-time scoped memory and the immortal memory areas shall be sup-
ported. Variable time scoped memory and heap memory areas are not sup-
ported.

• A MissionMemory object shall be provided; it shall be entered before the mis-
sion initialization phase and exited after the mission clean up phase.

• Objects allocated in mission memory shall not be reclaimed throughout the
duration of a given mission.

• For an event handler, all allocations performed during a release (see Chapter
4) shall, by default, be performed in a private memory. The memory allocated

252 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

to objects created in this private memory shall be reclaimed at the end of the
release.

• For a thread, allocations performed during its execution (see Chapter 4) shall,
by default, be performed in its private memory. The memory allocated to ob-
jects created in this private memory shall be reclaimed when the thread’s run()
method terminates.

• Schedulable objects may create and enter into nested private memory areas.
These memory areas shall not be shared with other schedulable objects and
shall be entered directly from the private memory in which they are created.
The constructor of PrivateMemory is not visible to the application.

• Backing store shall be managed as specified in the ScopeParameters provided
to schedulable objects.
• The backing store for a private memory shall be taken from the backing

store reservation of its owning schedulable object.
• The backing store for mission memory shall be taken from the backing

store reservation of its mission sequencer.

• SCJ shall not support object finalizers. A similar effect can be obtained for
• mission memory — by using the Mission.cleanUp method;
• the per-release memory area of a managed event handler — by encapsu-

lating the code of the handler’s handleAsyncEvent method in a try state-
ment that includes a finally clause;

• the per-release memory area of a managed thread — by encapsulating the
code of the thread’s run method in a try statement that includes a finally
clause;

• a nested private memory area — by encapsulating the code of the run
method passed to ManagedMemory.enterPrivateMemory in a try state-
ment that includes a finally clause.

• SCJ shall conform to the Java memory model. In addition, all access to raw
memory is considered to be volatile access (see Section 5.2).

Figure 7.1 illustrates the use of hierarchical memory areas within SCJ. The diagram
shows the scope stacks for five schedulable objects (SO A .. E). They all share
immortal and mission memory at their base.

7.3 Level Considerations

All schedulable objects at all compliance levels are able to use private memory areas
for the storage of temporary objects. The scheduling approach adopted at each level,
however, does have an impact on how the memory areas and their associated backing
storage are managed.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

253

Safety-Critical Java Technology Specification

FE
Thread ThreadThreadThreadThread Thread

A B C D

Immortal Memory

Mission Memory

Figure 7.1: Example of Memory Areas used by a Level 1 Application

7.3.1 Level 0

Level 0 supports a single mission sequencer. The same mission memory shall be
reused for each mission in the sequence; however, the size of the mission memory
may be changed between missions. Memory used by objects created inside mission
memory during one mission shall be reclaimed after the termination of the mission.
Each PeriodicEventHandler has a PrivateMemory that is entered for the duration of
its handleAsyncEvent method called within its frame. This corresponds to release
and completion in higher SCJ compliance levels. The application programmer may
enter additional PrivateMemory areas within a frame, so simple nesting of private
memory is possible.

Since no two PeriodicEventHandlers in a Level 0 application are permitted to execute
simultaneously, the backing store for the private memories may be reused. As a
consequence, the total size required can be the maximum of the backing store sizes
needed for each handler’s private memories. In order for this to be achieved, the
implementation may revoke the backing store reservation for the private memory of
a periodic event handler at the end of its release.

7.3.2 Level 1

Level 1 supports a sequence of missions and private memory for each handler as
well, but the handlers are run asynchronously. Level 1 shall have the same memory

254 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

semantics as Level 0, except the backing store reservation for each handler shall
remain in place for the entire mission.

7.3.3 Level 2

Level 2 shall have the same memory semantics as Level 1 with the addition of sup-
port for nested mission memories. A nested mission memory is created when its
associated nested mission sequencer is created. A nested MissionSequencer can be
created only during execution of the new mission’s initialize method.

7.4 Memory-Related APIs

SCJ supports only a subset of the RTSJ memory model. Consequently many of the
methods are absent (and, therefore the complexity of the overall model is reduced).
The application can only create SCJ-defined private memory areas. Figure 7.2 pro-
vides an overview of the supported interfaces and classes.

7.4.1 Class javax.realtime.MemoryParameters

Refer to Section 4.4.6

7.4.2 Class javax.realtime.MemoryArea

Declaration

@SCJAllowed
public abstract class MemoryArea extends java.lang.Object

Description
All allocation contexts are implemented by memory areas. This is the base
class for all memory areas.

Methods

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({

27 January 2017 Version 0.109
Confidentiality: Public Distribution

255

Safety-Critical Java Technology Specification

Figure 7.2: Overview of MemoryArea-Related Classes

256 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static javax.realtime.MemoryArea getMemoryArea(Object object)

Get the memory area in which object is allocated,

returns the memory area

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public boolean mayHoldReferenceTo(Object value)

Determine whether an object allocated in the memory area represented by this
can hold a reference to the object value.

returns true when value can be assigned to a field of an object in this memory area,
otherwise false.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public boolean mayHoldReferenceTo()

Determine whether an object allocated in the memory area represented by this
can hold a reference to an object allocated in the current memory area.

returns true when an object in the current memory area can be assigned to a field
of an object in this memory area, otherwise false.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

257

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public long size()

The size of a memory area is memoryConsumed() + memoryRemaining().

returns the total size of this memory area.

7.4.3 Class javax.realtime.ImmortalMemory

Declaration

@SCJAllowed
public final class ImmortalMemory extends javax.realtime.MemoryArea

Description
This class represents immortal memory. Objects allocated in immortal mem-
ory are never reclaimed during the lifetime of the application. The singleton
instance of this class is created and managed by the infrastructure, so no appli-
cation visible constructors or methods are provided.

7.4.4 Class javax.realtime.memory.ScopedMemory

Declaration

@SCJAllowed
public abstract class ScopedMemory extends javax.realtime.MemoryArea

Description
Scoped memory implements the scoped allocation context.

Methods

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,

258 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMayAllocate({})
public long backingStoreConsumed()

Determines the amount of backing store consumed by this scoped memory and
its children.

returns the total amount of backing store.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMayAllocate({})
public long backingStoreRemaining()

Determines the remaining amount of backing store available to this scoped
memory and its children.

returns the total amount of backing store.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMayAllocate({})
public long backingStoreSize()

Determines the total amount of backing store for this scoped memory and its
children.

returns the total amount of backing store.

7.4.5 Class javax.realtime.memory.ScopeParamters

Declaration

@SCJAllowed
public class ScopeParameters extends javax.realtime.MemoryParameters

27 January 2017 Version 0.109
Confidentiality: Public Distribution

259

Safety-Critical Java Technology Specification

See Also: javax.realtime.MemoryParameters

Description
Extend memory parameters to provide limits for scoped memory.

Constructors

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public ScopeParameters(long maxInitialArea,
long maxImmortal,
long maxContainingArea,
long maxInitialBackingStore)
throws java.lang.IllegalArgumentException

Create a ScopeParameters instance with the given values.

maxInitialArea — a limit on the amount of memory the schedulable may allo-
cate in its initial scoped memory area. Units are in bytes. When zero, no allocation
is allowed in the memory area. When the initial memory area is not a Scoped-
Memory , this parameter has no effect. To specify no limit, use MemoryParame-
ters.UNLIMITED .

maxImmortal — A limit on the amount of memory the schedulable may allocate in
the immortal area. Units are in bytes. When zero, no allocation allowed in immortal.
To specify no limit, use MemoryParameters.UNLIMITED .

maxContainingArea — a limit on the amount of memory the schedulable may
allocate in memory area where it was created. Units are in bytes. When zero, no
allocation is allowed in the memory area. When the containing memory area is not
a ScopedMemory , this parameter has no effect. To specify no limit, use Memory-
Parameters.UNLIMITED . For schedulables created within a mission, the containing
memory area is Mission memory. For the initial MissionSequencer, the initial mem-
ory area is Immortal memory.

maxInitialBackingStore — A limit on the amount of backing store this task may
allocate from backing store of its inital area, when that is a stacked memory. Units
are in bytes. When zero, no allocation is allowed in that memory area. Backing store
that is returned to the global backing store is subtracted from the limit. To specify no
limit, use MemoryParameters.UNLIMITED .

260 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Throws IllegalArgumentException when any value other than positive, zero, or
javax.realtime.MemoryParametersUNREFERENCED is passed as the value of max-
InitialArea , maxImmortal , maxParentBackingStore , or maxContainingArea.

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public ScopeParameters(long maxInitialArea,
long maxImmortal,
long maxInitialBackingStore)
throws java.lang.IllegalArgumentException

Same as ScopeParameters(maxInitialArea, maxImmortal, maxParentBacking-
Store, MemoryParameters.UNLIMITED).

Methods

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMayAllocate({})
public long getMaxBackingStore()

Determine the limit on backing store for this task.

returns the limit on backing store.

@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMayAllocate({})
@SCJAllowed
public long getMaxContainingArea()

Determine the limit on allocation in the area where the task was created.

returns the limit on allocation in the area where the task was created.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

261

Safety-Critical Java Technology Specification

7.4.6 Class javax.realtime.memory.StackedMemory

Declaration

@SCJAllowed
public class StackedMemory extends javax.realtime.memory.ScopedMemory

Description
This class can not be instantiated in SCJ. It is subclassed by MissionMemory
and PrivateMemory. It has no visible methods for SCJ applications.

7.4.7 Class javax.safetycritical.ManagedMemory

Declaration

@SCJAllowed
public abstract class ManagedMemory extends javax.realtime.memory.StackedMemory

Description
This is the base class for all safety-critical Java memory areas. This class is
used by the SCJ infrastructure to manage all SCJ memory areas. This class
has no constructors, so it cannot be extended by an application.

Methods

@SCJAllowed
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public long backingStoreRemaining()

This method determines the available memory for new objects in the current
ManagedMemory area.

returns the size in bytes of the remaining available memory to in the Managed-
Memory area.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

262 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
public static void enterPrivateMemory(long size, Runnable logic)

throws java.lang.IllegalStateException

Invoke the run method of logic with a fresh private memory area that is im-
mediately nested within the current ManagedMemory area, sized to provide
size bytes of allocatable memory as the current allocation area. Each instance
of ManagedMemory maintains at most one inner-nested private memory area.
In the case that enterPrivateMemory is invoked multiple times from within a
particular ManagedMemory area without exiting that area, the first invocation
instantiates the inner-nested private memory area and subsequent invocations
resize and reuse the previously allocated private memory area. This is dif-
ferent from the case in which enterPrivateMemory is invoked from within a
newly entered inner-nested PrivateMemory area. In this case, invocation of en-
terPrivateMemory results in creation and sizing of a new inner-nested private
memory area.

size — is the number of allocatable memory bytes for the inner-nested private
memory area.

logic — provides the run method that is to be executed within the inner-nested
private memory area.

Throws IllegalStateException if the current allocation area is not the top-most (most
recently entered) scope for the current schedulable object. (This would happen, for
example, if the current schedulable object is in an outer-nested context as a result of
having invoked, for example, executeInAreaOf).

Throws OutOfMemoryError if the currently running thread lacks sufficient backing
store to have an inner-nested private memory area with size allocatable bytes; or if
this is the first invocation of enterPrivateMemory from within the current allocation
area and the current allocation area lacks sufficient backing store to allocate the inner-
nested private memory area object.

@SCJAllowed
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMaySelfSuspend(false)
public static void executeInAreaOf(Object obj, Runnable logic)

Change the allocation context to the outer memory area where the object obj is
allocated and invoke the run method of the logic Runnable.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

263

Safety-Critical Java Technology Specification

obj — is the object allocated in the memory area that is entered.

logic — is the code to be executed in the entered memory area.

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

public static void executeInOuterArea(Runnable logic)

Change the allocation context to the immediate outer memory area and invoke
the run method of the Runnable.

logic — is the code to be executed in the entered memory area.

Throws IllegalStateException if the current memory area is ImmortalMemory.

7.4.8 Class javax.realtime.SizeEstimator

Declaration

@SCJAllowed
public final class SizeEstimator extends java.lang.Object

Description

This class maintains a conservative upper bound of the amount of memory
required to store a set of objects.

Many objects allocate other objects when they are constructed. SizeEstimator
only estimates the memory requirement of the object itself; it does not include
memory required for any objects allocated at construction time. If the Java
implementation allocates a single Java object in several parts not separately
visible to the application (if, for example, the object and its monitor are sep-
arate), the size estimate shall include the sum of the sizes of all the invisible
parts that are allocated from the same memory area as the object.

Alignment considerations, and possibly other order-dependent issues may cause
the allocator to leave a small amount of unusable space. Consequently, the size
estimate cannot be seen as more than a close estimate, but SCJ requires that
the size estimate shall represent a tight upper bound.

Constructors

264 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

public SizeEstimator()

Creates a new SizeEstimator object in the current allocation context.

Methods

@SCJAllowed
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
public void clear()

Return the estimate to zero for reuse.

@SCJAllowed
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
public long getEstimate()

Gets an estimate of the number of bytes needed to store all the objects reserved.

returns the estimated size in bytes.

@SCJAllowed
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
public void reserve(SizeEstimator size, int num)

27 January 2017 Version 0.109
Confidentiality: Public Distribution

265

Safety-Critical Java Technology Specification

Adds num times the value returned by size.getEstimate to the currently com-
puted size of the set of reserved objects.

size — is the size.SizeEstimator whose size is to be reserved.

num — is the number of times to reserve this amount.

Throws IllegalArgumentException if size is null or num is negative.

@SCJAllowed
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
public void reserve(SizeEstimator size)

Adds the value returned by size.getEstimate to the currently computed size of
the set of reserved objects.

size — is the size.SizeEstimator whose size is to be reserved.

Throws IllegalArgumentException if size is null.

@SCJAllowed
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
public void reserve(Class<?> clss, int num)

Adds the required memory size of num instances of a clss object to the cur-
rently computed size of the set of reserved objects.

clss — is the class to take into account.

num — is the number of instances of clss to estimate.

Throws IllegalArgumentException if clss is null or num is negative.

@SCJAllowed
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
public void reserveArray(int length, Class<?> type)

266 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Adds the required memory size of an additional instance of an array of length
primitive values of Class type to the currently computed size of the set of re-
served objects. Class values for the primitive types shall be chosen from prim-
itive class types such as Integer.TYPE, and Float.TYPE. The reservation shall
leave room for an array of length of the primitive type corresponding to type.

length — is the number of entries in the array.

type — is the class representing a primitive type.

Throws IllegalArgumentException if length is negative, or type does not represent
a primitive type.

@SCJAllowed
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
public void reserveArray(int length)

Adds the size of an instance of an array of length reference values to the cur-
rently computed size of the set of reserved objects.

length — is the number of entries in the array.

Throws IllegalArgumentException if length is negative.

@SCJAllowed
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
public void reserveLambda()

Determine the size of a lambda with no closure and add it to this size estimator.

@SCJAllowed
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
public void reserveLambda(EnclosedType first, EnclosedType second)

27 January 2017 Version 0.109
Confidentiality: Public Distribution

267

Safety-Critical Java Technology Specification

Determine the size of a lambda with two variables in its closure and add it to
this size estimator.

first — Type of first variable in closure.

second — Type of second variable in closure.

@SCJAllowed
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
public void reserveLambda(EnclosedType first,

EnclosedType second,
EnclosedType [] others)

Determine the size of a lambda with more than two variables in its closure and
add it to this size estimator.

first — Type of first variable in closure.

second — Type of second variable in closure.

others — Types of additional variables in closure.

7.5 Rationale

Traditionally, safety-critical applications allocate all their data structures before the
execution phase of the application begins. As a rule, they do not deallocate objects,
because convincing a certification authority that dynamic allocation and deallocation
of memory is safely used is, in general, quite difficult. This paradigm is diametrically
opposed to standard Java, where the design of the language itself requires dynamic
memory allocation and garbage collection.

Java augmented by the RTSJ provides three types of memory areas: heap, immor-
tal, and scoped memory. In all types of memory, objects can be explicitly allocated
but not explicitly deallocated, thereby ensuring memory consistency. The heap is
the standard Java memory area, where a garbage collector is responsible for reclaim-
ing objects that are no longer referenced by the running program. Scoped mem-
ory provides region-based memory management similar to allocating objects on a
thread’s stack and deallocating them when the thread leaves that stack frame. Of
the RTSJ memory constructs, only immortal memory is familiar in concept to the

268 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

safety-critical software community; objects may be allocated there but never deallo-
cated. Objects may only be reused explicitly by the application.

SCJ does not provide the full spectrum of RTSJ memory areas. Even though there
are efficient real-time garbage collectors that might be shown to be certifiable, the
jump from the current status quo to such an environment is perceived to be too large
for general acceptance, particularly for applications that need to be certified at the
highest levels. Likewise, the controversy over the complexity, the expressive power,
and the need for runtime checks of the full RTSJ scoped memory model, along with
the required programming paradigm shift again suggests that such a “leap of faith”
is also beyond current safety-critical software practice.

SCJ provides only immortal memory and limited forms of scoped memory. These
limited forms of scoped memory are optimized for a conservative memory model
more familiar to safety-critical programmers. The resulting memory model is much
simpler than that of the RTSJ.

The outermost memory in an SCJ system is immortal memory. Class objects are
allocated in immortal memory as defined in the RTSJ (for further information, see
Chapter 3). An SCJ application starts up in immortal memory and can use it to
allocate objects that are to be preserved through all missions. For instance, the initial
mission sequencer is allocated in immortal memory.

When missions are run, the mission seqeuncer enters a fresh mission memory where
the application initializes its mission before its execution phase. This mission mem-
ory holds the mission’s schedulable objects and any objects shared among these
schedulable objects.

Following mission initialization, during execution and clean up, a schedulable object
allocates objects in private memories that have been cleared before the schedulable
object is released. A schedulable object may enter a sequence of nested private mem-
ories during a release. The private memories will be cleared whenever a handler exits
its handler logic and when a thread exits its run method. Thus objects that need to
survive between releases must be in an outer memory, typically the mission memory.
At the end of a mission, when control has returned to the mission sequencer, mission
memory will be cleared before another mission is started.

7.5.1 Nesting Scopes

mission memory is just a ScopedMemory which is provided for the application dur-
ing start up for holding objects that have a mission life span. This acts like an im-
mortal memory area during a mission, except that it will be reinitialized at the end
of each mission. All objects needed during a mission for a longer duration than one
schedulable object release are allocated in the mission memory area. The mission
memory area is exited only after all schedulable objects have terminated.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

269

Safety-Critical Java Technology Specification

Because the mission memory is not cleared during the mission, allocation of objects
in the mission memory during the execution of the mission can lead to a memory
leak; therefore, each schedulable object is given its own private scoped memory, and
each schedulable object may create and use additional private memories. Thus, each
instance of the event handler classes available to the application programmer has its
own PrivateMemory that is entered on each release and exited at the end of each
release.

7.5.2 Finalizers

The RTSJ provides for calling finalizers when the last thread exits a scoped mem-
ory. Because finalization can cause unpredictable delay, finalizers are not allowed in
SCJ.

7.6 Compatibility

In general, the SCJ conforms to the Java memory model. With respect to this mem-
ory model, AsynchronousEventHandlers behave like Java threads. Fields accessed
from more than one AsynchronousEventHandler should be synchronized or declared
volatile to ensure that changes made in the context of one handler are visible in all
other handlers which reference the field. Although at Level 0 all AsynchronousEvent-
Handlers are run in single thread context, synchronization should still be specified to
aid application portability to other implementation.

SCJ provides its own classes for managing memory. From a programming view,
they are compatible with the RTSJ, although some of the management methods are
different. Therefore code that uses the SCJ classes would need these classes to run
in an RTSJ environment.

270 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Chapter 8

Clocks, Timers, and Time

8.1 Overview

Most safety-critical applications require precise timing mechanisms for maintaining
real-time response. SCJ provides a restricted subset of the timing mechanisms of the
RTSJ.

The Overview and Rationale sections are not normative but are provided to improve
understanding of the normative sections. All of the other sections of this chapter are
normative.

8.2 Semantics and Requirements

The semantics the SCJ Time, Clock, and Chronograph classes comprise a subset of
the corresponding classes in the RTSJ. Provision is made for applications to read the
time from a hardware clock, create events based on time, and to provide application-
defined clocks that offer a flexible mechanism to deal with recurring events.

The resolution and drift of any clock, including the default real-time clock, is depen-
dent on the underlying hardware clock and the operating system implementation, if
one is present. Application developers should refer to the hardware clock specifica-
tion as well as information from the OS as well as the SCJ vendor. See Section 4.8.4
for a discussion of the effects of clock granularity.

The resolution returned by a clock’s getDrivePrecision() method is the resolution that
shall be used for all scheduling decisions based on that clock.

271

Safety-Critical Java Technology Specification

8.2.1 Chronographs and Clocks

A chronograph measures time, whereas a clock is a chronograph that reacts to the
passage of time. SCJ shall support a single system real-time clock and a set of
application-defined clocks. As in the RTSJ, the real-time clock shall be weakly
increasing and monotonic. The real-time clock in the RTSJ has an Epoch of January
1, 1970. While the Epoch for the real-time clock in an SCJ system is generally the
same, the Epoch in a SCJ system may alternatively represent the system start time
if the underlying operating system lacks a way to reliably determine the current date.
As a consequence, absolute times based on the real-time clock may not correspond
to the wall-clock time.

8.2.2 Time

Two time classes from the RTSJ are available for use in safety critical applications:
AbsoluteTime and RelativeTime. As in the RTSJ, the base abstract time class for
both of these classes is HighResolutionTime. AbsoluteTime represents a specific
point in time, while RelativeTime represents a time interval.

Instances of HighResolutionTime classes always hold a normalized form of a time
value. Values that cannot be normalized are not valid; for example, (MAX LONG
milliseconds, MAX INT nanoseconds) cannot be normalized and therefore repre-
sents an illegal value. For additional details of time normalization, see the chapter
covering Time in the current RTSJ specification.

8.2.3 Application-defined Chronographs and Clocks

While every SCJ implementation shall provide a default real-time clock, SCJ im-
plementations shall also permit application developers to define application-defined
chronographs and clocks. An application-defined clock shall drive events and can
therefore be used for scheduling. A application-defined chronograph shall not drive
events and shall therefore be read-only. In exactly the same way as the real-time
clock, application-defined clocks and chronographs can be referenced in the con-
structors of objects based on the AbsoluteTime and RelativeTime classes. Application-
defined clocks (and consequently infrastructure-defined timers that are based on those
clocks) facilitate the release of periodic schedulable objects and timeouts based on
application-detected events.

An application-defined clock shall be responsible only for providing the current time
and signalling a timing event also called an alarm when a single absolute time has
been reached. If an event is requested by the application that is earlier than the
current one, the infrastructure informs the application-defined clock to reset its target

272 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

time. Any queue management associated with timer functions shall be supported
by the SCJ infrastructure. This means that the SCJ infrastructure shall behave as
if it maintains a time-ordered list of timing events required by the application with
respect to each application-defined clock.

Figure 8.1 illustrates the interactions between the SCJ infrastructure and an application-
defined clock. The example starts with a call to the delaymethod in the Services
class:

1. The application creates an application-defined clock.

2. The application creates a relative time object based on that clock.

3. The application calls Services.delay with the relative time value.

4. Services.delay calls the infrastructure to request that the current man-
aged schedulable be suspended until the delay time has expired.

5. The SCJ infrastructure determines whether the required timing event is the
earliest event associated with the application-defined clock. If it is the earliest
event, it calls the setAlarm method in the clock. If the required timing event
is at or before the current time of the clock, the delay function returns. If the
required timing event is not the earliest, the managed schedulable that called
delay is suspended until the earliest event has been handled; then this step is
repeated.

6. The application-defined clock performs its application-dependent functional-
ity.

7. When the time has expired, the application-defined clock calls triggerAlarm.

8. The SCJ infrastructure reschedules the suspended managed schedulable.

9. The managed schedulable returns from the infrastructure call that caused it to
be suspended.

10. The call to delay returns.

As required for the default SCJ real-time clock, an application-defined clock should
be weakly increasing and monotonic. The behavior of the infrastructure may be
compromised if it is not. As the application-defined clock is driven by application-
generated events, the notions of clock resolution and uniformity shall have an application-
defined meaning.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

273

Safety-Critical Java Technology Specification

in
te

ra
ct

io
n

fr
am

e

sa
fe

ty
cr

iti
ca

l.S
er

vi
ce

s
:C

lo
ck

:A
pp

lic
at

io
n

1.
 n

ew

:R
el

at
iv

eT
im

e

ap
pl

ic
at

io
nD

ef
in

ed
C

lo
ck

2.
 n

ew
(.

..,
 a

pp
lic

at
io

nD
ef

in
ed

C
lo

ck
)

ap
pl

ic
at

io
nD

ef
in

ed
T

im
e

3.
 d

el
ay

(a
pp

lic
at

io
nD

ef
in

ed
T

im
e)

:In
fr

as
tr

uc
tu

re

4.
 in

fr
as

tr
uc

tu
re

S
pe

ci
fic

(u
se

rD
ef

in
ed

T
im

e)

5.
 s

et
A

la
rm

(a
pp

lic
at

io
nD

ef
in

ed
T

im
e.

ge
tC

lo
ck

()
.g

et
T

im
e(

).
ad

d(
ap

pl
ic

at
io

nD
ef

in
ed

T
im

e)
)

10
. r

et
ur

n
fr

om
 in

fr
as

tr
uc

tu
re

11
. r

et
ur

n
fr

om
 d

el
ay

6.
 a

pp
lic

at
io

n-
de

fin
ed

 in
te

ra
tio

n

7.
 a

pp
lic

at
io

n-
de

fin
ed

 in
te

ra
tio

n

8.
 tr

ig
ge

rA
la

rm

9.
 in

fr
as

tr
uc

tu
re

S
pe

ci
fic

Figure 8.1: Sequence diagram of delay using an application-defined clock

274 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

8.2.4 RTSJ Constraints

The RTSJ classes OneShotTimer, PeriodicTimer, and Timer that can be used to
schedule application logic in the RTSJ are not directly available in SCJ. Periodic,
time-triggered application logic is constructed using the PeriodicEventHandler class.
For timeouts and non-periodic time-triggered releases of a handler, SCJ provides the
OneShotEventHandler class.

The RTSJ provides an interface that allows the program to set the priority and affin-
ity of the infrastructure process that releases handlers resulting from time-triggered
events. The SCJ does not support this interface. All SCJ infrastructure code that in-
teracts with clocks is run at the highest priority and with an implementation-defined
affinity.

8.3 Level Considerations

Because wait and notify are available only at compliance Level 2, the method wait-
ForObject in HighResolutionTime is available only at compliance Level 2.

Application-defined clocks are available only at Level 1 and Level 2, and are not
available at Level 0.

8.4 API

Figure 8.2 gives an overview of the time related classes.

Unless indicated otherwise, the classes defined in this section are thread safe

8.4.1 Class javax.realtime.Chronograph

Declaration

@SCJAllowed
public interface Chronograph

Description

The interface for all devices that support the measurement of time. All Chrono-
graph implementations use time values derived from HighResolutionTime, which
expresses its time in milliseconds and nanoseconds. However, for an application-
defined clock, its time values are not necessarily related to the wall clock time
in any particular fashion. For instance, they could represent a count of wheel

27 January 2017 Version 0.109
Confidentiality: Public Distribution

275

Safety-Critical Java Technology Specification

Figure 8.2: Time classes

276 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

revolutions or particular event detections. In any case, the time values for ev-
ery clock shall be mapped to milliseconds and nanoseconds in a manner that is
computationally appropriate.

Methods

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.RelativeTime getEpochOffset()

Determines the time on the real-time clock when this chronograph was zero.

returns A newly allocated RelativeTime object with the real-time clock as its
chronograph and containing the time from the real-time clock when this chronograph
was zero.

Throws UnsupportedOperationException when this chronograph does not have the
concept of an Epoch.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.RelativeTime getQueryPrecision(RelativeTime dest)

Gets the precision of the time read, defined as the nominal interval between
ticks.

dest — is an object that, upon return from this method, shall contain the precision
of the time read. If dest is null, this method shall allocate a new RelativeTime instance
to hold the returned value.

returns the value of dest if dest is not null, otherwise a new object representing the
read precision.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

277

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.RelativeTime getQueryPrecision()

Gets the precision of the time read defined as the nominal interval between
ticks. It is the same as calling getQueryPrecision(null).

returns a value representing the read precision.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.AbsoluteTime getTime(AbsoluteTime dest)

Gets the current time of this chronograph. The time represented by the returned
AbsoluteTime represents some time between the invocation of the method and
the return of the method. Note: This method will return an absolute time value
that represents the chronograph’s notion of the current time. For chronographs
that do not measure calendar time this absolute time may not represent a wall
clock time.

dest — The instance of an AbsoluteTime object which will be updated in place.
When dest is not null, the clock association of the dest parameter at the time of the
call is ignored; the returned object will be associated with this chronograph. When
dest is null, nothing happens.

returns the instance of AbsoluteTime passed as a parameter, representing the cur-
rent time, associated with this chronograph, or null when dest is null.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,

278 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.AbsoluteTime getTime()

Gets the current time in a newly allocated object. The time represented by
the returned AbsoluteTime represents some time between the invocation of the
method and the return of the method. Note: This method will return an absolute
time value that represents the chronograph’s notion of the current time. For
chronographs that do not measure calendar time this absolute time may not
represent a wall clock time.

returns a newly allocated instance of AbsoluteTime in the current allocation con-
text, representing the current time. The returned object is associated with this chrono-
graph.

8.4.2 Class javax.realtime.Clock

Declaration

@SCJAllowed
public abstract class Clock implements javax.realtime.Chronograph extends

java.lang.Object

Description
A clock is a chronograph that also manages time events (also called alarms)
that can be queued on it and that will cause an event handler to be released
when their appointed time is reached.

The Clock instance returned by getRealtimeClock may be used in any context
that requires a clock.

HighResolutionTime instances that use application-defined clocks are valid for
all APIs in SCJ that take HighResolutionTime time types as parameters.

Constructors

@SCJMayAllocate({})
@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public Clock()

Constructor for the abstract class.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

279

Safety-Critical Java Technology Specification

Methods

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

protected abstract void clearAlarm()

Implemented by subclasses to cancel the current outstanding alarm.

@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public abstract javax.realtime.RelativeTime getDrivePrecision()

Gets the precision of the clock for driving events, It is the same as calling
getDrivePrecision(null) .

returns a value representing the drive precision.

@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public abstract javax.realtime.RelativeTime getDrivePrecision(RelativeTime dest)

Gets the precision of the clock for driving events, defined as the nominal inter-
val between ticks that can trigger an event. This is the resolution that shall be
used for all scheduling decisions based on this clock. The result may be larger
than that of getQueryPrecision() .

dest — returns the precision in dest. When dest is null, it allocates a new Relative-
Time instance to hold the returned value.

280 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

returns the value of dest if dest is not null, otherwise a new object representing the
drive precision.

@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public final javax.realtime.RelativeTime getEpochOffset()

Determines the time on the real-time clock when this clcok was zero.

returns A newly allocated RelativeTime object in the current execution context
with the real-time clock as its chronograph and containing the time when this chrono-
graph was zero.

Throws UnsupportedOperationException when the clock does not have the concept
of Epoch.

@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public abstract javax.realtime.RelativeTime getQueryPrecision()

Gets the precision of the time read, defined as the nominal interval between
ticks. It is the same as calling getQueryPrecision(null) .

returns the value representing the read precision.

@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public abstract javax.realtime.RelativeTime getQueryPrecision(RelativeTime dest)

27 January 2017 Version 0.109
Confidentiality: Public Distribution

281

Safety-Critical Java Technology Specification

Gets the precision of the time read, defined as the nominal interval between
ticks. The result may be smaller than that of getDrivePrecision(), when the
clock is tied to some system tick for releasing time events.

dest — returns the relative time value in dest. When dest is null, allocate a new
RelativeTime instance to hold the returned value.

returns the value of dest if dest is not null, otherwise a new object representing the
read precision.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static javax.realtime.Clock getRealtimeClock()

There is always at least one clock object available: the system real-time clock.
This is the default Clock.

returns the singleton instance of the default Clock.

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public abstract javax.realtime.AbsoluteTime getTime(AbsoluteTime dest)

Gets the current time in an existing object. The time represented by the given
AbsoluteTime is changed at some time between the invocation of the method
and the return of the method. This method will return an absolute time value
that represents the clock’s notion of the current absolute time. For clocks that
do not measure calendar time, this absolute time may not represent a wall clock
time.

dest — The instance of AbsoluteTime object that will be updated in place. The
clock association of the dest parameter is overwritten. When dest is not null the
returned object is associated with this clock. If dest is null, then nothing happens.

returns the instance of AbsoluteTime passed as a parameter, representing the cur-
rent time, associated with this clock, or null if dest was null.

282 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public final javax.realtime.AbsoluteTime getTime()

Gets the current time in a newly allocated object. This method will return an
absolute time value that represents the clock’s notion of an absolute time. For
clocks that do not measure calendar time, this absolute time may not represent
a wall clock time.

returns a newly allocated instance of AbsoluteTime in the current allocation con-
text, representing the current time. The returned object is associated with this clock.

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

protected abstract void setAlarm(long milliseconds, int nanoseconds)

Implemented by subclasses to set the time for the next alarm. If there is an
alarm outstanding when called, it overwrites the old time. The milliseconds
and nanoseconds are interpreted as an absolute time.

milliseconds — of the next alarm.

nanoseconds — of the next alarm.

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

protected final void triggerAlarm()

Called by a subclass to signal that the time of the next alarm has been reached.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

283

Safety-Critical Java Technology Specification

8.4.3 Class javax.realtime.HighResolutionTime

Declaration

@SCJAllowed
public abstract class HighResolutionTime<T extends HighResolutionTime<T>>

implements java.lang.Comparable<T>, java.lang.Cloneable extends
java.lang.Object

Description

Class HighResolutionTime is the abstract base class for AbsoluteTime and Rel-
ativeTime, and is used to express time with nanosecond accuracy. When an API
is defined that has an HighResolutionTime as a parameter, it can take either an
absolute or relative time and will do something appropriate.

A time object in normalized form represents negative time if both components
are nonzero and negative, or one is nonzero and negative and the other is zero.
For add and subtract negative values behave as they do in arithmetic.

Caution: This class is explicitly unsafe in multithreaded situations when it is
being changed. No synchronization is done. It is assumed that users of this
class who are mutating instances will be doing their own synchronization at a
higher level.

Methods

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int compareTo(T time)

Compares thisHighResolutionTime with the specified HighResolutionTime time.

time — Compares with the time of this.

Throws ClassCastException if the time parameter is not of the same class as this.

Throws IllegalArgumentException if the time parameter is not associated with the
same clock as this, or when the time parameter is null.

returns a negative integer, zero, or a positive integer as this object is less than,
equal to, or greater than time.

284 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public boolean equals(T time)

Returns true if the argument time has the same type and values as this.

Equality includes clock association.

time — Value compared to this.

returns true if the parameter time is of the same type and has the same values as
this.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public boolean equals(Object object)

Returns true if the argument object has the same type and values as this.

Equality includes clock association.

object — Value compared to this.

returns true if the parameter object is of the same type and has the same values as
this.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.Chronograph getChronograph()

Get a reference to the javax.realtime.Chronograph associated with this.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

285

Safety-Critical Java Technology Specification

returns a reference to the javax.realtime.Chronograph associated with this.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.Clock getClock()

Returns a reference to the clock associated with this.

returns a reference to the clock associated with this.

Throws UnsupportedOperationException if the time is based on a javax.realtime-
.Chronograph that is not a javax.realtime.Clock .

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public final long getMilliseconds()

Returns the milliseconds component of this.

returns the milliseconds component of the time represented by this.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public final int getNanoseconds()

Returns the nanoseconds component of this.

returns the nanoseconds component of the time represented by this.

286 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int hashCode()

Returns a hash code for this object in accordance with the general contract of
hashCode. Time objects that are equals(HighResolutionTime) have the same
hash code.

returns the hashcode value for this instance.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public T set(long millis)

Sets the millisecond component of this to the given argument, and the nanosec-
ond component of this to 0. This method is equivalent to set(millis, 0).

millis — The desired value of the millisecond component of this.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public T set(long millis, int nanos)

Sets the millisecond and nanosecond components of this. The setting is subject
to parameter normalization. If there is an overflow in the millisecond compo-
nent while normalizing then an IllegalArgumentException will be thrown.

millis — The desired value for the millisecond component of this before normal-
ization.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

287

Safety-Critical Java Technology Specification

nanos — The desired value for the nanosecond component of this before normal-
ization.

Throws IllegalArgumentException if there is an overflow in the millisecond com-
ponent while normalizing.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public T set(T time)

Change the value represented by this to that of the given time. If the time pa-
rameter is null this method will throw IllegalArgumentException. If the type
of this and the type of the given time are not the same, this method will throw
ClassCastException. The clock associated with this is set to be the clock asso-
ciated with the time parameter.

time — The new value for this.

Throws IllegalArgumentException if the parameter time is null.

Throws ClassCastException if the type of this and the type of the parameter time
are not the same.

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)
@SCJMayAllocate({})
@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static boolean waitForObject(Object target, HighResolutionTime<?> time)
throws java.lang.InterruptedException

Behaves exactly like target.wait() but with the enhancement that it waits with a
precision of HighResolutionTime.

The wait time may be relative or absolute, and it is controlled by the clock
associated with it. If the wait time is relative, then the calling thread is blocked
waiting on target for the amount of time given by time, and measured by the
associated clock. If the wait time is absolute, then the calling thread is blocked
waiting on target until the indicated time value is reached by the associated
clock.

288 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

target — The object on which to wait. The current thread must have a lock on the
object.

time — The time for which to wait. If it is RelativeTime(0,0) then wait indefinitely.
If it is null then wait indefinitely.

returns true if a notify was received before the timeout, False otherwise.

Throws InterruptedException if this schedulable object is interrupted by Realtime-
Thread.interrupt.

Throws IllegalArgumentException if time represents a relative time less than zero.

Throws IllegalMonitorStateException if target is not locked by the caller.

Throws UnsupportedOperationException if the wait operation is not supported
using the clock associated with time.

See Also: java.lang.Object.wait(), java.lang.Object.wait(long), java.lang.Object.wait(long,int)

8.4.4 Class javax.realtime.AbsoluteTime

Declaration

@SCJAllowed
public class AbsoluteTime extends javax.realtime.HighResolutionTime

Description
An object that represents a specific point in time given by milliseconds plus
nanoseconds past some point in time fixed by its associated clock. For the
default real-time clock the fixed point is the implementation dependent Epoch.

The correctness of the Epoch as a time base depends on the real-time clock
synchronization with an external world time reference. This representation was
designed to be compatible with the standard Java representation of an absolute
time in the java.util.Date class.

Caution: This class is explicitly unsafe in multithreaded situations when it is
being changed. No synchronization is done. It is assumed that users of this
class who are mutating instances will be doing their own synchronization at a
higher level.

Constructors

@SCJAllowed
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

27 January 2017 Version 0.109
Confidentiality: Public Distribution

289

Safety-Critical Java Technology Specification

@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
public AbsoluteTime(long millis, int nanos, Chronograph clock)

Construct an AbsoluteTime object with time millisecond and nanosecond com-
ponents past the Epoch for clock.

The value of the AbsoluteTime instance is based on the parameter millis plus
the parameter nanos. The construction is subject to millis and nanos parame-
ters normalization. If there is an overflow in the millisecond component when
normalizing then an IllegalArgumentException will be thrown. If after normal-
ization the time object is negative then the time represented by this is time
before the Epoch.

The clock association is made with the clock parameter.

This constructor requires that the ”clock” parameter resides in a scope that
encloses the scope of the ”this” argument.

millis — The desired value for the millisecond component of this. The actual value
is the result of parameter normalization.

nanos — The desired value for the nanosecond component of this. The actual
value is the result of parameter normalization.

clock — The chronograph providing the association for the newly constructed
object. If clock is null the association is made with the real-time clock.

Throws IllegalArgumentException if there is an overflow in the millisecond com-
ponent when normalizing.

@SCJAllowed
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
public AbsoluteTime(long millis, int nanos)

This constructor behaves the same as calling AbsoluteTime(millis, nanos, null).

@SCJAllowed
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
public AbsoluteTime()

290 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

This constructor behaves the same as calling AbsoluteTime(0, 0, null).

@SCJAllowed
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
public AbsoluteTime(Chronograph clock)

This constructor behaves the same as calling AbsoluteTime(0, 0, clock).

@SCJAllowed
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
public AbsoluteTime(AbsoluteTime time)

Make a new AbsoluteTime object from the given AbsoluteTime object. The
new object will have the same clock association as the time parameter.

This constructor requires that the ”time” parameter resides in a scope that en-
closes the scope of the ”this” argument.

time — The AbsoluteTime object which is the source for the copy.

Throws IllegalArgumentException if the time parameter is null.

Methods

@SCJAllowed
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
public javax.realtime.AbsoluteTime add(long millis, int nanos, AbsoluteTime dest)

Return an object containing the value resulting from adding millis and nanos to
the values from this and normalizing the result. If dest is not null, the result is
placed there and returned. Otherwise, a new object is allocated for the result.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

291

Safety-Critical Java Technology Specification

The result will have the same clock association as this, and the clock associa-
tion of dest is ignored.

An ArithmeticException is thrown if the result does not fit in the normalized
format.

millis — The number of milliseconds to be added to this.

nanos — The number of nanoseconds to be added to this.

dest — If dest is not null, the result is placed there. Otherwise, a new object is
allocated for the result.

returns the value of dest if dest is not null, otherwise a new object representing the
result.

Throws ArithmeticException if the result does not fit in the normalized format.

@SCJAllowed
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
public javax.realtime.AbsoluteTime add(RelativeTime time, AbsoluteTime dest)

Return an object containing the value resulting from adding time to the value
of this and normalizing the result. If dest is not null, the result is placed there
and returned. Otherwise, a new object is allocated for the result.

The clock associated with this and the clock associated with the time parameter
must be the same, and such association is used for the result.

The clock associated with the dest parameter is ignored.

An IllegalArgumentException is thrown if the clock associated with this and the
clock associated with the time parameter are different.

An IllegalArgumentException is thrown if the time parameter is null.

An ArithmeticException is thrown if the result does not fit in the normalized
format.

time — The time to add to this.

dest — If dest is not null, the result is placed there and returned. Otherwise, a new
object is allocated for the result.

returns the value of dest if dest is not null, otherwise a new object representing the
result.

292 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Throws IllegalArgumentException if the clock associated with this and the clock
associated with the time parameter are different, or when the time parameter is null.

Throws ArithmeticException if the result does not fit in the normalized format.

@SCJAllowed
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
public javax.realtime.AbsoluteTime add(RelativeTime time)

Create a new instance of AbsoluteTime representing the result of adding time
to the value of this and normalizing the result.

The clock associated with this and the clock associated with the time parameter
must be the same, and such association is used for the result.

An IllegalArgumentException is thrown if the clock associated with this and the
clock associated with the time parameter are different.

An IllegalArgumentException is thrown if the time parameter is null.

An ArithmeticException is thrown if the result does not fit in the normalized
format.

time — The time to add to this.

returns A new AbsoluteTime object whose time is the normalization of this plus
the parameter time.

Throws IllegalArgumentException if the clock associated with this and the clock
associated with the time parameter are different, or when the time parameter is null.

Throws ArithmeticException if the result does not fit in the normalized format.

@SCJAllowed
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
public javax.realtime.AbsoluteTime add(long millis, int nanos)

Create a new object representing the result of adding millis and nanos to the
values from this and normalizing the result. The result will have the same
clock association as this. An ArithmeticException is thrown if the result does
not fit in the normalized format.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

293

Safety-Critical Java Technology Specification

millis — The number of milliseconds to be added to this.

nanos — The number of nanoseconds to be added to this.

returns A new AbsoluteTime object whose time is the normalization of this plus
millis and nanos.

Throws ArithmeticException if the result does not fit in the normalized format.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@Override
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int compareTo(AbsoluteTime time)

Compares this object with the specified object for order.

returns a negative integer, zero, or a positive integer as this object is less than,
equal to, or greater than the specified object.

Throws ClassCastException if the time parameter is not of the same class as this.

Throws IllegalArgumentException if the time parameter is not associated with the
same clock as this, or when the time parameter is null.

@SCJAllowed
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
public javax.realtime.RelativeTime subtract(AbsoluteTime time, RelativeTime dest)

Return an object containing the value resulting from subtracting time from the
value of this and normalizing the result. If dest is not null, the result is placed
there and returned. Otherwise, a new object is allocated for the result. The
clock associated with this and the clock associated with the time parameter
must be the same, and such association is used for the result.

The clock associated with the dest parameter is ignored.

An IllegalArgumentException is thrown if the clock associated with this and
the clock associated with the time parameter are different. An IllegalArgument-
Exception is thrown if the time parameter is null.

294 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

An ArithmeticException is thrown if the result does not fit in the normalized
format.

time — The time to subtract from this.

dest — If dest is not null, the result is placed there and returned. Otherwise, a new
object is allocated for the result.

returns the value of dest if dest is not null, otherwise a new object representing the
result.

Throws IllegalArgumentException if the clock associated with this and the clock
associated with the time parameter are different, or when the time parameter is null.

Throws ArithmeticException if the result does not fit in the normalized format.

@SCJAllowed
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
public javax.realtime.AbsoluteTime subtract(RelativeTime time, AbsoluteTime dest)

Return an object containing the value resulting from subtracting time from the
value of this and normalizing the result.

time — The time to subtract from this.

dest — If dest is not null, the result is placed there and returned. Otherwise, a new
object is allocated for the result.

returns the value of dest if dest is not null, otherwise a new object representing the
result.

@SCJAllowed
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
public javax.realtime.AbsoluteTime subtract(RelativeTime time)

Create a new instance of AbsoluteTime representing the result of subtracting
time from the value of this and normalizing the result.

The clock associated with this and the clock associated with the time parameter
must be the same, and such association is used for the result.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

295

Safety-Critical Java Technology Specification

An IllegalArgumentException is thrown if the clock associated with this and
the clock associated with the time parameter are different. An IllegalArgument-
Exception is thrown if the time parameter is null.

An ArithmeticException is thrown if the result does not fit in the normalized
format.

time — The time to subtract from this.

returns A new AbsoluteTime object whose time is the normalization of this minus
the parameter time.

Throws IllegalArgumentException if the clock associated with this and the clock
associated with the time parameter are different, or when the time parameter is null.

Throws ArithmeticException if the result does not fit in the normalized format.

@SCJAllowed
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
public javax.realtime.RelativeTime subtract(AbsoluteTime time)

Create a new instance of RelativeTime representing the result of subtracting
time from the value of this and normalizing the result.

The clock associated with this and the clock associated with the time parameter
must be the same, and such association is used for the result.

An IllegalArgumentException is thrown if the clock associated with this and the
clock associated with the time parameter are different.

An IllegalArgumentException is thrown if the time parameter is null.

An ArithmeticException is thrown if the result does not fit in the normalized
format.

time — The time to subtract from this.

returns A new RelativeTime object whose time is the normalization of this minus
the AbsoluteTime parameter time.

Throws IllegalArgumentException if the clock associated with this and the clock
associated with the time parameter are different, or when the time parameter is null.

Throws ArithmeticException if the result does not fit in the normalized format.

296 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

8.4.5 Class javax.realtime.RelativeTime

Declaration

@SCJAllowed
public class RelativeTime extends javax.realtime.HighResolutionTime

Description
An object that represents a time interval represented by a number of millisec-
onds plus nanoseconds. The time interval is kept in normalized form.

A negative interval relative to now represents time in the past. For add and
subtract negative values behave as they do in arithmetic.

Caution: This class is explicitly unsafe in multithreaded situations when it is
being changed. No synchronization is done. It is assumed that users of this
class who are mutating instances will be doing their own synchronization at a
higher level.

Constructors

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public RelativeTime(long millis, int nanos, Chronograph clock)

Construct a RelativeTime object representing an interval based on the param-
eter millis plus the parameter nanos. The construction is subject to millis and
nanos parameters normalization. If there is an overflow in the millisecond
component when normalizing then an IllegalArgumentException will be thrown.

The clock association is made with the clock parameter.

millis — The desired value for the millisecond component of this. The actual value
is the result of parameter normalization.

nanos — The desired value for the nanosecond component of this. The actual
value is the result of parameter normalization.

clock — The chronograph providing the association for the newly constructed
object. If chronograph is null the association is made with the real-time clock.

Throws IllegalArgumentException if there is an overflow in the millisecond com-
ponent when normalizing.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

297

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public RelativeTime()

This constructor behaves the same as calling RelativeTime(0, 0, null).

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public RelativeTime(long millis, int nanos)

This constructor behaves the same as calling RelativeTime(millis, nanos, null).

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public RelativeTime(Chronograph clock)

This constructor behaves the same as calling RelativeTime(0, 0, clock).

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public RelativeTime(RelativeTime time)

298 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Make a new RelativeTime object from the given RelativeTime object.

The new object will have the same clock association as the time parameter.

time — The RelativeTime object which is the source for the copy.

Throws IllegalArgumentException if the time parameter is null.

Methods

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.RelativeTime add(RelativeTime time)

Create a new instance of RelativeTime representing the result of adding time
to the value of this and normalizing the result. The clock associated with this
and the clock associated with the time parameter are expected to be the same,
and such association is used for the result. An IllegalArgumentException is
thrown if the clock associated with this and the clock associated with the time
parameter are different. An IllegalArgumentException is thrown if the time
parameter is null. An ArithmeticException is thrown if the result does not fit in
the normalized format.

time — The time to add to this.

returns a new RelativeTime object whose time is the normalization of this plus the
parameter time.

Throws IllegalArgumentException if the clock associated with this and the clock
associated with the time parameter are different, or when the time parameter is null.

Throws ArithmeticException if the result does not fit in the normalized format.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.RelativeTime add(RelativeTime time, RelativeTime dest)

27 January 2017 Version 0.109
Confidentiality: Public Distribution

299

Safety-Critical Java Technology Specification

Return an object containing the value resulting from adding time to the value
of this and normalizing the result. If dest is not null, the result is placed there
and returned. Otherwise, a new object is allocated for the result. The clock
associated with this and the clock associated with the time parameter are ex-
pected to be the same, and such association is used for the result. The clock
associated with the dest parameter is ignored. An IllegalArgumentException is
thrown if the clock associated with this and the clock associated with the time
parameter are different. An IllegalArgumentException is thrown if the time pa-
rameter is null. An ArithmeticException is thrown if the result does not fit in
the normalized format.

time — The time to add to this.

dest — If dest is not null, the result is placed there and returned. Otherwise, a new
object is allocated for the result.

returns the value of dest if dest is not null, otherwise the result is returned in a
newly allocated object.

Throws IllegalArgumentException if the clock associated with this and the clock
associated with the time parameter are different, or when the time parameter is null.

Throws ArithmeticException if the result does not fit in the normalized format.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.RelativeTime add(long millis, int nanos, RelativeTime dest)

Return an object containing the value resulting from adding millis and nanos to
the values from this and normalizing the result. If dest is not null, the result is
placed there and returned. Otherwise, a new object is allocated for the result.
The result will have the same clock association as this, and the clock associa-
tion with dest is ignored. An ArithmeticException is thrown if the result does
not fit in the normalized format.

millis — The number of milliseconds to be added to this.

nanos — The number of nanoseconds to be added to this.

dest — If dest is not null, the result is placed there and returned. Otherwise, a new
object is allocated for the result.

300 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

returns the value of dest if dest is not null, otherwise a new object representing the
result.

Throws ArithmeticException if the result does not fit in the normalized format.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.RelativeTime add(long millis, int nanos)

Create a new object representing the result of adding millis and nanos to the
values from this and normalizing the result. The result will have the same
clock association as this. An ArithmeticException is thrown if the result does
not fit in the normalized format.

millis — The number of milliseconds to be added to this.

nanos — The number of nanoseconds to be added to this.

returns a new RelativeTime object whose time is the normalization of this plus
millis and nanos.

Throws ArithmeticException if the result does not fit in the normalized format.

returns A new object containing the result of the addition.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@Override
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int compareTo(RelativeTime time)

Compares this object with the specified object for order.

returns a negative integer, zero, or a positive integer as this object is less than,
equal to, or greater than the specified object.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

301

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.RelativeTime subtract(RelativeTime time, RelativeTime dest)

Return an object containing the value resulting from subtracting the value of
time from the value of this and normalizing the result. If dest is not null, the
result is placed there and returned. Otherwise, a new object is allocated for the
result. The clock associated with this and the clock associated with the time pa-
rameter are expected to be the same, and such association is used for the result.
The clock associated with the dest parameter is ignored. An IllegalArgument-
Exception is thrown if the clock associated with this and the clock associated
with the time parameter are different. An IllegalArgumentException is thrown
if the time parameter is null. An ArithmeticException is thrown if the result does
not fit in the normalized format.

time — The time to subtract from this.

dest — If dest is not null, the result is placed there and returned. Otherwise, a new
object is allocated for the result.

returns the value of dest if dest is not null, otherwise a new object representing the
result.

Throws IllegalArgumentException if the if the clock associated with this and the
clock associated with the time parameter are different, or when the time parameter is
null.

Throws ArithmeticException if the result does not fit in the normalized format.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.RelativeTime subtract(RelativeTime time)

Create a new instance of RelativeTime representing the result of subtracting
time from the value of this and normalizing the result. The clock associated

302 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

with this and the clock associated with the time parameter are expected to be the
same, and such association is used for the result. An IllegalArgumentException
is thrown if the clock associated with this and the clock associated with the
time parameter are different. An IllegalArgumentException is thrown if the
time parameter is null. An ArithmeticException is thrown if the result does not
fit in the normalized format.

time — The time to subtract from this.

returns a new RelativeTime object whose time is the normalization of this minus
the parameter time parameter time.

Throws IllegalArgumentException if the clock associated with this and the clock
associated with the time parameter are different, or when the time parameter is null.

Throws ArithmeticException if the result does not fit in the normalized format.

8.5 Rationale

Many SCJ systems do not have access to a time synchronization service or the cur-
rent date. Therefore, SCJ does not require any particular Epoch. On a system with-
out the notion of calendar time AbsoluteTime(0,0) may represent the system start up
time.

As time values from different chronographs are not comparable, comparison of time
values from different clocks is not supported by SCJ.

The concept of requiring times (e.g., HighResolutionTime) to be immutable was con-
sidered, but further consideration showed that its implementation would be difficult
without generating excessive garbage. As a result, it was decided that times used in
SCJ applications would continue to be mutable as they are in the RTSJ.

8.6 Compatibility

The RTSJ defines the Epoch to be the 1st day of January 1970, but this Epoch is not
required in SCJ.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

303

Safety-Critical Java Technology Specification

304 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Chapter 9

Java Metadata Annotations

9.1 Overview

This chapter describes Java Metadata annotations used by the SCJ. Java Metadata
annotations enable developers to add additional typing information to a Java pro-
gram, thereby enabling more detailed functional and non functional analyses, both
for ensuring program consistency and for aiding the runtime system to produce more
efficient code. They are retained in the compiled bytecode intermediate format and
are thus available for performing validation at class load-time. In SCJ, an impor-
tant use of metadata annotations is to enforce compliance levels and to restrict the
behavior of certain methods.

This specification distinguishes between application code and infrastructure code.
It is strongly recommended that implementations should provide a Checker tool to
ensure that the application code abides by the restrictions defined by its annotations.
Infrastructure code shall be verified by the vendor. Infrastructure code includes the
java and javax packages as well as vendor specific libraries.

The Overview, as well as the Rationale and Examples sections, are not normative but
are provided to improve understanding of the normative sections. All of the other
sections of this chapter are normative.

9.2 Semantics and Requirements

The SCJ annotations described in this chapter address the following two groups of
properties:

Compliance Levels — The SCJ specification defines three levels of compli-
ance. Both application and infrastructure code must adhere to one of these

305

Safety-Critical Java Technology Specification

compliance levels. Consequently, code belonging to a certain level may access
only code that is at the same or lower level. This ensures that an SCJ applica-
tion is compatible with the SCJ infrastructure and other application code with
respect to the specified SCJ level.

Behavioral Restrictions — Because each mission consists of a sequence of
specific phases (i.e., start up, initialization, execution, clean up), the application
must clearly distinguish between these phases. Furthermore, it is illegal for
the application to access SCJ functionality that is not provided for its current
execution phase within a mission.

9.3 Annotations for Enforcing Compliance Levels

API visibility annotations are used to prevent application programmers from access-
ing SCJ API methods that are intended to be internal.

The SCJ specification specifies three compliance levels to which applications and
implementations shall conform. Each level specifies restrictions on what APIs are
permitted for use by an application, with lower levels strictly more restrictive than
higher levels. The @SCJAllowed() metadata annotation is introduced to indicate
the compliance level of classes and members. The @SCJAllowed() annotation is
summarized in Table 9.1 and takes two arguments.

Annotation Argument Values Description

@SCJAllowed value

LEVEL 0

Application-level.LEVEL 1

LEVEL 2

SUPPORT Application-level, accessed by library.

members
TRUE

Inherit value by sub-elements.
FALSE

Table 9.1: Compliance LEVEL annotation.

1. The default argument of type Level specifies the level of the annotation target.
The options are LEVEL 0, LEVEL 1, LEVEL 2, and SUPPORT.

• Level 0, Level 1, and Level 2 specify that an element may only be visi-
ble by those elements that are at the specified level or higher. Therefore,
a method that is @SCJAllowed(LEVEL 2) may invoke a method that is
@SCJAllowed(LEVEL 1), but not vice versa. In addition, a method anno-
tated with a certain level may not have a higher level than a method that
it overrides.

306 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

• SUPPORT specifies an application-level method that can be invoked only
by the infrastructure code; the SUPPORT annotation cannot be used
to specify a level of a class. A SUPPORT method cannot be invoked
by other SUPPORT methods. A SUPPORT method can invoke other
application-level methods up to the level specified by its enclosing class.
This implies that a SUPPORT method acts as if its level were set to the
level of its enclosing class.

The default value when no value is specified is LEVEL 0. When no annotation
applies to a class or member it is not visible. The ordering on annotations is
LEVEL 0 < LEVEL 1 < LEVEL 2 < SUPPORT.

2. The second argument, members, determines whether or not the specified com-
pliance level recurses to nested members and classes. The default value is
false.

9.3.1 Compliance Level Reasoning

The compliance level of a class or member shall be the first of the following:

1. The level specified on its own @SCJAllowed() annotation, if it exists,

2. The level of the closest outer element with an @SCJAllowed() annotation, if
members = true,

If a class, interface, or member has compliance level C, it shall be used in code that
also has compliance level C or higher. It is legal for an implementation to not emit
code for methods and classes that may not be used at the chosen level of an SCJ
application, though it may be necessary to provide stubs in certain cases.

It is illegal for an overriding method to change the compliance level of the overridden
method. It is also illegal for a subclass to have a lower compliance level than its
superclass. Each element shall either correctly override the @SCJAllowed annotation
of the parent or restate the parent’s annotation. All enclosed elements of a class or
member shall have a compliance level greater than or equal to the enclosing element.

Methods annotated SUPPORT may be overridden by the application and if so, the
SUPPORT annotation must be restated.

Static initializers have the same compliance level as their defining class, regardless
of the members argument.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

307

Safety-Critical Java Technology Specification

9.3.2 Class Constructor Rules

For a class that is annotated @SCJAllowed with members = true, all constructors
shall default to @SCJAllowed at the same compliance level.

If a class has a default constructor, the constructor’s compliance level shall be that of
the class if the annotation has members = true.

9.3.3 Other Rules

Exceptions thrown by a method must be visible at the compliance level of that
method.

9.4 Annotations for Restricting Behavior

The following set of annotations is provided to express some dynamic characteristics
of methods. For example, some methods may be restricted from memory allocation,
some methods may only be called in a certain mission phase, or may be restricted
from using blocking calls. For these situations, the restricted behavior annotations
@SCJMayAllocate, @SCJMaySelfSuspend, and @SCJPhase are used.

The restricted behavior annotations may be applied to a class, interface, or enumera-
tion to change the default values for the methods on that class, interface, or enumer-
ation.

9.4.1 @SCJMayAllocate

The @SCJMayAllocate annotation takes an array of the Allocation enumeration. When
a method is annotated with a @SCJMayAllocate array that is not empty, the annotated
method is allowed to perform allocation or call methods with a consistent annotation.
If a method is annotated with an empty @SCJMayAllocate array, then all methods
that override it must also be annotated with an empty SCJMayAllocate array. Meth-
ods that are annotated @SCJMayAllocate(CurrentContext) may contain expressions
that result in allocation in the current scope (e.g. at the source level new expres-
sions, string concatenation, and autoboxing). Methods that are annotated @SCJ-
MayAllocate(OuterContext) may contain expressions that result in allocation in an
outer scope within which the current scope is nested. Methods that are annotated
@SCJMayAllocate (InnerContext) may contain expressions that result in allocation
in a scope nested within the current scope. Methods that are annotated @SCJMay-
Allocate(ThisContext) may contain expressions that result in allocation in the scope
containing this.

308 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

If no @SCJMayAllocate annotation is present, the default value for @SCJMayAllo-
cate is CurrentContext, OuterContext, Inner-Context.

9.4.2 @SCJMaySelfSuspend

The @SCJMaySelfSuspend annotation is boolean and takes values of true and false.
When @SCJMaySelfSuspend is true, the annotated method may take an action that
causes it to block. If a method is marked @SCJMaySelfSuspend(false), then neither
it nor any method it calls may take an action causing it to block.

The default value is true.

9.4.3 @SCJPhase

The @SCJPhase annotation takes an array of the Phase enumeration. The SCJ
application phases are: STARTUP, INITIALIZATION, RUN, and CLEANUP.

The default phases for all methods without a phase annotation is that the method can
be executed in any of the four phases.

9.4.4 Inheritance Considerations

When a method that is coded with any of these restricted behavior annotations is
overridden, the overriding method shall be annotated with the parent’s restricted be-
havior annotations or it shall have appropriate restricted behavior annotations that
are consistent with its parent method with respect to the parent’s @SCJMayAllocate,
@SCJMaySelfSuspend, and @SCJPhase settings:

• For the @SCJMayAllocate annotation, the consistency requirement for over-
riding child methods means that the child’s annotations may be more restricted
than the parent’s annotations, but shall not be less restricted than the parent’s
annotations. For example, if the parent uses the annotation @SCJMayAllo-
cate({CurrentContext, InnerContext}), the child shall not incorporate the an-
notation @SCJMayAllocate({OuterContext}) because such a child annotation
would violate the annotation of the parent. However, the child could use the
annotation @SCJMayAllocate(CurrentContext) because it is more restrictive
than the parent. With respect to @SCJMayAllocate, the following is a list of
the annotations in order of decreasing restriction: No allocation (i.e., {}), Cur-
rentContext, ThisContext, InnerContext, and OuterContext.

• If a method with a @SCJMaySelfSuspend annotation is overridden, the over-
riding method shall inherit the same setting for @SCJMaySelfSuspend as its

27 January 2017 Version 0.109
Confidentiality: Public Distribution

309

Safety-Critical Java Technology Specification

parent. For the @SCJMaySelfSuspend annotation, the consistency require-
ment for overriding child methods means that the child’s annotations may be
more restricted than the parent’s annotations, but shall not be less restricted
than the parent’s annotations. For example, if the parent incorporates the
annotation @SCJMaySelfSuspend(false), the child shall not incorporate the
annotation @SCJMaySelfSuspend(true) because it is less restrictive to allow
self-suspension, but the converse is a valid annotation.

• For the @SCJPhase annotation, the consistency requirement for overriding
child methods means that the child’s annotations must be exactly the same as
the parent’s annotations.

9.5 Level Considerations

These annotations apply to all levels.

9.6 API

9.6.1 Class javax.safetycritical.annotate.SCJPhase

Declaration

@SCJAllowed
@Retention(java.lang.annotation.RetentionPolicy.CLASS)
@Target({

java.lang.annotation.ElementType.TYPE, java.lang.annotation.ElementType.METHOD,
java.lang.annotation.ElementType.CONSTRUCTOR})

public @interface SCJPhase

Description
This annotation distinguishes methods that may be called only from code run-
ning in a certain mission phase (e.g. Initialization or Clean Up).

Attributes

@SCJAllowed
public javax.safetycritical.annotate.Phase [] value () default {
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP };

The phase of the mission in which a method may run.

310 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

9.6.2 Class javax.safetycritical.annotate.SCJMayAllocate

Declaration

@SCJAllowed
@Retention(java.lang.annotation.RetentionPolicy.CLASS)
@Target({

java.lang.annotation.ElementType.TYPE, java.lang.annotation.ElementType.METHOD,
java.lang.annotation.ElementType.CONSTRUCTOR})

public @interface SCJMayAllocate

Description
This annotation distinguishes methods that may be restricted from allocating
memory in certain memory areas.

Attributes

@SCJAllowed
public javax.safetycritical.annotate.AllocationContext [] value () default {
javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.OUTER,
javax.safetycritical.annotate.AllocationContext.INNER };

9.6.3 Class javax.safetycritical.annotate.SCJMaySelfSuspend

Declaration

@SCJAllowed
@Retention(java.lang.annotation.RetentionPolicy.CLASS)
@Target({

java.lang.annotation.ElementType.TYPE, java.lang.annotation.ElementType.METHOD,
java.lang.annotation.ElementType.CONSTRUCTOR})

public @interface SCJMaySelfSuspend

Description
This annotation distinguishes methods that may be restricted from blocking
during execution.

Attributes

@SCJAllowed
public boolean value () default false;

9.6.4 Class javax.safetycritical.annotate.SCJAllowed

Declaration

27 January 2017 Version 0.109
Confidentiality: Public Distribution

311

Safety-Critical Java Technology Specification

@SCJAllowed
@Retention(java.lang.annotation.RetentionPolicy.CLASS)
@Target({

java.lang.annotation.ElementType.TYPE, java.lang.annotation.ElementType.FIELD,
java.lang.annotation.ElementType.METHOD,
java.lang.annotation.ElementType.CONSTRUCTOR})

public @interface SCJAllowed

Description

This annotation distinguishes methods, classes, and fields that may be ac-
cessed from within safety-critical Java programs. In some implementations
of the safety-critical Java specification, elements which are not declared with
the @SCJAllowed annotation (and are therefore not allowed in safety-critical
application software) are present within the declared class hierarchy. These
are necessary for full compatibility with standard edition Java, the Real-Time
Specification for Java, and/or for use by the implementation of infrastructure
software.

The value field equals LEVEL 0 for elements that may be used within safety-
critical Java applications targeting Level 0, Level 1, or Level 2.

The value field equals LEVEL 1 for elements that may be used within safety-
critical Java applications targeting Level 1 or Level 2.

The value field equals LEVEL 2 for elements that may be used within safety-
critical Java applications targeting Level 2.

Absence of this annotation on a given Class, Field, Method, or Constructor
declaration indicates that the corresponding element may not be accessed from
within a compliant safety-critical Java application.

Attributes

@SCJAllowed
public boolean members () default false;

@SCJAllowed
public javax.safetycritical.annotate.Level value () default
javax.safetycritical.annotate.Level.LEVEL 0;

9.6.5 Class javax.safetycritical.annotate.Level

Declaration

@SCJAllowed
public enum Level

312 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Fields

@SCJAllowed
public static final javax.safetycritical.annotate.Level LEVEL 0

@SCJAllowed
public static final javax.safetycritical.annotate.Level LEVEL 1

@SCJAllowed
public static final javax.safetycritical.annotate.Level LEVEL 2

@SCJAllowed
public static final javax.safetycritical.annotate.Level SUPPORT

9.6.6 Class javax.safetycritical.annotate.Phase

Declaration

@SCJAllowed
public enum Phase

Fields

@SCJAllowed
public static final javax.safetycritical.annotate.Phase CLEANUP

@SCJAllowed
public static final javax.safetycritical.annotate.Phase INITIALIZATION

@SCJAllowed
public static final javax.safetycritical.annotate.Phase RUN

@SCJAllowed
public static final javax.safetycritical.annotate.Phase STARTUP

9.6.7 Class javax.safetycritical.annotate.AllocationContext

Declaration

@SCJAllowed
public enum AllocationContext

Fields

27 January 2017 Version 0.109
Confidentiality: Public Distribution

313

Safety-Critical Java Technology Specification

@SCJAllowed
public static final javax.safetycritical.annotate.AllocationContext CURRENT

Allocation is allowed in the current memory area.

@SCJAllowed
public static final javax.safetycritical.annotate.AllocationContext INNER

Allocation is allowed in any inner (more deeply nested) memory area.

@SCJAllowed
public static final javax.safetycritical.annotate.AllocationContext OUTER

Allocation is allowed in any outer (less deeply nested) memory area.

@SCJAllowed
public static final javax.safetycritical.annotate.AllocationContext THIS

Allocation is allowed in the memory area where the current object (this) was
allocated.

9.7 Rationale and Examples

It is expected that the metadata annotations will be checked by analysis tools as well
as at load time (or link time if class loading is integrated with the linking). Virtual
machines that use an ahead-of-time compilation model are expected to perform the
checks when the executable image of the program is assembled.

9.7.1 Compliance Level Annotation Example

The following example illustrates an application of the compliance level annotation.
The example shows both application and infrastructure fragments of source code,
demonstrating the application of the compliance level annotations.

@SCJAllowed(LEVEL 0, members=true)
class MyMission extends CyclicExecutive {

WordHandler peh;

@SCJAllowed(SUPPORT)

314 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

public void initialize() {
peh = new MyHandler(...); // ERROR − because MyHandler is Level 1

}
}

@SCJAllowed(LEVEL 1)
class MyHandler extends PeriodicEventHandler {

@SCJAllowed(SUPPORT)
public void handleAsyncEvent() {...}

}

@SCJAllowed(LEVEL 0)
public abstract class PeriodicEventHandler extends ManagedEventHandler {

@SCJAllowed(LEVEL 0)
public PeriodicEventHandler(..) {...}

@SCJAllowed(LEVEL 0) // ERROR − because getActualStartTime is Level 1
public HighResolutionTime getActualStartTime() {...}

}
It is evident that all the elements of the example are declared to reside at a specific
compliance level. At the application domain, class MyMission is declared to be at
Level 0. Every Level 0 mission is composed of one or more periodic handlers; in
this case, we define the MyHandler class. The handler is, however, declared to be at
Level 1, which is an error.

Looking at the SCJ infrastructure code, the PeriodicEventHandler class implements
the Schedulable interface, both of which are defined as Level 0 compliant. However,
PeriodicEventHandler is defined to override getActualStartTime(), originally allowed
only at Level 1. This results in an illegal attempt to increase method visibility.

9.7.2 Memory Safety Annotations

In an early draft of this SCJ specification, the JSR-302 Expert Group considered
an expanded set of annotations designed to ensure the safety of memory references
in SCJ applications. However, the SCJ Expert Group later determined that those
proposed memory safety annotations were not ready for standardization, so they were
removed. The Expert Group expects that a later extension to this specification will
consider expanding these annotations to address memory safety.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

315

Safety-Critical Java Technology Specification

316 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Chapter 10

Java Native Interface

10.1 Overview

SCJ provides more restrictions than the RTSJ to simplify the run-time infrastructure
and assist with safety-critical analysis for certification. This chapter defines these
additional SCJ restrictions.

The Overview, Rationale, and Example sections are not normative but are provided
to improve understanding of the normative sections. All of the other sections of
this chapter are normative. It is important that SCJ implementations shall follow the
common JNI rules found (for Java 8.0) at http://docs.oracle.com/javase/8/docs/technotes
/guides/jni/index.html, while obeying the restrictions in the normative sections of
this chapter.

10.2 Semantics and Requirements

If the underlying run-time infrastructure supports native code execution, then all Java
native interface (JNI) supported functions described in this chapter shall be imple-
mented; otherwise, JNI is not available to the application.

10.3 Level Considerations

Due to SCJ limitations concerning reflection and object allocation the JNI support
is restricted to a basic functionality that can be used equally for native methods on
Level 0, Level 1, and Level 2.

317

Safety-Critical Java Technology Specification

10.4 API

This section follows the structure of Chapter 4 in the common guide to JNI. For
each of the subsections, there is a list of functions that shall be supported, and when
relevant, a list of functions that need not be supported, because they are in conflict
with SCJ restrictions.

The effect of an application referencing the unsupported JNI functions defined by
standard Java is implementation defined. The possible effects include, but are not
limited to: compile time error, a null pointer, or a function aborting execution. The
recommended implementation is to not provide definitions for any unsupported func-
tions.

Developers of SCJ applications should note the Exception capabilities specified in
Chapter 11 that make it possible to throw pre-allocated exceptions without causing
potential memory leaks.

10.4.1 Version Information

The function to retrieve the JNI version shall be supported : GetVersion()

10.4.2 Class Operations

Two class inspection functions shall be supported: GetSuperclass() and IsAssignable-
From()

The following functions are NOT required to be supported, because they require
reflection and/or dynamic class loading to operate: DefineClass() and FindClass().

10.4.3 Exceptions

The functions Throw(), ExceptionOccurred(), ExceptionClear(), FatalError() and Ex-
ceptionCheck() shall be supported.

The following functions are NOT required to be supported, because they require
object allocation or IO to operate: ThrowNew() and ExceptionDescribe().

10.4.4 Global and Local References

The following functions shall be supported because their implementation is believed
to present no certifiability problems, and provide SCJ applications with a high degree

318 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

of compatibility with existing JNI code: EnsureLocalCapacity(), PushLocalFrame(),
PopLocalFrame(), and NewLocalRef().

The following function are NOT required to be supported, because their semantics
conflict with scoped memory, and require features (like weak references) not found in
an SCJ implementation: NewGlobalRef(), DeleteGlobalRef() and DeleteLocalRef().

10.4.5 Weak Global References

Functions for weak global references are NOT required to be supported, because
their semantics conflict with scoped memory and require features not found in an
SCJ implementation: NewWeakGlobalRef() and DeleteWeakGlobalRef().

10.4.6 Object Operations

The following functions provide basic operations on objects and require no reflection
and no object allocation.They shall be supported: GetObjectClass(), GetObjectRe-
fType(), IsInstanceOf(), IsSameObject().

The following functions are NOT required to be supported because they require re-
flection: AllocObject(), NewObject(), NewObjectA() and NewObjectV().

10.4.7 Accessing Fields of Objects

These functions are NOT required to be supported because they require reflection:
GetFieldID(), Get<type>Field() and Set<type>Field().

10.4.8 Calling Instance Methods

These functions are NOT required to be supported because they require reflection:
GetMethodID(), Call<type>Method(), Call<type>MethodA(), Call<type>MethodV(),
as well as these functions: CallNonvirtual<type>Method(), CallNonvirtual<type>MethodA()
and CallNonvirtual<type>MethodV().

10.4.9 Accessing Static Fields

The functions are NOT required to be supported because they require reflection: Get-
StaticFieldID(), GetStatic<type>Field() and SetStatic<type>Field().

27 January 2017 Version 0.109
Confidentiality: Public Distribution

319

Safety-Critical Java Technology Specification

10.4.10 Calling Static Methods

These functions are NOT required to be supported because they require reflection:
GetStaticMethodID(), CallStatic<type>Method(),
CallStatic<type>MethodA() and CallStatic<type>MethodV().

10.4.11 String Operations

The following functions shall be supported because they are basic operations on
strings and require no allocation: GetStringLength(), GetStringUTFLength(), Get-
StringRegion() and GetStringUTFRegion().

The following functions are NOT required to be supported because they may require
allocation: NewString(), GetStringChars(), ReleaseStringChars(), NewStringUTF(),
GetStringUTFChars(), as well as ReleaseStringUTFChars(), GetStringCritical() and
ReleaseStringCritical().

10.4.12 Array Operations

The following basic functions require no allocation and shall be supported: GetAr-
rayLength(),as well as GetObjectArrayElement() and SetObjectArrayElement().

The following functions are NOT required to be supported because they require allo-
cation:
NewObjectArray(), New<PrimitiveType>Array(),
Get<PrimitiveType>ArrayElements(), Release<PrimitiveType>ArrayElements(),
Get<PrimitiveType>ArrayRegion(), Set<PrimitiveType>ArrayRegion(),
GetPrimitiveArrayCritical() and ReleasePrimitiveArrayCritical().

10.4.13 Registering Native Methods

The RegisterNatives() function shall be required to be supported, although it shall not
be called after return from Safelet.initializeApplication. It is needed to disambiguate
between the two possible naming conventions for JNI functions in systems where the
Java implementation does not control linking.

The UnregisterNatives() function is NOT required to be supported because it is only
useful for systems with dynamic loading.

320 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

10.4.14 Monitor Operations

The MonitorEnter() and MonitorExit() functions are NOT required to be supported
because they map to synchronized() which is restricted in SCJ.

10.4.15 NIO Support

In SCJ support is NOT required for native IO functions: NewDirectByteBuffer(),
GetDirectBufferAddress(), GetDirectBufferCapacity(),

10.4.16 Reflection Support

In SCJ support is NOT required for reflection functions: FromReflectedMethod(),
FromReflectedField(), ToReflectedMethod() and ToReflectedField().

10.4.17 Java VM Interface

In SCJ support is NOT required for VM Interface functions.

10.5 Annotations

There is no SCJ support for verification of the annotations of native methods. On the
other hand, it is important to provide this information to any available tools for vali-
dating SCJ programs for correctness and safety. To ensure that application program-
mers consider their implementation carefully, there are no default annotations for
native methods concerning allocation and blocking. Therefore it is always required
to annotate native methods with the @SCJMayAllocate and@SCJMaySelfSuspend
annotations.

If the native method does not call back to Java methods, its @SCJMayAllocate at-
tribute shall contain an empty array or {CurrentContext}, and it shall also be an-
notated with an appropriate setting for @SCJMaySelfSuspend. If the annotation
@SCJMayAllocate({CurrentContext} is specified, it indicates that the native method
allocates native memory dynamically. SCJ compliant implementations of native
methods shall not allocate objects in SCJ memory.

If the native method calls back to one or more Java methods, the annotation of the
native method should be consistent with any Java methods that may be called.

Note that any JNI code that may be called within a synchronized method shall be
annotated as @SCJMaySelfSuspend(false) to indicate that it will never self-suspend.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

321

Safety-Critical Java Technology Specification

10.6 Rationale

Due to the complexity of static analysis of code that contains reflection, the SCJ
restricts all use of reflection and object allocation at all levels. As such, many of the
functions that would normally be available in JNI are not supported. In addition, no
functions that require allocation will be required for SCJ conformance.

Call-back functions from C to create, attach or unload the JVM are not required
because the corresponding operations are not supported.

It is difficult for a Java standard such as SCJ to prescribe how native code must be
supported. Instead SCJ recommends not including any definitions of unsupported
functions to enable early detection of references.

10.7 Example

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
static native int getProcessorId(String theProcessorInformationString);

The native method is called with a previously allocated string as parameter. Besides
the integer return value, in this example, the parameter of type string can be used to
return information to the Java context. Because it is marked @SCJMayAllocate({}),
the implementation of getProcessorId must not allocate memory dynamically. Be-
cause the desired information might be obtained by a call to the operation system,
maySelfSuspend=false is used.

Header files of the native implementation can be generated by javah as usual.

10.8 Compatibility

10.8.1 RTSJ Compatibility Issues

The restrictions in Level 0 are upwardly compatible with a conformant RTSJ solu-
tion in that, applications that will run under this restricted environment will also work
correctly under a less restricted environment such as CLDC or JSE.

This will not affect standard RTSJ applications, unless they are using JNI functions
that are not supported.

For consistency with standard RTSJ applications, if an SCJ implementation sup-
ports allocation of Java objects from native code, such allocations should allocate
objects using the current allocation context at the point of the call.

322 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

10.8.2 General Java Compatibility Issues

Existing JNI code may need to be modified for use in an SCJ application due to
the reduced set of JNI functions that are supported for SCJ. In particular, to modify
fields of an object, the field will need to be passed as an argument to the underlying
JNI function because there is no way to access a field directly.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

323

Safety-Critical Java Technology Specification

324 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Chapter 11

Exceptions

11.1 Overview

Exceptions are used in Java as well as other languages to separate functional logic
from error handling. Safety-critical applications in languages such as Ada and C++,
however, usually avoid their use. One reason for avoiding their use is that exception
propagation may introduce execution paths for which execution time is difficult to
analyze.

In Java, it is impossible to avoid exception handlers altogether due to the existence
of checked exceptions which can be thrown by many standard methods. Compiler
analysis such as dataflow analysis can help ensure that certain exceptions will never
be thrown by a given method invocation, but in general it is not possible to eliminate
the execution of all throw statements and catch clauses.

This chapter describes how exceptions can be thrown and caught within SCJ pro-
grams while avoiding memory leaks or out-of-memory exceptions. It is expected
that observing these principles will permit safe exception handling within infrastruc-
ture classes as well as application classes.

The Overview and Rationale sections are not normative but are provided to improve
understanding of the normative sections. All of the other sections of this chapter are
normative.

11.2 Semantics and Requirements

Except for how information associated with a Throwable is stored and managed, the
semantics of the subclasses of Error, Exception, and RuntimeException are the same
as for all other Java throwables.

325

Safety-Critical Java Technology Specification

Like the RTSJ, SCJ also supports statically allocated exceptions for those excep-
tions that implement the RTSJ interface StaticThrowable.There is at most one in-
stance of each of these exceptions and errors, managed by the runtime. The message
and stack information they would normally carry is held in a thread-local data struc-
ture. This means this information is only valid within the context of the thread that
threw the StaticThrowable, and there only until a new StaticThrowable is thrown.
For these static exception, an allocation should not be used. Instead an exception is
thrown by calling the static getMethod associated with the StaticThrowable.

The thread-local storage used by StaticThrowables is controlled by the Configura-
tionParameters associated with the active ManagedSchedulable when the exception
is thrown. See Section 4.4.7.

It is implementation-defined how a particular implementation of SCJ captures and
represents thread backtraces for thrown exceptions.

Exception object allocation through the keyword new uses the current allocation con-
text. Throw statements and catch clauses work the same in SCJ as in RTSJ. There
are no special requirements on checked or unchecked exceptions.

An attempt to propagate an exception out of its scope (i.e. out of the ScopedMemory
in which it is allocated) is called a boundary error. The exception which causes a
boundary error is called the original exception. A boundary error stops the propaga-
tion of the original exception and throws a ThrowBoundaryError exception in its place
(as in RTSJ). SCJ defines its own ThrowBoundaryError class in javax.safetycritical
which extends the corresponding ThrowBoundaryError class of the RTSJ.

**

11.2.1 SCJ-Specific Functionality

A ThrowBoundaryError exception shall contain information about the original ex-
ception. This information can be extracted from the most recent boundary error in
the current schedulable object using the methods in javax.safetycritical.ThrowBound-
aryError.

When SCJ replaces a thrown exception with a ThrowBoundaryError exception, it
preserves a reference to the class of the originally thrown exception within the thread-
local ThrowBoundaryError object. Whether stack backtrace information is copied at
this same time is implementation-defined.

The method getPropagatedMessage returns the message associated with the original
exception. The message shall begin with the fully-qualified name of the exception
class. The message is truncated by discarding the highest indices if it exceeds the
maximum allowed length for this Schedulable object. The method getPropagated-
StackTraceDepth returns the number of valid elements in the StackTraceElement ar-

326 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

ray returned by getPropagatedStackTrace(). The method getPropagatedStackTrace
returns the stack trace copied from the original exception. The stack trace is truncated
by discarding the oldest stack trace elements if it exceeds the maximum allowed
length for this schedulable object.

11.3 Level Considerations

The support for exceptions is the same for all compliance levels. A method annotated
with a particular compliance level shall neither declare nor throw exceptions which
have a higher compliance level.

11.4 API

The classes Error and Exception in java.lang provide the same constructors and meth-
ods in SCJ as in standard Java. The class Throwable in java.lang provides the same
constructors in SCJ as in standard Java; the available methods are restricted in SCJ
as described below. The RTSJ exception are used as defined by the RTSJ

Unless indicated otherwise, the classes defined in this section are thread safe

11.4.1 Class java.lang.Throwable

Declaration

@SCJAllowed
public class Throwable implements java.io.Serializable extends java.lang.Object

Description

The Throwable class is the superclass of all errors and exceptions in the Java
language. Only objects that are instances of this class (or one of its subclasses)
are thrown by the Java Virtual Machine or can be thrown by the Java throw
statement. Similarly, only this class or one of its subclasses can be the argu-
ment type in a catch clause. For the purposes of compile-time checking of
exceptions, Throwable and any subclass of Throwable that is not also a sub-
class of either RuntimeException or Error are regarded as checked exceptions.

Constructors

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})

27 January 2017 Version 0.109
Confidentiality: Public Distribution

327

Safety-Critical Java Technology Specification

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public Throwable(String msg, Throwable cause)

Constructs a Throwable object with an optional detail message and an optional
cause. If cause is null, Services.captureStackBacktrace(this) is called to save
the backtrace associated with the current thread. If cause is not null, Ser-
vices.captureStackBacktrace(this) is not called to avoid overwriting the back-
trace associated with the cause.

msg — the detail message for this Throwable object.

cause — the cause of this exception.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public Throwable()

This constructor behaves the same as calling Throwable(String, Throwable)
with the arguments (null, null).

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public Throwable(Throwable cause)

This constructor behaves the same as calling Throwable(String, Throwable)
with the arguments (null, cause).

328 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public Throwable(String msg)

This constructor behaves the same as calling Throwable(String, Throwable)
with the arguments (msg, null).

Methods

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.Throwable getCause()

returns a reference to the cause that was supplied as an argument to the con-
structor, or null if no cause was specified at construction time. Performs no memory
allocation.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.String getMessage()

returns a reference to the message that was supplied as an argument to the construc-
tor, or null if no message was specified at construction time. Performs no memory
allocation.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,

27 January 2017 Version 0.109
Confidentiality: Public Distribution

329

Safety-Critical Java Technology Specification

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.StackTraceElement[] getStackTrace()

Allocates a StackTraceElement array, StackTraceElement objects, and all in-
ternal structure, including String objects referenced from each StackTraceEle-
ment to represent the stack backtrace information available for the exception
that was most recently associated with this Throwable object.

Each Schedulable maintains a single buffer to contain the stack backtrace in-
formation associated with the most recent invocation of System.captureStack-
Backtrace. The size of this buffer is specified by providing a Schedulable-
SizingParameters object as an argument to construction of the Schedulable.
Most commonly, Services.captureStackBacktrace is invoked from within the
constructor of java.lang.Throwable . getStackTrace returns the contents of this
single backtrace buffer information.

If Services.captureStackBacktrace has been invoked within this thread more
recently than the construction of this Throwable, then the stack trace informa-
tion returned from this method may not represent the stack backtrace for this
particular Throwable.

@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void printStackTrace(PrintStream stream)

Print the stack trace of this Throwable to the given stream.

The printed stack trace contains the result of toString() as the first line followed
by one line for each stack trace element that contains the name of the method
or constructor, optionally followed by the source file name and source file line
number when available.

stream — the stream to print to.

@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJPhase({

330 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void printStackTrace()

11.4.2 Class javax.realtime.StaticThrowable

Declaration

@SCJAllowed
public interface StaticThrowable

See Also: javax.realtime.ConfigurationParameters

Description
A marker interface to indicate that a Throwable is intended to be created once
and reused. Throwables that implement this interface kept their state in a local
data structure in the owning schedulable object. This means that data is only
valid until the next StaticThrowable is thrown in the that schedulable object.
Having a marker interface makes it easier to provide checking tools to ensure
the proper throw sequence for all Throwables thrown from application code.

Methods

@SCJMayAllocate({})
@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.Throwable fillInStackTrace()

Calls the infrastructure to capture the current stack trace in the schedulable
object’s local memory.

returns a reference to this Throwable.

@SCJMayAllocate({})
@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.Throwable getCause()

27 January 2017 Version 0.109
Confidentiality: Public Distribution

331

Safety-Critical Java Technology Specification

getCause returns the cause of this exception or null when no cause was set
by initCause. The cause is another exception that was caught just before this
exception was thrown.

returns The cause or null.

@SCJMayAllocate({})
@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.String getLocalizedMessage()

Subclasses may override this message to get an error message that is localized
to the default locale.

By default it returns getMessage().

returns the error message

@SCJMayAllocate({})
@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.String getMessage()

get the message describing the problem from the schedulable object’s local
memory.

returns the message given to the constructor or null when no message was set.

@SCJMayAllocate({})
@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.StackTraceElement[] getStackTrace()

332 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Get the stack trace created by fillInStackTrace for this Throwable as an array
of StackTraceElements.

The stack trace does not need to contain entries for all methods that are actually
on the call stack, the infrastructure may decide to skip some stack trace entries.
Even an empty array is a valid result of this function.

Repeated calls of this function without intervening calls to fillInStackTrace will
return the same result.

When memory areas are used, and this Throwable was allocated in a different
memory area than the current allocation context, the resulting stack trace will
be allocated in either the same memory area this was allocated in or the current
memory area, depending on which is the least deeply nested, thereby creating
objects that are assignment compatible with both areas.

returns array representing the stack trace, it is never null.

@SCJMayAllocate({})
@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.Throwable initCause(Throwable causingThrowable)

Initializes the cause to the given Throwable in the schedulable object’s local
memory.

causingThrowable — the reason why this Throwable gets Thrown.

returns the reference to this Throwable.

Throws IllegalArgumentException when the cause is this Throwable itself.

@SCJMayAllocate({})
@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.Throwable initMessage(String message)

Set the message in the schedulable object’s local storage. This is the only
method that is not also defined in Throwable.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

333

Safety-Critical Java Technology Specification

message — is the text to set.

@SCJMayAllocate({})
@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void printStackTrace(PrintStream stream)

Print the stack trace of this Throwable to the given stream.

The printed stack trace contains the result of toString() as the first line followed
by one line for each stack trace element that contains the name of the method
or constructor, optionally followed by the source file name and source file line
number when available.

stream — the stream to print to.

@SCJMayAllocate({})
@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void printStackTrace()

Print stack trace of this Throwable to System.err.

The printed stack trace contains the result of toString() as the first line followed
by one line for each stack trace element that contains the name of the method
or constructor, optionally followed by the source file name and source file line
number when available.

@SCJMayAllocate({})
@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void setStackTrace(StackTraceElement [] new stackTrace)
throws java.lang.NullPointerException

334 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

This method allows overriding the stack trace that was filled during construc-
tion of this object. It is intended to be used in a serialization context when the
stack trace of a remote exception should be treated like a local.

new stackTrace — the stack trace to replace be used.

Throws NullPointerException when new stackTrace or any element of new stackTrace
is null.

11.4.3 Class javax.realtime.StaticThrowableStorage

Declaration

@SCJAllowed
public class StaticThrowableStorage implements javax.realtime.StaticThrowable

extends java.lang.Throwable

Description
Provide the methods for managing the thread local memory used for storing the
data needed by preallocated throwables, i.e., exceptions and errors which im-
plement StaticThrowable. This call is visible so that an application can extend
an existing conventional Java throwable and still implement StaticThrowable;
its methods can be implemented using the methods defined in this class. An
application defined throwable that does not need to extend an existing conven-
tional Java throwable should extend on of StaticCheckedException, StaticRun-
timeException, or StaticError instead.

Methods

@Override
@SCJMayAllocate({})
@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.Throwable fillInStackTrace()

Capture the current thread’s stack trace and save it in thread local storage. Only
the part of the stack trace that fits in the preallocated buffer is stored. This
method should be called by a preallocated exception to implement its method
of the same name.

returns this

27 January 2017 Version 0.109
Confidentiality: Public Distribution

335

Safety-Critical Java Technology Specification

@Override
@SCJMayAllocate({})
@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.Throwable getCause()

Get the cause from thread local storage that was saved by the last preallocated
exception thrown. The actual exception that of the cause is not saved, but just
a reference to its type. This returns a newly allocated exception without any
valid content, i.e., no valid stack trace. This method should be called by a
preallocated exception to implement its method of the same name.

returns the message

@SCJMayAllocate({})
@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static javax.realtime.StaticThrowableStorage getCurrent()

A means of obtaining the storage object for the current task.

returns the storage object for the current task.

@Override
@SCJMayAllocate({})
@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.String getLocalizedMessage()

@Override
@SCJMayAllocate({})

336 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.String getMessage()

Get the message from thread local storage that was saved by the last preallo-
cated exception thrown. This method should be called by a preallocated excep-
tion to implement its method of the same name.

returns the message

@Override
@SCJMayAllocate({})
@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.StackTraceElement[] getStackTrace()

Get the stack trace from thread local storage that was saved by the last pre-
allocated exception thrown. This method should be called by a preallocated
exception to implement its method of the same name.

returns an array of the elements of the stack trace.

@Override
@SCJMayAllocate({})
@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.Throwable initCause(Throwable causingThrowable)

Save the message in thread local storage for later retrieval. Only a reference to
the exception class is stored. The rest of its information is lost. This method
should be called by a preallocated exception to implement its method of the
same name.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

337

Safety-Critical Java Technology Specification

causingThrowable —

returns this

@Override
@SCJMayAllocate({})
@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.Throwable initMessage(String message)

Save the message in thread local storage for later retrieval. Only the part of the
message that fits in the preallocated buffer is stored. This method should be
called by a preallocated exception to implement its method of the same name.

message — the message to save.

@SCJMayAllocate({})
@SCJAllowed
@SCJMaySelfSuspend(false)
@Override
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void printStackTrace(PrintStream stream)

@Override
@SCJMayAllocate({})
@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void printStackTrace()

@Override
@SCJMayAllocate({})
@SCJAllowed
@SCJMaySelfSuspend(false)

338 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void setStackTrace(StackTraceElement [] new stackTrace)

11.4.4 Class java.lang.Exception

Declaration

@SCJAllowed
public class Exception implements java.io.Serializable extends

java.lang.Throwable

Description

The class Exception and its subclasses are a form of Throwable that indicates
conditions that a reasonable application might want to catch.

Constructors

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public Exception(String msg, Throwable cause)

Constructs an Exception object with an optional detail message and an optional
cause. If cause is null, Services.captureStackBacktrace(this) is called to save
the backtrace associated with the current thread. If cause is not null, Ser-
vices.captureStackBacktrace(this) is not called to avoid overwriting the back-
trace associated with the cause.

msg — the detail message for this Exception object.

cause — the cause of this exception .

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,

27 January 2017 Version 0.109
Confidentiality: Public Distribution

339

Safety-Critical Java Technology Specification

javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public Exception()

This constructor behaves the same as calling Exception(null, null).

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public Exception(String msg)

This constructor behaves the same as calling Exception(msg, null).

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public Exception(Throwable cause)

This constructor behaves the same as calling Exception(null, cause).

11.4.5 Class javax.realtime.StaticRuntimeException

Declaration

@SCJAllowed
public abstract class StaticRuntimeException implements

javax.realtime.StaticThrowable extends java.lang.RuntimeException

Methods

@SCJMayAllocate({})
@SCJAllowed
@SCJMaySelfSuspend(false)
@Override
@SCJPhase({

340 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.Throwable fillInStackTrace()

Calls the infrastructure to capture the current stack trace in the schedulable
object’s local memory.

returns a reference to this Throwable.

@SCJMayAllocate({})
@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static javax.realtime.StaticRuntimeException get()

Get the preallocated version of this Throwable. Allocation is done in memory
that acts like javax.realtime.ImmortalMemory . The message and cause are
cleared and the stack trace is filled out.

returns the preallocated exception

@SCJMayAllocate({})
@SCJAllowed
@SCJMaySelfSuspend(false)
@Override
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.Throwable getCause()

getCause returns the cause of this exception or null when no cause was set
by initCause. The cause is another exception that was caught just before this
exception was thrown.

returns The cause or null.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

341

Safety-Critical Java Technology Specification

@SCJMayAllocate({})
@SCJAllowed
@SCJMaySelfSuspend(false)
@Override
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.String getLocalizedMessage()

Subclasses may override this message to get an error message that is localized
to the default locale.

By default it returns getMessage().

returns the error message

@SCJMayAllocate({})
@SCJAllowed
@SCJMaySelfSuspend(false)
@Override
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.String getMessage()

get the message describing the problem from the schedulable object’s local
memory.

returns the message given to the constructor or null when no message was set.

@SCJMayAllocate({})
@SCJAllowed
@SCJMaySelfSuspend(false)
@Override
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.StackTraceElement[] getStackTrace()

Get the stack trace created by fillInStackTrace for this Throwable as an array
of StackTraceElements.

342 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

The stack trace does not need to contain entries for all methods that are actually
on the call stack, the infrastructure may decide to skip some stack trace entries.
Even an empty array is a valid result of this function.

Repeated calls of this function without intervening calls to fillInStackTrace will
return the same result.

When memory areas are used, and this Throwable was allocated in a different
memory area than the current allocation context, the resulting stack trace will
be allocated in either the same memory area this was allocated in or the current
memory area, depending on which is the least deeply nested, thereby creating
objects that are assignment compatible with both areas.

returns array representing the stack trace, it is never null.

@SCJMayAllocate({})
@SCJAllowed
@SCJMaySelfSuspend(false)
@Override
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.Throwable initCause(Throwable causingThrowable)

Initializes the cause to the given Throwable in the schedulable object’s local
memory.

causingThrowable — the reason why this Throwable gets Thrown.

returns the reference to this Throwable.

Throws IllegalArgumentException when the cause is this Throwable itself.

@SCJMayAllocate({})
@SCJAllowed
@SCJMaySelfSuspend(false)
@Override
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.Throwable initMessage(String message)

Set the message in the schedulable object’s local storage. This is the only
method that is not also defined in Throwable.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

343

Safety-Critical Java Technology Specification

message — is the text to set.

@SCJMayAllocate({})
@SCJAllowed
@SCJMaySelfSuspend(false)
@Override
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void printStackTrace(PrintStream stream)

Print stack trace of this Throwable to stream.

The printed stack trace contains the result of toString() as the first line followed
by one line for each stack trace element that contains the name of the method
or constructor, optionally followed by the source file name and source file line
number when available.

@SCJMayAllocate({})
@SCJAllowed
@SCJMaySelfSuspend(false)
@Override
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void printStackTrace()

Print stack trace of this Throwable to System.err.

The printed stack trace contains the result of toString() as the first line followed
by one line for each stack trace element that contains the name of the method
or constructor, optionally followed by the source file name and source file line
number when available.

@SCJMayAllocate({})
@SCJAllowed
@SCJMaySelfSuspend(false)
@Override
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,

344 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

javax.safetycritical.annotate.Phase.CLEANUP })
public void setStackTrace(StackTraceElement [] new stackTrace)

throws java.lang.NullPointerException

This method allows overriding the stack trace that was filled during construc-
tion of this object. It is intended to be used in a serialization context when the
stack trace of a remote exception should be treated like a local.

new stackTrace — the stack trace to replace be used.

Throws NullPointerException when new stackTrace or any element of new stackTrace
is null.

11.4.6 Class javax.realtime.StaticCheckedException

11.4.7 Class jaxax.realtime.ThrowBoundaryError

Declaration

@SCJAllowed
public class ThrowBoundaryError implements java.io.Serializable extends

javax.realtime.StaticError

Methods

@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static javax.realtime.ThrowBoundaryError get()

Get the preallocated instance of this exception.

returns the preallocated instance of this exception.

11.4.8 Class java.lang.Error

Declaration

@SCJAllowed
public class Error extends java.lang.Throwable

27 January 2017 Version 0.109
Confidentiality: Public Distribution

345

Safety-Critical Java Technology Specification

Description
An Error is a subclass of Throwable that indicates serious problems that a rea-
sonable application should not try to catch.

Constructors

@SCJAllowed
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public Error(String msg, Throwable cause)

Constructs an Error object with a specified detail message and with a speci-
fied cause. If cause is null, Services.captureStackBacktrace(this) is called to
save the backtrace associated with the current thread. If cause is not null, Ser-
vices.captureStackBacktrace(this) is not called to avoid overwriting the back-
trace associated with the cause.

Allocates an application- and implementation-defined amount of memory in
the current scope (to represent stack backtrace).

msg — the detail message for this Error object.

cause — the exception that caused this error.

@SCJAllowed
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public Error()

This constructor behaves the same as calling Error(String, Throwable) with the
arguments (null, null).

@SCJAllowed
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,

346 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public Error(String msg)

This constructor behaves the same as calling Error(String, Throwable) with the
arguments (msg, null).

@SCJAllowed
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public Error(Throwable cause)

This constructor behaves the same as calling Error(String, Throwable) with the
arguments (null, cause).

11.5 Rationale

SCJ allows individual managed schedulable objects to set aside different amounts
of memory for backtrace information. During debugging, it is expected that devel-
opers may want to set aside large amounts of memory in order to maximize access
to debugging information. However, during final deployment, many systems would
run with minimal amounts of memory in order to reduce memory requirements and
simplify the run-time behavior. Establishing the size of the stack backtrace buffer
at ManagedSchedulable construction time relieves the SCJ implementation from
having to dynamically allocate memory when dealing with throw boundary errors.

The support for stack traces is intended to enable the implementation to use a per-
schedulable object reserved memory area of a predetermined size to hold the stack
trace of the most recently caught exception.

One acceptable approach for an SCJ compliant implementations is the following:

• The constructor for java.lang.Throwable invokes StaticThrowable.FillInBack-
Trace() to save the current thread’s stack backtrace into the thread-local buffer
configured by this thread’s ConfigurationParameters.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

347

Safety-Critical Java Technology Specification

• StaticThrowable.FillInBackTrace() takes a single Throwable argument which is
the object with which to associate the backtrace. captureBackTrace() saves
a reference to its Throwable into a thread-local variable, using some run-time
infrastructure mechanism if necessary, to avoid throwing an IllegalAssignment-
Error. At a subsequent invocation of Throwable.getStackTrace(), the run-time
infrastructure code checks to make sure that the most recently captured stack
backtrace information is associated with the Throwable being queried. If not,
getStackTrace() returns a reference to a zero-length array which has been pre-
allocated within immortal memory.

• Assuming that the current contents of the captured stack backtrace information
is associated with the queried Throwable object, Throwable.getStackTrace()
allocates and initializes an array of StackTraceElement, along with the Stack-
TraceElement objects and the String objects referenced from the StackTrace-
Element objects, based on the current contents of the thread-local stack back-
trace buffer.

• In case application programs desire to throw preallocated exceptions, the ap-
plication program has the option to invoke StaticThrowable.FillInBackTrace()
to overwrite the stack backtrace information associated with the previously al-
located exception.

• The ThrowBoundaryError object that represents a thrown exception that crossed
its scope boundary need not copy any information from the thread-local stack
backtrace buffer at the time it replaces the thrown exception. When a thrown
exception crosses its scope boundary, the thread-local ThrowBoundaryError
object that is thrown in its place captures the class of the originally thrown
exception and saves this as part of the ThrowBoundaryError object in support
of the ThrowBoundaryError.getPropagatedMessage() method. Furthermore,
the association for the thread-local stack backtrace buffer is changed from the
Throwable that crossed its scope boundary to the ThrowBoundaryError.

• All of the exceptions thrown directly by the run-time infrastructure (such as
ArithmeticException, OutOfMemoryError, StackOverflowError) are preallocated
in immortal memory. Immediately before throwing a preallocated exception,
the run-time infrastructure invokes StaticThrowable.FillInBackTrace() to over-
write the stack backtrace associated within the current schedulable with the
preallocated exception.

SCJ defines its own ThrowBoundaryError class to stress that it works differently than
the one in the RTSJ and to provide some additional methods. The ThrowBoundary-
Error exception is pre-allocated on a per-schedulable object basis; this ensures that its
allocation upon detection of the boundary error cannot cause OutOfMemoryError to
be thrown, that the exception is preserved even if scheduling occurs while it is being
propagated, and that the exception cannot propagate out of its scope and thus cause
a new ThrowBoundaryError exception to be thrown.

348 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

11.6 Compatibility

11.6.1 RTSJ Compatibility Issues

The precise semantics of ThrowBoundaryError differs from RTSJ to SCJ. In RTSJ,
a new ThrowBoundaryError object is allocated in the enclosing memory area when-
ever the currently thrown exception crosses its scope boundary. In SCJ, the Throw-
BoundaryError exception behaves as if it is pre-allocated on a per-schedulable object
basis.

The SCJ allocation of ThrowBoundaryError in connection with a boundary error
prevents secondary boundary error even if the exception is propagated through more
scopes. Existing RTSJ code which is sensitive to the origin of ThrowBoundaryError
would require changes to be used in an SCJ environment.

The SCJ limitation on the message length and stack trace size will require existing
RTSJ code which algorithmically relies on the complete information to be changed
to be used in an SCJ environment.

11.6.2 General Java Compatibility Issues

The SCJ restriction that the stack trace is only available for the most recently caught
exception requires existing Java code which refers to older stack trace information to
be changed to be used in an SCJ environment.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

349

Safety-Critical Java Technology Specification

350 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Chapter 12

Class Libraries for Safety-Critical
Applications

For certifiable safety-critical systems, every library that the system uses must also be
certifiable. Given the costs of the certification process, it is important to keep the size
of every standard library as small as possible. Another consideration that argues for a
smaller set of core libraries is the desire to reduce the need by application developers
to subset the official standard for particular applications. In addition, many safety-
critical software systems are missing features commonly used in other domains, such
as file systems and networks. Therefore, the standard needs to accommodate both
systems that require these features and those that do not.

SCJ is structured as a hierarchy of upwards compatible levels. Level 1 and Level 2
are designed to address the needs of systems that have more complexity and possi-
bly more dynamic behavior than Level 0. Certain safety-critical library capabilities
which are available to Level 2 programmers are not available to Level 1 and Level 0
programmers. Likewise, certain Level 1 libraries will not be available at Level 0.

Beyond the core libraries defined for the Level 0, Level 1, and Level 2 of SCJ,
vendors may offer additional library support to complement the core capabilities.

See the javadoc appendices of this specification for descriptions of the required class
libraries for safety-critical applications. Note that the SCJ annotations described in
Chapter 9 are applied to all Java library classes and interfaces as well as all RTSJ
classes and interfaces, just as they are also applied to the classes and interfaces de-
fined in this specification.

The remainder of this chapter summarizes the minimally required capabilites of the
four standard Java packages that shall be provided in an SCJ implementation. These
descriptions refer to the libraries defined in JDK 1.8. Where differences in the capa-
bilites required for SCJ exist, a brief discussion of the rationale for those differences
is provided.

351

Safety-Critical Java Technology Specification

12.1 Minimal JDK 1.8 java.lang package Capabilities
Required in SCJ Implementations

The java.lang package for SCJ ia almost exactly the same as in JDK 1.8 ex-
cept for certain elements that are not required because of their complexity (with cor-
respondingly high cost during safety certification) and their minimal usefulness in
safety-critical applications. The following table describes the requirements for this
package in SCJ implementations:

Table 12.1: java.lang Classes and Interfaces in SCJ

Class/Interface Type Discussion
Appendable Interface Same as JDK 1.8
CharSequence Interface Same as JDK 1.8

Cloneable Interface

Not included in SCJ because it
has been determined that it does
not represent a reliable way to
make deep copies within nested
memory scopesSCJ

Comparable Interface Same as JDK 1.8

Iterable Interface Not included in SCJ to reduce size
and complexity

Readable Interface Not included in SCJ to reduce size
and complexity

Runnable Interface Same as JDK 1.8
Thread.Uncaught-
ExceptionHandler

Interface Same as JDK 1.8

Boolean Class Same as JDK 1.8
Byte Class Same as JDK 1.8

Character Class See section 12.1.1 for SCJ differ-
ences

Class Class See section 12.1.2 for SCJ differ-
ences

ClassLoader Interface Not included in SCJ to reduce size
and complexity

Compiler Interface Not included in SCJ to reduce size
and complexity

Double Class Same as JDK 1.8
Continued on next page

352 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Table 12.1 – Continued from previous page
Class/Interface Type Discussion

Enum Class

Same as JDK 1.8 except
that SCJ does not re-
quire the finalize()
or valueof(Class<T>
enumType, String name)
methods

Float Class Same as JDK 1.8

InheritableThreadLocal Class Not included in SCJ to reduce size
and complexity

Integer Class Same as JDK 1.8
Long Class Same as JDK 1.8
Math Class Same as JDK 1.8
Number Class Same as JDK 1.8

Object Class See section 12.1.3 for SCJ differ-
ences

Package Class
Not included in SCJ because re-
flection is severely limited to re-
duce size and complexity

Process Class

Not included in SCJ because the
services offered by this class will
normally not be available with
safety-certifiable operating envi-
ronments

ProcessBuilder Class

Not included in SCJ because the
services offered by this class will
normally not be available with
safety-certifiable operating envi-
ronments

Runtime Class

Not included in SCJ because the
services offered by this class will
normally not be available with
safety-certifiable operating envi-
ronments and/or are not relevant in
the absence of garbage collection
and finalization

Continued on next page

27 January 2017 Version 0.109
Confidentiality: Public Distribution

353

Safety-Critical Java Technology Specification

Table 12.1 – Continued from previous page
Class/Interface Type Discussion

RuntimePermission Class

Not included in SCJ because SCJ
does not support on-the-fly se-
curity management – it is ex-
pected that safety-critical appli-
cations will assure security using
static rather than dynamic tech-
niques

SecurityManager Class

Not included in SCJ because SCJ
does not support on-the-fly se-
curity management – it is ex-
pected that safety-critical appli-
cations will assure security using
static rather than dynamic tech-
niques

Short Class Same as JDK 1.8
StackTraceElement Class Same as JDK 1.8
StrictMath Class Same as JDK 1.8

String Class See section 12.1.4 for SCJ differ-
ences

StringBuffer Class

Not included in SCJ because
SCJ assumes the use of JDK
1.8 or later which generates uses
of StringBuilder instead of
StringBuffer

StringBuilder Class See section 12.1.5 for SCJ differ-
ences

System Class See section 12.1.6 for SCJ differ-
ences

Thread Class See section 12.1.7 for SCJ differ-
ences

ThreadGroup Class Not included in SCJ to reduce size
and complexity

ThreadLocal Class Not included in SCJ to reduce size
and complexity

Throwable Class See section 12.1.8 for SCJ differ-
ences

12.1.1 Modifications to java.lang.Character

The class Character required for SCJ is the same as in JDK 1.8 except that the
SCJ version does not require certain fields and methods that are omitted to reduce the

354 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

size and complexity of SCJ applications. It has been determined that safety-critical
code would be generally unlikely to require significant amounts of text processing.

In addition, the classes Character.Subset and Character.UnicodeBlock
is not required for SCJ implementations to reduce the size and complexity of the
java.lang package.

The following Character fields are not required:

$DIRECTIONALITY ARABIC NUMBER$,
$DIRECTIONALITY BOUNDARY NEUTRAL$,
$DIRECTIONALITY COMMON NUMBER SEPARATOR$,
$DIRECTIONALITY EUROPEAN NUMBER$,
$DIRECTIONALITY EUROPEAN NUMBER SEPARATOR$,
$DIRECTIONALITY LEFT TO RIGHT$,
$DIRECTIONALITY LEFT TO RIGHT EMBEDDING$,
$DIRECTIONALITY LEFT TO RIGHT OVERRIDE$,
$DIRECTIONALITY NONSPACING MARK$,
$DIRECTIONALITY OTHER NEUTRALS$,
$DIRECTIONALITY PARAGRAPH SEPARATOR$,
$DIRECTIONALITY POP DIRECTIONAL FORMAT$,
$DIRECTIONALITY RIGHT TO LEFT$,
$DIRECTIONALITY RIGHT TO LEFT ARABIC$,
$DIRECTIONALITY RIGHT TO LEFT EMBEDDING$,
$DIRECTIONALITY RIGHT TO LEFT OVERRIDE$,
$DIRECTIONALITY SEGMENT SEPARATOR$,
$DIRECTIONALITY UNDEFINED$,
$DIRECTIONALITY WHITESPACE$,
$MAX CODE POINT$,
$MAX HIGH SURROGATE$,
$MAX LOW SURROGATE$,
$MAX SURROGATE$,
$MIN CODE POINT$,
$MIN HIGH SURROGATE$,
$MIN LOW SURROGATE$,
$MIN SUPPLEMENTARY CODE POINT$,
$MIN SURROGATE$

In addition, the following Character methods are not required:

charCount(int codePoint),
codePointAt(char[], int),
codePointAt(char[], int, int),
codePointAt(CharSequence, int),
codePointBefore(char[], int),

27 January 2017 Version 0.109
Confidentiality: Public Distribution

355

Safety-Critical Java Technology Specification

codePointBefore(char[], int, int),
codePointBefore(CharSequence, int),
codePointCount(char, int, int),
codePointCount(CharSequence, int, int),
digit(int codePoint, int),
forDigit(int, int),
getDirectionality(char),
getDirectionality(int),
getNumericValue(char),
getNumericValue(int),
getType(int codePoint),
isDefined(char),
isDefined(int),
isDigit(char),
isDigit(int),
isHighSurrogate(char),
isIdentifierIgnorable(char),
isIdentifierIgnorable(int codePoint),
isISOControl(char),
isISOControl(int codePoint),
isJavaIdentifierPart(char),
isJavaIdentifierPart(int),
isJavaIdentiferStart(char),
isJavaIdentifierStart(int codePoint),
isJavaLetter(char),
isJavaLetterOrDigit(char),
isLetter(int codePoint),
isLetterOrDigit(int codePoint),
isLowerCase(int codePoint),
isLowSurrogate(char),
isMirrored(char),
isMirrored(int codePoint),
isSpace(char),
isSupplementaryCodePoint(int codePoint),
isSurrogatePair(char, char),
isTitleCase(char),
isTitleCase(int codePoint),
isUnicodeIdentifierPart(char),
isUnicodeIdentifierStart(char),
isUnicodeIdentifierStart(int codePoint),
isUpperCase(int codePoint),
isWhitespace(int codePoint),

356 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

offsetByCodePoints(char[], int, int, int, int),
offsetByCodePoints(CharSequence, int, int),
reverseBytes(char),
toChars(int codePoint),
toChars(int codePoint, char[] int),
toCodePoint(char, char),
toLowerCase(int),
toTitleCase(char),
toTitleCase(int codePoint),
toUpperCase(int codePoint)

12.1.2 Modifications to java.lang.Class

The class Class required for SCJ is the same as in JDK 1.8 except that the SCJ
version does not require certain interfaces and methods that are omitted to reduce
the size and complexity of SCJ applications. Also, it has been decided that SCJ
should severely restrict reflection to reduce SCJ complexity. Therefore the following
interfaces are not required:

AnnotatedElement,
GenericDeclaration, or
Type.

In addition, the SCJ specification does not require the following methods:

asSubClass(Class),
cast(Object),
forName(String),
forName(String, boolean, ClassLoader),
getAnnotation(Class), getAnnotations(),
getCanonicalName(),
getClasses(),
getClassLoader(),
getConstructor(Class ...),
getConstructors(),
getDeclaredAnnotations(),
getDeclaredClasses(),
getDeclaredConstructor(Class ...),
getDeclaredConstructors(),
getDeclaredField(String),
getDeclaredFields(),
getDeclaredMethod(String, Class ...),
getDeclaredMethods(),

27 January 2017 Version 0.109
Confidentiality: Public Distribution

357

Safety-Critical Java Technology Specification

getEnclosingClass(),
getEnclosingConstructor(),
getEnclosingMethod(),
getFields(),
getGenericInterfaces(),
getGenericSuperclass(),
getInterfaces(),
getMethod(String, Class, ...),
getMethods(),
getModifiers(),
getPackage(),
getProtectionDomain(),
getResource(String),
getResourceAsStream(String),
getSigners(),
getSimpleName(),
getTypeParameters(),
isAnnotationPresent(),
isAnonymousClass(),
isLocalClass(),
isMemberClass(),
isPrimitive(),
isSynthetic(),
newInstance().

Note that the Class class does not require implementation of the following meth-
ods:

getEnumConstants(),
getSuperclass(),
isAnnotation(),
isArray(),
isAssignableFrom(Class),
isEnum(),
isInstance(Object),
isInterface(),
newInstance(),
toString().

358 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

12.1.3 Modifications to java.lang.Object

The class Object required for SCJ is the same as in JDK 1.8 except that the SCJ
version does not require certain methods that are omitted to reduce the size and com-
plexity of SCJ applications.

In SCJ the finalize()method is not @SCJAllowed. This means safety-critical
applications shall not override this method.

The clone() method is not @SCJAllowed as its default shallow-copy behavior
is not compatible with SCJ scoped memory usage patterns.

The following Objectmethods are @SCJAllowed only for Level 2 applications to
enable a simpler run-time environment and easier analysis of real-time schedulability
in Level 0 and Level 1:

notify(),
notifyAll(),
wait(),
wait(long timeout),
and wait(long timeout, int nanos)

12.1.4 Modifications to java.lang.String

The class String required for SCJ is the same as that in JDK 1.8 except that the
SCJ version does not require certain constructors and methods that are omitted to
reduce the size and complexity of SCJ applications. It has been determined that
safety-critical programs will not do extensive text processing.

These constructors are not required:

String(byte[], Charset),
String(byte[], int), String(byte[], int, int, CharSet),
String(byte[], int, int, int),
String(byte[], int, int, String),
String(byte[], String), String(int[], int, int),
String(StringBuffer) constructors.

In addition, these methods are not required:

codePointAt(int),
codePointBefore(int),
codePointCount(int beginIndex, int endIndex),
contentEquals(StringBuffer sb), copyValueOf(char[]),

27 January 2017 Version 0.109
Confidentiality: Public Distribution

359

Safety-Critical Java Technology Specification

copyValueOf(char[], int, int),
format(Locale, String, Object... args),
format(String, Object... args),
getBytes(Charset),
getBytes(int, int, byte[], int),
getBytes(String),
intern(),
matches(String regex),
offsetByCodePoints(int, int),
replaceAll(String regex, String replacement),
replaceFirst(String regex, String replacement),
split(String regex), split(String regex, int limit),
toLowerCase(Locale),
toUpperCase(Locale)

The field $CASE INSENSITIVE ORDER$ is not required.

12.1.5 Modifications to java.lang.StringBuilder

The class StringBuilder required for SCJ is the same as that in JDK 1.8 ex-
cept that the SCJ version does not require certain methods that are omitted to re-
duce the size and complexity of SCJ applications and to enable safe sharing of a
StringBuilder’s backing character array with any Strings constructed from this
StringBuilder. It has been determined that safety-critical programs will not do
extensive text processing.

The following methods are not required:

append(StringBuffer),
appendCodePoint(int),
codePointAt(int),
codePointBefore(int),
codePointCount(int, int),
delete(int, int),
deleteCharAt(int),
insert(int, boolean),
insert(int, char),
insert(int, char[]),
insert(int, char[], int, int),
insert(int, CharSequence),
insert(int, CharSequence, int, int),
insert(int, double),

360 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

insert(int, float),
insert(int, int),
insert(int, long),
insert(int, obj),
offsetByCodePoints(int, int),
replace(int, int, String),
reverse(),
setCharAt(int, char),
trimToSize()

12.1.6 Modifications to java.lang.System

The class System required for SCJ is the same as that in JDK 1.8 except that the
SCJ version does not require certain methods that are omitted to reduce the size and
complexity of SCJ applications. Note that SCJ does not support garbage collection,
security management, or file I/O.

The following fields are not required:

err,
in,
or out

In addition, the following methods are not required:

clearProperty(),
console(),
gc(),
getenv(),
getenv(String name),
getProperties(),
getSecurityManager(),
inheritedChannel(),
load(String),
loadLibrary(String),
mapLibraryName(String),
runFinalization(),
runFinalizersOnExit(booleean),
setErr(PrintStream),
setIn(InputStream),
setOut(PrintStream),
setProperties(Properties),

27 January 2017 Version 0.109
Confidentiality: Public Distribution

361

Safety-Critical Java Technology Specification

setProperty(String, String),
setSecurityManager(SecurityManager)

12.1.7 Modifications to java.lang.Thread

The class Thread required for SCJ is the same as that in JDK 1.8 except that the
SCJ version does not require certain constructors, methods, and fields that are omit-
ted to reduce the size and complexity of SCJ applications. Note that SCJ does not al-
low instantiation of Threads because it allows only execution of NoHeapRealtimeThreads.

The class Thread.State internal is not required for SCJ implementations.
The Thread.UncaughtExceptionHandler interface required for SCJ is the
same as in JDK 1.8.

The following fields are not required:

$MAX PRIORITY$,
$MIN PRIORITY$,
$NORM PRIORITY$.

None of the constructors are @SCJAllowed.

The following methods are not required in SCJ implementations:

activeCount(),
checkAccess(),
countStackFrames(),
destroy(),
dumpStack(),
enumerate(Thread[]),
getAllStackTraces(),
getContextClassLoader(),
getId(),
getPriority(),
getStackTrace(),
getState(),
getThreadGroup(),
holdsLock(Object),
resume(),
setContextClassLoader(ClassLoader),
setDaemon(boolean),
setName(String),
setPriority(int),

362 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

stop(Throwable),
suspend()

12.1.8 Modifications to java.lang.Throwable

The class Throwable required for SCJ is the same as that in JDK 1.8 except that
the SCJ version does not require certain classes and methods that are omitted to
reduce the size and complexity of SCJ applications. The following table describes
the SCJ requirements:

Table 12.2: java.lang.Throwable Classes and Methods in
SCJ

Class/Method Type Discussion
ArithmeticException Class Same as JDK 1.8
ArrayIndexOutOf-
BoundsException

Class Same as JDK 1.8

ArrayStoreException Class Same as JDK 1.8
ClassCastException Class Same as JDK 1.8
ClassNotFoundException Class Same as JDK 1.8
CloneNot-
Supported-
Exception

Class Same as JDK 1.8

Exception Class Same as JDK 1.8
IllegalArgument-
Exception

Class Same as JDK 1.8
IllegalMonitor-
StateException

Class
Same as JDK 1.8 except it is al-
lowed only in Level 2

IllegalStateException Class Same as JDK 1.8
IndexOutOfBounds-
Exception

Class Same as JDK 1.8
Instantiation-
Exception

Class Same as JDK 1.8

InterruptedException Class Same as JDK 1.8
NegativeArray-
SizeException

Class Same as JDK 1.8

NullPointerException Class Same as JDK 1.8
NumberFormatException Class Same as JDK 1.8
RuntimeException Class Same as JDK 1.8

IllegalAccessException Class Not included in SCJ to reduce size
and complexity

EnumConstantNot-
PresentException

Class Not included in SCJ to reduce size
and complexity

Continued on next page

27 January 2017 Version 0.109
Confidentiality: Public Distribution

363

Safety-Critical Java Technology Specification

Table 12.2 – Continued from previous page
Class/Method Type Discussion

fillInStackTrace Method Not included in SCJ to reduce size
and complexity

getLocalizedMessage Method Not included in SCJ to reduce size
and complexity

initCause(Throwable) Method Not included in SCJ to reduce size
and complexity

printStackTrace() Method Not included in SCJ to reduce size
and complexity

printStackTrace(-
PrintStream)

Method Not included in SCJ to reduce size
and complexity

printStackTrace(-
PrintWriter)

Method Not included in SCJ to reduce size
and complexity

setStackTrace Method Not included in SCJ to reduce size
and complexity

toString Method

Not included in SCJ to re-
duce size and complexity – note
that Throwable inherits a sim-
ple toString() method from
Object

StringIndexOutOf-
BoundsException

Class Same as JDK 1.8
Unsupported-
Operation-
Exception

Class Same as JDK 1.8

AssertionError Class Same as JDK 1.8
Error Class Same as JDK 1.8
Incompatible-
ClassChangeError

Class Same as JDK 1.8

InternalError Class Same as JDK 1.8
OutOfMemoryError Class Same as JDK 1.8
StackOverflowError Class Same as JDK 1.8
UnsatisfiedLinkError Class Same as JDK 1.8
VirtualMachineError Class Same as JDK 1.8

NoSuchFieldException Class
Not included in SCJ because SCJ
does not support dynamic class
loading

NoSuchMethodException Class
Not included in SCJ because SCJ
does not support dynamic class
loading

Continued on next page

364 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Table 12.2 – Continued from previous page
Class/Method Type Discussion

SecurityException Class
Not included in SCJ because SCJ
does not support dynamic security
management

TypeNotPresent-
Exception

Class Not included in SCJ because SCJ
does not support reflection

AbstractMethodError Class
Not included in SCJ because it
can only arise during dynamic
class loading

ClassCircularityError Class
Not included in SCJ because it
can only arise during dynamic
class loading

ClassFormatError Class
Not included in SCJ because it
can only arise during dynamic
class loading

ExceptionIn-
InitializerError

Class Not included in SCJ to reduce size
and complexity

IllegalAccessError Class
Not included in SCJ because it
can only arise during dynamic
class loading

InstantiationError Class
Not included in SCJ because it
can only arise during dynamic
class loading

LinkageError Class
Not included in SCJ because it
can only arise during dynamic
class loading

NoClassDefFoundError Class
Not included in SCJ because it
can only arise during dynamic
class loading

NoSuchFieldError Class
Not included in SCJ because it
can only arise during dynamic
class loading

NoSuchMethodError Class
Not included in SCJ because it
can only arise during dynamic
class loading

ThreadDeath Class
Not included in SCJ because
SCJ does not support the
Thread.stop() method

UnknownError Class Not included in SCJ to reduce size
and complexity

Continued on next page

27 January 2017 Version 0.109
Confidentiality: Public Distribution

365

Safety-Critical Java Technology Specification

Table 12.2 – Continued from previous page
Class/Method Type Discussion

UnsupportedClass-
VersionError

Class
Not included in SCJ because it
can only arise during dynamic
class loading

VerifyError Class
Not included in SCJ because it
can only arise during dynamic
class loading

The class Deprecated: SCJ specification is the same as JDK 1.8.

The class Override: SCJ specification is the same as JDK 1.8.

The class SuppressWarnings: SCJ specification is the same as JDK 1.8.

12.2 Minimal JDK 1.8 java.lang.annotation Capabili-
ties Required in SCJ Implementations

The interface Annotation: SCJ specification is the same as JDK 1.8.

The enum ElementType: SCJ defines the same constants as JDK 1.8. (Ordi-
nal values associated with enumerated constants may not be the same, unless we
make an effort to assure they are identical.) SCJ does not define the values() or
valueOf() methods, as their main use deals with dynamic processing of annota-
tions, whereas the use of annotations within SCJ is intended to be static.

The enum RetentionPolicy: SCJ defines the same constants as JDK 1.8. (Or-
dinal values associated with enumerated constants may not be the same, unless we
make an effort to assure they are identical.) SCJ does not define the values() or
valueOf() methods, as their main use deals with dynamic processing of annota-
tions, whereas the use of annotations within SCJ is intended to be static.

The class AnnotationTypeMismatchException: is omitted from SCJ spec-
ification because this exception is only thrown during dynamic processing of anno-
tations, whereas the use of annotations within SCJ is intended to be static.

The class IncompleteAnnotationException: is omitted from SCJ specifi-
cation because this exception is only thrown during dynamic processing of annota-
tions, whereas the use of annotations within SCJ is intended to be static.

The class AnnotationFormatError: is omitted from SCJ specification be-
cause this exception is only thrown during dynamic class loading, whereas SCJ does
not support dynamic class loading.

The class Documented: SCJ specification is the same as JDK 1.8.

366 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

The class Inherited: SCJ specification is the same as JDK 1.8.

The class Retention: SCJ specification is the same as JDK 1.8.

The class Target: SCJ specification is the same as JDK 1.8.

12.3 Minimal JDK 1.8 java.io Capabilities Required
in SCJ Implementations

Within the java.io package, the only definitions provided by the SCJ specifi-
cation are the Serializable interface and those interfaces needed to support the SCJ
Input and Output classes defined in Chapter 6.1. The supported interfaces and classes
are the same as those defined in JDK 1.8. See Appendix B for details.

SCJ includes the Serializable interface for compatibility with standard edition Java.
However, SCJ does not include any services to perform serialization, because such
services would add undesirable size and complexity. For the same reason, SCJ omits
other java.io services such as file access and formatted output.

12.4 Minimal JDK 1.8 java.util Capabilities Required
in SCJ Implementations

Within the java.util package, the only definition provided by the SCJ speci-
fication is the Iterator interface. This interface is the same as JDK 1.8.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

367

Safety-Critical Java Technology Specification

368 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Appendix A

Javadoc Description of Package
java.io
Package Contents Page

Interfaces
Closeable .371

Unless specified to the contrary, see JDK for Java 8 documentation.
DataInput . 371

The DataInput interface provides for reading bytes from a binary
stream and reconstructing from them data in any of the Java primi-
tive types.

DataOutput . 379
The DataOutput interface provides for converting data from any of
the Java primitive types to a series of bytes and writing these bytes to
a binary stream.

Flushable . 384
Unless specified to the contrary, see JDK for Java 8 documentation.

Serializable .384
This interface is provided for compatibility with standard edition Java.

Classes
DataInputStream . 385

A data input stream lets an application read primitive Java data types
from an underlying input stream in a machine-independent way.

DataOutputStream . 395
A data output stream lets an application write primitive Java data
types to an output stream in a portable way.

EOFException .401

369

Safety-Critical Java Technology Specification

Signals that an end of file or end of stream has been reached unex-
pectedly during input.

FilterOutputStream . 402
Unless specified to the contrary, see JDK for Java 8 documentation.

IOException .404
Signals that an I/O exception of some sort has occurred.

InputStream . 405
Unless specified to the contrary, see JDK for Java 8 documentation.

OutputStream . 408
Unless specified to the contrary, see JDK for Java 8 documentation.

PrintStream . 410
A PrintStream adds functionality to an output stream, namely the abil-
ity to print representations of various data values conveniently.

UTFDataFormatException . 420
Signals that a malformed string in modified UTF-8 format has been
read in a data input stream or by any class that implements the data
input interface.

370 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

A.1 Classes

A.2 Interfaces

A.2.1 INTERFACE Closeable

@SCJAllowed
public interface Closeable

Unless specified to the contrary, see JDK for Java 8 documentation.

Methods

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void close()

Closes this stream and releases any system resources associated with it. If the
stream is already closed then invoking this method has no effect.

Throws IOException

A.2.2 INTERFACE DataInput

@SCJAllowed
public interface DataInput

The DataInput interface provides for reading bytes from a binary stream and
reconstructing from them data in any of the Java primitive types. There is also
a facility for reconstructing a String from data in modified UTF-8 format. It is
generally true of all the reading routines in this interface that if end of file is
reached before the desired number of bytes has been read, an EOFException
(which is a kind of IOException) is thrown. If any byte cannot be read for
any reason other than end of file, an IOException other than EOFException is
thrown. In particular, an IOException may be thrown if the input stream has
been closed.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

371

Safety-Critical Java Technology Specification

Methods

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public boolean readBoolean()

Reads one input byte and returns true if that byte is nonzero, false if that byte is
zero. This method is suitable for reading the byte written by the writeBoolean
method of interface DataOutput.

Throws IOException

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public byte readByte()

Reads and returns one input byte. The byte is treated as a signed value in the
range -128 through 127, inclusive. This method is suitable for reading the byte
written by the writeByte method of interface DataOutput.

Throws IOException

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

372 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public char readChar()

Reads an input char and returns the char value. A Unicode char is made up of
two bytes. Let a be the first byte read and b be the second byte. The value re-
turned is: (char)((a <<8) | (b & 0xff)) This method is suitable for reading
bytes written by the writeChar method of interface DataOutput.

Throws IOException

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public double readDouble()

Reads eight input bytes and returns a double value. It does this by first con-
structing a long value in exactly the manner of the readlong method, then con-
verting this long value to a double in exactly the manner of the method Dou-
ble.longBitsToDouble. This method is suitable for reading bytes written by the
writeDouble method of interface DataOutput.

Throws IOException

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public float readFloat()

27 January 2017 Version 0.109
Confidentiality: Public Distribution

373

Safety-Critical Java Technology Specification

Reads four input bytes and returns a float value. It does this by first constructing
an int value in exactly the manner of the readInt method, then converting this
int value to a float in exactly the manner of the method Float.intBitsToFloat.
This method is suitable for reading bytes written by the writeFloat method of
interface DataOutput.

Throws IOException

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void readFully(byte [] b, int off, int len)
throws java.io.IOException

Reads len bytes from an input stream. This method blocks until one of the
following conditions occurs: . len bytes of input data are available, in which
case a normal return is made. . End of file is detected, in which case an
EOFException is thrown. . An I/O error occurs, in which case an IOException
other than EOFException is thrown. If b is null, a NullPointerException is
thrown. If off is negative, or len is negative, or off+len is greater than the
length of the array b, then an IndexOutOfBoundsException is thrown. If len
is zero, then no bytes are read. Otherwise, the first byte read is stored into
element b[off], the next one into b[off+1], and so on. The number of bytes read
is, at most, equal to len.

Throws IOException

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

374 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

public void readFully(byte [] b)
throws java.io.IOException

Reads some bytes from an input stream and stores them into the buffer array
b. The number of bytes read is equal to the length of b. This method blocks
until one of the following conditions occurs: . b.length bytes of input data are
available, in which case a normal return is made. . End of file is detected, in
which case an EOFException is thrown. . An I/O error occurs, in which case
an IOException other than EOFException is thrown. If b is null, a NullPointer-
Exception is thrown. If b.length is zero, then no bytes are read. Otherwise, the
first byte read is stored into element b[0], the next one into b[1], and so on. If
an exception is thrown from this method, then it may be that some but not all
bytes of b have been updated with data from the input stream.

Throws IOException

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int readInt()

Reads four input bytes and returns an int value. Let a be the first byte read,
b be the second byte, c be the third byte, and d be the fourth byte. The value
returned is: (((a & 0xff) <<24) | ((b & 0xff) <<16) | &#32;((c
& 0xff) <<8) | (d & 0xff)) This method is suitable for reading bytes
written by the writeInt method of interface DataOutput.

Throws IOException

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,

27 January 2017 Version 0.109
Confidentiality: Public Distribution

375

Safety-Critical Java Technology Specification

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public long readLong()

Reads eight input bytes and returns a long value. Let a be the first byte read, b
be the second byte, c be the third byte, d be the fourth byte, e be the fifth byte,
f be the sixth byte, g be the seventh byte, and h be the eighth byte. The value
returned is: (((long)(a & 0xff) <<56) | ((long)(b & 0xff) <<48)
| ((long)(c & 0xff) <<40) | ((long)(d & 0xff) <<32) | ((long)(e
& 0xff) <<24) | ((long)(f & 0xff) <<16) | ((long)(g & 0xff)
<<8) | ((long)(h & 0xff))) This method is suitable for reading bytes writ-
ten by the writeLong method of interface DataOutput.

Throws IOException

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public short readShort()

Reads two input bytes and returns a short value. Let a be the first byte read and
b be the second byte. The value returned is: (short)((a <<8) | (b & 0xff))
This method is suitable for reading the bytes written by the writeShort method
of interface DataOutput.

Throws IOException

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.String readUTF()

376 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Reads in a string that has been encoded using a modified UTF-8 format. The
general contract of readUTF is that it reads a representation of a Unicode char-
acter string encoded in Java modified UTF-8 format; this string of characters
is then returned as a String. First, two bytes are read and used to construct
an unsigned 16-bit integer in exactly the manner of the readUnsignedShort
method . This integer value is called the UTF length and specifies the number
of additional bytes to be read. These bytes are then converted to characters by
considering them in groups. The length of each group is computed from the
value of the first byte of the group. The byte following a group, if any, is the
first byte of the next group. If the first byte of a group matches the bit pattern
0xxxxxxx (where x means ”may be 0 or 1”), then the group consists of just
that byte. The byte is zero-extended to form a character. If the first byte of a
group matches the bit pattern 110xxxxx, then the group consists of that byte a
and a second byte b. If there is no byte b (because byte a was the last of the
bytes to be read), or if byte b does not match the bit pattern 10xxxxxx, then a
UTFDataFormatException is thrown. Otherwise, the group is converted to the
character: (char)(((a& 0x1F) <<6) | (b & 0x3F)) If the first byte of a
group matches the bit pattern 1110xxxx, then the group consists of that byte a
and two more bytes b and c. If there is no byte c (because byte a was one of the
last two of the bytes to be read), or either byte b or byte c does not match the
bit pattern 10xxxxxx, then a UTFDataFormatException is thrown. Otherwise,
the group is converted to the character: (char)(((a & 0x0F) <<12) | ((b
& 0x3F) <<6) | (c & 0x3F)) If the first byte of a group matches the
pattern 1111xxxx or the pattern 10xxxxxx, then a UTFDataFormatException is
thrown. If end of file is encountered at any time during this entire process, then
an EOFException is thrown. After every group has been converted to a char-
acter by this process, the characters are gathered, in the same order in which
their corresponding groups were read from the input stream, to form a String,
which is returned. The writeUTF method of interface DataOutput may be used
to write data that is suitable for reading by this method.

Throws IOException

Throws UTFDataFormatException

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,

27 January 2017 Version 0.109
Confidentiality: Public Distribution

377

Safety-Critical Java Technology Specification

javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int readUnsignedByte()

Reads one input byte, zero-extends it to type int, and returns the result, which
is therefore in the range 0 through 255. This method is suitable for reading the
byte written by the writeByte method of interface DataOutput if the argument
to writeByte was intended to be a value in the range 0 through 255.

Throws IOException

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int readUnsignedShort()

Reads two input bytes, zero-extends it to type int, and returns an int value in
the range 0 through 65535. Let a be the first byte read and b be the second
byte. The value returned is: (((a & 0xff) <<8) | (b & 0xff)) This
method is suitable for reading the bytes written by the writeShort method of
interface DataOutput if the argument to writeShort was intended to be a value
in the range 0 through 65535.

Throws IOException

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int skipBytes(int n)
throws java.io.IOException

378 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Makes an attempt to skip over n bytes of data from the input stream, discarding
the skipped bytes. However, it may skip over some smaller number of bytes,
possibly zero. This may result from any of a number of conditions; reach-
ing end of file before n bytes have been skipped is only one possibility. This
method never throws an EOFException. The actual number of bytes skipped is
returned.

Throws IOException

A.2.3 INTERFACE DataOutput

@SCJAllowed
public interface DataOutput

The DataOutput interface provides for converting data from any of the Java
primitive types to a series of bytes and writing these bytes to a binary stream.
There is also a facility for converting a String into modified UTF-8 format and
writing the resulting series of bytes. For all the methods in this interface that
write bytes, it is generally true that if a byte cannot be written for any reason,
an IOException is thrown.

Methods

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void write(int b)
throws java.io.IOException

Writes the specified byte (the low eight bits of the argument b) to the underlying
output stream.

Throws IOException

@SCJAllowed
@SCJMayAllocate({

27 January 2017 Version 0.109
Confidentiality: Public Distribution

379

Safety-Critical Java Technology Specification

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void write(byte [] b, int off, int len)
throws java.io.IOException

Writes len bytes from the specified byte array starting at offset off to the un-
derlying output stream.

Throws IOException

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void writeBoolean(boolean v)
throws java.io.IOException

Writes a boolean to the underlying output stream as a 1-byte value.

Throws IOException

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void writeByte(int v)
throws java.io.IOException

380 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Writes out a byte to the underlying output stream as a 1-byte value.

Throws IOException

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void writeChar(int v)
throws java.io.IOException

Writes a char to the underlying output stream as a 2-byte value, high byte first.

Throws IOException

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void writeChars(String s)
throws java.io.IOException

Writes a string to the underlying output stream as a sequence of characters.

Throws IOException

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

27 January 2017 Version 0.109
Confidentiality: Public Distribution

381

Safety-Critical Java Technology Specification

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void writeDouble(double v)
throws java.io.IOException

Converts the double argument to a long using the doubleToLongBits method in
class Double, and then writes that long value to the underlying output stream
as an 8-byte quantity, high byte first.

Throws IOException

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void writeFloat(float v)
throws java.io.IOException

Converts the float argument to an int using the floatToIntBits method in class
Float, and then writes that int value to the underlying output stream as a 4-byte
quantity, high byte first.

Throws IOException

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void writeInt(int v)
throws java.io.IOException

Writes an int to the underlying output stream as four bytes, high byte first.

382 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Throws IOException

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void writeLong(long v)
throws java.io.IOException

Writes a long to the underlying output stream as eight bytes, high byte first.

Throws IOException

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void writeShort(int v)
throws java.io.IOException

Writes a short to the underlying output stream as two bytes, high byte first.

Throws IOException

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,

27 January 2017 Version 0.109
Confidentiality: Public Distribution

383

Safety-Critical Java Technology Specification

javax.safetycritical.annotate.Phase.CLEANUP })
public void writeUTF(String str)

throws java.io.IOException

Writes a string to the underlying output stream using UTF-8 encoding in a
machine-independent manner.

Throws IOException

A.2.4 INTERFACE Flushable

@SCJAllowed
public interface Flushable

Unless specified to the contrary, see JDK for Java 8 documentation.

Methods

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void flush()

Flushes this stream by writing any buffered output to the underlying stream.

Throws IOException

A.2.5 INTERFACE Serializable

@SCJAllowed
public interface Serializable

This interface is provided for compatibility with standard edition Java. How-
ever, JSR302 does not support serialization, so the presence or absence of this
interface has no visible effect within a JSR302 application.

384 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

A.3 Classes

A.3.1 CLASS DataInputStream

@SCJAllowed
public class DataInputStream implements java.io.DataInput extends

java.io.InputStream

A data input stream lets an application read primitive Java data types from
an underlying input stream in a machine-independent way. An application
uses a data output stream to write data that can later be read by a data in-
put stream. DataInputStream is not necessarily safe for multithreaded access.
Thread safety is optional and is the responsibility of users of methods in this
class.

Fields

@SCJAllowed
protected java.io.InputStream in

The input stream.

Constructors

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public DataInputStream(InputStream in)

Creates a DataInputStream and saves its argument, the input stream in, for later
use.

Methods

27 January 2017 Version 0.109
Confidentiality: Public Distribution

385

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int available()

Returns the number of bytes that can be read from this input stream without
blocking. This method simply performs in.available() and returns the result.

Throws IOException

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void close()

Closes this input stream and releases any system resources associated with the
stream. This method simply performs in.close().

Throws IOException

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void mark(int readlimit)

386 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Marks the current position in this input stream. A subsequent call to the reset
method repositions this stream at the last marked position so that subsequent
reads re-read the same bytes. The readlimit argument tells this input stream
to allow that many bytes to be read before the mark position gets invalidated.
This method simply performs in.mark(readlimit).

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public boolean markSupported()

Tests if this input stream supports the mark and reset methods. This method
simply performs in.markSupported().

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public final int read(byte [] b)
throws java.io.IOException

See the general contract of the read method of DataInput. Bytes for this opera-
tion are read from the contained input stream.

Throws IOException

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,

27 January 2017 Version 0.109
Confidentiality: Public Distribution

387

Safety-Critical Java Technology Specification

javax.safetycritical.annotate.AllocationContext.OUTER})
@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public final int read(byte [] b, int off, int len)
throws java.io.IOException

Reads up to len bytes of data from this input stream into an array of bytes. This
method blocks until some input is available. This method simply performs
in.read(b, off, len) and returns the result.

Throws IOException

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int read()

Reads the next byte of data from this input stream. The value byte is returned
as an int in the range 0 to 255. If no byte is available because the end of the
stream has been reached, the value -1 is returned. This method blocks until
input data is available, the end of the stream is detected, or an exception is
thrown. This method simply performs in.read() and returns the result.

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public final boolean readBoolean()

388 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

See the general contract of the readBoolean method of DataInput. Bytes for
this operation are read from the contained input stream.

Throws IOException

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public final byte readByte()

See the general contract of the readByte method of DataInput. Bytes for this
operation are read from the contained input stream.

Throws IOException

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public final char readChar()

See the general contract of the readChar method of DataInput. Bytes for this
operation are read from the contained input stream.

Throws IOException

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)

27 January 2017 Version 0.109
Confidentiality: Public Distribution

389

Safety-Critical Java Technology Specification

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public final double readDouble()

See the general contract of the readDouble method of DataInput. Bytes for this
operation are read from the contained input stream.

Throws IOException

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public final float readFloat()

See the general contract of the readFloat method of DataInput. Bytes for this
operation are read from the contained input stream.

Throws IOException

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public final void readFully(byte [] b, int off, int len)
throws java.io.IOException

See the general contract of the readFully method of DataInput. Bytes for this
operation are read from the contained input stream.

390 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Throws IOException

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public final void readFully(byte [] b)
throws java.io.IOException

See the general contract of the readFully method of DataInput. Bytes for this
operation are read from the contained input stream.

Throws IOException

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public final int readInt()

See the general contract of the readInt method of DataInput. Bytes for this
operation are read from the contained input stream.

Throws IOException

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,

27 January 2017 Version 0.109
Confidentiality: Public Distribution

391

Safety-Critical Java Technology Specification

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public final long readLong()

See the general contract of the readLong method of DataInput. Bytes for this
operation are read from the contained input stream.

Throws IOException

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public final short readShort()

See the general contract of the readShort method of DataInput. Bytes for this
operation are read from the contained input stream.

Throws IOException

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public final java.lang.String readUTF()

See the general contract of the readUTF method of DataInput. Bytes for this
operation are read from the contained input stream.

Throws IOException

392 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static final java.lang.String readUTF(DataInput in)
throws java.io.IOException

Reads from the stream in a representation of a Unicode character string en-
coded in Java modified UTF-8 format; this string of characters is then returned
as a String. The details of the modified UTF-8 representation are exactly the
same as for the readUTF method of DataInput

Throws IOException

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public final int readUnsignedByte()

See the general contract of the readUnsignedByte method of DataInput. Bytes
for this operation are read from the contained input stream.

Throws IOException

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,

27 January 2017 Version 0.109
Confidentiality: Public Distribution

393

Safety-Critical Java Technology Specification

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public final int readUnsignedShort()

See the general contract of the readUnsignedShort method of DataInput. Bytes
for this operation are read from the contained input stream.

Throws IOException

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void reset()

Repositions this stream to the position at the time the mark method was last
called on this input stream. This method simply performs in.reset(). Stream
marks are intended to be used in situations where you need to read ahead a
little to see what’s in the stream. Often this is most easily done by invoking
some general parser. If the stream is of the type handled by the parse, it just
chugs along happily. If the stream is not of that type, the parser should toss
an exception when it fails. If this happens within readlimit bytes, it allows the
outer code to reset the stream and try another parser.

Throws IOException

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public long skip(long n)
throws java.io.IOException

394 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Skips over and discards n bytes of data from the input stream. The skip method
may, for a variety of reasons, end up skipping over some smaller number of
bytes, possibly 0. The actual number of bytes skipped is returned. This method
simply performs in.skip(n).

Throws IOException

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public final int skipBytes(int n)
throws java.io.IOException

See the general contract of the skipBytes method of DataInput. Bytes for this
operation are read from the contained input stream.

Throws IOException

A.3.2 CLASS DataOutputStream

@SCJAllowed
public class DataOutputStream implements java.io.DataOutput extends

java.io.OutputStream

A data output stream lets an application write primitive Java data types to an
output stream in a portable way. An application can then use a data input stream
to read the data back in.

Fields

@SCJAllowed
protected java.io.OutputStream out

Constructors

27 January 2017 Version 0.109
Confidentiality: Public Distribution

395

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public DataOutputStream(OutputStream out)

Methods

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void close()

Closes this output stream and releases any system resources associated with
the stream.

Throws IOException

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void flush()

Flushes this data output stream.

396 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Throws IOException

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void write(int b)
throws java.io.IOException

Writes the specified byte (the low eight bits of the argument b) to the underlying
output stream.

Throws IOException

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void write(byte [] b, int off, int len)
throws java.io.IOException

Writes len bytes from the specified byte array starting at offset off to the un-
derlying output stream.

Throws IOException

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

27 January 2017 Version 0.109
Confidentiality: Public Distribution

397

Safety-Critical Java Technology Specification

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void writeBoolean(boolean v)
throws java.io.IOException

Writes a boolean to the underlying output stream as a 1-byte value.

Throws IOException

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void writeByte(int v)
throws java.io.IOException

Writes out a byte to the underlying output stream as a 1-byte value.

Throws IOException

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void writeChar(int v)
throws java.io.IOException

Writes a char to the underlying output stream as a 2-byte value, high byte first.

Throws IOException

398 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void writeChars(String s)
throws java.io.IOException

Writes a string to the underlying output stream as a sequence of characters.

Throws IOException

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void writeDouble(double v)
throws java.io.IOException

Converts the double argument to a long using the doubleToLongBits method in
class Double, and then writes that long value to the underlying output stream
as an 8-byte quantity, high byte first.

Throws IOException

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,

27 January 2017 Version 0.109
Confidentiality: Public Distribution

399

Safety-Critical Java Technology Specification

javax.safetycritical.annotate.Phase.CLEANUP })
public void writeFloat(float v)

throws java.io.IOException

Converts the float argument to an int using the floatToIntBits method in class
Float, and then writes that int value to the underlying output stream as a 4-byte
quantity, high byte first.

Throws IOException

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void writeInt(int v)
throws java.io.IOException

Writes an int to the underlying output stream as four bytes, high byte first.

Throws IOException

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void writeLong(long v)
throws java.io.IOException

Writes a long to the underlying output stream as eight bytes, high byte first.

Throws IOException

400 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void writeShort(int v)
throws java.io.IOException

Writes a short to the underlying output stream as two bytes, high byte first.

Throws IOException

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void writeUTF(String str)
throws java.io.IOException

Writes a string to the underlying output stream using UTF-8 encoding in a
machine-independent manner.

Throws IOException

A.3.3 CLASS EOFException

@SCJAllowed
public class EOFException implements java.io.Serializable extends

java.io.IOException

Signals that an end of file or end of stream has been reached unexpectedly
during input. This exception is mainly used by data input streams to signal end
of stream. Note that many other input operations return a special value on end
of stream rather than throwing an exception.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

401

Safety-Critical Java Technology Specification

Constructors

@SCJAllowed
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
public EOFException()

Shall not copy ”this” to any instance or static field.

Invokes System.captureStackBacktrace(this) to save the backtrace associated
with the current thread.

@SCJAllowed
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
public EOFException(String msg)

Shall not copy ”this” to any instance or static field. The scope containing the
msg argument must enclose the scope containing ”this”. Otherwise, an Illegal-
AssignmentError will be thrown.

Invokes System.captureStackBacktrace(this) to save the backtrace associated
with the current thread.

A.3.4 CLASS FilterOutputStream

@SCJAllowed
public class FilterOutputStream extends java.io.OutputStream

Unless specified to the contrary, see JDK for Java 8 documentation.

Constructors

@SCJAllowed
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,

402 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

javax.safetycritical.annotate.Phase.CLEANUP})
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
public FilterOutputStream(OutputStream out)

Methods

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void close()

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void flush()

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void write(byte [] b)
throws java.io.IOException

27 January 2017 Version 0.109
Confidentiality: Public Distribution

403

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void write(byte [] b, int off, int len)
throws java.io.IOException

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void write(int b)
throws java.io.IOException

A.3.5 CLASS IOException

@SCJAllowed
public class IOException implements java.io.Serializable extends

java.lang.Exception

Signals that an I/O exception of some sort has occurred. This class is the gen-
eral class of exceptions produced by failed or interrupted I/O operations.

Constructors

@SCJAllowed
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
public IOException()

404 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Shall not copy ”this” to any instance or static field.

Invokes System.captureStackBacktrace(this) to save the backtrace associated
with the current thread.

@SCJAllowed
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
public IOException(String msg)

Shall not copy ”this” to any instance or static field. The scope containing the
msg argument must enclose the scope containing ”this”. Otherwise, an Illegal-
AssignmentError will be thrown.

Invokes System.captureStackBacktrace(this) to save the backtrace associated
with the current thread.

A.3.6 CLASS InputStream

@SCJAllowed
public abstract class InputStream implements java.io.Closeable extends

java.lang.Object

Unless specified to the contrary, see JDK for Java 8 documentation.

Constructors

@SCJAllowed
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
public InputStream()

Methods

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,

27 January 2017 Version 0.109
Confidentiality: Public Distribution

405

Safety-Critical Java Technology Specification

javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int available()

Throws IOException

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void close()

Throws IOException

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void mark(int readlimit)

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,

406 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public boolean markSupported()

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int read(byte [] b)
throws java.io.IOException

Throws IOException

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int read(byte [] b, int off, int len)
throws java.io.IOException

Throws IOException

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public abstract int read()

27 January 2017 Version 0.109
Confidentiality: Public Distribution

407

Safety-Critical Java Technology Specification

Throws IOException

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void reset()

Throws IOException

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public long skip(long n)
throws java.io.IOException

Throws IOException

A.3.7 CLASS OutputStream

@SCJAllowed
public abstract class OutputStream implements java.io.Closeable,

java.io.Flushable extends java.lang.Object

Unless specified to the contrary, see JDK for Java 8 documentation.

Constructors

@SCJAllowed
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,

408 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

javax.safetycritical.annotate.Phase.CLEANUP})
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
public OutputStream()

Methods

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void close()

Throws IOException

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void flush()

Throws IOException

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void write(byte [] b)

27 January 2017 Version 0.109
Confidentiality: Public Distribution

409

Safety-Critical Java Technology Specification

throws java.io.IOException

Throws IOException

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void write(byte [] b, int off, int len)
throws java.io.IOException

Throws IOException

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public abstract void write(int b)
throws java.io.IOException

Throws IOException

A.3.8 CLASS PrintStream

@SCJAllowed
public class PrintStream extends java.io.OutputStream

A PrintStream adds functionality to an output stream, namely the ability to
print representations of various data values conveniently. A PrintStream never
throws an IOException; instead, exceptional situations merely set an internal
flag that can be tested via the checkError method. Optionally, a PrintStream
can be created to flush automatically; this means that the flush method is au-
tomatically invoked after a byte array is written, one of the println methods is

410 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

invoked, or a newline character or byte (’\n’) is written.

All characters printed by a PrintStream are converted into bytes using the plat-
form’s default character encoding.

Constructors

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public PrintStream(OutputStream out)

Create a new print stream. This stream will not flush automatically.

out — The output stream to which values and objects will be printed.

Methods

@SCJAllowed
@SCJMaySelfSuspend(true)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public boolean checkError()

Flush the stream and check its error state. The internal error state is set to
true when the underlying output stream throws an IOException, and when the
setError method is invoked.

returns true if and only if this stream has encountered an IOException, or the
setError method has been invoked.

@SCJAllowed
@SCJMaySelfSuspend(true)
@SCJMayAllocate({

27 January 2017 Version 0.109
Confidentiality: Public Distribution

411

Safety-Critical Java Technology Specification

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void close()

Close the stream. This is done by flushing the stream and then closing the
underlying output stream.

See Also: java.io.OutputStream.close()

@SCJAllowed
@SCJMaySelfSuspend(true)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void flush()

Flush the stream. This is done by writing any buffered output bytes to the
underlying output stream and then flushing that stream.

See Also: java.io.OutputStream.flush()

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void print(int i)

Print an integer. The string produced by java.lang.String.valueOf(i) is translated
into bytes according to the platform’s default character encoding, and these
bytes are written in exactly the manner of the write() method.

412 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

i — The int to be printed.

See Also: java.lang.Integer.toString(int)

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void print(char [] s)

Print an array of characters. The characters are converted into bytes according
to the platform’s default character encoding, and these bytes are written in
exactly the manner of the write() method.

s — The array of chars to be printed.

Throws NullPointerException If s is null

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void print(Object obj)

Print an object. The string produced by the java.lang.String.valueOf(obj) method
is translated into bytes according to the platform’s default character encoding,
and these bytes are written in exactly the manner of the write() method.

obj — The Object to be printed.

See Also: java.lang.Object.toString()

@SCJAllowed
@SCJMaySelfSuspend(false)

27 January 2017 Version 0.109
Confidentiality: Public Distribution

413

Safety-Critical Java Technology Specification

@SCJMayAllocate({
javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void print(String s)

Print a string. If the argument is null then the string ”null” is printed. Otherwise,
the string’s characters are converted into bytes according to the platform’s de-
fault character encoding, and these bytes are written in exactly the manner of
the write() method.

s — The String to be printed.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void print(long l)

Print a long integer. The string produced by java.lang.String.valueOf(l) is trans-
lated into bytes according to the platform’s default character encoding, and
these bytes are written in exactly the manner of the write() method.

l — The long to be printed.

See Also: java.lang.Long.toString(long)

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,

414 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void print(char c)

Print a character. The character is translated into one or more bytes according
to the platform’s default character encoding, and these bytes are written in
exactly the manner of the write() method.

c — The char to be printed.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void print(boolean b)

Print a boolean value. The string produced by java.lang.String.valueOf(b) is
translated into bytes according to the platform’s default character encoding,
and these bytes are written in exactly the manner of the write() method.

b — The boolean to be printed.

@SCJAllowed
@SCJMaySelfSuspend(true)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void println(boolean x)

Print a boolean and then terminate the line. This method behaves as though it
invokes print(x) and then println().

x — The boolean to be printed.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

415

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMaySelfSuspend(true)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void println(char x)

Print a character and then terminate the line. This method behaves as though it
invokes print(x) and then println().

x — The char to be printed.

@SCJAllowed
@SCJMaySelfSuspend(true)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void println(int x)

Print an integer and then terminate the line. This method behaves as though it
invokes print(x) and then println().

x — The int to be printed.

@SCJAllowed
@SCJMaySelfSuspend(true)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void println(char [] x)

416 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Print an array of characters and then terminate the line. This method behaves
as though it invokes print(x) and then println().

x — an array of chars to print.

@SCJAllowed
@SCJMaySelfSuspend(true)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void println(String x)

Print a String and then terminate the line. This method behaves as though it
invokes print(x) and then println().

x — The String to be printed.

@SCJAllowed
@SCJMaySelfSuspend(true)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void println(Object x)

Print an Object and then terminate the line. This method behaves as though it
invokes print(x) and then println().

x — The Object to be printed.

@SCJAllowed
@SCJMaySelfSuspend(true)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

27 January 2017 Version 0.109
Confidentiality: Public Distribution

417

Safety-Critical Java Technology Specification

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void println(long x)

Print a long and then terminate the line. This method behaves as though it
invokes print(x) and then println().

x — a The long to be printed.

@SCJAllowed
@SCJMaySelfSuspend(true)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void println()

Terminate the current line by writing the line separator string. The line separa-
tor string is defined by the system property line.separator, and is not necessarily
a single newline character (’\n’).

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

protected void setError()

Set the error state of the stream to true.

Since
JDK1.1

418 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMaySelfSuspend(true)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void write(byte [] buf, int off, int len)

Write len bytes from the specified byte array starting at offset off to this stream.
If automatic flushing is enabled then the flush method will be invoked.

Note that the bytes will be written as given; to write characters that will be
translated according to the platform’s default character encoding, use the print()
or println() methods.

buf — A byte array.

off — Offset from which to start taking bytes.

len — Number of bytes to write.

@SCJAllowed
@SCJMaySelfSuspend(true)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void write(int b)

Write the specified byte to this stream. If the byte is a newline and automatic
flushing is enabled then the flush method will be invoked.

Note that the byte is written as given; to write a character that will be trans-
lated according to the platform’s default character encoding, use the print() or
println() methods.

b — The byte to be written.

See Also: java.io.PrintStream.print(char), java.io.PrintStream.println(char)

27 January 2017 Version 0.109
Confidentiality: Public Distribution

419

Safety-Critical Java Technology Specification

A.3.9 CLASS UTFDataFormatException

@SCJAllowed
public class UTFDataFormatException implements java.io.Serializable extends

java.io.IOException

Signals that a malformed string in modified UTF-8 format has been read in a
data input stream or by any class that implements the data input interface. See
the DataInput class description for the format in which modified UTF-8 strings
are read and written.

Constructors

@SCJAllowed
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
public UTFDataFormatException()

Shall not copy ”this” to any instance or static field.

Invokes System.captureStackBacktrace(this) to save the backtrace associated
with the current thread.

@SCJAllowed
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
public UTFDataFormatException(String msg)

Shall not copy ”this” to any instance or static field. The scope containing the
msg argument must enclose the scope containing ”this”. Otherwise, an Illegal-
AssignmentError will be thrown.

Invokes System.captureStackBacktrace(this) to save the backtrace associated
with the current thread.

420 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Appendix B

Javadoc Description of Package
java.lang
Package Contents Page

Annotations
Deprecated . 426

A program element annotated @Deprecated is one that programmers
are discouraged from using, typically because it is dangerous, or be-
cause a better alternative exists.

Override . 426
Indicates that a method declaration is intended to override a method
declaration in a supertype.

SuppressWarnings . 426
Indicates that the named compiler warnings should be suppressed in
the annotated element (and in all program elements contained in the
annotated element).

Interfaces
Appendable . 427

An object to which char sequences and values can be appended.
CharSequence . 427

A CharSequence is a readable sequence of char values.
Cloneable . 429

A class implements the Cloneable interface to indicate to the Object.
Comparable . 429

This interface imposes a total ordering on the objects of each class
that implements it.

Runnable . 430

421

Safety-Critical Java Technology Specification

The Runnable interface should be implemented by any class whose
instances are intended to be executed by a thread.

Thread.UncaughtExceptionHandler . 431
Interface for handlers invoked when a Thread abruptly terminates due
to an uncaught exception.

UncaughtExceptionHandler . 431
When a thread is about to terminate due to an uncaught exception,
the SCJ implementation will query the thread for its UncaughtExcep-
tionHandler using Thread.

Classes
ArithmeticException . 432

Thrown when an exceptional arithmetic condition has occurred.
ArrayIndexOutOfBoundsException . 433

Thrown to indicate that an array has been accessed with an illegal
index.

ArrayStoreException . 434
Thrown to indicate that an attempt has been made to store the wrong
type of object into an array of objects.

AssertionError . 435
Thrown to indicate that an assertion has failed.

Boolean . 438
The Boolean class wraps a value of the primitive type boolean in an
object.

Byte . 442
The Byte class wraps a value of primitive type byte in an object.

Character . 448
The Character class wraps a value of the primitive type char in an
object.

Class . 456
Instances of the class Class represent classes and interfaces in a run-
ning Java application.

ClassCastException . 460
Thrown to indicate that the code has attempted to cast an object to a
subclass of which it is not an instance.

ClassNotFoundException . 461
Thrown when an application tries to load in a class through its string
name using the forName method in class Class, the findSystemClass
method in class ClassLoader, or the loadClass method in class Class-
Loader, but no definition for the class with the specified name could
be found.

422 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

CloneNotSupportedException . 462
Thrown to indicate that the clone method in class Object has been
called to clone an object, but that the object’s class does not imple-
ment the Cloneable interface.

Double . 463
The Double class wraps a value of the primitive type double in an
object.

Enum . 470
This is the common base class of all Java language enumeration types.

Error . 473
An Error is a subclass of Throwable that indicates serious problems
that a reasonable application should not try to catch.

Exception . 475
The class Exception and its subclasses are a form of Throwable
that indicates conditions that a reasonable application might want to
catch.

ExceptionInInitializerError . 476
Signals that an unexpected exception has occurred in a static initial-
izer.

Float . 478
The Float class wraps a value of primitive type float in an object.

IllegalArgumentException . 486
Thrown to indicate that a method has been passed an illegal or inap-
propriate argument.

IllegalMonitorStateException . 488
Thrown to indicate that a thread has attempted to wait on an object’s
monitor or to notify other threads waiting on an object’s monitor with-
out owning the specified monitor.

IllegalStateException . 489
Signals that a method has been invoked at an illegal or inappropriate
time.

IncompatibleClassChangeError . 490
Thrown when an incompatible class change has occurred to some
class definition.

IndexOutOfBoundsException . 491
Thrown to indicate that an index of some sort (such as to an array, to
a string, or to a vector) is out of range.

InstantiationException . 492
Thrown when an application tries to create an instance of a class
using the newInstance method in class Class, but the specified class
object cannot be instantiated.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

423

Safety-Critical Java Technology Specification

Integer . 493
The Integer class wraps a value of the primitive type int in an object.

InternalError . 504
Thrown to indicate some unexpected internal error has occurred in
the Java Virtual Machine.

InterruptedException . 505
Thrown when a thread is waiting, sleeping, or otherwise occupied,
and the thread is interrupted, either before or during the activity.

Long . 506
The Long class wraps a value of the primitive type long in an object.

Math . 517
The class Math contains methods for performing basic numeric op-
erations such as the elementary exponential, logarithm, square root,
and trigonometric functions.

NegativeArraySizeException . 531
Thrown if an application tries to create an array with negative size.

NullPointerException . 532
Thrown when an application attempts to use null in a case where an
object is required.

Number . 533
The abstract class Number is the superclass of classes BigDecimal,
BigInteger, Byte, Double, Float, Integer, Long, and Short.

NumberFormatException . 535
Thrown to indicate that the application has attempted to convert a
string to one of the numeric types, but that the string does not have
the appropriate format.

Object . 536
Class Object is the root of the class hierarchy.

OutOfMemoryError . 539
Thrown when the Java Virtual Machine cannot allocate an object be-
cause it is out of memory.

RuntimeException . 540
RuntimeException is the superclass of those exceptions that can be
thrown during the normal operation of the Java Virtual Machine.

Short . 542
The Short class wraps a value of primitive type short in an object.

StackOverflowError . 549
Thrown when a stack overflow occurs because an application recurses
too deeply.

StackTraceElement . 550
An element in a stack trace, as returned by Throwable.

424 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

StrictMath . 553
The class StrictMath contains methods for performing basic numeric
operations such as the elementary exponential, logarithm, square
root, and trigonometric functions.

String . 567
The String class represents character strings.

StringBuilder .582
A mutable sequence of characters.

StringIndexOutOfBoundsException . 591
Thrown by String methods to indicate that an index is either negative
or greater than the size of the string.

System . 593
The System class contains several useful class fields and methods.

Thread . 595
The Thread class is not directly available to the application in SCJ.

Throwable . 599
The Throwable class is the superclass of all errors and exceptions in
the Java language.

UnsatisfiedLinkError . 602
Thrown if the Java Virtual Machine cannot find an appropriate native-
language definition of a method declared native.

UnsupportedOperationException . 603
Thrown to indicate that the requested operation is not supported.

VirtualMachineError . 605
Thrown to indicate that the Java Virtual Machine is broken or has run
out of resources necessary for it to continue operating.

Void . 606
The Void class is an uninstantiable placeholder class to hold a refer-
ence to the Class object representing the Java keyword void.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

425

Safety-Critical Java Technology Specification

B.1 Classes

B.1.1 CLASS Deprecated

@SCJAllowed @Documented @Retention(java.lang.annotation.RetentionPolicy.RUNTIME)
public @interface Deprecated

A program element annotated @Deprecated is one that programmers are dis-
couraged from using, typically because it is dangerous, or because a better
alternative exists. Compilers warn when a deprecated program element is used
or overridden in non-deprecated code.

B.1.2 CLASS Override

@Documented
@Retention(java.lang.annotation.RetentionPolicy.SOURCE)
@SCJAllowed
@Target({java.lang.annotation.ElementType.METHOD})
public @interface Override

Indicates that a method declaration is intended to override a method declaration
in a supertype. If a method is annotated with this annotation type compilers
are required to generate an error message unless the method does override or
implement a method declared in a supertype, or the method has a signature that
is override-equivalent to that of any public method declared in Object.

B.1.3 CLASS SuppressWarnings

@Retention(java.lang.annotation.RetentionPolicy.SOURCE)
@SCJAllowed
@Target({

java.lang.annotation.ElementType.TYPE, java.lang.annotation.ElementType.FIELD,
java.lang.annotation.ElementType.METHOD,
java.lang.annotation.ElementType.PARAMETER,
java.lang.annotation.ElementType.CONSTRUCTOR,
java.lang.annotation.ElementType.LOCAL VARIABLE})

public @interface SuppressWarnings

Indicates that the named compiler warnings should be suppressed in the anno-
tated element (and in all program elements contained in the annotated element).
Note that the set of warnings suppressed in a given element is a superset of the
warnings suppressed in all containing elements. For example, if you annotate a
class to suppress one warning and annotate a method to suppress another, both
warnings will be suppressed in the method.

426 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

B.2 Interfaces

B.2.1 INTERFACE Appendable

@SCJAllowed
public interface Appendable

An object to which char sequences and values can be appended.

Methods

@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.THIS})
@SCJAllowed
@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.Appendable append(CharSequence csq)

@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.THIS})
@SCJAllowed
@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.Appendable append(CharSequence csq, int start, int end)

@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.THIS})
@SCJAllowed
@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.Appendable append(char c)

B.2.2 INTERFACE CharSequence

@SCJAllowed
public interface CharSequence

27 January 2017 Version 0.109
Confidentiality: Public Distribution

427

Safety-Critical Java Technology Specification

A CharSequence is a readable sequence of char values. This interface provides
uniform, read-only access to many different kinds of char sequences.

Methods

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public char charAt(int index)

Implementations of this method must not allocate memory and must not allow
”this” to escape the local variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int length()

Implementations of this method must not allocate memory and must not allow
”this” to escape the local variables.

@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.CharSequence subSequence(int start, int end)

428 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Implementations of this method may allocate a CharSequence object in the
scope of the caller to hold the result of this method.

This method shall not allow ”this” to escape the local variables.

@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.String toString()

Implementations of this method may allocate a String object in the scope of the
caller to hold the result of this method.

This method shall not allow ”this” to escape the local variables.

B.2.3 INTERFACE Cloneable

@SCJAllowed
public interface Cloneable

A class implements the Cloneable interface to indicate to the Object.clone()
method that it is legal for that method to make a field-for-field copy of instances
of that class.

B.2.4 INTERFACE Comparable

@SCJAllowed
public interface Comparable<T>

This interface imposes a total ordering on the objects of each class that imple-
ments it. This ordering is referred to as the class’s natural ordering, and the
class’s compareTo method is referred to as its natural comparison method.

Methods

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

27 January 2017 Version 0.109
Confidentiality: Public Distribution

429

Safety-Critical Java Technology Specification

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int compareTo(T o)
throws java.lang.ClassCastException

The implementation of this method shall not allocate memory and shall not
allow ”this” or ”o” argument to escape local variables.

o — The object to be compared.

returns a negative integer, zero, or a positive integer as this object is less than,
equal to, or greater than the specified object.

Throws NullPointerException - if the specified object is null

Throws ClassCastException - if the specified object’s type prevents it from being
compared to this object.

B.2.5 INTERFACE Runnable

@SCJAllowed
public interface Runnable

The Runnable interface should be implemented by any class whose instances
are intended to be executed by a thread. The class must define a method of no
arguments called run.

Methods

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void run()

The implementation of this method may, in general, perform allocations in
immortal memory.

430 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

B.2.6 INTERFACE Thread.UncaughtExceptionHandler

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)
public static interface Thread.UncaughtExceptionHandler

Interface for handlers invoked when a Thread abruptly terminates due to an
uncaught exception.

Methods

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

public void uncaughtException(Thread t, Throwable e)

Establishes the interface for a handler for uncaught exceptions. Allocates no
memory. Does not allow implicit argument this, or explicit arguments t and e
to escape local variables.

B.2.7 INTERFACE UncaughtExceptionHandler

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)
public interface UncaughtExceptionHandler

When a thread is about to terminate due to an uncaught exception, the SCJ
implementation will query the thread for its UncaughtExceptionHandler us-
ing Thread.getUncaughtExceptionHandler() and will invoke the handler’s un-
caughtException method, passing the thread and the exception as arguments.
If a thread has no special requirements for dealing with the exception, it can
forward the invocation to the default uncaught exception handler.

Methods

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({

27 January 2017 Version 0.109
Confidentiality: Public Distribution

431

Safety-Critical Java Technology Specification

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void uncaughtException(Thread t, Throwable e)

Method invoked when the given thread terminates due to the given uncaught
exception.

Any exception thrown by this method will be ignored by the SCJ implemen-
tation.

t — the thread.

e — the exception.

B.3 Classes

B.3.1 CLASS ArithmeticException

@SCJAllowed
public class ArithmeticException implements java.io.Serializable extends

java.lang.RuntimeException

Thrown when an exceptional arithmetic condition has occurred. For example,
an integer ”divide by zero” throws an instance of this class.

Constructors

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public ArithmeticException()

Shall not copy ”this” to any instance or static field.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

432 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public ArithmeticException(String msg)

Shall not copy ”this” to any instance or static field. The scope containing the
msg argument must enclose the scope containing ”this”. Otherwise, an Illegal-
AssignmentError will be thrown.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

B.3.2 CLASS ArrayIndexOutOfBoundsException

@SCJAllowed
public class ArrayIndexOutOfBoundsException implements java.io.Serializable

extends java.lang.IndexOutOfBoundsException

Thrown to indicate that an array has been accessed with an illegal index. The
index is either negative or greater than or equal to the size of the array.

Constructors

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public ArrayIndexOutOfBoundsException()

Shall not copy ”this” to any instance or static field.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

27 January 2017 Version 0.109
Confidentiality: Public Distribution

433

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public ArrayIndexOutOfBoundsException(int index)

Shall not copy ”this” to any instance or static field.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public ArrayIndexOutOfBoundsException(String msg)

Shall not copy ”this” to any instance or static field. The scope containing the
msg argument must enclose the scope containing ”this”. Otherwise, an Illegal-
AssignmentError will be thrown.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

B.3.3 CLASS ArrayStoreException

@SCJAllowed
public class ArrayStoreException implements java.io.Serializable extends

java.lang.RuntimeException

Thrown to indicate that an attempt has been made to store the wrong type of
object into an array of objects.

Constructors

434 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public ArrayStoreException()

Shall not copy ”this” to any instance or static field.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public ArrayStoreException(String msg)

Shall not copy ”this” to any instance or static field. The scope containing the
msg argument must enclose the scope containing ”this”. Otherwise, an Illegal-
AssignmentError will be thrown.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

B.3.4 CLASS AssertionError

@SCJAllowed
public class AssertionError implements java.io.Serializable extends

java.lang.Error

Thrown to indicate that an assertion has failed.

Constructors

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})

27 January 2017 Version 0.109
Confidentiality: Public Distribution

435

Safety-Critical Java Technology Specification

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public AssertionError()

Shall not copy ”this” to any instance or static field.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public AssertionError(boolean b)

Shall not copy ”this” to any instance or static field.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public AssertionError(char c)

Shall not copy ”this” to any instance or static field.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

436 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public AssertionError(double d)

Shall not copy ”this” to any instance or static field.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public AssertionError(float f)

Shall not copy ”this” to any instance or static field.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public AssertionError(int i)

Shall not copy ”this” to any instance or static field.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,

27 January 2017 Version 0.109
Confidentiality: Public Distribution

437

Safety-Critical Java Technology Specification

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public AssertionError(long l)

Shall not copy ”this” to any instance or static field.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public AssertionError(Object o)

Shall not copy ”this” to any instance or static field.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

B.3.5 CLASS Boolean

@SCJAllowed
public class Boolean implements java.lang.Comparable<T>, java.io.Serializable

extends java.lang.Object

The Boolean class wraps a value of the primitive type boolean in an object. An
object of type Boolean contains a single field whose type is boolean.

Fields

@SCJAllowed
public static final java.lang.Boolean FALSE

@SCJAllowed
public static final java.lang.Boolean TRUE

@SCJAllowed
public static final java.lang.Class<java.lang.Boolean> TYPE

438 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Constructors

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public Boolean(boolean v)

Allocates no memory. Does not allow ”this” to escape local variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public Boolean(String str)

Allocates no memory. Does not allow ”this” or ”str” argument to escape local
variables.

Methods

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public boolean booleanValue()

Allocates no memory. Does not allow ”this” to escape local variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

27 January 2017 Version 0.109
Confidentiality: Public Distribution

439

Safety-Critical Java Technology Specification

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int compareTo(Boolean b)

Allocates no memory. Does not allow ”this” or argument ”b” to escape local
variables.

@Override
@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public boolean equals(Object obj)

Allocates no memory. Does not allow ”this” or argument ”obj” to escape local
variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static boolean getBoolean(String str)

Allocates no memory. Does not allow argument ”str” to escape local variables.

@Override
@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int hashCode()

440 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Allocates no memory. Does not allow ”this” to escape local variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static boolean parseBoolean(String str)

Allocates no memory. Does not allow argument ”str” to escape local variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static java.lang.String toString(boolean value)

Allocates no memory. Returns a String literal which resides in the scope of the
Classloader that is responsible for loading the Boolean class.

@Override
@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.String toString()

Does not allow ”this” to escape local variables. Allocates a String and associ-
ated internal ”structure” (e.g. char[]) in caller’s scope. (Note: this semantics is
desired for consistency with overridden implementation of Object.toString()).

27 January 2017 Version 0.109
Confidentiality: Public Distribution

441

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static java.lang.Boolean valueOf(boolean b)

Allocates no memory. Returns a Boolean literal which resides at the scope of
the Classloader that is responsible for loading the Boolean class.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static java.lang.Boolean valueOf(String str)

Allocates no memory. Does not allow argument ”str” to escale local variables.
Returns a Boolean literal which resides at the scope of the Classloader that is
responsible for loading the Boolean class.

B.3.6 CLASS Byte

@SCJAllowed
public class Byte implements java.lang.Comparable<T>, java.io.Serializable

extends java.lang.Number

The Byte class wraps a value of primitive type byte in an object. An object of
type Byte contains a single field whose type is byte.

Fields

@SCJAllowed
public static final byte MAX VALUE

@SCJAllowed
public static final byte MIN VALUE

442 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJAllowed
public static final int SIZE

@SCJAllowed
public static final java.lang.Class<java.lang.Byte> TYPE

Constructors

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public Byte(byte val)

Allocates no memory. Does not allow ”this” to escape local variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public Byte(String str)
throws java.lang.NumberFormatException

Allocates no memory. Does not allow ”this” or ”str” argument to escape local
variables.

Methods

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public byte byteValue()

27 January 2017 Version 0.109
Confidentiality: Public Distribution

443

Safety-Critical Java Technology Specification

Allocates no memory. Does not allow ”this” to escape local variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int compareTo(Byte other)

Allocates no memory. Does not allow ”this” or ”other” argument to escape
local variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static java.lang.Byte decode(String str)
throws java.lang.NumberFormatException

Does not allow ”str” argument to escape local variables. Allocates a Byte result
object in the caller’s scope.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public double doubleValue()

Allocates no memory. Does not allow ”this” to escape local variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})

444 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public boolean equals(Object obj)

Allocates no memory. Does not allow ”this” or ”obj” argument to escape local
variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public float floatValue()

Allocates no memory. Does not allow ”this” to escape local variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int hashCode()

Allocates no memory. Does not allow ”this” to escape local variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int intValue()

Allocates no memory. Does not allow ”this” to escape local variables.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

445

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public long longValue()

Allocates no memory. Does not allow ”this” to escape local variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static byte parseByte(String str, int base)
throws java.lang.NumberFormatException

Allocates no memory. Does not allow ”str” argument to escape local variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static byte parseByte(String str)
throws java.lang.NumberFormatException

Allocates no memory. Does not allow ”str” argument to escape local variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public short shortValue()

446 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Allocates no memory. Does not allow ”this” to escape local variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static java.lang.String toString(byte v)

Allocates a String and associated internal ”structure” (e.g. char[]) in caller’s
scope.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.String toString()

Does not allow ”this” to escape local variables. Allocates a String and associ-
ated internal ”structure” (e.g. char[]) in caller’s scope. (Note: this semantics is
desired for consistency with overridden implementation of Object.toString()).

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static java.lang.Byte valueOf(String str, int base)
throws java.lang.NumberFormatException

Does not allow ”str” argument to escape local variables. Allocates one Byte
object in the caller’s scope.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

447

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static java.lang.Byte valueOf(byte val)

Allocates one Byte object in the caller’s scope.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static java.lang.Byte valueOf(String str)
throws java.lang.NumberFormatException

Does not allow ”str” argument to escape local variables. Allocates one Byte
object in the caller’s scope.

B.3.7 CLASS Character

@SCJAllowed
public final class Character implements java.lang.Comparable<T>,

java.io.Serializable extends java.lang.Object

The Character class wraps a value of the primitive type char in an object. An
object of type Character contains a single field whose type is char.

Fields

@SCJAllowed
public static final byte COMBINING SPACING MARK

@SCJAllowed
public static final byte CONNECTOR PUNCTUATION

448 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJAllowed
public static final byte CONTROL

@SCJAllowed
public static final byte CURRENCY SYMBOL

@SCJAllowed
public static final byte DASH PUNCTUATION

@SCJAllowed
public static final byte DECIMAL DIGIT NUMBER

@SCJAllowed
public static final byte ENCLOSING MARK

@SCJAllowed
public static final byte END PUNCTUATION

@SCJAllowed
public static final byte FINAL QUOTE PUNCTUATION

@SCJAllowed
public static final byte FORMAT

@SCJAllowed
public static final byte INITIAL QUOTE PUNCTUATION

@SCJAllowed
public static final byte LETTER NUMBER

@SCJAllowed
public static final byte LINE SEPARATOR

@SCJAllowed
public static final byte LOWERCASE LETTER

@SCJAllowed
public static final byte MATH SYMBOL

@SCJAllowed
public static final int MAX RADIX

27 January 2017 Version 0.109
Confidentiality: Public Distribution

449

Safety-Critical Java Technology Specification

@SCJAllowed
public static final char MAX VALUE

@SCJAllowed
public static final int MIN RADIX

@SCJAllowed
public static final char MIN VALUE

@SCJAllowed
public static final byte MODIFIER LETTER

@SCJAllowed
public static final byte MODIFIER SYMBOL

@SCJAllowed
public static final byte NON SPACING MARK

@SCJAllowed
public static final byte OTHER LETTER

@SCJAllowed
public static final byte OTHER NUMBER

@SCJAllowed
public static final byte OTHER PUNCTUATION

@SCJAllowed
public static final byte OTHER SYMBOL

@SCJAllowed
public static final byte PARAGRAPH SEPARATOR

@SCJAllowed
public static final byte PRIVATE USE

@SCJAllowed
public static final int SIZE

@SCJAllowed
public static final byte SPACE SEPARATOR

450 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJAllowed
public static final byte START PUNCTUATION

@SCJAllowed
public static final byte SURROGATE

@SCJAllowed
public static final byte TITLECASE LETTER

@SCJAllowed
public static final java.lang.Class<java.lang.Character> TYPE

@SCJAllowed
public static final byte UNASSIGNED

@SCJAllowed
public static final byte UPPERCASE LETTER

Constructors

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public Character(char v)

Allocates no memory. Does not allow ”this” to escape local variables.

Methods

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public char charValue()

Allocates no memory. Does not allow ”this” to escape local variables.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

451

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int compareTo(Character another character)

Allocates no memory. Does not allow ”this” or ”another character” argument
to escape local variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static int digit(char ch, int radix)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public boolean equals(Object obj)

Allocates no memory. Does not allow ”this” or ”obj” argument to escape local
variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static int getType(char ch)

452 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int hashCode()

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static boolean isLetter(char ch)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static boolean isLetterOrDigit(char ch)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static boolean isLowerCase(char ch)

27 January 2017 Version 0.109
Confidentiality: Public Distribution

453

Safety-Critical Java Technology Specification

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static boolean isSpaceChar(char ch)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static boolean isUpperCase(char ch)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static boolean isWhitespace(char ch)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static char toLowerCase(char ch)

454 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static java.lang.String toString(char c)

Allocates a String and associated internal ”structure” (e.g. char[]) in caller’s
scope.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.String toString()

Does not allow ”this” to escape local variables. Allocates a String and associ-
ated internal ”structure” (e.g. char[]) in caller’s scope. (Note: this semantics is
desired for consistency with overridden implementation of Object.toString()).

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static char toUpperCase(char ch)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})

27 January 2017 Version 0.109
Confidentiality: Public Distribution

455

Safety-Critical Java Technology Specification

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static java.lang.Character valueOf(char c)

Allocates a Character object in caller’s scope.

B.3.8 CLASS Class

@SCJAllowed
public final class Class<T> implements java.io.Serializable extends

java.lang.Object

Instances of the class Class represent classes and interfaces in a running Java
application.

Methods

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public boolean desiredAssertionStatus()

Allocates no memory. Does not allow ”this” to escape local variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.Class<?> getComponentType()

Allocates no memory. Does not allow ”this” to escape local variables.

Returns a reference to a previously allocated Class object, which resides in the
scope of its ClassLoader.

456 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.Class<?> getDeclaringClass()

Allocates no memory. Returns a reference to a previously existing Class, which
resides in the scope of its ClassLoader.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public <T[]> T[] getEnumConstants()

Does not alow ”this” to escape local variables.

Allocates an array of T in the caller’s scope. The allocated array holds ref-
erences to previously allocated T objects. Thus, the existing T objects must
reside in a scope that encloses the caller’s scope. Note that the existing T ob-
jects reside in the scope of the corresponding ClassLoader.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.String getName()

Allocates no memory. Does not allow ”this” to escape local variables.

Returns a reference to a previously allocated String object, which resides in the
scope of this Class’s ClassLoader or in some enclosing scope.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

457

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.Class<? super T> getSuperclass()

Allocates no memory. Does not allow ”this” to escape local variables.

Returns a reference to a previously allocated Class object, which resides in the
scope of its ClassLoader.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public boolean isAnnotation()

Allocates no memory. Does not allow ”this” to escape local variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public boolean isArray()

Allocates no memory. Does not allow ”this” to escape local variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public boolean isAssignableFrom(Class c)

458 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Allocates no memory. Does not allow ”this” or argument ”c” to escape local
variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public boolean isEnum()

Allocates no memory. Does not allow ”this” to escape local variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public boolean isInstance(Object o)

Allocates no memory. Does not allow ”this” to escape local variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public boolean isInterface()

Allocates no memory. Does not allow ”this” to escape local variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public boolean isPrimitive()

27 January 2017 Version 0.109
Confidentiality: Public Distribution

459

Safety-Critical Java Technology Specification

Allocates no memory. Does not allow ”this” to escape local variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.String toString()

Does not allow ”this” to escape local variables. Allocates a String and associ-
ated internal ”structure” (e.g. char[]) in caller’s scope. (Note: this semantics is
desired for consistency with overridden implementation of Object.toString()).

B.3.9 CLASS ClassCastException

@SCJAllowed
public class ClassCastException implements java.io.Serializable extends

java.lang.RuntimeException

Thrown to indicate that the code has attempted to cast an object to a subclass
of which it is not an instance.

Constructors

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public ClassCastException()

Shall not copy ”this” to any instance or static field.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

460 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public ClassCastException(String msg)

Shall not copy ”this” to any instance or static field. The scope containing the
msg argument must enclose the scope containing ”this”. Otherwise, an Illegal-
AssignmentError will be thrown.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

B.3.10 CLASS ClassNotFoundException

@SCJAllowed
public class ClassNotFoundException implements java.io.Serializable extends

java.lang.Exception

Thrown when an application tries to load in a class through its string name
using the forName method in class Class, the findSystemClass method in class
ClassLoader, or the loadClass method in class ClassLoader, but no definition
for the class with the specified name could be found.

Constructors

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public ClassNotFoundException()

Shall not copy ”this” to any instance or static field.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

27 January 2017 Version 0.109
Confidentiality: Public Distribution

461

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public ClassNotFoundException(String msg)

Shall not copy ”this” to any instance or static field. The scope containing the
msg argument must enclose the scope containing ”this”. Otherwise, an Illegal-
AssignmentError will be thrown.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

B.3.11 CLASS CloneNotSupportedException

@SCJAllowed
public class CloneNotSupportedException implements java.io.Serializable

extends java.lang.Exception

Thrown to indicate that the clone method in class Object has been called to
clone an object, but that the object’s class does not implement the Cloneable
interface.

Constructors

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public CloneNotSupportedException()

Shall not copy ”this” to any instance or static field.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

462 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public CloneNotSupportedException(String msg)

Shall not copy ”this” to any instance or static field. The scope containing the
msg argument must enclose the scope containing ”this”. Otherwise, an Illegal-
AssignmentError will be thrown.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

B.3.12 CLASS Double

@SCJAllowed
public class Double implements java.lang.Comparable<T>, java.io.Serializable

extends java.lang.Number

The Double class wraps a value of the primitive type double in an object. An
object of type Double contains a single field whose type is double.

Fields

@SCJAllowed
public static final double MAX EXPONENT

@SCJAllowed
public static final double MAX VALUE

@SCJAllowed
public static final double MIN EXPONENT

@SCJAllowed
public static final double MIN NORMAL

@SCJAllowed
public static final double MIN VALUE

27 January 2017 Version 0.109
Confidentiality: Public Distribution

463

Safety-Critical Java Technology Specification

@SCJAllowed
public static final double NEGATIVE INFINITY

@SCJAllowed
public static final double NaN

@SCJAllowed
public static final double POSITIVE INFINITY

@SCJAllowed
public static final int SIZE

@SCJAllowed
public static final java.lang.Class<java.lang.Double> TYPE

Constructors

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public Double(double val)

Allocates no memory. Does not allow ”this” to escape local variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public Double(String str)
throws java.lang.NumberFormatException

Allocates no memory. Does not allow ”this” or ”str” argument to escape local
variables.

Throws NumberFormatException

Methods

464 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public byte byteValue()

Allocates no memory. Does not allow ”this” to escape local variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static int compare(double value1, double value2)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int compareTo(Double other)

Allocates no memory. Does not allow ”this” or ”other” argument to escape
local variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static long doubleToLongBits(double v)

27 January 2017 Version 0.109
Confidentiality: Public Distribution

465

Safety-Critical Java Technology Specification

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static native long doubleToRawLongBits(double val)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public double doubleValue()

Allocates no memory. Does not allow ”this” to escape local variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public boolean equals(Object obj)

Allocates no memory. Does not allow ”this” or ”obj” argument to escape local
variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public float floatValue()

466 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Allocates no memory. Does not allow ”this” to escape local variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int hashCode()

Allocates no memory. Does not allow ”this” to escape local variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int intValue()

Allocates no memory. Does not allow ”this” to escape local variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static boolean isInfinite(double v)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public boolean isInfinite()

27 January 2017 Version 0.109
Confidentiality: Public Distribution

467

Safety-Critical Java Technology Specification

Allocates no memory. Does not allow ”this” to escape local variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static boolean isNaN(double v)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public boolean isNaN()

Allocates no memory. Does not allow ”this” to escape local variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static double longBitsToDouble(long v)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public long longValue()

468 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Allocates no memory. Does not allow ”this” to escape local variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static double parseDouble(String s)
throws java.lang.NumberFormatException

Does not allow ”this” to escape local variables.

Throws NumberFormatException

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public short shortValue()

Allocates no memory. Does not allow ”this” to escape local variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static java.lang.String toString(double v)

Allocates a String and associated internal ”structure” (e.g. char[]) in caller’s
scope.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})

27 January 2017 Version 0.109
Confidentiality: Public Distribution

469

Safety-Critical Java Technology Specification

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.String toString()

Does not allow ”this” to escape local variables. Allocates a String and associ-
ated internal ”structure” (e.g. char[]) in caller’s scope. (Note: this semantics is
desired for consistency with overridden implementation of Object.toString()).

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static java.lang.Double valueOf(String str)
throws java.lang.NumberFormatException

Does not allow ”this” to escape local variables. Allocates a Double in caller’s
scope.

Throws NumberFormatException

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static java.lang.Double valueOf(double val)

Allocates a Double in caller’s scope.

B.3.13 CLASS Enum

@SCJAllowed
public abstract class Enum<E extends Enum<E>> implements

java.lang.Comparable<T>, java.io.Serializable extends java.lang.Object

This is the common base class of all Java language enumeration types.

470 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Constructors

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

protected Enum(String name, int ordinal)

Allocates no memory. Does not allow ”this” to escape local variables. Requires
that ”name” argument reside in a scope that enclosees the scope of ”this”.

name — The name of this enum constant, which is the identifier used to declare it.

ordinal — The ordinal of this enumeration constant (its position in the enum
declaration, where the initial constant is assigned an ordinal of zero).

Methods

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public final int compareTo(E o)

Allocates no memory. Does not allow ”this” or ”o” argument to escape local
variables.

o — The object to be compared.

returns a negative integer, zero, or a positive integer as this object is less than,
equal to, or greater than the specified object.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public final boolean equals(Object o)

27 January 2017 Version 0.109
Confidentiality: Public Distribution

471

Safety-Critical Java Technology Specification

Allocates no memory. Does not allow ”this” or ”o” argument to escape local
variables.

o — The object to be compared for equality with this object.

returns true if the specified object is equal to this enum constant.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public final java.lang.Class<E> getDeclaringClass()

Allocates no memory. Returns a reference to a previously allocated Class,
which resides in its ClassLoader scope.

returns The Class object corresponding to this enum constant’s enum type

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public final int hashCode()

Allocates no memory. Does not allow ”this” to escape local variables.

returns A hash code for this enum constant.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public final java.lang.String name()

Allocates no memory. Returns a reference to this enumeration constant’s pre-
viously allocated String name. The String resides in the corresponding Class-
Loader scope.

472 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

returns the name of this enum constant

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public final int ordinal()

Allocates no memory. Does not allow ”this” to escape local variables.

returns the ordinal of this enumeration constant

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.String toString()

Does not allow ”this” to escape local variables. Allocates a String and associ-
ated internal ”structure” (e.g. char[]) in caller’s scope. (Note: this semantics is
desired for consistency with overridden implementation of Object.toString()).

returns The name of this enum constant, as contained in the declaration.

B.3.14 CLASS Error

@SCJAllowed
public class Error extends java.lang.Throwable

An Error is a subclass of Throwable that indicates serious problems that a rea-
sonable application should not try to catch.

Constructors

@SCJAllowed
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(false)

27 January 2017 Version 0.109
Confidentiality: Public Distribution

473

Safety-Critical Java Technology Specification

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public Error(String msg, Throwable cause)

Constructs an Error object with a specified detail message and with a speci-
fied cause. If cause is null, Services.captureStackBacktrace(this) is called to
save the backtrace associated with the current thread. If cause is not null, Ser-
vices.captureStackBacktrace(this) is not called to avoid overwriting the back-
trace associated with the cause.

Allocates an application- and implementation-defined amount of memory in
the current scope (to represent stack backtrace).

msg — the detail message for this Error object.

cause — the exception that caused this error.

@SCJAllowed
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public Error()

This constructor behaves the same as calling Error(String, Throwable) with the
arguments (null, null).

@SCJAllowed
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public Error(String msg)

This constructor behaves the same as calling Error(String, Throwable) with the
arguments (msg, null).

474 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public Error(Throwable cause)

This constructor behaves the same as calling Error(String, Throwable) with the
arguments (null, cause).

B.3.15 CLASS Exception

@SCJAllowed
public class Exception implements java.io.Serializable extends

java.lang.Throwable

The class Exception and its subclasses are a form of Throwable that indicates
conditions that a reasonable application might want to catch.

Constructors

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public Exception(String msg, Throwable cause)

Constructs an Exception object with an optional detail message and an optional
cause. If cause is null, Services.captureStackBacktrace(this) is called to save
the backtrace associated with the current thread. If cause is not null, Ser-
vices.captureStackBacktrace(this) is not called to avoid overwriting the back-
trace associated with the cause.

msg — the detail message for this Exception object.

cause — the cause of this exception .

27 January 2017 Version 0.109
Confidentiality: Public Distribution

475

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public Exception()

This constructor behaves the same as calling Exception(null, null).

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public Exception(String msg)

This constructor behaves the same as calling Exception(msg, null).

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public Exception(Throwable cause)

This constructor behaves the same as calling Exception(null, cause).

B.3.16 CLASS ExceptionInInitializerError

@SCJAllowed
public class ExceptionInInitializerError extends java.lang.Exception

Signals that an unexpected exception has occurred in a static initializer. An
ExceptionInInitializerError is thrown to indicate that an exception occurred
during evaluation of a static initializer or the initializer for a static variable.

476 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Constructors

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public ExceptionInInitializerError()

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public ExceptionInInitializerError(String msg)

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public ExceptionInInitializerError(Throwable cause)

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)

27 January 2017 Version 0.109
Confidentiality: Public Distribution

477

Safety-Critical Java Technology Specification

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public ExceptionInInitializerError(String msg, Throwable cause)

B.3.17 CLASS Float

@SCJAllowed
public class Float implements java.lang.Comparable<T>, java.io.Serializable

extends java.lang.Number

The Float class wraps a value of primitive type float in an object. An object of
type Float contains a single field whose type is float.

Fields

@SCJAllowed
public static final float MAX EXPONENT

@SCJAllowed
public static final float MAX VALUE

@SCJAllowed
public static final float MIN EXPONENT

@SCJAllowed
public static final float MIN NORMAL

@SCJAllowed
public static final float MIN VALUE

@SCJAllowed
public static final float NEGATIVE INFINITY

@SCJAllowed
public static final float NaN

@SCJAllowed
public static final float POSITIVE INFINITY

478 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJAllowed
public static final int SIZE

@SCJAllowed
public static final java.lang.Class<java.lang.Float> TYPE

Constructors

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public Float(float val)

Allocates no memory. Does not allow ”this” to escape local variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public Float(double val)

Allocates no memory. Does not allow ”this” to escape local variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public Float(String str)
throws java.lang.NumberFormatException

Allocates no memory. Does not allow ”this” or ”str” argument to escape local
variables.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

479

Safety-Critical Java Technology Specification

Throws NumberFormatException

Methods

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public byte byteValue()

Allocates no memory. Does not allow ”this” to escape local variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static int compare(float value1, float value2)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int compareTo(Float other)

Allocates no memory. Does not allow ”this” or ”other” argument to escape
local variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

480 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public double doubleValue()

Allocates no memory. Does not allow ”this” to escape local variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public boolean equals(Object obj)

Allocates no memory. Does not allow ”this” or ”obj” argument to escape local
variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static int floatToIntBits(float v)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static int floatToRawIntBits(float v)

Allocates no memory.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

481

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public float floatValue()

Allocates no memory. Does not allow ”this” to escape local variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int hashCode()

Allocates no memory. Does not allow ”this” to escape local variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static float intBitsToFloat(int v)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int intValue()

482 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Allocates no memory. Does not allow ”this” to escape local variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static boolean isInfinite(float v)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public boolean isInfinite()

Allocates no memory. Does not allow ”this” to escape local variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static boolean isNaN(float v)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public boolean isNaN()

27 January 2017 Version 0.109
Confidentiality: Public Distribution

483

Safety-Critical Java Technology Specification

Allocates no memory. Does not allow ”this” to escape local variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public long longValue()

Allocates no memory. Does not allow ”this” to escape local variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static float parseFloat(String s)
throws java.lang.NumberFormatException

Allocates no memory. Does not allow ”s” argument to escape local variables.

Throws NumberFormatException

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public short shortValue()

Allocates no memory. Does not allow ”this” to escape local variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

484 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static java.lang.String toHexString(float v)

Allocates a String and associated internal ”structure” (e.g. char[]) in caller’s
scope.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static java.lang.String toString(float v)

Allocates a String and associated internal ”structure” (e.g. char[]) in caller’s
scope.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.String toString()

Does not allow ”this” to escape local variables. Allocates a String and associ-
ated internal ”structure” (e.g. char[]) in caller’s scope. (Note: this semantics is
desired for consistency with overridden implementation of Object.toString()).

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static java.lang.Float valueOf(String str)
throws java.lang.NumberFormatException

27 January 2017 Version 0.109
Confidentiality: Public Distribution

485

Safety-Critical Java Technology Specification

Does not allow ”this” to escape local variables. Allocates a Float in caller’s
scope.

Throws NumberFormatException

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static java.lang.Float valueOf(float val)

Allocates a Float in caller’s scope.

B.3.18 CLASS IllegalArgumentException

@SCJAllowed
public class IllegalArgumentException implements java.io.Serializable extends

java.lang.RuntimeException

Thrown to indicate that a method has been passed an illegal or inappropriate
argument.

Constructors

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public IllegalArgumentException()

Shall not copy ”this” to any instance or static field.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

486 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public IllegalArgumentException(String msg)

Shall not copy ”this” to any instance or static field. The scope containing the
msg argument must enclose the scope containing ”this”. Otherwise, an Illegal-
AssignmentError will be thrown.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public IllegalArgumentException(String msg, Throwable t)

Shall not copy ”this” to any instance or static field. The scope containing the
msg argument must enclose the scope containing ”this”. Otherwise, an Illegal-
AssignmentError will be thrown.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public IllegalArgumentException(Throwable t)

Shall not copy ”this” to any instance or static field. The scope containing the
msg argument must enclose the scope containing ”this”. Otherwise, an Illegal-
AssignmentError will be thrown.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

487

Safety-Critical Java Technology Specification

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

B.3.19 CLASS IllegalMonitorStateException

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)
public class IllegalMonitorStateException implements java.io.Serializable

extends java.lang.RuntimeException

Thrown to indicate that a thread has attempted to wait on an object’s monitor
or to notify other threads waiting on an object’s monitor without owning the
specified monitor.

Constructors

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public IllegalMonitorStateException()

Shall not copy ”this” to any instance or static field.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public IllegalMonitorStateException(String msg)

Shall not copy ”this” to any instance or static field. The scope containing the
msg argument must enclose the scope containing ”this”. Otherwise, an Illegal-
AssignmentError will be thrown.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

488 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public IllegalMonitorStateException(String msg, Throwable t)

Shall not copy ”this” to any instance or static field. The scope containing the
msg argument must enclose the scope containing ”this”. Otherwise, an Illegal-
AssignmentError will be thrown.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public IllegalMonitorStateException(Throwable t)

Shall not copy ”this” to any instance or static field. The scope containing the
msg argument must enclose the scope containing ”this”. Otherwise, an Illegal-
AssignmentError will be thrown.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

B.3.20 CLASS IllegalStateException

@SCJAllowed
public class IllegalStateException implements java.io.Serializable extends

java.lang.RuntimeException

Signals that a method has been invoked at an illegal or inappropriate time. In
other words, the Java environment or Java application is not in an appropriate
state for the requested operation.

Constructors

27 January 2017 Version 0.109
Confidentiality: Public Distribution

489

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public IllegalStateException()

Shall not copy ”this” to any instance or static field.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public IllegalStateException(String msg)

Shall not copy ”this” to any instance or static field. The scope containing the
msg argument must enclose the scope containing ”this”. Otherwise, an Illegal-
AssignmentError will be thrown.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

B.3.21 CLASS IncompatibleClassChangeError

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)
public class IncompatibleClassChangeError implements java.io.Serializable

extends java.lang.RuntimeException

Thrown when an incompatible class change has occurred to some class defi-
nition. The definition of some class, on which the currently executing method
depends, has since changed.

Constructors

490 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public IncompatibleClassChangeError()

Shall not copy ”this” to any instance or static field.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public IncompatibleClassChangeError(String msg)

Shall not copy ”this” to any instance or static field. The scope containing the
msg argument must enclose the scope containing ”this”. Otherwise, an Illegal-
AssignmentError will be thrown.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

B.3.22 CLASS IndexOutOfBoundsException

@SCJAllowed
public class IndexOutOfBoundsException implements java.io.Serializable extends

java.lang.RuntimeException

Thrown to indicate that an index of some sort (such as to an array, to a string,
or to a vector) is out of range.

Constructors

27 January 2017 Version 0.109
Confidentiality: Public Distribution

491

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public IndexOutOfBoundsException()

Shall not copy ”this” to any instance or static field.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public IndexOutOfBoundsException(String msg)

Shall not copy ”this” to any instance or static field. The scope containing the
msg argument must enclose the scope containing ”this”. Otherwise, an Illegal-
AssignmentError will be thrown.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

B.3.23 CLASS InstantiationException

@SCJAllowed
public class InstantiationException implements java.io.Serializable extends

java.lang.Exception

Thrown when an application tries to create an instance of a class using the
newInstance method in class Class, but the specified class object cannot be
instantiated.

Constructors

492 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public InstantiationException()

Shall not copy ”this” to any instance or static field.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public InstantiationException(String msg)

Shall not copy ”this” to any instance or static field. The scope containing the
msg argument must enclose the scope containing ”this”. Otherwise, an Illegal-
AssignmentError will be thrown.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

B.3.24 CLASS Integer

@SCJAllowed
public class Integer implements java.lang.Comparable<T>, java.io.Serializable

extends java.lang.Number

The Integer class wraps a value of the primitive type int in an object. An object
of type Integer contains a single field whose type is int.

Fields

@SCJAllowed
public static final int MAX VALUE

27 January 2017 Version 0.109
Confidentiality: Public Distribution

493

Safety-Critical Java Technology Specification

@SCJAllowed
public static final int MIN VALUE

@SCJAllowed
public static final int SIZE

@SCJAllowed
public static final java.lang.Class<java.lang.Integer> TYPE

Constructors

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public Integer(int val)

Allocates no memory. Does not allow ”this” to escape local variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public Integer(String str)
throws java.lang.NumberFormatException

Allocates no memory. Does not allow ”this” or ”str” argument to escape local
variables.

Methods

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,

494 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static int bitCount(int i)

Allocates no memory. Does not allow ”this” to escape local variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public byte byteValue()

Allocates no memory. Does not allow ”this” to escape local variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int compareTo(Integer other)

Allocates no memory. Does not allow ”this” or ”other” argument to escape
local variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static java.lang.Integer decode(String str)
throws java.lang.NumberFormatException

Does not allow ”str” argument to escape local variables. Allocates an Integer
in caller’s scope.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

495

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public double doubleValue()

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public boolean equals(Object obj)

Allocates no memory. Does not allow ”this” or ”obj” argument to escape local
variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public float floatValue()

Allocates no memory. Does not allow ”this” to escape local variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static java.lang.Integer getInteger(String str, Integer v)

496 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Does not allow ”str” or ”v” arguments to escape local variables. Allocates
Integer in caller’s scope.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static java.lang.Integer getInteger(String str, int v)

Does not allow ”str” argument to escape local variables. Allocates Integer in
caller’s scope.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static java.lang.Integer getInteger(String str)

Does not allow ”str” argument to escape local variables. Allocates Integer in
caller’s scope.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int hashCode()

Allocates no memory. Does not allow ”this” to escape local variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})

27 January 2017 Version 0.109
Confidentiality: Public Distribution

497

Safety-Critical Java Technology Specification

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static int highestOneBit(int i)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int intValue()

Allocates no memory. Does not allow ”this” to escape local variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public long longValue()

Allocates no memory. Does not allow ”this” to escape local variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static int lowestOneBit(int i)

Allocates no memory.

498 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static int numberOfLeadingZeros(int i)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static int parseInt(String str, int radix)
throws java.lang.NumberFormatException

Allocates no memory. Does not allow ”str” argument to escape local variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static int parseInt(String str)
throws java.lang.NumberFormatException

Allocates no memory. Does not allow ”str” argument to escape local variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static int reverse(int i)

27 January 2017 Version 0.109
Confidentiality: Public Distribution

499

Safety-Critical Java Technology Specification

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static int reverseBytes(int i)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static int rotateLeft(int i, int distance)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static int rotateRight(int i, int distance)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public short shortValue()

500 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Allocates no memory. Does not allow ”this” to escape local variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static int sigNum(int i)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static java.lang.String toBinaryString(int v)

Does not allow ”this” to escape local variables. Allocates a String and associ-
ated internal ”structure” (e.g. char[]) in caller’s scope.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static java.lang.String toHexString(int v)

Does not allow ”this” to escape local variables. Allocates a String and associ-
ated internal ”structure” (e.g. char[]) in caller’s scope.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

27 January 2017 Version 0.109
Confidentiality: Public Distribution

501

Safety-Critical Java Technology Specification

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static java.lang.String toOctalString(int v)

Does not allow ”this” to escape local variables. Allocates a String and associ-
ated internal ”structure” (e.g. char[]) in caller’s scope.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static java.lang.String toString(int v)

Allocates a String and associated internal ”structure” (e.g. char[]) in caller’s
scope.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static java.lang.String toString(int v, int base)

Does not allow ”this” to escape local variables. Allocates a String and associ-
ated internal ”structure” (e.g. char[]) in caller’s scope.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.String toString()

502 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Does not allow ”this” to escape local variables. Allocates a String and associ-
ated internal ”structure” (e.g. char[]) in caller’s scope. (Note: this semantics is
desired for consistency with overridden implementation of Object.toString()).

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static java.lang.Integer valueOf(String str, int base)
throws java.lang.NumberFormatException

Does not allow ”str” argument to escape local variables. Allocates an Integer
in caller’s scope.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static java.lang.Integer valueOf(String str)
throws java.lang.NumberFormatException

Does not allow ”str” argument to escape local variables. Allocates an Integer
in caller’s scope.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static java.lang.Integer valueOf(int val)

Allocates an Integer in caller’s scope.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

503

Safety-Critical Java Technology Specification

B.3.25 CLASS InternalError

@SCJAllowed
public class InternalError implements java.io.Serializable extends

java.lang.VirtualMachineError

Thrown to indicate some unexpected internal error has occurred in the Java
Virtual Machine.

Constructors

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public InternalError()

Shall not copy ”this” to any instance or static field.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public InternalError(String msg)

Shall not copy ”this” to any instance or static field. The scope containing the
msg argument must enclose the scope containing ”this”. Otherwise, an Illegal-
AssignmentError will be thrown.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

504 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

B.3.26 CLASS InterruptedException

@SCJAllowed
public class InterruptedException implements java.io.Serializable extends

java.lang.Exception

Thrown when a thread is waiting, sleeping, or otherwise occupied, and the
thread is interrupted, either before or during the activity.

Constructors

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public InterruptedException()

Shall not copy ”this” to any instance or static field.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public InterruptedException(String msg)

Shall not copy ”this” to any instance or static field. The scope containing the
msg argument must enclose the scope containing ”this”. Otherwise, an Illegal-
AssignmentError will be thrown.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

27 January 2017 Version 0.109
Confidentiality: Public Distribution

505

Safety-Critical Java Technology Specification

B.3.27 CLASS Long

@SCJAllowed
public class Long implements java.lang.Comparable<T>, java.io.Serializable

extends java.lang.Number

The Long class wraps a value of the primitive type long in an object. An object
of type Long contains a single field whose type is long.

Fields

@SCJAllowed
public static final long MAX VALUE

@SCJAllowed
public static final long MIN VALUE

@SCJAllowed
public static final int SIZE

@SCJAllowed
public static final java.lang.Class<java.lang.Long> TYPE

Constructors

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public Long(long val)

Allocates no memory. Does not allow ”this” to escape local variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,

506 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public Long(String str)
throws java.lang.NumberFormatException

Allocates no memory. Does not allow ”this” or ”str” argument to escape local
variables.

Throws NumberFormatException

Methods

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static int bitCount(long i)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public byte byteValue()

Allocates no memory. Does not allow ”this” to escape local variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,

27 January 2017 Version 0.109
Confidentiality: Public Distribution

507

Safety-Critical Java Technology Specification

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int compareTo(Long other)

Allocates no memory. Does not allow ”this” or ”other” argument to escape
local variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static java.lang.Long decode(String str)
throws java.lang.NumberFormatException

Does not allow ”str” argument to escape local variables. Allocates a Long
result object in the caller’s scope.

Throws NumberFormatException

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public double doubleValue()

Allocates no memory. Does not allow ”this” to escape local variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public boolean equals(Object obj)

508 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Allocates no memory. Does not allow ”this” or ”obj” argument to escape local
variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public float floatValue()

Allocates no memory. Does not allow ”this” to escape local variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static java.lang.Long getLong(String str, Long v)

Does not allow ”str” argument to escape local variables. Allocates a Long
result object in the caller’s scope.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static java.lang.Long getLong(String str, long v)

Does not allow ”str” argument to escape local variables. Allocates a Long
result object in the caller’s scope.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

509

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static java.lang.Long getLong(String str)

Does not allow ”str” argument to escape local variables. Allocates a Long
result object in the caller’s scope.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int hashCode()

Allocates no memory. Does not allow ”this” to escape local variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static long highestOneBit(long i)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,

510 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int intValue()

Allocates no memory. Does not allow ”this” to escape local variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public long longValue()

Allocates no memory. Does not allow ”this” to escape local variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static long lowestOneBit(long i)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static int numberOfLeadingZeros(long i)

Allocates no memory.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

511

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static int numberOfTrailingZeros(long i)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static long parseLong(String str, int base)
throws java.lang.NumberFormatException

Allocates no memory. Does not allow ”this” or ”other” argument to escape
local variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static long parseLong(String str)
throws java.lang.NumberFormatException

Allocates no memory. Does not allow ”this” or ”other” argument to escape
local variables.

Throws NumberFormatException

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

512 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static long reverse(long i)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static long reverseBytes(long i)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static long rotateLeft(long i, int distance)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static long rotateRight(long i, int distance)

Allocates no memory.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

513

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public short shortValue()

Allocates no memory. Does not allow ”this” to escape local variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static int signum(long i)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static java.lang.String toBinaryString(long v)

Does not allow ”this” to escape local variables. Allocates a String and associ-
ated internal ”structure” (e.g. char[]) in caller’s scope.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static java.lang.String toHexString(long v)

514 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Does not allow ”this” to escape local variables. Allocates a String and associ-
ated internal ”structure” (e.g. char[]) in caller’s scope.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static java.lang.String toOctalString(long v)

Does not allow ”this” to escape local variables. Allocates a String and associ-
ated internal ”structure” (e.g. char[]) in caller’s scope.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static java.lang.String toString(long v)

Allocates a String and associated internal ”structure” (e.g. char[]) in caller’s
scope.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static java.lang.String toString(long v, int base)

Allocates a String and associated internal ”structure” (e.g. char[]) in caller’s
scope.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

515

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.String toString()

Does not allow ”this” to escape local variables. Allocates a String and associ-
ated internal ”structure” (e.g. char[]) in caller’s scope. (Note: this semantics is
desired for consistency with overridden implementation of Object.toString()).

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static java.lang.Long valueOf(String str, int base)
throws java.lang.NumberFormatException

Does not allow ”str” argument to escape local variables. Allocates a Long in
caller’s scope.

Throws NumberFormatException

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static java.lang.Long valueOf(String str)
throws java.lang.NumberFormatException

Does not allow ”str” argument to escape local variables. Allocates a Long in
caller’s scope.

Throws NumberFormatException

516 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static java.lang.Long valueOf(long val)

Allocates a Long in caller’s scope.

B.3.28 CLASS Math

@SCJAllowed
public final class Math extends java.lang.Object

The class Math contains methods for performing basic numeric operations such
as the elementary exponential, logarithm, square root, and trigonometric func-
tions.

Fields

@SCJAllowed
public static final double E

@SCJAllowed
public static final double PI

Constructors

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public Math()

Methods

27 January 2017 Version 0.109
Confidentiality: Public Distribution

517

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static double IEEEremainder(double f1, double f2)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static long abs(long a)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static double abs(double a)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static float abs(float a)

518 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static int abs(int a)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static double acos(double a)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static double asin(double a)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static double atan(double a)

27 January 2017 Version 0.109
Confidentiality: Public Distribution

519

Safety-Critical Java Technology Specification

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static double atan2(double a, double b)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static double cbrt(double a)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static double ceil(double a)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static double copySign(float magnitude, float sign)

520 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static double copySign(double magnitude, double sign)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static double cos(double a)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static double cosh(double a)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static double exp(double a)

27 January 2017 Version 0.109
Confidentiality: Public Distribution

521

Safety-Critical Java Technology Specification

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static double expm1(double a)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static double floor(double a)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static int getExponent(float a)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static int getExponent(double a)

522 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static double hypot(double x, double y)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static double log(double a)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static double log10(double a)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static double log1p(double a)

27 January 2017 Version 0.109
Confidentiality: Public Distribution

523

Safety-Critical Java Technology Specification

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static double max(double a, double b)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static long max(long a, long b)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static float max(float a, float b)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static int max(int a, int b)

524 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static long min(long a, long b)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static double min(double a, double b)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static float min(float a, float b)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static int min(int a, int b)

27 January 2017 Version 0.109
Confidentiality: Public Distribution

525

Safety-Critical Java Technology Specification

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static float nextAfter(float start, float direction)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static double nextAfter(double start, double direction)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static float nextUp(float d)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static double nextUp(double d)

526 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static double pow(double a, double b)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static double random()

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static double rint(double a)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static long round(double a)

27 January 2017 Version 0.109
Confidentiality: Public Distribution

527

Safety-Critical Java Technology Specification

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static int round(float a)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static float scalb(float f, int scaleFactor)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static double scalb(double d, int scaleFactor)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static float signum(float f)

528 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static double signum(double d)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static double sin(double a)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static double sinh(double a)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static double sqrt(double a)

27 January 2017 Version 0.109
Confidentiality: Public Distribution

529

Safety-Critical Java Technology Specification

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static double tan(double a)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static double tanh(double a)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static double toDegrees(double val)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static double toRadians(double val)

530 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static float ulp(float d)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static double ulp(double d)

Allocates no memory.

B.3.29 CLASS NegativeArraySizeException

@SCJAllowed
public class NegativeArraySizeException implements java.io.Serializable

extends java.lang.RuntimeException

Thrown if an application tries to create an array with negative size.

Constructors

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public NegativeArraySizeException()

27 January 2017 Version 0.109
Confidentiality: Public Distribution

531

Safety-Critical Java Technology Specification

Shall not copy ”this” to any instance or static field.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public NegativeArraySizeException(String msg)

Shall not copy ”this” to any instance or static field. The scope containing the
msg argument must enclose the scope containing ”this”. Otherwise, an Illegal-
AssignmentError will be thrown.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

B.3.30 CLASS NullPointerException

@SCJAllowed
public class NullPointerException implements java.io.Serializable extends

java.lang.RuntimeException

Thrown when an application attempts to use null in a case where an object is
required.

Constructors

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public NullPointerException()

Shall not copy ”this” to any instance or static field.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

532 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public NullPointerException(String msg)

Shall not copy ”this” to any instance or static field. The scope containing the
msg argument must enclose the scope containing ”this”. Otherwise, an Illegal-
AssignmentError will be thrown.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

B.3.31 CLASS Number

@SCJAllowed
public abstract class Number implements java.io.Serializable extends

java.lang.Object

The abstract class Number is the superclass of classes BigDecimal, BigInteger,
Byte, Double, Float, Integer, Long, and Short.

Constructors

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public Number()

The implementation of this method shall not allow ”this” to escape the method’s
local variables.

Methods

27 January 2017 Version 0.109
Confidentiality: Public Distribution

533

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public byte byteValue()

The implementation of this method shall not allow ”this” to escape the method’s
local variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public abstract double doubleValue()

The implementation of this method shall not allow ”this” to escape the method’s
local variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public abstract float floatValue()

The implementation of this method shall not allow ”this” to escape the method’s
local variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public abstract int intValue()

534 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

The implementation of this method shall not allow ”this” to escape the method’s
local variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public abstract long longValue()

The implementation of this method shall not allow ”this” to escape the method’s
local variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public abstract short shortValue()

The implementation of this method shall not allow ”this” to escape the method’s
local variables.

B.3.32 CLASS NumberFormatException

@SCJAllowed
public class NumberFormatException implements java.io.Serializable extends

java.lang.IllegalArgumentException

Thrown to indicate that the application has attempted to convert a string to one
of the numeric types, but that the string does not have the appropriate format.

Constructors

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

27 January 2017 Version 0.109
Confidentiality: Public Distribution

535

Safety-Critical Java Technology Specification

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public NumberFormatException()

Shall not copy ”this” to any instance or static field.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public NumberFormatException(String msg)

Shall not copy ”this” to any instance or static field. The scope containing the
msg argument must enclose the scope containing ”this”. Otherwise, an Illegal-
AssignmentError will be thrown.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

B.3.33 CLASS Object

@SCJAllowed
public class Object

Class Object is the root of the class hierarchy. Every class has Object as a
superclass. All objects, including arrays, implement the methods of this class.

Constructors

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public Object()

536 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Allocates no memory. Does not allow ”this” to escape local variables.

Methods

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public boolean equals(Object obj)

Allocates no memory. Does not allow ”this” or ”obj” argument to escape local
variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public final java.lang.Class<? extends java.lang.Object> getClass()

Allocates no memory. Does not allow ”this” or ”obj” argument to escape local
variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int hashCode()

Allocates no memory. Does not allow ”this” to escape local variables.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

537

Safety-Critical Java Technology Specification

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public final void notify()

Allocates no memory. Does not allow ”this” to escape local variables.

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public final void notifyAll()

Allocates no memory. Does not allow ”this” to escape local variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.String toString()

Does not allow ”this” to escape local variables. Allocates a String and associ-
ated internal ”structure” (e.g. char[]) in caller’s scope.

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)
@SCJMaySelfSuspend(true)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public final void wait(long timeout, int nanos)
throws java.lang.InterruptedException

538 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Allocates no memory. Does not allow ”this” to escape local variables.

Throws InterruptedException

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)
@SCJMaySelfSuspend(true)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public final void wait(long timeout)
throws java.lang.InterruptedException

Allocates no memory. Does not allow ”this” to escape local variables.

Throws InterruptedException

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)
@SCJMaySelfSuspend(true)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public final void wait()

Allocates no memory. Does not allow ”this” to escape local variables.

Throws InterruptedException

B.3.34 CLASS OutOfMemoryError

@SCJAllowed
public class OutOfMemoryError implements java.io.Serializable extends

java.lang.VirtualMachineError

Thrown when the Java Virtual Machine cannot allocate an object because it is
out of memory.

Constructors

27 January 2017 Version 0.109
Confidentiality: Public Distribution

539

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public OutOfMemoryError()

Shall not copy ”this” to any instance or static field.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public OutOfMemoryError(String msg)

Shall not copy ”this” to any instance or static field. The scope containing the
msg argument must enclose the scope containing ”this”. Otherwise, an Illegal-
AssignmentError will be thrown.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

B.3.35 CLASS RuntimeException

@SCJAllowed
public class RuntimeException implements java.io.Serializable extends

java.lang.Exception

RuntimeException is the superclass of those exceptions that can be thrown
during the normal operation of the Java Virtual Machine.

RuntimeException and its subclasses are unchecked exceptions. Unchecked
exceptions do not need to be declared in a method or constructor’s throws
clause if they can be thrown by the execution of the method or constructor
and propagate outside the method or constructor boundary.

540 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Constructors

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public RuntimeException()

Shall not copy ”this” to any instance or static field.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public RuntimeException(String msg)

Shall not copy ”this” to any instance or static field. The scope containing the
msg argument must enclose the scope containing ”this”. Otherwise, an Illegal-
AssignmentError will be thrown.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public RuntimeException(String msg, Throwable t)

Shall not copy ”this” to any instance or static field. The scope containing the
msg argument must enclose the scope containing ”this”. Otherwise, an Illegal-
AssignmentError will be thrown.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

541

Safety-Critical Java Technology Specification

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public RuntimeException(Throwable t)

Shall not copy ”this” to any instance or static field. The scope containing the
msg argument must enclose the scope containing ”this”. Otherwise, an Illegal-
AssignmentError will be thrown.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

B.3.36 CLASS Short

@SCJAllowed
public class Short implements java.lang.Comparable<T>, java.io.Serializable

extends java.lang.Number

The Short class wraps a value of primitive type short in an object. An object of
type Short contains a single field whose type is short.

Fields

@SCJAllowed
public static final short MAX VALUE

@SCJAllowed
public static final short MIN VALUE

@SCJAllowed
public static final int SIZE

@SCJAllowed
public static final java.lang.Class<java.lang.Short> TYPE

542 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Constructors

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public Short(short val)

Allocates no memory. Does not allow ”this” to escape local variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public Short(String str)
throws java.lang.NumberFormatException

Allocates no memory. Does not allow ”this” or ”str” argument to escape local
variables.

Throws NumberFormatException

Methods

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public byte byteValue()

27 January 2017 Version 0.109
Confidentiality: Public Distribution

543

Safety-Critical Java Technology Specification

Allocates no memory. Does not allow ”this” to escape local variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int compareTo(Short other)

Allocates no memory. Does not allow ”this” or ”other” argument to escape
local variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static java.lang.Short decode(String str)
throws java.lang.NumberFormatException

Does not allow ”str” argument to escape local variables. Allocates a Short in
caller’s scope.

Throws NumberFormatException

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public double doubleValue()

Allocates no memory.

544 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public boolean equals(Object obj)

Allocates no memory. Does not allow ”this” or ”obj” argument to escape local
variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public float floatValue()

Allocates no memory. Does not allow ”this” to escape local variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int hashCode()

Allocates no memory. Does not allow ”this” to escape local variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})

27 January 2017 Version 0.109
Confidentiality: Public Distribution

545

Safety-Critical Java Technology Specification

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int intValue()

Allocates no memory. Does not allow ”this” to escape local variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public long longValue()

Allocates no memory. Does not allow ”this” to escape local variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static short parseShort(String str, int base)
throws java.lang.NumberFormatException

Allocates no memory. Does not allow ”str” argument to escape local variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static short parseShort(String str)
throws java.lang.NumberFormatException

Allocates no memory. Does not allow ”str” argument to escape local variables.

546 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Throws NumberFormatException

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static short reverseBytes(short i)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public short shortValue()

Allocates no memory. Does not allow ”this” to escape local variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static java.lang.String toString(short v)

Allocates a String and associated internal ”structure” (e.g. char[]) in caller’s
scope.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.String toString()

27 January 2017 Version 0.109
Confidentiality: Public Distribution

547

Safety-Critical Java Technology Specification

Does not allow ”this” to escape local variables. Allocates a String and associ-
ated internal ”structure” (e.g. char[]) in caller’s scope. (Note: this semantics is
desired for consistency with overridden implementation of Object.toString()).

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static java.lang.Short valueOf(String str, int base)
throws java.lang.NumberFormatException

Does not allow ”str” argument to escape local variables. Allocates an Integer
in caller’s scope.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static java.lang.Short valueOf(String str)
throws java.lang.NumberFormatException

Does not allow ”str” argument to escape local variables. Allocates an Integer
in caller’s scope.

Throws NumberFormatException

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static java.lang.Short valueOf(short val)

Allocates a Short in caller’s scope.

548 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

B.3.37 CLASS StackOverflowError

@SCJAllowed
public class StackOverflowError implements java.io.Serializable extends

java.lang.VirtualMachineError

Thrown when a stack overflow occurs because an application recurses too
deeply.

Constructors

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public StackOverflowError()

Shall not copy ”this” to any instance or static field.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public StackOverflowError(String msg)

Shall not copy ”this” to any instance or static field. The scope containing the
msg argument must enclose the scope containing ”this”. Otherwise, an Illegal-
AssignmentError will be thrown.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

27 January 2017 Version 0.109
Confidentiality: Public Distribution

549

Safety-Critical Java Technology Specification

B.3.38 CLASS StackTraceElement

@SCJAllowed
public class StackTraceElement extends java.lang.Object

An element in a stack trace, as returned by Throwable.getStackTrace(). Each
element represents a single stack frame.

Constructors

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public StackTraceElement(String declaringClass,
String methodName,
String fileName,
int lineNumber)

Shall not copy ”this” to any instance or static field.

Methods

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public boolean equals(Object obj)

Allocates no memory. Does not allow ”this” or ”obj” argument to escape local
variables.

550 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.String getClassName()

Performs no memory allocation. Returns a reference to the same String mes-
sage that was supplied as an argument to the constructor, or null if the class
name was not specified at construction time.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.String getFileName()

Performs no memory allocation. Returns a reference to the same String mes-
sage that was supplied as an argument to the constructor, or null if the file name
was not specified at construction time.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int getLineNumber()

27 January 2017 Version 0.109
Confidentiality: Public Distribution

551

Safety-Critical Java Technology Specification

Performs no memory allocation.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.String getMethodName()

Performs no memory allocation. Returns a reference to the same String mes-
sage that was supplied as an argument to the constructor, or null if the method
name was not specified at construction time.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int hashCode()

Allocates no memory. Does not allow ”this” to escape local variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public boolean isNativeMethod()

552 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Allocates no memory. Does not allow ”this” to escape local variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.String toString()

Does not allow ”this” to escape local variables. Allocates a String and associ-
ated internal ”structure” (e.g. char[]) in caller’s scope. (Note: this semantics is
desired for consistency with overridden implementation of Object.toString()).

B.3.39 CLASS StrictMath

@SCJAllowed
public final class StrictMath extends java.lang.Object

The class StrictMath contains methods for performing basic numeric opera-
tions such as the elementary exponential, logarithm, square root, and trigono-
metric functions.

Fields

@SCJAllowed
public static final double E

@SCJAllowed
public static final double PI

Methods

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,

27 January 2017 Version 0.109
Confidentiality: Public Distribution

553

Safety-Critical Java Technology Specification

javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static double IEEEremainder(double f1, double f2)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static long abs(long a)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static double abs(double a)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static float abs(float a)

Allocates no memory.

554 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static int abs(int a)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static double acos(double a)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static double asin(double a)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static double atan(double a)

27 January 2017 Version 0.109
Confidentiality: Public Distribution

555

Safety-Critical Java Technology Specification

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static double atan2(double a, double b)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static double cbrt(double a)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static double ceil(double a)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static double copySign(float magnitude, float sign)

556 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static double copySign(double magnitude, double sign)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static double cos(double a)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static double cosh(double a)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static double exp(double a)

27 January 2017 Version 0.109
Confidentiality: Public Distribution

557

Safety-Critical Java Technology Specification

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static double expm1(double a)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static double floor(double a)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static int getExponent(float a)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static int getExponent(double a)

558 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static double hypot(double x, double y)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static double log(double a)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static double log10(double a)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static double log1p(double a)

27 January 2017 Version 0.109
Confidentiality: Public Distribution

559

Safety-Critical Java Technology Specification

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static double max(double a, double b)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static long max(long a, long b)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static float max(float a, float b)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static int max(int a, int b)

560 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static long min(long a, long b)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static double min(double a, double b)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static float min(float a, float b)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static int min(int a, int b)

27 January 2017 Version 0.109
Confidentiality: Public Distribution

561

Safety-Critical Java Technology Specification

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static float nextAfter(float start, float direction)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static double nextAfter(double start, double direction)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static float nextUp(float d)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static double nextUp(double d)

562 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static double pow(double a, double b)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static double random()

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static double rint(double a)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static long round(double a)

27 January 2017 Version 0.109
Confidentiality: Public Distribution

563

Safety-Critical Java Technology Specification

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static int round(float a)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static float scalb(float f, int scaleFactor)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static double scalb(double d, int scaleFactor)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static float signum(float f)

564 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static double signum(double d)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static double sin(double a)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static double sinh(double a)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static double sqrt(double a)

27 January 2017 Version 0.109
Confidentiality: Public Distribution

565

Safety-Critical Java Technology Specification

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static double tan(double a)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static double tanh(double a)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static double toDegrees(double val)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static double toRadians(double val)

566 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static float ulp(float d)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static double ulp(double d)

Allocates no memory.

B.3.40 CLASS String

@SCJAllowed
public final class String implements java.lang.CharSequence,

java.lang.Comparable<T>, java.io.Serializable extends java.lang.Object

The String class represents character strings. All string literals in Java pro-
grams, such as ”abc”, are implemented as instances of this class.

Constructors

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public String()

27 January 2017 Version 0.109
Confidentiality: Public Distribution

567

Safety-Critical Java Technology Specification

Does not allow ”this” argument to escape local variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public String(byte [] b)

Does not allow ”this” or ”b” argument to escape local variables. Allocates
internal structure to hold the contents of b within the same scope as ”this”.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public String(String s)

Does not allow ”this” or ”s” argument to escape local variables. Allocates
internal structure to hold the contents of s within the same scope as ”this”.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public String(byte [] b, int offset, int length)

Does not allow ”this” or ”b” argument to escape local variables. Allocates
internal structure to hold the contents of b within the same scope as ”this”.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})

568 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public String(char [] c)

Does not allow ”this” or ”c” argument to escape local variables. Allocates
internal structure to hold the contents of c within the same scope as ”this”.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public String(StringBuilder b)

Allocates no memory.

Does not allow ”this” to escape local variables. Requires that argument ”b”
reside in a scope that encloses the scope of ”this”. Builds a link from ”this” to
the internal structure of argument b.

Note that the subset implementation of StringBuilder does not mutate existing
buffer contents.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public String(char [] c, int offset, int length)

Does not allow ”this” or ”c” argument to escape local variables. Allocates
internal structure to hold the contents of c within the same scope as ”this”.

Methods

27 January 2017 Version 0.109
Confidentiality: Public Distribution

569

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public char charAt(int index)

Allocates no memory. Does not allow ”this” to escape local variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int compareTo(String str)

Allocates no memory. Does not allow ”this” or ”str” argument to escape local
variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int compareToIgnoreCase(String str)

Allocates no memory. Does not allow ”this” or ”str” argument to escape local
variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.String concat(String arg)

570 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Does not allow ”this” or ”str” argument to escape local variables. Allocates a
String and internal structure to hold the catenation result in the caller’s scope.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public boolean contains(CharSequence arg)

Does not allow ”this” or ”str” argument to escape local variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public boolean contentEquals(CharSequence cs)

Does not allow ”this” or ”str” argument to escape local variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public final boolean endsWith(String suffix)

Allocates no memory. Does not allow ”this” or ”suffix” argument to escape
local variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

27 January 2017 Version 0.109
Confidentiality: Public Distribution

571

Safety-Critical Java Technology Specification

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public boolean equals(Object obj)

Allocates no memory. Does not allow ”this” or ”obj” argument to escape local
variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public boolean equalsIgnoreCase(String str)

Allocates no memory. Does not allow ”this” or ”str” argument to escape local
variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public byte[] getBytes()

Does not allow ”this” to escape local variables. Allocates a byte array in the
caller’s context.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void getChars(int src begin, int src end, char [] dst, int dst begin)

572 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Allocates no memory. Does not allow ”this” or ”dst” argument to escape local
variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int hashCode()

Allocates no memory. Does not allow ”this” to escape local variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int indexOf(int ch, int from index)

Allocates no memory. Does not allow ”this” to escape local variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int indexOf(String str, int from index)

Allocates no memory. Does not allow ”this” or ”str” argument to escape local
variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

27 January 2017 Version 0.109
Confidentiality: Public Distribution

573

Safety-Critical Java Technology Specification

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int indexOf(String str)

Allocates no memory. Does not allow ”this” or ”str” argument to escape local
variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int indexOf(int ch)

Allocates no memory. Does not allow ”this” to escape local variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public boolean isEmpty()

Allocates no memory. Does not allow ”this” argument to escape local vari-
ables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int lastIndexOf(String str)

Allocates no memory. Does not allow ”this” or ”str” argument to escape local
variables.

574 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int lastIndexOf(String str, int from index)

Allocates no memory. Does not allow ”this” or ”str” argument to escape local
variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int lastIndexOf(int ch, int from index)

Allocates no memory. Does not allow ”this” to escape local variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int lastIndexOf(int ch)

Allocates no memory. Does not allow ”this” to escape local variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int length()

27 January 2017 Version 0.109
Confidentiality: Public Distribution

575

Safety-Critical Java Technology Specification

Allocates no memory. Does not allow ”this” to escape local variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public boolean regionMatches(int myoffset, String str, int offset, int len)

Allocates no memory. Does not allow ”this” or ”str” argument to escape local
variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public boolean regionMatches(boolean ignore case,
int myoffset,
String str,
int offset,
int len)

Allocates no memory. Does not allow ”this” or ”str” argument to escape local
variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.String replace(CharSequence target, CharSequence replacement)

Does not allow ”this”, ”target”, or ”replacement” arguments to escape local
variables. Allocates a String and internal structure to hold the result in the
caller’s scope.

576 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.String replace(char oldChar, char newChar)

Does not allow ”this” argument to escape local variables. Allocates a String
and internal structure to hold the result in the caller’s scope.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public final boolean startsWith(String prefix, int toffset)

Allocates no memory. Does not allow ”this” or ”prefix” argument to escape
local variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public final boolean startsWith(String prefix)

Allocates no memory. Does not allow ”this” or ”prefix” argument to escape
local variables.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.String subSequence(int start, int end)

27 January 2017 Version 0.109
Confidentiality: Public Distribution

577

Safety-Critical Java Technology Specification

Allocates a String object in the caller’s scope. Requires that ”this” reside in
a scope that encloses the caller’s scope, since the the returned String retains a
reference to the internal structure of ”this” String.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.String substring(int begin index, int end index)

Allocates a String object in the caller’s scope. Requires that ”this” reside in
a scope that encloses the caller’s scope, since the the returned String retains a
reference to the internal structure of ”this” String.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.String substring(int begin index)

Allocates a String object in the caller’s scope. Requires that ”this” reside in
a scope that encloses the caller’s scope, since the the returned String retains a
reference to the internal structure of ”this” String.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public char[] toCharArray()

Does not allow ”this” to escape local variables. Allocates a char array to hold
the result of this method in the caller’s scope.

578 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.String toLowerCase()

Does not allow ”this” to escape local variables. Allocates a String and internal
structure to hold the result of this method in the caller’s scope.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.String toString()

Does not allow ”this” to escape local variables. Allocates a String and associ-
ated internal ”structure” (e.g. char[]) in caller’s scope. (Note: this semantics is
desired for consistency with overridden implementation of Object.toString()).

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.String toUpperCase()

Does not allow ”this” to escape local variables. Allocates a String and internal
structure to hold the result of this method in the caller’s scope.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,

27 January 2017 Version 0.109
Confidentiality: Public Distribution

579

Safety-Critical Java Technology Specification

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public final java.lang.String trim()

Allocates a String object in the caller’s scope. Requires that ”this” reside in a
scope that encloses the caller’s scope, since the returned String retains a refer-
ence to the internal structure of ”this” String.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static java.lang.String valueOf(float f)

Allocates a String and associated internal ”structure” (e.g. char[]) in caller’s
scope.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static java.lang.String valueOf(int i)

Allocates a String and associated internal ”structure” (e.g. char[]) in caller’s
scope.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static java.lang.String valueOf(long l)

580 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Allocates a String and associated internal ”structure” (e.g. char[]) in caller’s
scope.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static java.lang.String valueOf(Object o)

Allocates a String object in the caller’s scope.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static java.lang.String valueOf(char [] data)

Does not allow ”data” argument to escape local variables. Allocates a String
and associated internal ”structure” (e.g. char[]) in caller’s scope.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static java.lang.String valueOf(char [] data, int offset, int count)

Does not allow ”data” argument to escape local variables. Allocates a String
and associated internal ”structure” (e.g. char[]) in caller’s scope.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})

27 January 2017 Version 0.109
Confidentiality: Public Distribution

581

Safety-Critical Java Technology Specification

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static java.lang.String valueOf(double d)

Allocates a String and associated internal ”structure” (e.g. char[]) in caller’s
scope.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static java.lang.String valueOf(char c)

Allocates a String and associated internal ”structure” (e.g. char[]) in caller’s
scope.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static java.lang.String valueOf(boolean b)

Allocates no memory. Returns a preallocated String residing in the scope of
the String class’s ClassLoader.

B.3.41 CLASS StringBuilder

@SCJAllowed
public final class StringBuilder implements java.lang.Appendable,

java.lang.CharSequence, java.io.Serializable extends java.lang.Object

A mutable sequence of characters.

Constructors

582 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMaySelfSuspend(true)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public StringBuilder()

Does not allow ”this” to escape local variables. Allocates internal structure of
sufficient size to represent 16 characters in the scope of ”this”.

@SCJAllowed
@SCJMaySelfSuspend(true)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public StringBuilder(int length)

Does not allow ”this” to escape local variables. Allocates internal structure of
sufficient size to represent length characters within the scope of ”this”.

@SCJAllowed
@SCJMaySelfSuspend(true)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public StringBuilder(String str)

Does not allow ”this” to escape local variables. Allocates a character internal
structure of sufficient size to represent str.length() + 16 characters within the
scope of ”this”.

@SCJAllowed
@SCJMaySelfSuspend(true)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,

27 January 2017 Version 0.109
Confidentiality: Public Distribution

583

Safety-Critical Java Technology Specification

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public StringBuilder(CharSequence seq)

Does not allow ”this” to escape local variables. Allocates a character internal
structure of sufficient size to represent seq.length() + 16 characters within the
scope of ”this”.

Methods

@SCJAllowed
@SCJMaySelfSuspend(true)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.THIS})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.StringBuilder append(char c)

Does not allow ”this” to escape local variables. If expansion of ”this” String-
Builder’s internal character buffer is necessary, a new char array is allocated
within the scope of ”this”. The new array will be twice the length of the exist-
ing array, plus 1.

@SCJAllowed
@SCJMaySelfSuspend(true)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.THIS})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.StringBuilder append(char [] buf, int offset, int length)

Does not allow ”this” or ”buf” to escape local variables. If expansion of ”this”
StringBuilder’s internal character buffer is necessary, a new char array is allo-
cated within the scope of ”this”. The new array will be twice the length of the
existing array, plus 1.

@SCJAllowed
@SCJMaySelfSuspend(true)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.THIS})

584 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.StringBuilder append(CharSequence cs, int start, int end)

Does not allow ”this” or argument ”cs” to escape local variables. If expansion
of ”this” StringBuilder’s internal character buffer is necessary, a new char array
is allocated within the scope of ”this”. The new array will be twice the length
of the existing array, plus 1.

@SCJAllowed
@SCJMaySelfSuspend(true)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.THIS})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.StringBuilder append(float f)

Does not allow ”this” to escape local variables. If expansion of ”this” String-
Builder’s internal character buffer is necessary, a new char array is allocated
within the scope of ”this”. The new array will be twice the length of the exist-
ing array, plus 1.

@SCJAllowed
@SCJMaySelfSuspend(true)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.THIS})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.StringBuilder append(long l)

Does not allow ”this” to escape local variables. If expansion of ”this” String-
Builder’s internal character buffer is necessary, a new char array is allocated
within the scope of ”this”. The new array will be twice the length of the exist-
ing array, plus 1.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

585

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMaySelfSuspend(true)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.THIS})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.StringBuilder append(String s)

Does not allow ”this” or argument ”s” to escape local variables. If expansion
of ”this” StringBuilder’s internal character buffer is necessary, a new char array
is allocated within the scope of ”this”. The new array will be twice the length
of the existing array, plus 1.

@SCJAllowed
@SCJMaySelfSuspend(true)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.THIS})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.StringBuilder append(Object o)

Does not allow ”this” to escape local variables. If expansion of ”this” String-
Builder’s internal character buffer is necessary, a new char array is allocated
within the scope of ”this”. The new array will be twice the length of the exist-
ing array, plus 1.

Requires that argument ”o” reside in a scope that encloses ”this”

@SCJAllowed
@SCJMaySelfSuspend(true)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.THIS})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.StringBuilder append(int i)

Does not allow ”this” to escape local variables. If expansion of ”this” String-
Builder’s internal character buffer is necessary, a new char array is allocated
within the scope of ”this”. The new array will be twice the length of the exist-
ing array, plus 1.

586 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMaySelfSuspend(true)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.THIS})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.StringBuilder append(double d)

Does not allow ”this” to escape local variables. If expansion of ”this” String-
Builder’s internal character buffer is necessary, a new char array is allocated
within the scope of ”this”. The new array will be twice the length of the exist-
ing array, plus 1.

@SCJAllowed
@SCJMaySelfSuspend(true)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.THIS})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.StringBuilder append(CharSequence cs)

Does not allow ”this” or argument ”cs” to escape local variables. If expansion
of ”this” StringBuilder’s internal character buffer is necessary, a new char array
is allocated within the scope of ”this”. The new array will be twice the length
of the existing array, plus 1.

@SCJAllowed
@SCJMaySelfSuspend(true)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.THIS})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.StringBuilder append(char [] buf)

Does not allow ”this” or ”buf” to escape local variables. If expansion of ”this”
StringBuilder’s internal character buffer is necessary, a new char array is allo-
cated within the scope of ”this”. The new array will be twice the length of the
existing array, plus 1.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

587

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMaySelfSuspend(true)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.THIS})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.StringBuilder append(boolean b)

Does not allow ”this” to escape local variables. If expansion of ”this” String-
Builder’s internal character buffer is necessary, a new char array is allocated
within the scope of ”this”. The new array will be twice the length of the exist-
ing array, plus 1.

@SCJAllowed
@SCJMaySelfSuspend(true)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int capacity()

Allocates no memory. Does not allow ”this” to escape local variables.

@SCJAllowed
@SCJMaySelfSuspend(true)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public char charAt(int index)

Allocates no memory. Does not allow ”this” to escape local variables.

@SCJAllowed
@SCJMaySelfSuspend(true)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.THIS})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void ensureCapacity(int minimum capacity)

588 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Does not allow ”this” to escape local variables. If expansion of ”this” String-
Builder’s internal character buffer is necessary, a new char array is allocated
within the scope of ”this”. The new array will be twice the length of the exist-
ing array, plus 1.

@SCJAllowed
@SCJMaySelfSuspend(true)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void getChars(int srcBegin, int srcEnd, char [] dst, int dstBegin)

Does not allow ”this” or ”dst” to escape local variables.

@SCJAllowed
@SCJMaySelfSuspend(true)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void indexOf(String str, int fromIndex)

Does not allow ”this” or ”dst” to escape local variables.

@SCJAllowed
@SCJMaySelfSuspend(true)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void indexOf(String str)

Does not allow ”this” or ”dst” to escape local variables.

@SCJAllowed
@SCJMaySelfSuspend(true)
@SCJMayAllocate({})

27 January 2017 Version 0.109
Confidentiality: Public Distribution

589

Safety-Critical Java Technology Specification

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void lastIndexOf(String str, int fromIndex)

Does not allow ”this” or ”dst” to escape local variables.

@SCJAllowed
@SCJMaySelfSuspend(true)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void lastIndexOf(String str)

Does not allow ”this” or ”dst” to escape local variables.

@SCJAllowed
@SCJMaySelfSuspend(true)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int length()

Allocates no memory. Does not allow ”this” to escape local variables.

@SCJAllowed
@SCJMaySelfSuspend(true)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void setLength(int new length)
throws java.lang.IndexOutOfBoundsException

Does not allow ”this” to escape local variables.

590 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Throws IndexOutOfBoundsException

@SCJAllowed
@SCJMaySelfSuspend(true)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.CharSequence subSequence(int start, int end)

Does not allow ”this” to escape local variables. Allocates a String in caller’s
scope.

@SCJAllowed
@SCJMaySelfSuspend(true)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.String toString()

Does not allow ”this” to escape local variables. Allocates a String in caller’s
scope.

B.3.42 CLASS StringIndexOutOfBoundsException

@SCJAllowed
public class StringIndexOutOfBoundsException implements java.io.Serializable

extends java.lang.IndexOutOfBoundsException

Thrown by String methods to indicate that an index is either negative or greater
than the size of the string.

Constructors

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,

27 January 2017 Version 0.109
Confidentiality: Public Distribution

591

Safety-Critical Java Technology Specification

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public StringIndexOutOfBoundsException()

Shall not copy ”this” to any instance or static field.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public StringIndexOutOfBoundsException(int index)

Shall not copy ”this” to any instance or static field.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public StringIndexOutOfBoundsException(String msg)

Shall not copy ”this” to any instance or static field. The scope containing the
msg argument must enclose the scope containing ”this”. Otherwise, an Illegal-
AssignmentError will be thrown.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

592 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

B.3.43 CLASS System

@SCJAllowed
public final class System extends java.lang.Object

The System class contains several useful class fields and methods. It cannot be
instantiated.

Constructors

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

protected System()

Allocates no memory.

Methods

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static void arraycopy(Object src,
int srcPos,
Object dest,
int destPos,
int length)

Allocates no memory. Does not allow ”src” or ”dest” arguments to escape local
variables. Allocates no memory.

Requires that the contents of array src enclose array dest.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})

27 January 2017 Version 0.109
Confidentiality: Public Distribution

593

Safety-Critical Java Technology Specification

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static long currentTimeMillis()

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static void exit(int code)

Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static java.lang.String getProperty(String key, String default value)

Allocates no memory.

Unlike traditional J2SE, this method shall not cause a set of system properties
to be created and initialized if not already existing. Any necessary initialization
shall occur during system startup.

returns The value of the property associated with key, or the value of default value
if no property is associated with key. The value returned resides in immortal memory,
or it is the value of default.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,

594 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static java.lang.String getProperty(String key)

Allocates no memory.

Unlike traditional J2SE, this method shall not cause a set of system properties
to be created and initialized if not already existing. Any necessary initialization
shall occur during system startup.

returns the value returned is either null or it resides in immortal memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static int identityHashCode(Object x)

Does not allow argument ”x” to escape local variables. Allocates no memory.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static long nanoTime()

Allocates no memory.

B.3.44 CLASS Thread

@SCJAllowed
public class Thread implements java.lang.Runnable extends java.lang.Object

The Thread class is not directly available to the application in SCJ. However,
some of its static methods are used, and the infrastructure will extend from this
class and hence some of its methods are inherited.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

595

Safety-Critical Java Technology Specification

Methods

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
public static java.lang.Thread.UncaughtExceptionHandler

getDefaultUncaughtExceptionHandler()

Gets the current thread’s default uncaught exeption handler. Allocates no mem-
ory. Does not allow this to escape local variables. The result returned from this
method may reside in scoped memory in some scope that encloses this.

returns the default handler for uncaught exceptions.

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
public java.lang.Thread.UncaughtExceptionHandler getUncaughtExceptionHandler()

Get the thread’s uncaught exception handler.

returns the handler invoked when this thread abruptly terminates due to an un-
caught exception. Allocates no memory. Does not allow ”this” to escape local vari-
ables. The result returned from this method may reside in scoped memory in some
scope that encloses ”this”.

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
public void interrupt()

Interrupts the thread. Allocates no memory. Does not allow this to escape local
variables.

596 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMayAllocate({})
public static boolean interrupted()

Tests whether the thread has been interrupted. The interrupted status of the
thread is cleared by this method. Allocates no memory. Does not allow this to
escape local variables.

returns true if the current thread has been interrupted.

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
public final boolean isAlive()

Tests whether the thread is alive.

returns true if the current thread has not returned from run(). Allocates no memory.
Does not allow this to escape local variables.

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
public boolean isInterrupted()

Tests whether the thread has been interrupted. The interrupted status of the
thread is not affected by this method. Allocates no memory. Does not allow
this to escape local variables.

returns true if a thread has been interrupted.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

597

Safety-Critical Java Technology Specification

@SCJAllowed(javax.safetycritical.annotate.Level.SUPPORT)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void run()

This method is overridden by the application to do the work desired for this
thread. This method should not be directly called by the application.

@SCJPhase({
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJAllowed
public java.lang.String toString()

Gets the name and priority for the thread.

returns a string representation of this thread, including the thread’s name and pri-
ority. Does not allow this to escape local variables. Allocates a String and associated
internal “structure” (e.g. char[]) in caller’s scope.

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
public static void yield()

Causes the thread to yield to other threads that may be ready to run. Causes the
currently executing thread object to temporary pause and allow other threads
to execute.

598 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

B.3.45 CLASS Throwable

@SCJAllowed
public class Throwable implements java.io.Serializable extends

java.lang.Object

The Throwable class is the superclass of all errors and exceptions in the Java
language. Only objects that are instances of this class (or one of its subclasses)
are thrown by the Java Virtual Machine or can be thrown by the Java throw
statement. Similarly, only this class or one of its subclasses can be the argu-
ment type in a catch clause. For the purposes of compile-time checking of
exceptions, Throwable and any subclass of Throwable that is not also a sub-
class of either RuntimeException or Error are regarded as checked exceptions.

Constructors

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public Throwable(String msg, Throwable cause)

Constructs a Throwable object with an optional detail message and an optional
cause. If cause is null, Services.captureStackBacktrace(this) is called to save
the backtrace associated with the current thread. If cause is not null, Ser-
vices.captureStackBacktrace(this) is not called to avoid overwriting the back-
trace associated with the cause.

msg — the detail message for this Throwable object.

cause — the cause of this exception.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public Throwable()

27 January 2017 Version 0.109
Confidentiality: Public Distribution

599

Safety-Critical Java Technology Specification

This constructor behaves the same as calling Throwable(String, Throwable)
with the arguments (null, null).

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public Throwable(Throwable cause)

This constructor behaves the same as calling Throwable(String, Throwable)
with the arguments (null, cause).

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public Throwable(String msg)

This constructor behaves the same as calling Throwable(String, Throwable)
with the arguments (msg, null).

Methods

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.Throwable getCause()

returns a reference to the cause that was supplied as an argument to the con-
structor, or null if no cause was specified at construction time. Performs no memory
allocation.

600 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.String getMessage()

returns a reference to the message that was supplied as an argument to the construc-
tor, or null if no message was specified at construction time. Performs no memory
allocation.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.StackTraceElement[] getStackTrace()

Allocates a StackTraceElement array, StackTraceElement objects, and all in-
ternal structure, including String objects referenced from each StackTraceEle-
ment to represent the stack backtrace information available for the exception
that was most recently associated with this Throwable object.

Each Schedulable maintains a single buffer to contain the stack backtrace in-
formation associated with the most recent invocation of System.captureStack-
Backtrace. The size of this buffer is specified by providing a Schedulable-
SizingParameters object as an argument to construction of the Schedulable.
Most commonly, Services.captureStackBacktrace is invoked from within the
constructor of java.lang.Throwable . getStackTrace returns the contents of this
single backtrace buffer information.

If Services.captureStackBacktrace has been invoked within this thread more
recently than the construction of this Throwable, then the stack trace informa-
tion returned from this method may not represent the stack backtrace for this
particular Throwable.

@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJPhase({

27 January 2017 Version 0.109
Confidentiality: Public Distribution

601

Safety-Critical Java Technology Specification

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void printStackTrace(PrintStream stream)

Print the stack trace of this Throwable to the given stream.

The printed stack trace contains the result of toString() as the first line followed
by one line for each stack trace element that contains the name of the method
or constructor, optionally followed by the source file name and source file line
number when available.

stream — the stream to print to.

@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void printStackTrace()

B.3.46 CLASS UnsatisfiedLinkError

@SCJAllowed
public class UnsatisfiedLinkError implements java.io.Serializable extends

java.lang.RuntimeException

Thrown if the Java Virtual Machine cannot find an appropriate native-language
definition of a method declared native.

Constructors

@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public UnsatisfiedLinkError()

602 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Shall not copy ”this” to any instance or static field.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public UnsatisfiedLinkError(String msg)

Shall not copy ”this” to any instance or static field. The scope containing the
msg argument must enclose the scope containing ”this”. Otherwise, an Illegal-
AssignmentError will be thrown.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

B.3.47 CLASS UnsupportedOperationException

@SCJAllowed
public class UnsupportedOperationException implements java.io.Serializable

extends java.lang.RuntimeException

Thrown to indicate that the requested operation is not supported.

Constructors

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public UnsupportedOperationException()

Shall not copy ”this” to any instance or static field.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

27 January 2017 Version 0.109
Confidentiality: Public Distribution

603

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public UnsupportedOperationException(String msg)

Shall not copy ”this” to any instance or static field. The scope containing the
msg argument must enclose the scope containing ”this”. Otherwise, an Illegal-
AssignmentError will be thrown.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public UnsupportedOperationException(String msg, Throwable t)

Shall not copy ”this” to any instance or static field. The scope containing the
msg argument must enclose the scope containing ”this”. Otherwise, an Illegal-
AssignmentError will be thrown.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public UnsupportedOperationException(Throwable t)

Shall not copy ”this” to any instance or static field. The scope containing the
msg argument must enclose the scope containing ”this”. Otherwise, an Illegal-
AssignmentError will be thrown.

604 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

B.3.48 CLASS VirtualMachineError

@SCJAllowed
public class VirtualMachineError implements java.io.Serializable extends

java.lang.Error

Thrown to indicate that the Java Virtual Machine is broken or has run out of
resources necessary for it to continue operating.

Constructors

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public VirtualMachineError()

Shall not copy ”this” to any instance or static field.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public VirtualMachineError(String msg)

27 January 2017 Version 0.109
Confidentiality: Public Distribution

605

Safety-Critical Java Technology Specification

Shall not copy ”this” to any instance or static field. The scope containing the
msg argument must enclose the scope containing ”this”. Otherwise, an Illegal-
AssignmentError will be thrown.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

B.3.49 CLASS Void

@SCJAllowed
public final class Void extends java.lang.Object

The Void class is an uninstantiable placeholder class to hold a reference to the
Class object representing the Java keyword void.

Fields

@SCJAllowed
public static final java.lang.Class<java.lang.Void> TYPE

606 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Appendix C

Javadoc Description of Package
javax.microedition.io
Package Contents Page

Interfaces
Connection . 608

This is the most basic type of generic connection.
InputConnection . 609

This interface defines the capabilities that an input stream connection
must have.

OutputConnection . 610
This interface defines the capabilities that an output stream connec-
tion must have.

StreamConnection . 611
This interface defines the capabilities that a stream connection must
have.

Classes
ConnectionNotFoundException . 611

This class is used to signal that a connection target cannot be found,
or the protocol type is not supported.

Connector . 612
This class is a factory for use by applications to dynamically create
Connection objects.

607

Safety-Critical Java Technology Specification

C.1 Classes

C.2 Interfaces

C.2.1 INTERFACE Connection

@SCJAllowed
public interface Connection

This is the most basic type of generic connection. Only the close method is
defined. No open method is defined here because opening is always done using
the Connector.open() methods.

Methods

@SCJAllowed
@SCJMaySelfSuspend(true)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void close()

Close the connection.

When a connection has been closed, access to any of its methods that involve
an I/O operation will cause an IOException to be thrown. Closing an already
closed connection has no effect. Streams derived from the connection may be
open when the method is called. Any open streams will cause the connection
to be held open until they themselves are closed. In this latter case access to
the open streams is permitted, but access to the connection is not.

Throws IOException if an I/O error occurs

Throws IllegalArgumentException

Throws ConnectionNotFoundException

608 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

C.2.2 INTERFACE InputConnection

@SCJAllowed
public interface InputConnection extends javax.microedition.io.Connection

This interface defines the capabilities that an input stream connection must
have.

Methods

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.io.DataInputStream openDataInputStream()

Open and return a data input stream for a connection.

returns An input stream.

Throws IOException if an I/O error occurs.

@SCJAllowed
@SCJMaySelfSuspend(true)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.io.InputStream openInputStream()

Open and return an input stream for a connection.

returns An input stream.

Throws IOException if an I/O error occurs.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

609

Safety-Critical Java Technology Specification

C.2.3 INTERFACE OutputConnection

@SCJAllowed
public interface OutputConnection extends javax.microedition.io.Connection

This interface defines the capabilities that an output stream connection must
have.

Methods

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.io.DataOutputStream openDataOutputStream()

Open and return a data output stream for a connection.

returns An output stream.

Throws IOException if an I/O error occurs.

@SCJAllowed
@SCJMaySelfSuspend(true)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.io.OutputStream openOutputStream()

Open and return an output stream for a connection.

returns An output stream.

Throws IOException if an I/O error occurs.

610 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

C.2.4 INTERFACE StreamConnection

@SCJAllowed
public interface StreamConnection extends javax.microedition.io.InputConnection,

javax.microedition.io.OutputConnection

This interface defines the capabilities that a stream connection must have.

In a typical implementation of this interface, all StreamConnections have one
underlying InputStream and one OutputStream. Opening a DataInputStream
counts as opening an InputStream and opening a DataOutputStream counts
as opening an OutputStream. Trying to open another InputStream or Output-
Stream causes an IOException. Trying to open the InputStream or Output-
Stream after they have been closed causes an IOException.

The methods of StreamConnection are not synchronized. The only stream
method that can be called safely in another thread is close.

C.3 Classes

C.3.1 CLASS ConnectionNotFoundException

@SCJAllowed
public class ConnectionNotFoundException extends java.io.IOException

This class is used to signal that a connection target cannot be found, or the
protocol type is not supported.

Constructors

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public ConnectionNotFoundException(String s)

Constructs a ConnectionNotFoundException with the specified detail message.
A detail message is a String that describes this particular exception.

s — the detail message. If s is null, no detail message is provided.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

611

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public ConnectionNotFoundException()

This constructor behaves the same as calling ConnectionNotFoundException(String)
with the arguments (null).

C.3.2 CLASS Connector

@SCJAllowed
public class Connector extends java.lang.Object

This class is a factory for use by applications to dynamically create Connection
objects. The application provides a specified name that this factory will use to
identify an appropriate connection to a device or interface. The specified name
conforms to the URL format defined in RFC 2396. The specified name uses
this format:

{scheme}:[{target}][{params}]

where {scheme} is the name of a protocol such as http .

The {target} is normally some kind of network address or other interface such
as a file designation.

Any {params} are formed as a series of equates of the form ”;x=y”. Example:
”;type=a”.

Within this format, the application may provide an optional second parameter
to the open function. This second parameter is a mode flag to indicate the
intentions of the calling code to the protocol handler. The options here specify
whether the connection will be used to read (READ), write (WRITE), or both
(READ WRITE). Each protocol specifies which flag settings are permitted.
For example, a printer would likely not permit read access, so it might throw
an IllegalArgumentException. If not specified, READ WRITE mode is used by
default. // *

// * In addition, a third parameter may be specified as a boolean flag // * indi-
cating that the application intends to handle timeout exceptions. // * If this flag
is true, the protocol implementation may throw an // * InterruptedIOException
if a timeout condition is detected. // * This flag may be ignored by the protocol

612 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

handler; the // * InterruptedIOException may not actually be thrown. // * If this
parameter is false, the protocol shall not throw // * the InterruptedIOException.

Fields

@SCJAllowed
public static final int READ

Access mode READ.

@SCJAllowed
public static final int READ WRITE

Access mode READ WRITE.

@SCJAllowed
public static final int WRITE

Access mode WRITE.

Methods

@SCJAllowed
@SCJMaySelfSuspend(true)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static javax.microedition.io.Connection open(String name)
throws java.io.IOException, java.lang.SecurityException

Create and open a Connection. This method is the same as calling open(name,
READ WRITE).

name — The URL for the connection.

returns a new Connection object.

Throws IllegalArgumentException if a parameter is invalid.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

613

Safety-Critical Java Technology Specification

Throws ConnectionNotFoundException if the target of the name cannot be found,
or if the requested protocol type is not supported.

Throws IOException if some other kind of I/O error occurs.

Throws SecurityException if access to the protocol handler is prohibited.

@SCJAllowed
@SCJMaySelfSuspend(true)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static javax.microedition.io.Connection open(String name, int mode)
throws java.io.IOException, java.lang.SecurityException

Create and open a Connection with a specified name and access mode.

name — The URL for the connection.

mode — The access mode (i.e., READ, WRITE, or READ WRITE.)

returns A new Connection object.

Throws IllegalArgumentException if a parameter is invalid.

Throws ConnectionNotFoundException if the target of the name cannot be found,
or if the requested protocol type is not supported.

Throws IOException if some other kind of I/O error occurs.

Throws SecurityException if access to the protocol handler is prohibited.

@SCJAllowed
@SCJMaySelfSuspend(true)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static java.io.DataInputStream openDataInputStream(String name)
throws java.io.IOException, java.lang.SecurityException

614 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Create and open a connection input stream.

name — The URL for the connection.

returns A DataInputStream.

Throws IllegalArgumentException if a parameter is invalid.

Throws ConnectionNotFoundException if the target of the name cannot be found,
or if the requested protocol type is not supported.

Throws IOException if some other kind of I/O error occurs.

Throws SecurityException if access to the protocol handler is prohibited.

@SCJAllowed
@SCJMaySelfSuspend(true)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static java.io.DataOutputStream openDataOutputStream(String name)
throws java.io.IOException, java.lang.SecurityException

Create and open a connection output stream.

name — The URL for the connection.

returns A DataOutputStream.

Throws IllegalArgumentException if a parameter is invalid.

Throws ConnectionNotFoundException if the target of the name cannot be found,
or if the requested protocol type is not supported.

Throws IOException if some other kind of I/O error occurs.

Throws SecurityException if access to the protocol handler is prohibited.

@SCJAllowed
@SCJMaySelfSuspend(true)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,

27 January 2017 Version 0.109
Confidentiality: Public Distribution

615

Safety-Critical Java Technology Specification

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static java.io.InputStream openInputStream(String name)
throws java.io.IOException, java.lang.SecurityException

Create and open a connection input stream.

name — The URL for the connection.

returns An InputStream.

Throws IllegalArgumentException if a parameter is invalid.

Throws ConnectionNotFoundException if the target of the name cannot be found,
or if the requested protocol type is not supported.

Throws IOException if some other kind of I/O error occurs.

Throws SecurityException if access to the protocol handler is prohibited.

@SCJAllowed
@SCJMaySelfSuspend(true)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static java.io.OutputStream openOutputStream(String name)
throws java.io.IOException, java.lang.SecurityException

Create and open a connection output stream.

name — The URL for the connection.

returns An OutputStream.

Throws IllegalArgumentException if a parameter is invalid.

Throws ConnectionNotFoundException if the target of the name cannot be found,
or if the requested protocol type is not supported.

Throws IOException if some other kind of I/O error occurs.

Throws SecurityException if access to the protocol handler is prohibited.

616 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Appendix D

Javadoc Description of Package
javax.realtime
Package Contents Page

Interfaces
AsyncTimable . 621

An interface to indicate it they can be associated with a Clock and be
suspended waiting for time events based on that clock.

BoundAsyncBaseEventHandler . 621
An empty interface.

BoundRealtimeExecutor . 621
This interface denotes all RTSJ and SCJ objects that encapsulate
execution.

BoundSchedulable . 622
A marker interface to provide a type safe reference to all schedulables
that are bound to a single underlying thread.

Chronograph . 622
The interface for all devices that support the measurement of time.

Schedulable . 625
In keeping with the RTSJ, SCJ event handlers are schedulable ob-
jects.

StaticThrowable . 626
A marker interface to indicate that a Throwable is intended to be cre-
ated once and reused.

Timable . 630
An interface for RealtimeThread to indicate that it can be associated
with a clock and be suspended waiting for timing events based on that
clock.

617

Safety-Critical Java Technology Specification

Classes
AbsoluteTime . 630

An object that represents a specific point in time given by milliseconds
plus nanoseconds past some point in time fixed by its associated clock.

Affinity . 638
This class is the API for all processor-affinity-related aspects of the
RTSJ that are relevant to the SCJ.

AperiodicParameters . 642
SCJ supports no detection of minimum inter-arrival time violations,
therefore only aperiodic parameters are needed.

AsyncBaseEventHandler . 644
This is the base class for all asynchronous event handlers.

AsyncEventHandler . 644
In SCJ, all asynchronous events have their handlers bound to a thread
when they are created (during the initialization phase).

AsyncLongEventHandler . 645
In SCJ, all asynchronous events must have their handlers bound when
they are created (during the initialization phase).

BoundAsyncEventHandler . 646
The BoundAsyncEventHandler class is a base class inherited from
RTSJ.

BoundAsyncLongEventHandler . 647
The BoundAsyncLongEventHandler is a base class inherited from
RTSJ.

Clock . 648
A clock is a chronograph that also manages time events (also called
alarms) that can be queued on it and that will cause an event handler
to be released when their appointed time is reached.

ConfigurationParameters . 652
Schedulable sizing parameters a way to specify various
implementation-dependent parameters such as Java and native
stack sizes, and to configure the statically allocated ThrowBoundary-
Error associated with a Schedulable.

DeregistrationException . 653
The exception thrown when deregistering an InterruptServiceRoutine

EnclosedType . 654
Represents type size classes for deciding how large a lambda is.

FirstInFirstOutScheduler . 654
A version of javax.realtime.PriorityScheduler where once a thread is
scheduled at a given priority, it runs until it is blocked or is preempted
by a higher priority thread.

618 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

HighResolutionTime . 656
Class HighResolutionTime is the abstract base class for AbsoluteTime
and RelativeTime, and is used to express time with nanosecond accu-
racy.

IllegalAssignmentError . 661
The exception thrown on an attempt to make an illegal assignment.

IllegalSchedulableStateException . 662
The exception thrown when a javax.realtime.Schedulable instance
attempts an operation which is illegal in its current state.

ImmortalMemory . 667
This class represents immortal memory.

InaccessibleAreaException . 667
The exception thrown when a Schedulabe attempts to access a memory
area that is not on the current schedulab’s scope stack.

MemoryAccessError .667
This error is thrown on an attempt to refer to an object in an inacces-
sible MemoryArea.

MemoryArea . 668
All allocation contexts are implemented by memory areas.

MemoryInUseException . 670
The exception thrown when there has been attempt to allocate a range
of physical or virtual memory that is already in use.

MemoryParameters . 671
This class is used to define the maximum amount of memory that a
schedulable object requires in its default memory area (its per-release
private scope memory) and in immortal memory.

MemoryTypeConflictException . 672
This exception is thrown when the PhysicalMemoryManager is given
conflicting specifications for memory.

OffsetOutOfBoundsException . 672
when the constructor of an RawMemoryAccess is given an invalid
address.

PeriodicParameters . 673
This RTSJ class is restricted so that it allows the start time and the
period to be set but not to be subsequently changed or queried.

PriorityParameters . 674
This class is restricted relative to the RTSJ so that it allows the pri-
ority to be created and queried, but not changed.

PriorityScheduler . 675
Priority-based dispatching is supported at Level 1 and Level 2.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

619

Safety-Critical Java Technology Specification

ProcessorAffinityException . 677
Exception used to report processor affinity-related errors.

RealtimeThread . 677
Real-time threads cannot be directly created by an SCJ application.

RegistrationException . 680
The exception thrown when registering an InterruptServiceRoutine

RelativeTime . 681
An object that represents a time interval represented by a number of
milliseconds plus nanoseconds.

ReleaseParameters . 687
This is the base class for the release parameters hierarchy.

Scheduler . 687
The RTSJ supported generic on-line feasibility analysis via the
Scheduler class prior to RTSJ version 2.

SchedulingParameters . 688
The RTSJ potentially allows different schedulers to be supported and
defines this class as the root class for all scheduling parameters.

SizeEstimator . 689
This class maintains a conservative upper bound of the amount of
memory required to store a set of objects.

SizeOutOfBoundsException . 693
To throw when a memory access generated by a raw memory accessor
instance (See RawMemory.

StaticError . 693
...no description...

StaticRuntimeException . 697
...no description...

StaticThrowableStorage . 702
Provide the methods for managing the thread local memory used for
storing the data needed by preallocated throwables, i.

ThrowBoundaryError . 706
...no description...

620 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

D.1 Classes

D.2 Interfaces

D.2.1 INTERFACE AsyncTimable

@SCJAllowed
public interface AsyncTimable extends javax.realtime.Timable

An interface to indicate it they can be associated with a Clock and be suspended
waiting for time events based on that clock.

D.2.2 INTERFACE BoundAsyncBaseEventHandler

@SCJAllowed
public interface BoundAsyncBaseEventHandler extends

javax.realtime.BoundSchedulable

An empty interface. It is required in order to allow references to all bound
handlers.

D.2.3 INTERFACE BoundRealtimeExecutor

@SCJAllowed
public interface BoundRealtimeExecutor

This interface denotes all RTSJ and SCJ objects that encapsulate execution. In
SCJ, this type includes Schedulable and InterruptServiceRoutine objects. It is
used by Affinity to remove the need to have a reference into the javax.realtime.device
package.

Methods

@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMayAllocate({})
@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public javax.realtime.Affinity getAffinity()

27 January 2017 Version 0.109
Confidentiality: Public Distribution

621

Safety-Critical Java Technology Specification

Determine the affinity set instance associated with {@code task}.

returns The associated affinity.

@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION})

@SCJMayAllocate({})
@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public void setAffinity(Affinity set)

throws java.lang.IllegalArgumentException,
javax.realtime.ProcessorAffinityException, java.lang.NullPointerException

Set the processor affinity of a {@code task} to {@code set} with immediate
effect.

set — is the processor affinity

Throws IllegalArgumentException when the intersection of {@code set} the affin-
ity of any {@code ThreadGroup} instance containing {@code task} is empty.

Throws ProcessorAffinityException is thrown when the runtime fails to set the
affinity for platform-specific reasons.

Throws NullPointerException when {@code set} is {@code null}.

D.2.4 INTERFACE BoundSchedulable

@SCJAllowed
public interface BoundSchedulable extends javax.realtime.Schedulable,

javax.realtime.BoundRealtimeExecutor

A marker interface to provide a type safe reference to all schedulables that are
bound to a single underlying thread.

D.2.5 INTERFACE Chronograph

@SCJAllowed
public interface Chronograph

The interface for all devices that support the measurement of time. All Chrono-
graph implementations use time values derived from HighResolutionTime, which
expresses its time in milliseconds and nanoseconds. However, for an application-
defined clock, its time values are not necessarily related to the wall clock time

622 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

in any particular fashion. For instance, they could represent a count of wheel
revolutions or particular event detections. In any case, the time values for ev-
ery clock shall be mapped to milliseconds and nanoseconds in a manner that is
computationally appropriate.

Methods

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.RelativeTime getEpochOffset()

Determines the time on the real-time clock when this chronograph was zero.

returns A newly allocated RelativeTime object with the real-time clock as its
chronograph and containing the time from the real-time clock when this chronograph
was zero.

Throws UnsupportedOperationException when this chronograph does not have the
concept of an Epoch.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.RelativeTime getQueryPrecision(RelativeTime dest)

Gets the precision of the time read, defined as the nominal interval between
ticks.

dest — is an object that, upon return from this method, shall contain the precision
of the time read. If dest is null, this method shall allocate a new RelativeTime instance
to hold the returned value.

returns the value of dest if dest is not null, otherwise a new object representing the
read precision.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

623

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.RelativeTime getQueryPrecision()

Gets the precision of the time read defined as the nominal interval between
ticks. It is the same as calling getQueryPrecision(null).

returns a value representing the read precision.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.AbsoluteTime getTime(AbsoluteTime dest)

Gets the current time of this chronograph. The time represented by the returned
AbsoluteTime represents some time between the invocation of the method and
the return of the method. Note: This method will return an absolute time value
that represents the chronograph’s notion of the current time. For chronographs
that do not measure calendar time this absolute time may not represent a wall
clock time.

dest — The instance of an AbsoluteTime object which will be updated in place.
When dest is not null, the clock association of the dest parameter at the time of the
call is ignored; the returned object will be associated with this chronograph. When
dest is null, nothing happens.

returns the instance of AbsoluteTime passed as a parameter, representing the cur-
rent time, associated with this chronograph, or null when dest is null.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,

624 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.AbsoluteTime getTime()

Gets the current time in a newly allocated object. The time represented by
the returned AbsoluteTime represents some time between the invocation of the
method and the return of the method. Note: This method will return an absolute
time value that represents the chronograph’s notion of the current time. For
chronographs that do not measure calendar time this absolute time may not
represent a wall clock time.

returns a newly allocated instance of AbsoluteTime in the current allocation con-
text, representing the current time. The returned object is associated with this chrono-
graph.

D.2.6 INTERFACE Schedulable

@SCJAllowed
public interface Schedulable extends java.lang.Runnable, javax.realtime.Timable

In keeping with the RTSJ, SCJ event handlers are schedulable objects. How-
ever, the Schedulable interface in the RTSJ is mainly concerned with the get-
ting and setting of the parameter classes. On the contrary, in SCJ, these facili-
ties are not provided. All that is supported in the methods that allow schedula-
ble objects to be interrupted.

Methods

@SCJAllowed
@SCJPhase({javax.safetycritical.annotate.Phase.RUN})
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
public void interrupt()

Behaves as if {@code Thread.interrupt()} were called on the implementation
thread underlying this Schedulable. throws IllegalSchedulableStateException
when {@code this} is not currently releasable, i.e., its start method has not
been called, or it has terminated.

@SCJAllowed
@SCJPhase({javax.safetycritical.annotate.Phase.RUN})
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
public boolean isInterrupted()

27 January 2017 Version 0.109
Confidentiality: Public Distribution

625

Safety-Critical Java Technology Specification

Determines whether or not any interrupt is pending.

returns {@code true} when and only when the interrupt is pending.

D.2.7 INTERFACE StaticThrowable

@SCJAllowed
public interface StaticThrowable

A marker interface to indicate that a Throwable is intended to be created once
and reused. Throwables that implement this interface kept their state in a local
data structure in the owning schedulable object. This means that data is only
valid until the next StaticThrowable is thrown in the that schedulable object.
Having a marker interface makes it easier to provide checking tools to ensure
the proper throw sequence for all Throwables thrown from application code.

See Also: javax.realtime.ConfigurationParameters

Methods

@SCJMayAllocate({})
@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.Throwable fillInStackTrace()

Calls the infrastructure to capture the current stack trace in the schedulable
object’s local memory.

returns a reference to this Throwable.

@SCJMayAllocate({})
@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.Throwable getCause()

626 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

getCause returns the cause of this exception or null when no cause was set
by initCause. The cause is another exception that was caught just before this
exception was thrown.

returns The cause or null.

@SCJMayAllocate({})
@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.String getLocalizedMessage()

Subclasses may override this message to get an error message that is localized
to the default locale.

By default it returns getMessage().

returns the error message

@SCJMayAllocate({})
@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.String getMessage()

get the message describing the problem from the schedulable object’s local
memory.

returns the message given to the constructor or null when no message was set.

@SCJMayAllocate({})
@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.StackTraceElement[] getStackTrace()

27 January 2017 Version 0.109
Confidentiality: Public Distribution

627

Safety-Critical Java Technology Specification

Get the stack trace created by fillInStackTrace for this Throwable as an array
of StackTraceElements.

The stack trace does not need to contain entries for all methods that are actually
on the call stack, the infrastructure may decide to skip some stack trace entries.
Even an empty array is a valid result of this function.

Repeated calls of this function without intervening calls to fillInStackTrace will
return the same result.

When memory areas are used, and this Throwable was allocated in a different
memory area than the current allocation context, the resulting stack trace will
be allocated in either the same memory area this was allocated in or the current
memory area, depending on which is the least deeply nested, thereby creating
objects that are assignment compatible with both areas.

returns array representing the stack trace, it is never null.

@SCJMayAllocate({})
@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.Throwable initCause(Throwable causingThrowable)

Initializes the cause to the given Throwable in the schedulable object’s local
memory.

causingThrowable — the reason why this Throwable gets Thrown.

returns the reference to this Throwable.

Throws IllegalArgumentException when the cause is this Throwable itself.

@SCJMayAllocate({})
@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.Throwable initMessage(String message)

Set the message in the schedulable object’s local storage. This is the only
method that is not also defined in Throwable.

628 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

message — is the text to set.

@SCJMayAllocate({})
@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void printStackTrace(PrintStream stream)

Print the stack trace of this Throwable to the given stream.

The printed stack trace contains the result of toString() as the first line followed
by one line for each stack trace element that contains the name of the method
or constructor, optionally followed by the source file name and source file line
number when available.

stream — the stream to print to.

@SCJMayAllocate({})
@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void printStackTrace()

Print stack trace of this Throwable to System.err.

The printed stack trace contains the result of toString() as the first line followed
by one line for each stack trace element that contains the name of the method
or constructor, optionally followed by the source file name and source file line
number when available.

@SCJMayAllocate({})
@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void setStackTrace(StackTraceElement [] new stackTrace)
throws java.lang.NullPointerException

27 January 2017 Version 0.109
Confidentiality: Public Distribution

629

Safety-Critical Java Technology Specification

This method allows overriding the stack trace that was filled during construc-
tion of this object. It is intended to be used in a serialization context when the
stack trace of a remote exception should be treated like a local.

new stackTrace — the stack trace to replace be used.

Throws NullPointerException when new stackTrace or any element of new stackTrace
is null.

D.2.8 INTERFACE Timable

@SCJAllowed
public interface Timable extends javax.realtime.Releasable

An interface for RealtimeThread to indicate that it can be associated with a
clock and be suspended waiting for timing events based on that clock. This
interface make use of some interfaces and classes in the RTSJ that are not
visible to the SCJ. They are, therefore, not presented in this specification.

D.3 Classes

D.3.1 CLASS AbsoluteTime

@SCJAllowed
public class AbsoluteTime extends javax.realtime.HighResolutionTime

An object that represents a specific point in time given by milliseconds plus
nanoseconds past some point in time fixed by its associated clock. For the
default real-time clock the fixed point is the implementation dependent Epoch.

The correctness of the Epoch as a time base depends on the real-time clock
synchronization with an external world time reference. This representation was
designed to be compatible with the standard Java representation of an absolute
time in the java.util.Date class.

Caution: This class is explicitly unsafe in multithreaded situations when it is
being changed. No synchronization is done. It is assumed that users of this
class who are mutating instances will be doing their own synchronization at a
higher level.

Constructors

630 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
public AbsoluteTime(long millis, int nanos, Chronograph clock)

Construct an AbsoluteTime object with time millisecond and nanosecond com-
ponents past the Epoch for clock.

The value of the AbsoluteTime instance is based on the parameter millis plus
the parameter nanos. The construction is subject to millis and nanos parame-
ters normalization. If there is an overflow in the millisecond component when
normalizing then an IllegalArgumentException will be thrown. If after normal-
ization the time object is negative then the time represented by this is time
before the Epoch.

The clock association is made with the clock parameter.

This constructor requires that the ”clock” parameter resides in a scope that
encloses the scope of the ”this” argument.

millis — The desired value for the millisecond component of this. The actual value
is the result of parameter normalization.

nanos — The desired value for the nanosecond component of this. The actual
value is the result of parameter normalization.

clock — The chronograph providing the association for the newly constructed
object. If clock is null the association is made with the real-time clock.

Throws IllegalArgumentException if there is an overflow in the millisecond com-
ponent when normalizing.

@SCJAllowed
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
public AbsoluteTime(long millis, int nanos)

This constructor behaves the same as calling AbsoluteTime(millis, nanos, null).

27 January 2017 Version 0.109
Confidentiality: Public Distribution

631

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
public AbsoluteTime()

This constructor behaves the same as calling AbsoluteTime(0, 0, null).

@SCJAllowed
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
public AbsoluteTime(Chronograph clock)

This constructor behaves the same as calling AbsoluteTime(0, 0, clock).

@SCJAllowed
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
public AbsoluteTime(AbsoluteTime time)

Make a new AbsoluteTime object from the given AbsoluteTime object. The
new object will have the same clock association as the time parameter.

This constructor requires that the ”time” parameter resides in a scope that en-
closes the scope of the ”this” argument.

time — The AbsoluteTime object which is the source for the copy.

Throws IllegalArgumentException if the time parameter is null.

Methods

@SCJAllowed
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,

632 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
public javax.realtime.AbsoluteTime add(long millis, int nanos, AbsoluteTime dest)

Return an object containing the value resulting from adding millis and nanos to
the values from this and normalizing the result. If dest is not null, the result is
placed there and returned. Otherwise, a new object is allocated for the result.

The result will have the same clock association as this, and the clock associa-
tion of dest is ignored.

An ArithmeticException is thrown if the result does not fit in the normalized
format.

millis — The number of milliseconds to be added to this.

nanos — The number of nanoseconds to be added to this.

dest — If dest is not null, the result is placed there. Otherwise, a new object is
allocated for the result.

returns the value of dest if dest is not null, otherwise a new object representing the
result.

Throws ArithmeticException if the result does not fit in the normalized format.

@SCJAllowed
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
public javax.realtime.AbsoluteTime add(RelativeTime time, AbsoluteTime dest)

Return an object containing the value resulting from adding time to the value
of this and normalizing the result. If dest is not null, the result is placed there
and returned. Otherwise, a new object is allocated for the result.

The clock associated with this and the clock associated with the time parameter
must be the same, and such association is used for the result.

The clock associated with the dest parameter is ignored.

An IllegalArgumentException is thrown if the clock associated with this and the
clock associated with the time parameter are different.

An IllegalArgumentException is thrown if the time parameter is null.

An ArithmeticException is thrown if the result does not fit in the normalized
format.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

633

Safety-Critical Java Technology Specification

time — The time to add to this.

dest — If dest is not null, the result is placed there and returned. Otherwise, a new
object is allocated for the result.

returns the value of dest if dest is not null, otherwise a new object representing the
result.

Throws IllegalArgumentException if the clock associated with this and the clock
associated with the time parameter are different, or when the time parameter is null.

Throws ArithmeticException if the result does not fit in the normalized format.

@SCJAllowed
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
public javax.realtime.AbsoluteTime add(RelativeTime time)

Create a new instance of AbsoluteTime representing the result of adding time
to the value of this and normalizing the result.

The clock associated with this and the clock associated with the time parameter
must be the same, and such association is used for the result.

An IllegalArgumentException is thrown if the clock associated with this and the
clock associated with the time parameter are different.

An IllegalArgumentException is thrown if the time parameter is null.

An ArithmeticException is thrown if the result does not fit in the normalized
format.

time — The time to add to this.

returns A new AbsoluteTime object whose time is the normalization of this plus
the parameter time.

Throws IllegalArgumentException if the clock associated with this and the clock
associated with the time parameter are different, or when the time parameter is null.

Throws ArithmeticException if the result does not fit in the normalized format.

@SCJAllowed
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

634 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
public javax.realtime.AbsoluteTime add(long millis, int nanos)

Create a new object representing the result of adding millis and nanos to the
values from this and normalizing the result. The result will have the same
clock association as this. An ArithmeticException is thrown if the result does
not fit in the normalized format.

millis — The number of milliseconds to be added to this.

nanos — The number of nanoseconds to be added to this.

returns A new AbsoluteTime object whose time is the normalization of this plus
millis and nanos.

Throws ArithmeticException if the result does not fit in the normalized format.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@Override
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int compareTo(AbsoluteTime time)

Compares this object with the specified object for order.

returns a negative integer, zero, or a positive integer as this object is less than,
equal to, or greater than the specified object.

Throws ClassCastException if the time parameter is not of the same class as this.

Throws IllegalArgumentException if the time parameter is not associated with the
same clock as this, or when the time parameter is null.

@SCJAllowed
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
public javax.realtime.RelativeTime subtract(AbsoluteTime time, RelativeTime dest)

27 January 2017 Version 0.109
Confidentiality: Public Distribution

635

Safety-Critical Java Technology Specification

Return an object containing the value resulting from subtracting time from the
value of this and normalizing the result. If dest is not null, the result is placed
there and returned. Otherwise, a new object is allocated for the result. The
clock associated with this and the clock associated with the time parameter
must be the same, and such association is used for the result.

The clock associated with the dest parameter is ignored.

An IllegalArgumentException is thrown if the clock associated with this and
the clock associated with the time parameter are different. An IllegalArgument-
Exception is thrown if the time parameter is null.

An ArithmeticException is thrown if the result does not fit in the normalized
format.

time — The time to subtract from this.

dest — If dest is not null, the result is placed there and returned. Otherwise, a new
object is allocated for the result.

returns the value of dest if dest is not null, otherwise a new object representing the
result.

Throws IllegalArgumentException if the clock associated with this and the clock
associated with the time parameter are different, or when the time parameter is null.

Throws ArithmeticException if the result does not fit in the normalized format.

@SCJAllowed
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
public javax.realtime.AbsoluteTime subtract(RelativeTime time, AbsoluteTime dest)

Return an object containing the value resulting from subtracting time from the
value of this and normalizing the result.

time — The time to subtract from this.

dest — If dest is not null, the result is placed there and returned. Otherwise, a new
object is allocated for the result.

returns the value of dest if dest is not null, otherwise a new object representing the
result.

636 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
public javax.realtime.AbsoluteTime subtract(RelativeTime time)

Create a new instance of AbsoluteTime representing the result of subtracting
time from the value of this and normalizing the result.

The clock associated with this and the clock associated with the time parameter
must be the same, and such association is used for the result.

An IllegalArgumentException is thrown if the clock associated with this and
the clock associated with the time parameter are different. An IllegalArgument-
Exception is thrown if the time parameter is null.

An ArithmeticException is thrown if the result does not fit in the normalized
format.

time — The time to subtract from this.

returns A new AbsoluteTime object whose time is the normalization of this minus
the parameter time.

Throws IllegalArgumentException if the clock associated with this and the clock
associated with the time parameter are different, or when the time parameter is null.

Throws ArithmeticException if the result does not fit in the normalized format.

@SCJAllowed
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
public javax.realtime.RelativeTime subtract(AbsoluteTime time)

Create a new instance of RelativeTime representing the result of subtracting
time from the value of this and normalizing the result.

The clock associated with this and the clock associated with the time parameter
must be the same, and such association is used for the result.

An IllegalArgumentException is thrown if the clock associated with this and the
clock associated with the time parameter are different.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

637

Safety-Critical Java Technology Specification

An IllegalArgumentException is thrown if the time parameter is null.

An ArithmeticException is thrown if the result does not fit in the normalized
format.

time — The time to subtract from this.

returns A new RelativeTime object whose time is the normalization of this minus
the AbsoluteTime parameter time.

Throws IllegalArgumentException if the clock associated with this and the clock
associated with the time parameter are different, or when the time parameter is null.

Throws ArithmeticException if the result does not fit in the normalized format.

D.3.2 CLASS Affinity

@SCJAllowed
public final class Affinity extends java.lang.Object

This class is the API for all processor-affinity-related aspects of the RTSJ that
are relevant to the SCJ. It includes a factory that generates Affinity objects. The
explicit setting of the affinity of SCJ managed schedulables is performed dur-
ing its mission initialisation phase when the managed schedulable is registered.
If no affinity is set, the managed schedulable inherits the affinity of its mission
sequencer.

An affinity set is a set of processors that can be associated with a real-time
thread or async event handler. For SCJ, an affinity set is associated to a man-
aged schedulable. Each implementation supports an array of predefined affinity
sets. They can be used either to reflect the scheduling arrangement of the un-
derlying OS or they can be used by the system designer to impose defaults for,
schedulable objects. An application is only allowed to dynamically create new
affinity sets with cardinality of one. This restriction reflects the concern that
not all operating systems will support multiprocessor affinity sets.

The processor membership of an affinity set is immutable. The schedulable
object associations to an affinity set are mutable.

The internal representation of an affinity set in an Affinity instance is not spec-
ified, but the representation that is used to communicate with this class is a
BitSet where each bit corresponds to a logical processor ID. The relationship
between logical and physical processors is implementation defined, and may
differ from one implementation to another.

The affinity set factory may be used to create affinity sets with a single proces-
sor member at any time, though this operation only supports processor mem-
bers that are valid as the processor affinity for a schedulable object (at the time

638 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

of the affinity set’s creation.) The factory cannot create an affinity set with
more than one processor member, but such affinity sets are supported. They
may be internally created by the SCJ infrastructure, probably at start up time.

The set of affinity sets created by the infrastructure at start up (the prede-
fined set) is visible through the getPredefinedAffinities(Affinity[]) method. In
SCJ the initial mission sequencer has an affinity equal to getPredefinedAffini-
ties(Affinity[])[0]; that is the first element of the returned array

External changes to the set of processors available to the SCJ infrastructure is
likely to cause serious trouble ranging from violation of assumptions underly-
ing schedulability analysis to freezing the entire SCJ program, so if a system
is capable of such manipulation it should not exercise it on SCJ processes.

There is no public constructor for this class. All instances must be generated
by the factory method (generate).

Methods

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static final javax.realtime.Affinity generate(BitSet bitSet)

Returns an Affinity set with the affinity bitSet and no associations.

Platforms that support specific affinity sets will register those Affinity instances
with Affinity. They appear in the arrays returned bygetPredefinedAffinities() and
getPredefinedAffinities(Affinity[]).

bitSet — The set of processors associated with the generated Affinity.

returns The resulting Affinity.

Throws NullPointerException when bitSet is null.

Throws IllegalArgumentException when bitSet does not refer to a valid set of pro-
cessors, where “valid” is defined as the bitset from a pre-defined affinity set, or a
bitset of cardinality one containing a processor from the set returned by getAvail-
ableProcessors(). The definition of “valid set of processors” is system dependent;
however, every set consisting of one valid processor makes up a valid bit set, and
every bit set corresponding to a pre-defined affinity set is valid.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

639

Safety-Critical Java Technology Specification

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static final java.util.BitSet getAvailableProcessors(BitSet dest)

In systems where the set of processors available to a process is dynamic (e.g.,
because of system management operations or because of fault tolerance capa-
bilities), the result of this operation shall reflect the processsors that are cur-
rently allocated to the SCJ infrastructure and are currently available to execute
tasks.

dest — If dest is non-null, use dest for the returned value. If it is null, create a new
BitSet.

returns the set of processors representing the set of processors currently valid for
the bitset argument to generate(BitSet).

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static final java.util.BitSet getAvailableProcessors()

This method is equivalent to getAvailableProcessors(null).

returns the set of processors available to the application.

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static final javax.realtime.Affinity[] getPredefinedAffinities()

Equivalent to invoking getPredefinedAffinitySets(null).

640 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

returns an array of the pre-defined affinity sets.

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static final javax.realtime.Affinity[] getPredefinedAffinities(
Affinity [] dest)

Return an array containing all affinity sets that were predefined by the infras-
tructure.

dest — The destination array, or null.

returns dest or a newly created array if dest was null, populated with references to
the pre-defined affinity sets.

If dest has excess entries, they are filled with null.

Throws IllegalArgumentException when dest is not large enough.

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static final int getPredefinedAffinitiesCount()

Return the minimum array size required to store references to all the predefined
processor affinity sets.

returns the minimum array size required to store references to all the predefined
affinity sets.

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public final java.util.BitSet getProcessors(BitSet dest)

27 January 2017 Version 0.109
Confidentiality: Public Distribution

641

Safety-Critical Java Technology Specification

Return a BitSet representing the processor affinity set of this Affinity.

dest — Set dest to the BitSet value. If dest is null, create a new BitSet in the current
allocation context.

returns a BitSet representing the processor affinity set of this Affinity.

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public final java.util.BitSet getProcessors()

Return a BitSet representing the processor affinity set for this Affinity.

returns a newly created BitSet representing this Affinity.

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public final boolean isProcessorInSet(int processorNumber)

Ask whether a processor is included in this affinity set.

processorNumber — is a logical processor number

returns true if and only if processorNumber is a member of this affinity set.

D.3.3 CLASS AperiodicParameters

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public class AperiodicParameters extends javax.realtime.ReleaseParameters

SCJ supports no detection of minimum inter-arrival time violations, therefore
only aperiodic parameters are needed. Hence the RTSJ SporadicParameters
class is absent. Deadline miss detection is supported.

The RTSJ supports a queue for storing the arrival of release events is order to
enable bursts of events to be handled. This queue is of length 1 in SCJ. The
RTSJ also enables different responses to the queue overflowing. In SCJ the
overflow behavior is to overwrite the pending release event if there is one.

642 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Constructors

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public AperiodicParameters(RelativeTime deadline, AsyncEventHandler missHandler)

Construct a new AperiodicParameters object within the current memory area.

deadline — is an offset from the release time by which the release should finish.
A null deadline indicates that there is no deadline.

missHandler — is the AsynchronousEventHandler to be released if the associated
schedulable object misses its deadline. A null parameter indicates that no handler
should be released.

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public AperiodicParameters()

This constructor behaves the same as calling AperiodicParameters(null, null).

Methods

@SCJAllowed
@Override
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.Object clone()

Create a clone of this AperiodicParameters object.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

643

Safety-Critical Java Technology Specification

D.3.4 CLASS AsyncBaseEventHandler

@SCJAllowed
public abstract class AsyncBaseEventHandler implements

javax.realtime.Schedulable extends java.lang.Object

This is the base class for all asynchronous event handlers. In SCJ, this is an
empty class.

Methods

@SCJAllowed
@SCJPhase({javax.safetycritical.annotate.Phase.RUN})
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
public void interrupt()

Behaves as if {@code Thread.interrupt()} were called on the implementation
thread underlying this Schedulable. throws IllegalSchedulableStateException
when {@code this} is not currently releasable, i.e., its start method has not
been called, or it has terminated.

@SCJAllowed
@SCJPhase({javax.safetycritical.annotate.Phase.RUN})
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
public boolean isInterrupted()

Determines whether or not any interrupt is pending.

returns {@code true} when and only when the interrupt is pending.

D.3.5 CLASS AsyncEventHandler

@SCJAllowed
public class AsyncEventHandler extends javax.realtime.AsyncBaseEventHandler

In SCJ, all asynchronous events have their handlers bound to a thread when
they are created (during the initialization phase). The binding is permanent.
Thus, the AsyncEventHandler constructors are hidden from public view in the
SCJ specification.

Methods

644 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJAllowed(javax.safetycritical.annotate.Level.SUPPORT)
@SCJPhase({javax.safetycritical.annotate.Phase.RUN})
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
public void handleAsyncEvent()

This method must be overridden by the application to provide the handling
code. Note that this method shall not self-suspend when called in a Level 0
mission.

@SCJAllowed(javax.safetycritical.annotate.Level.SUPPORT)
@SCJPhase({javax.safetycritical.annotate.Phase.RUN})
@Override
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
public final void run()

This method is used by the SCJ infrastructure. It should not be called by the
application.

D.3.6 CLASS AsyncLongEventHandler

@SCJAllowed
public class AsyncLongEventHandler extends

javax.realtime.AsyncBaseEventHandler

In SCJ, all asynchronous events must have their handlers bound when they
are created (during the initialization phase). The binding is permanent. Thus,
the AsyncLongEventHandler constructors are hidden from public view in the
SCJ specification. This class differs from AsyncEventHandler in that when it
is fired, a long integer is provided for use by the released event handler(s).

Methods

@SCJAllowed(javax.safetycritical.annotate.Level.SUPPORT)
@SCJPhase({javax.safetycritical.annotate.Phase.RUN})
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,

27 January 2017 Version 0.109
Confidentiality: Public Distribution

645

Safety-Critical Java Technology Specification

javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
public void handleAsyncEvent(long data)

This method must be overridden by the application to provide the handling
code. Note that this method shall not self-suspend when called in a Level 0
mission.

@SCJAllowed(javax.safetycritical.annotate.Level.SUPPORT)
@SCJPhase({javax.safetycritical.annotate.Phase.RUN})
@Override
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
public final void run()

This method is used by the SCJ infrastructure. It should not be called by the
application.

D.3.7 CLASS BoundAsyncEventHandler

@SCJAllowed
public class BoundAsyncEventHandler implements

javax.realtime.BoundAsyncBaseEventHandler extends
javax.realtime.AsyncEventHandler

The BoundAsyncEventHandler class is a base class inherited from RTSJ. None
of its methods or constructors are publicly available.

Methods

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMayAllocate({})
@Override
public javax.realtime.Affinity getAffinity()

646 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION})

@SCJMayAllocate({})
@Override
public void setAffinity(Affinity set)

throws java.lang.IllegalArgumentException,
javax.realtime.ProcessorAffinityException, java.lang.NullPointerException

D.3.8 CLASS BoundAsyncLongEventHandler

@SCJAllowed
public class BoundAsyncLongEventHandler implements

javax.realtime.BoundAsyncBaseEventHandler extends
javax.realtime.AsyncLongEventHandler

The BoundAsyncLongEventHandler is a base class inherited from RTSJ. None
of its methods or constructors are publicly available. This class differs from
BoundAsyncEventHandler in that when it is released, a long integer is provided
for use by the released event handler(s).

Methods

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION})

@SCJMayAllocate({})
@Override
public javax.realtime.Affinity getAffinity()

Note: since this is only used by infrastructure, we don’t specify the Memor-
yAreaEncloses relationships. public BoundAsyncLongEventHandler(SchedulingParameters
scheduling, ReleaseParameters release, MemoryParameters memory, Memo-
ryArea area, ProcessingGroupParameters group, boolean noheap, Runnable
logic) { super(scheduling, release, memory, area, group, noheap, logic); }

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,

27 January 2017 Version 0.109
Confidentiality: Public Distribution

647

Safety-Critical Java Technology Specification

javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMayAllocate({})
@Override
public void setAffinity(Affinity set)

throws java.lang.IllegalArgumentException,
javax.realtime.ProcessorAffinityException, java.lang.NullPointerException

D.3.9 CLASS Clock

@SCJAllowed
public abstract class Clock implements javax.realtime.Chronograph extends

java.lang.Object

A clock is a chronograph that also manages time events (also called alarms)
that can be queued on it and that will cause an event handler to be released
when their appointed time is reached.

The Clock instance returned by getRealtimeClock may be used in any context
that requires a clock.

HighResolutionTime instances that use application-defined clocks are valid for
all APIs in SCJ that take HighResolutionTime time types as parameters.

Constructors

@SCJMayAllocate({})
@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public Clock()

Constructor for the abstract class.

Methods

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,

648 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

protected abstract void clearAlarm()

Implemented by subclasses to cancel the current outstanding alarm.

@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public abstract javax.realtime.RelativeTime getDrivePrecision()

Gets the precision of the clock for driving events, It is the same as calling
getDrivePrecision(null) .

returns a value representing the drive precision.

@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public abstract javax.realtime.RelativeTime getDrivePrecision(RelativeTime dest)

Gets the precision of the clock for driving events, defined as the nominal inter-
val between ticks that can trigger an event. This is the resolution that shall be
used for all scheduling decisions based on this clock. The result may be larger
than that of getQueryPrecision() .

dest — returns the precision in dest. When dest is null, it allocates a new Relative-
Time instance to hold the returned value.

returns the value of dest if dest is not null, otherwise a new object representing the
drive precision.

@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJMaySelfSuspend(false)
@SCJPhase({

27 January 2017 Version 0.109
Confidentiality: Public Distribution

649

Safety-Critical Java Technology Specification

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public final javax.realtime.RelativeTime getEpochOffset()

Determines the time on the real-time clock when this clcok was zero.

returns A newly allocated RelativeTime object in the current execution context
with the real-time clock as its chronograph and containing the time when this chrono-
graph was zero.

Throws UnsupportedOperationException when the clock does not have the concept
of Epoch.

@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public abstract javax.realtime.RelativeTime getQueryPrecision()

Gets the precision of the time read, defined as the nominal interval between
ticks. It is the same as calling getQueryPrecision(null) .

returns the value representing the read precision.

@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public abstract javax.realtime.RelativeTime getQueryPrecision(RelativeTime dest)

Gets the precision of the time read, defined as the nominal interval between
ticks. The result may be smaller than that of getDrivePrecision(), when the
clock is tied to some system tick for releasing time events.

dest — returns the relative time value in dest. When dest is null, allocate a new
RelativeTime instance to hold the returned value.

returns the value of dest if dest is not null, otherwise a new object representing the
read precision.

650 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static javax.realtime.Clock getRealtimeClock()

There is always at least one clock object available: the system real-time clock.
This is the default Clock.

returns the singleton instance of the default Clock.

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public abstract javax.realtime.AbsoluteTime getTime(AbsoluteTime dest)

Gets the current time in an existing object. The time represented by the given
AbsoluteTime is changed at some time between the invocation of the method
and the return of the method. This method will return an absolute time value
that represents the clock’s notion of the current absolute time. For clocks that
do not measure calendar time, this absolute time may not represent a wall clock
time.

dest — The instance of AbsoluteTime object that will be updated in place. The
clock association of the dest parameter is overwritten. When dest is not null the
returned object is associated with this clock. If dest is null, then nothing happens.

returns the instance of AbsoluteTime passed as a parameter, representing the cur-
rent time, associated with this clock, or null if dest was null.

@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public final javax.realtime.AbsoluteTime getTime()

27 January 2017 Version 0.109
Confidentiality: Public Distribution

651

Safety-Critical Java Technology Specification

Gets the current time in a newly allocated object. This method will return an
absolute time value that represents the clock’s notion of an absolute time. For
clocks that do not measure calendar time, this absolute time may not represent
a wall clock time.

returns a newly allocated instance of AbsoluteTime in the current allocation con-
text, representing the current time. The returned object is associated with this clock.

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

protected abstract void setAlarm(long milliseconds, int nanoseconds)

Implemented by subclasses to set the time for the next alarm. If there is an
alarm outstanding when called, it overwrites the old time. The milliseconds
and nanoseconds are interpreted as an absolute time.

milliseconds — of the next alarm.

nanoseconds — of the next alarm.

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

protected final void triggerAlarm()

Called by a subclass to signal that the time of the next alarm has been reached.

D.3.10 CLASS ConfigurationParameters

@SCJAllowed
public class ConfigurationParameters extends java.lang.Object

Schedulable sizing parameters a way to specify various implementation-dependent
parameters such as Java and native stack sizes, and to configure the statically
allocated ThrowBoundaryError associated with a Schedulable.

Note that these parameters are immutable.

652 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Constructors

@SCJAllowed
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
public ConfigurationParameters(int messageLength,

int stackTraceLength,
long [] sizes)

Creates a parameter object for initializing the state of a Schedulable. The pa-
rameters provide the data for this initialization.

messageLength — Memory space in bytes dedicated to the message associated
with Schedulable objects created with these parameters’ preallocated exceptions,
plus references to the method names/identifiers in the stack trace. The value 0 in-
dicates that no message should be stored. The value of -1 uses the system default.

stackTraceLength — Length of the stack trace buffer dedicated to Schedulable ob-
jects created with these parameters’ preallocated exceptions, in frames. The amount
of space this requires is implementation-specific. The value 0 indicates that no stack
trace should be stored. The value of -1 uses the system default.

sizes — An array of implementation-specific values dictating memory parameters
for Schedulable objects created with these parameters, such as maximum Java and
native stack sizes. The sizes array will not be stored in the constructed object.

Throws IllegalArgumentException if messageLength or stackTraceLength is less
than -1.

D.3.11 CLASS DeregistrationException

@SCJAllowed
public class DeregistrationException extends

javax.realtime.StaticRuntimeException

The exception thrown when deregistering an InterruptServiceRoutine

Methods

@SCJMayAllocate({})
@SCJAllowed
@SCJMaySelfSuspend(false)

27 January 2017 Version 0.109
Confidentiality: Public Distribution

653

Safety-Critical Java Technology Specification

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static javax.realtime.DeregistrationException get()

Get the preallocated version of this Throwable. Allocation is done in memory
that acts like javax.realtime.ImmortalMemory . The message and cause are
cleared and the stack trace is filled out.

returns the preallocated exception

D.3.12 CLASS EnclosedType

@SCJAllowed
public final enum EnclosedType

Represents type size classes for deciding how large a lambda is. This size
is dependent on what variables the lambda expression contains in its closure,
i.e., it encloses. It is used by the {@code reserveLambda} methods in javax-
.realtime.SizeEstimator .

D.3.13 CLASS FirstInFirstOutScheduler

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public class FirstInFirstOutScheduler extends javax.realtime.PriorityScheduler

A version of javax.realtime.PriorityScheduler where once a thread is sched-
uled at a given priority, it runs until it is blocked or is preempted by a higher
priority thread. When preempted, it remains the next thread ready for its prior-
ity. This is the default scheduler for realtime tasks. It represents the required
(by the RTSJ) priority-based scheduler. The default instance is the base sched-
uler which does fixed priority, preemptive scheduling.

Methods

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@Override
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,

654 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int getMaxPriority()

Obtain the maximum priority available for a schedulable managed by this
scheduler.

returns The value of the maximum priority.

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@Override
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int getMinPriority()

Obtain the minimum priority available for a schedulable managed by this sched-
uler.

returns The minimum priority used by this scheduler.

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@Override
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int getNormPriority()

Obtain the normal priority available for a schedulable managed by this sched-
uler.

returns The value of the normal priority.

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

27 January 2017 Version 0.109
Confidentiality: Public Distribution

655

Safety-Critical Java Technology Specification

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static javax.realtime.FirstInFirstOutScheduler instance()

Obtain a reference to the distinguished instance of {@code PriorityScheduler}
which is the system’s base scheduler.

returns A reference to the distinguished instance {@code PriorityScheduler}.

D.3.14 CLASS HighResolutionTime

@SCJAllowed
public abstract class HighResolutionTime<T extends HighResolutionTime<T>>

implements java.lang.Comparable<T>, java.lang.Cloneable extends
java.lang.Object

Class HighResolutionTime is the abstract base class for AbsoluteTime and Rel-
ativeTime, and is used to express time with nanosecond accuracy. When an API
is defined that has an HighResolutionTime as a parameter, it can take either an
absolute or relative time and will do something appropriate.

A time object in normalized form represents negative time if both components
are nonzero and negative, or one is nonzero and negative and the other is zero.
For add and subtract negative values behave as they do in arithmetic.

Caution: This class is explicitly unsafe in multithreaded situations when it is
being changed. No synchronization is done. It is assumed that users of this
class who are mutating instances will be doing their own synchronization at a
higher level.

Methods

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int compareTo(T time)

Compares thisHighResolutionTime with the specified HighResolutionTime time.

656 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

time — Compares with the time of this.

Throws ClassCastException if the time parameter is not of the same class as this.

Throws IllegalArgumentException if the time parameter is not associated with the
same clock as this, or when the time parameter is null.

returns a negative integer, zero, or a positive integer as this object is less than,
equal to, or greater than time.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public boolean equals(T time)

Returns true if the argument time has the same type and values as this.

Equality includes clock association.

time — Value compared to this.

returns true if the parameter time is of the same type and has the same values as
this.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public boolean equals(Object object)

Returns true if the argument object has the same type and values as this.

Equality includes clock association.

object — Value compared to this.

returns true if the parameter object is of the same type and has the same values as
this.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

657

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.Chronograph getChronograph()

Get a reference to the javax.realtime.Chronograph associated with this.

returns a reference to the javax.realtime.Chronograph associated with this.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.Clock getClock()

Returns a reference to the clock associated with this.

returns a reference to the clock associated with this.

Throws UnsupportedOperationException if the time is based on a javax.realtime-
.Chronograph that is not a javax.realtime.Clock .

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public final long getMilliseconds()

Returns the milliseconds component of this.

returns the milliseconds component of the time represented by this.

658 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public final int getNanoseconds()

Returns the nanoseconds component of this.

returns the nanoseconds component of the time represented by this.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int hashCode()

Returns a hash code for this object in accordance with the general contract of
hashCode. Time objects that are equals(HighResolutionTime) have the same
hash code.

returns the hashcode value for this instance.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public T set(long millis)

Sets the millisecond component of this to the given argument, and the nanosec-
ond component of this to 0. This method is equivalent to set(millis, 0).

millis — The desired value of the millisecond component of this.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

659

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public T set(long millis, int nanos)

Sets the millisecond and nanosecond components of this. The setting is subject
to parameter normalization. If there is an overflow in the millisecond compo-
nent while normalizing then an IllegalArgumentException will be thrown.

millis — The desired value for the millisecond component of this before normal-
ization.

nanos — The desired value for the nanosecond component of this before normal-
ization.

Throws IllegalArgumentException if there is an overflow in the millisecond com-
ponent while normalizing.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public T set(T time)

Change the value represented by this to that of the given time. If the time pa-
rameter is null this method will throw IllegalArgumentException. If the type
of this and the type of the given time are not the same, this method will throw
ClassCastException. The clock associated with this is set to be the clock asso-
ciated with the time parameter.

time — The new value for this.

Throws IllegalArgumentException if the parameter time is null.

Throws ClassCastException if the type of this and the type of the parameter time
are not the same.

660 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)
@SCJMayAllocate({})
@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static boolean waitForObject(Object target, HighResolutionTime<?> time)
throws java.lang.InterruptedException

Behaves exactly like target.wait() but with the enhancement that it waits with a
precision of HighResolutionTime.

The wait time may be relative or absolute, and it is controlled by the clock
associated with it. If the wait time is relative, then the calling thread is blocked
waiting on target for the amount of time given by time, and measured by the
associated clock. If the wait time is absolute, then the calling thread is blocked
waiting on target until the indicated time value is reached by the associated
clock.

target — The object on which to wait. The current thread must have a lock on the
object.

time — The time for which to wait. If it is RelativeTime(0,0) then wait indefinitely.
If it is null then wait indefinitely.

returns true if a notify was received before the timeout, False otherwise.

Throws InterruptedException if this schedulable object is interrupted by Realtime-
Thread.interrupt.

Throws IllegalArgumentException if time represents a relative time less than zero.

Throws IllegalMonitorStateException if target is not locked by the caller.

Throws UnsupportedOperationException if the wait operation is not supported
using the clock associated with time.

See Also: java.lang.Object.wait(), java.lang.Object.wait(long), java.lang.Object.wait(long,int)

D.3.15 CLASS IllegalAssignmentError

@SCJAllowed
public class IllegalAssignmentError implements java.io.Serializable extends

javax.realtime.StaticError

27 January 2017 Version 0.109
Confidentiality: Public Distribution

661

Safety-Critical Java Technology Specification

The exception thrown on an attempt to make an illegal assignment. For ex-
ample, this will be thrown on any attempt to assign a reference to an object in
scoped memory to a field of an object in immortal memory.

Methods

@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static javax.realtime.IllegalAssignmentError get()

Obtain the singleton of this static throwable. It is prepared for immediate
throwing.

returns the single instance of this throwable.

D.3.16 CLASS IllegalSchedulableStateException

@SCJAllowed
public class IllegalSchedulableStateException implements

javax.realtime.StaticThrowable extends java.lang.IllegalThreadStateException

The exception thrown when a javax.realtime.Schedulable instance attempts
an operation which is illegal in its current state. For instance, changing param-
eters on such instances are only allowed when the scheduler is not active or the
new parameters are consistent with the current scheduler.

Methods

@SCJMayAllocate({})
@SCJAllowed
@SCJMaySelfSuspend(false)
@Override
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.Throwable fillInStackTrace()

662 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Calls the infrastructure to capture the current stack trace in the schedulable
object’s local memory.

returns a reference to this Throwable.

@SCJMayAllocate({})
@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static javax.realtime.IllegalSchedulableStateException get()

Get the preallocated version of this Throwable. Allocation is done in memory
that acts like javax.realtime.ImmortalMemory . The message and cause are
cleared and the stack trace is filled out.

returns the preallocated exception

@SCJMayAllocate({})
@SCJAllowed
@SCJMaySelfSuspend(false)
@Override
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.Throwable getCause()

getCause returns the cause of this exception or null when no cause was set
by initCause. The cause is another exception that was caught just before this
exception was thrown.

returns The cause or null.

@SCJMayAllocate({})
@SCJAllowed
@SCJMaySelfSuspend(false)
@Override
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.String getLocalizedMessage()

27 January 2017 Version 0.109
Confidentiality: Public Distribution

663

Safety-Critical Java Technology Specification

Subclasses may override this message to get an error message that is localized
to the default locale.

By default it returns getMessage().

returns the error message

@SCJMayAllocate({})
@SCJAllowed
@SCJMaySelfSuspend(false)
@Override
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.String getMessage()

get the message describing the problem from the schedulable object’s local
memory.

returns the message given to the constructor or null when no message was set.

@SCJMayAllocate({})
@SCJAllowed
@SCJMaySelfSuspend(false)
@Override
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.StackTraceElement[] getStackTrace()

Get the stack trace created by fillInStackTrace for this Throwable as an array
of StackTraceElements.

The stack trace does not need to contain entries for all methods that are actually
on the call stack, the infrastructure may decide to skip some stack trace entries.
Even an empty array is a valid result of this function.

Repeated calls of this function without intervening calls to fillInStackTrace will
return the same result.

When memory areas are used, and this Throwable was allocated in a different
memory area than the current allocation context, the resulting stack trace will
be allocated in either the same memory area this was allocated in or the current
memory area, depending on which is the least deeply nested, thereby creating
objects that are assignment compatible with both areas.

664 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

returns array representing the stack trace, it is never null.

@SCJMayAllocate({})
@SCJAllowed
@SCJMaySelfSuspend(false)
@Override
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.Throwable initCause(Throwable causingThrowable)

Initializes the cause to the given Throwable in the schedulable object’s local
memory.

causingThrowable — the reason why this Throwable gets Thrown.

returns the reference to this Throwable.

Throws IllegalArgumentException when the cause is this Throwable itself.

@SCJMayAllocate({})
@SCJAllowed
@SCJMaySelfSuspend(false)
@Override
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.Throwable initMessage(String message)

Set the message in the schedulable object’s local storage. This is the only
method that is not also defined in Throwable.

message — is the text to set.

@SCJMayAllocate({})
@SCJAllowed
@SCJMaySelfSuspend(false)
@Override
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void printStackTrace(PrintStream stream)

27 January 2017 Version 0.109
Confidentiality: Public Distribution

665

Safety-Critical Java Technology Specification

Print stack trace of this Throwable to stream.

The printed stack trace contains the result of toString() as the first line followed
by one line for each stack trace element that contains the name of the method
or constructor, optionally followed by the source file name and source file line
number when available.

@SCJMayAllocate({})
@SCJAllowed
@SCJMaySelfSuspend(false)
@Override
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void printStackTrace()

Print stack trace of this Throwable to System.err.

The printed stack trace contains the result of toString() as the first line followed
by one line for each stack trace element that contains the name of the method
or constructor, optionally followed by the source file name and source file line
number when available.

@SCJMayAllocate({})
@SCJAllowed
@SCJMaySelfSuspend(false)
@Override
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void setStackTrace(StackTraceElement [] new stackTrace)
throws java.lang.NullPointerException

This method allows overriding the stack trace that was filled during construc-
tion of this object. It is intended to be used in a serialization context when the
stack trace of a remote exception should be treated like a local.

new stackTrace — the stack trace to replace be used.

Throws NullPointerException when new stackTrace or any element of new stackTrace
is null.

666 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

D.3.17 CLASS ImmortalMemory

@SCJAllowed
public final class ImmortalMemory extends javax.realtime.MemoryArea

This class represents immortal memory. Objects allocated in immortal mem-
ory are never reclaimed during the lifetime of the application. The singleton
instance of this class is created and managed by the infrastructure, so no appli-
cation visible constructors or methods are provided.

D.3.18 CLASS InaccessibleAreaException

@SCJAllowed
public class InaccessibleAreaException implements java.io.Serializable extends

javax.realtime.StaticRuntimeException

The exception thrown when a Schedulabe attempts to access a memory area
that is not on the current schedulab’s scope stack. TBD *** Andy: Is this
possible in SCJ??

Methods

@SCJMayAllocate({})
@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static javax.realtime.InaccessibleAreaException get()

Get the preallocated version of this Throwable. Allocation is done in memory
that acts like javax.realtime.ImmortalMemory . The message and cause are
cleared and the stack trace is filled out.

returns the preallocated exception

D.3.19 CLASS MemoryAccessError

@SCJAllowed
public class MemoryAccessError extends javax.realtime.StaticError

This error is thrown on an attempt to refer to an object in an inaccessible Mem-
oryArea.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

667

Safety-Critical Java Technology Specification

Constructors

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public MemoryAccessError()

A constructor for {@code MemoryAccessError}

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public MemoryAccessError(String description)

D.3.20 CLASS MemoryArea

@SCJAllowed
public abstract class MemoryArea extends java.lang.Object

All allocation contexts are implemented by memory areas. This is the base
class for all memory areas.

Methods

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

668 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static javax.realtime.MemoryArea getMemoryArea(Object object)

Get the memory area in which object is allocated,

returns the memory area

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public boolean mayHoldReferenceTo(Object value)

Determine whether an object allocated in the memory area represented by this
can hold a reference to the object value.

returns true when value can be assigned to a field of an object in this memory area,
otherwise false.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public boolean mayHoldReferenceTo()

Determine whether an object allocated in the memory area represented by this
can hold a reference to an object allocated in the current memory area.

returns true when an object in the current memory area can be assigned to a field
of an object in this memory area, otherwise false.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

669

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public long size()

The size of a memory area is memoryConsumed() + memoryRemaining().

returns the total size of this memory area.

D.3.21 CLASS MemoryInUseException

@SCJAllowed
public class MemoryInUseException extends

javax.realtime.StaticRuntimeException

The exception thrown when there has been attempt to allocate a range of phys-
ical or virtual memory that is already in use.

Methods

@SCJMayAllocate({})
@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static javax.realtime.MemoryInUseException get()

Get the preallocated version of this Throwable. Allocation is done in memory
that acts like javax.realtime.ImmortalMemory . The message and cause are
cleared and the stack trace is filled out.

returns the preallocated exception

670 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

D.3.22 CLASS MemoryParameters

@SCJAllowed
public class MemoryParameters implements java.lang.Cloneable,

java.io.Serializable extends java.lang.Object

This class is used to define the maximum amount of memory that a schedu-
lable object requires in its default memory area (its per-release private scope
memory) and in immortal memory. The SCJ restricts this class relative to the
RTSJ such that values can be created but not queried or changed.

Fields

@SCJAllowed
public static final long UNLIMITED

@SCJAllowed
public static final long UNREFERENCED

Constructors

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public MemoryParameters(long maxInitialArea, long maxImmortal)

Create a MemoryParameters object with the given maximum values.

maxInitialArea — is the maximum amount of memory in the per-release private
memory area.

maxImmortal — is the maximum amount of memory in the immortal memory area
required by the associated schedulable object.

Throws IllegalArgumentException if any value is negative, or if NO MAX is passed
as the value of maxMemoryArea or maxImmortal.

Methods

@SCJAllowed
@Override

27 January 2017 Version 0.109
Confidentiality: Public Distribution

671

Safety-Critical Java Technology Specification

@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.Object clone()

Create a clone of this MemoryParameters object.

D.3.23 CLASS MemoryTypeConflictException

@SCJAllowed
public class MemoryTypeConflictException extends

javax.realtime.StaticRuntimeException

This exception is thrown when the PhysicalMemoryManager is given conflict-
ing specifications for memory. The conflict can be between types in an array of
memory type specifiers, or between the specifiers and a specified base address.

Methods

@SCJMayAllocate({})
@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static javax.realtime.MemoryTypeConflictException get()

Get the preallocated version of this Throwable. Allocation is done in memory
that acts like javax.realtime.ImmortalMemory . The message and cause are
cleared and the stack trace is filled out.

returns the preallocated exception

D.3.24 CLASS OffsetOutOfBoundsException

@SCJAllowed
public class OffsetOutOfBoundsException extends

javax.realtime.StaticRuntimeException

672 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

when the constructor of an RawMemoryAccess is given an invalid address.

Methods

@SCJMayAllocate({})
@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static javax.realtime.OffsetOutOfBoundsException get()

Get the preallocated version of this Throwable. Allocation is done in memory
that acts like javax.realtime.ImmortalMemory . The message and cause are
cleared and the stack trace is filled out.

returns the preallocated exception

D.3.25 CLASS PeriodicParameters

@SCJAllowed
public class PeriodicParameters extends javax.realtime.ReleaseParameters

This RTSJ class is restricted so that it allows the start time and the period to
be set but not to be subsequently changed or queried.

Constructors

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public PeriodicParameters(RelativeTime start,
RelativeTime period,
RelativeTime deadline,
AsyncEventHandler missHandler)

Construct a new PeriodicParameters object within the current memory area.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

673

Safety-Critical Java Technology Specification

start — is time of the first release of the associated schedulable object relative to
the start of the mission. A null value defaults to an offset of zero milliseconds.

period — is the time between each release of the associated schedulable object.

deadline — is an offset from the release time by which the release should finish.
A null deadline indicates the same value as the period.

missHandler — is the AperiodicEventHandler to be released if the associated
schedulable object misses its deadline. A null parameter indicates that no handler
should be released.

Throws IllegalArgumentException if the period is null or its time value is not
greater than zero, or if the time value of deadline is not greater than zero, or if the
clock associated with the start, period and deadline parameters is not the same.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public PeriodicParameters(RelativeTime start, RelativeTime period)

This constructor behaves the same as calling PeriodicParameters(start, period,
null, null).

Methods

@SCJAllowed
@Override
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.Object clone()

Create a clone of this PeriodicParameters object.

D.3.26 CLASS PriorityParameters

674 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJAllowed
public class PriorityParameters extends javax.realtime.SchedulingParameters

This class is restricted relative to the RTSJ so that it allows the priority to be
created and queried, but not changed.

In SCJ the range of priorities is separated into software priorities and hardware
priorities (see Section 4.7.5). Hardware priorities have higher values than soft-
ware priorities. Schedulable objects can be assigned only software priorities.
Ceiling priorities can be either software or hardware priorities.

Constructors

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public PriorityParameters(int priority)

Create a PriorityParameters object specifying the given priority.

priority — is the integer value of the specified priority.

Throws IllegalArgumentException if priority is not in the range of supported prior-
ities.

Methods

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int getPriority()

returns the integer priority value that was specified at construction time.

D.3.27 CLASS PriorityScheduler

27 January 2017 Version 0.109
Confidentiality: Public Distribution

675

Safety-Critical Java Technology Specification

@SCJAllowed
public abstract class PriorityScheduler extends javax.realtime.Scheduler

Priority-based dispatching is supported at Level 1 and Level 2. The only access
to the priority scheduler is for obtaining the minimum and maximum priority.

Methods

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public abstract int getMaxPriority()

Gets the maximum software real-time priority supported by this scheduler.

returns the maximum priority supported by this scheduler.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public abstract int getMinPriority()

Gets the minimum software real-time priority supported by this scheduler.

returns the minimum priority supported by this scheduler.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public abstract int getNormPriority()

returns the normal software real-time priority supported by this scheduler.

676 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

D.3.28 CLASS ProcessorAffinityException

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public class ProcessorAffinityException extends

javax.realtime.StaticCheckedException

Exception used to report processor affinity-related errors.

Methods

@SCJMayAllocate({})
@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static javax.realtime.ProcessorAffinityException get()

Obtain the singleton of this static throwable. It is prepared for immediate
throwing.

returns the single instance of this throwable.

D.3.29 CLASS RealtimeThread

@SCJAllowed
public class RealtimeThread implements javax.realtime.BoundSchedulable,

javax.realtime.AsyncTimable extends java.lang.Thread

Real-time threads cannot be directly created by an SCJ application. However,
they are needed by the infrastructure to support ManagedThreads.

The class declares some static methods that can be used by all managed schedu-
lables. For example, the spin method can be used at Level 0, hence the class is
visible at Level 0.

Methods

@SCJAllowed(javax.safetycritical.annotate.Level.SUPPORT)
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@Override
@SCJPhase({

27 January 2017 Version 0.109
Confidentiality: Public Distribution

677

Safety-Critical Java Technology Specification

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public final void fire()

Used by the SCJ infrastructure to support the time release of real-time threads
and timers with user-defined clocks. Should not be called by the application.

@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMayAllocate({})
@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@Override
public javax.realtime.Affinity getAffinity()

@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION})

@SCJMayAllocate({})
@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@Override
public void setAffinity(Affinity set)

throws java.lang.IllegalArgumentException,
javax.realtime.ProcessorAffinityException, java.lang.NullPointerException

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)
@SCJMaySelfSuspend(true)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

public static void sleep(HighResolutionTime<?> time)
throws java.lang.InterruptedException

Removes the currently execution schedulable object from the set of runnable
schedulable objects until time.

Throws InterruptedException when the thread is interrupted by interrupt() during
the time between calling this method and returning from it. This exception cannot be
thrown if the method is called from a managed event handler.

678 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Throws IllegalArgumentException when time is null, when time is a relative time
less than zero, or when the Chronograph of time is not a Clock.

@SCJAllowed
@SCJMaySelfSuspend(true)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static void spin(int nanos)
throws java.lang.InterruptedException, java.lang.ClassCastException,

java.lang.IllegalArgumentException

The same as calling spin(HighResolutionTime) with a relative time on the de-
fault real-time clock,of zero milliseconds, and nanos.

nanos — the number of nanoseconds to wait.

Throws InterruptedException when the thread is interrupted by interrupt() during
the time between calling this method and returning from it. This exception cannot be
thrown if the method is called from a managed event handler.

Throws IllegalArgumentException when nanos is less than zero.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static void spin(HighResolutionTime<?> time)
throws java.lang.InterruptedException, java.lang.ClassCastException,

java.lang.IllegalArgumentException

Similar to sleep(HighResolutionTime) except it performs a busy wait by polling
the Chronograph for the duration of time.

time — an absolute or relative time at which to stop spinning.

Throws InterruptedException when the thread is interrupted by interrupt() during
the time between calling this method and returning from it. This exception cannot be
thrown if the method is called from a managed event handler.

Throws IllegalArgumentException when time is null , or when time is a relative
time less than zero.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

679

Safety-Critical Java Technology Specification

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)
@SCJMaySelfSuspend(true)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

public static void suspend(HighResolutionTime<?> time)

The same as sleep(HighResolutionTime) except that it is not interruptible.

time — an absolute or relative time until which to suspend.

Throws IllegalArgumentException when time is null, when time is a relative time
less than zero, or when the Chronograph of time is not a Clock.

D.3.30 CLASS RegistrationException

@SCJAllowed
public class RegistrationException extends

javax.realtime.StaticRuntimeException

The exception thrown when registering an InterruptServiceRoutine

Methods

@SCJMayAllocate({})
@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static javax.realtime.RegistrationException get()

Get the preallocated version of this Throwable. Allocation is done in memory
that acts like javax.realtime.ImmortalMemory . The message and cause are
cleared and the stack trace is filled out.

returns the preallocated exception

680 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

D.3.31 CLASS RelativeTime

@SCJAllowed
public class RelativeTime extends javax.realtime.HighResolutionTime

An object that represents a time interval represented by a number of millisec-
onds plus nanoseconds. The time interval is kept in normalized form.

A negative interval relative to now represents time in the past. For add and
subtract negative values behave as they do in arithmetic.

Caution: This class is explicitly unsafe in multithreaded situations when it is
being changed. No synchronization is done. It is assumed that users of this
class who are mutating instances will be doing their own synchronization at a
higher level.

Constructors

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public RelativeTime(long millis, int nanos, Chronograph clock)

Construct a RelativeTime object representing an interval based on the param-
eter millis plus the parameter nanos. The construction is subject to millis and
nanos parameters normalization. If there is an overflow in the millisecond
component when normalizing then an IllegalArgumentException will be thrown.

The clock association is made with the clock parameter.

millis — The desired value for the millisecond component of this. The actual value
is the result of parameter normalization.

nanos — The desired value for the nanosecond component of this. The actual
value is the result of parameter normalization.

clock — The chronograph providing the association for the newly constructed
object. If chronograph is null the association is made with the real-time clock.

Throws IllegalArgumentException if there is an overflow in the millisecond com-
ponent when normalizing.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

681

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public RelativeTime()

This constructor behaves the same as calling RelativeTime(0, 0, null).

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public RelativeTime(long millis, int nanos)

This constructor behaves the same as calling RelativeTime(millis, nanos, null).

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public RelativeTime(Chronograph clock)

This constructor behaves the same as calling RelativeTime(0, 0, clock).

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public RelativeTime(RelativeTime time)

682 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Make a new RelativeTime object from the given RelativeTime object.

The new object will have the same clock association as the time parameter.

time — The RelativeTime object which is the source for the copy.

Throws IllegalArgumentException if the time parameter is null.

Methods

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.RelativeTime add(RelativeTime time)

Create a new instance of RelativeTime representing the result of adding time
to the value of this and normalizing the result. The clock associated with this
and the clock associated with the time parameter are expected to be the same,
and such association is used for the result. An IllegalArgumentException is
thrown if the clock associated with this and the clock associated with the time
parameter are different. An IllegalArgumentException is thrown if the time
parameter is null. An ArithmeticException is thrown if the result does not fit in
the normalized format.

time — The time to add to this.

returns a new RelativeTime object whose time is the normalization of this plus the
parameter time.

Throws IllegalArgumentException if the clock associated with this and the clock
associated with the time parameter are different, or when the time parameter is null.

Throws ArithmeticException if the result does not fit in the normalized format.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.RelativeTime add(RelativeTime time, RelativeTime dest)

27 January 2017 Version 0.109
Confidentiality: Public Distribution

683

Safety-Critical Java Technology Specification

Return an object containing the value resulting from adding time to the value
of this and normalizing the result. If dest is not null, the result is placed there
and returned. Otherwise, a new object is allocated for the result. The clock
associated with this and the clock associated with the time parameter are ex-
pected to be the same, and such association is used for the result. The clock
associated with the dest parameter is ignored. An IllegalArgumentException is
thrown if the clock associated with this and the clock associated with the time
parameter are different. An IllegalArgumentException is thrown if the time pa-
rameter is null. An ArithmeticException is thrown if the result does not fit in
the normalized format.

time — The time to add to this.

dest — If dest is not null, the result is placed there and returned. Otherwise, a new
object is allocated for the result.

returns the value of dest if dest is not null, otherwise the result is returned in a
newly allocated object.

Throws IllegalArgumentException if the clock associated with this and the clock
associated with the time parameter are different, or when the time parameter is null.

Throws ArithmeticException if the result does not fit in the normalized format.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.RelativeTime add(long millis, int nanos, RelativeTime dest)

Return an object containing the value resulting from adding millis and nanos to
the values from this and normalizing the result. If dest is not null, the result is
placed there and returned. Otherwise, a new object is allocated for the result.
The result will have the same clock association as this, and the clock associa-
tion with dest is ignored. An ArithmeticException is thrown if the result does
not fit in the normalized format.

millis — The number of milliseconds to be added to this.

nanos — The number of nanoseconds to be added to this.

dest — If dest is not null, the result is placed there and returned. Otherwise, a new
object is allocated for the result.

684 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

returns the value of dest if dest is not null, otherwise a new object representing the
result.

Throws ArithmeticException if the result does not fit in the normalized format.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.RelativeTime add(long millis, int nanos)

Create a new object representing the result of adding millis and nanos to the
values from this and normalizing the result. The result will have the same
clock association as this. An ArithmeticException is thrown if the result does
not fit in the normalized format.

millis — The number of milliseconds to be added to this.

nanos — The number of nanoseconds to be added to this.

returns a new RelativeTime object whose time is the normalization of this plus
millis and nanos.

Throws ArithmeticException if the result does not fit in the normalized format.

returns A new object containing the result of the addition.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@Override
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int compareTo(RelativeTime time)

Compares this object with the specified object for order.

returns a negative integer, zero, or a positive integer as this object is less than,
equal to, or greater than the specified object.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

685

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.RelativeTime subtract(RelativeTime time, RelativeTime dest)

Return an object containing the value resulting from subtracting the value of
time from the value of this and normalizing the result. If dest is not null, the
result is placed there and returned. Otherwise, a new object is allocated for the
result. The clock associated with this and the clock associated with the time pa-
rameter are expected to be the same, and such association is used for the result.
The clock associated with the dest parameter is ignored. An IllegalArgument-
Exception is thrown if the clock associated with this and the clock associated
with the time parameter are different. An IllegalArgumentException is thrown
if the time parameter is null. An ArithmeticException is thrown if the result does
not fit in the normalized format.

time — The time to subtract from this.

dest — If dest is not null, the result is placed there and returned. Otherwise, a new
object is allocated for the result.

returns the value of dest if dest is not null, otherwise a new object representing the
result.

Throws IllegalArgumentException if the if the clock associated with this and the
clock associated with the time parameter are different, or when the time parameter is
null.

Throws ArithmeticException if the result does not fit in the normalized format.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.RelativeTime subtract(RelativeTime time)

Create a new instance of RelativeTime representing the result of subtracting
time from the value of this and normalizing the result. The clock associated

686 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

with this and the clock associated with the time parameter are expected to be the
same, and such association is used for the result. An IllegalArgumentException
is thrown if the clock associated with this and the clock associated with the
time parameter are different. An IllegalArgumentException is thrown if the
time parameter is null. An ArithmeticException is thrown if the result does not
fit in the normalized format.

time — The time to subtract from this.

returns a new RelativeTime object whose time is the normalization of this minus
the parameter time parameter time.

Throws IllegalArgumentException if the clock associated with this and the clock
associated with the time parameter are different, or when the time parameter is null.

Throws ArithmeticException if the result does not fit in the normalized format.

D.3.32 CLASS ReleaseParameters

@SCJAllowed
public abstract class ReleaseParameters implements java.lang.Cloneable,

java.io.Serializable extends java.lang.Object

This is the base class for the release parameters hierarchy. All schedulability
analysis of safety critical software is performed by the application developers
offline. Although the RTSJ allows on-line schedulability analysis, SCJ as-
sumes any such analysis is performed off line and that the on-line environment
is predictable. Consequently, the assumption is that deadlines are not missed.
However, to facilitate fault-tolerant applications, SCJ does support a deadline
miss detection facility at Level 1 and Level 2. SCJ provides no direct mecha-
nisms for coping with cost overruns.

The ReleaseParameters class hierarchy is restricted so that the parameters can
be set, but not changed or queried.

D.3.33 CLASS Scheduler

@SCJAllowed
public abstract class Scheduler extends java.lang.Object

The RTSJ supported generic on-line feasibility analysis via the Scheduler class
prior to RTSJ version 2.0, but this is now deprecated in version 2.0. SCJ
supports only off-line schedulability analysis; hence all of the methods in this
class are omitted.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

687

Safety-Critical Java Technology Specification

Methods

@SCJAllowed
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
public static javax.realtime.Schedulable currentSchedulable()

Gets the current schedulable.

returns a reference to the calling Schedulable.

Throws UnsupportedOperationException if called from an interrupt handler.

D.3.34 CLASS SchedulingParameters

@SCJAllowed
public abstract class SchedulingParameters implements java.lang.Cloneable,

java.io.Serializable extends java.lang.Object

The RTSJ potentially allows different schedulers to be supported and defines
this class as the root class for all scheduling parameters. In SCJ this class is
empty; only priority parameters are supported.

There is no ImportanceParameters subclass in SCJ.

Methods

@SCJAllowed
@Override
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.Object clone()

Create a clone of this SchedulingParameters object.

688 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

D.3.35 CLASS SizeEstimator

@SCJAllowed
public final class SizeEstimator extends java.lang.Object

This class maintains a conservative upper bound of the amount of memory
required to store a set of objects.

Many objects allocate other objects when they are constructed. SizeEstimator
only estimates the memory requirement of the object itself; it does not include
memory required for any objects allocated at construction time. If the Java
implementation allocates a single Java object in several parts not separately
visible to the application (if, for example, the object and its monitor are sep-
arate), the size estimate shall include the sum of the sizes of all the invisible
parts that are allocated from the same memory area as the object.

Alignment considerations, and possibly other order-dependent issues may cause
the allocator to leave a small amount of unusable space. Consequently, the size
estimate cannot be seen as more than a close estimate, but SCJ requires that
the size estimate shall represent a tight upper bound.

Constructors

@SCJAllowed
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

public SizeEstimator()

Creates a new SizeEstimator object in the current allocation context.

Methods

@SCJAllowed
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
public void clear()

27 January 2017 Version 0.109
Confidentiality: Public Distribution

689

Safety-Critical Java Technology Specification

Return the estimate to zero for reuse.

@SCJAllowed
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
public long getEstimate()

Gets an estimate of the number of bytes needed to store all the objects reserved.

returns the estimated size in bytes.

@SCJAllowed
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
public void reserve(SizeEstimator size, int num)

Adds num times the value returned by size.getEstimate to the currently com-
puted size of the set of reserved objects.

size — is the size.SizeEstimator whose size is to be reserved.

num — is the number of times to reserve this amount.

Throws IllegalArgumentException if size is null or num is negative.

@SCJAllowed
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
public void reserve(SizeEstimator size)

Adds the value returned by size.getEstimate to the currently computed size of
the set of reserved objects.

size — is the size.SizeEstimator whose size is to be reserved.

Throws IllegalArgumentException if size is null.

690 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
public void reserve(Class<?> clss, int num)

Adds the required memory size of num instances of a clss object to the cur-
rently computed size of the set of reserved objects.

clss — is the class to take into account.

num — is the number of instances of clss to estimate.

Throws IllegalArgumentException if clss is null or num is negative.

@SCJAllowed
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
public void reserveArray(int length, Class<?> type)

Adds the required memory size of an additional instance of an array of length
primitive values of Class type to the currently computed size of the set of re-
served objects. Class values for the primitive types shall be chosen from prim-
itive class types such as Integer.TYPE, and Float.TYPE. The reservation shall
leave room for an array of length of the primitive type corresponding to type.

length — is the number of entries in the array.

type — is the class representing a primitive type.

Throws IllegalArgumentException if length is negative, or type does not represent
a primitive type.

@SCJAllowed
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
public void reserveArray(int length)

27 January 2017 Version 0.109
Confidentiality: Public Distribution

691

Safety-Critical Java Technology Specification

Adds the size of an instance of an array of length reference values to the cur-
rently computed size of the set of reserved objects.

length — is the number of entries in the array.

Throws IllegalArgumentException if length is negative.

@SCJAllowed
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
public void reserveLambda()

Determine the size of a lambda with no closure and add it to this size estimator.

@SCJAllowed
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
public void reserveLambda(EnclosedType first, EnclosedType second)

Determine the size of a lambda with two variables in its closure and add it to
this size estimator.

first — Type of first variable in closure.

second — Type of second variable in closure.

@SCJAllowed
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
public void reserveLambda(EnclosedType first,

EnclosedType second,
EnclosedType [] others)

Determine the size of a lambda with more than two variables in its closure and
add it to this size estimator.

692 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

first — Type of first variable in closure.

second — Type of second variable in closure.

others — Types of additional variables in closure.

D.3.36 CLASS SizeOutOfBoundsException

@SCJAllowed
public class SizeOutOfBoundsException extends

javax.realtime.StaticRuntimeException

To throw when a memory access generated by a raw memory accessor instance
(See RawMemory.) would cause access to an invalid address.

Methods

@SCJMayAllocate({})
@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static javax.realtime.SizeOutOfBoundsException get()

Get the preallocated version of this Throwable. Allocation is done in memory
that acts like javax.realtime.ImmortalMemory . The message and cause are
cleared and the stack trace is filled out.

returns the preallocated exception

D.3.37 CLASS StaticError

@SCJAllowed
public abstract class StaticError implements javax.realtime.StaticThrowable

extends java.lang.Error

Methods

@SCJMayAllocate({})
@SCJAllowed
@SCJMaySelfSuspend(false)

27 January 2017 Version 0.109
Confidentiality: Public Distribution

693

Safety-Critical Java Technology Specification

@Override
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.Throwable fillInStackTrace()

Calls the infrastructure to capture the current stack trace in the schedulable
object’s local memory.

returns a reference to this Throwable.

@SCJMayAllocate({})
@SCJAllowed
@SCJMaySelfSuspend(false)
@Override
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.Throwable getCause()

getCause returns the cause of this exception or null when no cause was set
by initCause. The cause is another exception that was caught just before this
exception was thrown.

returns The cause or null.

@SCJMayAllocate({})
@SCJAllowed
@SCJMaySelfSuspend(false)
@Override
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.String getLocalizedMessage()

Subclasses may override this message to get an error message that is localized
to the default locale.

By default it returns getMessage().

returns the error message

694 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJMayAllocate({})
@SCJAllowed
@SCJMaySelfSuspend(false)
@Override
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.String getMessage()

get the message describing the problem from the schedulable object’s local
memory.

returns the message given to the constructor or null when no message was set.

@SCJMayAllocate({})
@SCJAllowed
@SCJMaySelfSuspend(false)
@Override
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.StackTraceElement[] getStackTrace()

Get the stack trace created by fillInStackTrace for this Throwable as an array
of StackTraceElements.

The stack trace does not need to contain entries for all methods that are actually
on the call stack, the infrastructure may decide to skip some stack trace entries.
Even an empty array is a valid result of this function.

Repeated calls of this function without intervening calls to fillInStackTrace will
return the same result.

When memory areas are used, and this Throwable was allocated in a different
memory area than the current allocation context, the resulting stack trace will
be allocated in either the same memory area this was allocated in or the current
memory area, depending on which is the least deeply nested, thereby creating
objects that are assignment compatible with both areas.

returns array representing the stack trace, it is never null.

@SCJMayAllocate({})
@SCJAllowed

27 January 2017 Version 0.109
Confidentiality: Public Distribution

695

Safety-Critical Java Technology Specification

@SCJMaySelfSuspend(false)
@Override
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.Throwable initCause(Throwable causingThrowable)

Initializes the cause to the given Throwable in the schedulable object’s local
memory.

causingThrowable — the reason why this Throwable gets Thrown.

returns the reference to this Throwable.

Throws IllegalArgumentException when the cause is this Throwable itself.

@SCJMayAllocate({})
@SCJAllowed
@SCJMaySelfSuspend(false)
@Override
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.Throwable initMessage(String message)

Set the message in the schedulable object’s local storage. This is the only
method that is not also defined in Throwable.

message — is the text to set.

@SCJMayAllocate({})
@SCJAllowed
@SCJMaySelfSuspend(false)
@Override
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void printStackTrace(PrintStream stream)

Print stack trace of this Throwable to stream.

The printed stack trace contains the result of toString() as the first line followed
by one line for each stack trace element that contains the name of the method
or constructor, optionally followed by the source file name and source file line
number when available.

696 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJMayAllocate({})
@SCJAllowed
@SCJMaySelfSuspend(false)
@Override
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void printStackTrace()

Print stack trace of this Throwable to System.err.

The printed stack trace contains the result of toString() as the first line followed
by one line for each stack trace element that contains the name of the method
or constructor, optionally followed by the source file name and source file line
number when available.

@SCJMayAllocate({})
@SCJAllowed
@SCJMaySelfSuspend(false)
@Override
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void setStackTrace(StackTraceElement [] new stackTrace)
throws java.lang.NullPointerException

This method allows overriding the stack trace that was filled during construc-
tion of this object. It is intended to be used in a serialization context when the
stack trace of a remote exception should be treated like a local.

new stackTrace — the stack trace to replace be used.

Throws NullPointerException when new stackTrace or any element of new stackTrace
is null.

D.3.38 CLASS StaticRuntimeException

@SCJAllowed
public abstract class StaticRuntimeException implements

javax.realtime.StaticThrowable extends java.lang.RuntimeException

Methods

27 January 2017 Version 0.109
Confidentiality: Public Distribution

697

Safety-Critical Java Technology Specification

@SCJMayAllocate({})
@SCJAllowed
@SCJMaySelfSuspend(false)
@Override
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.Throwable fillInStackTrace()

Calls the infrastructure to capture the current stack trace in the schedulable
object’s local memory.

returns a reference to this Throwable.

@SCJMayAllocate({})
@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static javax.realtime.StaticRuntimeException get()

Get the preallocated version of this Throwable. Allocation is done in memory
that acts like javax.realtime.ImmortalMemory . The message and cause are
cleared and the stack trace is filled out.

returns the preallocated exception

@SCJMayAllocate({})
@SCJAllowed
@SCJMaySelfSuspend(false)
@Override
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.Throwable getCause()

getCause returns the cause of this exception or null when no cause was set
by initCause. The cause is another exception that was caught just before this
exception was thrown.

returns The cause or null.

698 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJMayAllocate({})
@SCJAllowed
@SCJMaySelfSuspend(false)
@Override
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.String getLocalizedMessage()

Subclasses may override this message to get an error message that is localized
to the default locale.

By default it returns getMessage().

returns the error message

@SCJMayAllocate({})
@SCJAllowed
@SCJMaySelfSuspend(false)
@Override
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.String getMessage()

get the message describing the problem from the schedulable object’s local
memory.

returns the message given to the constructor or null when no message was set.

@SCJMayAllocate({})
@SCJAllowed
@SCJMaySelfSuspend(false)
@Override
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.StackTraceElement[] getStackTrace()

Get the stack trace created by fillInStackTrace for this Throwable as an array
of StackTraceElements.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

699

Safety-Critical Java Technology Specification

The stack trace does not need to contain entries for all methods that are actually
on the call stack, the infrastructure may decide to skip some stack trace entries.
Even an empty array is a valid result of this function.

Repeated calls of this function without intervening calls to fillInStackTrace will
return the same result.

When memory areas are used, and this Throwable was allocated in a different
memory area than the current allocation context, the resulting stack trace will
be allocated in either the same memory area this was allocated in or the current
memory area, depending on which is the least deeply nested, thereby creating
objects that are assignment compatible with both areas.

returns array representing the stack trace, it is never null.

@SCJMayAllocate({})
@SCJAllowed
@SCJMaySelfSuspend(false)
@Override
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.Throwable initCause(Throwable causingThrowable)

Initializes the cause to the given Throwable in the schedulable object’s local
memory.

causingThrowable — the reason why this Throwable gets Thrown.

returns the reference to this Throwable.

Throws IllegalArgumentException when the cause is this Throwable itself.

@SCJMayAllocate({})
@SCJAllowed
@SCJMaySelfSuspend(false)
@Override
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.Throwable initMessage(String message)

Set the message in the schedulable object’s local storage. This is the only
method that is not also defined in Throwable.

700 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

message — is the text to set.

@SCJMayAllocate({})
@SCJAllowed
@SCJMaySelfSuspend(false)
@Override
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void printStackTrace(PrintStream stream)

Print stack trace of this Throwable to stream.

The printed stack trace contains the result of toString() as the first line followed
by one line for each stack trace element that contains the name of the method
or constructor, optionally followed by the source file name and source file line
number when available.

@SCJMayAllocate({})
@SCJAllowed
@SCJMaySelfSuspend(false)
@Override
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void printStackTrace()

Print stack trace of this Throwable to System.err.

The printed stack trace contains the result of toString() as the first line followed
by one line for each stack trace element that contains the name of the method
or constructor, optionally followed by the source file name and source file line
number when available.

@SCJMayAllocate({})
@SCJAllowed
@SCJMaySelfSuspend(false)
@Override
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,

27 January 2017 Version 0.109
Confidentiality: Public Distribution

701

Safety-Critical Java Technology Specification

javax.safetycritical.annotate.Phase.CLEANUP })
public void setStackTrace(StackTraceElement [] new stackTrace)

throws java.lang.NullPointerException

This method allows overriding the stack trace that was filled during construc-
tion of this object. It is intended to be used in a serialization context when the
stack trace of a remote exception should be treated like a local.

new stackTrace — the stack trace to replace be used.

Throws NullPointerException when new stackTrace or any element of new stackTrace
is null.

D.3.39 CLASS StaticThrowableStorage

@SCJAllowed
public class StaticThrowableStorage implements javax.realtime.StaticThrowable

extends java.lang.Throwable

Provide the methods for managing the thread local memory used for storing the
data needed by preallocated throwables, i.e., exceptions and errors which im-
plement StaticThrowable. This call is visible so that an application can extend
an existing conventional Java throwable and still implement StaticThrowable;
its methods can be implemented using the methods defined in this class. An
application defined throwable that does not need to extend an existing conven-
tional Java throwable should extend on of StaticCheckedException, StaticRun-
timeException, or StaticError instead.

Methods

@Override
@SCJMayAllocate({})
@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.Throwable fillInStackTrace()

Capture the current thread’s stack trace and save it in thread local storage. Only
the part of the stack trace that fits in the preallocated buffer is stored. This
method should be called by a preallocated exception to implement its method
of the same name.

702 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

returns this

@Override
@SCJMayAllocate({})
@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.Throwable getCause()

Get the cause from thread local storage that was saved by the last preallocated
exception thrown. The actual exception that of the cause is not saved, but just
a reference to its type. This returns a newly allocated exception without any
valid content, i.e., no valid stack trace. This method should be called by a
preallocated exception to implement its method of the same name.

returns the message

@SCJMayAllocate({})
@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static javax.realtime.StaticThrowableStorage getCurrent()

A means of obtaining the storage object for the current task.

returns the storage object for the current task.

@Override
@SCJMayAllocate({})
@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.String getLocalizedMessage()

27 January 2017 Version 0.109
Confidentiality: Public Distribution

703

Safety-Critical Java Technology Specification

@Override
@SCJMayAllocate({})
@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.String getMessage()

Get the message from thread local storage that was saved by the last preallo-
cated exception thrown. This method should be called by a preallocated excep-
tion to implement its method of the same name.

returns the message

@Override
@SCJMayAllocate({})
@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.StackTraceElement[] getStackTrace()

Get the stack trace from thread local storage that was saved by the last pre-
allocated exception thrown. This method should be called by a preallocated
exception to implement its method of the same name.

returns an array of the elements of the stack trace.

@Override
@SCJMayAllocate({})
@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.Throwable initCause(Throwable causingThrowable)

Save the message in thread local storage for later retrieval. Only a reference to
the exception class is stored. The rest of its information is lost. This method
should be called by a preallocated exception to implement its method of the
same name.

704 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

causingThrowable —

returns this

@Override
@SCJMayAllocate({})
@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.Throwable initMessage(String message)

Save the message in thread local storage for later retrieval. Only the part of the
message that fits in the preallocated buffer is stored. This method should be
called by a preallocated exception to implement its method of the same name.

message — the message to save.

@SCJMayAllocate({})
@SCJAllowed
@SCJMaySelfSuspend(false)
@Override
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void printStackTrace(PrintStream stream)

@Override
@SCJMayAllocate({})
@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void printStackTrace()

@Override
@SCJMayAllocate({})
@SCJAllowed
@SCJMaySelfSuspend(false)

27 January 2017 Version 0.109
Confidentiality: Public Distribution

705

Safety-Critical Java Technology Specification

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void setStackTrace(StackTraceElement [] new stackTrace)

D.3.40 CLASS ThrowBoundaryError

@SCJAllowed
public class ThrowBoundaryError implements java.io.Serializable extends

javax.realtime.StaticError

Methods

@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static javax.realtime.ThrowBoundaryError get()

Get the preallocated instance of this exception.

returns the preallocated instance of this exception.

706 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Appendix E

Javadoc Description of Package
javax.realtime.device
Package Contents Page

Interfaces
RawByte . 709

A marker for an object that can be used to access to a single byte.
RawByteReader . 709

A marker for a byte accessor object encapsulating the protocol for
reading bytes from raw memory.

RawByteWriter . 712
A marker for a byte accessor object encapsulating the protocol for
writing bytes to raw memory.

RawDouble .714
A marker for an object that can be used to access to a single double.

RawDoubleReader . 715
A marker for a double accessor object encapsulating the protocol for
reading doubles from raw memory.

RawDoubleWriter . 717
A marker for a double accessor object encapsulating the protocol for
writing doubles to raw memory.

RawFloat . 720
A marker for an object that can be used to access to a single float.

RawFloatReader . 721
A marker for a float accessor object encapsulating the protocol for
reading floats from raw memory.

RawFloatWriter . 723

707

Safety-Critical Java Technology Specification

A marker for a float accessor object encapsulating the protocol for
writing floats to raw memory.

RawInt . 726
A marker for an object that can be used to access to a single int.

RawIntReader .726
A marker for a int accessor object encapsulating the protocol for read-
ing ints from raw memory.

RawIntWriter . 729
A marker for a int accessor object encapsulating the protocol for writ-
ing ints to raw memory.

RawLong . 732
A marker for an object that can be used to access to a single long.

RawLongReader . 732
A marker for a long accessor object encapsulating the protocol for
reading longs from raw memory.

RawLongWriter . 735
A marker for a long accessor object encapsulating the protocol for
writing longs to raw memory.

RawMemoryRegionFactory . 738
A class to give an application the ability to provide support for a
javax.realtime.device.RawMemoryRegion that is not already pro-
vided by the standard.

RawShort . 756
A marker for an object that can be used to access to a single short.

RawShortReader . 757
A marker for a short accessor object encapsulating the protocol for
reading shorts from raw memory.

RawShortWriter . 759
A marker for a short accessor object encapsulating the protocol for
writing shorts to raw memory.

Classes
InterruptServiceRoutine . 762

A first level interrupt handling mechanisms.
RawMemoryFactory . 764

This class is the hub of a system that constructs special purpose ob-
jects to access particular types and ranges of raw memory.

RawMemoryRegion . 787
RawMemoryRegion is a class for typing raw memory regions.

708 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

E.1 Classes

E.2 Interfaces

E.2.1 INTERFACE RawByte

@SCJAllowed
public interface RawByte extends javax.realtime.device.RawByteReader,

javax.realtime.device.RawByteWriter

A marker for an object that can be used to access to a single byte. Read and
write access to that byte is checked by the factory that creates the instance;
therefore, no access checking is provided by this interface, only bounds check-
ing.

Since
RTSJ 2.0

E.2.2 INTERFACE RawByteReader

@SCJAllowed
public interface RawByteReader extends javax.realtime.device.RawMemory

A marker for a byte accessor object encapsulating the protocol for reading
bytes from raw memory. A byte accessor can always access at least one byte.
Each byte is transfered in a single atomic operation. Groups of bytes may be
transfered together; however, this is not required.

Objects of this type are created with the method javax.realtime.device.Raw-
MemoryFactorycreateRawByteReader and javax.realtime.device.RawMemory-
FactorycreateRawByte . Each object references a range of elements in the
javax.realtime.device.RawMemoryRegion starting at the base address pro-
vided to the factory method. The size provided to the factor method determines
the number of elements accessable.

Caching of the memory access is controlled by the factory that created this
object. If the memory is not cached, this method guarantees serialized access.
In other words, the memory access at the memory occurs in the same order as
in the program. Multiple writes to the same location may not be coalesced.

Since
RTSJ 2.0

27 January 2017 Version 0.109
Confidentiality: Public Distribution

709

Safety-Critical Java Technology Specification

Methods

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int get(int offset, byte [] values)
throws javax.realtime.OffsetOutOfBoundsException,

java.lang.NullPointerException

Fill values with elements from this instance, where the nth element is at the
address: base address + (offset+n) x stride x element size in bytes. Only the
bytes in the intersection of the start and end of values and the base address and
the end of the memory region are transfered. When an exception is thrown, no
data is transfered.

offset — of the first byte in the memory region to transfere

values — the array to receive the bytes

returns the number of elements actuall transferred to values

Throws OffsetOutOfBoundsException when offset is negative or greater than or
equal to the number of elements in the raw memory region.

Throws NullPointerException when values is null.

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int get(int offset, byte [] values, int start, int count)
throws javax.realtime.OffsetOutOfBoundsException,

java.lang.ArrayIndexOutOfBoundsException, java.lang.NullPointerException

Fill values from index start with elements from this instance, where the nth
element is at the address: base address + (offset+n) x stride x element size in
bytes. The number of bytes transfered is the minimum of count, the size of
the memory region minus offset, and length of values minus start. When an
exception is thrown, no data is transfered.

710 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

offset — of the first byte in the memory region to transfere

values — the array to receive the bytes

start — the first index in array to fill

count — the maximum number of bytes to copy

returns the number of bytes actually transfered.

Throws OffsetOutOfBoundsException when offset is negative or either offset or
offset + count is greater than or equal to the size of this raw memory area.

Throws ArrayIndexOutOfBoundsException when start is negative or either start or
start + count is greater than or equal to the size of values.

Throws NullPointerException when values is null or count is negative.

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public byte getByte(int offset)
throws javax.realtime.OffsetOutOfBoundsException

Get the value at the address: base address + offset x stride x element size in
bytes. When an exception is thrown, no data is transfered.

offset — of byte in the memory region starting from the address specified in the
associated factory method.

returns the value at the address specified.

Throws OffsetOutOfBoundsException when offset is negative or greater than or
equal to the number of elements in the raw memory region.

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public byte getByte()

27 January 2017 Version 0.109
Confidentiality: Public Distribution

711

Safety-Critical Java Technology Specification

Get the value at the first position referenced by this instance, i.e., the value at
its start address. This operation must be atomic with respect to all other raw
memory accesses to the address.

returns the value at the base address.

E.2.3 INTERFACE RawByteWriter

@SCJAllowed
public interface RawByteWriter extends javax.realtime.device.RawMemory

A marker for a byte accessor object encapsulating the protocol for writing bytes
to raw memory. A byte accessor can always access at least one byte. Each byte
is transfered in a single atomic operation. Groups of bytes may be transfered
together; however, this is not required.

Objects of this type are created with the method javax.realtime.device.Raw-
MemoryFactorycreateRawByteWriter and javax.realtime.device.RawMemory-
FactorycreateRawByte . Each object references a range of elements in the
javax.realtime.device.RawMemoryRegion starting at the base address pro-
vided to the factory method. The size provided to the factor method determines
the number of elements accessable.

Caching of the memory access is controlled by the factory that created this
object. If the memory is not cached, this method guarantees serialized access.
In other words, the memory access at the memory occurs in the same order as
in the program. Multiple writes to the same location may not be coalesced.

Since
RTSJ 2.0

Methods

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int set(int offset, byte [] values)
throws javax.realtime.OffsetOutOfBoundsException,

java.lang.NullPointerException

712 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Copy from values to the memory region from index start,to elements where the
nth element is at the address: base address + (offset+n) x stride x element size
in bytes. Only the bytes in the intersection of values and the end of the memory
region are transfered. When an exception is thrown, no data is transfered.

offset — of first byte in the memory region to be set.

values — is the source of the data to write.

returns the number of elements actually transferred to values

Throws OffsetOutOfBoundsException when offset is negative or greater than or
equal to the number of elements in the raw memory region.

Throws NullPointerException when values is null.

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int set(int offset, byte [] values, int start, int count)
throws javax.realtime.OffsetOutOfBoundsException,

java.lang.ArrayIndexOutOfBoundsException, java.lang.NullPointerException

Copy values to the memory region, where offset is first byte in the memory
region to write and start is the first index in values from which to read. The
number of bytes transfered is the minimum of count, the size of the memory
region minus offset, and length of values minus start. When an exception is
thrown, no data is transfered.

offset — of the first byte in the memory region to set

values — the array from which to retrieve the bytes

start — the first index in array to copy

count — the maximum number of bytes to copy

returns the number of bytes actually transfered.

Throws OffsetOutOfBoundsException when offset is negative or either offset or
offset + count is greater than or equal to the size of this raw memory area.

Throws ArrayIndexOutOfBoundsException when start is negative or either start or
start + count is greater than or equal to the size of values.

Throws NullPointerException when values is null.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

713

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void setByte(int offset, byte value)
throws javax.realtime.OffsetOutOfBoundsException

Set the value of the nth element referenced by this instance, where n is offset
and the address is base address + offset x size of Byte. This operation must be
atomic with respect to all other raw memory accesses to the address. When an
exception is thrown, no data is transfered.

offset — of byte in the memory region.

value — is the new value for the element.

Throws OffsetOutOfBoundsException when offset is negative or greater than or
equal to the number of elements in the raw memory region.

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void setByte(byte value)

Set the value at the first position referenced by this instance, i.e., the value at
its start address. This operation must be atomic with respect to all other raw
memory accesses to the address.

value — is the new value for the element.

E.2.4 INTERFACE RawDouble

@SCJAllowed
public interface RawDouble extends javax.realtime.device.RawDoubleReader,

javax.realtime.device.RawDoubleWriter

714 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

A marker for an object that can be used to access to a single double. Read
and write access to that double is checked by the factory that creates the in-
stance; therefore, no access checking is provided by this interface, only bounds
checking.

Since
RTSJ 2.0

E.2.5 INTERFACE RawDoubleReader

@SCJAllowed
public interface RawDoubleReader extends javax.realtime.device.RawMemory

A marker for a double accessor object encapsulating the protocol for reading
doubles from raw memory. A double accessor can always access at least one
double. Each double is transfered in a single atomic operation. Groups of
doubles may be transfered together; however, this is not required.

Objects of this type are created with the method javax.realtime.device.Raw-
MemoryFactorycreateRawDoubleReader and javax.realtime.device.Raw-
MemoryFactorycreateRawDouble . Each object references a range of el-
ements in the javax.realtime.device.RawMemoryRegion starting at the base
address provided to the factory method. The size provided to the factor method
determines the number of elements accessable.

Caching of the memory access is controlled by the factory that created this
object. If the memory is not cached, this method guarantees serialized access.
In other words, the memory access at the memory occurs in the same order as
in the program. Multiple writes to the same location may not be coalesced.

Since
RTSJ 2.0

Methods

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

27 January 2017 Version 0.109
Confidentiality: Public Distribution

715

Safety-Critical Java Technology Specification

public int get(int offset, double [] values)
throws javax.realtime.OffsetOutOfBoundsException,

java.lang.NullPointerException

Fill values with elements from this instance, where the nth element is at the
address: base address + (offset+n) x stride x element size in bytes. Only the
doubles in the intersection of the start and end of values and the base address
and the end of the memory region are transfered. When an exception is thrown,
no data is transfered.

offset — of the first double in the memory region to transfere

values — the array to receive the doubles

returns the number of elements actuall transferred to values

Throws OffsetOutOfBoundsException when offset is negative or greater than or
equal to the number of elements in the raw memory region.

Throws NullPointerException when values is null.

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int get(int offset, double [] values, int start, int count)
throws javax.realtime.OffsetOutOfBoundsException,

java.lang.ArrayIndexOutOfBoundsException, java.lang.NullPointerException

Fill values from index start with elements from this instance, where the nth
element is at the address: base address + (offset+n) x stride x element size in
bytes. The number of bytes transfered is the minimum of count, the size of
the memory region minus offset, and length of values minus start. When an
exception is thrown, no data is transfered.

offset — of the first double in the memory region to transfere

values — the array to receive the doubles

start — the first index in array to fill

count — the maximum number of doubles to copy

returns the number of doubles actually transfered.

Throws OffsetOutOfBoundsException when offset is negative or either offset or
offset + count is greater than or equal to the size of this raw memory area.

716 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Throws ArrayIndexOutOfBoundsException when start is negative or either start or
start + count is greater than or equal to the size of values.

Throws NullPointerException when values is null or count is negative.

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public double getDouble(int offset)
throws javax.realtime.OffsetOutOfBoundsException

Get the value at the address: base address + offset x stride x element size in
bytes. When an exception is thrown, no data is transfered.

offset — of double in the memory region starting from the address specified in the
associated factory method.

returns the value at the address specified.

Throws OffsetOutOfBoundsException when offset is negative or greater than or
equal to the number of elements in the raw memory region.

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public double getDouble()

Get the value at the first position referenced by this instance, i.e., the value at
its start address. This operation must be atomic with respect to all other raw
memory accesses to the address.

returns the value at the base address.

E.2.6 INTERFACE RawDoubleWriter

@SCJAllowed
public interface RawDoubleWriter extends javax.realtime.device.RawMemory

27 January 2017 Version 0.109
Confidentiality: Public Distribution

717

Safety-Critical Java Technology Specification

A marker for a double accessor object encapsulating the protocol for writing
doubles to raw memory. A double accessor can always access at least one
double. Each double is transfered in a single atomic operation. Groups of
doubles may be transfered together; however, this is not required.

Objects of this type are created with the method javax.realtime.device.Raw-
MemoryFactorycreateRawDoubleWriter and javax.realtime.device.RawMemory-
FactorycreateRawDouble . Each object references a range of elements in the
javax.realtime.device.RawMemoryRegion starting at the base address pro-
vided to the factory method. The size provided to the factor method determines
the number of elements accessable.

Caching of the memory access is controlled by the factory that created this
object. If the memory is not cached, this method guarantees serialized access.
In other words, the memory access at the memory occurs in the same order as
in the program. Multiple writes to the same location may not be coalesced.

Since
RTSJ 2.0

Methods

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int set(int offset, double [] values)
throws javax.realtime.OffsetOutOfBoundsException,

java.lang.NullPointerException

Copy from values to the memory region from index start,to elements where
the nth element is at the address: base address + (offset+n) x stride x element
size in bytes. Only the doubles in the intersection of values and the end of
the memory region are transfered. When an exception is thrown, no data is
transfered.

offset — of first double in the memory region to be set.

values — is the source of the data to write.

returns the number of elements actually transferred to values

718 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Throws OffsetOutOfBoundsException when offset is negative or greater than or
equal to the number of elements in the raw memory region.

Throws NullPointerException when values is null.

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int set(int offset, double [] values, int start, int count)
throws javax.realtime.OffsetOutOfBoundsException,

java.lang.ArrayIndexOutOfBoundsException, java.lang.NullPointerException

Copy values to the memory region, where offset is first double in the memory
region to write and start is the first index in values from which to read. The
number of bytes transfered is the minimum of count, the size of the memory
region minus offset, and length of values minus start. When an exception is
thrown, no data is transfered.

offset — of the first double in the memory region to set

values — the array from which to retrieve the doubles

start — the first index in array to copy

count — the maximum number of doubles to copy

returns the number of doubles actually transfered.

Throws OffsetOutOfBoundsException when offset is negative or either offset or
offset + count is greater than or equal to the size of this raw memory area.

Throws ArrayIndexOutOfBoundsException when start is negative or either start or
start + count is greater than or equal to the size of values.

Throws NullPointerException when values is null.

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void setDouble(int offset, double value)
throws javax.realtime.OffsetOutOfBoundsException

27 January 2017 Version 0.109
Confidentiality: Public Distribution

719

Safety-Critical Java Technology Specification

Set the value of the nth element referenced by this instance, where n is offset
and the address is base address + offset x size of Double. This operation must
be atomic with respect to all other raw memory accesses to the address. When
an exception is thrown, no data is transfered.

offset — of double in the memory region.

value — is the new value for the element.

Throws OffsetOutOfBoundsException when offset is negative or greater than or
equal to the number of elements in the raw memory region.

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void setDouble(double value)

Set the value at the first position referenced by this instance, i.e., the value at
its start address. This operation must be atomic with respect to all other raw
memory accesses to the address.

value — is the new value for the element.

E.2.7 INTERFACE RawFloat

@SCJAllowed
public interface RawFloat extends javax.realtime.device.RawFloatReader,

javax.realtime.device.RawFloatWriter

A marker for an object that can be used to access to a single float. Read and
write access to that float is checked by the factory that creates the instance;
therefore, no access checking is provided by this interface, only bounds check-
ing.

Since
RTSJ 2.0

720 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

E.2.8 INTERFACE RawFloatReader

@SCJAllowed
public interface RawFloatReader extends javax.realtime.device.RawMemory

A marker for a float accessor object encapsulating the protocol for reading
floats from raw memory. A float accessor can always access at least one float.
Each float is transfered in a single atomic operation. Groups of floats may be
transfered together; however, this is not required.

Objects of this type are created with the method javax.realtime.device.Raw-
MemoryFactorycreateRawFloatReader and javax.realtime.device.RawMemory-
FactorycreateRawFloat . Each object references a range of elements in the
javax.realtime.device.RawMemoryRegion starting at the base address pro-
vided to the factory method. The size provided to the factor method determines
the number of elements accessable.

Caching of the memory access is controlled by the factory that created this
object. If the memory is not cached, this method guarantees serialized access.
In other words, the memory access at the memory occurs in the same order as
in the program. Multiple writes to the same location may not be coalesced.

Since
RTSJ 2.0

Methods

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int get(int offset, float [] values)
throws javax.realtime.OffsetOutOfBoundsException,

java.lang.NullPointerException

Fill values with elements from this instance, where the nth element is at the
address: base address + (offset+n) x stride x element size in bytes. Only the
floats in the intersection of the start and end of values and the base address and
the end of the memory region are transfered. When an exception is thrown, no
data is transfered.

offset — of the first float in the memory region to transfere

27 January 2017 Version 0.109
Confidentiality: Public Distribution

721

Safety-Critical Java Technology Specification

values — the array to receive the floats

returns the number of elements actuall transferred to values

Throws OffsetOutOfBoundsException when offset is negative or greater than or
equal to the number of elements in the raw memory region.

Throws NullPointerException when values is null.

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int get(int offset, float [] values, int start, int count)
throws javax.realtime.OffsetOutOfBoundsException,

java.lang.ArrayIndexOutOfBoundsException, java.lang.NullPointerException

Fill values from index start with elements from this instance, where the nth
element is at the address: base address + (offset+n) x stride x element size in
bytes. The number of bytes transfered is the minimum of count, the size of
the memory region minus offset, and length of values minus start. When an
exception is thrown, no data is transfered.

offset — of the first float in the memory region to transfere

values — the array to receive the floats

start — the first index in array to fill

count — the maximum number of floats to copy

returns the number of floats actually transfered.

Throws OffsetOutOfBoundsException when offset is negative or either offset or
offset + count is greater than or equal to the size of this raw memory area.

Throws ArrayIndexOutOfBoundsException when start is negative or either start or
start + count is greater than or equal to the size of values.

Throws NullPointerException when values is null or count is negative.

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,

722 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public float getFloat(int offset)
throws javax.realtime.OffsetOutOfBoundsException

Get the value at the address: base address + offset x stride x element size in
bytes. When an exception is thrown, no data is transfered.

offset — of float in the memory region starting from the address specified in the
associated factory method.

returns the value at the address specified.

Throws OffsetOutOfBoundsException when offset is negative or greater than or
equal to the number of elements in the raw memory region.

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public float getFloat()

Get the value at the first position referenced by this instance, i.e., the value at
its start address. This operation must be atomic with respect to all other raw
memory accesses to the address.

returns the value at the base address.

E.2.9 INTERFACE RawFloatWriter

@SCJAllowed
public interface RawFloatWriter extends javax.realtime.device.RawMemory

A marker for a float accessor object encapsulating the protocol for writing
floats to raw memory. A float accessor can always access at least one float.
Each float is transfered in a single atomic operation. Groups of floats may be
transfered together; however, this is not required.

Objects of this type are created with the method javax.realtime.device.Raw-
MemoryFactorycreateRawFloatWriter and javax.realtime.device.RawMemory-
FactorycreateRawFloat . Each object references a range of elements in the

27 January 2017 Version 0.109
Confidentiality: Public Distribution

723

Safety-Critical Java Technology Specification

javax.realtime.device.RawMemoryRegion starting at the base address pro-
vided to the factory method. The size provided to the factor method determines
the number of elements accessable.

Caching of the memory access is controlled by the factory that created this
object. If the memory is not cached, this method guarantees serialized access.
In other words, the memory access at the memory occurs in the same order as
in the program. Multiple writes to the same location may not be coalesced.

Since
RTSJ 2.0

Methods

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int set(int offset, float [] values)
throws javax.realtime.OffsetOutOfBoundsException,

java.lang.NullPointerException

Copy from values to the memory region from index start,to elements where the
nth element is at the address: base address + (offset+n) x stride x element size
in bytes. Only the floats in the intersection of values and the end of the memory
region are transfered. When an exception is thrown, no data is transfered.

offset — of first float in the memory region to be set.

values — is the source of the data to write.

returns the number of elements actually transferred to values

Throws OffsetOutOfBoundsException when offset is negative or greater than or
equal to the number of elements in the raw memory region.

Throws NullPointerException when values is null.

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,

724 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int set(int offset, float [] values, int start, int count)
throws javax.realtime.OffsetOutOfBoundsException,

java.lang.ArrayIndexOutOfBoundsException, java.lang.NullPointerException

Copy values to the memory region, where offset is first float in the memory
region to write and start is the first index in values from which to read. The
number of bytes transfered is the minimum of count, the size of the memory
region minus offset, and length of values minus start. When an exception is
thrown, no data is transfered.

offset — of the first float in the memory region to set

values — the array from which to retrieve the floats

start — the first index in array to copy

count — the maximum number of floats to copy

returns the number of floats actually transfered.

Throws OffsetOutOfBoundsException when offset is negative or either offset or
offset + count is greater than or equal to the size of this raw memory area.

Throws ArrayIndexOutOfBoundsException when start is negative or either start or
start + count is greater than or equal to the size of values.

Throws NullPointerException when values is null.

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void setFloat(int offset, float value)
throws javax.realtime.OffsetOutOfBoundsException

Set the value of the nth element referenced by this instance, where n is offset
and the address is base address + offset x size of Float. This operation must be
atomic with respect to all other raw memory accesses to the address. When an
exception is thrown, no data is transfered.

offset — of float in the memory region.

value — is the new value for the element.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

725

Safety-Critical Java Technology Specification

Throws OffsetOutOfBoundsException when offset is negative or greater than or
equal to the number of elements in the raw memory region.

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void setFloat(float value)

Set the value at the first position referenced by this instance, i.e., the value at
its start address. This operation must be atomic with respect to all other raw
memory accesses to the address.

value — is the new value for the element.

E.2.10 INTERFACE RawInt

@SCJAllowed
public interface RawInt extends javax.realtime.device.RawIntReader,

javax.realtime.device.RawIntWriter

A marker for an object that can be used to access to a single int. Read and write
access to that int is checked by the factory that creates the instance; therefore,
no access checking is provided by this interface, only bounds checking.

Since
RTSJ 2.0

E.2.11 INTERFACE RawIntReader

@SCJAllowed
public interface RawIntReader extends javax.realtime.device.RawMemory

A marker for a int accessor object encapsulating the protocol for reading ints
from raw memory. A int accessor can always access at least one int. Each int
is transfered in a single atomic operation. Groups of ints may be transfered
together; however, this is not required.

726 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Objects of this type are created with the method javax.realtime.device.Raw-
MemoryFactorycreateRawIntReader and javax.realtime.device.RawMemory-
FactorycreateRawInt . Each object references a range of elements in the
javax.realtime.device.RawMemoryRegion starting at the base address pro-
vided to the factory method. The size provided to the factor method determines
the number of elements accessable.

Caching of the memory access is controlled by the factory that created this
object. If the memory is not cached, this method guarantees serialized access.
In other words, the memory access at the memory occurs in the same order as
in the program. Multiple writes to the same location may not be coalesced.

Since
RTSJ 2.0

Methods

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int get(int offset, int [] values)
throws javax.realtime.OffsetOutOfBoundsException,

java.lang.NullPointerException

Fill values with elements from this instance, where the nth element is at the
address: base address + (offset+n) x stride x element size in bytes. Only the
ints in the intersection of the start and end of values and the base address and
the end of the memory region are transfered. When an exception is thrown, no
data is transfered.

offset — of the first int in the memory region to transfere

values — the array to receive the ints

returns the number of elements actuall transferred to values

Throws OffsetOutOfBoundsException when offset is negative or greater than or
equal to the number of elements in the raw memory region.

Throws NullPointerException when values is null.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

727

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int get(int offset, int [] values, int start, int count)
throws javax.realtime.OffsetOutOfBoundsException,

java.lang.ArrayIndexOutOfBoundsException, java.lang.NullPointerException

Fill values from index start with elements from this instance, where the nth
element is at the address: base address + (offset+n) x stride x element size in
bytes. The number of bytes transfered is the minimum of count, the size of
the memory region minus offset, and length of values minus start. When an
exception is thrown, no data is transfered.

offset — of the first int in the memory region to transfere

values — the array to receive the ints

start — the first index in array to fill

count — the maximum number of ints to copy

returns the number of ints actually transfered.

Throws OffsetOutOfBoundsException when offset is negative or either offset or
offset + count is greater than or equal to the size of this raw memory area.

Throws ArrayIndexOutOfBoundsException when start is negative or either start or
start + count is greater than or equal to the size of values.

Throws NullPointerException when values is null or count is negative.

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int getInt(int offset)
throws javax.realtime.OffsetOutOfBoundsException

Get the value at the address: base address + offset x stride x element size in
bytes. When an exception is thrown, no data is transfered.

728 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

offset — of int in the memory region starting from the address specified in the
associated factory method.

returns the value at the address specified.

Throws OffsetOutOfBoundsException when offset is negative or greater than or
equal to the number of elements in the raw memory region.

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int getInt()

Get the value at the first position referenced by this instance, i.e., the value at
its start address. This operation must be atomic with respect to all other raw
memory accesses to the address.

returns the value at the base address.

E.2.12 INTERFACE RawIntWriter

@SCJAllowed
public interface RawIntWriter extends javax.realtime.device.RawMemory

A marker for a int accessor object encapsulating the protocol for writing ints
to raw memory. A int accessor can always access at least one int. Each int
is transfered in a single atomic operation. Groups of ints may be transfered
together; however, this is not required.

Objects of this type are created with the method javax.realtime.device.Raw-
MemoryFactorycreateRawIntWriter and javax.realtime.device.RawMemory-
FactorycreateRawInt . Each object references a range of elements in the
javax.realtime.device.RawMemoryRegion starting at the base address pro-
vided to the factory method. The size provided to the factor method determines
the number of elements accessable.

Caching of the memory access is controlled by the factory that created this
object. If the memory is not cached, this method guarantees serialized access.
In other words, the memory access at the memory occurs in the same order as
in the program. Multiple writes to the same location may not be coalesced.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

729

Safety-Critical Java Technology Specification

Since
RTSJ 2.0

Methods

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int set(int offset, int [] values)
throws javax.realtime.OffsetOutOfBoundsException,

java.lang.NullPointerException

Copy from values to the memory region from index start,to elements where the
nth element is at the address: base address + (offset+n) x stride x element size
in bytes. Only the ints in the intersection of values and the end of the memory
region are transfered. When an exception is thrown, no data is transfered.

offset — of first int in the memory region to be set.

values — is the source of the data to write.

returns the number of elements actually transferred to values

Throws OffsetOutOfBoundsException when offset is negative or greater than or
equal to the number of elements in the raw memory region.

Throws NullPointerException when values is null.

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int set(int offset, int [] values, int start, int count)
throws javax.realtime.OffsetOutOfBoundsException,

java.lang.ArrayIndexOutOfBoundsException, java.lang.NullPointerException

Copy values to the memory region, where offset is first int in the memory
region to write and start is the first index in values from which to read. The

730 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

number of bytes transfered is the minimum of count, the size of the memory
region minus offset, and length of values minus start. When an exception is
thrown, no data is transfered.

offset — of the first int in the memory region to set

values — the array from which to retrieve the ints

start — the first index in array to copy

count — the maximum number of ints to copy

returns the number of ints actually transfered.

Throws OffsetOutOfBoundsException when offset is negative or either offset or
offset + count is greater than or equal to the size of this raw memory area.

Throws ArrayIndexOutOfBoundsException when start is negative or either start or
start + count is greater than or equal to the size of values.

Throws NullPointerException when values is null.

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void setInt(int offset, int value)
throws javax.realtime.OffsetOutOfBoundsException

Set the value of the nth element referenced by this instance, where n is offset
and the address is base address + offset x size of Int. This operation must be
atomic with respect to all other raw memory accesses to the address. When an
exception is thrown, no data is transfered.

offset — of int in the memory region.

value — is the new value for the element.

Throws OffsetOutOfBoundsException when offset is negative or greater than or
equal to the number of elements in the raw memory region.

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,

27 January 2017 Version 0.109
Confidentiality: Public Distribution

731

Safety-Critical Java Technology Specification

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void setInt(int value)

Set the value at the first position referenced by this instance, i.e., the value at
its start address. This operation must be atomic with respect to all other raw
memory accesses to the address.

value — is the new value for the element.

E.2.13 INTERFACE RawLong

@SCJAllowed
public interface RawLong extends javax.realtime.device.RawLongReader,

javax.realtime.device.RawLongWriter

A marker for an object that can be used to access to a single long. Read and
write access to that long is checked by the factory that creates the instance;
therefore, no access checking is provided by this interface, only bounds check-
ing.

Since
RTSJ 2.0

E.2.14 INTERFACE RawLongReader

@SCJAllowed
public interface RawLongReader extends javax.realtime.device.RawMemory

A marker for a long accessor object encapsulating the protocol for reading
longs from raw memory. A long accessor can always access at least one long.
Each long is transfered in a single atomic operation. Groups of longs may be
transfered together; however, this is not required.

Objects of this type are created with the method javax.realtime.device.Raw-
MemoryFactorycreateRawLongReader and javax.realtime.device.RawMemory-
FactorycreateRawLong . Each object references a range of elements in the
javax.realtime.device.RawMemoryRegion starting at the base address pro-
vided to the factory method. The size provided to the factor method determines
the number of elements accessable.

732 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Caching of the memory access is controlled by the factory that created this
object. If the memory is not cached, this method guarantees serialized access.
In other words, the memory access at the memory occurs in the same order as
in the program. Multiple writes to the same location may not be coalesced.

Since
RTSJ 2.0

Methods

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int get(int offset, long [] values)
throws javax.realtime.OffsetOutOfBoundsException,

java.lang.NullPointerException

Fill values with elements from this instance, where the nth element is at the
address: base address + (offset+n) x stride x element size in bytes. Only the
longs in the intersection of the start and end of values and the base address and
the end of the memory region are transfered. When an exception is thrown, no
data is transfered.

offset — of the first long in the memory region to transfere

values — the array to receive the longs

returns the number of elements actuall transferred to values

Throws OffsetOutOfBoundsException when offset is negative or greater than or
equal to the number of elements in the raw memory region.

Throws NullPointerException when values is null.

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

27 January 2017 Version 0.109
Confidentiality: Public Distribution

733

Safety-Critical Java Technology Specification

public int get(int offset, long [] values, int start, int count)
throws javax.realtime.OffsetOutOfBoundsException,

java.lang.ArrayIndexOutOfBoundsException, java.lang.NullPointerException

Fill values from index start with elements from this instance, where the nth
element is at the address: base address + (offset+n) x stride x element size in
bytes. The number of bytes transfered is the minimum of count, the size of
the memory region minus offset, and length of values minus start. When an
exception is thrown, no data is transfered.

offset — of the first long in the memory region to transfere

values — the array to receive the longs

start — the first index in array to fill

count — the maximum number of longs to copy

returns the number of longs actually transfered.

Throws OffsetOutOfBoundsException when offset is negative or either offset or
offset + count is greater than or equal to the size of this raw memory area.

Throws ArrayIndexOutOfBoundsException when start is negative or either start or
start + count is greater than or equal to the size of values.

Throws NullPointerException when values is null or count is negative.

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public long getLong(int offset)
throws javax.realtime.OffsetOutOfBoundsException

Get the value at the address: base address + offset x stride x element size in
bytes. When an exception is thrown, no data is transfered.

offset — of long in the memory region starting from the address specified in the
associated factory method.

returns the value at the address specified.

Throws OffsetOutOfBoundsException when offset is negative or greater than or
equal to the number of elements in the raw memory region.

734 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public long getLong()

Get the value at the first position referenced by this instance, i.e., the value at
its start address. This operation must be atomic with respect to all other raw
memory accesses to the address.

returns the value at the base address.

E.2.15 INTERFACE RawLongWriter

@SCJAllowed
public interface RawLongWriter extends javax.realtime.device.RawMemory

A marker for a long accessor object encapsulating the protocol for writing
longs to raw memory. A long accessor can always access at least one long.
Each long is transfered in a single atomic operation. Groups of longs may be
transfered together; however, this is not required.

Objects of this type are created with the method javax.realtime.device.Raw-
MemoryFactorycreateRawLongWriter and javax.realtime.device.RawMemory-
FactorycreateRawLong . Each object references a range of elements in the
javax.realtime.device.RawMemoryRegion starting at the base address pro-
vided to the factory method. The size provided to the factor method determines
the number of elements accessable.

Caching of the memory access is controlled by the factory that created this
object. If the memory is not cached, this method guarantees serialized access.
In other words, the memory access at the memory occurs in the same order as
in the program. Multiple writes to the same location may not be coalesced.

Since
RTSJ 2.0

Methods

27 January 2017 Version 0.109
Confidentiality: Public Distribution

735

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int set(int offset, long [] values)
throws javax.realtime.OffsetOutOfBoundsException,

java.lang.NullPointerException

Copy from values to the memory region from index start,to elements where the
nth element is at the address: base address + (offset+n) x stride x element size
in bytes. Only the longs in the intersection of values and the end of the memory
region are transfered. When an exception is thrown, no data is transfered.

offset — of first long in the memory region to be set.

values — is the source of the data to write.

returns the number of elements actually transferred to values

Throws OffsetOutOfBoundsException when offset is negative or greater than or
equal to the number of elements in the raw memory region.

Throws NullPointerException when values is null.

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int set(int offset, long [] values, int start, int count)
throws javax.realtime.OffsetOutOfBoundsException,

java.lang.ArrayIndexOutOfBoundsException, java.lang.NullPointerException

Copy values to the memory region, where offset is first long in the memory
region to write and start is the first index in values from which to read. The
number of bytes transfered is the minimum of count, the size of the memory
region minus offset, and length of values minus start. When an exception is
thrown, no data is transfered.

offset — of the first long in the memory region to set

values — the array from which to retrieve the longs

736 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

start — the first index in array to copy

count — the maximum number of longs to copy

returns the number of longs actually transfered.

Throws OffsetOutOfBoundsException when offset is negative or either offset or
offset + count is greater than or equal to the size of this raw memory area.

Throws ArrayIndexOutOfBoundsException when start is negative or either start or
start + count is greater than or equal to the size of values.

Throws NullPointerException when values is null.

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void setLong(int offset, long value)
throws javax.realtime.OffsetOutOfBoundsException

Set the value of the nth element referenced by this instance, where n is offset
and the address is base address + offset x size of Long. This operation must be
atomic with respect to all other raw memory accesses to the address. When an
exception is thrown, no data is transfered.

offset — of long in the memory region.

value — is the new value for the element.

Throws OffsetOutOfBoundsException when offset is negative or greater than or
equal to the number of elements in the raw memory region.

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void setLong(long value)

Set the value at the first position referenced by this instance, i.e., the value at
its start address. This operation must be atomic with respect to all other raw
memory accesses to the address.

value — is the new value for the element.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

737

Safety-Critical Java Technology Specification

E.2.16 INTERFACE RawMemoryRegionFactory

@SCJAllowed
public interface RawMemoryRegionFactory

A class to give an application the ability to provide support for a javax.realtime-
.device.RawMemoryRegion that is not already provided by the standard. An
instance of this call can be registered with a javax.realtime.device.RawMemory-
Factory and provides the object that that factory should return for a given
RawMemoryRegion. It is responsible for checking all requests and throwing
the proper exception when a request is invalid or the requester is not authorized
to make the request.

Since
RTSJ 2.0

Methods

@SCJAllowed
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.device.RawByte createRawByte(long base, int count, int stride)
throws java.lang.SecurityException, javax.realtime.OffsetOutOfBoundsException,

javax.realtime.SizeOutOfBoundsException,
javax.realtime.UnsupportedRawMemoryRegionException,
javax.realtime.MemoryTypeConflictException

Create an instance of a class that implements javax.realtime.device.RawByte
and accesses memory of javax.realtime.device.RawMemoryRegionFactoryget-
Region in the address range described by base, stride, and count. The actual
extent of the memory addressed by the object is stride x size of RawByte x
count. The object is allocated in the current memory area of the calling thread.

base — The starting physical address accessible through the returned instance.

count — The number of memory elements accessible through the returned instance.

stride — The distance to the next element in mulitple of element count, where a
value of 1 means the elements are adjacent in memory.

returns an object that implements javax.realtime.device.RawByte and supports
access to the specified range in the memory region.

738 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Throws IllegalArgumentException when base is negative, count is not greater than
zero, or stride is not greater than zero.

Throws SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.

Throws OffsetOutOfBoundsException when base is invalid.

Throws SizeOutOfBoundsException when the memory addressed by the object
would extend into an invalid range of memory.

Throws MemoryTypeConflictException when base does not point to memory that
matches the type served by this factory.

Since
RTSJ 2.0

@SCJAllowed
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.device.RawByteReader createRawByteReader(long base,
int count,
int stride)
throws java.lang.SecurityException, javax.realtime.OffsetOutOfBoundsException,

javax.realtime.SizeOutOfBoundsException,
javax.realtime.UnsupportedRawMemoryRegionException,
javax.realtime.MemoryTypeConflictException

Create an instance of a class that implements javax.realtime.device.RawByte-
Reader and accesses memory of javax.realtime.device.RawMemoryRegion-
FactorygetRegion in the address range described by base, stride, and count.
The actual extent of the memory addressed by the object is stride x size of
RawByteReader x count. The object is allocated in the current memory area of
the calling thread.

base — The starting physical address accessible through the returned instance.

count — The number of memory elements accessible through the returned instance.

stride — The distance to the next element in mulitple of element count, where a
value of 1 means the elements are adjacent in memory.

returns an object that implements javax.realtime.device.RawByteReader and
supports access to the specified range in the memory region.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

739

Safety-Critical Java Technology Specification

Throws IllegalArgumentException when base is negative, count is not greater than
zero, or stride is not greater than zero.

Throws SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.

Throws OffsetOutOfBoundsException when base is invalid.

Throws SizeOutOfBoundsException when the memory addressed by the object
would extend into an invalid range of memory.

Throws MemoryTypeConflictException when base does not point to memory that
matches the type served by this factory.

Since
RTSJ 2.0

@SCJAllowed
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.device.RawByteWriter createRawByteWriter(long base,
int count,
int stride)
throws java.lang.SecurityException, javax.realtime.OffsetOutOfBoundsException,

javax.realtime.SizeOutOfBoundsException,
javax.realtime.UnsupportedRawMemoryRegionException,
javax.realtime.MemoryTypeConflictException

Create an instance of a class that implements javax.realtime.device.RawByte-
Writer and accesses memory of javax.realtime.device.RawMemoryRegion-
FactorygetRegion in the address range described by base, stride, and count.
The actual extent of the memory addressed by the object is stride x size of
RawByteWriter x count. The object is allocated in the current memory area of
the calling thread.

base — The starting physical address accessible through the returned instance.

count — The number of memory elements accessible through the returned instance.

stride — The distance to the next element in mulitple of element count, where a
value of 1 means the elements are adjacent in memory.

returns an object that implements javax.realtime.device.RawByteWriter and sup-
ports access to the specified range in the memory region.

740 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Throws IllegalArgumentException when base is negative, count is not greater than
zero, or stride is not greater than zero.

Throws SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.

Throws OffsetOutOfBoundsException when base is invalid.

Throws SizeOutOfBoundsException when the memory addressed by the object
would extend into an invalid range of memory.

Throws MemoryTypeConflictException when base does not point to memory that
matches the type served by this factory.

Since
RTSJ 2.0

@SCJAllowed
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.device.RawDouble createRawDouble(long base,
int count,
int stride)
throws java.lang.SecurityException, javax.realtime.OffsetOutOfBoundsException,

javax.realtime.SizeOutOfBoundsException,
javax.realtime.UnsupportedRawMemoryRegionException,
javax.realtime.MemoryTypeConflictException

Create an instance of a class that implements javax.realtime.device.RawDouble
and accesses memory of javax.realtime.device.RawMemoryRegionFactoryget-
Region in the address range described by base, stride, and count. The actual
extent of the memory addressed by the object is stride x size of RawDouble x
count. The object is allocated in the current memory area of the calling thread.

base — The starting physical address accessible through the returned instance.

count — The number of memory elements accessible through the returned instance.

stride — The distance to the next element in mulitple of element count, where a
value of 1 means the elements are adjacent in memory.

returns an object that implements javax.realtime.device.RawDouble and sup-
ports access to the specified range in the memory region.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

741

Safety-Critical Java Technology Specification

Throws IllegalArgumentException when base is negative, count is not greater than
zero, or stride is not greater than zero.

Throws SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.

Throws OffsetOutOfBoundsException when base is invalid.

Throws SizeOutOfBoundsException when the memory addressed by the object
would extend into an invalid range of memory.

Throws MemoryTypeConflictException when base does not point to memory that
matches the type served by this factory.

Since
RTSJ 2.0

@SCJAllowed
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.device.RawDoubleReader createRawDoubleReader(long base,
int count,
int stride)
throws java.lang.SecurityException, javax.realtime.OffsetOutOfBoundsException,

javax.realtime.SizeOutOfBoundsException,
javax.realtime.UnsupportedRawMemoryRegionException,
javax.realtime.MemoryTypeConflictException

Create an instance of a class that implements javax.realtime.device.RawDouble-
Reader and accesses memory of javax.realtime.device.RawMemoryRegion-
FactorygetRegion in the address range described by base, stride, and count.
The actual extent of the memory addressed by the object is stride x size of Raw-
DoubleReader x count. The object is allocated in the current memory area of
the calling thread.

base — The starting physical address accessible through the returned instance.

count — The number of memory elements accessible through the returned instance.

stride — The distance to the next element in mulitple of element count, where a
value of 1 means the elements are adjacent in memory.

returns an object that implements javax.realtime.device.RawDoubleReader and
supports access to the specified range in the memory region.

742 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Throws IllegalArgumentException when base is negative, count is not greater than
zero, or stride is not greater than zero.

Throws SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.

Throws OffsetOutOfBoundsException when base is invalid.

Throws SizeOutOfBoundsException when the memory addressed by the object
would extend into an invalid range of memory.

Throws MemoryTypeConflictException when base does not point to memory that
matches the type served by this factory.

Since
RTSJ 2.0

@SCJAllowed
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.device.RawDoubleWriter createRawDoubleWriter(long base,
int count,
int stride)
throws java.lang.SecurityException, javax.realtime.OffsetOutOfBoundsException,

javax.realtime.SizeOutOfBoundsException,
javax.realtime.UnsupportedRawMemoryRegionException,
javax.realtime.MemoryTypeConflictException

Create an instance of a class that implements javax.realtime.device.RawDouble-
Writer and accesses memory of javax.realtime.device.RawMemoryRegion-
FactorygetRegion in the address range described by base, stride, and count.
The actual extent of the memory addressed by the object is stride x size of Raw-
DoubleWriter x count. The object is allocated in the current memory area of
the calling thread.

base — The starting physical address accessible through the returned instance.

count — The number of memory elements accessible through the returned instance.

stride — The distance to the next element in mulitple of element count, where a
value of 1 means the elements are adjacent in memory.

returns an object that implements javax.realtime.device.RawDoubleWriter and
supports access to the specified range in the memory region.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

743

Safety-Critical Java Technology Specification

Throws IllegalArgumentException when base is negative, count is not greater than
zero, or stride is not greater than zero.

Throws SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.

Throws OffsetOutOfBoundsException when base is invalid.

Throws SizeOutOfBoundsException when the memory addressed by the object
would extend into an invalid range of memory.

Throws MemoryTypeConflictException when base does not point to memory that
matches the type served by this factory.

Since
RTSJ 2.0

@SCJAllowed
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.device.RawFloat createRawFloat(long base,
int count,
int stride)
throws java.lang.SecurityException, javax.realtime.OffsetOutOfBoundsException,

javax.realtime.SizeOutOfBoundsException,
javax.realtime.UnsupportedRawMemoryRegionException,
javax.realtime.MemoryTypeConflictException

Create an instance of a class that implements javax.realtime.device.RawFloat
and accesses memory of javax.realtime.device.RawMemoryRegionFactoryget-
Region in the address range described by base, stride, and count. The actual
extent of the memory addressed by the object is stride x size of RawFloat x
count. The object is allocated in the current memory area of the calling thread.

base — The starting physical address accessible through the returned instance.

count — The number of memory elements accessible through the returned instance.

stride — The distance to the next element in mulitple of element count, where a
value of 1 means the elements are adjacent in memory.

returns an object that implements javax.realtime.device.RawFloat and supports
access to the specified range in the memory region.

744 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Throws IllegalArgumentException when base is negative, count is not greater than
zero, or stride is not greater than zero.

Throws SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.

Throws OffsetOutOfBoundsException when base is invalid.

Throws SizeOutOfBoundsException when the memory addressed by the object
would extend into an invalid range of memory.

Throws MemoryTypeConflictException when base does not point to memory that
matches the type served by this factory.

Since
RTSJ 2.0

@SCJAllowed
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.device.RawFloatReader createRawFloatReader(long base,
int count,
int stride)
throws java.lang.SecurityException, javax.realtime.OffsetOutOfBoundsException,

javax.realtime.SizeOutOfBoundsException,
javax.realtime.UnsupportedRawMemoryRegionException,
javax.realtime.MemoryTypeConflictException

Create an instance of a class that implements javax.realtime.device.RawFloat-
Reader and accesses memory of javax.realtime.device.RawMemoryRegion-
FactorygetRegion in the address range described by base, stride, and count.
The actual extent of the memory addressed by the object is stride x size of
RawFloatReader x count. The object is allocated in the current memory area
of the calling thread.

base — The starting physical address accessible through the returned instance.

count — The number of memory elements accessible through the returned instance.

stride — The distance to the next element in mulitple of element count, where a
value of 1 means the elements are adjacent in memory.

returns an object that implements javax.realtime.device.RawFloatReader and
supports access to the specified range in the memory region.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

745

Safety-Critical Java Technology Specification

Throws IllegalArgumentException when base is negative, count is not greater than
zero, or stride is not greater than zero.

Throws SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.

Throws OffsetOutOfBoundsException when base is invalid.

Throws SizeOutOfBoundsException when the memory addressed by the object
would extend into an invalid range of memory.

Throws MemoryTypeConflictException when base does not point to memory that
matches the type served by this factory.

Since
RTSJ 2.0

@SCJAllowed
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.device.RawFloatWriter createRawFloatWriter(long base,
int count,
int stride)
throws java.lang.SecurityException, javax.realtime.OffsetOutOfBoundsException,

javax.realtime.SizeOutOfBoundsException,
javax.realtime.UnsupportedRawMemoryRegionException,
javax.realtime.MemoryTypeConflictException

Create an instance of a class that implements javax.realtime.device.RawFloat-
Writer and accesses memory of javax.realtime.device.RawMemoryRegion-
FactorygetRegion in the address range described by base, stride, and count.
The actual extent of the memory addressed by the object is stride x size of
RawFloatWriter x count. The object is allocated in the current memory area of
the calling thread.

base — The starting physical address accessible through the returned instance.

count — The number of memory elements accessible through the returned instance.

stride — The distance to the next element in mulitple of element count, where a
value of 1 means the elements are adjacent in memory.

returns an object that implements javax.realtime.device.RawFloatWriter and
supports access to the specified range in the memory region.

746 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Throws IllegalArgumentException when base is negative, count is not greater than
zero, or stride is not greater than zero.

Throws SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.

Throws OffsetOutOfBoundsException when base is invalid.

Throws SizeOutOfBoundsException when the memory addressed by the object
would extend into an invalid range of memory.

Throws MemoryTypeConflictException when base does not point to memory that
matches the type served by this factory.

Since
RTSJ 2.0

@SCJAllowed
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.device.RawInt createRawInt(long base, int count, int stride)
throws java.lang.SecurityException, javax.realtime.OffsetOutOfBoundsException,

javax.realtime.SizeOutOfBoundsException,
javax.realtime.UnsupportedRawMemoryRegionException,
javax.realtime.MemoryTypeConflictException

Create an instance of a class that implements javax.realtime.device.RawInt
and accesses memory of javax.realtime.device.RawMemoryRegionFactoryget-
Region in the address range described by base, stride, and count. The actual
extent of the memory addressed by the object is stride x size of RawInt x count.
The object is allocated in the current memory area of the calling thread.

base — The starting physical address accessible through the returned instance.

count — The number of memory elements accessible through the returned instance.

stride — The distance to the next element in mulitple of element count, where a
value of 1 means the elements are adjacent in memory.

returns an object that implements javax.realtime.device.RawInt and supports
access to the specified range in the memory region.

Throws IllegalArgumentException when base is negative, count is not greater than
zero, or stride is not greater than zero.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

747

Safety-Critical Java Technology Specification

Throws SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.

Throws OffsetOutOfBoundsException when base is invalid.

Throws SizeOutOfBoundsException when the memory addressed by the object
would extend into an invalid range of memory.

Throws MemoryTypeConflictException when base does not point to memory that
matches the type served by this factory.

Since
RTSJ 2.0

@SCJAllowed
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.device.RawIntReader createRawIntReader(long base,
int count,
int stride)
throws java.lang.SecurityException, javax.realtime.OffsetOutOfBoundsException,

javax.realtime.SizeOutOfBoundsException,
javax.realtime.UnsupportedRawMemoryRegionException,
javax.realtime.MemoryTypeConflictException

Create an instance of a class that implements javax.realtime.device.RawInt-
Reader and accesses memory of javax.realtime.device.RawMemoryRegion-
FactorygetRegion in the address range described by base, stride, and count.
The actual extent of the memory addressed by the object is stride x size of
RawIntReader x count. The object is allocated in the current memory area of
the calling thread.

base — The starting physical address accessible through the returned instance.

count — The number of memory elements accessible through the returned instance.

stride — The distance to the next element in mulitple of element count, where a
value of 1 means the elements are adjacent in memory.

returns an object that implements javax.realtime.device.RawIntReader and sup-
ports access to the specified range in the memory region.

Throws IllegalArgumentException when base is negative, count is not greater than
zero, or stride is not greater than zero.

748 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Throws SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.

Throws OffsetOutOfBoundsException when base is invalid.

Throws SizeOutOfBoundsException when the memory addressed by the object
would extend into an invalid range of memory.

Throws MemoryTypeConflictException when base does not point to memory that
matches the type served by this factory.

Since
RTSJ 2.0

@SCJAllowed
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.device.RawIntWriter createRawIntWriter(long base,
int count,
int stride)
throws java.lang.SecurityException, javax.realtime.OffsetOutOfBoundsException,

javax.realtime.SizeOutOfBoundsException,
javax.realtime.UnsupportedRawMemoryRegionException,
javax.realtime.MemoryTypeConflictException

Create an instance of a class that implements javax.realtime.device.RawInt-
Writer and accesses memory of javax.realtime.device.RawMemoryRegion-
FactorygetRegion in the address range described by base, stride, and count.
The actual extent of the memory addressed by the object is stride x size of
RawIntWriter x count. The object is allocated in the current memory area of
the calling thread.

base — The starting physical address accessible through the returned instance.

count — The number of memory elements accessible through the returned instance.

stride — The distance to the next element in mulitple of element count, where a
value of 1 means the elements are adjacent in memory.

returns an object that implements javax.realtime.device.RawIntWriter and sup-
ports access to the specified range in the memory region.

Throws IllegalArgumentException when base is negative, count is not greater than
zero, or stride is not greater than zero.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

749

Safety-Critical Java Technology Specification

Throws SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.

Throws OffsetOutOfBoundsException when base is invalid.

Throws SizeOutOfBoundsException when the memory addressed by the object
would extend into an invalid range of memory.

Throws MemoryTypeConflictException when base does not point to memory that
matches the type served by this factory.

Since
RTSJ 2.0

@SCJAllowed
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.device.RawLong createRawLong(long base, int count, int stride)
throws java.lang.SecurityException, javax.realtime.OffsetOutOfBoundsException,

javax.realtime.SizeOutOfBoundsException,
javax.realtime.UnsupportedRawMemoryRegionException,
javax.realtime.MemoryTypeConflictException

Create an instance of a class that implements javax.realtime.device.RawLong
and accesses memory of javax.realtime.device.RawMemoryRegionFactoryget-
Region in the address range described by base, stride, and count. The actual
extent of the memory addressed by the object is stride x size of RawLong x
count. The object is allocated in the current memory area of the calling thread.

base — The starting physical address accessible through the returned instance.

count — The number of memory elements accessible through the returned instance.

stride — The distance to the next element in mulitple of element count, where a
value of 1 means the elements are adjacent in memory.

returns an object that implements javax.realtime.device.RawLong and supports
access to the specified range in the memory region.

Throws IllegalArgumentException when base is negative, count is not greater than
zero, or stride is not greater than zero.

Throws SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.

750 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Throws OffsetOutOfBoundsException when base is invalid.

Throws SizeOutOfBoundsException when the memory addressed by the object
would extend into an invalid range of memory.

Throws MemoryTypeConflictException when base does not point to memory that
matches the type served by this factory.

Since
RTSJ 2.0

@SCJAllowed
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.device.RawLongReader createRawLongReader(long base,
int count,
int stride)
throws java.lang.SecurityException, javax.realtime.OffsetOutOfBoundsException,

javax.realtime.SizeOutOfBoundsException,
javax.realtime.UnsupportedRawMemoryRegionException,
javax.realtime.MemoryTypeConflictException

Create an instance of a class that implements javax.realtime.device.RawLong-
Reader and accesses memory of javax.realtime.device.RawMemoryRegion-
FactorygetRegion in the address range described by base, stride, and count.
The actual extent of the memory addressed by the object is stride x size of Raw-
LongReader x count. The object is allocated in the current memory area of the
calling thread.

base — The starting physical address accessible through the returned instance.

count — The number of memory elements accessible through the returned instance.

stride — The distance to the next element in mulitple of element count, where a
value of 1 means the elements are adjacent in memory.

returns an object that implements javax.realtime.device.RawLongReader and
supports access to the specified range in the memory region.

Throws IllegalArgumentException when base is negative, count is not greater than
zero, or stride is not greater than zero.

Throws SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

751

Safety-Critical Java Technology Specification

Throws OffsetOutOfBoundsException when base is invalid.

Throws SizeOutOfBoundsException when the memory addressed by the object
would extend into an invalid range of memory.

Throws MemoryTypeConflictException when base does not point to memory that
matches the type served by this factory.

Since
RTSJ 2.0

@SCJAllowed
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.device.RawLongWriter createRawLongWriter(long base,
int count,
int stride)
throws java.lang.SecurityException, javax.realtime.OffsetOutOfBoundsException,

javax.realtime.SizeOutOfBoundsException,
javax.realtime.UnsupportedRawMemoryRegionException,
javax.realtime.MemoryTypeConflictException

Create an instance of a class that implements javax.realtime.device.RawLong-
Writer and accesses memory of javax.realtime.device.RawMemoryRegion-
FactorygetRegion in the address range described by base, stride, and count.
The actual extent of the memory addressed by the object is stride x size of Raw-
LongWriter x count. The object is allocated in the current memory area of the
calling thread.

base — The starting physical address accessible through the returned instance.

count — The number of memory elements accessible through the returned instance.

stride — The distance to the next element in mulitple of element count, where a
value of 1 means the elements are adjacent in memory.

returns an object that implements javax.realtime.device.RawLongWriter and
supports access to the specified range in the memory region.

Throws IllegalArgumentException when base is negative, count is not greater than
zero, or stride is not greater than zero.

Throws SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.

752 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Throws OffsetOutOfBoundsException when base is invalid.

Throws SizeOutOfBoundsException when the memory addressed by the object
would extend into an invalid range of memory.

Throws MemoryTypeConflictException when base does not point to memory that
matches the type served by this factory.

Since
RTSJ 2.0

@SCJAllowed
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.device.RawShort createRawShort(long base,
int count,
int stride)
throws java.lang.SecurityException, javax.realtime.OffsetOutOfBoundsException,

javax.realtime.SizeOutOfBoundsException,
javax.realtime.UnsupportedRawMemoryRegionException,
javax.realtime.MemoryTypeConflictException

Create an instance of a class that implements javax.realtime.device.RawShort
and accesses memory of javax.realtime.device.RawMemoryRegionFactoryget-
Region in the address range described by base, stride, and count. The actual
extent of the memory addressed by the object is stride x size of RawShort x
count. The object is allocated in the current memory area of the calling thread.

base — The starting physical address accessible through the returned instance.

count — The number of memory elements accessible through the returned instance.

stride — The distance to the next element in mulitple of element count, where a
value of 1 means the elements are adjacent in memory.

returns an object that implements javax.realtime.device.RawShort and supports
access to the specified range in the memory region.

Throws IllegalArgumentException when base is negative, count is not greater than
zero, or stride is not greater than zero.

Throws SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

753

Safety-Critical Java Technology Specification

Throws OffsetOutOfBoundsException when base is invalid.

Throws SizeOutOfBoundsException when the memory addressed by the object
would extend into an invalid range of memory.

Throws MemoryTypeConflictException when base does not point to memory that
matches the type served by this factory.

Since
RTSJ 2.0

@SCJAllowed
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.device.RawShortReader createRawShortReader(long base,
int count,
int stride)
throws java.lang.SecurityException, javax.realtime.OffsetOutOfBoundsException,

javax.realtime.SizeOutOfBoundsException,
javax.realtime.UnsupportedRawMemoryRegionException,
javax.realtime.MemoryTypeConflictException

Create an instance of a class that implements javax.realtime.device.RawShort-
Reader and accesses memory of javax.realtime.device.RawMemoryRegion-
FactorygetRegion in the address range described by base, stride, and count.
The actual extent of the memory addressed by the object is stride x size of Raw-
ShortReader x count. The object is allocated in the current memory area of the
calling thread.

base — The starting physical address accessible through the returned instance.

count — The number of memory elements accessible through the returned instance.

stride — The distance to the next element in mulitple of element count, where a
value of 1 means the elements are adjacent in memory.

returns an object that implements javax.realtime.device.RawShortReader and
supports access to the specified range in the memory region.

Throws IllegalArgumentException when base is negative, count is not greater than
zero, or stride is not greater than zero.

Throws SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.

754 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Throws OffsetOutOfBoundsException when base is invalid.

Throws SizeOutOfBoundsException when the memory addressed by the object
would extend into an invalid range of memory.

Throws MemoryTypeConflictException when base does not point to memory that
matches the type served by this factory.

Since
RTSJ 2.0

@SCJAllowed
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.device.RawShortWriter createRawShortWriter(long base,
int count,
int stride)
throws java.lang.SecurityException, javax.realtime.OffsetOutOfBoundsException,

javax.realtime.SizeOutOfBoundsException,
javax.realtime.UnsupportedRawMemoryRegionException,
javax.realtime.MemoryTypeConflictException

Create an instance of a class that implements javax.realtime.device.RawShort-
Writer and accesses memory of javax.realtime.device.RawMemoryRegion-
FactorygetRegion in the address range described by base, stride, and count.
The actual extent of the memory addressed by the object is stride x size of Raw-
ShortWriter x count. The object is allocated in the current memory area of the
calling thread.

base — The starting physical address accessible through the returned instance.

count — The number of memory elements accessible through the returned instance.

stride — The distance to the next element in mulitple of element count, where a
value of 1 means the elements are adjacent in memory.

returns an object that implements javax.realtime.device.RawShortWriter and
supports access to the specified range in the memory region.

Throws IllegalArgumentException when base is negative, count is not greater than
zero, or stride is not greater than zero.

Throws SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

755

Safety-Critical Java Technology Specification

Throws OffsetOutOfBoundsException when base is invalid.

Throws SizeOutOfBoundsException when the memory addressed by the object
would extend into an invalid range of memory.

Throws MemoryTypeConflictException when base does not point to memory that
matches the type served by this factory.

Since
RTSJ 2.0

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.String getName()

Determine the name of the region for which this factory creates raw memory
objects.

returns the name of the region of this factory.

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.device.RawMemoryRegion getRegion()

Determine for what region this factory creates raw memory objects.

returns the region of this factory.

E.2.17 INTERFACE RawShort

@SCJAllowed
public interface RawShort extends javax.realtime.device.RawShortReader,

javax.realtime.device.RawShortWriter

756 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

A marker for an object that can be used to access to a single short. Read and
write access to that short is checked by the factory that creates the instance;
therefore, no access checking is provided by this interface, only bounds check-
ing.

Since
RTSJ 2.0

E.2.18 INTERFACE RawShortReader

@SCJAllowed
public interface RawShortReader extends javax.realtime.device.RawMemory

A marker for a short accessor object encapsulating the protocol for reading
shorts from raw memory. A short accessor can always access at least one short.
Each short is transfered in a single atomic operation. Groups of shorts may be
transfered together; however, this is not required.

Objects of this type are created with the method javax.realtime.device.Raw-
MemoryFactorycreateRawShortReader and javax.realtime.device.RawMemory-
FactorycreateRawShort . Each object references a range of elements in the
javax.realtime.device.RawMemoryRegion starting at the base address pro-
vided to the factory method. The size provided to the factor method determines
the number of elements accessable.

Caching of the memory access is controlled by the factory that created this
object. If the memory is not cached, this method guarantees serialized access.
In other words, the memory access at the memory occurs in the same order as
in the program. Multiple writes to the same location may not be coalesced.

Since
RTSJ 2.0

Methods

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

27 January 2017 Version 0.109
Confidentiality: Public Distribution

757

Safety-Critical Java Technology Specification

public int get(int offset, short [] values)
throws javax.realtime.OffsetOutOfBoundsException,

java.lang.NullPointerException

Fill values with elements from this instance, where the nth element is at the
address: base address + (offset+n) x stride x element size in bytes. Only the
shorts in the intersection of the start and end of values and the base address and
the end of the memory region are transfered. When an exception is thrown, no
data is transfered.

offset — of the first short in the memory region to transfere

values — the array to receive the shorts

returns the number of elements actuall transferred to values

Throws OffsetOutOfBoundsException when offset is negative or greater than or
equal to the number of elements in the raw memory region.

Throws NullPointerException when values is null.

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int get(int offset, short [] values, int start, int count)
throws javax.realtime.OffsetOutOfBoundsException,

java.lang.ArrayIndexOutOfBoundsException, java.lang.NullPointerException

Fill values from index start with elements from this instance, where the nth
element is at the address: base address + (offset+n) x stride x element size in
bytes. The number of bytes transfered is the minimum of count, the size of
the memory region minus offset, and length of values minus start. When an
exception is thrown, no data is transfered.

offset — of the first short in the memory region to transfere

values — the array to receive the shorts

start — the first index in array to fill

count — the maximum number of shorts to copy

returns the number of shorts actually transfered.

Throws OffsetOutOfBoundsException when offset is negative or either offset or
offset + count is greater than or equal to the size of this raw memory area.

758 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Throws ArrayIndexOutOfBoundsException when start is negative or either start or
start + count is greater than or equal to the size of values.

Throws NullPointerException when values is null or count is negative.

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public short getShort(int offset)
throws javax.realtime.OffsetOutOfBoundsException

Get the value at the address: base address + offset x stride x element size in
bytes. When an exception is thrown, no data is transfered.

offset — of short in the memory region starting from the address specified in the
associated factory method.

returns the value at the address specified.

Throws OffsetOutOfBoundsException when offset is negative or greater than or
equal to the number of elements in the raw memory region.

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public short getShort()

Get the value at the first position referenced by this instance, i.e., the value at
its start address. This operation must be atomic with respect to all other raw
memory accesses to the address.

returns the value at the base address.

E.2.19 INTERFACE RawShortWriter

@SCJAllowed
public interface RawShortWriter extends javax.realtime.device.RawMemory

27 January 2017 Version 0.109
Confidentiality: Public Distribution

759

Safety-Critical Java Technology Specification

A marker for a short accessor object encapsulating the protocol for writing
shorts to raw memory. A short accessor can always access at least one short.
Each short is transfered in a single atomic operation. Groups of shorts may be
transfered together; however, this is not required.

Objects of this type are created with the method javax.realtime.device.Raw-
MemoryFactorycreateRawShortWriter and javax.realtime.device.RawMemory-
FactorycreateRawShort . Each object references a range of elements in the
javax.realtime.device.RawMemoryRegion starting at the base address pro-
vided to the factory method. The size provided to the factor method determines
the number of elements accessable.

Caching of the memory access is controlled by the factory that created this
object. If the memory is not cached, this method guarantees serialized access.
In other words, the memory access at the memory occurs in the same order as
in the program. Multiple writes to the same location may not be coalesced.

Since
RTSJ 2.0

Methods

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int set(int offset, short [] values)
throws javax.realtime.OffsetOutOfBoundsException,

java.lang.NullPointerException

Copy from values to the memory region from index start,to elements where the
nth element is at the address: base address + (offset+n) x stride x element size
in bytes. Only the shorts in the intersection of values and the end of the memory
region are transfered. When an exception is thrown, no data is transfered.

offset — of first short in the memory region to be set.

values — is the source of the data to write.

returns the number of elements actually transferred to values

Throws OffsetOutOfBoundsException when offset is negative or greater than or
equal to the number of elements in the raw memory region.

760 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Throws NullPointerException when values is null.

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public int set(int offset, short [] values, int start, int count)
throws javax.realtime.OffsetOutOfBoundsException,

java.lang.ArrayIndexOutOfBoundsException, java.lang.NullPointerException

Copy values to the memory region, where offset is first short in the memory
region to write and start is the first index in values from which to read. The
number of bytes transfered is the minimum of count, the size of the memory
region minus offset, and length of values minus start. When an exception is
thrown, no data is transfered.

offset — of the first short in the memory region to set

values — the array from which to retrieve the shorts

start — the first index in array to copy

count — the maximum number of shorts to copy

returns the number of shorts actually transfered.

Throws OffsetOutOfBoundsException when offset is negative or either offset or
offset + count is greater than or equal to the size of this raw memory area.

Throws ArrayIndexOutOfBoundsException when start is negative or either start or
start + count is greater than or equal to the size of values.

Throws NullPointerException when values is null.

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void setShort(int offset, short value)
throws javax.realtime.OffsetOutOfBoundsException

27 January 2017 Version 0.109
Confidentiality: Public Distribution

761

Safety-Critical Java Technology Specification

Set the value of the nth element referenced by this instance, where n is offset
and the address is base address + offset x size of Short. This operation must be
atomic with respect to all other raw memory accesses to the address. When an
exception is thrown, no data is transfered.

offset — of short in the memory region.

value — is the new value for the element.

Throws OffsetOutOfBoundsException when offset is negative or greater than or
equal to the number of elements in the raw memory region.

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void setShort(short value)

Set the value at the first position referenced by this instance, i.e., the value at
its start address. This operation must be atomic with respect to all other raw
memory accesses to the address.

value — is the new value for the element.

E.3 Classes

E.3.1 CLASS InterruptServiceRoutine

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public abstract class InterruptServiceRoutine implements

javax.realtime.BoundRealtimeExecutor extends java.lang.Object

A first level interrupt handling mechanisms. Override the handle method to
provide the first level interrupt handler. The constructors for this class are
invoked by the infrastructure and are therefore not visible to the application.
The default affinity of an handler can be determined via calling getAffinity() .

Methods

762 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

public static javax.realtime.device.InterruptServiceRoutine getHandler(
int interrupt)

Find the InterruptServiceRoutine that is handling a given interrupt.

interrupt — for which to find the InterruptServiceRoutine

returns the InterruptServiceRoutine registered to the given interrupt. Null is re-
turned when nothing is registered for that interrupt.

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static int getInterruptPriority(int InterruptId)

Every interrupt has an implementation-defined integer id.

returns The priority of the code that the first-level interrupts code executes. The
returned value is always greater than PriorityScheduler.getMaxPriority().

Throws IllegalArgumentException if unsupported InterruptId

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

public static int getMaximumInterruptPriority()

27 January 2017 Version 0.109
Confidentiality: Public Distribution

763

Safety-Critical Java Technology Specification

Retrieve the maximum interrupt priority. It must be greater than or equal to the
result of getMinimumInterruptPriority.

returns the maximum interrupt priority.

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

public static int getMinimumInterruptPriority()

Retrieve the minimum interrupt priority. It must be higher than all other prior-
ities provided by the system.

returns the minimum interrupt priority.

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
protected abstract void handle()

The code to execute for first level interrupt handling. A subclass defines this
to give the proper behavior. No code that could self-suspend may be called
here. The effects of unbound blocking and inducing a context switch here are
undefined and could result in deadlocking the machine. Unless the overridden
method is synchronized, the infrastructure shall provide no synchronization for
the execution of this method.

E.3.2 CLASS RawMemoryFactory

@SCJAllowed
public class RawMemoryFactory extends java.lang.Object

764 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

This class is the hub of a system that constructs special purpose objects to
access particular types and ranges of raw memory. This facility is supported
by the RawMemoryRegionFactory methods. An application developer can use
this method to add support for additional memory regions.

Each create method returns an object of the corresponding type, e.g., the creat-
eRawByte(RawMemoryRegion, long, int, int)} method returns a reference to
an object that implements the javax.realtime.device.RawByte interface and
supports access to the requested type of memory and address range. Each cre-
ate method is permitted to optimize error checking and access based on the
requested memory type and address range.

The usage pattern for raw memory, assuming the necessary factory has been
registered, is illustrated by this example.

// Get an accessor object that can access memory starting at
// baseAddress, for size bytes.
RawInt memory =

RawMemoryFactory.createRawInt(RawMemoryFactory.MEMORY MAPPED REGION,
address, count, stride, false);

// Use the accessor to load from and store to raw memory.
int loadedData = memory.getInt(someOffset);
memory.setInt(otherOffset, intVal);

When an application needs to access a class of memory that is not already sup-
ported by a registered factory, the developer must implement and register a fac-
tory that implements the javax.realtime.device.RawMemoryRegionFactory
) which can create objects to access memory in that region.

A raw memory region factory is identified by a javax.realtime.device.Raw-
MemoryRegion that is used by each create method, e.g., createRawByte(Raw-
MemoryRegion, long, int, int) , to locate the appropriate factory. The name is
provided to register(RawMemoryRegionFactory) through the factory’s javax-
.realtime.device.RawMemoryRegionFactorygetName method.

The register(RawMemoryRegionFactory) method is only used when by ap-
plication code when it needs to add support for a new type of raw memory.

Whether a give offset addresses a high-order or low-order byte of an aligned
short in memory is determined by the value of the javax.realtime.RealtimeSystem.BYTE ORDER
static byte variable in class javax.realtime.RealtimeSystem, the start address of
the object, and the offset given the stride of the object. Regardless of the byte
ordering, accessor methods continue to select bytes starting at offset from the
base address and continuing toward greater addresses.

A raw memory region cannot contain references to Java objects. Such a capa-
bility would be unsafe (since it could be used to defeat Java’s type checking)

27 January 2017 Version 0.109
Confidentiality: Public Distribution

765

Safety-Critical Java Technology Specification

and error prone (since it is sensitive to the specific representational choices
made by the Java compiler).

Atomic loads and stores on raw memory are defined in terms of physical mem-
ory. This memory may be accessible to threads outside the JVM and to non-
programmed access (e.g., DMA). Consequently, atomic access must be sup-
ported by hardware. This specification is written with the assumption that all
suitable hardware platforms support atomic loads from raw memory for aligned
bytes, shorts, and ints. Atomic access beyond the specified minimum may be
supported by the implementation.

Storing values into raw memory is more hardware-dependent than loading val-
ues. Many processor architectures do not support atomic stores of variables
except for aligned stores of the processor’s word size. For instance, storing
a byte into memory might require reading a 32-bit quantity into a processor
register, updating the register to reflect the new byte value, then restoring the
whole 32-bit quantity. Changes to other bytes in the 32-bit quantity that take
place between the load and the store are lost.

Some processors have mechanisms that can be used to implement an atomic
store of a byte, but those mechanisms are often slow and not universally sup-
ported.

This class need not support unaligned access to data; but if it does, it is not re-
quire the implementation to make such access atomic. Accesses to data aligned
on its natural boundary will be atomic if the processor implements atomic loads
and stores of that data size.

Except where noted, accesses to raw memory are not atomic with respect to the
memory or with respect to schedulable objects. A raw memory region could
be updated by another schedulable object, or even unmapped in the middle of
an access method, or even removed mid method.

The characteristics of raw-memory access are necessarily platform dependent.
This specification provides a minimum requirement for the SCJ platform, but
it also supports optional system properties that identify a platform’s level of
support for atomic raw put and get. The properties represent a four-dimensional
sparse array of access type, data type, alignment, and atomicity with boolean
values indicating whether that combination of access attributes is atomic. The
default value for array entries is false. The permissable values of these array
entries are:

• Access type - possible values are read and write.
• Data type - possible values are byte, short, int, long, float, and double.
• Alignment - possible values are 0 through 7, inclusive. For each data

type, the possible alignments range from:

766 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

• 0 means aligned
• 1 to (data size-1) means only the first byte of the data is alignment

bytes away from natural alignment
• Atomicity - possible values are processor, smp, and memory.

• processor means that access is atomic with respect to other schedu-
lable objects on that processor.

• smp means that access is processor atomic, and atomic across the
processors in an SMP.

• memory means that access is SMP atomic, and atomic with respect
to all access to the memory, including DMA hardware.

The true values in the table are represented by properties of the following form.
javax.realtime.atomicaccess <access> <type> <alignment> atomicity=true
for example,

javax.realtime.atomicaccess read byte 0 memory=true

Table entries with a value of false may be explicitly represented, but since false
is the default value, such properties are redundant.

All raw memory access is treated as volatile, and serialized. The infrastructure
must be forced to read memory or write to memory on each call to a raw mem-
ory objects’s getter or setter method, and to complete the reads and writes in
the order they appear in the program order.

Since
RTSJ 2.0

Fields

@SCJAllowed
public static final javax.realtime.device.RawMemoryRegion IO PORT MAPPED REGION

This raw memory region is predefined for access to I/O device space imple-
mented by processor instructions, such as the x86 in and out instructions.

@SCJAllowed
public static final javax.realtime.device.RawMemoryRegion MEMORY MAPPED REGION

This raw memory region is predefined for request access to memory mapped
I/O devices.

Constructors

27 January 2017 Version 0.109
Confidentiality: Public Distribution

767

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION})

@SCJMayAllocate({
javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

public RawMemoryFactory()

Create an empty factory. For a factory with support for the platform defined re-
gions, use javax.realtime.device.RawMemoryFactorygetDefaultFactory in-
stead.

Methods

@SCJAllowed
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.device.RawByte createRawByte(RawMemoryRegion region,
long base,
int count,
int stride)
throws java.lang.SecurityException, javax.realtime.OffsetOutOfBoundsException,

javax.realtime.SizeOutOfBoundsException,
javax.realtime.MemoryTypeConflictException,
javax.realtime.UnsupportedRawMemoryRegionException

Create an instance of a class that implements javax.realtime.device.RawByte
and accesses memory of region in the address range described by base, stride,
and count. The actual extent of the memory addressed by the object is stride x
size of RawByte x count. The object is allocated in the current memory area of
the calling thread.

region — The address space from which the new instance should be taken.

base — The starting physical address accessible through the returned instance.

count — The number of memory elements accessible through the returned instance.

stride — The distance to the next element as a mulitple of element size, where 1
means the elements are adjacent in memory.

768 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

returns an object that implements javax.realtime.device.RawByte and supports
access to the specified range in the memory region.

Throws IllegalArgumentException when base is negative, count is not greater than
zero, or stride is less than one.

Throws SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.

Throws OffsetOutOfBoundsException when base is invalid.

Throws SizeOutOfBoundsException when the memory addressed by the object
would extend into an invalid range of memory.

Throws MemoryTypeConflictException when base does not point to a memory that
matches the type served by this factory.

@SCJAllowed
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.device.RawByteReader createRawByteReader(
RawMemoryRegion region,
long base,
int count,
int stride)
throws java.lang.SecurityException, javax.realtime.OffsetOutOfBoundsException,

javax.realtime.SizeOutOfBoundsException,
javax.realtime.MemoryTypeConflictException,
javax.realtime.UnsupportedRawMemoryRegionException

Create an instance of a class that implements javax.realtime.device.RawByte-
Reader and accesses memory of region in the address range described by base,
stride, and count. The actual extent of the memory addressed by the object is
stride x size of RawByteReader x count. The object is allocated in the current
memory area of the calling thread.

region — The address space from which the new instance should be taken.

base — The starting physical address accessible through the returned instance.

count — The number of memory elements accessible through the returned instance.

stride — The distance to the next element as a mulitple of element size, where 1
means the elements are adjacent in memory.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

769

Safety-Critical Java Technology Specification

returns an object that implements javax.realtime.device.RawByteReader and
supports access to the specified range in the memory region.

Throws IllegalArgumentException when base is negative, count is not greater than
zero, or stride is less than one.

Throws SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.

Throws OffsetOutOfBoundsException when base is invalid.

Throws SizeOutOfBoundsException when the memory addressed by the object
would extend into an invalid range of memory.

Throws MemoryTypeConflictException when base does not point to a memory that
matches the type served by this factory.

@SCJAllowed
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.device.RawByteWriter createRawByteWriter(
RawMemoryRegion region,
long base,
int count,
int stride)
throws java.lang.SecurityException, javax.realtime.OffsetOutOfBoundsException,

javax.realtime.SizeOutOfBoundsException,
javax.realtime.MemoryTypeConflictException,
javax.realtime.UnsupportedRawMemoryRegionException

Create an instance of a class that implements javax.realtime.device.RawByte-
Writer and accesses memory of region in the address range described by base,
stride, and count. The actual extent of the memory addressed by the object is
stride x size of RawByteWriter x count. The object is allocated in the current
memory area of the calling thread.

region — The address space from which the new instance should be taken.

base — The starting physical address accessible through the returned instance.

count — The number of memory elements accessible through the returned instance.

stride — The distance to the next element as a mulitple of element size, where 1
means the elements are adjacent in memory.

770 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

returns an object that implements javax.realtime.device.RawByteWriter and sup-
ports access to the specified range in the memory region.

Throws IllegalArgumentException when base is negative, count is not greater than
zero, or stride is less than one.

Throws SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.

Throws OffsetOutOfBoundsException when base is invalid.

Throws SizeOutOfBoundsException when the memory addressed by the object
would extend into an invalid range of memory.

Throws MemoryTypeConflictException when base does not point to a memory that
matches the type served by this factory.

@SCJAllowed
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.device.RawDouble createRawDouble(RawMemoryRegion region,
long base,
int count,
int stride)
throws java.lang.SecurityException, javax.realtime.OffsetOutOfBoundsException,

javax.realtime.SizeOutOfBoundsException,
javax.realtime.MemoryTypeConflictException,
javax.realtime.UnsupportedRawMemoryRegionException

Create an instance of a class that implements javax.realtime.device.RawDouble
and accesses memory of region in the address range described by base, stride,
and count. The actual extent of the memory addressed by the object is stride x
size of RawDouble x count. The object is allocated in the current memory area
of the calling thread.

region — The address space from which the new instance should be taken.

base — The starting physical address accessible through the returned instance.

count — The number of memory elements accessible through the returned instance.

stride — The distance to the next element as a mulitple of element size, where 1
means the elements are adjacent in memory.

returns an object that implements javax.realtime.device.RawDouble and sup-
ports access to the specified range in the memory region.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

771

Safety-Critical Java Technology Specification

Throws IllegalArgumentException when base is negative, count is not greater than
zero, or stride is less than one.

Throws SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.

Throws OffsetOutOfBoundsException when base is invalid.

Throws SizeOutOfBoundsException when the memory addressed by the object
would extend into an invalid range of memory.

Throws MemoryTypeConflictException when base does not point to a memory that
matches the type served by this factory.

@SCJAllowed
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.device.RawDoubleReader createRawDoubleReader(
RawMemoryRegion region,
long base,
int count,
int stride)
throws java.lang.SecurityException, javax.realtime.OffsetOutOfBoundsException,

javax.realtime.SizeOutOfBoundsException,
javax.realtime.MemoryTypeConflictException,
javax.realtime.UnsupportedRawMemoryRegionException

Create an instance of a class that implements javax.realtime.device.RawDouble-
Reader and accesses memory of region in the address range described by base,
stride, and count. The actual extent of the memory addressed by the object is
stride x size of RawDoubleReader x count. The object is allocated in the cur-
rent memory area of the calling thread.

region — The address space from which the new instance should be taken.

base — The starting physical address accessible through the returned instance.

count — The number of memory elements accessible through the returned instance.

stride — The distance to the next element as a mulitple of element size, where 1
means the elements are adjacent in memory.

returns an object that implements javax.realtime.device.RawDoubleReader and
supports access to the specified range in the memory region.

772 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Throws IllegalArgumentException when base is negative, count is not greater than
zero, or stride is less than one.

Throws SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.

Throws OffsetOutOfBoundsException when base is invalid.

Throws SizeOutOfBoundsException when the memory addressed by the object
would extend into an invalid range of memory.

Throws MemoryTypeConflictException when base does not point to a memory that
matches the type served by this factory.

@SCJAllowed
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.device.RawDoubleWriter createRawDoubleWriter(
RawMemoryRegion region,
long base,
int count,
int stride)
throws java.lang.SecurityException, javax.realtime.OffsetOutOfBoundsException,

javax.realtime.SizeOutOfBoundsException,
javax.realtime.MemoryTypeConflictException,
javax.realtime.UnsupportedRawMemoryRegionException

Create an instance of a class that implements javax.realtime.device.RawDouble-
Writer and accesses memory of region in the address range described by base,
stride, and count. The actual extent of the memory addressed by the object is
stride x size of RawDoubleWriter x count. The object is allocated in the current
memory area of the calling thread.

region — The address space from which the new instance should be taken.

base — The starting physical address accessible through the returned instance.

count — The number of memory elements accessible through the returned instance.

stride — The distance to the next element as a mulitple of element size, where 1
means the elements are adjacent in memory.

returns an object that implements javax.realtime.device.RawDoubleWriter and
supports access to the specified range in the memory region.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

773

Safety-Critical Java Technology Specification

Throws IllegalArgumentException when base is negative, count is not greater than
zero, or stride is less than one.

Throws SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.

Throws OffsetOutOfBoundsException when base is invalid.

Throws SizeOutOfBoundsException when the memory addressed by the object
would extend into an invalid range of memory.

Throws MemoryTypeConflictException when base does not point to a memory that
matches the type served by this factory.

@SCJAllowed
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.device.RawFloat createRawFloat(RawMemoryRegion region,
long base,
int count,
int stride)
throws java.lang.SecurityException, javax.realtime.OffsetOutOfBoundsException,

javax.realtime.SizeOutOfBoundsException,
javax.realtime.MemoryTypeConflictException,
javax.realtime.UnsupportedRawMemoryRegionException

Create an instance of a class that implements javax.realtime.device.RawFloat
and accesses memory of region in the address range described by base, stride,
and count. The actual extent of the memory addressed by the object is stride x
size of RawFloat x count. The object is allocated in the current memory area
of the calling thread.

region — The address space from which the new instance should be taken.

base — The starting physical address accessible through the returned instance.

count — The number of memory elements accessible through the returned instance.

stride — The distance to the next element as a mulitple of element size, where 1
means the elements are adjacent in memory.

returns an object that implements javax.realtime.device.RawFloat and supports
access to the specified range in the memory region.

Throws IllegalArgumentException when base is negative, count is not greater than
zero, or stride is less than one.

774 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Throws SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.

Throws OffsetOutOfBoundsException when base is invalid.

Throws SizeOutOfBoundsException when the memory addressed by the object
would extend into an invalid range of memory.

Throws MemoryTypeConflictException when base does not point to a memory that
matches the type served by this factory.

@SCJAllowed
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.device.RawFloatReader createRawFloatReader(
RawMemoryRegion region,
long base,
int count,
int stride)
throws java.lang.SecurityException, javax.realtime.OffsetOutOfBoundsException,

javax.realtime.SizeOutOfBoundsException,
javax.realtime.MemoryTypeConflictException,
javax.realtime.UnsupportedRawMemoryRegionException

Create an instance of a class that implements javax.realtime.device.RawFloat-
Reader and accesses memory of region in the address range described by base,
stride, and count. The actual extent of the memory addressed by the object is
stride x size of RawFloatReader x count. The object is allocated in the current
memory area of the calling thread.

region — The address space from which the new instance should be taken.

base — The starting physical address accessible through the returned instance.

count — The number of memory elements accessible through the returned instance.

stride — The distance to the next element as a mulitple of element size, where 1
means the elements are adjacent in memory.

returns an object that implements javax.realtime.device.RawFloatReader and
supports access to the specified range in the memory region.

Throws IllegalArgumentException when base is negative, count is not greater than
zero, or stride is less than one.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

775

Safety-Critical Java Technology Specification

Throws SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.

Throws OffsetOutOfBoundsException when base is invalid.

Throws SizeOutOfBoundsException when the memory addressed by the object
would extend into an invalid range of memory.

Throws MemoryTypeConflictException when base does not point to a memory that
matches the type served by this factory.

@SCJAllowed
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.device.RawFloatWriter createRawFloatWriter(
RawMemoryRegion region,
long base,
int count,
int stride)
throws java.lang.SecurityException, javax.realtime.OffsetOutOfBoundsException,

javax.realtime.SizeOutOfBoundsException,
javax.realtime.MemoryTypeConflictException,
javax.realtime.UnsupportedRawMemoryRegionException

Create an instance of a class that implements javax.realtime.device.RawFloat-
Writer and accesses memory of region in the address range described by base,
stride, and count. The actual extent of the memory addressed by the object is
stride x size of RawFloatWriter x count. The object is allocated in the current
memory area of the calling thread.

region — The address space from which the new instance should be taken.

base — The starting physical address accessible through the returned instance.

count — The number of memory elements accessible through the returned instance.

stride — The distance to the next element as a mulitple of element size, where 1
means the elements are adjacent in memory.

returns an object that implements javax.realtime.device.RawFloatWriter and
supports access to the specified range in the memory region.

Throws IllegalArgumentException when base is negative, count is not greater than
zero, or stride is less than one.

776 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Throws SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.

Throws OffsetOutOfBoundsException when base is invalid.

Throws SizeOutOfBoundsException when the memory addressed by the object
would extend into an invalid range of memory.

Throws MemoryTypeConflictException when base does not point to a memory that
matches the type served by this factory.

@SCJAllowed
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.device.RawInt createRawInt(RawMemoryRegion region,
long base,
int count,
int stride)
throws java.lang.SecurityException, javax.realtime.OffsetOutOfBoundsException,

javax.realtime.SizeOutOfBoundsException,
javax.realtime.MemoryTypeConflictException,
javax.realtime.UnsupportedRawMemoryRegionException

Create an instance of a class that implements javax.realtime.device.RawInt
and accesses memory of region in the address range described by base, stride,
and count. The actual extent of the memory addressed by the object is stride x
size of RawInt x count. The object is allocated in the current memory area of
the calling thread.

region — The address space from which the new instance should be taken.

base — The starting physical address accessible through the returned instance.

count — The number of memory elements accessible through the returned instance.

stride — The distance to the next element as a mulitple of element size, where 1
means the elements are adjacent in memory.

returns an object that implements javax.realtime.device.RawInt and supports
access to the specified range in the memory region.

Throws IllegalArgumentException when base is negative, count is not greater than
zero, or stride is less than one.

Throws SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

777

Safety-Critical Java Technology Specification

Throws OffsetOutOfBoundsException when base is invalid.

Throws SizeOutOfBoundsException when the memory addressed by the object
would extend into an invalid range of memory.

Throws MemoryTypeConflictException when base does not point to a memory that
matches the type served by this factory.

@SCJAllowed
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.device.RawIntReader createRawIntReader(
RawMemoryRegion region,
long base,
int count,
int stride)
throws java.lang.SecurityException, javax.realtime.OffsetOutOfBoundsException,

javax.realtime.SizeOutOfBoundsException,
javax.realtime.MemoryTypeConflictException,
javax.realtime.UnsupportedRawMemoryRegionException

Create an instance of a class that implements javax.realtime.device.RawInt-
Reader and accesses memory of region in the address range described by base,
stride, and count. The actual extent of the memory addressed by the object is
stride x size of RawIntReader x count. The object is allocated in the current
memory area of the calling thread.

region — The address space from which the new instance should be taken.

base — The starting physical address accessible through the returned instance.

count — The number of memory elements accessible through the returned instance.

stride — The distance to the next element as a mulitple of element size, where 1
means the elements are adjacent in memory.

returns an object that implements javax.realtime.device.RawIntReader and sup-
ports access to the specified range in the memory region.

Throws IllegalArgumentException when base is negative, count is not greater than
zero, or stride is less than one.

Throws SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.

Throws OffsetOutOfBoundsException when base is invalid.

778 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Throws SizeOutOfBoundsException when the memory addressed by the object
would extend into an invalid range of memory.

Throws MemoryTypeConflictException when base does not point to a memory that
matches the type served by this factory.

@SCJAllowed
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.device.RawIntWriter createRawIntWriter(
RawMemoryRegion region,
long base,
int count,
int stride)
throws java.lang.SecurityException, javax.realtime.OffsetOutOfBoundsException,

javax.realtime.SizeOutOfBoundsException,
javax.realtime.MemoryTypeConflictException,
javax.realtime.UnsupportedRawMemoryRegionException

Create an instance of a class that implements javax.realtime.device.RawInt-
Writer and accesses memory of region in the address range described by base,
stride, and count. The actual extent of the memory addressed by the object is
stride x size of RawIntWriter x count. The object is allocated in the current
memory area of the calling thread.

region — The address space from which the new instance should be taken.

base — The starting physical address accessible through the returned instance.

count — The number of memory elements accessible through the returned instance.

stride — The distance to the next element as a mulitple of element size, where 1
means the elements are adjacent in memory.

returns an object that implements javax.realtime.device.RawIntWriter and sup-
ports access to the specified range in the memory region.

Throws IllegalArgumentException when base is negative, count is not greater than
zero, or stride is less than one.

Throws SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.

Throws OffsetOutOfBoundsException when base is invalid.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

779

Safety-Critical Java Technology Specification

Throws SizeOutOfBoundsException when the memory addressed by the object
would extend into an invalid range of memory.

Throws MemoryTypeConflictException when base does not point to a memory that
matches the type served by this factory.

@SCJAllowed
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.device.RawLong createRawLong(RawMemoryRegion region,
long base,
int count,
int stride)
throws java.lang.SecurityException, javax.realtime.OffsetOutOfBoundsException,

javax.realtime.SizeOutOfBoundsException,
javax.realtime.MemoryTypeConflictException,
javax.realtime.UnsupportedRawMemoryRegionException

Create an instance of a class that implements javax.realtime.device.RawLong
and accesses memory of region in the address range described by base, stride,
and count. The actual extent of the memory addressed by the object is stride x
size of RawLong x count. The object is allocated in the current memory area of
the calling thread.

region — The address space from which the new instance should be taken.

base — The starting physical address accessible through the returned instance.

count — The number of memory elements accessible through the returned instance.

stride — The distance to the next element as a mulitple of element size, where 1
means the elements are adjacent in memory.

returns an object that implements javax.realtime.device.RawLong and supports
access to the specified range in the memory region.

Throws IllegalArgumentException when base is negative, count is not greater than
zero, or stride is less than one.

Throws SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.

Throws OffsetOutOfBoundsException when base is invalid.

Throws SizeOutOfBoundsException when the memory addressed by the object
would extend into an invalid range of memory.

780 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Throws MemoryTypeConflictException when base does not point to a memory that
matches the type served by this factory.

@SCJAllowed
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.device.RawLongReader createRawLongReader(
RawMemoryRegion region,
long base,
int count,
int stride)
throws java.lang.SecurityException, javax.realtime.OffsetOutOfBoundsException,

javax.realtime.SizeOutOfBoundsException,
javax.realtime.MemoryTypeConflictException,
javax.realtime.UnsupportedRawMemoryRegionException

Create an instance of a class that implements javax.realtime.device.RawLong-
Reader and accesses memory of region in the address range described by base,
stride, and count. The actual extent of the memory addressed by the object is
stride x size of RawLongReader x count. The object is allocated in the current
memory area of the calling thread.

region — The address space from which the new instance should be taken.

base — The starting physical address accessible through the returned instance.

count — The number of memory elements accessible through the returned instance.

stride — The distance to the next element as a mulitple of element size, where 1
means the elements are adjacent in memory.

returns an object that implements javax.realtime.device.RawLongReader and
supports access to the specified range in the memory region.

Throws IllegalArgumentException when base is negative, count is not greater than
zero, or stride is less than one.

Throws SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.

Throws OffsetOutOfBoundsException when base is invalid.

Throws SizeOutOfBoundsException when the memory addressed by the object
would extend into an invalid range of memory.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

781

Safety-Critical Java Technology Specification

Throws MemoryTypeConflictException when base does not point to a memory that
matches the type served by this factory.

@SCJAllowed
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.device.RawLongWriter createRawLongWriter(
RawMemoryRegion region,
long base,
int count,
int stride)
throws java.lang.SecurityException, javax.realtime.OffsetOutOfBoundsException,

javax.realtime.SizeOutOfBoundsException,
javax.realtime.MemoryTypeConflictException,
javax.realtime.UnsupportedRawMemoryRegionException

Create an instance of a class that implements javax.realtime.device.RawLong-
Writer and accesses memory of region in the address range described by base,
stride, and count. The actual extent of the memory addressed by the object is
stride x size of RawLongWriter x count. The object is allocated in the current
memory area of the calling thread.

region — The address space from which the new instance should be taken.

base — The starting physical address accessible through the returned instance.

count — The number of memory elements accessible through the returned instance.

stride — The distance to the next element as a mulitple of element size, where 1
means the elements are adjacent in memory.

returns an object that implements javax.realtime.device.RawLongWriter and
supports access to the specified range in the memory region.

Throws IllegalArgumentException when base is negative, count is not greater than
zero, or stride is less than one.

Throws SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.

Throws OffsetOutOfBoundsException when base is invalid.

Throws SizeOutOfBoundsException when the memory addressed by the object
would extend into an invalid range of memory.

782 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Throws MemoryTypeConflictException when base does not point to a memory that
matches the type served by this factory.

@SCJAllowed
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.device.RawShort createRawShort(RawMemoryRegion region,
long base,
int count,
int stride)
throws java.lang.SecurityException, javax.realtime.OffsetOutOfBoundsException,

javax.realtime.SizeOutOfBoundsException,
javax.realtime.MemoryTypeConflictException,
javax.realtime.UnsupportedRawMemoryRegionException

Create an instance of a class that implements javax.realtime.device.RawShort
and accesses memory of region in the address range described by base, stride,
and count. The actual extent of the memory addressed by the object is stride x
size of RawShort x count. The object is allocated in the current memory area
of the calling thread.

region — The address space from which the new instance should be taken.

base — The starting physical address accessible through the returned instance.

count — The number of memory elements accessible through the returned instance.

stride — The distance to the next element as a mulitple of element size, where 1
means the elements are adjacent in memory.

returns an object that implements javax.realtime.device.RawShort and supports
access to the specified range in the memory region.

Throws IllegalArgumentException when base is negative, count is not greater than
zero, or stride is less than one.

Throws SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.

Throws OffsetOutOfBoundsException when base is invalid.

Throws SizeOutOfBoundsException when the memory addressed by the object
would extend into an invalid range of memory.

Throws MemoryTypeConflictException when base does not point to a memory that
matches the type served by this factory.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

783

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.device.RawShortReader createRawShortReader(
RawMemoryRegion region,
long base,
int count,
int stride)
throws java.lang.SecurityException, javax.realtime.OffsetOutOfBoundsException,

javax.realtime.SizeOutOfBoundsException,
javax.realtime.MemoryTypeConflictException,
javax.realtime.UnsupportedRawMemoryRegionException

Create an instance of a class that implements javax.realtime.device.RawShort-
Reader and accesses memory of region in the address range described by base,
stride, and count. The actual extent of the memory addressed by the object is
stride x size of RawShortReader x count. The object is allocated in the current
memory area of the calling thread.

region — The address space from which the new instance should be taken.

base — The starting physical address accessible through the returned instance.

count — The number of memory elements accessible through the returned instance.

stride — The distance to the next element as a mulitple of element size, where 1
means the elements are adjacent in memory.

returns an object that implements javax.realtime.device.RawShortReader and
supports access to the specified range in the memory region.

Throws IllegalArgumentException when base is negative, count is not greater than
zero, or stride is less than one.

Throws SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.

Throws OffsetOutOfBoundsException when base is invalid.

Throws SizeOutOfBoundsException when the memory addressed by the object
would extend into an invalid range of memory.

Throws MemoryTypeConflictException when base does not point to a memory that
matches the type served by this factory.

784 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public javax.realtime.device.RawShortWriter createRawShortWriter(
RawMemoryRegion region,
long base,
int count,
int stride)
throws java.lang.SecurityException, javax.realtime.OffsetOutOfBoundsException,

javax.realtime.SizeOutOfBoundsException,
javax.realtime.MemoryTypeConflictException,
javax.realtime.UnsupportedRawMemoryRegionException

Create an instance of a class that implements javax.realtime.device.RawShort-
Writer and accesses memory of region in the address range described by base,
stride, and count. The actual extent of the memory addressed by the object is
stride x size of RawShortWriter x count. The object is allocated in the current
memory area of the calling thread.

region — The address space from which the new instance should be taken.

base — The starting physical address accessible through the returned instance.

count — The number of memory elements accessible through the returned instance.

stride — The distance to the next element as a mulitple of element size, where 1
means the elements are adjacent in memory.

returns an object that implements javax.realtime.device.RawShortWriter and
supports access to the specified range in the memory region.

Throws IllegalArgumentException when base is negative, count is not greater than
zero, or stride is less than one.

Throws SecurityException when the caller does not have permissions to access the
given memory region or the specified range of addresses.

Throws OffsetOutOfBoundsException when base is invalid.

Throws SizeOutOfBoundsException when the memory addressed by the object
would extend into an invalid range of memory.

Throws MemoryTypeConflictException when base does not point to a memory that
matches the type served by this factory.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

785

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void deregister(RawMemoryRegionFactory factory)
throws javax.realtime.DeregistrationException

Remove support for a new memory region

factory — is the javax.realtime.device.RawMemoryRegionFactory to make un-
available.

Throws RegistrationException when the factory is not registered.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMayAllocate({})
public static javax.realtime.device.RawMemoryFactory getDefaultFactory()

Get the factory with support for the platform defined regions.

returns the platform defined factory

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void register(RawMemoryRegionFactory factory)
throws javax.realtime.RegistrationException

Add support for a new memory region

factory — is the javax.realtime.device.RawMemoryRegionFactory to use for
creating javax.realtime.device.RawMemory objects for the javax.realtime.device-
.RawMemoryRegion s it makes available.

Throws RegistrationException when the factory already is already registered.

786 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

E.3.3 CLASS RawMemoryRegion

@SCJAllowed
public class RawMemoryRegion extends java.lang.Object

RawMemoryRegion is a class for typing raw memory regions. It is returned
by the RawMemoryRegionFactory.getRegion methods of the raw memory re-
gion factory classes, and it is used with methods such as RawMemoryFac-
tory.createRawByte(RawMemoryRegion, long, int, int) and RawMemoryFac-
tory.createRawDouble(RawMemoryRegion, long, int, int} methods to identify
the region from which the application wants to get an accessor instance.

Constructors

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

public RawMemoryRegion(String name)

Methods

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

public final java.lang.String getName()

Obtains the name of this region type.

returns the region types name

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,

27 January 2017 Version 0.109
Confidentiality: Public Distribution

787

Safety-Critical Java Technology Specification

javax.safetycritical.annotate.Phase.CLEANUP})
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

public static javax.realtime.device.RawMemoryRegion getRegion(String name)

Get a region type when it already exists or creates a new one.

name — of the region

returns the region type object.

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

public static boolean isRawMemoryRegion(String name)

Ask whether or not there is a memory region type of a given name.

name — for which to search

returns true when there is one and false otherwise.

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

public final java.lang.String toString()

Gets a printable representation for a Region.

returns the name of this memory region type.

788 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Appendix F

Javadoc Description of Package
javax.realtime.memory
Package Contents Page

Classes
ScopeParameters . 790

Extend memory parameters to provide limits for scoped memory.
ScopedCycleException . 792

...no description...
ScopedMemory . 793

Scoped memory implements the scoped allocation context.
StackedMemory . 794

This class can not be instantiated in SCJ.

789

Safety-Critical Java Technology Specification

F.1 Classes

F.2 Interfaces

F.3 Classes

F.3.1 CLASS ScopeParameters

@SCJAllowed
public class ScopeParameters extends javax.realtime.MemoryParameters

Extend memory parameters to provide limits for scoped memory.

See Also: javax.realtime.MemoryParameters

Constructors

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public ScopeParameters(long maxInitialArea,
long maxImmortal,
long maxContainingArea,
long maxInitialBackingStore)
throws java.lang.IllegalArgumentException

Create a ScopeParameters instance with the given values.

maxInitialArea — a limit on the amount of memory the schedulable may allo-
cate in its initial scoped memory area. Units are in bytes. When zero, no allocation
is allowed in the memory area. When the initial memory area is not a Scoped-
Memory , this parameter has no effect. To specify no limit, use MemoryParame-
ters.UNLIMITED .

maxImmortal — A limit on the amount of memory the schedulable may allocate in
the immortal area. Units are in bytes. When zero, no allocation allowed in immortal.
To specify no limit, use MemoryParameters.UNLIMITED .

790 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

maxContainingArea — a limit on the amount of memory the schedulable may
allocate in memory area where it was created. Units are in bytes. When zero, no
allocation is allowed in the memory area. When the containing memory area is not
a ScopedMemory , this parameter has no effect. To specify no limit, use Memory-
Parameters.UNLIMITED . For schedulables created within a mission, the containing
memory area is Mission memory. For the initial MissionSequencer, the initial mem-
ory area is Immortal memory.

maxInitialBackingStore — A limit on the amount of backing store this task may
allocate from backing store of its inital area, when that is a stacked memory. Units
are in bytes. When zero, no allocation is allowed in that memory area. Backing store
that is returned to the global backing store is subtracted from the limit. To specify no
limit, use MemoryParameters.UNLIMITED .

Throws IllegalArgumentException when any value other than positive, zero, or
javax.realtime.MemoryParametersUNREFERENCED is passed as the value of max-
InitialArea , maxImmortal , maxParentBackingStore , or maxContainingArea.

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public ScopeParameters(long maxInitialArea,
long maxImmortal,
long maxInitialBackingStore)
throws java.lang.IllegalArgumentException

Same as ScopeParameters(maxInitialArea, maxImmortal, maxParentBacking-
Store, MemoryParameters.UNLIMITED).

Methods

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMayAllocate({})
public long getMaxBackingStore()

27 January 2017 Version 0.109
Confidentiality: Public Distribution

791

Safety-Critical Java Technology Specification

Determine the limit on backing store for this task.

returns the limit on backing store.

@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMayAllocate({})
@SCJAllowed
public long getMaxContainingArea()

Determine the limit on allocation in the area where the task was created.

returns the limit on allocation in the area where the task was created.

F.3.2 CLASS ScopedCycleException

@SCJAllowed
public class ScopedCycleException implements java.io.Serializable extends

java.lang.RuntimeException

Constructors

@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public ScopedCycleException()

@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public ScopedCycleException(String description)

792 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

F.3.3 CLASS ScopedMemory

@SCJAllowed
public abstract class ScopedMemory extends javax.realtime.MemoryArea

Scoped memory implements the scoped allocation context.

Methods

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMayAllocate({})
public long backingStoreConsumed()

Determines the amount of backing store consumed by this scoped memory and
its children.

returns the total amount of backing store.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMayAllocate({})
public long backingStoreRemaining()

Determines the remaining amount of backing store available to this scoped
memory and its children.

returns the total amount of backing store.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMayAllocate({})
public long backingStoreSize()

Determines the total amount of backing store for this scoped memory and its
children.

returns the total amount of backing store.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

793

Safety-Critical Java Technology Specification

F.3.4 CLASS StackedMemory

@SCJAllowed
public class StackedMemory extends javax.realtime.memory.ScopedMemory

This class can not be instantiated in SCJ. It is subclassed by MissionMemory
and PrivateMemory. It has no visible methods for SCJ applications.

794 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Appendix G

Javadoc Description of Package
javax.safetycritical
SCJ provides some additional classes to provide the mission framework and handle
startup and shutdown of safety-critical applications.Package Contents Page

Interfaces
ManagedSchedulable . 798

In SCJ, all schedulable objects are managed by a mission.
Safelet . 799

A safety-critical application consists of one or more missions, exe-
cuted concurrently or in sequence.

Classes
AperiodicEventHandler . 801

This class encapsulates an aperiodic event handler.
AperiodicLongEventHandler . 803

This class encapsulates an aperiodic event handler that is passed a
long value when it is released.

CyclicExecutive . 804
A CyclicExecutive represents a Level 0 mission.

CyclicSchedule . 805
A CyclicSchedule object represents a time-driven sequence of firings
for deterministic scheduling of periodic event handlers.

CyclicSchedule.Frame . 806
A time slot within the cycle.

Frame . 806
...no description...

LinearMissionSequencer . 807

795

Safety-Critical Java Technology Specification

A LinearMissionSequencer is a MissionSequencer that serves the
needs of a common design pattern in which the sequence of Mission
executions is known prior to execution and all missions can be preal-
located within an outer-nested memory area.

ManagedEventHandler . 810
In SCJ, all handlers must be registered with the enclosing mission,
so SCJ applications use classes that are based on the ManagedEven-
tHandler and the ManagedLongEventHandler class hierarchies.

ManagedInterruptServiceRoutine . 811
...no description...

ManagedLongEventHandler . 813
In SCJ, all handlers must be registered with the enclosing mission,
so SCJ applications use classes that are based on the ManagedEven-
tHandler and the ManagedLongEventHandler class hierarchies.

ManagedMemory . 815
This is the base class for all safety-critical Java memory areas.

ManagedThread . 817
This class enables a mission to keep track of all the no-heap realtime
threads that are created during the mission’s initialization phase.

Mission . 819
A Safety Critical Java application is comprised of one or more mis-
sions.

MissionMemory . 823
Mission memory is a linear-time scoped memory area that remains
active through the lifetime of a mission.

MissionSequencer . 824
A MissionSequencer oversees a sequence of Mission executions.

OneShotEventHandler . 826
This class permits the automatic execution of time-triggered code.

POSIXRealtimeSignalHandler . 829
This class permits the automatic execution of code that is bound to a
real-time POSIX signal.

POSIXSignalHandler . 830
This class enables the automatic execution of code that is bound to a
real-time POSIX signal.

PeriodicEventHandler . 831
This class permits the automatic periodic execution of code.

PrivateMemory .835
This class cannot be directly instantiated by the application; hence
there are no public constructors.

Services . 836
This class provides a collection of static helper methods.

SingleMissionSequencer . 837
...no description...

796 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

27 January 2017 Version 0.109
Confidentiality: Public Distribution

797

Safety-Critical Java Technology Specification

G.1 Classes

G.2 Interfaces

G.2.1 INTERFACE ManagedSchedulable

@SCJAllowed
public interface ManagedSchedulable extends javax.realtime.BoundSchedulable

In SCJ, all schedulable objects are managed by a mission.

This interface is implemented by all SCJ Schedulable classes. It defines the
mechanism by which the ManagedSchedulable is registered with the mission
for its management. This interface is used by SCJ classes. It is not intended
for direct use by application classes.

Methods

@SCJAllowed(javax.safetycritical.annotate.Level.SUPPORT)
@SCJPhase({javax.safetycritical.annotate.Phase.CLEANUP})
@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

public void cleanUp()

Runs any end-of-mission clean up code associated with this schedulable object.

Application developers implement this method with code to be executed when
this schedulable object’s execution is disabled (after termination has been re-
quested of the enclosing mission).

When the cleanUp method is called, the private memory area associated with
this schedulable object shall be the current memory area. If desired, the cleanUp
method may introduce new private memory areas. The memory allocated to
ManagedSchedulables shall be available to be reclaimed when its Mission’s
cleanUp method returns.

@SCJAllowed
@SCJPhase({javax.safetycritical.annotate.Phase.INITIALIZATION})
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
public void register()

Register this managed schedulable with the current mission.

798 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJAllowed(javax.safetycritical.annotate.Level.SUPPORT)
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

public void signalTermination()

Called by the infrastructure to indicate that the enclosing mission has been
instructed to terminate.

The application can override the default implementations of signalTermina-
tion() to facilitate termination of the ManagedSchedulable.

G.2.2 INTERFACE Safelet

@SCJAllowed
public interface Safelet

A safety-critical application consists of one or more missions, executed concur-
rently or in sequence. Every safety-critical application must implement Safelet
which identifies the outer-most MissionSequencer. This outer-most Mission-
Sequencer runs the sequence of missions that comprise this safety-critical ap-
plication.

The mechanism used to identify the Safelet to a particular SCJ environment is
implementation defined.

Fields

@SCJAllowed
public static final long INSUFFICIENT BACKING STORE

@SCJAllowed
public static final long INSUFFICIENT IMMORTAL MEMORY

Methods

@SCJAllowed(javax.safetycritical.annotate.Level.SUPPORT)
@SCJPhase({javax.safetycritical.annotate.Phase.CLEANUP})
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(false)
public void cleanUp()

Called by the infrastructure after termination of the MissionSequencer for this
Safelet.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

799

Safety-Critical Java Technology Specification

@SCJAllowed(javax.safetycritical.annotate.Level.SUPPORT)
@SCJPhase({javax.safetycritical.annotate.Phase.STARTUP})
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(false)
public javax.safetycritical.MissionSequencer getSequencer()

The infrastructure invokes getSequencer to obtain the MissionSequencer ob-
ject that oversees execution of missions for this application. The returned Mis-
sionSequencer resides in immortal memory.

returns the MissionSequencer that oversees execution of missions for this appli-
cation.

@SCJAllowed(javax.safetycritical.annotate.Level.SUPPORT)
@SCJPhase({javax.safetycritical.annotate.Phase.STARTUP})
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
public long globalBackingStoreSize()

returns the amount of additional backing store memory that must be available
for managed memory areas. If the amount of remaining memory is less than this
requested size, the infrastructure shall call the handleStartupError() method to deter-
mine whether the application should be immediately halted.

@SCJAllowed(javax.safetycritical.annotate.Level.SUPPORT)
@SCJPhase({javax.safetycritical.annotate.Phase.STARTUP})
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(false)
public boolean handleStartupError(int cause, long val)

Called during startup by the infrastructure if the infrastructure detects the pres-
ence of a fatal startup error allocating memory or for any other implementation
defined reason. This method returns a boolean indication whether it intends for
the infrastructure to immediately halt execution, or whether it intends for the
infrastructure to retry the failed allocation request. This method makes it pos-
sible for an application to attempt to execute in a degraded mode in the event
of certain types of failures, such as a partial memory failure.

returns True if the infrastructure should immediately halt as a result of detecting
the fatal startup error. If False is returned, the infrastructure should repeat its calls to
immortalMemorySize() and globalBackingStoreSize(), providing the application the
ability to reconfigure itself, if possible, to work around the fatal startup error.

cause — Identifies the condition that caused the infrastructure to call this method.
If cause = INSUFFICIENT IMMORTAL MEMORY, the amount of available mem-
ory is insufficient for the immortal memory requested by the previous call to im-
mortalMemorySize(). If cause = INSUFFICIENT BACKING STORE, the amount of

800 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

available memory is insufficient for the backing store memory requested by the pre-
vious call to globalBackingStoreSize(). If cause has any other value, its meaning is
implementation defined.

val — If cause = INSUFFICIENT IMMORTAL MEMORY, val contains the short-
fall in available memory for the immortal memory requested by the previous call to
immortalMemorySize(). If cause = INSUFFICIENT BACKING STORE, val contains
the shortfall in available memory for the backing store memory requested by the pre-
vious call to globalBackingStoreSize(). If cause has any other value, the meaning of
val is implementation defined.

@SCJAllowed(javax.safetycritical.annotate.Level.SUPPORT)
@SCJPhase({javax.safetycritical.annotate.Phase.STARTUP})
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
public long immortalMemorySize()

returns the amount of additional immortal memory that must be available for
allocations to be performed by this application. If the amount of remaining memory
is less than this requested size, the infrastructure shall call the handleStartupError()
method to determine whether the application should be immediately halted.

@SCJAllowed(javax.safetycritical.annotate.Level.SUPPORT)
@SCJPhase({javax.safetycritical.annotate.Phase.STARTUP})
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(true)
public void initializeApplication()

The infrastructure shall invoke initializeApplication in the allocation context of
immortal memory. The application can use this method to allocate data struc-
tures in immortal memory. This method shall be called exactly once by the
infrastructure.

G.3 Classes

G.3.1 CLASS AperiodicEventHandler

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public abstract class AperiodicEventHandler extends

javax.safetycritical.ManagedEventHandler
This class encapsulates an aperiodic event handler. Concrete subclasses must
implement the handleAsyncEvent method and may override the default cleanUp
method.

There is no application access to the RTSJ fireCount mechanisms, so the asso-
ciated methods are missing; see the AperiodicParameters class description for

27 January 2017 Version 0.109
Confidentiality: Public Distribution

801

Safety-Critical Java Technology Specification

additional information.

Note that the values in parameters passed to the constructors are those that will
be used by the infrastructure. Changing these values after construction will
have no impact on the created event handler.

Constructors

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJPhase({javax.safetycritical.annotate.Phase.INITIALIZATION})
@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

public AperiodicEventHandler(PriorityParameters priority,
AperiodicParameters release,
ScopeParameters storage,
ConfigurationParameters config)

Constructs an aperiodic event handler that can be explicitly released.

The values passed as constructor parameters are captured at construction time.
Any subsequent mutation of the parameter objects has no effect on the behavior
of the constructed object.

priority — specifies the priority parameters for this handler. Must not be null.
release — specifies the release parameters for this handler. A null parameter

indicates that there is no deadline associated with this handler.
storage — - it must not be null. specifies the ScopeParameters for this handler.
config — specifies the ConfigurationParameters for this handler.
Throws IllegalArgumentException if priority or storage is null; or when any dead-

line miss handler specified is not an AperiodicEventHandler.

Methods

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public final void release()

Release this aperiodic event handler.

802 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

G.3.2 CLASS AperiodicLongEventHandler

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public abstract class AperiodicLongEventHandler extends

javax.safetycritical.ManagedLongEventHandler
This class encapsulates an aperiodic event handler that is passed a long value
when it is released. Concrete subclasses must implement the handleAsync-
Event method and may override the default cleanUp method.

There is no programmer access to the RTSJ fireCount mechanisms, so the
associated methods are missing; see the AperiodicParameters class description
for additional information.

Note that the values in parameters classes passed to the constructors are those
that will be used by the infrastructure. Changing these values after construction
will have no impact on the created event handler.

Constructors

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJPhase({javax.safetycritical.annotate.Phase.INITIALIZATION})
@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

public AperiodicLongEventHandler(PriorityParameters priority,
AperiodicParameters release,
ScopeParameters storage,
ConfigurationParameters config)

Constructs an aperiodic long event handler that can be released.

The values passed as constructor parameters are captured at construction time.
Any subsequent mutation of the parameter objects has no effect on the behavior
of the constructed object.

priority — specifies the priority parameters for this handler; it must not be null.
release — specifies the release parameters for this handler. A null parameter

indicates that there is no deadline associated with this handler.
storage — specifies the ScopeParameters for this handler; it must not be null.
config — specifies the ConfigurationParameters for this handler.
Throws IllegalArgumentException if priority or storge is null; or when any deadline

miss handler specified in release is not an AperiodicHandler.

Methods

@SCJAllowed

27 January 2017 Version 0.109
Confidentiality: Public Distribution

803

Safety-Critical Java Technology Specification

@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public final void release(long data)

Release this long aperiodic event handler.
data — is the value associated with the release.

G.3.3 CLASS CyclicExecutive

@SCJAllowed
public abstract class CyclicExecutive extends javax.safetycritical.Mission

A CyclicExecutive represents a Level 0 mission. Every mission in a Level 0
application must be a subclass of CyclicExecutive.

Constructors

@SCJAllowed
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION})

@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

public CyclicExecutive()

Construct a CyclicExecutive object.

Methods

@SCJAllowed(javax.safetycritical.annotate.Level.SUPPORT)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION})

@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

public abstract javax.safetycritical.CyclicSchedule getSchedule(
PeriodicEventHandler [] handlers)

804 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Every CyclicExecutive shall provide its own cyclic schedule, which is repre-
sented by an instance of the CyclicSchedule class. Application programmers
are expected to implement this method to provide a schedule that is appropriate
for the mission.

Level 0 infrastructure code invokes the getSchedule method on the mission
returned from MissionSequencer.getNextMission after invoking the mission’s
initialize method in order to obtain the desired cyclic schedule. Upon entry
into the getSchedule method, this mission’s mission memory area shall be the
active allocation context. The value returned from getSchedule shall reside in
the current mission’s mission memory area area or in some enclosing scope.

Infrastructure code shall check that all of the PeriodicEventHandler objects ref-
erenced from within the returned CyclicSchedule object have been registered
for execution with this Mission. If not, the infrastructure shall immediately
terminate execution of this mission without executing any event handlers.

handlers — represents all of the handlers that have been registered with this Mis-
sion. The entries in the handlers array are sorted in the same order in which they
were registered by the corresponding CyclicExecutive’s initialize method. The infras-
tructure shall copy the information in the handlers array into its private memory, so
subsequent application changes to the handlers array will have no effect.

returns the schedule to be used by the CyclicExecutive.

G.3.4 CLASS CyclicSchedule

@SCJAllowed
public final class CyclicSchedule extends java.lang.Object

A CyclicSchedule object represents a time-driven sequence of firings for de-
terministic scheduling of periodic event handlers. The static cyclic scheduler
repeatedly executes the firing sequence.

Constructors

@SCJAllowed
@SCJPhase({javax.safetycritical.annotate.Phase.INITIALIZATION})
@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

public CyclicSchedule(CyclicSchedule.Frame [] frames)
throws java.lang.IllegalArgumentException,

java.lang.IllegalStateException

27 January 2017 Version 0.109
Confidentiality: Public Distribution

805

Safety-Critical Java Technology Specification

Construct a cyclic schedule by copying the frames array into a private array
within the same memory area as this newly constructed CyclicSchedule object.

The frames array represents the order in which event handlers are to be sched-
uled. Note that some Frame entries within this array may have zero Peri-
odicEventHandlers associated with them. This would represent a period of
time during which the CyclicExecutive is idle.

Throws IllegalArgumentException if any element of the frames array equals null or
if the frames array is empty,

Throws IllegalStateException if invoked by a Level 1 a Level 2 application.

G.3.5 CLASS CyclicSchedule.Frame

@SCJAllowed
public static final class CyclicSchedule.Frame extends java.lang.Object

A time slot within the cycle.

Constructors

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public CyclicSchedule.Frame(RelativeTime duration, PeriodicEventHandler [] handlers)

Create a scheduling frame with a duration of execution and a set of handlers
that are to be execute in order when the frame is run. It allocates private copies
of the array that holds the set of handlers in the same memory area as the object
itself. This ensures that the array cannot be changed by the application. One
should note that even though handlers is declared as enclosing this object only
its contents must actually enclose this object.

duration — is the time the frame has to execute
handlers — is the set of handlers that are run in the frame

G.3.6 CLASS Frame

806 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJAllowed
public final class Frame extends java.lang.Object

Constructors

@SCJAllowed
@SCJPhase({javax.safetycritical.annotate.Phase.INITIALIZATION})
@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

public Frame(RelativeTime duration, PeriodicEventHandler [] handlers)
Allocates and retains private shallow copies of the duration and handlers array
within the same memory area as this. The elements within the copy of the
handlers array are the exact same elements as in the handlers array. Thus,
it is essential that the elements of the handlers array reside in memory areas
that enclose this. Usually, this Frame object is instantiated within the mission
memory area that corresponds to the Level 0 mission that is to be scheduled.

Within each execution frame of the CyclicSchedule, the PeriodicEventHandler
objects represented by the handlers array will be released in the same order as
they appear within this array.

G.3.7 CLASS LinearMissionSequencer

@SCJAllowed
public class LinearMissionSequencer extends

javax.safetycritical.MissionSequencer
A LinearMissionSequencer is a MissionSequencer that serves the needs of a
common design pattern in which the sequence of Mission executions is known
prior to execution and all missions can be preallocated within an outer-nested
memory area.

The parameter <M> allows application code to differentiate between Lin-
earMissionSequencers that are designed for use in Level 0 vs. other environ-
ments. For example, a LinearMissionSequencer<CyclicExecutive> is known
to only run missions that are suitable for execution within a Level 0 run-time
environment.

Constructors

@SCJAllowed
@SCJPhase({javax.safetycritical.annotate.Phase.INITIALIZATION})
@SCJMaySelfSuspend(false)
@SCJMayAllocate({

27 January 2017 Version 0.109
Confidentiality: Public Distribution

807

Safety-Critical Java Technology Specification

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

public LinearMissionSequencer(PriorityParameters priority,
ScopeParameters storage,
ConfigurationParameters config,
Mission mission,
boolean repeat,
String name)
throws java.lang.IllegalArgumentException,

java.lang.IllegalStateException

Construct a LinearMissionSequencer object to oversee execution of a single
mission m.

priority — The priority at which the MissionSequencer’s bound thread executes.
storage — The memory resources to be dedicated to execution of this MissionSe-

quencer’s bound thread.
config — The configuration parameters to be dedicated to execution of this Mis-

sionSequencer’s bound thread.
mission — The single mission that runs under the oversight of this LinearMission-

Sequencer.
repeat — When repeat is true, the specified mission shall be repeated indefinitely.
name — The name by which this LinearMissionSequencer will be identified in

traces for use in debug or in toString.
Throws IllegalArgumentException if any of the arguments equals null.

@SCJAllowed
@SCJPhase({javax.safetycritical.annotate.Phase.INITIALIZATION})
@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

public LinearMissionSequencer(PriorityParameters priority,
ScopeParameters storage,
ConfigurationParameters config,
Mission mission,
boolean repeat)
throws java.lang.IllegalArgumentException,

java.lang.IllegalStateException

This constructor behaves the same as calling LinearMissionSequencer(PriorityParameters,
ConfigurationParameters, boolean, M, String) with the arguments (priority, stor-
age, repeat, mission, null).

@SCJAllowed

808 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJPhase({javax.safetycritical.annotate.Phase.INITIALIZATION})
@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

public LinearMissionSequencer(PriorityParameters priority,
ScopeParameters storage,
ConfigurationParameters config,
Mission [] missions,
boolean repeat,
String name)
throws java.lang.IllegalArgumentException,

java.lang.IllegalStateException

Construct a LinearMissionSequencer object to oversee execution of the se-
quence of missions represented by the missions parameter. The LinearMission-
Sequencer runs the sequence of missions identified in its missions array ex-
actly once, from low to high index position within the array. The constructor
allocates a copy of its missions array argument within the current scope, so
changes to .the missions array following construction will have no effect.

priority — The priority at which the MissionSequencer’s bound thread executes.
storage — The memory resources to be dedicated to execution of this MissionSe-

quencer’s bound thread.
repeat — When repeat is true, the specified list of missions shall be repeated

indefinitely.
missions — An array representing the sequence of missions to be executed under

the oversight of this LinearMissionSequencer. Requires that the elements of the
missions array reside in a scope that encloses the scope of this. The missions array
itself may reside in a more inner-nested temporary scope.

name — The name by which this LinearMissionSequencer will be identified in
traces for use in debug or in toString.

Throws IllegalArgumentException if any of the arguments equals null.

@SCJAllowed
@SCJPhase({javax.safetycritical.annotate.Phase.INITIALIZATION})
@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

public LinearMissionSequencer(PriorityParameters priority,
ScopeParameters storage,
ConfigurationParameters config,
Mission [] missions,
boolean repeat)

27 January 2017 Version 0.109
Confidentiality: Public Distribution

809

Safety-Critical Java Technology Specification

throws java.lang.IllegalArgumentException,
java.lang.IllegalStateException

Same as LinearMissionSequencer(PriorityParameters, ConfigurationParame-
ters, M[], boolean, String) with the arguments (priority, storage, missions, re-
peat, null).

Methods

@SCJAllowed(javax.safetycritical.annotate.Level.SUPPORT)
@SCJPhase({javax.safetycritical.annotate.Phase.INITIALIZATION})
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@Override
protected final javax.safetycritical.Mission getNextMission()

Returns a reference to the next Mission in the sequence of missions that was
specified by the m or missions argument to this object’s constructor.

See javax.safetycritical.MissionSequencer. getNextMission()

G.3.8 CLASS ManagedEventHandler

@SCJAllowed
public abstract class ManagedEventHandler implements

javax.safetycritical.ManagedSchedulable extends
javax.realtime.BoundAsyncEventHandler
In SCJ, all handlers must be registered with the enclosing mission, so SCJ
applications use classes that are based on the ManagedEventHandler and the
ManagedLongEventHandler class hierarchies. These class hierarchies allow
a mission to manage all the handlers that are created during its initialization
phase. The infrastructure sets up a private memory area for each managed
handler that is entered before a call to handleAsyncEvent and is left on return.

The scheduling allocation domain of all managed event handlers is set, by de-
fault, to the scheduling allocation domain from where the associated mission
initialization is being performed.

Methods

@SCJAllowed(javax.safetycritical.annotate.Level.SUPPORT)
@SCJPhase({javax.safetycritical.annotate.Phase.CLEANUP})
@SCJMaySelfSuspend(false)
@Override
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,

810 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

javax.safetycritical.annotate.AllocationContext.OUTER})
public void cleanUp()

Runs any end-of-mission clean up code associated with this schedulable object.
see ManagedSchedulable.cleanUp()

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.String getName()

returns a string name of this event handler. The actual object returned shall be the
same object that was passed to the event handler constructor.

@SCJPhase({javax.safetycritical.annotate.Phase.INITIALIZATION})
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@Override
@SCJAllowed
public void register()

Register this event handler with the current mission.

see javax.safetycritical.ManagedSchedulable.register()

@SCJAllowed(javax.safetycritical.annotate.Level.SUPPORT)
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

public void signalTermination()

Called by the infrastructure to indicate that the enclosing mission has been
instructed to terminate. The default behavior is no action.

G.3.9 CLASS ManagedInterruptServiceRoutine

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public abstract class ManagedInterruptServiceRoutine extends

javax.realtime.device.InterruptServiceRoutine

Constructors

27 January 2017 Version 0.109
Confidentiality: Public Distribution

811

Safety-Critical Java Technology Specification

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({javax.safetycritical.annotate.Phase.INITIALIZATION})
public ManagedInterruptServiceRoutine(long sizes)

Creates an interrupt service routine
sizes — defines the memory space required by the handle method.

Methods

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@Override
public javax.realtime.Affinity getAffinity()

Determine the affinity set instance associated with {@code task}.
returns The associated affinity.

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@Override
@SCJPhase({javax.safetycritical.annotate.Phase.INITIALIZATION})
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
public final void register(int interrupt)

throws javax.realtime.RegistrationException

Equivalent to register(interrupt, prio) where prio is the highest InterruptCeil-
ingPriority defined.

Throws IllegalStateException if this method is not part of a Mission which is
currently being initialized

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJPhase({javax.safetycritical.annotate.Phase.INITIALIZATION})
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
public final void register(int interrupt, int ceiling)

throws javax.realtime.RegistrationException

Registers the ISR for the given interrupt with the current mission and sets the
ceiling priority of this. The filling of the associated interrupt vector is deferred
until the end of the initialisation phase.

interrupt — is the implementation-dependent id for the interrupt.

812 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

ceiling — is the required ceiling priority.
Throws IllegalArgumentException if the ceiling is lower than the interrupt priority.
Throws RegistrationException if this object is not part of a Mission which is

currently being initialized.

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJPhase({javax.safetycritical.annotate.Phase.INITIALIZATION})
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@Override
public void setAffinity(Affinity set)

throws java.lang.IllegalArgumentException,
javax.realtime.ProcessorAffinityException, java.lang.NullPointerException

Set the processor affinity of a {@code task} to {@code set} with immediate
effect.

set — is the processor affinity
Throws IllegalArgumentException when the intersection of {@code set} the affin-

ity of any {@code ThreadGroup} instance containing {@code task} is empty.
Throws ProcessorAffinityException is thrown when the runtime fails to set the

affinity for platform-specific reasons.
Throws NullPointerException when {@code set} is {@code null}.

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJPhase({javax.safetycritical.annotate.Phase.RUN})
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
public void unhandledException(Exception except)

Called by the infrastructure if an exception propagates outside of the handle
method.

except — is the uncaught exception.

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJAllowed(javax.safetycritical.annotate.Level.SUPPORT)
@SCJPhase({javax.safetycritical.annotate.Phase.CLEANUP})
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@Override
public final void unregister()

Unregisters the ISR with the current mission.

G.3.10 CLASS ManagedLongEventHandler

27 January 2017 Version 0.109
Confidentiality: Public Distribution

813

Safety-Critical Java Technology Specification

@SCJAllowed
public abstract class ManagedLongEventHandler implements

javax.safetycritical.ManagedSchedulable extends
javax.realtime.BoundAsyncLongEventHandler
In SCJ, all handlers must be registered with the enclosing mission, so SCJ
applications use classes that are based on the ManagedEventHandler and the
ManagedLongEventHandler class hierarchies. These class hierarchies allow
a mission to manage all the handlers that are created during its initialization
phase. The infrastructure sets up a private memory area for each managed
handler that is entered before a call to handleAsyncEvent and is left on return.
This class differs from ManagedEventHandler in that when it is released, a
long integer is provided for use by the released event handler(s).

The scheduling allocation domain of all managed long event handlers is set, by
default, to the scheduling allocation domain from where the associated mission
initialization is being performed.

Methods

@SCJAllowed(javax.safetycritical.annotate.Level.SUPPORT)
@SCJPhase({javax.safetycritical.annotate.Phase.CLEANUP})
@SCJMaySelfSuspend(false)
@Override
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

public void cleanUp()

Runs any end-of-mission clean up code associated with this schedulable object.
see ManagedSchedulable.cleanUp()

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.lang.String getName()

returns a string name for this handler, including its priority and its level.

@SCJPhase({javax.safetycritical.annotate.Phase.INITIALIZATION})
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJAllowed

814 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

public void register()

Register this event handler with the current mission.

See javax.safetycritical.ManagedSchedulable.register()

Throws IllegalStateException if this is an instance of MissionSequencer and the
current execution environment does not support Level 2 capabilities.

@SCJAllowed(javax.safetycritical.annotate.Level.SUPPORT)
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

public void signalTermination()

Called by the infrastructure to indicate that the enclosing mission has been
instructed to terminate. The default behaviour is to perform no action.

G.3.11 CLASS ManagedMemory

@SCJAllowed
public abstract class ManagedMemory extends

javax.realtime.memory.StackedMemory
This is the base class for all safety-critical Java memory areas. This class is
used by the SCJ infrastructure to manage all SCJ memory areas. This class
has no constructors, so it cannot be extended by an application.

Methods

@SCJAllowed
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public long backingStoreRemaining()

This method determines the available memory for new objects in the current
ManagedMemory area.

returns the size in bytes of the remaining available memory to in the Managed-
Memory area.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

815

Safety-Critical Java Technology Specification

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
public static void enterPrivateMemory(long size, Runnable logic)

throws java.lang.IllegalStateException

Invoke the run method of logic with a fresh private memory area that is im-
mediately nested within the current ManagedMemory area, sized to provide
size bytes of allocatable memory as the current allocation area. Each instance
of ManagedMemory maintains at most one inner-nested private memory area.
In the case that enterPrivateMemory is invoked multiple times from within a
particular ManagedMemory area without exiting that area, the first invocation
instantiates the inner-nested private memory area and subsequent invocations
resize and reuse the previously allocated private memory area. This is dif-
ferent from the case in which enterPrivateMemory is invoked from within a
newly entered inner-nested PrivateMemory area. In this case, invocation of en-
terPrivateMemory results in creation and sizing of a new inner-nested private
memory area.

size — is the number of allocatable memory bytes for the inner-nested private
memory area.

logic — provides the run method that is to be executed within the inner-nested
private memory area.

Throws IllegalStateException if the current allocation area is not the top-most (most
recently entered) scope for the current schedulable object. (This would happen, for
example, if the current schedulable object is in an outer-nested context as a result of
having invoked, for example, executeInAreaOf).

Throws OutOfMemoryError if the currently running thread lacks sufficient backing
store to have an inner-nested private memory area with size allocatable bytes; or if
this is the first invocation of enterPrivateMemory from within the current allocation
area and the current allocation area lacks sufficient backing store to allocate the inner-
nested private memory area object.

@SCJAllowed
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMaySelfSuspend(false)
public static void executeInAreaOf(Object obj, Runnable logic)

816 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Change the allocation context to the outer memory area where the object obj is
allocated and invoke the run method of the logic Runnable.

obj — is the object allocated in the memory area that is entered.
logic — is the code to be executed in the entered memory area.

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

public static void executeInOuterArea(Runnable logic)

Change the allocation context to the immediate outer memory area and invoke
the run method of the Runnable.

logic — is the code to be executed in the entered memory area.
Throws IllegalStateException if the current memory area is ImmortalMemory.

G.3.12 CLASS ManagedThread

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)
public abstract class ManagedThread implements

javax.safetycritical.ManagedSchedulable extends javax.realtime.RealtimeThread
This class enables a mission to keep track of all the no-heap realtime threads
that are created during the mission’s initialization phase.

Note that the values in parameters classes passed to the constructors are those
that will be used by the infrastructure. Changing these values after construction
will have no impact on the created no-heap real-time thread. Managed threads
have no release parameters.

Constructors

@SCJPhase({javax.safetycritical.annotate.Phase.INITIALIZATION})
@SCJMaySelfSuspend(false)
@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

public ManagedThread(PriorityParameters priority,
ReleaseParameters release,
ScopeParameters scope,
ConfigurationParameters storage,
Runnable logic)

27 January 2017 Version 0.109
Confidentiality: Public Distribution

817

Safety-Critical Java Technology Specification

Creates a thread that is managed by the enclosing mission.

The priority represented by PriorityParameters is consulted only once, at con-
struction time.

priority — specifies the priority parameters for this managed thread; it must not be
null.

storage — specifies the memory parameters for this thread. May not be null.
logic — the code for this managed thread.
Throws IllegalArgumentException if priority or storage is null.

Methods

@SCJAllowed(javax.safetycritical.annotate.Level.SUPPORT)
@SCJPhase({javax.safetycritical.annotate.Phase.CLEANUP})
@SCJMaySelfSuspend(false)
@Override
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

public void cleanUp()

Runs any end-of-mission clean up code associated with this schedulable object.
see ManagedSchedulable.cleanUp()

@SCJPhase({javax.safetycritical.annotate.Phase.INITIALIZATION})
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@Override
@SCJAllowed
public void register()

Register this managed thread with the current mission.

see javax.safetycritical.ManagedSchedulable.register().

@SCJPhase({javax.safetycritical.annotate.Phase.INITIALIZATION})
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)
public static void setDefaultUncaughtExceptionHandler(

Thread.UncaughtExceptionHandler eh)

This method is used by the application to define an exception handler that will
handle uncaught exceptions.

818 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)
@SCJPhase({javax.safetycritical.annotate.Phase.INITIALIZATION})
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
public void setUncaughtExceptionHandler(Thread.UncaughtExceptionHandler eh)

Set the current uncaught exception handler.
eh — the UncaughtExceptionHandler to be set for this managed thread. The eh

argument must reside in a scope that encloses the scope of this.

@SCJAllowed(javax.safetycritical.annotate.Level.SUPPORT)
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

public void signalTermination()

Called by the infrastructure to indicate that the enclosing mission has been
instructed to terminate. The default behaviour is no action.

G.3.13 CLASS Mission

@SCJAllowed
public abstract class Mission extends java.lang.Object

A Safety Critical Java application is comprised of one or more missions. Each
mission is implemented as a subclass of this abstract Mission class. A mis-
sion is comprised of one or more ManagedSchedulable objects, conceptually
running as independent threads of control, and the data that is shared between
them.

Constructors

@SCJAllowed
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN})

@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

public Mission(AbsoluteTime start)

Allocate and initialize data structures associated with a Mission implementa-
tion.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

819

Safety-Critical Java Technology Specification

The constructor may allocate additional infrastructure objects within the same
MemoryArea that holds the implicit this argument.

The amount of data allocated in the same MemoryArea as this by the Mission
constructor is implementation-defined. Application code will need to know the
amount of this data to properly size the containing scope.

start — an absolute time value at which the Mission’s ManagedSchedulable objects
will be released for the first time after mission initialization has been completed
unless they are delayed by their own start times. If start is null, or if start has already
passed when the Mission’s ManagedSchedulable objects become ready for release,
they shall be released immediately.

@SCJAllowed
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN})

@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

public Mission()

This constructor is equivalent to Mission(null).

Methods

@SCJAllowed(javax.safetycritical.annotate.Level.SUPPORT)
@SCJPhase({javax.safetycritical.annotate.Phase.CLEANUP})
@SCJMaySelfSuspend(true)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

protected boolean cleanUp()

Cleans data structures and machine state upon termination of this Mission’s
run phase. Infrastructure running the controlling MissionSequencer invokes
cleanUp after all ManagedSchedulables registered with this Mission have ter-
minated, but before control leaves the corresponding mission memory area.

returns True to indicate that the mission sequencer shall continue with its sequence
of missions, False to indicate that the mission sequence should be terminated and no
further missions started. The default implementation of cleanUp returns True.

@SCJAllowed

820 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static javax.safetycritical.Mission getMission()

Obtain the current mission.

returns the instance of the Mission that is currently active.
If called during the initialization or clean up phase, getMission() returns the mission
that is currently being initialized or cleaned up. If called during the run phase, get-
Mission() returns the mission in which the currently executing ManagedSchedulable
was registered. If called during the start up phase, getMission() returns null.

@SCJAllowed
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
public javax.safetycritical.MissionSequencer getSequencer()

returns the MissionSequencer that is overseeing execution of this mission.

@SCJAllowed(javax.safetycritical.annotate.Level.SUPPORT)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION})

@SCJMaySelfSuspend(true)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

protected abstract void initialize()

Perform initialization of this Mission. The SCJ infrastructure calls initialize
after the mission memory has been resized to match the size returned by Mis-
sion.missionMemorySize. Upon entry into initialize, the current allocation con-
text is the mission memory area dedicated to this particular Mission.

A typical implementation of initialize instantiates and registers all Managed-
Schedulable objects that constitute this Mission. The infrastructure enforces
that ManagedSchedulables can only be instantiated and registered if the cur-
rently executing ManagedSchedulable is running a Mission.initialize method.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

821

Safety-Critical Java Technology Specification

The infrastructure arranges to begin executing the registered ManagedSchedulable
objects associated with a particular Mission upon return from its initialize method.

Besides initiating the associated ManagedSchedulable objects, this method
may also instantiate and/or initialize mission-level data structures. Objects
shared between ManagedSchedulables typically reside within the correspond-
ing mission memory scope, but may alternatively reside in outer-nested mission
memory or ImmortalMemory areas. Individual ManagedSchedulables can gain
access to these objects either by supplying their references to the Managed-
Schedulable constructors or by obtaining a reference to the currently running
mission (from Mission.getMission), and accessing the fields or methods of this
subclass.

@SCJAllowed(javax.safetycritical.annotate.Level.SUPPORT)
@SCJMayAllocate({})
@SCJPhase({javax.safetycritical.annotate.Phase.INITIALIZATION})
@SCJMaySelfSuspend(false)
public abstract long missionMemorySize()

This method must be implemented by a safety-critical application. It is invoked
by the SCJ infrastructure to determine the desired size of this Mission’s mis-
sion memory area. When this method receives control, the mission memory
area will include all of the backing store memory to be used for all memory
areas. Therefore this method will not be able to create or call any methods that
create any private memory areas. After this method returns, the SCJ infras-
tructure shall shrink the mission memory to a size based on the memory size
returned by this method. This will make backing store memory available for
the backing stores of the ManagedSchedulable objects that comprise this mis-
sion. Any attempt to introduce a new private memory area within this method
will result in an OutOfMemoryError exception.

returns the required mission memory size.

@SCJAllowed
@SCJPhase({

javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN})

@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
public final boolean requestTermination()

This method requests termination of a mission. When this method is called,
the infrastructure shall invoke signalTermination on each ManagedSchedulable
object that is registered within this mission. Additionally, this method triggers
the infrastructure to (1) disable all periodic event handlers associated with this

822 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Mission so that they will experience no further releases, (2) disable all Ape-
riodicEventHandlers so that no further releases will be honored, (3) clear the
pending event (if any) for each event handler (including any OneShotEven-
tHandlers) so that the event handler can be effectively shut down following
completion of any event handling that is currently active, (4) wait for all of the
ManagedSchedulable objects associated with this mission to terminate their
execution, (5) invoke the ManagedSchedulable.cleanUp methods for each of
the ManagedSchedulable objects associated with this mission, and (6) invoke
the cleanUp method associated with this mission.

While many of these activities may be carried out asynchronously after re-
turning from the requestTermination method, the implementation of request-
Termination shall not return until all of the ManagedEventHandler objects reg-
istered with this Mission have been disassociated from this Mission so they will
receive no further releases. Before returning, or at least before initialize for this
same mission is called in the case that it is subsequently started, the implemen-
tation shall clear all mission state.

The first time this method is called during Mission execution, it shall return
false to indicate that termination of this mission is not already in progress.
Subsequent invocations of this method shall return true, and shall have no other
effect.

returns false if the mission has not been requested to terminate already; otherwise
returns true.

@SCJAllowed
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
public final boolean terminationPending()

Check whether the current mission is trying to terminate.

returns true if and only if this Mission’s requestTermination method has been
previously invoked.

G.3.14 CLASS MissionMemory

@SCJAllowed
public class MissionMemory extends javax.safetycritical.ManagedMemory

27 January 2017 Version 0.109
Confidentiality: Public Distribution

823

Safety-Critical Java Technology Specification

Mission memory is a linear-time scoped memory area that remains active through
the lifetime of a mission. This class is final. It is instantiated by the infras-
tructure and entered by the infrastructure. Hence, none of its constructors are
visible in the SCJ public API.

G.3.15 CLASS MissionSequencer

@SCJAllowed
public abstract class MissionSequencer extends

javax.safetycritical.ManagedEventHandler
A MissionSequencer oversees a sequence of Mission executions. The sequence
may include interleaved execution of independent missions and repeated exe-
cutions of missions.

As a subclass of ManagedEventHandler, MissionSequencer’s execution prior-
ity and memory budget are specified by constructor parameters.

This MissionSequencer executes vendor-supplied infrastructure code which
invokes user-defined implementations of getNextMission, Mission.initialize, and
Mission.cleanUp. During execution of a mission, the MissionSequencer re-
mains blocked waiting for the mission to terminate. An invocation of signal-
Termination will unblock it to invoke the running mission’s requestTermination
method.

Constructors

@SCJAllowed
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION})

@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

public MissionSequencer(PriorityParameters priority,
ScopeParameters storage,
ConfigurationParameters config,
String name)
throws java.lang.IllegalStateException

Construct a MissionSequencer object to oversee a sequence of mission execu-
tions.

priority — The priority at which the MissionSequencer executes.
storage — specifies the ScopeParameters for this handler
config — specifies the ConfigurationParameters for this handler

824 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

name — The name by which this MissionSequencer will be identified.
Throws IllegalStateException if invoked in an inappropriate phase.

@SCJAllowed
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION})

@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

public MissionSequencer(PriorityParameters priority,
ScopeParameters storage,
ConfigurationParameters config)
throws java.lang.IllegalStateException

This constructor behaves the same as calling MissionSequencer(priority, stor-
age, config, null).

Methods

@SCJAllowed(javax.safetycritical.annotate.Level.SUPPORT)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

protected abstract javax.safetycritical.Mission getNextMission()

This method is called by infrastructure to select the initial mission to execute,
and subsequently, each time one mission terminates, to determine the next mis-
sion to execute.

Prior to each invocation of getNextMission, infrastructure initializes and enters
the mission memory allocation area. The getNextMission method may allo-
cate the returned mission within this mission memory area, or it may return a
reference to a Mission object that was allocated in some outer-nested mission
memory area or in the ImmortalMemory area.

returns the next mission to run, or null if no further missions are to run under the
control of this MissionSequencer.

@SCJAllowed(javax.safetycritical.annotate.Level.SUPPORT)

27 January 2017 Version 0.109
Confidentiality: Public Distribution

825

Safety-Critical Java Technology Specification

@Override
@SCJMaySelfSuspend(true)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public final void handleAsyncEvent()

This method is used in the implementation of SCJ infrastructure. The method
is not to be invoked by application code and it is not to be overridden by appli-
cation code.

@SCJAllowed(javax.safetycritical.annotate.Level.SUPPORT)
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public final void signalTermination()

Called by the infrastructure to indicate that the enclosing mission has been
instructed to terminate.

The sole responsibility of this method is to call requestTermination on the cur-
rently running mission.

signalTermination will never be called by a Level 0 or Level 1 infrastructure.

G.3.16 CLASS OneShotEventHandler

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public abstract class OneShotEventHandler extends

javax.safetycritical.ManagedEventHandler
This class permits the automatic execution of time-triggered code. The handle-
AsyncEvent method behaves as if the handler were attached to a one-shot timer
asynchronous event.

This class is abstract, non-abstract sub-classes must implement the method
handleAsyncEvent and may override the default cleanUp method.

826 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Note that the values in parameters passed to the constructors are those that will
be used by the infrastructure. Changing these values after construction will
have no impact on the created event handler.

Note: all time-triggered events are subject to release jitter. See section 4.8.4
for a discussion of the impact of this on application scheduling.

Constructors

@SCJAllowed
@SCJPhase({javax.safetycritical.annotate.Phase.INITIALIZATION})
@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

public OneShotEventHandler(PriorityParameters priority,
HighResolutionTime<?> time,
AperiodicParameters release,
ScopeParameters storage,
ConfigurationParameters config,
String name)

Constructs a one-shot event handler.

priority — specifies the priority parameters for this event handler. Must not be null.
time — specifies the time at which the handler should be released for execution. A

relative time is relative to the start of the associated mission. An absolute time that is
before the mission is started is equivalent to a relative time of 0.0. A null parameter
indicates that no release of the handler should be scheduled.

release — specifies the aperiodic release parameters, in particular the deadline
miss handler. A null parameter indicates that there is no deadline associated with this
handler.

storage — specifies the ScopeParameters for this handler
config — specifies the ConfigurationParameters for this handler
name — a name provided by the application to be attached to this handler.
Throws IllegalArgumentException if priority or storage is null; or if time is a

negative relative time; or when a deadline miss handler specfied in release is not an
AperiodicEventHandler.

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJPhase({javax.safetycritical.annotate.Phase.INITIALIZATION})
@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

27 January 2017 Version 0.109
Confidentiality: Public Distribution

827

Safety-Critical Java Technology Specification

public OneShotEventHandler(PriorityParameters priority,
HighResolutionTime<?> time,
AperiodicParameters release,
ScopeParameters storage,
ConfigurationParameters config)

This constructor behaves the same as a call to OneShotEventHandler(priority,
time, release, storage, config, null).

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJPhase({javax.safetycritical.annotate.Phase.INITIALIZATION})
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
public OneShotEventHandler(PriorityParameters priority,

AperiodicParameters release,
ScopeParameters storage,
ConfigurationParameters config)

This constructor behaves the same as a call to OneShotEventHandler(priority,
null, release, storage, null).

Methods

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJPhase({

javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
public boolean deschedule()

Deschedules the next release of the handler.
returns true if the handler was scheduled to be released false otherwise.

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJPhase({

javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
public javax.realtime.AbsoluteTime getNextReleaseTime(AbsoluteTime dest)

Get the time at which this handler is next expected to be released.
dest — The instance of AbsoluteTime which will be updated in place and returned.

The clock association of the dest parameter is ignored. When dest is null a new
object is allocated for the result.

returns An instance of an AbsoluteTime object containing the absolute time at
which this handler is expected to be released, or null if there is no currently scheduled

828 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

release. If the dest parameter is null the result is returned in a newly allocated object;
otherwise it is returned in the dest object.

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJPhase({

javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
public void scheduleNextReleaseTime(HighResolutionTime<?> time)

Changes the next scheduled release time for this handler. This method can take
either an AbsoluteTime or a RelativeTime for its argument, and the handler
will be released as if it was created using that type for its time parameter. An
absolute time in the past is equivalent to a relative time of 0.0. The rescheduling
value will be effective before the return of the method.

If there is no outstanding scheduled next release, this sets one.

If scheduleNextReleaseTime is invoked with a null parameter, any next release
time is descheduled.

Throws IllegalArgumentException if time is a negative RelativeTime value or clock
associated with time is not the same clock that was used during construction.

G.3.17 CLASS POSIXRealtimeSignalHandler

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public abstract class POSIXRealtimeSignalHandler extends

javax.safetycritical.ManagedLongEventHandler
This class permits the automatic execution of code that is bound to a real-
time POSIX signal. It is abstract. Concrete subclasses must implement the
handleAsyncEvent method and may override the default cleanUp method. The
parameter passed by the infrastructure to the handleAsyncEvent method is the
id of the caught signal.

Constructors

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJPhase({javax.safetycritical.annotate.Phase.INITIALIZATION})
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
public POSIXRealtimeSignalHandler(PriorityParameters priority,

AperiodicParameters release,
ScopeParameters storage,
ConfigurationParameters config,
int signalId)

27 January 2017 Version 0.109
Confidentiality: Public Distribution

829

Safety-Critical Java Technology Specification

Constructs an real-time POSIX signalt handler that will be released when the
signal is delivered.

The values passed as constructor parameters are captured at construction time.
Any subsequent mutation of the parameter objects has no effect on the behavior
of the constructed object.

priority — specifies the priority parameters for this handle; it must not be null.
release — specifies the release parameters for this handler. A null parameter

indicates that there is no deadline associated with this handler.
storage — specifies the ScopeParameters for this handler; it must not be null
config — specifies the ConfigurationParameters for this handler
signalId — specifies the id of the POSIX real-time signal that releases this handler.
Throws IllegalArgumentException when priority or storage is null; or when the

signalId already has an attached handler or the signalId is outside the range of POSIX
real-time signals.

Methods

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static int getSignalId(String name)

Get the POSIX real-time signal id represented by name.

name — The name of the POSIX real-time signal.
returns The id of the POSIX real-time signal with this name
Throws IllegalArgumentException if there is no POSIX real-time signal with this

name.

G.3.18 CLASS POSIXSignalHandler

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public abstract class POSIXSignalHandler extends

javax.safetycritical.ManagedEventHandler
This class enables the automatic execution of code that is bound to a real-
time POSIX signal. It is abstract. Concrete subclasses must implement the
handleAsyncEvent method and may override the default cleanUp method. The
parameter passed by the infrastructure to the handleAsyncEvent method is the
id of the caught signal.

830 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Constructors

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJPhase({javax.safetycritical.annotate.Phase.INITIALIZATION})
@SCJMaySelfSuspend(false)
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
public POSIXSignalHandler(PriorityParameters priority,

AperiodicParameters release,
ScopeParameters storage,
ConfigurationParameters config,
int signalId)

Constructs a real-time POSIX signal handler that will be released when the
signal is delivered.

The values passed as constructor parameters are captured at construction time.
Any subsequent mutation of the parameter objects has no effect on the behavior
of the constructed object.

priority — specifies the priority parameters for this handler; it must not be null.
release — specifies the release parameters for this handler. A null parameter

indicates that there is no deadline associated with this handler.
storage — specifies the ScopeParameters for this handler; it must not be null
config — specifies the ConfigurationParameters for this handler
signalId — specifies the signal that releases this handler.
Throws IllegalArgumentException when priority or storage is null; or when sig-

nalIds already has an attached handler or the signalId is outside the range of POSIX
signals.

Methods

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static int getSignalId(String name)

Get the POSIX signal id represented by name.
name — The name of the POSIX signal.
returns The id of the POSIX signal whose name is name
Throws IllegalArgumentException if there is no POSIX signal with this name.

G.3.19 CLASS PeriodicEventHandler

27 January 2017 Version 0.109
Confidentiality: Public Distribution

831

Safety-Critical Java Technology Specification

@SCJAllowed
public abstract class PeriodicEventHandler extends

javax.safetycritical.ManagedEventHandler
This class permits the automatic periodic execution of code. The handleAsync-
Event method behaves as if the handler were attached to a periodic timer asyn-
chronous event. The handler will be executed once for every release time, even
in the presence of overruns.

This class is abstract; non-abstract sub-classes must override the method handle-
AsyncEvent and may override the default cleanUp method.

Note that the values in parameters passed to the constructors are those that will
be used by the infrastructure. Changing these values after construction will
have no impact on the created event handler.

Note: all time-triggered events are subject to release jitter. See section 4.8.4
for a discussion of the impact of this on application scheduling.

Constructors

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJPhase({javax.safetycritical.annotate.Phase.INITIALIZATION})
@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

public PeriodicEventHandler(PriorityParameters priority,
PeriodicParameters release,
ScopeParameters storage,
ConfigurationParameters config,
String name)

Constructs a periodic event handler.

The values passed as constructor parameters are captured at construction time.
Any subsequent mutation of the parameter objects has no effect on the behavior
of the constructed object.

priority — specifies the priority parameters for this periodic event handler. Must
not be null.

release — specifies the periodic release parameters, in particular the start time,
period and deadline miss handler. Note that a relative start time is not relative to
NOW but relative to the point in time when initialization is finished and the timers
are started. If the start time is absolute and it is has passed, the handler is release
immediately. This argument must not be null.

storage — specifies the ScopeParameters for this periodic event handler
config — specifies the ConfigurationParameters for this periodic event handler

832 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Throws IllegalArgumentException when priority, release, or storage is null or when
any deadline miss handler specified in release is not an AperiodicEventHandler.

@SCJAllowed
@SCJPhase({javax.safetycritical.annotate.Phase.INITIALIZATION})
@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

public PeriodicEventHandler(PriorityParameters priority,
PeriodicParameters release,
ScopeParameters storage,
ConfigurationParameters config)

This constructor behaves the same as a call to PeriodicEventHandler(Priori-
tyParameters, PeriodicParameters, ConfigurationParameters, String) with the
arguments (priority, release, storage, config, null).

Methods

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJPhase({

javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(false)
public <T extends javax.realtime.HighResolutionTime<T>> T getActualStartTime()

Get the actual start time of this handler. The actual execution start time of
the handler is different from the requested start time (passed at construction
time) when the requested start time is an absolute time that would occur before
the mission has been started. In this case, the actual start time is the time the
mission started execution. If the actual start time is equal to the effective start
time, then the method behaves as if getRequestedStartTime() method has been
called. If it is different, then a newly created time object is returned. The time
value is associated with the same clock as that used with the original start time
parameter.

returns a reference to the actual start time based on the clock used to start the
timer.

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJPhase({

javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})

27 January 2017 Version 0.109
Confidentiality: Public Distribution

833

Safety-Critical Java Technology Specification

@SCJMaySelfSuspend(false)
public <T extends javax.realtime.HighResolutionTime<T>> T getEffectiveStartTime()

Get the effective start time of this handler. If the clock associated with the
start time parameter and the period parameter (that were passed at construction
time) are the same, then the method behaves as if getActualStartTime() has
been called. If the two clocks are different, then the method returns a newly
created object whose time is the current time of the clock associated with the
period parameter (passed at construction time) when the handler is actually
started.

returns a reference to a newly-created object containing the effective start time
based on the clock associated with the period parameter.

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJPhase({

javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(false)
public javax.realtime.AbsoluteTime getLastReleaseTime()

Get the last release time of this handler.
returns a reference to a newly-created object containing this handlers’s last release

time, based on the clock associated with the period parameter used at construction
time.

Throws IllegalStateException if this handler has not been released since it was
started.

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJPhase({

javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP})

@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(false)
public javax.realtime.AbsoluteTime getNextReleaseTime()

Get the time at which this handler is next expected to be released.
returns The absolute time at which this handler is expected to be released in a

newly allocated AbsoluteTime object. The clock association of the returned time is
the clock on which the period parameter (passed at construction time) is based.

Throws IllegalStateException if this handler has not been started or has terminated.

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJPhase({

javax.safetycritical.annotate.Phase.RUN,

834 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

javax.safetycritical.annotate.Phase.CLEANUP})
@SCJMayAllocate({javax.safetycritical.annotate.AllocationContext.CURRENT})
@SCJMaySelfSuspend(false)
public javax.realtime.AbsoluteTime getNextReleaseTime(AbsoluteTime dest)

Get the time at which this handler is next expected to be released.
dest — The instance of AbsoluteTime which will be updated in place and returned.

The clock association of the dest parameter is ignored. When dest is null, a new
object is allocated for the result.

returns The instance of AbsoluteTime passed as parameter, containing the absolute
time at which this handler is expected to be released. If the dest parameter is null the
result is returned in a newly allocated object. The clock association of the returned
time is the clock on which the period parameter (passed at construction time) is based.

Throws IllegalStateException if this handler has not been started or has terminated.

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public <T extends javax.realtime.HighResolutionTime<T>> T getRequestedStartTime()

Get the requested start time of this periodic handler. Note that the start time
uses copy semantics, so changes made to the value returned by this method will
not affect the start time of this handler if it has not already been started.

returns a reference to the start time parameter from the release parameters used
when constructing this handler.

G.3.20 CLASS PrivateMemory

@SCJAllowed
public class PrivateMemory extends javax.safetycritical.ManagedMemory

This class cannot be directly instantiated by the application; hence there are no
public constructors. Every PeriodicEventHandler is provided with one instance
of PrivateMemory, its root private memory area. A schedulable object active
within a private memory area can create nested private memory areas through
the enterPrivateMemory method of ManagedMemory.

The rules for nested entering into a private memory are that the private memory
area must be the current allocation context, and the calling schedulable object
has to be the owner of the memory area. The owner of the memory area is
defined to be the schedulable object that created it.

27 January 2017 Version 0.109
Confidentiality: Public Distribution

835

Safety-Critical Java Technology Specification

G.3.21 CLASS Services

@SCJAllowed
public class Services extends java.lang.Object

This class provides a collection of static helper methods.

Methods

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static javax.safetycritical.annotate.Level getComplianceLevel()

Get the current compliance level of the SCJ implementation.
returns the compliance level

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static int getDefaultCeiling()

Get the default ceiling priority for objects. By default, it is PrioritySched-
uler.getMaxPriority. It is assumed that this can be changed using an imple-
mentation configuration option.

returns the default ceiling priority.

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
@SCJPhase({javax.safetycritical.annotate.Phase.INITIALIZATION})
@SCJMaySelfSuspend(false)
@SCJMayAllocate({})
public static void setCeiling(Object obj, int pri)

Sets the ceiling priority of object obj The priority pri can be in the software or
hardware priority range. Ceiling priorities are immutable.

obj — the object who ceiling is to be set.
pri — the ceiling value.
Throws IllegalSchedulableStateException if called outside the initialization phase

of a mission.

836 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

G.3.22 CLASS SingleMissionSequencer

@SCJAllowed
public class SingleMissionSequencer extends

javax.safetycritical.MissionSequencer

Constructors

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public SingleMissionSequencer(PriorityParameters priority,
ScopeParameters storage,
ConfigurationParameters config,
Mission mission)

priority —
storage —
mission —

Methods

@Override
@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

protected final javax.safetycritical.Mission getNextMission()
see javax.safetycritical.MissionSequencer.getNextMission()

27 January 2017 Version 0.109
Confidentiality: Public Distribution

837

Safety-Critical Java Technology Specification

838 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Appendix H

Javadoc Description of Package
javax.safetycritical.annotate
Package Contents Page

Annotations
SCJAllowed . 840

This annotation distinguishes methods, classes, and fields that may be
accessed from within safety-critical Java programs.

SCJMayAllocate . 840
This annotation distinguishes methods that may be restricted from al-
locating memory in certain memory areas.

SCJMaySelfSuspend . 841
This annotation distinguishes methods that may be restricted from
blocking during execution.

SCJPhase . 841
This annotation distinguishes methods that may be called only from
code running in a certain mission phase (e.

Classes
AllocationContext . 842

...no description...
Level . 842

...no description...
Phase . 843

...no description...

839

Safety-Critical Java Technology Specification

H.1 Classes

H.1.1 CLASS SCJAllowed

@SCJAllowed
@Retention(java.lang.annotation.RetentionPolicy.CLASS)
@Target({

java.lang.annotation.ElementType.TYPE, java.lang.annotation.ElementType.FIELD,
java.lang.annotation.ElementType.METHOD,
java.lang.annotation.ElementType.CONSTRUCTOR})

public @interface SCJAllowed
This annotation distinguishes methods, classes, and fields that may be ac-
cessed from within safety-critical Java programs. In some implementations
of the safety-critical Java specification, elements which are not declared with
the @SCJAllowed annotation (and are therefore not allowed in safety-critical
application software) are present within the declared class hierarchy. These
are necessary for full compatibility with standard edition Java, the Real-Time
Specification for Java, and/or for use by the implementation of infrastructure
software.

The value field equals LEVEL 0 for elements that may be used within safety-
critical Java applications targeting Level 0, Level 1, or Level 2.

The value field equals LEVEL 1 for elements that may be used within safety-
critical Java applications targeting Level 1 or Level 2.

The value field equals LEVEL 2 for elements that may be used within safety-
critical Java applications targeting Level 2.

Absence of this annotation on a given Class, Field, Method, or Constructor
declaration indicates that the corresponding element may not be accessed from
within a compliant safety-critical Java application.

Attributes

@SCJAllowed
public boolean members () default false;

@SCJAllowed
public javax.safetycritical.annotate.Level value () default
javax.safetycritical.annotate.Level.LEVEL 0;

H.1.2 CLASS SCJMayAllocate

@SCJAllowed

840 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

@Retention(java.lang.annotation.RetentionPolicy.CLASS)
@Target({

java.lang.annotation.ElementType.TYPE, java.lang.annotation.ElementType.METHOD,
java.lang.annotation.ElementType.CONSTRUCTOR})

public @interface SCJMayAllocate
This annotation distinguishes methods that may be restricted from allocating
memory in certain memory areas.

Attributes

@SCJAllowed
public javax.safetycritical.annotate.AllocationContext value () default {
javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.OUTER,
javax.safetycritical.annotate.AllocationContext.INNER };

H.1.3 CLASS SCJMaySelfSuspend

@SCJAllowed
@Retention(java.lang.annotation.RetentionPolicy.CLASS)
@Target({

java.lang.annotation.ElementType.TYPE, java.lang.annotation.ElementType.METHOD,
java.lang.annotation.ElementType.CONSTRUCTOR})

public @interface SCJMaySelfSuspend
This annotation distinguishes methods that may be restricted from blocking
during execution.

Attributes

@SCJAllowed
public boolean value () default false;

H.1.4 CLASS SCJPhase

@SCJAllowed
@Retention(java.lang.annotation.RetentionPolicy.CLASS)
@Target({

java.lang.annotation.ElementType.TYPE, java.lang.annotation.ElementType.METHOD,
java.lang.annotation.ElementType.CONSTRUCTOR})

public @interface SCJPhase
This annotation distinguishes methods that may be called only from code run-
ning in a certain mission phase (e.g. Initialization or Clean Up).

Attributes

27 January 2017 Version 0.109
Confidentiality: Public Distribution

841

Safety-Critical Java Technology Specification

@SCJAllowed
public javax.safetycritical.annotate.Phase value () default {
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP };

The phase of the mission in which a method may run.

H.2 Interfaces

H.3 Classes

H.3.1 CLASS AllocationContext

@SCJAllowed
public enum AllocationContext

Fields

@SCJAllowed
public static final javax.safetycritical.annotate.AllocationContext CURRENT

Allocation is allowed in the current memory area.

@SCJAllowed
public static final javax.safetycritical.annotate.AllocationContext INNER

Allocation is allowed in any inner (more deeply nested) memory area.

@SCJAllowed
public static final javax.safetycritical.annotate.AllocationContext OUTER

Allocation is allowed in any outer (less deeply nested) memory area.

@SCJAllowed
public static final javax.safetycritical.annotate.AllocationContext THIS

Allocation is allowed in the memory area where the current object (this) was
allocated.

H.3.2 CLASS Level

@SCJAllowed
public enum Level

842 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Fields

@SCJAllowed
public static final javax.safetycritical.annotate.Level LEVEL 0

@SCJAllowed
public static final javax.safetycritical.annotate.Level LEVEL 1

@SCJAllowed
public static final javax.safetycritical.annotate.Level LEVEL 2

@SCJAllowed
public static final javax.safetycritical.annotate.Level SUPPORT

H.3.3 CLASS Phase

@SCJAllowed
public enum Phase

Fields

@SCJAllowed
public static final javax.safetycritical.annotate.Phase CLEANUP

@SCJAllowed
public static final javax.safetycritical.annotate.Phase INITIALIZATION

@SCJAllowed
public static final javax.safetycritical.annotate.Phase RUN

@SCJAllowed
public static final javax.safetycritical.annotate.Phase STARTUP

27 January 2017 Version 0.109
Confidentiality: Public Distribution

843

Safety-Critical Java Technology Specification

844 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Appendix I

Javadoc Description of Package
javax.safetycritical.io
Package Contents Page

Classes
ConnectionFactory . 846

A factory for creating user defined connections.
ConsoleConnection . 848

A connection for the default I/O device.
SimplePrintStream . 849

A version of OutputStream that can format a CharSequence into a
UTF-8 byte sequence for writing.

845

Safety-Critical Java Technology Specification

I.1 Classes

I.2 Interfaces

I.3 Classes

I.3.1 CLASS ConnectionFactory

@SCJAllowed
public abstract class ConnectionFactory extends java.lang.Object

A factory for creating user defined connections.

Constructors

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

protected ConnectionFactory(String name)

Create a connection factory.
name — Connection name used for connection request in Connector.

Methods

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public abstract javax.microedition.io.Connection create(String url)
throws java.io.IOException, javax.microedition.io.ConnectionNotFoundException

Create a connection for the URL type of this factory.
url — URL for which to create the connection.
returns a connection for the URL.

846 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

Throws IOException when some other I/O problem is encountered.

@SCJAllowed
@Override
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public boolean equals(Object other)

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static javax.safetycritical.io.ConnectionFactory getRegistered(String name)

Get a reference to the already registered factory for a given protocol.

name — The name of the connection type.
returns The ConnectionFactory associated with the name, or null if no Connec-

tionFactory is registered.

@SCJAllowed
@SCJMayAllocate({})
@SCJMaySelfSuspend(false)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public final java.lang.String getServiceName()

Return the service name for a connection factory.

returns service name.

@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

27 January 2017 Version 0.109
Confidentiality: Public Distribution

847

Safety-Critical Java Technology Specification

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public static void register(ConnectionFactory factory)

Register an application-defined connection type in the connection framework.
The method getServiceName specifies the protocol a factory handles. When a
factory is already registered for a given protocol, the new factory replaces the
old one.

factory — the connection factory.

I.3.2 CLASS ConsoleConnection

@SCJAllowed
public class ConsoleConnection implements

javax.microedition.io.StreamConnection extends java.lang.Object
A connection for the default I/O device. The console connection can be ob-
tained by the javax.microedition.io.Connector class with the openOutputStream
method by providing ”console:” as the base url

Methods

@Override
@SCJAllowed
@SCJMaySelfSuspend(true)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void close()

Closes this console connection.

@Override
@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,

848 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

javax.safetycritical.annotate.AllocationContext.OUTER})
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.io.InputStream openInputStream()

returns the input stream for this console connection.

@Override
@SCJAllowed
@SCJMaySelfSuspend(false)
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJPhase({
javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public java.io.OutputStream openOutputStream()

returns the output stream for this console connection.

I.3.3 CLASS SimplePrintStream

@SCJAllowed
public class SimplePrintStream implements java.lang.AutoCloseable extends

java.io.OutputStream
A version of OutputStream that can format a CharSequence into a UTF-8 byte
sequence for writing.

Constructors

@SCJAllowed
@SCJMayAllocate({})
@SCJPhase({javax.safetycritical.annotate.Phase.INITIALIZATION})
@SCJMaySelfSuspend(true)
public SimplePrintStream(OutputStream stream)

stream — to use for output.

Methods

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,

27 January 2017 Version 0.109
Confidentiality: Public Distribution

849

Safety-Critical Java Technology Specification

javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public boolean checkError()

returns indicates whether or not an error occurred.

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

protected void clearError()

@SCJAllowed
@SCJPhase({javax.safetycritical.annotate.Phase.CLEANUP})
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
public void close()

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public synchronized void print(CharSequence sequence)

The class uses the same modified UTF-8 used by java.io.DataOuputStream.
There are two differences between this format and the ”standard” UTF-8 for-

850 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Safety-Critical Java Technology Specification

mat:

1 the null byte ’\\u0000’ is encoded in two bytes rather than in one, so the
encoded string never has any embedded nulls; and

2 only the one, two, and three byte encodings are used.

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void println()

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void println(CharSequence sequence)

@SCJAllowed
@SCJMayAllocate({

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

protected void setError()

@SCJAllowed
@SCJMayAllocate({

27 January 2017 Version 0.109
Confidentiality: Public Distribution

851

Safety-Critical Java Technology Specification

javax.safetycritical.annotate.AllocationContext.CURRENT,
javax.safetycritical.annotate.AllocationContext.INNER,
javax.safetycritical.annotate.AllocationContext.OUTER})

@SCJMaySelfSuspend(true)
@SCJPhase({

javax.safetycritical.annotate.Phase.STARTUP,
javax.safetycritical.annotate.Phase.INITIALIZATION,
javax.safetycritical.annotate.Phase.RUN,
javax.safetycritical.annotate.Phase.CLEANUP })

public void write(int b)
throws java.io.IOException

852 Version 0.109
Confidentiality: Public Distribution

27 January 2017

Bibliography

[1] A. Burns and A. J. Wellings. Real-Time Systems and Programming Languages:.
Addison Wesley, 4th edition, 2010.

[2] G. Bollella et. al. The Real-Time Specification for Java, 2000. Available from:
www.rtj.org.

[3] J.J. Hunt et. al. The Real-Time Specification for Java, V2.0, 2014. Available
from: www.rtj.org.

[4] International Electrotechnical Commission. IEC61508. Standard for Func-
tional Safety of Electrical/Electronic/Programmable Electronic Safety-Related
Systems (E/E/PES), 1998.

[5] C.D. Locke. Software architecture for hard real-time applications: cyclic exec-
utives vs. fixed priority executives. Real-Time Systems, 4(1):37–53, 1992.

[6] RTCA. Software considerations in airborne systems and equipment certifica-
tion. DO-178C, RTCA, December 2011.

[7] RTCA & European Organisation for Civil Aviation Equipment. ED12C. Soft-
ware Considerations in Airborne Systems and Equipment Certification, January
2012.

[8] N. Storey. Safety-Critical Computer Systems. Addison-Wesley, 1996.

[9] United Kingdom Ministry of Defence. Defence Standard 00-55. Requirements
for Safety Related Software in Defence Equipment, August 1997.

[10] United Kingdom Ministry of Defence. Defence Standard 00-56. Safety Man-
agement Requirements for Defence Systems, June 2007.

853

	Introduction
	Definitions, Background, and Scope
	Additional Constraints on Java Technology
	Key Specification Terms
	Specification Context
	Overview of the Remainder of the Document

	Programming Model
	The Mission Concept
	Compliance Levels
	Level 0
	Level 1
	Level 2

	SCJ Annotations
	Use of Asynchronous Event Handlers
	Development vs. Deployment Compliance
	Verification of Safety Properties

	Mission Life Cycle
	Overview
	Application Initialization
	Mission Initialization
	Mission Execution
	Mission Clean Up

	Semantics and Requirements
	Class Initialization
	Safelet Initialization
	MissionSequencer Execution
	Mission Execution

	Level Considerations
	Level 0
	Level 1
	Level 2

	API
	javax.safetycritical.Safelet
	javax.safetycritical.MissionSequencer
	javax.safetycritical.Mission
	javax.safetycritical.Frame
	javax.safetycritical.CyclicSchedule
	Class javax.safetycritical.CyclicExecutive
	LinearMissionSequencer

	Application Initialization Sequence Diagram
	Rationale
	Loading and Initialization of Classes
	MissionSequencer as a ManagedEventHandler
	Sizing of Mission Memories
	Hierachical Decomposition of Memory Resources
	Some Style Recommendations Regarding Design of Missions
	Comments on Termination of Missions
	Special Considerations for Level 0 Missions
	Implementation of MissionSequencers and Missions
	Example of a Static Level 0 Application
	SimpleCyclicExecutive.java
	MyPEH.java
	VendorCyclicSchedule.java
	Example of a Dynamic Level 0 Application
	MyLevel0App.java
	MyLevel0Sequencer.java
	Example of a Level 1 Application
	MyLevel1App.java
	Example of a Level 2 Application
	MyLevel2App.java
	MainMissionSequencer.java
	PrimaryMission.java
	CleanupMission.java
	SubMissionSequencer.java
	StageOneMission.java
	StageTwoMission.java
	MyPeriodicEventHandler.java
	MyCleanupThread.java

	Concurrency and Scheduling Models
	Overview
	Semantics and Requirements
	Level Considerations
	Level 0
	Level 1
	Level 2

	The Parameter Classes
	Class javax.realtime.ReleaseParameters
	Class javax.realtime.PeriodicParameters
	Class javax.realtime.AperiodicParameters
	Class javax.realtime.SchedulingParameters
	Class javax.realtime.PriorityParameters
	Class javax.realtime.MemoryParameters
	Class javax.realtime.ConfigurationParameters
	Class javax.realtime.memory.ScopeParameters

	Asynchronous Event Handlers
	Interface javax.realtime.Timable
	Interface javax.realtime.AsyncTimable
	Interface javax.realtime.Schedulable
	Interface javax.realtime.BoundRealtimeExecutor
	Interface javax.realtime.BoundSchedulable
	Interface javax.safetycritical.ManagedSchedulable
	Class javax.realtime.AsyncBaseEventHandler
	Class javax.realtime.AsyncEventHandler
	Class javax.realtime.AsyncLongEventHandler
	Interface javax.realtime.BoundAsyncBaseEventHandler
	Class javax.realtime.BoundAsyncEventHandler
	Class javax.realtime.BoundAsyncLongEventHandler
	Class javax.safetycritical.ManagedEventHandler
	Class javax.safetycritical.ManagedLongEventHandler
	Class javax.safetycritical.PeriodicEventHandler
	Class javax.safetycritical.OneShotEventHandler
	Class javax.safetycritical.AperiodicEventHandler
	Class javax.safetycritical.AperiodicLongEventHandler

	Threads and Real-Time Threads
	Class java.lang.Thread
	Class javax.realtime.RealtimeThread
	Class javax.safetycritical.ManagedThread

	Scheduling and Related Activities
	Class javax.safetycritical.CyclicSchedule
	Class javax.safetycritical.CyclicExecutive
	Class javax.realtime.Scheduler
	Class javax.realtime.PriorityScheduler
	Class javax.realtime.FirstInFirstOutScheduler
	Class javax.realtime.Affinity
	Class jaxax.safetycritical.Services

	Rationale for the SCJ Concurrency Model
	Scheduling and Synchronization Issues
	Multiprocessors
	Schedulability Analysis and MultiProcessors
	Impact of Clock Granularity
	Deadline Miss Detection

	Compatibility

	Interaction with Devices and External Events
	Overview
	Interaction with Input and Output Devices
	Semantics and Requirements
	Level Considerations
	API
	javax.realtime.device.RawByteReader
	javax.realtime.device.RawByteWriter
	javax.realtime.device.RawByte
	javax.realtime.device.RawShortReader
	javax.realtime.device.RawShortWriter
	javax.realtime.device.RawShort
	javax.realtime.device.RawIntReader
	javax.realtime.device.RawIntWriter
	javax.realtime.device.RawInt
	javax.realtime.device.RawLongReader
	javax.realtime.device.RawLongWriter
	javax.realtime.device.RawLong
	javax.realtime.device.RawMemoryRegion
	javax.realtime.device.RawMemoryRegionFactory
	javax.realtime.device.RawMemoryFactory
	javax.realtime.device.InterruptServiceRoutine
	javax.safetycritical.ManagedInterruptServiceRoutine

	POSIX Signal Handlers
	Semantics and Requirements
	Level Considerations
	javax.safetycritical.POSIXSignalHandler
	javax.safetycritical.POSIXRealtimeSignalHandler

	Rationale
	Stride
	Interrupt Handling Rationale

	Compatibility

	Input and Output Model
	Overview
	Semantics and Requirements
	Level Considerations
	API
	javax.microedition.io.Connector
	javax.microedition.io.Connection
	javax.microedition.io.InputConnection
	javax.microedition.io.OutputConnection
	javax.microedition.io.StreamConnection
	javax.microedition.io.ConnectionNotFoundException
	javax.safetycritical.io.ConsoleConnection
	javax.safetycritical.io.ConnectionFactory
	java.io.PrintStream

	Rationale
	Compatibility

	Memory Management
	Overview
	Semantics and Requirements
	Memory Model

	Level Considerations
	Level 0
	Level 1
	Level 2

	Memory-Related APIs
	Class javax.realtime.MemoryParameters
	Class javax.realtime.MemoryArea
	Class javax.realtime.ImmortalMemory
	Class javax.realtime.memory.ScopedMemory
	Class javax.realtime.memory.ScopeParamters
	Class javax.realtime.memory.StackedMemory
	Class javax.safetycritical.ManagedMemory
	Class javax.realtime.SizeEstimator

	Rationale
	Nesting Scopes
	Finalizers

	Compatibility

	Clocks, Timers, and Time
	Overview
	Semantics and Requirements
	Chronographs and Clocks
	Time
	Application-defined Chronographs and Clocks
	RTSJ Constraints

	Level Considerations
	API
	Class javax.realtime.Chronograph
	Class javax.realtime.Clock
	Class javax.realtime.HighResolutionTime
	Class javax.realtime.AbsoluteTime
	Class javax.realtime.RelativeTime

	Rationale
	Compatibility

	Java Metadata Annotations
	Overview
	Semantics and Requirements
	Annotations for Enforcing Compliance Levels
	Compliance Level Reasoning
	Class Constructor Rules
	Other Rules

	Annotations for Restricting Behavior
	@SCJMayAllocate
	@SCJMaySelfSuspend
	@SCJPhase
	Inheritance Considerations

	Level Considerations
	API
	Class javax.safetycritical.annotate.SCJPhase
	Class javax.safetycritical.annotate.SCJMayAllocate
	Class javax.safetycritical.annotate.SCJMaySelfSuspend
	Class javax.safetycritical.annotate.SCJAllowed
	Class javax.safetycritical.annotate.Level
	Class javax.safetycritical.annotate.Phase
	Class javax.safetycritical.annotate.AllocationContext

	Rationale and Examples
	Compliance Level Annotation Example
	Memory Safety Annotations

	Java Native Interface
	Overview
	Semantics and Requirements
	Level Considerations
	API
	Version Information
	Class Operations
	Exceptions
	Global and Local References
	Weak Global References
	Object Operations
	Accessing Fields of Objects
	Calling Instance Methods
	Accessing Static Fields
	Calling Static Methods
	String Operations
	Array Operations
	Registering Native Methods
	Monitor Operations
	NIO Support
	Reflection Support
	Java VM Interface

	Annotations
	Rationale
	Example
	Compatibility
	RTSJ Compatibility Issues
	General Java Compatibility Issues

	Exceptions
	Overview
	Semantics and Requirements
	SCJ-Specific Functionality

	Level Considerations
	API
	Class java.lang.Throwable
	Class javax.realtime.StaticThrowable
	Class javax.realtime.StaticThrowableStorage
	Class java.lang.Exception
	Class javax.realtime.StaticRuntimeException
	Class javax.realtime.StaticCheckedException
	Class jaxax.realtime.ThrowBoundaryError
	Class java.lang.Error

	Rationale
	Compatibility
	RTSJ Compatibility Issues
	General Java Compatibility Issues

	Class Libraries for Safety-Critical Applications
	Minimal JDK 1.8 java.lang package Capabilities Required in SCJ Implementations
	Modifications to java.lang.Character
	Modifications to java.lang.Class
	Modifications to java.lang.Object
	Modifications to java.lang.String
	Modifications to java.lang.StringBuilder
	Modifications to java.lang.System
	Modifications to java.lang.Thread
	Modifications to java.lang.Throwable

	Minimal JDK 1.8 java.lang.annotation Capabilities Required in SCJ Implementations
	Minimal JDK 1.8 java.io Capabilities Required in SCJ Implementations
	Minimal JDK 1.8 java.util Capabilities Required in SCJ Implementations

	Javadoc Description of Package java.io
	Classes
	Interfaces
	Interface Closeable
	Interface DataInput
	Interface DataOutput
	Interface Flushable
	Interface Serializable

	Classes
	Class DataInputStream
	Class DataOutputStream
	Class EOFException
	Class FilterOutputStream
	Class IOException
	Class InputStream
	Class OutputStream
	Class PrintStream
	Class UTFDataFormatException

	Javadoc Description of Package java.lang
	Classes
	Class Deprecated
	Class Override
	Class SuppressWarnings

	Interfaces
	Interface Appendable
	Interface CharSequence
	Interface Cloneable
	Interface Comparable
	Interface Runnable
	Interface Thread.UncaughtExceptionHandler
	Interface UncaughtExceptionHandler

	Classes
	Class ArithmeticException
	Class ArrayIndexOutOfBoundsException
	Class ArrayStoreException
	Class AssertionError
	Class Boolean
	Class Byte
	Class Character
	Class Class
	Class ClassCastException
	Class ClassNotFoundException
	Class CloneNotSupportedException
	Class Double
	Class Enum
	Class Error
	Class Exception
	Class ExceptionInInitializerError
	Class Float
	Class IllegalArgumentException
	Class IllegalMonitorStateException
	Class IllegalStateException
	Class IncompatibleClassChangeError
	Class IndexOutOfBoundsException
	Class InstantiationException
	Class Integer
	Class InternalError
	Class InterruptedException
	Class Long
	Class Math
	Class NegativeArraySizeException
	Class NullPointerException
	Class Number
	Class NumberFormatException
	Class Object
	Class OutOfMemoryError
	Class RuntimeException
	Class Short
	Class StackOverflowError
	Class StackTraceElement
	Class StrictMath
	Class String
	Class StringBuilder
	Class StringIndexOutOfBoundsException
	Class System
	Class Thread
	Class Throwable
	Class UnsatisfiedLinkError
	Class UnsupportedOperationException
	Class VirtualMachineError
	Class Void

	Javadoc Description of Package javax.microedition.io
	Classes
	Interfaces
	Interface Connection
	Interface InputConnection
	Interface OutputConnection
	Interface StreamConnection

	Classes
	Class ConnectionNotFoundException
	Class Connector

	Javadoc Description of Package javax.realtime
	Classes
	Interfaces
	Interface AsyncTimable
	Interface BoundAsyncBaseEventHandler
	Interface BoundRealtimeExecutor
	Interface BoundSchedulable
	Interface Chronograph
	Interface Schedulable
	Interface StaticThrowable
	Interface Timable

	Classes
	Class AbsoluteTime
	Class Affinity
	Class AperiodicParameters
	Class AsyncBaseEventHandler
	Class AsyncEventHandler
	Class AsyncLongEventHandler
	Class BoundAsyncEventHandler
	Class BoundAsyncLongEventHandler
	Class Clock
	Class ConfigurationParameters
	Class DeregistrationException
	Class EnclosedType
	Class FirstInFirstOutScheduler
	Class HighResolutionTime
	Class IllegalAssignmentError
	Class IllegalSchedulableStateException
	Class ImmortalMemory
	Class InaccessibleAreaException
	Class MemoryAccessError
	Class MemoryArea
	Class MemoryInUseException
	Class MemoryParameters
	Class MemoryTypeConflictException
	Class OffsetOutOfBoundsException
	Class PeriodicParameters
	Class PriorityParameters
	Class PriorityScheduler
	Class ProcessorAffinityException
	Class RealtimeThread
	Class RegistrationException
	Class RelativeTime
	Class ReleaseParameters
	Class Scheduler
	Class SchedulingParameters
	Class SizeEstimator
	Class SizeOutOfBoundsException
	Class StaticError
	Class StaticRuntimeException
	Class StaticThrowableStorage
	Class ThrowBoundaryError

	Javadoc Description of Package javax.realtime.device
	Classes
	Interfaces
	Interface RawByte
	Interface RawByteReader
	Interface RawByteWriter
	Interface RawDouble
	Interface RawDoubleReader
	Interface RawDoubleWriter
	Interface RawFloat
	Interface RawFloatReader
	Interface RawFloatWriter
	Interface RawInt
	Interface RawIntReader
	Interface RawIntWriter
	Interface RawLong
	Interface RawLongReader
	Interface RawLongWriter
	Interface RawMemoryRegionFactory
	Interface RawShort
	Interface RawShortReader
	Interface RawShortWriter

	Classes
	Class InterruptServiceRoutine
	Class RawMemoryFactory
	Class RawMemoryRegion

	Javadoc Description of Package javax.realtime.memory
	Classes
	Interfaces
	Classes
	Class ScopeParameters
	Class ScopedCycleException
	Class ScopedMemory
	Class StackedMemory

	Javadoc Description of Package javax.safetycritical
	Classes
	Interfaces
	Interface ManagedSchedulable
	Interface Safelet

	Classes
	Class AperiodicEventHandler
	Class AperiodicLongEventHandler
	Class CyclicExecutive
	Class CyclicSchedule
	Class CyclicSchedule.Frame
	Class Frame
	Class LinearMissionSequencer
	Class ManagedEventHandler
	Class ManagedInterruptServiceRoutine
	Class ManagedLongEventHandler
	Class ManagedMemory
	Class ManagedThread
	Class Mission
	Class MissionMemory
	Class MissionSequencer
	Class OneShotEventHandler
	Class POSIXRealtimeSignalHandler
	Class POSIXSignalHandler
	Class PeriodicEventHandler
	Class PrivateMemory
	Class Services
	Class SingleMissionSequencer

	Javadoc Description of Package javax.safetycritical.annotate
	Classes
	Class SCJAllowed
	Class SCJMayAllocate
	Class SCJMaySelfSuspend
	Class SCJPhase

	Interfaces
	Classes
	Class AllocationContext
	Class Level
	Class Phase

	Javadoc Description of Package javax.safetycritical.io
	Classes
	Interfaces
	Classes
	Class ConnectionFactory
	Class ConsoleConnection
	Class SimplePrintStream

